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Abstract 

 

Synthesis, Characterization, and Reactivity of "Masked" Terminal Nickel Sulfides 

 

by 

 

Nathaniel J. Hartmann 

 

Treatment of the Ni(II) chloride complexes, [L
R
Ni

II
Cl] (L

R
 = {(2,6-

i
Pr2C6H3)NC(R)}2CH, R = Me, 

t
Bu) with 1 equiv of KSCPh3 affords the Ni(II) 

triphenylmethylthiolate complexes, [L
R
Ni

II
(SCPh3)], in good yields. The reaction of 

[L
R
Ni

II
(SCPh3)] with 2 equiv of KC8 and L (L = 18-crown-6 or 2,2,2-cryptand) affords both 

[K(L)][L
R
Ni

II
(S)] and [K(L)][CPh3] via reductive deprotection of the triphenylmethyl group. 

Treatment of [K(18-crown-6)][L
tBu

Ni
II
(S)] with Ph2SiH2 affords a Ni(I) SH

-
 complex, 

[K(18-crown-6)][L
tBu

Ni
I
(SH)]. Treatment of [K(18-crown-6)][L

tBu
Ni

II
(S)] with Me3SiOTf 

affords a Ni(II) trimethylsilanethiolato complex [L
tBu

Ni
II
(SSiMe3)]. 

Treatment of [L
tBu

Ni
II
(SCPh3)] with 2 equiv of decamethylcobaltocene (Cp*2Co) 

generates a transient Ni
II
 sulfide complex, [Cp*2Co][L

tBu
Ni

II
(S)]. A subsequent 

deprotonation of [Cp*2Co]
+
 by [CPh3]

-
 gives the Co

I
 fulvenyl complex, 

[Cp*Co(C5Me4CH2)], which couples with the sulfide ligand in [Cp*2Co][L
tBu

Ni
II
(S)] to 

form a Ni(I) cobaltocenium thiolate complex, [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)], concomitant 

with the reduction of the cobaltocenium cation. 



 

 viii 

Treatment of [K(18-crown-6)][L
tBu

Ni
II
(S)] with CS2 yields the Ni(II) trithiocarbonate 

complex, [K(18-crown-6)][L
tBu

Ni
II
(S,S:2-CS3)]. Treatment of [K(2,2,2-

cryptand)][L
tBu

Ni
II
(S)] with CS2 generates the double insertion product, a Ni(II) 

trithiocarbonate dithiocarboxylate complex, [K(2,2,2-cryptand)][(S,S:2-CS3)Ni
II
{S,S:2-

CS2(L
tBu

)}]. 

Treatment of [K(18-crown-6)][L
tBu

Ni
II
(S)] with CO affords a Ni(II) carbonyl sulfide 

complex, [K(18-crown-6)][L
tBu

Ni
II
(S,C:η2-SCO]. Treatment of [K(18-crown-6)][L

tBu
Ni

II
(S)] 

with NO yields a nickel nitrosyl complex, [L
tBu

Ni(NO)], and a perthionitrite salt, [K(18-

crown-6)][SSNO].  

Treatment of [K(18-crown-6)][L
tBu

Ni
II
(S)] with N2O yields an unprecedented Ni(II) 

thiohyponitrite complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-SNNO)]. Gentle thermolysis of 

[K(18-crown-6)][L
tBu

Ni
II
(

2
-SNNO)] results in extrusion of N2 and formation of a 

thioperoxide complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)]. Treatment of [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SO)] with CO, forms [K(18-crown-6)][L

tBu
Ni

II
(S)] along with CO2, via O-

atom abstraction. The Ni(II) sulfide then reacts with CO or CO2 to form [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SCO)] and [K(18-crown-6)][L

tBu
Ni(S,O:κ

2
-SCO2)], respectively. The 

thioperoxide complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)], can also react with the newly 

formed CO2 to form a putative monothiopercarbonate complex, [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SOCO2)], which can then transfer an S atom to CO, forming COS and [K(18-

crown-6)][L
tBu

Ni
II
(

2
-CO3)]. 
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1.1 Metal-Ligand Multiple Bonds and The Oxo Wall 

Transition metal complexes containing oxo (O
2-), 

sulfide (S
2-

), imido (NR
2-

), nitrido (N
3-

), 

and carbene (CR2
2-

) ligands play important roles throughout inorganic chemistry.
1
 For 

example, metal oxos have applications for both H-atom abstraction and O-atom transfer 

reactions
2–5

 and have been shown to be a key intermediate in the catalytic cycle of 

cytochrome P450.
6
 While metal sulfides are known to serve both structural

7–11
 and 

catalytic
12,13

 roles in the active sites of biological enzymes such as NiFe and MoCu CO 

dehydrogenases (CODH), the “orange protein complex”, and N2O reductase (N2OR); and 

are likely intermediates in heterogeneous hydrodesulfurization catalysis.
14–16

  Finally, metal 

nitridos and imidos are thought to be important intermediates in the critical N2 fixation 

processes carried out biologically by the iron-molybdenum cofactor (FeMoco) nitrogenase 

enzyme and industrially using the Haber-Bosch process.
17–23

 

Complexes with metal-ligand (M=L) multiple bonds are numerous for the early and mid-

transition metals (groups 4-8).
24–28

 However, only a small handful of late transition metal 

(groups 9, 10, and 11) complexes containing M=L multiple bonds have been isolated. The 

small number of these species can be attributed to the electronic and structural requirements 

for the formation of stabilizing M=L multiple bonds. The ligand field theory behind the 

requirements for the formation of M=L multiple bonds was first put forth by Ballhausen and 

Gray in 1963, and predicts the presence of a so called "oxo wall" between groups 8 and 9 on 

the periodic table (Figure 1.1).
29,30
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Figure 1.1. Effects of d-electron count on the stability of M=O bonds in tetragonal 

complexes   

According to this theory, the ability of a tetragonal (C4v) transition metal complex to 

form an M-O double bond is dependent upon the occupancy of the of the M=O π* orbitals. 

As represented in Figure 1.1, the d
4 

[Fe
IV

(L)5(O)] system would be predicted to contain a 

stable Fe=O double bond, while the analogous d
5 

[Co
IV

(L)5(O)] system is predicted to be 

unstable due to the population of the π* orbitals with an additional electron. However, since 

the oxo wall theory is formulated for tetragonal systems, it can be circumvented by reducing 

the coordination number of the metal center. Which makes additional d orbitals available for 

M=O multiple bonding.    

There are two examples of late metal terminal oxos, [Ir
V
(O)(Mes)3] (Mes = 2,4,6-

Me3C6H2) and [Pt
IV

(O)(PCN)][BF4] (PCN = C6H3[CH2P(tBu)2](CH2CH2NMe2)), whose 



 

 5 

stability can be rationalized by this mechanism, specifically by reduction of metal 

coordination number from 6 to 4.
31,32

 A proposed d-orbital splitting diagram for 

[Ir
V
(O)(Mes)3] is presented in Figure 1.2. Notably, the change from tetragonal (C4v) to 

trigonal (C3v) symmetry results in a reordering of the d-orbitals such that an additional non-

bonding orbital becomes lower in energy than the M=O π* orbitals.
33

 Consequently, this 

complex has only 2 π* electrons, resulting in the presence of a stable Ir=O double bond. As 

noted above, this complex is not in violation of the oxo wall. Moreover, it illustrates the 

importance of reduced metal coordination number for the synthesis of late transition M=L 

multiple bonds. 

 

Figure 1.2. Proposed electronic structure of [Ir
V
(O)(Mes)3]    

Building off of the initial success of this strategy for the synthesis of four-coordinate Ir 

oxo and imido complexes in the late '80s and early '90s,
31,34,35

 there has been a notable 

growth in the number of late transition metal complexes with terminal M=L multiple bonds. 

In addition to the two oxo complexes mentioned above,
31,32

 terminal nitride,
36–38

 imido,
39−56

 

phosphido (PR
2-

),
57–62

 and carbene
63–66

 complexes have also been reported (Figure 1.3).
62,67

 

Like [Ir
V
(O)(Mes)3] and [Pt

IV
(O)(PCN)][BF4], all of these complexes feature reduced metal 

coordination numbers (2-5), that allow for the formation of stable M=L multiple bonds.  
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Figure 1.3. Examples of isolated late transition metal complexes with M=L multiple bonds. 

A, Ref. 39; B, Ref. 68; C, Ref. 50; D, Ref. 37; E, Ref. 58; F, Ref. 57, G, Ref. 64, H, Ref 31    

1.2 Synthesis and Reactivity of Late Metal-Ligand Multiple Bond Containing 

Complexes 

A growing understanding of the steric and electronic requirements for the synthesis of 

late transition metal complexes with M=L multiple bonds has led to the isolation a variety of 

these species. Representative examples of reported synthetic procedures can be found in 

Scheme 1.1. Late metal oxo complexes have been prepared by reactions with O2 or oxo 
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transfer regents such as Me3NO and dimethyloxirane (Scheme 1.1 A). The two reported 

terminal Ir nitride complexes were prepared via elimination of N2 from the corresponding Ir 

azido (N3
-
) species (Scheme 1.1 B). Terminal imido complexes are most commonly 

prepared via a 2 electron nitrene group transfer using aryl or alkyl azides (RN3) (Scheme 1.1 

C). Late metal imidos and phosphidos have also been successfully synthesized via both H-

atom abstraction or deprotonation of metal amide (NHR
-
) and phosphide (PHR

-
) species, 

respectively (Scheme 1.1 D-E). While, phosphinidene complexes have been prepared via the 

dehalogenation of a chloroaminophosphido (PClNR2
-
) ligand and via dehydroalogenation of 

primary phosphines (PH2R) (Scheme 1.1 F-G). Finally, terminal carbenes have been isolated 

via N2 elimination from diazoalkanes (N2CR2) (Scheme 1.1 H). This family of complexes is 

highly reactive and they are capable of effecting CO oxidation,
39,41,55,69

 C-H and Si-H bond 

activation,
40,42,44,45,50,51,60,62,70–72

 and [2+2] cycloaddition reactions.
43,46

 Consequently, there is 

much interest in the synthesis of complexes with novel M=L linkages in order to further 

probe the reactivity of these rare species. 
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Scheme 1.1. Synthesis of late transition metal complexes with M=L multiple bonds 

 

In spite of clear advances in the synthesis of late metal complexes with M=L multiple 

bonds, the number of terminal chalcogenide (O, S, Se) complexes remains very low  with 

no examples among first row metals (Co, Ni, Cu) − highlighting the need for the 

development of new approaches for the synthesis of these elusive species. 

