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Abstract

Experimental results are reported from two measurement techniques (semiconductor switching

and electro-optic sampling) that allow temporal characterization of electron bunches produced by

a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum

interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties

of this radiation allows characterization of the electron bunches. Theoretical work on the emission

mechanism is presented, including a model that calculates the THz waveform from a given bunch

profile. It is found that the spectrum of the THz pulse is coherent up to the 200-µm-thick crystal

(ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (root-mean-

square) electron bunch structure. The measurements demonstrate both the shot-to-shot stability

of bunch parameters that are critical to THz emission (such as total charge and bunch length), as

well as femtosecond synchronization between bunch, THz pulse, and laser beam.

∗ Also at Eindhoven University of Technology, the Netherlands.
† Also at University of Paris XI, Orsay, France.
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I. INTRODUCTION

Laser-wakefield accelerators (LWFAs) [1–9] have recently gained interest because of their

ability to produce relativistic electrons [3–9], THz radiation [10–14], X-rays [15–17], and

gamma-ray photons [18], all intrinsically synchronized in time (on the femtosecond timescale)

with the laser pulse. The acceleration mechanism is based on the nonlinear interaction of

a near-infrared (NIR) laser pulse (intensity > 1019 Wcm−2) with a plasma (density ∼ 1019

cm−3). Relativistic electron bunches, containing several nC’s of charge, with a length on

the order of the plasma wavelength (∼ 5− 30 µm), and a transverse size on the order of the

laser spot size (∼ 5 − 20 µm) are predicted [19, 20] to be produced. Although parameters

such as charge and electron energy have been experimentally confirmed [3–9], temporal

characterization of the short bunch has been limited [10, 21].

For conventional accelerators, bunch characterization is typically done with two indepen-

dent techniques. One (more recent) technique relies on directly measuring the Coulomb

field of the bunch through electro-optic sampling [22–26]. Another technique relies on the

spectral characterization of coherent radiation (typically through interferometry), emitted

by an electron bunch after it propagates through a discontinuity in a dielectric environment.

The discontinuity can be realized through insertion of a metallic foil in the bunch path

[27–29], resulting in the emission of coherent transition radiation (CTR) [30]. To implement

a diagnostic for LWFA-produced bunches, we rely on the emission of CTR (predominantly

at THz frequencies), emitted as the electron bunch exits the plasma-vacuum interface. In

recent years, the existence of THz (CTR) emission from the LWFA has been experimen-

tally confirmed and reported [10, 12, 14]. Section II provides an overview of theoretical

understanding of LWFA-produced CTR.

To date, CTR-based LWFA-bunch analysis was performed in only one experiment, where

total THz energy was measured in two spectral regimes [10] (suggesting sub-100 fs bunch

structure). In order to provide more detailed bunch and THz profile analysis (including

possible profile asymmetries or multi-pulse structures), we report in this publication on

two techniques applied for temporal characterization of the THz pulse, both with use of

a NIR laser pulse. All experiments discussed in this paper were performed at a plasma

density of ' 3 × 1019 cm−3. At such high densities the acceleration scheme is referred

to as the self-modulated LWFA (SM-LWFA), since the laser pulse length is longer than the
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plasma wavelength (which results in a laser envelope modulation at the plasma wavelength).

Section III presents the first measurement technique, semiconductor switching (SCS) [31–33],

where the NIR pulse serves as a pump and the THz pulse as a probe beam. SCS is suitable

for THz envelope characterization as well as establishment of THz-to-NIR synchronization.

Section IV presents the second technique, electro-optic sampling (EOS) [22–26, 34–36], where

the THz pulse serves as the pump and the NIR pulse as the probe beam. EOS allows for the

measurement of the THz electric field profile (amplitude and phase). Section V discusses

the results in terms of bunch and THz profile reconstruction. Both techniques require shot-

to-shot stability of bunch parameters that are critical to THz emission and detection such

as total charge, bunch length, and temporal synchronization. Since multiple ultra-short

beams are involved, the measurements prove applicability of the SM-LWFA in pump-probe

experiments.

