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Abstract

A Bayesian hierarchical model is developed for count data with spatial and temporal correlations 

as well as excessive zeros, uneven sampling intensities, and inference on missing spots. Our 

contribution is to develop a model on zero-inflated count data that provides flexibility in modeling 

spatial patterns in a dynamic manner and also improves the computational efficiency via 

dimension reduction. The proposed methodology is of particular importance for studying species 

presence and abundance in the field of ecological sciences. The proposed model is employed in 

the analysis of the survey data by the Northeast Fisheries Sciences Center (NEFSC) for estimation 

and prediction of the Atlantic cod in the Gulf of Maine - Georges Bank region. Model 

comparisons based on the deviance information criterion and the log predictive score show the 

improvement by the proposed spatial-temporal model.

Keywords

Bayesian hierarchical modeling; deviance information criterion; log predictive score; spatial 
dynamic modeling; zero-inflated Poisson

1. Introduction

An ecological survey often involves a collection of counts of individuals in one or more 

species over a study region across years. The intention of the survey is to estimate and 

predict the evolution of species distribution over the region. However, the spatial coverage is 

usually sparse and the survey locations are scattered throughout the study region and vary 

from year to year. Thus, the survey locations are rarely repeated frequently across years. 

Models including spatial and temporal components are of great importance in making 

inference on the species distribution using the field survey data.

Another unique characteristic of ecological count data is the interpretation of a zero count at 

a given time and location. A zero count may indicate that the species is truly absent at the 

given location, or it may be a result of incomplete survey coverage and imperfect detection. 
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The zero-inflated Poisson (ZIP) model is a natural choice in modeling such count data. A 

mixture of Bernoulli and Poisson processes fits this scenario nicely, in which the Bernoulli 

process captures the true presence of the species while the Poisson process accounts for the 

abundance of the species when it is present. The ZIP model has been considered in many 

applications in the literature. Agarwal, Gelfand, and Citron-Pousty (2002) applied the ZIP 

model to fit isopod nest burrows data in which a spatial pattern was modeled in the Poisson 

process. Fei and Rathbun (2006) used a ZIP model in an oak regeneration study, modeled 

the spatial correlations in the Bernoulli process, and assumed the Poisson processes were 

independent across locations.

There is a rich literature on spatial-temporal modeling of zero-inflated count data. Wikle and 

Anderson (2003) applied the ZIP model using the Bayesian hierarchical spatial-temporal 

approach in the analysis of the 1953-1995 U.S. tornado report counts data. They assumed 

spatially varying temporal trend and ENSO effect along with spatially correlated random 

processes. Fernandes, Schmidt, and Migon (2009) discussed the zero-inflated spatial–

temporal processes for continuous non-negative values and count data with point-referenced 

or areal spatial structure. They assumed the random process in both the Bernoulli and 

Poisson regression models as spatially correlated but independent across time. In both 

studies, the temporal pattern is modeled by the temporal covariates instead of random 

processes. Ver Hoef and Jansen (2007) developed ZIP and hurdle models with space-time 

errors to investigate haul-out patterns of harbor seals on glacial ice. They assumed that the 

spatial and temporal random effects are additive.

There are at least two aspects that need further investigation for spatial-temporal modeling 

of zero-inflated count data. The first is about less restrictive assumptions on the spatial-

temporal correlation structure. Different structures on spatial-temporal random processes 

have been proposed for modeling counts data (Zhuang and Cressie (2012)). However, most 

of the spatial-temporal models for zero-inflated count data either relied on temporal or 

spatial-temporal covariates to model the dynamic evolution, or assumed that the spatial-

temporal random processes are not only separable but also additive, which may not be 

desirable (Banerjee, Carlin, and Gelfand (2004)). Given the complexity of the ecological 

system, it is common that some influential temporal or spatial-temporal covariates may not 

be observed or available. Thus, it is more desirable to include both spatial and temporal 

random effects to systematically account for the unexplained spatial-temporal variations. 

