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ABSTRACT: The stable coexistence of insulating and metallic phases in strained vanadium dioxide (VO,) has garnered significant
research interest due to the intriguing phase transition phenomena. However, the temporal behavior of charge carriers in different
phases of VO, remains elusive. Herein, we employ near-field optical nanoscopy to capture nanoscale alternating phase domains in
bent VO, nanobeams. By conducting transient measurements across the different phases, we observed a prolonged carrier
recombination lifetime in the metallic phase of VO,, accompanied by an accelerated diffusion process. Our findings reveal nanoscale
carrier dynamics in VO, nanobeams, offering insights that can facilitate further investigations into phase-change materials and their

potential applications in sensing and microelectromechanical devices.

KEYWORDS: vanadium dioxide, strain engineering, carrier dynamics, phase transition, s-SNOM

B INTRODUCTION

The interplay between strongly correlated electrons and lattice
distortion facilitates the well-known metal—insulator transition
(MIT) in vanadium dioxide (VO,).'”® With an accessible
transition temperature of T~ 341 K, VO, can be used as a
thermochromic material in smart windows, solar reflectors, and
detectors to realize flexible thermal management and temper-
ature sensing.’"® The phase transition in VO, can also be
triggered by optical, electric, and magnetic stimulations,” which
enables a broad range of photonic and optoelectronic devices,
such as photodetectors,lo field-effect transistors,'"”'* tunable
dielectric metasurfaces,">"* optical control devices,">'® and
memory devices.'’ ™"’

Recent studies have shown that strain can be introduced to
shift the transition temperature and enrich the phase diagram
of VO, leading to self-organized coexisting metallic-
insulating domains.”' ~** Such strain modulation of MIT has
extended the applications of VO, in high-performance strain
sensors,”>*° microelectromechanical systen1s,27_3’0 and tunable
electro-optic devices.”"*>

Unraveling the MIT in VO, has relied on ultrafast optical
probes and near-field microscopies to deconvolute the coupled
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electron—lattice dynamics and visualize nanoscale phase
transition phenomena.33_38 Scattering-type scanning near-
field optical microscopy (s-SNOM) has mapped the stress-
tuned periodic domain patterns in VO, microcrystals,*” while
the combination of transient measurements with near-field
imaging has revealed the ultrafast dynamics and phase
inhomogeneities associated with MIT.*" However, directly
visualizing the strain-tuned coexistence of metallic and
insulating phases at the nanoscale and their associated carrier
dynamics remains an outstanding challenge.

In this work, we study the strain-modulated phases and
carrier dynamics in bent VO, nanobeams. We demonstrate the
near-field imaging of alternating insulating-metallic phase
domains with nanoscale spatial resolution. With the integration
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Figure 1. Experiment setup and materials characterization: (a) Schematic of the s-SNOM setup. (b) SEM images of bent VO, nanobeams. (c)
Raman spectra of a VO, nanobeam measured below (298 K) and above (350 K) the phase transition temperature. Scale bar: 10 um.

of visible-near-infrared pump—probe diagnostics,‘“’42

further investigate the photocarrier dynamics in different
phases within the VO, nanobeam. Our results provide insights
into the phase inhomogeneities and carrier dynamics in
strained VO, nanostructures that are pertinent to the
development of advanced sensing and microelectromechanical
devices.

we

B RESULTS AND DISCUSSION

Figure la shows the schematic of our s-SNOM setup (see
Methods for more details).**** The use of an atomic force
microscope (AFM) tip enables the imaging of phase domains
in VO, with a subdiffraction-limit spatial resolution. An 800
nm femtosecond laser beam is directed to the tip, where the
near-field coupling between the tip apex and the nanobeam
modulates the backscattered light to probe the local material
properties. The VO, nanobeams in our experiments are
synthesized by a vapor transport method* and mechanically
transferred to the substrate. During this process, some
nanobeams will naturally bend due to the uniaxial strain.
The bent VO, nanobeams are clearly visualized by the high-
resolution scanning electron microscope (SEM) image (Figure
1b). Figure lc shows the Raman spectra of a VO, nanobeam
measured below (298 K) and above (350 K) the transition
temperature. The representative @y, @y, and @y phonon

modes can be identified for the insulating VO,, while the
metallic VO, shows negligible Raman signals (Figure lc).> 4%

We first conducted near-field imaging of a bent VO,
nanobeam by scanning the sample underneath the AFM tip.
Figure 2a shows the AFM topography of the nanobeam, and
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Figure 2. Near-field nanoimaging of phase domains. (a) AFM image
of a bent VO, nanobeam. (b,c) s-SNOM images measured at (b) 298
and (c) 350 K. (d) Line profile of the near-field amplitude extracted
from (c) along the centerline of the nanobeam, indicating coexisting
insulating (I) and metallic (M) phases. Scale bars: 500 nm.