In this regard, one of the key challenges to overcome in the synthesis of late metal 

terminal chalcogenides is their tendency to form bridging bimetallic species. For example, 

Jones and co-workers reported that elimination of C6H6 from [(dippe)Ni
II
(SH)(C6H5)] (dippe 
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= 1,2-bis(diisoproylphosphino)ethane) under mild heating resulted in the transient formation 

of a nickel terminal sulfide, [(dippe)Ni
II
(S)]. However, the nickel sulfide complex rapidly 

dimerizes to form a bridged sulfide species, [{(dippe)Ni
II
}2(μ

2
-S)2] (Scheme 1.2).

73
 Similar 

results have been observed with a wide range of different methods and supporting ligand 

systems.
74–77

    

Scheme 1.2. Dimerization of [(dippe)Ni
II
(S)] to form [{(dippe)Ni

II
}2(μ

2
-S)2] 

 

1.3 Reductive Deprotection 

In order to address the above-mentioned challenge for the synthesis of terminal 

chalcogenide complexes, the Hayton group has developed the reductive deprotection 

strategy.
78,79

 This approach makes use of protecting groups, such as triphenylmethyl (trityl), 

that have been developed in the field of synthetic organic chemistry
80

 and applies them to 

the synthesis of terminal chalcogenide ligands. The reductive deprotection protocol involves 

the installation of "protected" oxo or sulfide moieties to the desired metal center followed by 

reductive cleavage of the O/S-protecting group bond to yield the desired terminal oxo or 

sulfide ligand (Scheme 1.3).  

Scheme 1.3. General mechanism for reductive deprotection 
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In addition to disfavoring the formation of dimers, reductive deprotection is also 

advantageous because it does not require a change in the oxidation state of the metal center. 

For example, in the synthesis of the Th
IV

 oxo complex, [K(18-crown-6)][Th
IV

(O)(NR2)3], 

the first step is installation of the "trityl protected oxo" via a salt metathesis with KOCPh3 

and [Th
IV

(I)(NR2)3]. This is followed by the 2 electron reductive cleavage of the O-C trityl 

bond in the presence of 18-crown-6 to yield the desired Th terminal oxo complex, [K(18-

crown-6)][Th
IV

(O)(NR2)3], and the trityl anion, [K(18-crown-6)][CPh3] (Scheme 1.4).
79

  

Scheme 1.4. Synthesis of actinide oxo complexes via reductive deprotection 

 

Notably, Th remains in the +4 oxidation state throughout all stages of the synthesis. In 

contrast other O-and S-atom transfer reagents, this pathway does not require an oxidative 

addition. This makes it well suited to first row transition metals which do not readily 

undergo 2 electron processes.
24

  

1.4 General Remarks 

The overall goal of this research is the application of the reductive deprotection protocol 

towards the synthesis of first-row late transition metal complexes with M=L multiple bonds. 

Chapter 2 describes the synthesis of Ni
II
 "masked" terminal sulfide complexes via the 

reductive deprotection protocol and describes their reactivity with diphenylsilane (Ph2SiH2) 

and trimethylsilyl triflate (Me3SiOTf) in order to probe the nucleophilicity of the sulfide 

ligand. 

Chapter 3 details the reductive deprotection of a nickel tritylthiolate complex with 

decamethylcobaltocene (Cp*2Co), which unexpectedly leads to the generation of a Ni
I
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cobaltocenium thiolate complex. The Ni
I
 complex likely forms via the reaction of a putative 

nickel sulfide with deprotonated decamethylcobaltocenium, (CoCp*(C5Me4=CH2)). These 

results expand the scope of late metal sulfide reactivity.   

Chapter 4 describes the reactions of carbon disulfide (CS2) with the nickel sulfide 

complexes, described in chapter 2, to yield trithiocarbonate ([CS3]
2-

) complexes and expands 

the known reactivity of late metal sulfides. 

Chapter 5 details the reactivity of a "masked" terminal nickel sulfide complex, 

synthesized in chapter 2, with carbon monoxide (CO) and nitric oxide (NO) further 

advancing understanding of the fundamental chemistry of these small molecules with metal 

sulfides. 

Chapter 6 describes the reaction of a nickel sulfide with nitrous oxide (N2O) to yield an 

unprecedented thiohyponitrite ([SN=NO]
2-

) complex. Also detailed is the extrusion of N2 

from SN=NO
2-

 to yield a thioperoxide ([SO]
2-

) complex. The thioperoxide complex reacts 

with carbon monoxide (CO) to yield CO2 and regenerate nickel sulfide. On the whole, this 

work shows a new route to N2O reduction via sulfur based redox chemistry. 

Chapter 7 details efforts to extend the scope of the reductive deprotection reaction to the 

synthesis of other late transition metal (Fe, Co, Ni) complexes with oxo, sulfide, and imido 

ligands. 
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2.1 Introduction 

Metal-ligand multiple bonding in the late metals (groups 9, 10, 11) is relatively rare.
1,2 

This observation  can be rationalized by the “oxo wall” concept,
3
 which postulates that a 

tetragonal complex with a d
5
 configuration (or greater) cannot form stable multiple bonds 

because of occupation of the M=E * orbitals. While no exceptions to the “oxo wall” 

concept are currently known, it can be circumvented by reducing the coordination number at 

the metal center.  For example, two late metal oxos have been reported, namely 

[Ir(O)(Mes)3] (A, Mes = 2,4,6-Me3C6H2) and [Pt(O)(PCN)][BF4] (PCN = 

C6H3[CH2P(tBu)2](CH2CH2NMe2)), and both feature four coordinate geometries.
4,5

 Two 

recently isolated Ir nitride complexes also feature four coordinate geometries.
6,7

 Similarly, a 

handful of isolable cobalt, nickel, and copper nitrenes are known, such as  

[(Me2NN)Co(NAd)] (Me2NN = ({2,6-Me2C6H3)NC(Me)}2CH), [(dtbpe)Ni
II
(N(2,6-

i
Pr2C6H3)] (B, dtbpe = P

t
Bu2CH2CH2P

t
Bu2), [(IPr*)Ni(N(2,6-(Mes)2C6H3)], and 

[{(Me3NN)Cu}2(μ-NAd)] (Me3NN = {(2,4,6-Me3C6H2)NC(Me)}2CH), which also feature 

low coordination numbers (2-4).
8–11

 Also of note are the closely related nickel carbene and 

phosphinidene complexes, [(dtbpe)Ni
II
(E)] (E = CPh2, P[2,6-Mes2C6H3]), reported by 

Hillhouse and co-workers.
12–14

 This class of materials is highly reactive and is capable of 

effecting CO oxidation,
15

 C-H activation,
16–23

 and [2+2] cycloaddition, demonstrating their 

utility for small molecule activation.
24,25
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Figure 2.1. Previously reported complexes containing late metal-ligand multiple bonds. A, 

Ref. 4; B, Ref. 9; C, Ref. 13; D, Ref. 12; E, Ref. 6; F, Ref. 7. 

In contrast to the above-mentioned success with C, O, N, and P-donor multiple bonds, 

attempts to synthesize a stable late metal terminal sulfide have been unsuccessful.  For 

example, Driess and co-workers postulated that reaction of [L
R
Ni

II
(

2
-S2)] (L

R
 = {(2,6-

i
Pr2C6H3)NC(R)}2CH, R = Me) with Ph3P resulted in transient formation of [L

R
Ni

III
(S)], but 

it rapidly dimerizes to form a bridged disulfide complex (Figure 2.2).
26 

Similarly, Jones and 

co-workers reported the transient formation of [(dippe)Ni
II
(S)], which could be trapped by a 

variety of nitrones(Figure 2.2).
27
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Figure 2.2. Previously reported transient nickel sulfides. A, Ref. 26; B, Ref. 27.  

Late metal (Ni and Cu) sulfides are found in a variety of metalloenzyme active sites, 

including the NiFe and MoCu CO dehydrogenases (CODH),
28,29

 the “orange protein 

complex”,
30

  and N2O reductase (N2OR).
31–33

  The sulfide ligands in these enzymes can play 

either a catalytic role, as in the case of MoCu CODH,
29

 or a structural role, as in the case of 

NiFe CODH and N2OR.
31,34 

Not surprisingly, given the role that late metal sulfides play in 

biology, there has been a long standing interest in synthesis of Ni and Cu sulfide model 
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complexes. For example, Tolman and co-workers reported the synthesis of 

[{(Me3tacn)Cu}3(3-
2
,

1
,

1
-S2)]

2+
, 

35,36 
which functions as a N2O reduction catalyst. More 

recently, Mankad and co-workers reported the synthesis of two Cu clusters that feature rare 

examples of the 4-S
2-

 ligand.
37,38

  Despite these successes, it is clear that controlling the 

binding mode of the sulfide ligand, and the nuclearity of the resulting complex, is still a 

synthetic challenge.  Accordingly, the discovery of new methods to deliver a sulfur atom (or 

atoms) to a metal ion would be beneficial to the development of this class of materials. 

