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Characterizing regional-scale temporal evolution of air dose rates 

after the Fukushima Daiichi Nuclear Power Plant accident
Haruko M. Wainwrighta Akiyuki Sekib Satoshi Mikamic KimiakiSaitod

Abstract

In this study, we quantify the temporal changes of air dose rates in the 

regional scale around the Fukushima Dai-ichi Nuclear Power Plant in Japan, 

and predict the spatial distribution of air dose rates in the future. We first 

apply the Bayesian geostatistical method developed by Wainwright et al. 

(2017) to integrate multiscale datasets including ground-based walk and car 

surveys, and airborne surveys, all of which have different scales, resolutions,

spatialcoverage, and accuracy. This method is based on geostatistics to 

represent spatial heterogeneous structures, and also on Bayesian 

hierarchical models to integrate multiscale, multi-type datasets in a 

consistent manner. We apply this method to the datasets from three years: 

2014 to 2016. The temporal changes among the three integrated maps 

enables us to characterize the spatiotemporal dynamics of radiation air dose 

rates. The data-driven ecological decay model is then coupled with the 

integrated map to predict future dose rates. Results show that the air dose 

rates are decreasing consistently across the region. While slower in the 

forested region, the decrease is particularly significant in the town area. The 

decontamination has contributed to significant reduction of air dose rates. By

2026, the air dose rates will continue to decrease, and the area above 3.8 

μSv/h will be almost fully contained within the non-residential forested zone.

1. Introduction

Six years has passed since the radionuclide release occurred at the 

Fukushima Dai-ichi Nuclear Power Plant (FDNPP). During the 

accident, radionuclides were deposited on soil and plants through wet and 

dry deposition (Tanaka, 2012). Radiocesium (134Cs and 137Cs) is currently the 

main contaminant in the environment (Saito, 2016). Over the past six years, 

the region around FDNPP has experienced remarkable recovery. The current 

evacuation designated area has shrunk to 370 km2 in April 2017, which is 

2.7% of the Fukushima Prefecture (Fukushima Prefectural Government, 

2017). The extensive decontamination effort has played a critical role in this 

recovery process (Yasutaka et al., 2013). In addition, many studies have 



reported that the decrease in the air dose rates – including 

the reductionassociated with radiocesium transport in the environment – has

been accelerated compared to the physical decay (Kinase et al., 

2014, Kinase et al., 2017). It has been found that the air dose rates have 

reduced to around one fourth in the undisturbed flat land and one fifth on the

urban roads in the first four years (Saito, 2016).

An extensive monitoring program has been established after the accident 

and still continues to this day (Mikami et al., 2015a; Saito and Onda, 2015). 

One of the main goals in the monitoring program has been to map radiation 

dose rates, i.e., the ambient dose equivalentrates, in a regional scale based 

on the datasets collected by different agencies (Saito, 2016). The datasets 

have been carefully archived and made accessible to the public (Seki et al., 

2014). The monitoring program has been playing a central role towards 

ensuring the public safety and preparing for decontamination efforts and 

residents' return. In addition, monitoring has provided information critical to 

understand the transport behavior of radiocesium in the environment (Saito, 

2016).

There are a variety of monitoring platforms and data available in the regions.

In addition to continuous-time monitoring posts, spatially extensive datasets 

include airborne, car and walk surveys once or twice a year. Car surveys are 

based on a GPS-aided mobile radiation monitoring system, the Kyoto 

University Radiation Mapping system (KURAMA), which has been used 

extensively to characterize the distribution of air dose rates along the roads 

in real time (Andoh et al., 2015; Tanigaki et al., 2013). In walk surveys, 

people carry around the same KURAMA-II systems in small streets and 

various places outside where people walk around, so that the potential 

external dose outside can be mapped in detail. Airborne surveys have 

provided vital information to map the air dose rates across the region (Torii 

et al., 2012). These measurements of air dose rates have been also 

considered an excellent proxy for radiocesium contamination in soil at flat 

fields (Mikami et al., 2015b; Saito et al., 2015).