The second aspect is about more scalable modeling of massive ecological data. Ecological 

data can be “big” both spatially and temporally. The proposed model is more 

computationally efficient than for existing models. Although the dimension reduction 

technique we use has been developed in the literature, its application has not been fully 

investigated for modeling and analyzing large ecological count data with more relaxed 

assumptions on the spatial-temporal correlation structure.

In the current study, we develop a model for zero-inflated count data that provides flexibility 

in modeling spatial patterns in a dynamic manner and also improves the computational 

efficiency via dimension reduction. Salazar et al. (2011) studied temperature data from a 

group of regional climate models using the spatial dynamic factor model approach and the 

spatial loading matrix was constructed based on the Gaussian predictive process approach of 
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Banerjee et al. (2008). Built on their work, which focused solely on Gaussian data, we 

extend this approach to non-Gaussian zero-inflated count data and propose a hierarchial 

spatial-temporal ZIP model. More generally, the proposed methodology offers a modeling 

framework that is particularly suitable and computationally scalable to large ecological 

count data.

The rest of the paper is organized as follows. In Section 2, we present the detailed 

development of the proposed Bayesian spatial-temporal model. In Section 3, we discuss 

prior specification, Bayesian computation, and model comparison criteria. A detailed 

analysis of the Atlantic cod data is carried out in Section 4. Along with the proposed model, 

a sequence of models have been tested with different specifications on the spatial and 

temporal random errors. Models are compared using the deviance information criterion 

(DIC) and the log predictive score. We conclude the paper with a brief discussion on 

potential further improvements of the proposed model and future work in Section 5.

2. The Model

Suppose count data yt,i are collected from N uniform grid locations in the area of interest 

over T survey years. Let Et,i be the binary indicator of whether the species of interest is truly 

present at grid i in year t, i = 1,…,N and t = 1,…,T. The presence status is unobservable if yt,i 

= 0, and may be influenced by a rich collection of environmental variables. The data model 

is then usually specified as Prob(Yt,i = 0∣Et,i) = 1 if Et,i = 0 and Prob(Yt,i = yt,i∣Et,i) = 

Poisson(yt,i∣λ t,i) if Et,i = 1, where Poisson(yt,i|λt,i) is the probability mass function of a 

Poisson random variable Yt,i with E(Yt,i) = λt,i, Et,i = 1 with probability pt,i and Et,i = 0 with 

probability 1 − pt,i. It is assumed that, conditioned on pt,i, the Et,i’s are independent 

Bernoulli random variables with E(Et,i) = pt,i. Given Et,i = 1, the Yt,i’s are conditionally 

independent.

The process models on pt,i and λt,i are given in the framework of the generalized linear 

mixed model as  (binary part) and  (count part), 

where g is the link function for the binary regression, xt,i and x̃t,i are the vectors of 

covariates, which may be spatially and temporally related, βt,i and αt,i are the vectors of the 

corresponding regression coefficients, and wt,i and w̃t,i are the random components.

Models for the count data differ in their specifications on the regression coefficients βt,i and 

αt,i and the random components wt,i and w̃t,i. Some studies have considered spatial random 

components in either the binary part (Fei and Rathbun (2006)) or the count part (Agarwal, 

Gelfand, and Citron-Pousty (2002)). Spatial-temporal models have also been developed to 

accommodate the inherent spatial and temporal nature of the data. Wikle and Anderson 

(2003) included spatially varying coefficients on the year index and yearly ENSO effect 

based on previous evidence. They assumed spatially and temporally independent random 

errors wt,i and temporally independent and spatially correlated errors w̃t,i. Similarly, in the 

work of Fernandes, Schmidt, and Migon (2009), temporally independent spatial random 

errors were introduced in the count part. Instead of using the temporal random errors, they 

modeled the temporal dynamics by including indicators of lag variables in xt,i and x̃t,i. The 

regression coefficients βt,i and αt,i were temporally and spatially invariant. The model of Ver 
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Hoef and Jansen (2007) included spatial and temporal random errors in both the binary part 

and the count part. The spatial and temporal processes were assumed to be additive and 

independent from each other, wt,i = e1,t + e2,i, where e1,t is specified by a first-order 

autocorrelation process and e2,i by a conditional autoregressive (CAR) model. The two 

random components e1,t and e2,i were independent from each other. Similar structures were 

assumed on wt̃,i. This additive assumption may not be appropriate when the spatial 

correlation is likely to change over time.

