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Abstract 

When learning addition, children appear to perform a 
remarkable feat: as they practice counting out sums on their 
fingers, they discover more efficient strategies while avoiding 

conceptually flawed procedures. Existing models that seek to 
explain how children discover good strategies while avoiding 
bad ones postulate metacognitive filters that reject faulty 

strategies. However, this leaves unexplained how the domain-
specific knowledge required to evaluate a strategy might be 
acquired prior to addition being mastered. We introduce a 

biased exploration model, which demonstrates that new 
addition strategies can be discovered without invoking 
metacognitive filtering. This model provides a fit to data 

comparable to previous models, with the considerable 
advantage of avoiding an appeal to knowledge whose source 
is not itself explained. Specifically, we fit the pattern of 

changes in strategy use over time as children learn addition, 
as well as the overall error rate and error types reported 
empirically. The model suggests that the critical element 

allowing strategy discovery may be prior learning, rather than 
metacognitive strategy evaluation. We close by offering 
several empirical predictions and propose that what others 

have called strategies might often be decomposable into 
elements that can be assembled on the fly as problem solving 
unfolds in real time.  

Keywords: Mathematical Cognition; Strategy Discovery; 
Reinforcement Learning; Metacognition. 

Introduction 

Single-digit addition is one of the first hurdles children 

master on their way to mathematical competence. Given the 

importance of mathematics to educational attainment, it is 

unsurprising that the process by which children learn 

addition has received considerable attention (eg, Siegler & 

Jenkins, 1989). A remarkable observation from these studies 

is that, once they are equipped with the ability to count out 

sums on their fingers, children spontaneously (without 

instruction) exhibit faster strategies. Despite this willingness 

to innovate, children rarely arrive at a strategy that, when 

executed correctly, leads to the wrong answer. This poses a 

real problem for trial and error theories of learning. As they 

acquire new, faster strategies, how do children know which 

strategies to avoid?  

Several attempts have been made to model the evolution 

of children‟s approaches to solving simple addition 

problems. The apparent absence of explicit instruction in the 

use of particular observed s trategies would normally make 

reinforcement learning a candidate mechanism, and indeed 

several early models did have this character (Neches, 1987). 

However, the paucity of solution paths that involved faulty 

strategies appear to rule out the „take a random step‟ style 

exploration used by most reinforcement learning models 

(Crawley, Shrager, & Siegler, 1997). Trial and error 

accounts were thus rejected, and replaced by a theory that 

posited a metacognitive mechanism with explicit, domain-

specific content knowledge to filter out flawed strategy 

proposals. This mechanism allows the discovery of new 

strategies while producing only reasonable errors. However, 

it remains unclear how children could acquire the complex 

knowledge required to judge the appropriateness of their 

own strategy proposals. The acquisition of the 

metacognitive filter is neither explained nor explicitly 

modeled. 

The approach taken in this paper is to circumvent this 

difficulty by proposing that a metacognitive filter may not 

be necessary in the first place. We accomplish this by 

modifying a standard trial and error, reinforcement-learning-

based paradigm to be biased towards previously learnt 

actions. We note that children learning the addition task 

have already learnt to count out numbers of objects, count 

on their fingers, and perform addition using a finger-

counting strategy (Siegler & Jenkins, 1989). As we shall 

demonstrate, instantiating a model with biases towards these 

actions obviates the need for a metacognitive filter. We also 

expand the notion of retrieval – a „strategy‟ that circumvents 

the need to engage in a structured sequence of behaviors by 

simply recalling the correct final answer to a problem – by 

suggesting that retrieval might also occur for appropriate 

subparts of a larger problem. Our model makes several 

novel predictions about the discovery process and questions 

the notion that selection and discovery processes necessarily 

take place at the level of complete strategies. 

Background 

The data our model attempts to account for comes from a 

study examining 4 and 5 year olds‟ discoveries of new 

finger addition strategies (Siegler & Jenkins, 1989).   