The Hayton group has recently reported the synthesis of a Th(IV) sulfide complex, 

[K(18-crown-6)][Th(S)(NR2)3] (R = SiMe3), via reductive removal of the trityl protecting 

group (Scheme 2.1).
39

 In an effort to discern the scope of this ‘reductive deprotection’ 

reaction, I began to explore its applicability to other systems, especially late metal sulfides. 

The research reported herein describes the synthesis of a Ni
II
 "masked" terminal sulfide via 

the ‘reductive deprotection’ protocol and describes its reactivity with diphenylsilane 

(Ph2SiH2) and trimethylsilyl triflate (Me3SiOTf) in order to probe the nucleophilicity of the 

sulfide ligand. 

Scheme 2.1 Reductive deprotection of a thorium tritylthiolate complex  
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2.2 Results and Discussion 

2.2.1 Synthesis and Characterization of [L
Me

Ni
II

(SCPh3)] (2.1) and [L
tBu

Ni
II

(SCPh3)] 

(2.2) 

Addition of 1 equiv of KSCPh3 to [L
R
Ni

II
Cl] (R = Me, 

t
Bu)

40
 in C6H6 results in the 

formation of [L
R
Ni

II
(SCPh3)] (2.1, R = Me; 2.2, R = 

t
Bu). Complex 2.1 can be isolated as 

dark purple blocks from hexanes in 78% yield, while complex 2.2 can be isolated as dark 

blue blocks in 81% yield (Scheme 2.2).  

Scheme 2.2 Synthesis of [L
Me

Ni
II
(SCPh3)] (2.1) and [L

tBu
Ni

II
(SCPh3)] (2.2) 

 

Their formulations were confirmed by elemental analysis and X-ray crystallography the 

solid state molecular structures of 2.1 and 2.2 are shown in Figure 2.3. Complexes 2.1 and 

2.2 feature three coordinate Ni
II
 centers ligated by a tritylthiolate moiety. The Ni-S and C-S 

bond lengths in 2.1 are 2.1523(5) and 1.8647(2) Å, respectively, and are both consistent with 

single bonds.
41

 Notably, complex 2.1 appears to contain an agostic interaction between Ni1 

and H40c (Ni1-H40c = 2.61 Å, Figure 2.4), and is probably best described as featuring a 

pseudo-tetrahedral geometry ((L-Ni-L) = 342.3°). In contrast to complex 2.1, the geometry 

of complex 2.2 is best described as trigonal planar ((L-Ni-L) = 356.5°). Additionally, 

complex 2.2 features a shortened Ni-S bond length of 2.0959(1) Å, and slightly lengthened 

S-C bond length of 1.892(4) Å, relative to 2.1. These changes in geometry may explain the 
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differing magnetic behavior of complex 2.2 vs. complex 2.1 which are discussed in the 

following section.   

 

Figure 2.3. ORTEP diagrams of [L
Me

Ni
II
(SCPh3)]·0.5C6H6 (2.1·0.5C6H6, left) and 

[L
tBu

Ni
II
(SCPh3)]·0.33C5H12  (2.2·0.33C5H12, right) with 50% probability ellipsoids. 

Hydrogen atoms and solvate molecules have been omitted for clarity. Selected bond lengths 

and angles: (2.1) Ni1-S1 2.1523(5) Å, C1-S1 1.8647(2) Å, N1-Ni1-N2 96.65(6)°, N1-Ni1-

S1 113.98(4)°, N2-Ni1-S1 131.67(4)°, Ni1-S1-C1 113.09(5)°; (2.2) Ni3-S3 2.0959(1) Å, 

C3-S3 1.892(4) Å, N5-Ni3-N6 96.97(1)°, N5-Ni3-S3 129.97(1)°, N6-Ni3-S3 129.60(1)°, 

Ni3-S3-C3 131.25(1)°.  
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Figure 2.4. ORTEP diagram of [L
Me

Ni
II
(SCPh3)]·0.5C6H6  (2.1·0.5C6H6) shown with 50% 

probability ellipsoids. 

The 
1
H NMR spectra of 2.1 and 2.2 are similar to those reported for other Ni

II
 β-

diketiminate thiolate complexes, such as [L
tBu

Ni
II
(SPh)] and [L

tBu
Ni

II
(SEt)],

41,42
 although I 

should note that 2.2 features a much smaller chemical shift range than that observed for 2.1.  

The solution effective magnetic moment of 2.1 (eff = 2.87 B.M. at 298 K), as determined by 

Evans’ method,
43

 is consistent with the expected S = 1 ground state.
40,41,44

 However, the 

solution effective magnetic moment of 2.2 (eff = 1.74 B.M. at 298 K), as determined by 

Evans' method, is much too low for an S = 1 ground state. Moreover, its solution magnetic 

moment was found to decrease to 1.23 B.M. upon cooling to 233 K (Figure 2.5). In addition, 

the magnetic susceptibility of 2.2 at 300 K, as determined by SQUID magnetometry (M = -

0.000578 cm
3
·mol

-1
), is indicative of a diamagnetic ground state in the solid state (Figure 

2.6).  This is a somewhat surprising observation, as the singlet state in the related nickel 

thiolate, [L
tBu

Ni
II
(SR)] (R = Et, Ph), is calculated to be ca. 21 kJ·mol

-1
 higher in energy than 
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the triplet state.
41

 To explain these data, I suggest that the S = 1 and S = 0 states in 2.2 are 

very close in energy, but it is not immediately apparent why this would be the case. 

 

Figure 2.5. Variable temperature 
1
H NMR spectra of [L

tBu
Ni

II
(SCPh3)] (2.2) in toluene-d8. 

298 K 

273 K 

253 K 

233 K 

213 K 
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Figure 2.6. Temperature dependent, solid state magnetic susceptibility data for 

[L
tBu

Ni
II
(SCPh3)] (2.2). χdia = -5.504 × 10

-4
 cm

3
·mol

-1
, mass = 38.3 mg, M = 833.1 g/mol. 

Interestingly, complex 2.2 has been observed to undergo a spontaneous C-S bond 

homolysis upon prolonged storage in solution. In contrast, this transformation has not been 

observed to occur spontaneously for complex 2.1.  I hypothesize that this difference is due 

the greater steric pressure exerted by the Dipp groups on -CPh3 in complex 2.2.
45

 The 

homolysis of the C-S bond in 2.2 results in the formation of a dimeric Ni disulfide complex, 

[{N,N:
2
-L

tBu
}Ni

II
(μ2-η

2
-η

2
-S2)Ni

II
{N,C:

2
-L

tBu
}] (2.3) which was isolate as dark green 

plates in 40% yield. The formation of Gomberg's dimer
46

 in the reaciton was confirmed by 

1
H NMR spectroscopy (Scheme 2.3). 
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Scheme 2.3 Homolysis of [L
tBu

Ni
II
(SCPh3)] (2.2) to yield [{N,N:

2
-L

tBu
}Ni

II
(μ2-η

2
-η

2
-

S2)Ni
II
{N,C:

2
-L

tBu
}] (2.3) 

 

The formulation of complex 2.3 has been confirmed by elemental analysis, 
1
H NMR 

spectroscopy, X-ray crystallography. The solid state molecular structure of 2.3 is shown in 

Figure 2.7. The S-S bond length in 2.3 is 2.039(6) Å and is consistent with the single bond 

present in the S2
2-

 ligand.
26,47–53

 The coordination geometry of each Ni center is square 

planar, with (L-Ni-L) = 358.5° for Ni1 and (L-Ni-L) = 359.3° for Ni2, consistent with the 

observed diamagnetism of 2.3. The 
1
H NMR spectrum of complex 2.3 in C6D6 is 

characteristic of a diamagnetic, square planar Ni
II
 β-diketiminate complex where the β-

diketiminate proton environments are asymmetrical due to the abnormal binding mode of 

the N,C:
2
-L

tBu 
ligand coordinated to Ni1. The formation of complex 2.3 likely proceeds via 

the dimerizaiton of an intermediate Ni
II
 thiyl (S

-
) species and is similar to a reaction 

previously reported by Riordan and co-workers.  In particular, they observe that thermolysis 

of the Ni tritylthiolate complex, [{PhB(CH2S
t
Bu)3Ni(SCPh3)], results in the formation of 

[{PhB(CH2S
t
Bu)3Ni]2(2-

2
,

2
-S2) and Gomberg's dimer.

49
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Figure 2.7. ORTEP diagram of [{N,N:
2
-L

tBu
}Ni

II
(μ2-η

2
-η

2
-S2)Ni

II
{N,C:

2
-

L
tBu

}]·C6H18O2Si (2.3· C6H18O2Si) with 50% probability ellipsoids. Hydrogen atoms and a 

C6H18O2Si solvate molecule have been omitted for clarity. Selected bond lengths and angles: 

S1-S2 2.039(6) Å, Ni1-S1 2.222(4) Å, Ni1-S2 2.167(5) Å, Ni2-S1 2.231(5) Å, Ni2-S2 

2.203(4) Å, Ni1-N1 1.90(1) Å, Ni1-C18 2.00(1) Å, Ni2-N3 1.91(1) Å, Ni2-N4 1.90(2) Å, 

N1-Ni1-C18 68.9(6)°, N1-Ni1-S1 120.7(4)°, S1-Ni1-S2 55.4(2)°, N3-Ni2-N4 96.9(5)°, N3-

Ni2-S1 102.7(4)°, S1-Ni2-S2 54.76(16)°.  