Our proposed model is constructed with more relaxed assumptions on the spatial-temporal 

random errors that also allows for efficient dimension reduction. Assume that there exists a 

latent process, Zt = (Zt,1,…, Zt,N)′ across the N grids in year t, assumed to be independent 

across years. We assume that the Zt’s are temporally independent in the belief that the 

probability of presence or absence, unlike abundance, is relatively stable over time. In 

applications where the probability in the binary part is likely to be temporally correlated, a 

dynamic pattern in Zt can be modeled as in Ver Hoef and Jansen (2007). By including the 

latent process, the absence of a species is generated corresponding to the cases where the 

latent variable falls below a threshold (Albert and Chib (1993)). Without loss of generality, 

the threshold is set at 0, Et,i = 1 if Zt,i > 0 and Et,i = 0 if Zt,i ≤ 0. Thus the sign of the latent 

random variable Zt,i indicates the true presence or absence status of the species. The 

distribution of the latent variable may depend on certain observable and unobservable 

environmental factors. Let X = (x1,…, xN)′ be the N ×p covariate matrix including an 

intercept. Then, we take , where β is a p×1 vector of regression coefficients, 

and Ωt = (ωt,1,…,ωt,N ) is used to incorporate the unobservable and spatially correlated 

environmental factors that influence the presence of the species in year t. We employ the 

CAR model specified in Cressie (1993): Ωt ~ MVN(0, σ2(I − ϕW)−1), where MVN(μ, Σ) is 

a multivariate normal distribution with a mean vector μ and a variance-covariance matrix Σ, 

σ2 is the spatial nugget parameter, ϕ is the spatial range parameter, and W is the adjacency 

matrix. The diagonal elements of W are wii = 0, while the off-diagonal elements wil = 1 if 

grids i and l are neighbors and wil = 0 if they are not (i ≠ l). The neighborhoods of two grids 

are defined according to a second-order neighbor definition (Banerjee, Carlin, and Gelfand 

(2004)). To make (I − ϕW)−1 nonsingular, we assume ϕ ∈ (1/θ(1), 1/θ (N)), where θ (1) < θ (2) 

< … < θ (N) are the ordered eigenvalues of W. To ensure identifiability, σ2 is set to 1 (De 

Oliveira (2000); Fei and Rathbun (2006)). Thus, the latent process Zt is the multivariate 

normal MVN(X′β, (I − ϕW)−1).

The binary part of the model under a Probit link function is, 

, where Φ−1 (·) is the inverse of the 

cumulative standard normal distribution function. As Yt,i is the count at grid i in year t and 

Yt,i ~ Poisson (λt,i|Et,i = 1), the count part of the model is

(2.1)

where the basis function D is constructed using the predictive process of Banerjee et al. 

(2008): D = [D(s)]i = V(s)′H−1, , , 
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 are the selected knots in the surveyed area, and v(·; ·) is a valid correlation 

function.

In the count part of ZIP model, the spatial correlation is only estimated using the data from 

grids with Zt,i > 0. The CAR model as specified in the binary part can lead to one or a group 

of isolated grids. These grids do not have any neighborhoods and thus are assumed spatially 

independent from the rest of the region. We find this unsatisfactory. The previous spatial-

temporal ZIP models used either a continuous correlation function (Wikle and Anderson 

(2003); Fernandes, Schmidt, and Migon (2009)) or a CAR model with an arbitrary cutoff 

distance to define neighborhood (Ver Hoef and Jansen (2007)) in the count part. We propose 

to use the Matérn correlation function specified as 

, where Kϕ2 is a modified 

Bessel function of the second kind of order ϕ2, d(s, s′) is the Euclidean distance between two 

locations s and s′, ϕ1 is the range parameter which measures how fast the correlation decays 

with distance, and ϕ2 is the smoothness parameter that measures the degree of smoothness 

of the spatial process. The higher the value of ϕ2, the smoother the spatial process would be. 

