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Abstract

Recent interest in data mining and knowledge discovery underscores the need for methods by which
patterns can be discovered in data without any prier knowledge of their existence, In this paper. we
explore computational methods of finding clusters of multivariate data points when there is no metric
given a priori. We are given a sample, X, of a points in R that come from g distinct multivariate
normal populations with unknown parameters each of which contributes in excess of p points. Based
on the assumption that we are given the number of groups, g, and a computational budget of T seconds
of computer time, the paper reviews choices for cluster finding that have been descrbed in the literature
and introduces a new method that is a structured combination of two of them. We investigate these
algorithms on some real data sets and describe simulation experiments. A prncipal conclusion 1§ strong
support for the contention that a two-stage algorithm based on a combinatorial search followed by the
EM algorithm is the best way to find clusters. (€ 1999 Elsevier Science B.V. All nghts reserved.

Kevwords: Cluster analysis; Data mining; EM algorithm; Mixture models

Supperted by the National Science Foundation (DMS 93-01344, DMS 9510511, DMS 96-26843,
ACT 96-19020. DMS 98-70172) and the National Instirate of Environmenial Health Science, Nanonal
Institutes of Health (PHS P42 ES0465%),

* Cormresponding author,

0167-9473/99/% - see front matter (€ 1999 Elsevier Science B.V_ All rights reserved
PI: S 0167-9473(99)00009-2



B

2. Coleman et af | Computational Statistics & Pata Analvsis 31 1 1990) 1-1]
1. Introduction

The basic problem of cluster analysis is to begin with a sample of n, p-dimensional
points and then to classify the points into clusters purely from their location in
p-dimensional space. Many current clustering methods assume that the appropriate
distance function is known (for example, they may use Euclidean distance): but it
is frequently more appropriate to use a distance measure that depends on the shape
of the clusters. For example, if a cluster is multivariate normal with mean g and
covariance matrix X, the appropriate distance between a point x and the center u
of the cluster is the Mahalanobis distance (x — )X~ '(x — ). The difficulty here is
that the shape of the clusters is not known until the clusters have been identified,
and the clusters cannot be effectively identified unless the shapes are known.

The majority of the extant literature on cluster analysis concerns methods which
assume that a similarity measure or metric is known a priori — often the Fuclidean
metric 1s used. To sample this literature, see Lance and Williams (1967), Johnson
(1967), Gower (1967), Mulvey and Crowder (1989), de Ammorim et al. (1992),
Gersho and Gray (1992). Dorndorf and Pesch (1994). In some cases there may be
sufficient prior knowledge about the problem at hand to allow the pre-specification
of the metric, but the case in which this prior knowledge is unavailable is common,
and may represent the overwhelming proportion of instances. Our unwillingness to
rely on any a priori metric leads us to require that our estimators and algorithms be
affine invariance, which means that affine transformations of the data X — AX + b
will produce the same clusterings (4 is nonsingular) as would have been produced
using the same algorithm on the untransformed data. Essentially, affine invariance
of clustering is equivalent to assuming that the metric is quadratic but otherwise
unspecified.

When we refer to a metric, we mean a quadratic-form metric d of the form

diyy=r—»Ys e = ¥)

with § a positive-definite symmetric matrix. Such metrics comprise the class of
metrics (distance functions) that are equivariant with respect to translations, rota-
tions, and stretchings (affine transformations) under the assumption that the matrix S
transforms with the data. Although there are other distance functions (the city-block
metric, for example), the affine-equivariant metrics are particularly appropriate for
use in clustering, since the results do not depend on irrelevant factors such as the
units of measurements used or the orientation of the clusters in space.

These metrics can arise naturally in a number of ways, such as probability mixture
models with multivariate normal or other elliptically symmetric distributions, or as
intuitionally justified measures of quality of fit. For very high-dimensional data sets,
metrics more complicated than the quadratic ones may not be feasible due to the
curse of dimensionality. We will refer interchangeably to the matrix § or the distance
function dq(x. v) as the metric.