2.2.2 Synthesis and Characterization of [K(18-crown-6)][L
R
Ni

II
(S)] (2.4, R = Me; 2.5, 

R = 
t
Bu) and [K(2,2,2-crypt)][L

iBu
Ni

II
(S)] (2.6) 

Subsequent reduction of 2.1 and 2.2 with 2 equiv of KC8, in cold (-25 °C) Et2O, in the 

presence of 2 equiv of 18-crown-6, results in the formation of [K(18-crown-6)][L
R
Ni

II
(S)] 

(2.4, R = Me; 2.5, R = 
t
Bu).  Complex 2.4 can be isolated as dark green blocks from 

hexanes/C6H6 in 66% yield, while complex 2.5 can be isolated as dark brown plates from 

toluene/isooctane in 88% yield (Scheme 2.3). Similarly, use of 2,2,2-cryptand in place of 
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18-crown-6 affords [K(2,2,2-cryptand)][L
tBu

Ni
II
(S)] (2.6), which can be isolated as brown 

needles in 89% yield after crystallization from hexanes (Scheme 2.3). The syntheses of 2.4, 

2.5, and 2.6 also produce one equiv of [K(L)][CPh3] (L = 18-crown-6, 2.7; 2,2,2-cryptand, 

2.8), which precipitates from the reaction mixtures as a bright red solid that can be separated 

from the Ni-containing products via filtration (Scheme 2.4).  

Scheme 2.4 Synthesis of [K(18-crown-6)][L
R
Ni

II
(S)] (2.4, R = Me; 2.5, R = 

t
Bu) and 

[K(2,2,2-crypt)][L
iBu

Ni
II
(S)] (2.6) via reductive deprotection 

 

I should also note that reaction of 2.2 with only one equivalent of KC8, in the presence of 

18-crown-6, still provides 2.5 in good yield (67%). However, under these conditions, 

triphenylmethane, and not [CPh3]
-
, is formed as the reaction by-product. This suggests that 

the Ph3C-S cleavage can also proceed via a radical process as proposed in Scheme 2.5. C-S 

homolysis has previously been observed for a Ni tritylthiolate complex.
49,54

 For example, 

Riordan and co-workers reported the formation of [{PhB(CH2S
t
Bu)3Ni]2(2-

2
,

2
-S2) and 

·CPh3 upon thermal decomposition of [{PhB(CH2S
t
Bu)3Ni(SCPh3)].

49
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Scheme 2.5 Synthesis of 2.5 via one electron reduction 

 

The formulations of complexes 2.4, 2.5, and 2.6 were confirmed through elemental 

analysis, 
1
H NMR spectroscopy, and X-ray crystallography.  The solid-state structures of 

2.4, 2.5, and 2.6 are shown in Figure 2.8, while selected metrical parameters can be found in 

Table 2.1.  

Table 2.1 Selected Bond Lengths and Angles for 2.4, 2.5, and 2.6 

bond (Å) / angle(°) 

 

2.4 2.5 2.6 

Ni1-S1 2.0635(6) 2.0643(2) 2.0843(1) 

S1-K1 3.1212(7) 3.094(1) 3.3795(1) 

Ni1-N1 1.9466(2) 1.938(5) 1.931(3) 

Ni1-N2 1.9444(2) 1.928(5) 1.933(3) 

Ni1-S1-K1 153.74(3) 177.95(8) 170.08(5) 

N1-Ni1-S1 136.28(5) 134.08(2) 131.01(9) 

N2-Ni1-S1 130.53(5) 130.37(2) 133.18(9) 

N1-Ni1-N2 93.02(7) 95.5(2) 95.78(1) 

 

Complexes 2.4, 2.5 and 2.6 feature identical coordination environments about their Ni 

centers. In the solid state, each exhibits a planar ((L-Ni-L) ~ 360), Y-shaped geometry. 

The Ni-S bond lengths in 2.4-2.6 range from 2.0635(6)-2.0843(1) Å. All three complexes 

feature weak S-K interactions,
39,54

 which range from 3.094(2)-3.3795(1) Å.  Not 

surprisingly, complex 2.6, which features the strongest K
+
 chelator (2,2,2-cryptand), exhibits 
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the longest S-K interaction.  Interestingly, the Ni-S-K angles vary widely, from 153.73(3)° 

(for 2.4) to 177.9(1)° (for 2.5), a disparity I ascribe to crystal packing.  Also of note, 

complex 2.5 exists as a dimer in the solid state; its monomer units are connected via 

bridging interactions between the [K(18-crown-6]
+
 cations (Figure 2.8). Finally, the Ni-N 

distances in 2.4-2.6 are typical of those found in other three coordinate Ni
II
 β-diketiminate 

complexes.
40–42,44

 

 

 

Figure 2.8. ORTEP diagrams of [K(18-crown-6)][L
tBu

Ni
II
(S)]·C8H18 (2.5·0.5C8H18) (top), 

[K(18-crown-6)][L
Me

Ni
II
(S)]·2.5C6H6 (2.4·2.5C6H6) (bottom left), and [K(2,2,2-
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cryptand)][L
tBu

Ni
II
(S)] (2.6) (bottom right) with 50% probability ellipsoids. Hydrogen atoms 

and solvate molecules have been omitted for clarity. 

Most significantly, the Ni-S bond lengths in complexes 2.4, 2.5, and 2.6 are amongst the 

shortest known, and are intermediate between the additive covalent radii projected for 

nickel-sulfur single (2.13 Å) and double bonds (1.95 Å).
55

 Moreover, the Ni-S bond length 

in 2.4 is shorter than that observed in the parent thiolate, 2.2 (2.1523(5) Å), as expected for a 

bond with partial multiple bond character. For further comparison, [L
tBu

Ni]2(μ-S),
42

 

{(IPr)Ni}2(μ-S)2 (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene),
52

 and 

[(PhB{CH2S
t
Bu}3)Ni]2(μ-S)2,

49
 possess comparable Ni-S bond lengths of 2.0651(7), 

2.0972(6), and 2.0714(4) Å, respectively, despite each possessing a bridging S
2-

 ligand.  

Overall, this suggests similar magnitudes of -bonding in both classes of materials.   

The 
1
H NMR spectra of complexes 2.4-2.6 in C6D6 are typical of those observed for 

other three coordinate, high spin Ni
II 

β-diketiminate complexes.
42,46

 Notably, the resonances 

assignable to the [K(18-crown-6)]
+
 cations are broad and shifted to 1.18 and 0.28 for 2.4 and 

2.5, respectively.  The 2,2,2,-cryptand resonances for 2.6 are similarly broadened and 

shifted.  These data suggest that the [K(L)]
+
 cations form a contact pair with the [L

R
Ni

II
(S)]

-
 

anions in solution. These complexes are highly soluble in THF, Et2O, benzene, and toluene, 

but sparing solubility in hexane and pentane; 2.6 is notably more soluble in the former, 

presumably due to the ability of 2,2,2-cryptand to better encapsulate the K+ ion.  Complexes 

2.4-2.6 do not show any appreciable decomposition upon prolonged storage in the solid state 

under inert atmosphere at -25 °C. However, 2.4 and 2.5 have been observed to decompose in 

THF solutions to yield a mixture of nickel-sulfur compounds. In THF, complex 2.4 

decomposes more quickly (hours) than 2.5 (days) necessitating the use of Et2O as the 
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reaction solvent in its synthesis. The products of this decomposition reaction are discussed 

below. Interestingly, oxidation of complex 2.6 with one equiv of silver triflate (AgOTf) 

resulted in the formation of the previously reported complex [{L
tBu

Ni
II
}2(μ

2
-S)],

42
 with 

elemental sulfur formed as a likely byproduct (Scheme 2.6).   

Scheme 2.6 Oxidation of 2.6 to yield [{L
tBu

Ni
II
}2(μ

2
-S)] 

 

In the solid state, complexes 2.4 and 2.5 exhibit effective magnetic moments of 2.80 

B.M. at 300 K (D = 91 cm
-1

) and 2.98 B.M. at 300 K (D = 94 cm
-1

), respectively (Figure 

2.9). This behavior is consistent with that anticipated for a Y-shaped Ni
II
 complex with an S 

= 1 ground state.
56

 Overall, the solid state molecular structures and magnetic properties of 

2.4-2.6 confirm my Ni
II
 oxidation state assignments, and exclude the possibility that the 

sulfur atom is protonated, as this would require nickel to be in the +1 oxidation state.  

Intriguingly, the related Ni
II
 imido, carbene, and phosphinidene complexes, e.g., 

[(dtbpe)Ni
II
(E)], are diamagnetic.

9,12,13
 This change in spin state may reflect differing 

amounts of -bonding between the two classes of molecules. 
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Figure 2.9. Temperature dependent, solid state magnetic susceptibility data for [K(18-

crown-6)][L
Me

Ni
II
(S)] (left) (2.4) and [K(18-crown-6)][L

tBu
Ni

II
(S)] (right) (2.5). 