Changes in air dose rates have been characterized extensively based on 

these monitoring datasets, aiming to describe and predict the reduction of 

radiation air dose rates in the environment (Kinase et al., 2014, Kinase et al.,

2015). Although there have been efforts to model radionuclide transport 

mechanistically in the near surface environment (e.g., Kitamura et al., 



2014; Wei et al., 2017), the exact prediction has been challenging, since the 

transport involves numerous spatially and temporally heterogeneous factors 

difficult to measure over time and space. In particular, the radiocesium 

transport in urban areas is known to be dictated by anthropologic impacts 

such as traffic and human movements (Andoh et al., 2015). Such enhanced 

reduction in air dose rates can be defined as environmental or ecological 

decay, and described by data-driven models with the environmental or 

ecological half-life (Peles et al., 2002). In the Fukushima region, a significant 

effort was made to develop data-driven models and to compute the rate of 

ecological decay (e.g., Kinase et al., 2014, Kinase et al., 2017).

However, it has been difficult to quantify the heterogeneity of environmental 

decay in the regional scale, since spatially extensive airborne survey 

datasets often have discrepancy with the ground-based measurements and 

have a larger uncertainty due to the large measurement footprints, 

and atmospheric effects. In addition, the complex terrain in the forested 

mountainous region is considered to increase uncertainty (Torii et al., 2012). 

Recently, Wainwright et al. (2017) developed a Bayesian hierarchical 

modeling approach to integrate multiscale datasets (i.e., car, walk and 

airborne surveys), and also to estimate the spatial distribution of air dose 

rates in high resolution over space. They estimated the air dose rates 

equivalent to walk surveys, since walk surveys represent the exposure of an 

average person walking outside. The integrated air dose-rate maps are more

accurate than the airborne data alone, having less bias and uncertainty.

In this study, our goals are (1) to quantify the temporal changes of air dose 

rates in the regional scale, (2) to identify the characteristics of 

environmental decay rates depending on land-use, and (3) to predict air 

dose rates in the future. We focus on the evacuation designated area and 

the region where the restriction order was recently lifted in March 2017. We 

first extend the approach by Wainwright et al. (2017) to a larger area 

covering this region, and create multiple integrated maps every year at the 

time when the airborne datasets were collected. Then we characterize the 

changes in air dose rates, including the effect of decontamination in villages 

and urban areas. Our results are expected to help inform efforts to plan for 

the residents' return and decontamination efforts in the area currently 

designated for evacuation.



2. Materials and methods

2.1. Site and data

The area of interest in this study includes the current evacuation designated 

area, and the area where the restriction order was recently lifted in March 

2017 (Fig. 1a). It extends from the FDNPP location to the northwest, following

the radioactive plume during the accident. This area –approximately 

730 km2 – is mostly forested with 16% of the land used for agriculture, 83% 

forested, and just 1% representing urban use, according to the high-

resolution land-use and land-cover map of Japan (version 14.02) created by 

Japan Aerospace Exploration Agency (Takahashi et al., 2013). This area 

extends from the coast towards the mountains, with the altitude ranging 

from 0 m to about 1000 m above the sea level.

Fig. 1. (a) Evacuation designated area and (b) land cover types (blue = urban, green = cropland and 

yellow = forest). In (a), the red region is the evacuation designated area as of April 2017. The green 

region is where the restriction order was lifted in April 2017.

In the same manner as Wainwright et al. (2017), we used the three types of 

air dose rate datasets compiled by Japan Atomic Energy Agency (JAEA). The 

car survey datasets used in our study were acquired through the publically 



available database (http://emdb.jaea.go.jp/emdb/en/) and collected using the

KURAMA-II systems along the major roads. The KURAMA-II system included a 

CsI(Tl) scintillation detector, GPS and a software-designed control 

device (Tsuda et al., 2015). The calibration was done using gamma 

rays from radioisotope sources at the Facility of Radiation Standard and the 

Instrument Calibration Facility in JAEA. The dose rate was measured 

automatically along with the GPS location every 3 s, while the car was 

moving in the legal speed or along with the traffic. The datasets were 

averaged within the 100 m-by-100 m mesh. The walk survey datasets were 

provided by JAEA after averaging the data values within the 20 m-by-20 m 

mesh. The walk survey used the KURAMA-II system as well. In addition, we 

used the publically available air survey datasets that were calibrated to 

the equivalent dose rates to the one 1 m-above ground (Torii et al., 2012). 

The datasets were given within the 250 m-by-250 m mesh after interpolation 

using the IDW (inverse distance weighting) method.