Let us suppose that we are given a sample, X = {x.x-.....x,}. of »n points in
7 that come from ¢ distinet populations with unknown parameters each of which
contributes in excess of p points. We will assume that g is known. This is not
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because we believe that the estimation of the number of clusters is necessarily easy
(see e.g., Windham and Cutler, 1992; Banfield and Raftery, 1993), but because we
are concentrating in this paper on the computational problems associated with finding
the “best” g-cluster solution, for fixed g. It is an obviously necessary component of
any successful overall clustering solution that the g-cluster sub-problems should be
efficiently solvable.

2. Model-based clustering

Much of the work in affine equivariant clustering methods falls into what is often
called model-based clustering (Banfield and Raftery, 1993). In model-based cluster-
ing, we judge a clustering by the hkelithood under a particular model for example
mixtures of multivariate normals. These multivariate normal clusters can be assumed
all to have the same covariance matrix, or one may let the covariance matrices vary
as well as the cluster means, A thorough examination of such criteria is given by
Banfield and Raftery (1993). Their paper proposes a number of criteria that maxi-
mize the classification likelthood under various assumptions about the relative sizes
and shapes of the clusters.

We use normal likelihood models not because we behieve that clusters are nec-
essarily normal, but because the criteria and methods produced by this model often
have a natural and reasonable interpretation in terms of hypervolumes, quadratic dis-
tances, and others. Furthermore, although not all clusters are elliptical, the curse of
dimensionality requires that we make some structural assumptions in order to be able
to progress in even the most rudimentary way. Further work on clustering in which
some of the data do not lie m elliptical clusters is an ongoing effort of our group.

2.1. Mixture likelihood

Within model-based clustering there are two main approaches: classification likeli-
hood and mixture likelihood. Let 7;; be a number indicating the cluster membership
of point j in cluster i, In the mixture likelihood approach, we choose 1, € [0,1] and
the cluster parameters u, and X, to maximize the mixture likelihood

20, =]] [i b 2 %,)

i

where 0=1{m ;... Ty i L, i . X, ). The mixture frequencies are m,=n""'3%"_ 1.
with %, m,=1 and ¥__, 1, = 1. The mean and covariance of the ith cluster are u,
and X, and ¢ is the multivariate normal density.

In this formulation, we can interpret 1, as P(x, € Cluster,). The EM algorithm
(Dempster et al., 1977: McLachlan and Basford. 1988), is the usual method of
obtaining a solution to the mixture likelihood problem. It consists of an iterative

re-weighting ascent from a given set of starting points,

g:‘j" = P(x, € Cluster;).
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The EM algorithm terminates at a local maximum of the likelihood. Most commonly,
the initial starting point is obtained from a random assignment of points to clusters,
in which all the " are therefore either 0 or 1.

If we have a computational budget of T seconds of computer time, and we have no
prior information about the clusters, then a reasonable and commonly used choice is
to repeatedly restart the algorithm from randomly generated allocations, terminating
when T seconds have elapsed. Afterwards the clustering and parameter estimates
corresponding to the largest local maximum are selected,

Typically there are many local maxima and the EM algonthm is very sensitive to
the starting values given (see Everitt, 1993, Section 6.3.3; McLachlan and Basford,
1988, Section 3.2). The fraction of possible starting points that lead to the global
maximum, or even to a local maximum corresponding to a “good” clustering, is
often very small.

2.2, Classification likelihood

The classification likelihood is a restricted form of the mixture likelihood in which
t;€{0,1}, so that each point is uniquely assigned to exactly one cluster (1.e.
312 Ty = 1). The initial random allocations used as starting points by many im-
plementations of the EM algorithm are an example of such an assignment. Other
assignments can be derived from combinatorial search techniques more sophisticated
than random allocation.

Our proposal is to obtain starting values for the EM algorithm from combinatorial
search algorithms which use the classification likelihood approach,-assigning each
point to exactly one cluster. Specifically, starting values for the EM algorithm are
obtained from a clustering by setting %::f' = | if point j has been assigned to cluster
i and ' = 0 otherwise.