A continuous correlation structure makes it possible to investigate “hot spots” or “cold 

spots” effects.

The evolution of γt is specified as γt = ργt−1 + vt, where vt ~ N (0, H) and −1 < ρ < 1. An 

interesting result was derived based on the spectral decomposition of H (Salazar et al. 

(2011)): H = τ2PΛP, where P is an orthogonal matrix and Λ is a diagonal matrix with the 

eigenvalues of H/τ2 as the diagonal elements. Letting γt= Pξt for all t, we have

(2.2)

where Ψ (s) = D(s)P = V(s)′H−1P and ξt = ρξt−1 + υt with υt ~ N (0, τ2Λ) and ξ0 ~ N (m0, 

C0). As a result, the temporal changes in spatial patterns can be modeled as M independent 

processes ξ̃
i = {ξ1,i, ξ2,i,…, ξt,i,…,ξT,i}, i = 1,…, M.

The appropriate temporal correlation structure in γt (also ξt) can be explored using 

autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. Given the 

sparsity of our data in each individual grid across years, it is impossible to examine the 

temporal sequence of counts at a given location. We investigated, for example, the average 

number of Atlantic cod caught in a single tow in the Gulf of Maine - Georges Bank region 

during 1970-2008 (See Figure S2 in Supplementary Material). The PACF plot suggests that 

the first order autocorrelation may exist in the temporal sequence of mean count of fish 

caught in a tow averaged over all the locations. Thus, we chose to use the first-order 

polynomial model structure. This type of dynamic model has been commonly used in 

applications (West and Harrison (1997)).

Let Y = (y1,1,…, y1,N,…, yT,1,…, yT,N)′ and . Then the likelihood 

function of (Y, Z) is given by
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where . The data augmentation method of introducing the 

auxiliary variables Z in the model avoids high dimensional integral challenges and 

facilitates efficient Markov chain Monte Carlo (MCMC) computation (Chib and Greenberg 

(1998); Chen, Dey, and Shao (1999); Pettitt, Weir, and Hart (2002); Fei and Rathbun 

(2006)).

3. Prior Specification, Posterior Computation and Model Assessment

In the Matérn correlation function, the smoothness parameter ϕ2 is typically assigned a 

uniform prior U(0, 2) because the data cannot inform about the smoothness in the higher 

order (Finley et al. (2009)). We assume the parameter ϕ2 = 1 to avoid the weak 

identification problem The subclass of the Matérn correlation function with ϕ2 = 1 was 

introduced by Whittle (1954) as the “elementary” model for two-dimensional fields. It has 

been commonly used in hydrology (Handcock and Stein (1993)).

The parameters that need to be estimated in the proposed model include β, α, ϕ,τ2, ϕ1, and ρ. 

The priors for these parameters are specified as follows: β ~ N(0, gβ(X′X)−1), where gβ = 1, 

000; α ~ N(0, gαI), where gα = 1, 000; ϕ ~ U(ϕmin, ϕmax), which ensures the positive 

definiteness of the variance matrix (I − ϕW)−1; τ2 ~ IG(c, d), where c = 2 and d = 1; ϕ1 ~ 

IG(2, h), where h = max(d(s, s′)/(−2 log(0.05)), and ρ ~ U(−1, 1). The hyper-parameters are 

chosen to ensure that relatively noninformative priors are used in Bayesian estimation.

As discussed in West and Harrison (1997), the initial prior on ξ0 contains a concrete 

interpretation of the final state vector for the historical data if it is a summary of information 

from the past. When there is no such information and interpretation, the model may be 

equivalently initialized by specifying a normal prior for the first state vector. We adopt the 

second approach here since there is no prior information available on ξ0 in our application. 