II. THEORY: THz RADIATION FROM THE LASER-WAKEFIELD ACCELERA-

TOR

A. The plasma-vacuum boundary as THz emitter

The dielectric function in a (cold) plasma is given by εpl(ω) = 1 − ω2
p/ω

2,

with ωp the plasma (angular) frequency related to plasma density n through

ωp [s−1]=5.64×104
√

n [cm−3]. The longitudinal plasma profile in LWFA experiments is

non-uniform, as determined by the gas emission profile, and follows the density function

n(z), with z the propagation direction of the laser. It is for this reason that also the di-

electric function has a spatial dependence εpl(ω, z), resulting in the emission of transition

radiation (TR) if an electron bunch passes through. We next present a heuristic picture for

the location in the plasma where the TR is emitted, and at what intensity compared to TR

from a metal-vacuum boundary.

We define a density profile as plotted in Fig. 1(a), which is characteristic for the exper-

iments described in this publication. Density interferometry has confirmed the agreement

between modeled and actual profile. The transverse size of the plasma is on the order of 100-

300 µm. The density interferometer is less sensitive at low plasma densities n < 1018 cm−3,

and plasma parameters in this regime are therefore based on estimations. Figure 1(a) shows
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a uniform density profile (up to z = 2 mm and starting at z = 0 mm), followed by a down

ramp with length Lramp, which has a length on the order of '300 µm. We focus now on

TR with frequency ω0 =10 THz, although TR at any arbitrary radiation frequency can be

analyzed in a similar manner. For ω0 =10 THz, one can derive the spatially varying dielec-

tric constant εpl(z, ω0), plotted in Fig. 1(b). Note that the z-range in Fig. 1(b) is only a

small fraction of the z-range in Fig. 1(a). In the high-density region (n ≈ 1017−1019 cm−3),

the density is highly overcritical for ω0 such that εpl(ω0) → −∞. Only in the lower-density

part of the ramp (n . 1017 cm−3) does the dielectric constant reach positive values, and

eventually becomes ε = 1 in vacuum.

Before continuing the discussion on the location in the plasma profile where the TR is

emitted, we will take a necessary step back and consider TR from a step-boundary between

a medium with dielectric constant ε = εm and vacuum (ε = 1). The following expression for

the radiated energy d2Ie− per unit bandwidth dω and unit solid angle dΩ can be found in

the literature [30]:

d2Ie−

dωdΩ
=

e2

π2c

[
εm − 1

(1− β2 cos2 θ)(1− β
√

εm − sin2 θ)

]2

×

[
1− β2 − β

√
εm − sin2 θ√

εm − sin2 θ + εm cos θ

]2

,

(1)

with β = v/c the velocity v of the electron normalized to the speed of light c, θ the angle

of observation measured with respect to the z-axis, and e the unit electron charge. Note

that this expression is only valid for a single electron propagating along the z-axis at normal

incidence to the interface. In Fig. 2 one can see (solid curve) the dependency of d2Ie−/dωdΩ

on ∆ε = εm − 1, with values for εm in the range of 0.4–1. For this calculation we used

θ = 0.15 rad, and u=10, with u = β/
√

1− β2 the electron momentum normalized to

mec. The dashed line corresponds to the differential energy emitted for the (metal-vacuum)

discontinuity where εm → −∞. One can see that the transition ∆ε = −0.2 (εm = 0.8)

results in nearly 90% of the radiation emission compared to ∆ε = −∞. This indicates that

TR emission is dominated by the ε = 0.8 → 1 boundary (the transition ε = −∞→ 0.8 will

result in emission of only a fraction of the energy of the ε = 0.8 → 1 interface).

We return now to TR from the plasma profile in Fig. 1(a). When the electron bunch

propagates through the density ramp, and passes through a change in dielectric constant

from εpl = −∞ to ε =1, the TR emission occur predominantly at the very end of the ramp
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where εpl ' 0.8. Although the transition εpl ' 0.8 → 1 is not a step-boundary, but a

region with width LTR, it can been shown that the emission region is still well-modeled

as a step-boundary [37], provided LTR is smaller than the formation length Lform, given by

Lform = λ/(2−2β cos θ), with λ the radiation wavelength and β = v/c the normalized velocity

of the electron. Although the expression for Lform is derived for a vacuum environment,

it holds in the underdense region of the plasma. For typical SM-LWFA parameters the

radiation frequencies of interest are in the THz regime, θ is typically on the order of 0-0.3 rad,

and the electrons in the bunch contributing to the TR have γ & 4. One can find that for

these parameters Lform &0.3 cm. Since LTR �100 µm, the step boundary approximation

is indeed valid. The position of the emission region (approximated as a plane) is drawn in

Figs. 1(a) and (b).