On the basis of DFT calculations performed by Ghosh and co-workers for the related 

Ni
III

 imido complex, [L
R
Ni(NPh)], I predict a (dz

2
)
2
(dx

2
-y

2
)
2
(dyz)

2
(b1)

2
(b2)

2
(b2*)

1
(b1*)

1
 

electronic configuration for complexes 2.4-2.6 (Figure 2.10),
1,57

 wherein b1 and b2 are the -

bonds formed between the sulfur lone pairs and the dxz and dyz orbitals, respectively.  If true, 

this electronic structure would suggest a formal Ni-S bond order of 2, a prediction that is 

somewhat inconsistent with the observed Ni-S bond lengths in 2.4-2.6, which is perhaps a 

function of coordination of K
+
 to the sulfide ligand.  
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Figure 2.10. Proposed molecular orbital diagram for the Ni-S bonding interaction in 

complexes 2.4-2.6.   

2.2.3 The Decomposition of [K(18-crown-6)][L
Me

Ni
II

(S)] (2.4) to yield [K(18-crown-

6)][{L
Me

Ni}2(μ
2
-S)] (2.9) and [K(18-crown-6)][{L

Me
Ni}2(μ

2
-S)2] (2.10) 

As mentioned above, complex 2.4 has been observed to decompose upon storage in THF.  

While the mechanism of this process has not been worked out, I have been able to 

characterize the main Ni containing products of this transformation as [K(18-crown-

6)][{L
Me

Ni}2(μ
2
-S)] (2.9) and [K(18-crown-6)][{L

Me
Ni}2(μ

2
-η

2
-η

2
-S2)] (2.10) (Scheme 2.7).  
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Scheme 2.7 Decomposition of 2.4 to yield 2.9 and 2.10 

 

Isolation and full characterization of these products has proven to be very challenging as 

they possess near identical solubility and spectroscopic characteristics and co-crystallize in 

the same unit cell. An initial single crystal containing co-crystallized 2.9 and 2.10 was 

isolated from the supernatant (THF layered with hexane) of the crystallization of 2.4.  This 

crystal contained 2.9 and 2.10 in a 1:4 ratio. Further experiments are needed to assess the 

relative ratios of formation of 2.9 and 2.10 in the supernatant. The solid state molecular 

structures of 2.9 and 2.10 are shown in Figure 2.11. Due to co-crystallization, the bond 

lengths and angles present in this structure should be considered estimates; however, they do 

allow for a preliminary assignment of the sulfur and nickel oxidation states. It appears that 

complex 2.9 is a mixed-valent Ni
I/II 

complex with a μ
2
-S

2-
 ligand. While, complex 2.10 can 

be described as either containing two Ni
II
 centers with a μ

2
-η

2
-η

2
-subsufide (S2

3-
) ligand, or a 

mixed valent Ni
II/III 

complex
 
with two μ

2
-S

2-
 ligands.  
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Figure 2.11. ORTEP diagrams of [K(18-crown-6)][{L
Me

Ni}2(μ
2
-S)]·C4H8O (2.9·C4H8O, 

left) and [K(18-crown-6)][{L
Me

Ni}2(μ
2
-η

2
-η

2
-S2)]·C4H8O (2.10·C4H8O, right) with 50% 

probability ellipsoids. These diagrams represent the two disordered species present in the 

solid state molecular structure in 21:79 (2.9:2.10) ratio. Hydrogen atoms, [K(18-crown-6)]
+
, 

and C4H8O solvate molecules have been omitted for clarity. 

I have been able to isolate single crystals of 2.10 from the decomposition of 2.4 in cold 

(- 25 °C) THF/toluene in 49% yield. The solid-state molecular structure of pure 2.10 is 

shown in Figure 2.12. The S-S distance in 2.10 is 2.522(5) Å (about 0.1 Å longer that the S-

S bond length observed in the mixed structure Figure 2.11) and is much longer than a S-S 

single bond,
26,47–53

 being approximately on the order of S-S distances observed in subsulfide 

complexes.
58–63

 The Ni-S distances in 2.10 are consistent with single bonds and the 

coordination geometry of each Ni center is square planar, with (L-Ni-L) = 360.1°. The 
1
H 

NMR spectrum of complex 2.10 in THF-d8 contains apparently paramagnetically broadened 

resonances that are, however, not significantly shifted from what would be expected for a 

square planar Ni
II
 β-diketiminate complex.  or example, the spectrum contains β-



 

 40 

diketiminate methyl and γ-H resonances at 0.77 and 5.50 ppm, respectively. Based upon 

these observations, I believe that 2.10 contains two Ni
II
 centers bridged by a μ

2
-η

2
-η

2
-

subsufide (S2
3-

) ligand, where the unpaired electron is localized on the subsulfide moiety and 

not on the Ni centers.  

Metal subsulfide complexes are quite rare and only a few examples have been reported 

to date, including [{(C5HiPr4)Ni}2(S2)], [L
Me

Ni(S2)Pt(PPh3)2] and [L
Me

Ni(S2)Fe(dmpe)2] 

(dmpe = 1,2-bis(dimethylphosphino)ethane).
58,61,62

  To rationalize formation of 2.9 and 2.10 

in this reaction, I propose that a by-product containing oxidized sulfur (S
0
 or K2S2) is being 

formed. Notable previous examples of Ni sulfide dimerization resulted in the formation 

different products. For example Limberg and co-workers reported the isolation of a 

bimetallic Ni
II
 μ

2
-η

2
-η

2
-disufide, [{L

Me
Ni

II
}2(

2
-S2)], via a proposed Ni

III
 terminal sulfide 

intermediate. The formation of a disulfide in this reaction can be rationalized by the Ni 

centers in this system each being reduced by one e
-
 to facilitate the S-S bond forming 

reaciton.
26

 In the example reported by Jones and co-workers, formation of a bimetallic Ni
II
 

bis(μ
2
-sulfide) complex, [{(dippe)Ni

II
}2(S)2], results from the dimerization of a proposed 

Ni
II
 terminal sulfide intermediate.

27
 I hypothesize that a similar bimetallic Ni

II
 bis(μ

2
-sulfide) 

product is not observed in this reaction because the formation of this dianionic species is 

disfavored and results in spontaneous disproportionation to generate 2.9 and 2.10. 
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Figure 2.12. ORTEP diagram of [K(18-crown-6)][{L
Me

Ni}2(μ
2
-η

2
-η

2
-S2)]·C4H8O 

(2.10·C4H8O) with 50% probability ellipsoids. Hydrogen atoms and a C4H8O solvate 

molecule have been omitted for clarity. Selected bond lengths and angles: S1-S1* 2.522(5) 

Å, Ni1-S1 2.151(4) Å, Ni1-S1* 2.167(4) Å, Ni1-N1 1.990(7) Å, Ni1-N2 1.970(7) Å, N1-

Ni1-N2 93.3(3)°, N1-Ni1-S1* 97.8(2)°, N2-Ni1-S1 97.5(2)°, S1-Ni1-S1* 71.5(2)°. 

2.2.4 Synthesis of [K(18-crown-6)][L
tBu

Ni
I
(SH)] (2.11) 

While the use crystallographic and magnetism data were used to rule out the protonation 

of the sulfur atom in cmopelxes 2.4 -2.6, I was still interested in pursuing a method to access 

a Ni hydrosulfide complex. The sulfide ligand in these complexes does not react with H-

atom donors such as 1,4-cyclohexadiaene and 2,9-dihydroanthracene. However, 2.5 was 

found to react with diphenylsilane (Ph2SiH2) to afford [K(18-crown-6)][L
tBu

Ni
I
(SH)] (2.11) 

(Scheme 2.8). Complex 2.11 was isolated in low yields as this reaction is not clean. To date, 

I have been unable to identify the silicon containing byproduct of this reaction, However it 

is likely Ph2HSiSiHPh2. 
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Scheme 2.8 Synthesis of [K(18-crown-6)][L
tBu

Ni
I
(SH)] (2.11) 

 

Complex 2.11 was characterized by 
1
H NMR spectroscopy and X-ray crystallography. 

The solid state molecular structure of 2.11 is shown in Figure 2.13. Complex 2.11 features a 

three coordinate Ni
I
 center ligated by a hydrosulfide (SH

-
) moiety with an Ni-S bond length 

of 2.176(3) Å which longer than the Ni-S bond in the starting material, 2.5 (2.0643(2) Å), 

and is consistent with a single bond.
41

 The coordination geometry of the Ni center in 2.11 is 

planar ((L-Ni-L) = 360.0) and is best described as Y-shaped. The 
1
H NMR spectrum of 

2.11 in C6D6 contains paramagnetically shifted resonances similar to those of other three 

coordinate Ni
I
 β-diketiminate complexes. For example, 2.11 features a broad tert-butyl 

resonance at -1.03 ppm.
41,64–66 

To my knowledge, complex 2.11 is only the fourth 

structurally characterized Ni SH
-
 complex and the first example of a Ni

I
 SH

-
 complex.

48,67
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Figure 2.13 ORTEP diagram of [K(18-crown-6)][L
tBu

Ni
I
(SH)]·C4H10O (2.11·C4H10O) with 

50% probability ellipsoids. Hydrogen atoms and Et2O solvate molecule omitted for clarity. 

Selected bond lengths and angles: Ni1-S1 2.176(3) Å, S1-K1 3.170(4) Å, Ni1-N1 1.895(6) 

Å, Ni1-N2 1.882(6) Å, Ni1-S1-K1 142.3(1)°, N1-Ni1-N2 98.7(3)°, N1-Ni1-S1 123.5(2)°, 

N2-Ni1-S1 137.8(2)°. 

2.2.5 Synthesis of [L
tBu

Ni
II

(SSiMe3)] (2.12) 

The sulfide ligand in complexes 2.4-2.6 would be anticipated to be a potent nucleophile. 