Children are assumed to come to the task knowing a correct 

but inefficient strategy, and are observed in a series of 

sessions spread over approximately three months as they 

solve simple addition problems. Over this time, children 

gradually acquire strategies that lead to faster completion of 

the task.  
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In our view, it is important to frame the discovery process 

against the backdrop of relevant previously learnt 

procedures. The most important to our theory is what we 

will call the count-list procedure whereby the child learns to 

step through a stable ordering of the number words, 

sometimes while counting out fingers or other physical 

tokens. The count list is a prerequisite for learning addition 

and is known by all children in the study. 

We also assume (following Davidson, Eng & Barner, 

2012) children can perform the how many task, in which the 

child verbally goes through his count list in order, 

simultaneously pointing to the next in a set of physical 

tokens, then responding with the number reached when the 

items in the set have been exhausted. It is generally accepted 

that this behavior is well learnt by the time children are 

taught their first addition procedure. Finally, we assume 

children have mastered the give-a-number or give-n task, 

which involves providing a supply of tokens and asking the 

child to give the experimenter (or other target) a certain 

number of them.  Children who can perform this task for 

numbers larger than 4 do so by stepping through the count 

list as they remove them one by one from the supply, 

stopping when they reach the reques ted number.  

In the study we will be considering, children were 

enrolled in a preschool/kindergarten that taught a standard 

procedure, known as the „sum‟ strategy, for correctly adding 

two numbers together. This procedure begins with the child 

counting from one up to the value of one of the two 

addends, while simultaneously putting up a finger or taking 

a token from a pile on each count. The remaining addend is 

counted out in the same manner. The child then proceeds to 

count off each finger/token that she has previously 

enumerated. For example, a protocol for the problem “2+3” 

might read: “one, two (while raising two fingers), one, two, 

three, (while raising three more fingers), one, two, three, 

four, five (while counting the raised fingers). Five.”  Crucial 

to our later modeling, this protocol can be reframed in terms 

of previously learnt procedures. The first step is a „give-a-

number‟ task where the number to be given is one of the 

addends. The second step is the same, but targeting the 

second addend. Finally, to produce the answer, a „how 

many‟ task is performed on the fingers/tokens produced by 

the previous two tasks.  

 

After prescreening sessions where the children‟s 

knowledge of the sum strategy was verified, the children 

were asked to solve addition problems across several 

sessions. The children predominantly used the „sum‟ 

strategy at first, but adapted their procedures over time, 

generally moving to approaches that increased accuracy 

while decreasing time taken. The experimenters coded the 

children‟s behavior as falling into one of several discrete 

„strategies‟ on a trial by trial basis. At no point was only a 

single strategy chosen for all problems . Instead, there were 

„overlapping-waves‟ of strategies. As shown in Figure 1b, 

the distribution of strategies changed quite slowly, though in 

the last block of trials “challenge” problems were 

introduced (i.e. problem with one very large addend), which 

caused children who had already discovered the min 

strategy to expand its usage rapidly. 

In the study, the majority of children discovered two new 

strategies, and generally did so in the same order. The first 

discovery was the shortcut-sum strategy, and this tended to 

occur very early on in the study.
1
 This strategy involves 

counting up from one to the sum of the two numbers , 

though the interpretation of this behavior is a key question 

posed by our theory. 

The second strategy, the min strategy, consists of counting 

from the larger of the two addends up to the sum. For 

example, for the problem “2+5”, a possible protocol would 

be: “five, six, seven. The answer is seven.” This strategy 

slowly gains dominance over both the shortcut-sum and sum 

strategies. While these transitions are occurring, children 

also gradually increase their reliance on the „retrieval 

strategy‟, simply recalling the correct answer. 

Given the categorical nature of their coding scheme, the 

researchers focused their analysis on when new strategies 

were discovered, how often they were used thereafter, and 

whether or not any incorrect strategies were ever used. The 

results of the study partially supported the idea that strategy 

change occurred through an exploration-based, incremental 

learning process. Children were not always able to describe 

or explain their new strategies to the experimenter. 

However, the authors also found no evidence that incorrect 

strategies were ever used and they argued that exploration of 

the space of possible strategies should lead to such errors. 