For the initial prior ξ1 ~ N (m1, C1), the hyperparameters m1 and C1 are specified as a M ×1 

vector 0 and an M × M diagonal covariance matrix 106·I.

The posterior estimates of the parameters are computed via MCMC sampling. The detailed 

development of the MCMC sampling algorithm is given in Section S1 in Supplementary 

Material. The convergence of MCMC chains is tested using the R boa package (Smith 

(2007)).

The deviance information criterion (DIC) is considered for model comparison. Using the 

methods in Hadfield (2010), the parameters in the deviance function include the Bernoulli 

probabilities and the Poisson means (pt,i, λt,i) for i = 1,…, N and t = 1,…, T. The deviance 
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function is negative two times the logarithm of the likelihood, 

.

Further model comparison and evaluation can be performed based on the predictive model 

assessment (Czado, Gneiting, and Held (2009)) for dynamic models. In particular, the 

logarithm predictive scores are used in the comparison of spatial-temporal models. These 

scores are calculated using the methods proposed by (Abanto-Valle and Dey (2014)) via the 

particle learning algorithm. This utilizes a resample-propagate scheme together with a 

particle set that includes state-sufficient statistics in the estimation of both static and state 

parameters in the dynamic linear model (Carvalho et al. (2010)). The details of the particle 

learning algorithm and the log predictive score are discussed in Section S2 in Supplementary 

Material.

4. Application: Abundance of Atlantic Cod in the Gulf of Maine -Georges 

Bank Region

In this study, we are particularly interested in the Atlantic cod population in the Gulf of 

Maine - Georges Bank region. The Atlantic cod (Gadus morhua) is an important species in 

many of the world’s ocean systems from an economic, ecological, and cultural perspective. 

It is a mainstay of the commercial fishery in New England, and its history can be traced 

back to the 1600s. In fact, fishing for the Atlantic cod was such a key industry for much of 

coastal Massachusetts that a carving of a codfish named the Sacred Cod is hung in the 

House of Representatives’ chamber of the Massachusetts State House. The cod also plays an 

important role in the ocean ecosystems, as mentioned in Link et al. (2009), by the 

interactions with its prey, predators, and competitors. The cod population experienced 

dramatic changes with a collapse in the 1990s. It has not been fully recovered even with the 

cessation of fishing. The cod species is labeled VU (vulnerable) on the International Union 

for Conservation of Nature Red List of Threatened Species.

The Gulf of Maine - Georges Bank region has very complex geology and oceanology. It is 

one of the most varied and productive marine ecosystems in the world. The cods in these 

areas are relatively residential and no apparent intensive migration patterns are observed 

(O’Brien et al. (2005)). A better understanding of the cod’s population distribution would 

help management of the marine protected areas in the region.

4.1. The data

We use the survey data collected by the Northeast Fisheries Sciences Center (NEFSC). 

NEFSC has been carrying out a standardized research survey since Fall, 1963. Nowadays 

the survey is on a regular basis four times a year for spring, summer, fall and winter seasons. 

The survey area ranges from the Gulf of Maine to Cape Hatteras, NC. Approximately 

350-400 stations are surveyed during each survey season, with locations selected by a 

stratified random sampling design to assure that the number of stations allocated to strata are 

roughly in proportion to area. Samples are collected in depths of 27 meters to 350 meters 

with 4 depth zones. Data recorded on site include the species caught, weight, counts of fish, 

surface and bottom water temperature, bottom depth of the tow, along with many other 
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variables. Previous studies on this survey data have been conducted mainly based on the 

aggregated data either across time or space (Drinkwater (2005); Fogarty et al. (2008); Kuo, 

Auster, and Parent (2010)). The current study is the first to apply a Bayesian spatial-

temporal model in understanding the presence and abundance of Atlantic cods stocks.