Consequently, I endeavored to test this hypothesis by reacting complex 2.5 with the strong 

electrophile, trimethylsilyl triflate (Me3SiOTf). Reaction of a C6H6 solution of 2.5 with one 

equiv of Me3SiOTf results in the formation of a trimethylsilanethiolato complex 

[L
tBu

Ni
II
(SSiMe3)] (2.12) with concomitant loss of [K][OTf] (Scheme 2.9).  
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Scheme 2.9 Synthesis of [L
tBu

Ni
II
(SSiMe3)] (2.12) 

 

Complex 2.12 was isolated as red plates in 70% yield and characterized by 
1
H NMR 

spectroscopy and X-ray crystallography. The solid state molecular structure of 2.12 is shown 

in Figure 2.14. Complex 2.12 features a three coordinate Ni
II
 center ligated by a 

trimethylsilanethiolato moiety with a Ni-S bond length of 2.177(1) Å which is longer than 

the Ni-S bond in the starting material (2.0643(2) Å) and is consistent with a single bond.
41

 

The coordination geometry of Ni center remains planar ((L-Ni-L) = 358.25). However, 

the C2v symmetry present in 2.5 has been lost. The 
1
H NMR spectrum of 2.12 in C6D6 

contains paramagnetically shifted resonances similar to those of other three coordinate Ni
II
 

β-diketiminate complexes.
40,41 

Complex 2.12 is a rare example of a Ni silanethilato (SSiR3) 

complex and the first three coordinate Ni(SSiR3) complex. Other examples reported by 

Tatsumi and coworkers were synthesized via salt metathesis of M(SSiR3) and LNiCl2 to 

yield [(dppe)Ni(SSiMe2R)2] (R = Me, 
t
Bu, dppe = PPh2CH2CH2PPh2) and 

[(tmeda)Ni(SSiPh3)2] (tmeda = NMe2CH2CH2NMe2).
68,69

 Additionally, formation of the 

SSiMe3 product, is reminiscent of the reaction of Me3SiCl and Na2S to give Me3SiSNa,
70

 

this result confirms the nucleophilicity of the sulfide ligand and suggests that "masked" 

terminal nickel sulfide complexes may be capable of effecting more challenging 

transformations.  
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Figure 2.14. ORTEP diagram of [L
tBu

Ni
II
(SSiMe3)] (2.12) with 50% probability ellipsoids. 

Hydrogen atoms and a second independent molecule of [L
tBu

Ni
II
(SSiMe3)] omitted for 

clarity. Selected bond lengths and angles: (2.1) Ni1-S1 2.177(1) Å, Si1-S1 2.116(2) Å, N1-

Ni1-N2 95.9(1)°, N1-Ni1-S1 149.7(1)°, N2-Ni1-S1 112.9(1)°, Ni1-S1-Si1 115.27(6)°. 

2.3 Summary  

The results outlined in Chapter 2 demonstrate that reductive deprotection, initially used 

for the synthesis of actinide chalcogenide multiple bonds, is also applicable to a late 

transition metal system. Reaction of [L
R
Ni

II
Cl] (R = Me, 

t
Bu) with KSCPh3 yields the nickel 

tritylthiolates, [L
R
Ni

II
(SCPh3)] (2.1, R = Me; 2.2, R = 

t
Bu). Subsequent application of the 

reductive deprotection protocol to these complexes results in cleavage of the tritylthiolate C-

S bond and affords the first family of “masked” terminal Ni
II
 sulfides, [K(L)][L

R
Ni

II
(S)] 
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(2.4, R = Me, L = 18-crown-6; 2.5, R = 
t
Bu, L = 18-crown-6; 2.6, R = 

t
Bu, L = 2,2,2-

cryptand). Structural characterization of these complexes reveals that the Ni-S distances in 

this class of materials are amongst the shortest observed, suggesting the presence of partial 

multiple bond character, critical for the stabilization of the Ni-S bond. Furthermore, [K(18-

crown-6)][L
tBu

Ni
II
(S)] (2.5) reacts with Ph2SiH2 to form a SH

-
 complex, [K(18-crown-

6)][L
tBu

Ni
I
(SH)] (2.10), and Me3SiOTf to form a trimethylsilanethiolato complex 

[L
tBu

Ni
II
(SSiMe3)], (2.12) confirming the nucleophilicity of the sulfide ligand. The stability 

of these nickel sulfide complexes should allow for further investigations of the reactivity of 

the sulfide ligand with other electrophilic substrates.  

The reductive deprotection method is particularly attractive for late transition metal 

systems as it leads to the controlled installation of a single sulfide ligand at the metal center, 

retaining the low coordination number needed to stabilize the metal-ligand multiple bond. A 

final beneficial facet of this method, is the presence of [K(L)]
+
 as a capping countercation in 

the nickel sulfide complexes. This fragment it appears to protect the sulfide ligand from 

unwanted side reactions such as dimerization. Thus, allowing me to explore the reactivity of 

Ni sulfide with small molecules, which will be discussed in chapters 4, 5, and 6.   

2.4 Experimental Procedures 

2.4.1 General Methods 

All reactions and subsequent manipulations were performed under anaerobic and 

anhydrous conditions under an atmosphere of nitrogen.  Hexanes, diethyl ether (Et2O), 

toluene, and tetrahydrofuran (THF) were dried using a Vacuum Atmospheres DRI-SOLV 

Solvent Purification system and stored over 3Å sieves for 24 h prior to use. Benzene-d6, 

tetrahydrofuran-d8, toluene-d8, and C8H18 (isooctane) were dried over 3Å molecular sieves 
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for 24 h prior to use. L
Me

 (L = {(2,6-
i
Pr2C6H3)NC(R)}2CH), R = Me),

71
 L

tBu
 (L = {(2,6-

i
Pr2C6H3)NC(R)}2CH), R = 

t
Bu),

72
 L

Me
Li,

73
 L

tBu
Li,

72
 L

Me
Ni

II
Cl,

44
 L

tBu
Ni

II
Cl,

40
 KSCPh3,

74
 

and KOCPh3
75

 were synthesized according to the previously reported procedures.  All other 

reagents were purchased from commercial suppliers and used as received. 

 
1
H and 

13
C{

1
H} NMR spectra and Evans’ method determinations

43
 were recorded on 

a Agilent Technologies 400-MR DD2 400 MHz spectrometer or a Varian UNITY INOVA 

500 MHz spectrometer. 
1
H and 

13
C{

1
H} NMR spectra were referenced to external SiMe4 

using the residual protio solvent peaks as internal standards.
76,77

 IR spectra were recorded on 

a Nicolet 6700 FT-IR spectrometer with a NXR FT Raman Module.  Elemental analyses 

were performed by the Micro-Mass Facility at the University of California, Berkeley. 

2.4.2 Magnetism Measurements 

Magnetism data were recorded using a Quantum Design MPMS 5XL SQUID 

magnetometer. The experiment was performed between 4 - 300 K using 20-50 mg of 

powdered, crystalline solid.  The solids were loaded into an NMR tube, which was 

subsequently flame sealed.  The solids were kept in place with approximately 100 mg of 

quartz wool packed on either side of the sample.  The data was corrected for the contribution 

of the NMR tube holder and the quartz wool.  The experiments were performed using a 0.5 

T field.  Diamagnetic corrections (χdia = -5.504  10
-4

 cm
3
·mol

-1
 for 2, χdia = -5.518  10

-4
 

cm
3
·mol

-1
 for 3, and χdia = -6.143  10

-4
 cm

3
·mol

-1
 for 4) were made using Pascal’s 

constants.
78

 Data were fit using the JulX program (v. 1.4.1).
79

 

2.4.3 Synthesis of [L
Me

Ni
II

(SCPh3)] (2.1) 

To a dark blue, stirring suspension of L
Me

Ni
II
Cl (200 mg, 0.391 mmol) in C6H6 (3 mL) 

was added a suspension of KSCPh3 (125 mg, 0.397 mmol) in C6H6 (2 mL).  After addition, 
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the color of the solution gradually transformed from dark blue to dark purple, concomitant 

with the deposition of a fine white precipitate (KCl). This solution was allowed to stir for 45 

min, whereupon the reaction mixture was filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm).  The solvent was removed from the filtrate in vacuo, and the 

dark purple residue was extracted into hexanes (3 mL) and filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm). This yielded a dark purple filtrate. The volume of 

this solution was reduced in vacuo to 2 mL. Storage of the solution at -25 °C for 24 h 

resulted in the deposition of dark purple blocks, which were isolated by decanting off the 

solution (253 mg, 78%). Anal. Calcd for: C48H56N2NiS·0.5C6H6: C, 77.46; H, 7.52; N, 3.54.  

Found: C, 77.15; H, 7.77; N, 3.65.  
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 28.78 (m, 

4H, Ar-mH, dipp), 18.70 (6H, Ar-mH, CPh3), 18.09 (4H, CH(CH3)2), 6.03 (t, 
3
JHH, = 6.8 Hz, 

3H, Ar-pH, CPh3), 5.54 (d, 
3
JHH, = 6.3 Hz, 6H, Ar-oH, CPh3), 4.54 (12H, CH(CH3)2), 3.69 

(12H, CH(CH3)2), -12.97 (2H, Ar-pH, dipp), -47.08 (6H, C(CH3)), -136.44 (1H, γ-H) ppm. 