Though children did sometimes answer problems 

incorrectly, the authors argued that these errors did not 

represent the sort of conceptual mistakes one would assume 

children would make if they were randomly exploring the 

space of possible strategies. 

The SCADS Model (Shrager and Siegler, 1998) 

In the years following this study, Siegler and colleagues 

built several computational models to explain their data, 

culminating in SCADS (Strategy Choice And Discovery 

Simulation), which posits initial knowledge of the „sum‟ 

strategy, a retrieval system for recalling answers based on 

associative learning, a module that proposes new strategies 

and another module that filters out proposals that do not 

meet criteria assuring their adequacy.  

SCADS captures some aspects of the successive 

emergence of strategies shown in the behavioral data. 

However, the transitions in learning are far more rapid than 

in the empirical data, and no account is given for how 

children would acquire the posited metacognitive filtering 

mechanism. It is this gap that we attempt to address. 

                                                                 
1 These transitions are quite gradual on the time scale of the Siegler 

and Jenkins (1989) study, and some participants are already on 

their way into adopting these strategies at the outset of the study, 

but they are easily seen in aggregate data over longer time periods 
(Svenson & Sjöberg, 1983). 
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The Biased Exploration Model 

Our model approaches the problem of strategy evolution 

through the use of a standard reinforcement learning system.   

It attempts to do away with the domain specific strategy 

proposal and filtering modules of SCADS.  It avoids 

incorrect strategies because action is biased towards related, 

previously learned, procedures. The key insight arises by 

breaking down the two main strategy discoveries („shortcut 

sum‟ and „min‟) into the component steps needed to  allow a 

new policy to arise from a predecessor.  

For the „shortcut sum‟ this means making two critical 

exploratory steps away from the existing „sum‟ strategy 

policy. The first is to continue going through the count list 

after reaching the end of the first addend, rather than starting 

the count over at one for the second addend. The second is 

to stop going through the count list once the correct numeral 

is uttered. This second step can be seen as relying on 

problem specific knowledge, but avoiding reliance on recall 

by replacing it with an easier recognition problem whereby 

the child merely has to stop counting when the value 

reached feels like it is correct. 

Exploration of this shortcut sum strategy can take place 

without assuming there is uniform exploration across all 

possible states and actions. We propose that the previously 

learnt counting procedure gives children a tendency to 

continue counting even when the first addend is reached . 

Thus, whilst the majority of the time the model chooses the 

sum strategy, occasionally a latent tendency to perform the 

related counting task takes over and an „exploratory‟ step is 

made. Critically, this exploratory step speeds up task 

performance but does not lead to an error. 

We should stress here that the discovery process proposed 

above is very different from prior proposals, which focus on 

realizing the redundancy in having to recount both addends 

(Shrager & Siegler, 1998; Neches, 1987). Which of these 

two conceptualizations is the better account of human 

behavior is an empirical question, and the two mechanisms 

are not necessarily mutually exclusive.  

The size of the second addend is positively correlated 

with error rate when the shortcut-sum strategy is used, and 

this has been seen as evidence that the strategy was 

discovered to eliminate redundancy. It has been 

hypothesized that the increased error rate comes from the 

child having to hold two numbers in mind (one for the total 

count, and another for the count within the second addend). 

However, our recognition account is also compatible with 

this increased error rate, as larger second addends allow 

more chances to terminate the counting process, as well as 

providing more time to forget the problem, thus lowering 

the chance of recognizing the answer.  

 The second transition, from „shortcut sum‟ to „min‟ 

involves (a) skipping the counting out of the addend chosen 

to be dealt with first and (b) choosing the larger of the 

addends as the first one to deal with. Skipping the counting 

of an addend can be seen as a sort of retrieval, wherein it is  

the result of the subtask that is recalled rather than the 

answer to the entire problem. This subtask structure is part 

of the „sum‟ strategy, which contains two instances of the 

preexisting „give-a-number‟ task, first learned prior to 

encountering addition. Thus part (a) of the „min‟ strategy 

comes about by starting with the „shortcut sum‟ strategy, but 

instead of performing the full „give-a-number‟ task for the 

first addend and then counting on, the child retrieves the end 

state of this subtask and then counts on. Part (b), choosing 

the larger of the two addends first, follows quickly from 

random exploration due to the inclusion of time cost in the 

reinforcement learning algorithm: The reward signal 

associated with producing the answer comes sooner in this 

Figure 1: A) The SCADS model B) Behavioral strategy usage data across four blocks of 35 problems, average over 8 