Given a clustering, the data can be reordered as x,; where i gives cluster member-
ship and j gives observation number within the cluster. The likelihood conditional
on a clustering is then

a

L X|clustering) = H H olp. Ziix;).

i=1 J=I

The determinant criterion is derived by maximizing the log of this likelihood with
the assumption of homogeneous but unrestricted cluster variances
oy — n . N
Z(th; Xiclustering) = constant — s log|Z], (2.1)

where X is the pooled covariance matrix across the ¢ groups. Maximization of (2.1)
is equivalent to minimization of

|| = L W
=
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where

i " 8

W = :Z{x_., X Xx; — %) and & = . %.1,,.
There are no known algorithms that can solve this problem to provable optimality in
a reasonable amount of computational time (i.e. bounded by a polynomial function
of the size of the data). An algorithm first proposed by Spith (1985), that we will
refer to as FI (first improving), is an effective method of finding good solutions.
In Section 5 we will explain the details of this algorithm and compare it with two
others.

In Section 3 two data sets are studied in order to gain insight into the issues asso-
ciated with cluster finding. In Section 4 we describe extensive simulation experiments
that help to quantify the response of the algorithms to T, n, p. and g. The computer
experiments were conducted on DEC Alpha 3000/700 workstations using implemen-
tations of EM written by McLachlan and Basford (1988), F1 by Spith (1985), and
melust written by Fraley (1996); all other programs were written by the authars.

3. Examples: Iris data and Diabetes data

In this section two algorithms are compared: the EM algorithm started from a
random clustering, EMRSand the EM algorithm preceded by FI which we call EMLS
(for local search). Two real data sets are used: the Fisher Ins data due to Fisher
(1936) and a data set concerning Chemical and Overt Diabetes due to Reaven and
Miller (1979). These data sets are of similar size. However, using the true cluster-
ing. the Ins data form equally sized clusters with more-or-less homogeneous covari-
ance matrices, while the Diabetes data form clusterings of different sizes with what
appears 10 be a heterogeneous covariance structure. Our purpose in ¢omparing the
two algonthms using these two data sets is to highlight a few issues in cluster find-
ing with no a priori metric and to motivate the comparative study of the algorithms
using simulation studies.

We start with the Iris data set that consists of 150 observations and four vari-
ables: sepal length and width, and petal length and width. The observations consist
of three clusters each of size 50 corresponding to three species of Iris; Setosa,
Versicolor and Virginica. As is well known, the Setosa cluster is clearly separated
from the other two, whiic the Virginica and Versicolor c¢lusters overlap to some
extent,

Runs of 100 ascents indicate that EMRS and EMLS work equally well when a
homogeneous covariance structure is assumed. Each finds the clustering with like-
lihood 2199.925 in which all the observations of Cluster 1 are correctly classified,
2 observauons of Cluster 2 are incorrectly classified as Cluster 3 and 1 observation
in Cluster 3 is incorrectly classified as Cluster 2. this is summarized as (50,0,0),
(0,48,2), (0,1,49); the error rate is 3,150 = 2%,
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The assumption of heterogeneous covariances introduces an additional 20 pa-
rameters, and the mixture likelihood is infinite if a cluster lies in a hyper-plane.
This will always occur if a cluster contains less than p observations, but can also
occur in other ways. In the Irs data, a subset of 29 observations from the Se-
tosa cluster forms a three-dimensional subspace, all with the fourth variable, petal
width, equal to 0.2. In order to yield finite likelihoods, we must ignore ascents
where the likelihood diverges. From many starting points, the EM algorithm ter-
minates with finite likelihood. The best likelihood using EMLS is 8223.998 and its
classification is (50,0,0), (0,43,7), (0,0,50) (error rate 4.7%). The largest finite
likelihood found by the EMRS algorithm is 9809.822 corresponding to the classifi-
cation, (30,0,0), (0,50,0), (0,35,15) (error rate 10%). Note that the EMRS (ran-
dom start) method finds a higher likelihood that corresponds to a poorer classifica-
tion. This corresponds to a false peak in the likelihood that is avoided by EMLS,
since it first searches for a plausible starting point (none of which is near the false
peak).