Figure 2b,c shows the corresponding near-field images. At
room temperature (298 K), the s-SNOM signal intensity does
not exhibit spatial variation, indicating a uniform insulating
phase (Figure 2b). When the temperature is elevated to 350 K,
the near-field image shows an alternating triangular-shaped
domain pattern, which represents the coexisting insulating and
metallic phases (Figure 2c). The variation of the s-SNOM
intensity can be clearly seen from the line profile extracted
along the nanobeam (Figure 2d), where the bright and dark
regions correspond to the insulating and metallic domains,
respectively. These phase domains have a feature size of ~200
nm (Figure 2d), demonstrating sub-diffraction-limit spatial
resolution of the near-field imaging. The formation of such
alternating domain patterns is ascribed to the strain-induced
shift of transition temperature T, and the competition between
the strain energy and domain-wall energy.’”*' With the
linearly distributed strain along the radial direction of the bent
VO, nanobeam, the insulating and metallic domains are of
nanotriangular shape, as shown in Figure 2c.> We also
repeated the measurement on other bent VO, nanobeams and
observed similar alternating phase domains at elevated
temperatures (Figure S1).

We then studied carrier dynamics in different domains by
integrating pump—probe optics into the s-SNOM system
(Figure 3a). A 400 nm pump beam and an 800 nm probe beam
with controlled time delay are directed onto the AFM tip (see
Methods for more details). The transient s-SNOM signal is
collected in different phase regions at both room and elevated
temperatures (Figure 3b, c). The near-field amplitude
showcases a striking increase after pump beam excitation due
to the photoexcited carrier injection, followed by a signal decay
that is attributed to carrier recombination and diffusion
processes.’” While there is no notable difference between the
insulating phases at 298 and 350 K, the decay of s-SNOM
intensity in the metallic phase (350 K) appears to be slower
(Figure 3c). Additional experiments are also conducted to
confirm the results (Figure S2).

To quantitatively understand the carrier behaviors, we
calculate the carrier density-dependent dielectric function of
both the metallic and insulating VO, by the Drude—Lorentz
model (Figure $3):*

me, w* + iwl; (1)
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Figure 3. Transient measurements on VO, nanobeams: (a) Schematic of pump—probe s-SNOM experiment, (b) transient s-SNOM signal and
fitting curve (dashed line) on a bent VO, nanobeam at 298 K, (c) normalized transient s-SNOM signals and fitting curves (dashed lines) on the
same VO, nanobeam at 350 K, in both insulating and metallic domains. Two curves are offset from each other for better visualization.
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Figure 4. Carrier dynamics in VO, nanobeams. (a) Simulated s-SNOM intensity of the metallic and insulating phases of VO, nanobeams as a
function of carrier density. (b) Fitted time constants for both phases. 7, and 74 represent the recombination and diffusion processes, respectively.

(c) Band structures of insulating and metallic VO,.

where ¢, is the background dielectric function, the second
term stands for the contribution from the Lorentz oscillators,
and the third term represents the contribution from the free
carriers. f;, @, and T’; are the strength, frequency, and damping
rate of the jth oscillator, @ represents the probe beam
frequency, N(At) is photoexcited electron density at the time
delay of At, ¢, and m is the elementary charge and effective
mass of the electron, g, is the vacuum permittivity, and
I; = mi”, where y is the carrier mobility. Then, we conduct the

finite-domain time difference (FDTD) simulation to calculate
the near-field amplitude as a function of carrier density (see
Methods and Figure S4 for more details).”® The s-SNOM
intensity at different carrier densities for both the metallic and
insulating phases is plotted in Figure 4a.

The carrier density after pump excitation can be modeled to
follow a bi-exponential decay, taking both the electron—hole
recombination and carrier diffusion into consideration:*’

N(AL) = Ny(A,e 2% 4 Age ™) )

where Nj is the initial carrier density after the excitation, At is
the time delay, 7, and 74 are time constants that represent the
recombination and diffusion process, respectively, and A, and
Aq are two coefficients with A, + A; = 1. By coupling eq 2 to 1
as well as the AS—N relation shown in Figure 4a, we could fit
the transient data (Figure 3b,c) and obtain the parameters in
eq 2. The fitted time constants are plotted in Figure 4b and
other parameters are summarized in Table S1.