subjects. 60 prescreening trials were also administered but not recorded here. The abrupt change from the third to final 

block was due to a large intervention involving a spike in problem difficulty at the beginning of block 4. C) The biased 

exploration model, with data averaged over 100 runs. The milder strategy transitions are due to the lack of intervention 

A B C 
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case, so the effective reward for dealing with the larger 

addend first is greater.  

 

Implementation We implemented the model within the 

actor-critic reinforcement learning architecture. While this 

architecture has traditionally been chosen for its relative 

biological plausibility, here its utility comes from the fact 

that an actor-critic model learns by modifying the current 

policy. This feature limits how drastically a single learning 

step can affect the behavior of the agent (Sutton & Barto, 

1998). This is important in part because it prevents  the large 

number of errors typically associated with reinforcement 

learning. Since the initial policy (the explicitly taught sum 

strategy) is accurate, the model avoids a big change unless it 

consistently outperforms this existing solution. 

As shown in Figure 2a, the actor-critic model consists of 

two main parts: the actor who selects actions to perform 

based on the current state, and the critic who predicts the 

expected cumulative reward of the actor at that state. At 

each time step an action is selected by treating the actor‟s 

action propensities as probabilities (via the softmax 

function). The action is performed, which modifies the state 

of the agent and produces some reward value. The critic is 

then able to see whether or not its prediction was better or 

worse than expected by comparing it against this  actual 

reward plus its expectation at the new state. This signal, 

known as the TD error, is used to update both the critic and 

the actor. 

All of the knowledge the model has about what actions  to 

execute is stored in 10 two-dimensional tables, one for the 

state space of each of the 10 possible problems, as shown in 

Figure 2b. Each table can be imagined as a 6x6 square, 

where each cell represents a state of the world relevant to 

solving the specific problem associated with the table. The 

first dimension represents the number of fingers/tokens 

currently raised, from 0 to 5 (we only consider addition 

problems with sums up to 5, though nothing prevents the 

extension to larger problems). The second dimension is an 

echoic buffer that represents the last numeral uttered.  

Each cell of the table contains 5 values, each representing 

the propensity towards taking a specific action in that state. 

There are 5 possible actions: perform a give-a-number 

subtask on the first addend, perform a give-a-number 

subtask on the second addend, perform a how-many subtask 

on the fingers currently raised, raise one more finger and say 

the next number in the count list, state that your previous 

utterance is your final answer. The first three actions are 

referred to as subtasks, since they involve a mediating 

process before affecting the state. When called upon to 

perform one of the subtask actions, either the end state is 

retrieved, or failing that, the whole subtask is carried out 

without interruption.  

In addition to these actions, the agent tries to retrieve the 

sum at the start of each problem, and the action selection 

process described above only occurs when this initial 

retrieval fails. The assumptions made for retrieving this sum 

(as well as the subtask end states) are taken straight from 

SCADS. This memory mechanism, the „distributions of 

associations‟ model, learns by accumulating association 

strengths between the task at hand and the various possible 

end states, with the idea being that it will converge to the 

correct answer as this is the most common end state for an 

agent competent at the task. When called upon to make a 

retrieval, a threshold is stochastically set and compared to 

each association strength. If no associations are higher than 

this threshold, then the retrieval fails to return an answer. If 

multiple associations are above the threshold, the retrieved 

association is randomly chosen from this set (Siegler & 

Shrager, 1984).        

We give the model the initial „sum strategy‟ policy by 

looking at all of the states encountered when executing this 

strategy, and setting the model‟s action preferences in these 

states to be consistent with the actions taken by the strategy. 