Evans’ method (C6D6, 400 MHz, 25 °C, 0.058 M): 2.87 B.M. IR (KBr Pellet, cm
-1

): 1527 

(m), 1485 (m), 1479 (s), 1458 (s), 1435 (s), 1433 (m), 1381 (s), 1369 (s), 1354 (s), 1313 (s), 

1282 (m), 1257 (s), 1186 (m), 1172 (s), 1153 (m), 1095 (m), 1076 (m), 1053 (s), 1030 (s), 

1018 (m), 931 (m), 858 (m), 841 (m), 796 (s), 781 (s), 758 (s), 754 (s), 749 (s), 700 (s), 686 

(s), 667 (m), 632 (m), 623 (s), 615 (s), 524 (m), 513(m), 501 (m), 438 (w), 420 (s), 413 (m).  

2.4.4 Synthesis of [L
tBu

Ni
II

(SCPh3)] (2.2) 

To a dark green, stirring suspension of L
tBu

Ni
II
Cl (130 mg, 0.219 mmol) in C6H6 (3 mL) 

was added dropwise a suspension of KSCPh3 (70.3 mg, 0.224 mmol) in C6H6 (2 mL). After 

addition, the color of the solution gradually transformed from dark green to dark blue, 

concomitant with the deposition of a fine white precipitate (KCl). This solution was allowed 
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to stir for 45 min, whereupon the reaction mixture was filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm).  The solvent was removed from the filtrate in 

vacuo, and the blue residue was extracted into pentane (3 mL) and filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm). This yielded a deep blue filtrate. The 

filtrate was stored at - 25 °C for 15 min, filtered through a Celite column supported on glass 

wool (0.5 cm × 2 cm), concentrated to 1 mL in vacuo, and stored at -25 °C for 24 h, which 

led to the deposition of dark blue blocks.  These were isolated by decanting off the 

supernatant (148 mg, 81%). Anal. Calcd for C54H68N2NiS:  C, 77.59; H, 8.20; N, 3.35.  

Found: C, 77.91; H, 8.26; N, 3.06.  
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 14.17 (br s, 

4H, Ar-mH, dipp), 9.62 (4H, CH(CH3)2), 7.14 (6H, Ar-oH, CPh3), 7.00 (t, JHH, = 6.9 Hz, 

6H, Ar-mH, CPh3), 6.59 (t, 
3
JHH, = 7.3 Hz, 3H, Ar-pH, CPh3), 2.91 (12H, CH(CH3)2), 2.27 

(12H, CH(CH3)2), 1.88 (18H, C(CH3)3), -2.33 (2H, Ar-pH, dipp), -38.38 (1H, γ-H) ppm. 

Evans’ method (C6D6, 400 MHz, 25 °C, 0.060 M): 1.73 B.M. IR (KBr Pellet, cm
-1

): 1635 

(m), 1622 (s), 1585(s), 1560 (s), 1533 (s), 1527 (w), 1487 (s), 1477 (m), 1458 (s), 1438 (s), 

1430 (m), 1394 (m), 1381 (s), 1359 (s), 1313 (s), 1269 (w), 1260 (m), 1252 (s), 1224 (w), 

1215 (m), 1203 (m), 1176 (s), 1155 (s), 1110 (m), 1093 (m), 1054 (s), 1033 (s), 1020 (w), 

997 (s), 970 (w), 931 (s), 916 (s), 885 (m), 858 (s), 842 (s), 819 (s), 798 (s), 779 (s), 758 (s), 

737 (s), 723 (s), 696 (s), 669 (s), 624 (s), 615 (s), 593 (m), 578 (m), 532 (w), 516 (m), 484 

(s), 455 (m), 441 (w), 426 (m), 403 (m), 401 (s). 

2.4.5 Variable temperature NMR spectroscopy and temperature dependent, solution 

magnetic susceptibility of (2.2) 

To an NMR tube containing a capillary tube of toluene-d8 was added a toluene-d8 (0.75 

mL) solution of 2.2 (12.2 mg, 0.0146 mmol). The sample was cooled to -60 °C in a 500 
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MHz NMR spectrometer. 
1
H NMR spectra were collected at ca. 20 C° intervals. Note: at -60 

°C the reference and solution toluene-d8 resonances converge so the magnetic susceptibility 

could not be calculated. The temperature dependent, solution magnetic susceptibility data is 

shown in Figure S4.  
1
H NMR (500 MHz, 25 °C, toluene-d8): δ = 15.02 (4H, Ar-mH, dipp), 

10.16 (4H, CH(CH3)2), 7.23 (6H, Ar-oH, CPh3), 6.90-7.10 (6H, Ar-mH, CPh3), 6.58 (t, 
3
JHH, 

= 7.3 Hz, 3H, Ar-pH, CPh3), 3.03 (12H, CH(CH3)2), 2.42 (12H, CH(CH3)2), 2.05 (18H, 

C(CH3)3), -3.43 (2H, Ar-pH, dipp), -43.03 (1H, γ-H) ppm. Evans’ method (toluene-d8, 500 

MHz, 25 °C, 0.060 M): 1.74 B.M.  
1
H NMR (500 MHz, 0 °C, toluene-d8): δ = 13.12 (4H, 

Ar-mH, dipp), 8.87 (4H, CH(CH3)2), 6.90-7.10 (12H, Ar-oH and Ar-mH, CPh3), 6.67 (t, 

3
JHH, = 7.3 Hz, 3H, Ar-pH, CPh3), 2.73 (12H, CH(CH3)2), 2.16 (12H, CH(CH3)2), 1.76 

(18H, C(CH3)3), -0.89 (2H, Ar-pH, dipp), -32.00 (1H, γ-H) ppm. Evans’ method (toluene-

d8, 500 MHz, 0 °C, 0.060 M): 1.57 B.M. 
1
H NMR (500 MHz, -20 °C, toluene-d8): δ = 11.66 

(4H, Ar-mH, dipp), 7.89 (4H, CH(CH3)2), 6.90-7.10 (12H, Ar-oH and Ar-mH, CPh3), 6.74 

(br s, 3H, Ar-pH, CPh3), 2.51 (12H, CH(CH3)2), 1.97 (12H, CH(CH3)2), 1.95 (2H, Ar-pH, 

dipp), 1.53 (18H, C(CH3)3), -23.61 (1H, γ-H) ppm. Evans’ method (toluene-d8, -20 °C, 500 

MHz, 0.060 M): 1.37 B.M. 
1
H NMR (500 MHz, -40 °C, toluene-d8): δ = 10.27 (4H, Ar-mH, 

dipp), 6.90-7.10 (16H, Ar-oH, CPh3, Ar-mH, CPh3, and CH(CH3)2), 6.79 (br s, 3H, Ar-pH, 

CPh3), 2.29 (12H, CH(CH3)2), 1.77 (12H, CH(CH3)21.31 (18H, C(CH3)3), -15.95 (1H, γ-H) 

ppm. Note that the Ar-pH dipp resonance was not observed. Evans’ method (toluene-d8, 500 

MHz, -40 °C, 0.060 M): 1.23 B.M. 
1
H NMR (500 MHz, -60 °C, toluene-d8): δ = 8.98 (4H, 

Ar-mH, dipp), 6.90-7.10 (12H, Ar-oH and Ar-mH, CPh3), 6.87 (2H, Ar-pH, dipp), 6.63 (br 

s, 3H, Ar-pH, CPh3), 6.19 (4H, CH(CH3)2), 2.08 (12H, CH(CH3)2), 1.60 (12H, CH(CH3)2), 

1.12 (18H, C(CH3)3), -8.23 (1H, γ-H) ppm. 
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2.4.6 Isolation of [{N,N:
2
-L

tBu
}Ni

II
(μ2-η

2
-η

2
-S2)Ni

II
{N,C:

2
-L

tBu
}] (2.3) 

Storage of a dark blue solution of [L
tBu

Ni
II
(SCPh3)] (2.2) (130 mg, 0.157 mmol) in THF 

at -25 °C for 24 h results in a color change of the solution to dark green. The volatiles were 

removed in vacuo to produce a dark green residue. This residue was extracted into hexane (5 

mL) and stored at - 25 °C for 24 h. This resulted in the deposition of colorless blocks of 

Gomberg's dimer
46

 which were isolated by decanting off the supernatant and indentified by 

1
H NMR spectroscopy (24 mg). The dark green supernatant was then concentrated in vacuo 

to 3 mL and filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) to 

yield a dark green filtrate. Then, 1 mL of hexamethyldisiloxide (HMDSO) was added and 

the resulting solution was stored at - 25 °C for 48 h. This resulted in the deposition of 

colorless blocks of Gomberg's dimer
46

 which were isolated by decanting off the supernatant 

and indentified by 
1
H NMR spectroscopy (10 mg; total yield: 34 mg, 89%). The volatiles 

were then removed from the dark green supernatant in vacuo resulting in a green residue. 