B. Radiated field and intensity distribution for coherent transition radiation

Section IIA discussed the emission of TR by a single electron propagating through a

plasma-vacuum interface. It was shown that the plasma-vacuum boundary can be approxi-

mated by a metal-vacuum step-boundary. In this case, Eq. (1) can be simplified to

d2Ie−

dωdΩ
=

e2

π2c
E2 with E(u) =

u
√

1 + u2 sin θ

1 + u2 sin2 θ
. (2)

We will now include both coherent effects, which refers to the TR emission of a collection of

electrons (CTR), as well as diffraction effects due to the finite transverse dimension of the

boundary. The electrons are bunched according to their temporal charge distribution Q(t).

The angular and spectral intensity distribution of CTR is given by [11]

d2ICTR

dωdΩ
=

e2N2

π2c

∣∣∣∣∫ g(u)E(u)D(ω, u)F (ω)du

∣∣∣∣2 , (3)

with N the number of electrons in the bunch, and g(u) the electron momentum distribution.

In this equation F (ω) stands for the form factor, given by the Fourier transform of Q(t), or

F (ω) =
∫

Q(t) exp (−ıωt)dt. It is assumed that the transverse bunch size is smaller than the

longitudinal length and the electrons are relativistic. The electron momentum distribution

is assumed to be uncorrelated in time or position. The diffraction function D(ω, u) is given
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by [11]

D(ω, u) = 1− J0(bu sin θ)

[
bK1(b) +

1

2
b2K0(b)

]
−1

2
b2K0(b)J2(bu sin θ),

(4)

with b = ωρ/(uc), ρ the transverse radius of the emission plane, and Jm and Km the mth-

order regular and modified Bessel functions, respectively.

Van Tilborg et al. [13] extended the above CTR analysis to derive expressions for the

electric field waveform rather than the intensity distribution. The (complex) electric field in

the frequency domain was found to be expressed as

ECTR(ω,R) =
2eN

cR
e−ıωR/c

∫
E(u)D(ω, u)F (ω)g(u)du, (5)

with R the distance to the observation point. The temporal profile of the CTR electric

field waveform is given by ECTR(t, R) = 1/(2π)
∫

ECTR(ω,R)eıωtdω. It was shown [13] that

the solution to Eq. (5) for a mono-energetic bunch at ut does not significantly differ from

the solution for a Boltzmann-like momentum distribution [∼ exp(−u/ut)] with temperature

ut. Figure 3 shows, for a mono-energetic electron bunch (u = 10) with a 50 fs (rms) pulse

length, the THz electric field profiles in the temporal and Fourier domains (with ω = 2πν)

for various values for the transverse boundary size ρ. The angle of observation is set at θ=0.3

rad. The solid curve is calculated with ρ=1000 µm, the dashed curve with ρ=400 µm, and

the dotted curve with ρ=100 µm. The THz pulse can be described as a broad-bandwidth

and single-cycle waveform. As Fig. 3 illustrates, the effects of a decreasing boundary size

are (i) to remove the lower frequencies for |Ectr(ν)|, and (ii) to bring the negative side-wings

in the temporal waveform ETHz(t) closer together at larger amplitude.

III. EXPERIMENT: SEMICONDUCTOR SWITCHING

A. Configuration and model for THz switching

One technique that provides temporal insight into the THz radiation pulse is the technique

referred to as semiconductor switching [31]. The technique has been applied since the 1970s,

and was (among others) used for short-pulse production of CO2 laser pulses [32, 33]. The

principle of SCS is that a pump beam excites a dense electron-hole plasma (free carriers) at
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the surface of a semiconductor. The pump beam can be either an electron beam, or (such

as in this experiment) a laser beam at an above-semiconductor-bandgap central frequency.

The excitation is almost instantaneous (less then a few femtoseconds), although it will

remain for many picoseconds. The excitation switches the semiconductor properties from

transmissive to reflective regarding THz pulses. The SCS experiment was performed to

establish temporal synchronization between the THz pulse and the NIR laser beam (crucial

for the EOS experiment described in Sec. IV), and to provide insight in the envelope profile of

the THz pulse. However, this technique is not well-suited for detailed bunch characterization.

The setup for SCS is sketched in Fig. 4. A Ti:Al2O3 laser beam (wavelength of λ0 = 800

nm) was focused [spot size ' 3.6 µm (rms)] by an off-axis parabola (OAP1) onto Helium gas

emerging from a gas jet (diameter of 2 mm) with a backing pressure of 1000 psi. The peak

electron density in the plasma was 3×1019 cm−3, corresponding to a plasma wavelength of

λp = 6 µm. The laser pulse length was 50 fs (FWHM), which is about 2.5 times longer than

λp, such that the accelerator is operated in the regime of SM-LWFA. The laser system was

clean of pre-pulses at intensities & 1014 Wcm−2, as verified with a (femtosecond) plasma

density interferometry technique.