A weak preference for actions consistent with proceeding 

through the count list while putting up fingers is also 

encoded.  As noted above, this is critical to the discovery of 

the shortcut-sum strategy in the model. 

The model was trained on problems randomly sampled 

from cases where the sum was no greater than 5 and 

averaged over 100 runs. Since a tabular version of the 

Actor-Critic architecture was used, the top-level policy 

information (which subtask or primitive action to select) 

about each addition problem was learnt independently. 

Figure 2: A) The actor-critic architecture as instantiated in 

the biased exploration model. The discrepancy between 

the critic‟s predicted cumulative value and reality is used 

to update both the critic and the actor. B) The state space 

of the biased exploration model for the problem „two plus 

three‟, with arrows representing a sample trajectory for 

the sum (red) and shortcut sum (green) strategies as well 

as the count list procedure (blue). Each cell contains 

propensities for executing each of the five possible 

actions (see main text) at that state.  The cell in the inset 

shows the propensities when in the „two fingers up, just 

said two‟ state. 

A 

B 
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However, the give-a-number subtasks were shared across 

problems (for example, there was a single give-3 subtask, 

which could be carried out by iterating up to 3 or by 

producing 3 fingers all at once). While strategy learning 

may have a degree of problem specificity, as in the current 

model, sharing across specific problems seems likely, and 

some proposals on how to do so are put forward in the 

discussion section.  

Results 

The primary concern of this article was to demonstrate the 

viability of an exploration-based model of strategy 

discovery in addition. Following previous work (Shrager & 

Siegler, 1998), we focus on the qualitative fit to the pattern 

of strategy use as a function of problems encountered.  A 

principal claim of the model is that avoidance of implaus ible 

errors can occur without metacognitive filters, so we also 

examine the model‟s errors, including the overall rate and 

types of errors. Whilst preferable, quantitative assessment of 

model fit is not possible, as detailed raw data is not 

available (Siegler, personal communication). 

  To ensure a valid comparison between our model and the 

available data, our model was trained for the same number 

of trials as the human participants (4 blocks of 35 trials). We 

trained the model for 2 preliminary blocks (labeled blocks -

1 and 0 in Figure 1c) prior to this to account for the 

prescreening trials the participants received. 

   

 

Strategy Distribution Dynamics Our model‟s strategy 

choices over time are shown in Figure 1c, where the number 

of correct trials is plotted for each strategy for each 

successive block of 35 trials.  Since strategies are not 

explicitly represented anywhere in our model, the action 

sequence for each trial was examined to specify the strategy. 

We omit from figure 1 strategies  which never achieved a 

usage rate greater than 5%. Additionally, the min strategy is 

discovered around the same time as in the study, which co-

occurs with dropping usage of the sum strategy. In the 

study, there is an abrupt change from the third to final 

block; this was due to the inclusion of challenge problems  

(not yet addressed in our simulations) at the beginning of 

block 4. 

Some of the model‟s solutions did not fit into one of the 

preexisting strategies, but played a significant role in the 

usage dynamics of the model. Specifically, a strategy 

emerged whereby the larger addend was retrieved (i.e. by 

recalling the end state of its give-a-number subtask), but 

then the rest of the solution followed the steps of the sum 

strategy. This „retrieve larger, then sum‟ strategy (which 

occurred on 13% of trials averaged across the six blocks) 

played a crucial role in setting up the order dependence later 

needed in the min strategy. Having order dependence 

develop here solves the problem previous trial-and-error 

accounts have had where min discovery relied on first 

discovering the „count from first‟ strategy, which is rarely 

used in children (Neches, 1987). While the „retrieve larger 

then sum‟ strategy has not been reported in children to our 

knowledge, instances might have been lumped together with 

the sum strategy, based on their operational definition of the 

sum strategy as putting up fingers for each addend (agnostic 

as to whether they are simultaneously counted) and then 

counting them together. On this basis, we lump our model‟s 

data for the „retrieve larger, then sum‟ strategy together with 

the prototypical sum strategy for comparison with the 

microgenetic study data. 