Although the types of datasets are the same as those used in Wainwright et 

al. (2017), there are some differences. The dose rate is generally higher in 

the evacuation designated area than Fukushima City used for the estimation 

in the previous study. It is known that the air dose rate reduction tendencies 

are different in the evacuation zone due to the lack of human activities 

(Saito, 2016). In addition, the evacuation designated area has a larger spatial

coverage of forested areas with less human activities. The spatial coverage 

of car and walk surveys is therefore limited compared to the spatial 

data coverage in Fukushima City.

2.2. Methodology

We use the data integration methodology developed by Wainwright et al. 

(2017). Although the detailed description is available in Wainwright et al. 

(2017), we briefly summarize the methodology here for completeness. Our 

data integration is based on a Bayesian hierarchical model, which consists of 

statistical sub-models: data models and process models (Wikle et al., 2001). 

The process models–in this context–describe the spatial pattern (or map) of 

air dose rates within the domain, representing the spatial trend and 

heterogeneity of contamination. We use a geostatistical model to describe 

this spatial pattern (Deutsch and Journel, 1998; Ribeiro and Diggle, 2007). 



The goal is to estimate the air dose rates equivalent to walk surveys, since 

walk surveys represent the exposure of an average person walking outside.

To develop an integrated map, we denote the radiation dose rate at i-th pixel

by yi, where i = 1, …, n. We also denote three datasets by three vectors, 

representing the airborne surveydata zA (each data point is represented 

by zA,j, where j = 1, …, mA), car survey data zC (each data point is represented

by zC,j, where j = 1, …, mC), and walk survey data (each data point is 

represented by zW,j, where j = 1, …, mW). The goal is to estimate the posterior

distribution of the radiation dose-rate map y (i.e., the vector representing 

the radiation dose rates at all the pixels) conditioned on these three datasets

(zA, zC and zW), written as p(y |zA, zC, zW). By applying Bayes' rule, we can re-

write this posterior distribution as:

(1)p(y | zA, zC, zW) ∝ p(zA | y) p(zC | y) p(y | zW)

We assume that the datasets are conditionally independent of each other, 

given the air dose rate distribution y.

Detailed descriptions of mathematical formulation are available 

in Wainwright et al. (2017). The first distributions p(zA | y) and p(zC | y) 

represent the data models to describe the low-resolution data (i.e., airborne 

and car survey data) as a function of the air dose rate map y. The spatial 

average functions are included in these conditional distributions. For spatial 

averaging, Wainwright et al. (2017) have compared different averaging 

schemes based on the observation in the datasets. Based on their results, 

we use simple averaging for car survey data within the 100-m radius. We use

weighted averaging to represent the large footprint of airborne survey, the 

weight of which is computed by the radiation transport simulations (Malins et

al., 2016). The third distribution p(y | zW) represents the process model (i.e., 

geostatistical model) to describe the spatial pattern given the measured 

dose rates in the walk surveys. We also assume that the parameters in the 

data and process models are estimated and well-constrained through the 

exploratory data analysis and hence they are fixed during this Bayesian 

estimation. The correlation parameters are determined for each land-use 

class. After all the sub-models are defined and parameterized, the air dose 

rate map can be computed according to Eq. (1). We have defined different 

parameters in the data and process models for different land-cover types 

(Tables S1 and S2).



To characterize the temporal changes and their spatial variability, we define 

the dose rate reduction by the log-difference of the air dose rates in each 

year in a similar manner as Kinase et al. (2015). In this study, we first apply 

this integration method separately to the datasets in each year from 2014 to 

2016 for creating three integrated maps at the 50-m resolution. The 

geostatistical and correlation parameters are determined separately for each

year based on available datasets. This process provides snapshots of 

spatiotemporal dynamics of air dose rates in the region. We then analyze the

spatial heterogeneity of the dose rate reduction to see whether it has been 

affected by decontamination or whether it is dependent on the land-use 

type.