The Diabetes data set has 145 observations and three variables: insulin area,
glucose area and steady-state plasma glucose response (SSPG). The subjects were
clinically classified as normal, chemical diabetes and overt diabetes, forming three
clusters of sizes 76, 36 and 33, respectively. To study this data set, runs of 500 as-
cents were made. The clinical classifications were used to determine error
rates.

Assuming homogeneous variances, the largest likelihood found by EMLS is 116.04,
which corresponds to a classification (74,2,0), (19,17,0), (10,2,21) with an er-
ror rate of 23%. The largest likelihood -found by EMRS-is~104.28,~which is lower,
but the classification (64,12,0), (6,30.0), (5,7,21) has a comparable error rate
of 20%.

Heterogeneity introduces 12 additional parameters. The algorithm EMLS finds the
best likelihood at 361.26 corresponding to the classification (58,7,11), (0,24,12),
(0,3,30), with an error rate 22%. The best likelihood found by EMRS is 359.31, which
15 not as high but corresponds to the classification (65.11,0), (1.34,1), (0,3,30)
with an error rate of just 11%. This classification compares favorably to those con-
sidered in Table 6 of Banfield and Raftery. Classifications with lower likelihoods
and lower error rates than the maximum likelihood solution can also be found by
EMLS. This perplexing situation of a larger likelihood corresponding to a poor clas-
sification and a smaller likelihood corresponding to a good classification may be due
to many factors other than the above-mentioned false peak including: the model may
be over-parameterized or wrong, outliers may be present in the data, or the “true™
classification may be wrong. Of course. real data sets are finite ind are not gener-
ated by a process that is truly multivariate normal. There is no guarantee that the
classification errors should be monotone in the likelihood.

Both EMRS and EMLS are very fast. They require less than 30 s for a run of
100 ascents on either data set. Augmenting random starts of the EM algorithm with
those from a local search would appear to offer advantages for finding the maximum
likelihood classifications. We defer quantification of this assessment to a large set of
simulation experiments that are described in the next section.
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4. Simulations

In order to explore the capabilities of the algorithms and responses to their param-
eters and the parameters of the data, we conducted extensive simulation experiments
using pseudo-random data sets. In these data sets, each cluster is multivariate stan-
dard normal and has a mean that lies along a randomly selected diagonal away
from the origin. The estimators compared here are all versions of the EM algorithm
with two differences. The starting value for each trial is either a random partition
of the data (EMRS) or is the result of a local combinatorial search {EMLS). The
criterion used is either for homogeneous covariance matrices or for heterogeneous
ones.

We measure the distance of the cluster means from the origin in terms of the unit

p
of measurement 0, = U’ 5 on01» Which is more or less the radius of the sphere around

the mean that contains almost all the points in the cluster. If the clusters are centered
at a distance of at least 200, from each other then these spheres should not overlap.
We implement clusters at a distance of @0, from the origin by adding +d Q;, to each

component, where Q7 = V/ -;":T::.I'I':){II-"II p. This generation mechanism is sufficient for use

with affine-equivariant methods, such as the methods under consideration here. For
non-affine-equivariant methods, the data should then be standardized as described in
Rocke and Woodruff (1996, p. 1053).

The data sets were constructed by varying the factors g, p, n, and 4. The number
of clusters, g was 2, 3 or 5; the dimension p ranged over 2, 3, 5, and 10 (except for
5 clusters, where the dimension 2 and 3 cases were omitted). The three values for
n were roughly 5, 10 and 20 times p times g, which we refer to as small, medium,
and large; the increase in the number of points with the dimension was supposed to
reduce the comparative disparity between dimensions. For this set of experiments, d
was set at 2.0, which provides adequate separation between the clusters. For each
combination of parameters, 20 data sets were randomly generated. Each of the four
algorithms was executed for three different values of T (corresponding to 2. 5, and
10 random restarts of the underlying ascent or descent algorithm). This large design
enables a reasonable characterization of performance of the algorithms.