 

Error Analysis  Both the kind and quantity of the model‟s 

errors fell within the bounds of a typical child in Siegler‟s 

microgenetic study or a cross-sectional study covering 

similar addition problems (Siegler & Jenkins 89, Svenson & 

Sjöberg 83). The error rate averaged across 100 trials of 

each problem type was 13.4%, compared to 15% in the 

Siegler study. The problems Shrager and Siegler had 

assumed went hand in hand with trial and error learning, 

such as counting out a single addend twice, were also 

absent. This was determined by examining each erroneous 

trial and summing across those where the model made 

identical steps. Categorizing each unique error would be 

quite time prohibitive, but over 50% of errors occurred in a 

small number of unique action sequences. Of this group, the 

vast majority of the errors were in retrieval, with a failure to 

inhibit counting beyond the correct answer being the only 

other significant category of errors .  

The retrieval errors have strong empirical support, and 

occur in our model precisely because its retrieval system is 

very closely based on the existing literature (Siegler & 

Shrager, 1984; Siegler & Shipley, 1995).  The failures to 

inhibit counting, or „count on‟ errors, are a consequence of 

our approach. Our theory relies on children taking steps in 

line with procedures related to, but different from, the task 

at hand, specifically the count-list procedure. Occasionally 

the model fails to stop counting upon reaching the sum, 

which is precisely what is happening in the count on errors. 

Whilst the exact frequency is not reported, Siegler and 

Jenkins (1989) themselves report that children occasionally 

count past the correct answer. One strong empirical 

prediction of our model is that these errors should 

occasionally occur and be indicative of a child in the early 

stage of learning, before the shortcut sum strategy is 

consistently accurate.  

Discussion 

We set out to explore how the problem of strategy discovery 

might be solved without a metacognitive filter, while 

avoiding a high error rate and approximating the pattern of 

change in strategy use observed in Siegler and Jenkins, 

1989. The biased exploration model showed this to be 

possible and additionally demonstrated that strategies  can be 

composed by assembling parts on the fly, rather than being 

selected as units at the start of the problem. This allows fine 

grained variations in strategies to be used, and predicts that 

such variation, such as the „retrieve larger, then sum‟ 

strategy, will be seen in behavioral data.  
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 Distinguishing our account from that of the 

SCADS model and investigating the extent to which 

metacognition plays a role in the discovery process will be 

another focus of our future work. One area where the 

models make distinct predictions is in the rationale behind 

the use of the shortcut sum strategy. The SCADS model 

claims that children track the total while also counting out 

the second addend, while our account relies on habitually 

counting on until the sum is recognized, avoiding the need 

to keep track of the second addend. This may be amenable 

to empirical exploration. Self-reports might also be used to 

differentiate these accounts, but we stress that we do not 

claim children do not eventually discover a rationale for 

their actions. Our claim is only that they need not do so 

before the actions themselves emerge.  

 Another area for future work will be to address the 

problem-specific representations of our current model and to 

explore the consequences of this for the model‟s predictions. 

Sharing information between problems might simply 

accelerate the learning process, but more fundamental 

changes are also possible. For example, sharing could 

increase certain errors due to confusion of one problem with 

another, which would change the pressures that lead to 

strategy discovery.  

Another approach we are exploring is to let a 

neural network control the policy across all of the problems 

(in this case, the problem state would be represented as an 

input feature vector), as this could allow a more nuanced 

sharing of discovery information to emerge (it is possible to 

see at least some versions of a table-driven model as an 

alternative implementation of this neural-network based 

approach). 

 Going forward, we plan to extend our model to 

account for another stream of evidence that has previously 

been used to support the notion of metacognition: the 

recognition of never-before seen strategies. Children that 

have been shown the min strategy before discovering it still 

rate it as better than an incorrect strategy (Siegler & 

Crawley, 1994). While this has previously been taken as 

support for the proposed metacognitive filter, we suggest 

that the biased exploration model can account for this data 

as well by using the agent‟s value function to evaluate novel 

strategies. Such an extension is indicative of our overall 

goal with this model: to set up a new foundation for self-

guided learning that will allow a rethinking of the role of 

metacognition in strategy discovery.   
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