The charge of the electron bunch was ' 2.4 nC, measured 50 cm from the gas jet. The

electron momentum distribution g(u), measured by an imaging magnetic spectrometer and

averaged over multiple shots, showed an exponential form exp (−u/ut) with temperature

ut = 10. During another experiment [12] with the same laser system, the transverse charge

distribution was measured using a phosphor plate at 75 cm from the gas jet. The data

indicated fluctuations in divergence ranging from 10-100 mrad; over this range the beam

can be approximated as divergence-less in terms of THz emission, as discussed in Ref. [11].

Details on measurement of the electron charge, energy distribution, and beam divergence

were described in Ref. [12].

Part of the THz radiation was collected and collimated by an F/2 90◦-off-axis parabola

(OAP2, 15 cm focal length), positioned off-centered (θ = 19◦ with respect to the main

propagation axis) to avoid damage from the electron or laser beams. The half-opening angle

for OAP2 was ' 15◦. The collimated THz radiation was then focused by an F/2.4 90◦-off-

axis parabola (OAP3, 18 cm focal length) onto a high-resistivity 〈111〉 Silicon wafer (serving

as Si switch), with a thickness of 0.6 mm [a 3.2-mm-thick polyethylene (PE) disk served as

vacuum window]. An iris was positioned at the THz focal plane just behind the Si switch
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and had an opening diameter of 1.6 mm. At a distance of 2 cm a liquid-Helium cooled

detector (SiC bolometer) measured the incident THz radiation energy. Two internal filters

in the bolometer allowed the user to select a 0.3-3 THz or 0.3-30 THz spectral acceptance.

Several other Si wafers were positioned in the THz beam path to block low-intensity remnant

laser light. Also incident on the Si switch was a collimated Ti:Al2O3 laser beam, used as

the pump beam for the excitation of free carriers at the Si surface. The spotsize was 3.0

mm [full-width-at-half-max (FWHM)] and the pulse length was 60 fs (FWHM). The angle

of incidence of the pump beam with respect to the normal of the Si surface was 12◦. The

timing τ between THz pulse and laser beam was varied with a delay stage.

A heuristic model to SCS is presented here. The transmission Tscs of a specific THz time-

slice PTHz(t → t+dt) depends on the cumulative pump energy W
∗
p (t) that has arrived prior to

this time-slice, or Tscs = Tscs(W
∗
p ). P = |E|2 refers to the power. The transmission function

Tscs(W
∗
p ) can be experimentally determined by delaying the entire THz pulse (such that

the pump beam arrives at the Si first) and recording transmitted THz energy as a function

of pump beam energy. The inset in Fig. 4 displays the measured transmission curve for

0.3-3 THz filtration (bottom curve, circles) and 0.3-30 THz filtration (top curve, squares).

Exponential fits to the curves yielded α = 0.069 µJ−1 (0.3-3 THz filter) and α = 0.051 µJ−1

(0.3-30 THz filter), with Tscs ∼ exp (−αWp) and Wp in units of µJ. In the case of the

0.3-30 THz spectral acceptance, one can see that the switch is not perfect, since 22% of

the THz energy leaks through the switch regardless of pump beam timing and energy. We

suggest that a cut-off frequency exists, above which the laser-induced semiconductor plasma

is ineffective in reflecting the radiation. With Tscs(W
∗
p ) experimentally characterized, the

total THz pulse energy W ∗
THz(τ) (after the passing through the switch) can be expressed as

W ∗
THz(τ) =

∫ ∞

−∞
PTHz(t− τ)Tscs

(
W

∗

p =

∫ t

−∞
Pp(t

′)dt′
)

dt. (6)

In the limit of an ultra-short pump beam Pp(t), Eq. (6) reduces to W ∗
THz(τ) =

∫ −τ

−∞ PTHz(t)dt.