We score the results on a simple scale: the classification is either (completely)
correct or not. With widely separated clusters, an iterative algorithm is unlikely
to be nearly correct, because it would then after some iterations become entirely
correct. Complete correctness is not a reasonable criterion for overlapping clusters,
but overlapping clusters is a problem bevond the scope of the present paper. Thus,
n any cell of Tables 1-4, an entry is the percent of cases for which the algonthm
returned an incorrect (“Bad”) classification.

Table 1 shows the dependence of the overall results on the estimator, We give
results separately by the number of clusters, since design choices may make the
different cases not completely comparable. The main conclusion to be drawn here is
that the local search methods are far more effective than the random start methods. As
an aside, the local search methods also took considerably less time (due to reduced
EM iteration cost).
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Table 1
Percent “Bad™ classifications by estimator and by number of clusters

EMRS EMLS
Number of clusters (g} Heterogeneous Homogeneous Heterogeneous Homogeneous
2 40.3 56.4 126 129
3 279 239 0.7 0.1
3 302 17.4 2.5 id
Table 2

Percent “Bad™ classifications by dimension and by number of clusters

Mumber of clusters p=12 p=3 p=35 p=10

2 12.2 192 3.9 58.9

3 33 7.9 151 263

<) - - 6.7 205
Table 3

Percent *Bad” classifications by sample size and by number of clusters

Number of clusters Small n Medium # Large n
2 290 299 328

3 = Hf— - 96 ’ 14.0

5 16.0 9.4 14.9
Table 4

Percent “Bad” classifications by number of tterations and bv number of clusters

Wumber of clusters 2 iterations 3 fteranons 10 meranons
2 452 283 | E.1
k! 203 114 1.8
5 19.7 12.2 g3

Table 2 shows that increasing the dimension makes the problem more difficult,
uniformly across estimators. The relatively poor classification results for high dimen-
ston are perhaps unsurpnsing, but this decrease in performance as the dimension rises
occurs even with a proportionate increase n the sample size, since n is proportional
to gp.

Table 3 shows that the overall results are insensitive to the sample size. Most
likely, this is due to two factors that work in opposite directions. More data mean
better esumates if a good estimate can be found. but more data also increase the
computational complexity of the problem.

Table 4 shows that more trials produce better results. This conclusion (like the
results in Tables 2 and 3) remains true for each estimator individually as well as
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in the aggregate. With 10 iterations, the most effective estimator EMLS obtained the
correct solution about 98% of the time.

5. Comparing local search and hierarchical agglomeration

- Given that it seems important to precede the EM algorithm with a combinato-
rial search for a good starting point. the logical next question is which classes of
combinatorial search algorithms are most effective. In this section three combinato-
rial algorithms for maximizing the determinant criterion are compared. The first two
methods are local searches in a single exchange neighborhood, first improvement
(F1) and steepest ascent (SA). The third method is hierarchical agglomeration (HA).

Local searches start with a random partition (clustering) of the data into g clusters
with the restriction, maintained throughout the algorithm, that each cluster have at
least & observations, h> p. At each stage a new partition is selected from the neigh-
borhaod of the current partition. The single exchange neighborhood of a partition
is all partitions that can be obtained by moving one observation from one cluster
to another. Hence, the number of neighbors under the single exchange neighbor-
hood consists of n{g — 1) partitions (or fewer if one or more clusters contains A
members ),

When employing local search in a deterministic way, one must decide how to
explore a neighborhood. Two extremes are ‘steepest ascent’, which we have called
sA and ‘*first improving®, which we have called Fl. In the SA algorithm, the objective=
function is evaluated for all partitions in the neighborhood and the partition that
yields the greatest increase in the objective function becomes the new incumbent
partition. The algorithm stops when there are no members of the neighborhood of
the current solution that have higher likelihood. In the case of FI, the objective
function is evaluated one observation at a time. At the beginning of the algorithm
a random ordering of the data is made. The current observation at stage k is the
mod(k — 1.n) + 1 observation in this ordering. All moves of the current observation
are evaluated, and such a move is executed if it improves the objective function,
without checking to see if some other point move would be better. The current
observation then changes to the next point. The algorithm stops when no moves
are made in one entire pass of the data, which is the same stopping criterion as

for 5A.
FI and SA have the same neighborhood structure so they have the same local
maxima. If thev are staned on a local maximum they both stop. However, since

they employ different algorithms to select moves, in general they may terminate at
different local maxima given the same starting point.