We then temporally extrapolate the air dose rates by coupling this integrated

map in 2016 with the data-driven ecological decay model developed 

by Kinase et al., 2014, Kinase et al., 2017. Since we assume the 2016 map as

the initial condition, we can predict the air dose rate at time t2 based on the 

known dose rate map at time t1 (t1 = 2016). We modify the equation 

in Kinase et al. (2014) as:

(2)D(t2)−DBGD(t1)−DBG={ffast0.5t2/Tfast+(1−ffast)0.5t2/Tslow}

{ffast0.5t1/Tfast+(1−ffast)0.5t1/

Tslow}ke−λ134t2+e−λ137t2ke−λ134t1+e−λ137t1

where D(t) is the air dose rate at time t, DBG is the background dose rate 

[μSv/h], ffast is the fractional distribution of fast elimination component, Tfast is 

the ecological half-life for the fast elimination component, Tslow is the 

ecological half-life for the slow elimination component, kis the ambient dose 

equivalent rate ratio of 134Cs and137Cs at time zero, λ134 is the physical decay 

constant of 134Cs, and λ137 is the physical decay constant of 137Cs. In addition 

to the mean integrated map of radiation dose rates in 2016, we use the 

decay parameters determined through fitting in Kinase et al. (2017) or the 

same assumed parameters (Table S3) to create a predicted air dose rate 

map in 2026.

3. Results and discussions

The 2016 data on air dose rates are shown as an example in Fig. 2, which 

are the latest datasets currently available. Although the airborne survey (Fig.

2a) has the complete coverage of this region, the discrepancies are apparent

between the airborne data and other ground-based measurements. In 



particular, the airborne data show higher air dose rates compared to the car 

and walk survey data in the same regions. On the other hand, the car survey 

data are limited along the major roads (Fig. 2b), while the walk survey data 

are clustered in multiple small areas (Fig. 2c). The ground-based surveys 

alone cannot capture the spatial heterogeneity of the air dose rate 

distribution in the regional scale.

Fig. 2. Comparison among different types of datasets in 2016: (a) airborne survey, (b) car survey and 

(c) walk survey data. The thin black contour lines are the threshold of 3.8 μSv/h. The thick black lines 

are different zones within the evacuation designated area shown in Fig. 1a.

The comparison among different types of datasets (Fig. 3, Fig. 4) shows the 

discrepancy of air dose rates among them. Fig. 3 shows that the car and 

walk survey datasets are along the one-to-one lines, and highly correlated 

(the correlation coefficients of 0.96–0.97), when co-located data points are 

selected. Simple spatial averaging of walk survey data around each car data 

point improves the correlation coefficients to 0.99. The comparison between 

the airborne and walk survey datasets (Fig. 4) shows that the airborne 

survey data values are higher than the walk survey data even at the same 

locations, although the two types of data are significantly correlated (the 

correlation coefficients of 0.93–0.96). Weighted spatial averaging of the walk 

survey data around each airborne data point improves the correlation 

significantly to the correlation coefficients of 0.96–0.99. Several studies have

found that the airborne survey data are consistently higher than co-located 

ground-based measurements (Naito et al., 2014; NRA, 2014; Yamashita and 

Itabashi, 2015; Miyazaki and Hayano, 2016; Wainwright et al., 2017; Kinase 

et al., 2017). To account such systematic shift in Fig. 4, a linear model was 

fitted with two parameters (i.e., slope and intercept) shown in Tables S1 and 



S2. In Fig. 3, Fig. 4, the correlation coefficients are generally higher than the 

data from Fukushima City presented in Wainwright et al. (2017). This is due 

to the fact that the dose rates are higher in the evacuation zone than 

Fukushima City, as discussed in Wainwright et al. (2017).

Fig. 3. Comparison between the car and walk survey data: (a) urban, (b) cropland, and (c) forest areas 

in the 2016 data. The blue circles (“Min. D”) are the co-located points identified by the minimum 

distance. The red circles (“Simple”) are the average of the walk survey points using the simple 

average. In each plot, the correlation coefficients are shown.

Fig. 4. Comparison between the air and walk survey data in: (a) urban, (b) cropland, and (c) forest and 

areas in the 2016 data. The blue circles (“Min. D”) are the co-located points identified by the minimum 

distance. The red circles (“Malin”) are the weighted average of the walk survey points using the 

weights computed by the radiation transport simulation. In each plot, the correlation coefficients are 

shown.

The three kinds of data were integrated using the developed method 

(Wainwright et al., 2017). A series of integrated maps from 2014 to 2016 

(50 m by 50 m resolution) are compared to the airborne survey datasets 

in Fig. 5 (The zoom-up figures are available in Fig. S1). Both airborne data 

and integrated maps show that air dose rates are decreasing consistently 

across the region over the two years, and that the region above 3.8 μSv/h is 

shrinking. In general, the integrated maps (Fig. 5c–d) show more detailed 



and finer-resolution heterogeneity than the original airborne data (Fig. 5a–c),

although the general trend is very similar. The systematic bias (or shift) in 

the airborne data (Fig. 5a–c) is corrected in the integrated maps (Fig. 5d–f). 