B. Experimental results for THz switching

The measured bolometer energy at various values for pump-beam time delay τ is shown

for two separate scans in Figs. 5(a) and (b). Each data point represents an average of 30

shots (typically at 1 Hz repetition) and the error bars represent the rms spread. Figure 5(a)
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displays a scan taken with the bolometer at 0.3-3 THz filtration, and pump beam energy of

195 µJ (or 9.2 × 1010 Wcm−2). Figure 5(b) displays a scan with 0.3-30 THz filtration and

180 µJ of pump energy. When comparing to a model, the data does not allow for detailed

insight on the charge profile. However, the THz pulse envelope is found to have a (rms)

length < 400 fs.

Theoretical predicted transmission curves [from Eqs. (5) and (6)], based on two different

THz pulse profiles, were calculated. The non-collinear geometry between THz and pump

pulse (see Fig. 4) is taken into account by assuming a THz spotsize of 0.5 mm (FWHM).

The dashed curve in Figs. 5(a) and 5(b) indicates the modeled transmitted energy profile

for THz from a Gaussian electron beam, with a rms length of 50 fs (single THz pulse). The

solid curve represents THz transmission from a double-pulse THz profile (see discussion in

Sec. V); the pulses are separated by 300 fs, with the leading pulse having a 50% relative

field amplitude, and each THz pulse is calculated from a 50-fs (rms) electron bunch. Both

solid and dashed curves capture the features of the measurement, with a slight preference

for the model based on the double-pulse THz profile [see Fig. 5(a)]. Note that if just one

longer single-cycle THz pulse was assumed for the model (rms length of 400 fs), its modeled

transmission curve would also match the data of Figs. 5(a) and 5(b). However, it would

be contradictory to previously obtained energy measurements that clearly indicate that a

significant amount of THz energy (more than 70%) is at frequencies above 3 THz [12]. One

longer single-cycle pulse would not contain spectral components above 3 THz, indicating that

a more complicated (double pulse) THz profile was present in the focal volume (confirmed

by EOS data in Sec. IVB).

IV. EXPERIMENT: ELECTRO-OPTIC SAMPLING

A. Configuration and model for electro-optic sampling

In contrast to the SCS experiment, the EOS technique is able to resolve both the phase

and amplitude of the THz waveform. The setup for EOS is sketched in Fig. 6. The arrange-

ment of THz optics inside the target chamber is identical to the SCS experiments and can

be found in Fig. 4 with explanatory comments in Sec. III A. The THz pulse, coming out of

the target chamber, is focused onto a thin electro-optic (EO) crystal. An ultra-short NIR
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laser beam was used to probe the THz-induced change in crystal birefringence. By scanning

the delay between both pulses, a full THz waveform was measured. A polarizer ensured

horizontal polarization of the probe beam, and a λ/4-plate was used to modify the probe

beam polarization incident on the analyzer. The analyzer was set to transmit the vertical

component to diode 1, and the horizontal component to diode 2. The electric field vectors

of the probe beam and THz pulse are shown in the inset of Fig. 6. Although the emitted

THz pulse is radially polarized coming from the plasma-vacuum interface [11], OAP2 (see

Fig. 4) selects a specific polarization component which corresponds to vertical polarization

at the crystal surface. Two types of EO crystals were used in these experiments, namely

ZnTe and GaP. Both crystals were 200 µm thick, free-standing, and cut in the 〈110〉-plane.

For each crystal the 〈001〉-axis was rotated to optimize the signal-to-noise ratio of the EOS

measurement.

With future single-shot EOS experiments as a motivation, the single-diode detection (only

diode 1 in operation) of the probe beam was applied on a more regular basis than balanced-

diode detection [34]. With balanced EOS, both diodes are in operation and the probe beam

is circularly polarized. Although the EO effect onto the probe beam is then small, the

balancing allows for strong noise reduction. To resolve the sign of the THz pulse in the

single-diode scheme [38], the λ/4-plate was rotated to provide elliptical polarization. It has

been shown [38] that in the sign-resolving single-diode configuration, the best signal-to-noise

is obtained with a small rotation of the λ/4–plate, such that near-zero optical transmission

is realized. The THz wave will modify the probe beam ellipticity by a phase retardation ∆φ,

and cause an increase or decrease of the transmitted probe beam energy TEO(τ), depending

on the sign of the THz field. For THz fields of equal but opposite magnitude, the change

in transmission is not symmetric (not identical), but a well-known function of probe beam

ellipticity [38]. For this reason each EOS transmission measurement TEO(τ) was symmetrized

using this function, yielding the EOS signal SEO(τ).