The study area is divided into 1,325 (N = 1, 325) 10 km by 10 km grids. The survey data 

used here were collected in the fall of 1970-2008 (T = 39). The ocean geographical 

characteristics included in the model are the average depth of the ocean and the depth 

standard deviation (see Figure S1) that show wide variation in the area. The latitude and the 

sampling year are considered in the model. All the covariates are standardized by their 

corresponding means and standard deviations to improve MCMC convergence. The average 

depth is originally measured with respect to the sea level and the smaller the value (which is 

negative), the deeper the sea. To ease interpretation, we use its positive value and the larger 

the value of the average depth (which is now positive), the deeper the sea.

There are 4,863 tows in the study region 1970-2008, out of which 2,746 tows did not have 

Atlantic cod (56.47% zeros). Zero counts may not be a true indicator of the absence of the 

fish at a given grid. They may be a result of incomplete coverage and imperfect detection.

The temporal pattern can be roughly examined in Figure S2, which shows the average 

number of fish caught in a tow during 1970-2008. An examination of this sequence of 

counts suggests a first-order autocorrelation model.

The approximate spatial pattern is shown by aggregating counts at each grid over years. 

Figure S3(a) shows the average number of fish caught in each tow at each grid through 

1970-2008. Based on this measure, Atlantic cod are relatively more abundant in the 

northeast, west and to the north of the Georges Bank in the study area. Figure S3(b) shows 

the standard deviation of the number of fish caught during the study period. Clearly, the 

standard deviation increases as the average number of fish caught increases. Also, there are 

a few locations that were surveyed only once. Statistical modeling allows information 

borrowing from neighborhood locations for inference on those locations. A tow at Grid 88 

had 350 fish caught in 2002, and at most 1 caught in all other years. In the likelihood 

calculation, the Poisson probability of this observation is zero. It was treated as an outlier 

and set to 1.

4.2. The results

Besides the proposed model, a sequence of existing ZIP models have been fitted with 

different model specifications on spatial and temporal random errors. Model comparisons 

show that the incorporation of spatial-temporal random processes benefits the goodness of 

fit in modeling the data.

A simple zero-inflated Poisson model is first fitted for comparison without considering the 

spatial and temporal correlations (Model 1). A total of 4,863 tows sampled at 1,222 grids 

were used in estimating the regression coefficients in the binary and count parts. The 

posterior estimates of the model parameters and the DIC values are reported in Table 1 

under the column for Model 1. Figure S4(a) and S4(b) shows the estimated posterior mean 
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count at each grid and the standard deviation of the estimate. The standard deviations range 

from 0 to 1.54. Out of 1,222 grids, 1,217 grids have standard deviations less than 0.6. Thus, 

in Figure S4(b), the standard deviation is capped at 0.7 in the figure for legibility. The blank 

grids are those that were not surveyed during the study period. There are consistently over- 

and under-estimated areas as shown in the residual plots (Figure S4(c)).

Model 2 includes the survey year as a covariate in the Poisson part of the model to capture 

the general temporal trend. As shown in Table 1, the expected count of fish caught deceases 

between year 1970 and 2008. Also, the inclusion of the time effect in the mean decreases the 

DIC value, which implies a better fit to the data.

Starting from Model 3, a CAR spatial correlation structure was assumed for the latent 

process Zt,i. The DIC value decreases from 41,891.21 to 40,954.23, implying that it 

improves the goodness of fit by modeling the spatial correlation in the probability of 

presence. As noted in Reich, Hodges, and Zadnik (2006) and Hughes and Haran (2013), 

there is a potential confounding problem for the spatial generalized linear mixed model with 

CAR random effects, when the fixed effects include spatially related covariates. The 

examination of the posterior estimates of the regression coefficients in the binary part in 

Models 1–3 indicates that confounding is not a problem in this study. When the inflation of 

variance and bias occur, the methods proposed in Hughes and Haran (2013) can be 

employed to deal with the confounding problem for large ecological data.

Models 4–7 include the spatial correlation in the Poisson count part, with the temporal 

correlation modeled in Model 5 and Model 7. In modeling the spatial correlation, M = 16 

and 32 knots were selected (see Figure S5). The posterior estimates are shown in Table 2. 