For example, the area of above 3.8 μSv/h is 72.8 km2 in the integrated map 

in 2016, which is significantly smaller than the one in the original airborne 

survey (141.3 km2). The overestimation is quite significant so that the region 

above 3.8 μSv/h is larger in the airborne survey data in 2016 (Fig. 5c) than 

the 2015 integrated map (Fig. 5e). Correcting such overestimation would be 

important, since 3.8 μSv/h is considered to roughly correspond to an annual 

exposure dose of 20 mSv and often used as the threshold value for 

policy decision making.



Fig. 5. Temporal evolution of (a–c) airborne survey data and (d–f) integrated maps in (a, d) 2014, (b, e) 

2015 and (c, f) 2016. The thin black contour lines are the threshold of 3.8 μSv/h. The thick black lines 

are different zones within the evacuation designated area shown in Fig. 1a.

The performance of the integrated maps was confirmed by the validation 

(Fig. 6), using one hundred points of the walk survey data excluded from the 

estimation. Without the data integration, the airborne data at co-located 

points (blue dots) exhibit larger scatters and a systematic bias compared to 

the co-located walk survey data. After the data integration, the predicted 

values (based on our approach and the three datasets) are tightly distributed

around the one-to-one line and are mostly included in the 99% confidence 

interval. The validation result (Fig. 6) shows that this method successfully 

estimates the fine-resolution dose-rate map based on the spatially sparse 

walk and car survey data and airborne data.

Fig. 6. Validation results: comparison of the log-transformed walk survey data to the integrated map 

(red circles) and to the co-located airborne data (blue circles) at the walk-survey data locations not 

used for the estimation in (a) 2014, (b) 2015 and (c) 2016. The red dots represent the predicted values

based on the data integration method; the blue dots are the co-located airborne data without using the

integration. The black line is the one-to-one line; the red lines are the 99% confidence intervals.

Fig. 7 shows the log-difference in the air dose rates between two consecutive

years calculated from the integrated maps shown in Fig. 5. Although the 

east-west lines associated with the flight lines can be seen as an artifact in 

the forested region, we can still see significant anthropologic effects. The 

artifact is relatively small (5–10% of the dose rates) so that it is noticeable 

only in this reduction map (Fig. 7): not in the integrated map or airborne data

(Fig. 5). The artifact was corrected within the urban or cropland areas where 

the walk and car survey datasets are available. Between 2014 and 2015, the 

Joban highway was opened with a fresh pavement without contamination, 

which shows as a large reduction along the north-south road in the 



southwest part of the domain (Fig. 7a). The decontamination activity was 

known to be particularly active in the southwest region of the domain 

(Tomioka Village). Between 2015 and 2016, the decontamination was active 

in the northwestern region (Minami-soma City), which can be seen in Fig. 7b. 

This is the first time that the decontamination effect is visualized in the 

regional scale. After the Chernobyl accident, regional-scale decontamination 

was found to be ineffective due to re-contamination (Vovk et al., 1993). After

the Fukushima accident, extensive research and investigation have been 

made in decontamination technologies and applications (Miyahara et al., 

2012). Our results show that the decontamination is quite effective to reduce

the air dose rates.

Fig. 7. Log-difference of the air dose rates between (a) 2014–2015 and (b) 2015–2016.

The dose rate reduction of air dose rates was computed at each pixel, and 

summarized in each land-use class as the median and five and ninety-five 

percentiles (Table 1). The urban area has a large reduction as well as a large 

variability in the reduction, which suggests the effect of paved surfaces on 

the mobility of radiocesium (e.g. roads) as well as anthropologic effects (e.g.,

decontamination and traffic) consistent with previous studies (e.g., Kinase et 

al., 2014; Kinase et al., 2017; Saito, 2016). The reduction is larger than the 

computed median values in each land-use type based on the data-driven 

model in Kinase et al. (2017). This suggests that the regional-scale ecological

half-life for the fast and slow elimination components could be smaller or the 

fast elimination fraction could be larger than the values used in Kinase et al. 



(2017). In addition, the reduction is smaller in 2015–2016 than 2014–2015, 

suggesting the decreasing fraction of 134Cs. We expect the reduction rate 

would decrease in the future, although the reduction would remain larger 

than the physical decay due to the radiocesium transport in the 

environment.