There are several EOS-related effects that influence THz waveform analysis [36, 39]: (i)

The probe beam has a finite pulse length, limiting the temporal resolution of the EOS

method. (ii) Dispersion and absorption in the EO crystal causes THz pulse distortion. (iii)

There is a mismatch between the phase velocity of the individual THz frequencies and the

group velocity of the probe beam. Since both the ZnTe and GaP crystals have a well-

characterized dispersion function in both the NIR and THz spectral domains [36, 40–42],
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these effects can be modeled and the original THz waveform ETHz(t) can be extracted from

the measured (and symmetrized for probe beam ellipticity) EOS signal SEO(τ). In the fre-

quency domain, a slowly varying envelope approximation can be applied to the convolution

of the probe beam and the THz waveform [39], yielding

SEO(ω) ∝ r41(ω)Ipr(ω)ETHz(ω)Tcrystal(ω), (7)

with ω = 2πν the angular frequency, Ipr(ω) = e−ω2σ2
pr/4, σpr the probe beam pulse length

(rms), and r41(ω) the EO coefficient. The crystal transfer function Tcrystal(ω) incorporates

the dispersion, absorption, and mismatch in the EO crystal. For both crystals the transfer

function is plotted in the inset of Fig. 7. Although the EO effect is larger for 200-µm-thick

ZnTe, its spectral resolution is limited to 4 THz (compared to 8 THz for 200-µm-thick GaP).

The spectral cut-off for both crystals can be attributed to velocity mismatch between probe

and THz beam. Also plotted in the inset of Fig. 7 (see dotted curve) is the CTR spectrum of

a 50 fs (rms) Gaussian electron beam (plasma radius of ρ=150 µm at θ=0.3 rad). The EOS

signal modeled from such a CTR pulse is shown in the main plot of Fig. 7 for ZnTe (dashed

curve) and GaP (solid curve). Due to the spectral cut-off of ZnTe, multiple oscillations in

the dashed curve are observed.

B. Experimental results for electro-optic sampling

Several EOS scans under different experimental conditions were performed. The data

(grey circles) in both images (a) and (b) in Fig. 8 are taken after rotation of the λ/4-plate by

5◦ and 45◦ (to circular polarization), respectively. In the latter case balanced diode detection

was applied. Each data point represents an average of 30 shots, taken at 0.5 Hz repetition

rate. The signal-to-noise ratios are of the same order; in the case of balanced detection,

the noise could not be further reduced due to accelerator-related electronic background

noise on the diodes. In both cases the EOS transmission data TEO(τ) was re-normalized

to take the probe beam ellipticity into account, yielding SEO(τ). Note that the detection

of the coherent signals in Fig. 8 demonstrates the excellent shot-to-shot stability of bunch

parameters that are critical to THz emission and detection (total charge, bunch length, and

temporal synchronization). The Fourier transforms of the scans are plotted in each inset.

All plots of Fig. 8 also contain modeled data based on (dashed curves) SEO(τ) from a single
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50 fs (rms) electron bunch (and therefore a single THz pulse) and based on (solid curves)

SEO(τ) from a double-pulse THz profile. Parameters for the double-pulse THz profile in

Fig. 8(a) are a pulse separation of 230 fs, a relative field amplitude of 43% for the leading

pulse, with each pulse based on CTR from a bunch with 50 fs (rms) length. The parameters

for the double-pulse THz profile in Fig. 8(b) area 230 fs pulse separation, a relative field

amplitude of 28% for the leading pulse, with each pulse based on CTR from a 70 fs (rms)

bunch.

Another EOS data-set was taken using the GaP crystal. Figure 9 displays the measured

data TEO(τ) (grey circles), without a λ/4-plate in the probe beam path. Each data point

represents an average of 20 shots, taken at 1 Hz repetition rate. Due to residual birefringence

(equivalent to 1.8◦ λ/4-plate rotation) in the GaP, the effective probe beam polarization

was near-linear (small degree of ellipticity), and sign-resolved information was therefore

still available. However, since the polarization state was so close to linear, the data was

not re-normalized to SEO(τ) to take the ellipticity into account. It is for this reason that

spectral analysis of the data is omitted. Instead, the modeled EOS waveform was modified

to take the ellipticity into account. The GaP data (with up to 8 THz spectral resolution,

and limited dispersion) unambiguously indicates that two THz pulses were produced. The

modeled transmission signal (solid curve in Fig. 9) is based on a double-pulse THz profile,

where the pulses are separated by 195 fs, with a 50% relative field amplitude of the leading

pulse. Both THz pulses are calculated from a 50 fs (rms) bunch.