Metallic and insulating phases of VO, display distinct carrier
dynamics. Considering the carrier recombination is usually
faster than the diffusion process,50 we assign the shorter time
constant to 7, and the longer time constant as 7, The
electron—hole recombination after pump excitation in the
metallic phase is slower than that in the insulating phase,
followed by a slightly faster carrier diffusion process (Figure
4b). The slower carrier diffusion in the insulating phase can be
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explained by the strong Coulomb repulsion in the correlated
insulator that limits the freedom of carrier movements.""*” For
the opposite behavior in carrier recombination, we tentatively
attribute it to phonon softening. Figure 4c shows the band
structures of both phases. When VO, transits from the
monoclinic insulating to the rutile metallic phase, the two
separate dj bands degenerate to one d| band, coming in
contact with the #* band (Figure 4¢)>"* The carrier
recombination in the insulating phase mainly happens between
the lower d band and the z* band. In our experiments, the
metallic phase also exhibits semiconducting characteristics
because our pump beam has sufficient photon energy (~3.1
eV) to excite the electrons in the lower 7z band, leading to the
electron—hole recombination between the z* and 7 band
(Figure 4c). The phonon-assisted nonradiative carrier
recombination dynamics in VO, is inversely related to the
strength of the electron—phonon coupling A(®?*), where @ is
the phonon frequency and A is the dimensionless electron—
phonon coupling constant.>>>* With softer phonon modes and
lower phonon density of states,"*>® the metallic VO, has a
smaller A{®?), leading to a larger recombination lifetime
compared to the insulating VO,.

B CONCLUSIONS

In conclusion, we report the near-field imaging of nanoscale
structural phases in strained VO, nanobeams and characterize
the carrier dynamics in different phase domains. By coupling
near-field experiments and FDTD simulations, we observe
slower carrier diffusion and a shorter recombination lifetime in
the insulating phase, which can be possibly explained by the
strongly correlated electrons and different band structures
between the two phases. Our results can help advance the
understanding of strain-modulated phase structures in VO, for
microelectromechanical devices and carrier dynamics in
correlated materials.
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B METHODS

Materials and Characterizations. The VO, nanobeams
were prepared by a vapor transport method.”> Raman
spectroscopy was conducted by a Renishaw micro-Raman
measurement system, and the excitation wavelength is 532 nm.
The SEM images were taken with an FEI Quanta 650 SEM
system.

Experimental Setup. The near-field imaging of the VO,
nanobeams is taken through a commercial s-SNOM system
(Molecular Vista), and an 800 nm femtosecond laser (Spectra-
Physics Tsunami 3941-30-M1S) is used as the light source.
The 400 nm pump beam is generated by passing part of the
800 nm laser through a beta barium borate crystal (Eksma
Optics). The laser fluence in our experiments is ~9.3 uJ/cm?,
which is much lower than the threshold fluence of Eh_oto—
induced phase transition reported by previous studies.”””® A
delay stage (Thorlabs) is used to control the time delay
between the pump and probe beam. The pump beam is
modulated by an acoustic optical modulator (AOM, Thorlabs)
at the third harmonic AFM tip oscillation frequency. A
parabolic mirror is used to direct the pump and probe beams
to the tip—sample system, and the backscattered probe beam is
collected by an avalanche photodiode (Thorlabs). The near-
field signal is obtained after the far-field noise is suppressed
through a demodulation process at the AOM modulation
frequency by a lock-in amplifier.

FDTD Simulations. Numerical simulations were per-
formed using commercial software Ansys Lumerical based on
the finite-domain time difference (FDTD) method. The
nanobeam is modeled as a curved solid with a square cross-
section area (side length 200 nm), and the AFM tip is modeled
as a cone with its apex rounded by a sphere (radius 20 nm)
(Figure S4). An 800 nm plane wave is used to illuminate the
system, and a field monitor is used to collect the backscattered
light. The near-field signal is obtained by the modulation and
demodulation process with the method we have developed
before.*® Briefly, we model the AFM tip to oscillate
periodically above the sample at a specific frequency (Q ~
250 kHz), where the tip—sample distance h varies between 2
and 62 nm with time by h = 32—30 cos (22Qt). We then
simulate the scattered light intensity S(#;) at N discrete h; and
mimic the demodulation process in the s-SNOM experiments
to suppress the far-field noise and extract the near-field
amplitude AS by applying a Fourier integral at the third
harmonic frequency (k = 3):

N
AS = D S(t)e (L, — 1)

i=1

where t; is the time that corresponds to each h,. By repeating
this simulation procedure based on the dielectric function at
different carrier densities calculated from eq 1, the AS—N
relation in Figure 4a can be obtained.
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