Table 1. Median reduction in the air dose rate within each land-use type, along with the range of the five 
and ninety-five percentiles in the prentices. The reduction was defined by the ratio of air dose rates 
between the 2 years at each pixel.

2014–2015 2015–2016 2014–2016

Urban 0.68 (0.46–0.95) 0.74 (0.40–1.00) 0.50 (0.25–0.75)

Cropland 0.70 (0.46–0.89) 0.72 (0.47–0.93) 0.50 (0.28–0.71)

Forest 0.72 (0.57–0.86) 0.78 (0.63–0.95) 0.57 (0.42–0.70)

Kinase model(forest)a 0.83 (0.79–0.87) 0.86 (0.82–0.89) 0.72 (0.65–0.77)

Kinase model 
(others)a

0.83 (0.78–0.87) 0.86 (0.81–0.89) 0.72 (0.64–0.77)

a

Kinase et al. (2017).



Fig. 8 shows the predicted maps in 2026 based on the 2016 integrated map 

(the enlarged version is available in the supporting information as Fig. S2). 

The prediction is based on the assumptions that the ecological decay 

continues at the current rate, and that the decontamination is not 

considered. The air dose rates continue to decrease, and the region above 

3.8 μSv/h is predicted to shrink significantly in 2026. Since we used the 

parameters from Kinase et al. (2017), the actual reduction could be faster 

than this map. Although there is still a remaining area above 3.8 μSv/h, this 

area is almost fully contained within the non-residential forested zone. The 

area above 3.8 μSv/h is 14.2 km2, 97.8% of which is in the forested area.

Fig. 8. Predicted air dose rate in 2026 based on the integrated map. The thin black contour lines are 

the threshold of 3.8 μSv/h. The thick black lines are different zones within the evacuation designated 

area.

The effectiveness of remediation in the forested region has been debated 

since the accident, since the soil, plant and/or litter removal leads to 

significant ecological disturbance (Ayabe et al., 2017). Globally, there has 

been a paradigm shift in environmental remediation from an approach of 



intense soil removal and treatment to one of passive remediation or natural 

attenuation (Ellis and Hadley, 2009). Such sustainable remediation 

considers net environmental impacts including ecological disturbances, 

waste generation and energy usage. Also, it promotes longer institutional 

control with alternative end-use of the restricted land. Our prediction – that 

contamination will be limited within the non-residential forested zone in 10 

years – could have an impact on decontamination planning in the sustainable

remediation framework. For example, focusing decontamination in the 

residential areas would be more effective for the residents' return while 

avoiding ecological disturbances in forested regions and reducing cost and 

waste.

4. Conclusion

In this study, we characterized the regional-scale changes in the air dose 

rates within the evacuation designated area around the Fukushima Dai-ichi 

Nuclear Power Plant. We first applied the Bayesian data integration approach

to create the integrated maps of air dose rates in 2014, 2015 and 2016, 

based on multi-type multiscale datasets available in the region. We 

quantified the ecological half-life and dose-rate reduction depending on land-

use types, and then coupled the integrated map with the data-driven 

predictive model to predict the future radiation air dose rates with increased 

accuracy.

This was the second demonstration of our Bayesian data-integration 

approach developed by Wainwright et al. (2017) in a higher-dose region and 

in the larger spatial scale. The results have again shown that the proposed 

method was effective to integrate multiscale, multi-type dose-rate 

measurements, and also to create the high-resolution air dose rates over the

large spatial extent. The validation has confirmed a consistent performance 

of this method over these three years. Integrated maps captured more 

detailed spatial heterogeneity than the regional airborne survey data, and 

corrected a significant positive bias in the airborne survey.

The integrated maps enable us to visualize the temporal changes of air-dose 

rates in the regional scale. The dose rate reduction was computed based on 

these integrated maps, and the reduction was shown to be smaller in the 

forested region than the other land-use types, which is consistent with 

previous studies (Kinase et al., 2014; Saito, 2016). The integrated maps were



particularly powerful in identifying anthropologic effects such as the re-

opening of roads and effects of decontamination. In addition, the predictive 

modeling results showed that by 2026, the air dose rates would continue to 

decrease, and the area above 3.8 μSv/h would be almost fully contained 

within the non-residential forested zone.
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