V. DISCUSSION OF THE RESULTS AND MODELS

The ensemble of data presented in this paper allows for analysis of the charge profile and

bunch structure of SM-LWFA-produced electron bunches. Two ZnTe-based data-sets (cf.

Fig. 8) provided sign-resolved information of the THz radiation. Frequencies up to the 4-THz

detection limit of the 200-µm-thick ZnTe crystal were observed. Comparing the data to a

model allows for the conclusion that sub-50 fs structure is present in the SM-LWFA-produced

electron bunch. The bunch structure could be shorter, but the mismatch-dominated ZnTe

would not be able to resolve the higher frequency components. However, assuming a longer

bunch structure would significantly disagree with the measured spectral intensity in the 3–4

THz range. Also note that the measured bunch profile at the end of the plasma ramp (THz
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emission plane) is probably longer (via ballistic debunching due to the large momentum

spread) than if measured at a position deeper into the plasma. The observed spectral

oscillation (insets in Fig. 8), as well as the discrepancy between field measurements and

the single-THz-pulse-based fit (main plots in Fig. 8), indicate that a more complex THz

profile exists in the focal volume. A double-pulse-based model, with a pulse separation of

' 230 fs and the leading pulse approximately having a 33% relative field amplitude, results

in an improved temporal fit, and reproduces the spectral oscillation. Each THz pulse was

calculated from a 50 fs (rms) Gaussian electron bunch.

The SCS experiment is suited for THz-to-laser synchronization and for indication of

THz pulse and electron bunch length (and not well-suited for detailed bunch analysis).

Comparison between data (cf. Fig. 5) and a model based on a double-pulse THz profile

[two pulses each based on a 50 fs (rms) bunch, separated by 300 fs, with a 50% relative

field amplitude for the leading bunch] indicates agreement, although the same is true for

CTR from a single longer [400 fs (rms)] THz pulse. Note that this longer-single-pulse-

based model is contradictory to the measured existence of coherent radiation above 3 THz,

as measured independently in [10] and through EOS (cf. Sec. IVB). Overall, although

temporal resolution is limited, the SCS measurements are consistent with a more complex

THz profile in the focal volume.

The EOS data (cf. Fig. 9) taken with the 200-µm-thick GaP crystal (up to 8 THz res-

olution) provided again a confirmation of the production of a more-complex THz profile

(suggesting a double-pulse profile). Since the experiment was operated at near-linear po-

larization, full temporal and spectral analysis was not possible. However, the measured

profile (two positive peaks separated by 195 fs) unambiguously support the presence of two

THz pulses in the focal volume. A modeled transmission curve based on a 195-fs-separated

double-pulse, with the leading pulse having a 50% relative field amplitude, is in agreement

with the data.

To model the EOS data of Figs. 8 and 9, we have considered bunch profiles other than

the Gaussian profile, such as asymmetric bunches with a sharp rise and long tail. However,

such considerations did not match the results, mainly due to the absence (in the model)

of a spectral oscillation and a double THz pulse. The double pulse could be related to

the LWFA-production of two bunches, since mechanisms such as plasma-gradient-induced

wavebreaking [43, 44] and nonlinear transverse wavebreaking [45] can result in a secondary
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stage of charge trapping. However, it is more likely that the double-pulse THz profile is a

feature of spatio-temporal effects related to imperfections in the THz imaging beam line.

Coma, diffraction, and other aberrations, can have a strong effect on the spatio-temporal

profile of broad-bandwidth ultra-short optical waveforms [46–48]. For example, coma will

result in the appearance of a multi-pulse profile in both the temporal and spatial domains.

Future single-shot EOS experiments will aim at providing more insight into the detailed THz

profile from the SM-LWFA-produced electron bunch, and the spatio-temporal coupling.