Which of these two algorithms is ‘better’ depends on the speed at which the
objective function can be updated and the preponderance of local maxima in the
objective function, which 15 data set dependent. Comparisons between first improv-
ing and steepest ascent have been conducted on a number of different optimization
problems from problem domains other than statistics (see, e.g. Anderson, 1996), and
it seems that the preferred method depends strongly on the problem and weakly on
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Tahle 5
Comparison of scarch algorithms applied to the Irs dam

Fl A HA
Ave ume for ascent 0.0262 0.1853 63.6617
Std error of time for ascent 0.0120 0.0303 03364
Success probability per ascent 0.1480 0.1060 0.0

the data. As evidence below indicates, the algorithm FI seems to be preferred for the
problem of classification to maximize the determinant criterion,

An alternative to the local search algorithms that we have described is hierarchical
agglomeration (HA). based on an algorithm attributed to Ward ( 1963) and currently
implemented in Splus as melust (see Fraley, 1996). In the language of local search,
HA 1s based on a constructive neighborhood, meaning that full solutions are built up
from partial solutions, In HA, the observations are partitioned into a large number of
small clusters. Pairs of the clusters are then merged so as to minimize the increase
in the objective function (determinant) for the resulting combination, If all the data
are considered as separate clusters, then at the first stage n(n — 1)/2 objective func-
tion evaluations are required, and the entire algorithm requires (n* — n)/6 objective
function updates. In implementing the determinant criterion, the objective function
15 zero until a cluster of p + 1 observations is obtained, so a surrogate criterion for
the first stages must be used. In Sp/us the trace and the traceddeterminant are used.
As an aside, we note that use of the trace renders the algorithm not strictly affine
equivariant.

For each algorithm five hundred ascents are made. An ascent of the algorithm
Is a random starting point followed to a local maximum. A starting point for FI
and SA is a partition, for HA as implemented in mclust it is a reordering of the
data.

The largest conditional log likelihood found in the 1500 ascents of the Iris data set
15 757.57. An ascent is deemed a success if this value is obtained. This likelihood
corresponds to the partition found by Friedman and Rubin (1967) and has three
observations incorrectly classified. Summary statistics for the Iris data are given in
Table 5. None of the ascents of HA yielded the maximum, the highest likelihood
found was 754.2. The results for the Diabetes data set are similar. The algorithm Fi
is about 6.75 times faster per ascent than SA in both data sets. If FI is run 6 times
{which is still faster than running SA once), the success rate is 1 —{1 —0.1460)" =0.61
in the Iris data set making 1t far superior to SA, which has a success rate of 0.1060.
Otherwise stated, it requires an estimated 30 iterations of FI to insure a 99% chance
of success. SA requires 42 tries to insure the same success rate. which will take
over 9 times as long to run. Results for the Glucose data and for simulated data
sets were qualitatively the same. We conclude that FI seems to be preferred for this
problem.

We obtained some additional insight into the behavior of the melust implementa-
tion of hierarchical agglomeration by examining the c¢lassifications produced by Ha
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when run on random permutations of the Iris data. Ideally, the possible clusterings
obtained should not depend on the order of the data in the data file, but in this
case there was a strong dependency. For each randem ordering, several classifica-
tions occurred, but a different random ordering would have a different possible set of
classifications, possibly with some overlap. Many of the classifications had a large
number of errors. Use of the iterative relocations routine mreloe after hierarchical

agglomeration did not improve the situation,

6. Conclusions and directions for further research

We have described a computational investigation of methods for a very important
problem in multivanate statistics: finding clusters in the absence of an a priori metric.
Our most important finding is that use of combinatorial local search to produce
starting points for the EM algorithm is much superior in every respect to the use
of random partitions of the data as starting points. Both methods seem to produce
better classifications with a fixed number of clusters than hierarchical agglomeration
does,
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