The smaller DIC values show that it improves model fitting by modeling spatial and 

temporal correlations in the counts of fish, and that it provides better inference from the 

model.

To further check how the spatial dynamic model can improve statistical inference, Figure 1 

provides a snapshot of the survey data in year 1978, 1988, 1998, and 2008. The maximum 

numbers of fish caught in these four years were 132, 115, 35, and 201, respectively. The 

count of fish caught was capped at 40 in the figure.

Figures 2 and S6 show the posterior mean counts of fish at each grid and the standard 

deviations over the above 4 years estimated under Model 3, Model 6 and Model 7. The 

mean count of the fish is pt,iλt,i and the corresponding variance is . 

The posterior mean count plot shows that the distribution of the Atlantic cods is related to 

the ocean geographic characteristics (mean depth and the standard deviation), while there is 

an obvious decreasing trend in the abundance of the fish. The results under Model 3 and 

Model 6 suggest a similar spatial pattern of the fish abundance across years except for the 

overall decreasing trend (the results under Model 4 are similar and thus are omitted here). In 

addition to the temporal correlation, spatial patterns under Model 7 were allowed to be 

different from year to year (the results from Model 5 are similar). This flexibility provides a 

much better fit of the model (the DIC value reduces from 34,165.00 under Model 6 to 

20,769.90 under Model 7). The results under Model 7 indicate that, despite the overall 
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decreasing trend, some areas may have a significant increase in the abundance (such as the 

west area in year 2008).

The comparisons between Models 4 and 6 and between Models 5 and 7 show that the 

models with the 32 knots fit the data better than those with the 16 knots. The values of the 

log predictive score criterion are -5,968.998 under Model 5 and -5,760.557 under Model 7. 

These results indicate that the 32-knot model also has a better one-year ahead predictive 

performance. The models with different numbers of knots (i.e., 16, 32, 56, 64, 150) have 

been examined. The results suggest that the model performance does not necessarily always 

improve with a larger number of knots. More importantly, the computation stability 

becomes problematic when the number of knots becomes large. The determination of the 

optimal number of knots is challenging, and under investigation currently.

5. Discussion

The selection of the number and locations of knots is important in modeling the spatial data. 

The results discussed in Section 4 indicate that it has an impact on the model inference. We 

chose to use evenly spaced knots with arbitrarily selected locations in this study. This may 

have missed some spatial structure that exists with a distance smaller than the distance 

between two knots. It is possible that the selected locations do not provide the optimal 

approximation of the parent process. To further improve the spatial-temporal modeling, the 

selection of the optimal number and their optimal locations of knots need to be investigated. 

Finley et al. (2009) designed an algorithm to achieve approximately optimal spatial 

placement of knots by minimizing spatially averaged prediction variance. It may also be 

possible to estimate the number and locations of knots using the reversible jump MCMC 

algorithm (Lopes, Gamerman, and Salazar (2011)).

The NEFSC survey collects data on multiple species simultaneously. It provides an 

opportunity to further investigate how the presence and abundance of different species are 

correlated. Multivariate spatial-temporal modeling is expected to be helpful in studying this 

aspect of the ecological system. It is possible to extend the proposed methodology to model 

multivariate zero-inflated count data. However, such an extension is not straightforward, 

requiring a much more in-depth investigation from both theoretical and computational 

perspectives.

Discussion on other potential further improvements can be found in Section S3 in 

Supplementary Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A 40-year snapshot of survey locations, presence and abundance for the Atlantic cods. 

Upper panel: surveyed grids with fish caught (solid circle (1)), surveyed grids without fish 

caught (empty circle (0)) and grids that were not surveyed (dot (-1)). Lower panel: counts of 

fish caught in the surveyed grids.
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Figure 2. 
The logarithm of posterior mean count from Model 3, Model 6 (32 knots spatial), Model 7 

(32 knots spatial-temporal) at each grid.
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