VI. SUMMARY AND CONCLUSION

We have reported on femtosecond bunch characterization of laser-plasma-produced elec-

trons (SM-LWFA) by relying on the emission of CTR at the plasma-vacuum interface. Data

taken with a semiconductor switching technique proved useful for THz and probe synchro-

nization, and indicated a < 400-fs THz envelope. A second technique, electro-optic sampling,

allowed for measurement of the amplitude and phase of the THz waveform. THz frequencies

up to the 200-µm-thick ZnTe detection limit of 4 THz were resolved. The multi-shot nature

of the experiment required and proved excellent SM-LWFA stability in terms of bunch pa-

rameters that are critical to THz emission and detection such as total charge, bunch length,

and temporal synchronization. This stability is crucial for possible future pump-probe ex-

periments. Comparison between data and a model demonstrated the production of sub-50 fs

bunch structure. Detailed analysis, in combination with EOS data from a 200-µm-thick GaP

crystal (spectral response up to 8 THz), did indicate the production of a double-pulse THz

profile in the focal volume, with both pulses separated by '200-300 fs, and with the leading

pulse having a 25-45% relative field amplitude. In the models, both (CTR) pulses were

derived from electron bunches with 50 fs (rms) bunch length. We suggest the double-pulse

THz profile is likely related to the spatio-temporal profile of ultra-short electro-magnetic

pulses in an imperfect optical imaging system. We anticipate that future single-shot charac-

terization of THz pulses will provide more insight into the detailed THz pulse and electron

bunch profile.
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FIG. 1: (a) Longitudinal plasma density profile n(z). (b) The spatially varying dielectric constant

εpl(z, ω0) for TR of frequency ω0=10 THz. The electron bunch is propagating from left to right.

FIG. 2: The differential energy distribution d2Ie−/dωdΩ (solid curve) for an electron passing the

dielectric discontinuity of the medium-vacuum interface (ε = εm to ε = 1), with ∆ε = εm − 1. The

dashed line represents d2Ie−/dωdΩ in the (metal-vacuum) limit of ∆ε → −∞.

FIG. 3: The amplitude of the CTR electric field in the (a) Fourier domain |ECTR(ν)| and in the

(b) temporal domain ECTR(t), calculated for an interface with boundary radius ρ=1000 µm (solid

line), ρ=400 µm (dashed line), and ρ=100 µm (dotted line). The rms bunch length is 50 fs, the

electron momentum is u = 10, and the angle of observation is θ =0.3 rad.

FIG. 4: Schematic representation of the setup for semiconductor switching of LWFA-produced

THz radiation. The THz pulse is produced in the vacuum chamber by an ultra-intense laser pulse.

A second laser beam (pump beam) provides the switching at the Si wafer. The inset displays the

change in THz transmission Tscs (through the Si) as a function of pump beam energy for 0.3-3 THz

(circles) and 0.3-30 THz (squares) bolometer filtration.

FIG. 5: The measured THz energy transmission versus time delay τ : (a) 0.3-3 THz bolometer

filtration and a pump beam energy of 195 µJ. (b) 0.3-30 THz filtration and a pump energy of 180

µJ. Both (a) and (b) also display modeled transmission curves based on (dashed curve) THz from

a single 50 fs (rms) electron bunch (single THz pulse) and based on (solid curve) a double-pulse

THz profile, with the pulses separated by 300 fs and the leading pulse having a 50% relative field

amplitude. Each THz pulse is based on CTR from a bunch with rms length of 50 fs.

FIG. 6: Schematic representation of the setup for electro-optic sampling. If the λ/4-plate is used

to transform the probe beam polarization to circular, then both diodes 1 and 2 are in operation

(balanced detection). For linear or elliptical probe polarization, only diode 1 is operated. The inset

shows the electric field vectors of the probe and THz pulse in relation to the crystal axis.
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FIG. 7: The inset displays the crystal transfer functions |TZnTe(ν)| (dashed curve) and |TGaP(ν)|

(solid curve), as well as the CTR spectrum |ECTR(ν)| (dotted curve) from a 50 fs (rms) electron

bunch. The corresponding EOS signal SEO(τ) is plotted for both crystals in the main plot.

FIG. 8: ZnTe-based EOS waveforms SEO(τ) (grey circles) measured with an elliptical polarized

probe beam (a), and measured with a circular polarized probe beam in the balanced-diode scheme

(b). The insets show the data in the Fourier domain |SEO(ν)|. The curves in all plots represent

the modeled EOS signal of (dashed curves) THz radiation emitted by a single 50 fs (rms) bunch

(single THz pulse), and of (solid curves) double-pulsed THz radiation. The two THz pulses are

separated by 230 fs, and are both based on a 50 fs (rms) bunch.

FIG. 9: EOS data TEO(τ) (grey circles), taken at near-linear probe beam polarization with GaP.

A modeled EOS profile based on double-pulsed THz radiation is displayed as the solid curve. For

the model, the pulses were separated by 195 fs, with the leading pulse having a 50% relative field

amplitude. Each THz pulse was calculated from a 50 fs (rms) bunch.
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