This residue was then extracted into HMDSO (2 mL), filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), concentrated in vacuo to 0.25 mL, and stored at - 

25 °C for 72 h. This result in the deposition of green-brown plates that were isolated by 

decanting off the supernatant (37 mg, 40% yield). Anal. Calcd for C70H106N4Ni2S2:  C, 

70.94; H, 9.01; N, 4.73.  Found: C, 70.71; H, 8.84; N, 4.56.  
1
H NMR (400 MHz, 25 °C, 

benzene-d6):  = 7.11-6.68 (m, 12H, Ar-H), 5.50 (s, 1H, γ-H), 4.75 (sept, 1H, CH(CH3)2), 

4.43 (sept, 1H, CH(CH3)2), 4.37 (sept, 1H, CH(CH3)2), 4.01 (sept, 1H, CH(CH3)2), 3.85 

(sept, 1H, CH(CH3)2), 3.33 (sept, 1H, CH(CH3)2), 3.23 (sept, 1H, CH(CH3)2), 2.99 (sept, 1H, 

CH(CH3)2), 2.71 (d, 3H, CH(CH3)2), 2.35 (d, 3H, CH(CH3)2), 2.20 (d, 3H, CH(CH3)2), 1.87 

(d, 3H, CH(CH3)2), 1.65 (d, 3H, CH(CH3)2), 1.46 (d, 3H, CH(CH3)2), 1.44 (d, 3H, 
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CH(CH3)2), 1.41 (d, 3H, CH(CH3)2), 1.39 (d, 3H, CH(CH3)2), 1.38 (d, 3H, CH(CH3)2), 1.28 

(d, 3H, CH(CH3)2), 1.24 (d, 3H, CH(CH3)2), 1.12 (d, 3H, CH(CH3)2), 1.10 (s, 9H, C(CH3)3), 

1.04 (s, 9H, C(CH3)3), 1.03 (d, 3H, CH(CH3)2), 0.98 (d, 3H, CH(CH3)2), 0.95 (s, 9H, 

C(CH3)3), 0.80 (s, 9H, C(CH3)3), 0.16 (d, 3H, CH(CH3)2), ppm. Crystallographic details: 

Triclinic, P-1, a = 13.075(9), b = 15.20(1), c = 19.41(1),  = 91.76(2),  = 103.87(2),  = 

105.231(2), V = 3595(4) g/cm
3
, Z = 2.      

2.4.7 Synthesis of [K(18-crown-6)][L
Me

Ni
II

(S)] (2.4) 

To a deep purple, cold (-25 °C), stirring solution of 2.1 (25 mg, 0.0332 mmol) and 18-

crown-6 (17.6 mg, 0.0665 mmol), in Et2O (2 mL), was added KC8 (9.1 mg, 0.0672 mmol).  

This resulted in immediate formation of a dark red-brown mixture. This mixture was 

allowed to warm to room temperature with stirring, during which time the solution 

transformed to dark green concomitant with the deposition of a red solid. This solution was 

allowed to stir for 15 min, whereupon the reaction mixture was filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm), which afforded a large plug of bright red 

solid and a dark green filtrate. The volatiles were removed in vacuo to produce a bright 

green residue. This residue was extracted into 1:1 hexanes (0.5 mL)/benzene (0.5 mL) and 

stored at -25 °C for 24 h.  This resulted in the deposition of dark green blocks, which were 

isolated by decanting off the supernatant (22.1 mg, 66% yield). The red solid was identified 

as [K(18-crown-6)][CPh3]
54

 by its 
1
H NMR spectrum. Anal. Calcd for 

C41H65KN2NiO6S·0.5C6H6:  C, 62.11; H, 8.05; N, 3.29.  Found: C, 62.46; H, 8.09; N, 3.03.  

1
H NMR (400 MHz, 25 °C, benzene-d6): 28.06 (4H, Ar-mH), 26.98 (4H, CH(CH3)2), 14.89 

(12H, CH(CH3)2), 5.32 (12H, CH(CH3)2), 1.18 (24H, 18-crown-6), -9.60 (2H, Ar-pH), -

47.34 (6H, C(CH3)), -107.29 (1H, γ-H) ppm. Evans’ method (C6D6, 400 MHz, 25 °C, 0.036 



 

 53 

M): 2.68 B.M. IR (KBr Pellet, cm
-1

): 1657 (w), 1620 (w), 1585 (w), 1552 (s), 1527 (s), 1463 

(m), 1439 (m), 1407 (s), 1380 (s), 1359 (m), 1351 (s), 1319 (s), 1284 (m), 1251 (s), 1228 (s), 

1178 (m), 1159 (s), 1145 (m), 1113 (vs), 1056 (m), 1033 (m), 962 (s), 939 (m), 896 (w), 872 

(w), 838 (m), 798 (m), 763 (m), 740 (m), 721 (w), 698 (w), 684 (s), 667 (s), 630 (w), 619 

(m), 576 (m), 551 (w), 532 (m), 432 (m), 408 (m). 

2.4.8 Reaction of [K(18-crown-6)][L
Me

Ni
II

(S)] (2.4) with 18-crown-6 

To a deep green, C6D6 (0.5 mL) solution of 2.4 (15 mg, 0.0168 mmol) was added solid 

18-crown-6 (4.1 mg, 0.0168 mmol). There was no visible change observed upon addition; 

however, inspection of the 
1
H NMR spectrum of the resulting reaction mixture (Figure S6) 

shows that the 18-crown-6 resonance, which was initially broad and located at 1.18 ppm, 

sharpened and shifted to 2.87 ppm. 
1
H NMR (400 MHz, 25 °C, benzene-d6): 27.97 (4H, Ar-

mH), 26.89 (4H, CH(CH3)2), 14.83 (12H, CH(CH3)2), 5.27 (12H, CH(CH3)2), 2.87 (18-

crown-6), -9.57 (2H, Ar-pH), -47.33 (6H, C(CH3)), -107.16 (1H, γ-H) ppm.  

2.4.9 Synthesis of [K(18-crown-6)][L
tBu

Ni
II

(S)] (2.5) 

To a deep blue, cold (-25 °C), stirring solution of 2.2 (100 mg, 0.120 mmol) and 18-

crown-6 (63.5 mg, 0.240 mmol), in Et2O (5 mL), was added KC8 (32.8 mg, 0.242 mmol). 

This resulted in immediate formation of a dark red-brown mixture. This mixture was 

allowed to warm to room temperature with stirring, during which time the solution 

transformed to dark brown concomitant with the deposition of a red solid. This solution was 

allowed to stir for 10 min, whereupon the reaction mixture was filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm), which afforded a large plug of bright red 

solid and a dichroic filtrate, which was green to transmitted light and dark brown to reflected 

light. The volatiles were removed from the filtrate in vacuo to produce a dark brown residue. 
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This residue was extracted into toluene (2 mL) and the resulting solution was layered with 

isooctane (1 mL) and stored at -25 °C for 24 h. This resulted in the deposition of dark brown 

plates, which were isolated by decanting off the supernatant (113 mg, 88% yield). The red 

solid was identified as [K(18-crown-6)][CPh3]
54

 by its 
1
H NMR spectrum. Anal. Calcd for: 

C47H77KN2NiO6S: C, 63.00; H, 8.66; N, 3.13.  Found: C, 63.36; H, 8.96; N, 3.02.  
1
H NMR 

(400 MHz, 25 °C, benzene-d6): 28.53 (4H, Ar-mH), 26.42 (4H, CH(CH3)2), 16.25 (12H, 

CH(CH3)2), 6.76 (12H, CH(CH3)2), 0.28 (24H, 18-crown-6), -0.79 (18H, C(CH3)3) -18.97 

(2H, Ar-pH), -115.21 (1H, γ-H) ppm. Evans' Method (C6D6, 400 MHz, 25 °C, 0.039 M): 

3.06 B.M. IR (KBr Pellet, cm
-1

): 1629 (w), 1581 (w), 1537 (m), 1510 (m), 1466 (m), 1446 

(m), 1444 (m), 1411 (s), 1383 (m), 1376 (m), 1351 (m), 1319 (m), 1286 (w), 1251 (m), 1216 

(m), 1191 (w), 1159 (s), 1110 (vs), 1056 (w), 1033 (w), 960 (s), 943 (w), 834 (w), 806 (w), 

782 (w), 761 (w), 730 (w), 696 (w), 667 (s), 617 (w), 577 (w), 528 (w), 462 (w). 

2.4.10 Reaction of [L
tBu

Ni
II

(SCPh3)] (2.2) with one equiv of KC8 and 18-crown-6 

To a deep blue, cold (-25 °C), stirring solution of 2.2 (50 mg, 0.060 mmol) and 18-

crown-6 (15.8 mg, 0.060 mmol), in THF (2 mL), was added KC8 (8.2 mg, 0.060 mmol).  

This resulted in immediate formation of a dark green-brown mixture. This mixture was 

allowed to warm to room temperature with stirring.  After 10 min, the reaction mixture was 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), which afforded a 

plug of black solid (C8) and a dichroic (green to transmitted light and dark brown to 

reflected light) filtrate. The volatiles were removed in vacuo to provide a dark brown 

residue. This residue was extracted into Et2O (2 mL) and subsequent storage at - 25 °C for 1 

h resulted in the deposition of colorless, partially crystalline solid (13 mg). The dark brown 

supernatant was then filtered through a Celite column supported on glass wool (0.5 cm × 2 
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cm), concentrated to 0.5 mL in vacuo, and stored at -25 °C for 24 h. This resulted in the 

deposition of dark brown plates, which were isolated by decanting off the supernatant (38 

mg, 67% yield).  This material was identified as 2.5 by comparison of its 
1
H NMR spectrum 

with authentic material (Figure A 2.10).  The colorless product was identified as 

triphenylmethane by its 
1
H NMR spectrum (Figure A 2.11).

80
 Complex 2.5: 

1
H NMR (400 

MHz, 25 °C, benzene-d6): 28.40 (4H, Ar-mH), 26.29 (4H, CH(CH3)2), 16.12 (12H, 

CH(CH3)2), 6.72 (12H, CH(CH3)2), 0.30 (24H, 18-crown-6), -0.76 (18H, C(CH3)3) -18.85 

(2H, Ar-pH), -114.31 (1H, γ-H) ppm. Ph3CH: 
1
H NMR (400 MHz, 25 °C, benzene-d6): 

7.02-7.09 (15H, aryl), 5.37 (1H, HCPh3) ppm.   

2.4.11 Synthesis of [K(2,2,2-cryptand)][L
tBu

Ni
II

(S)] (2.6) 

To a deep blue, cold (-25 °C), stirring solution of 2.2 (88.5 mg, 0.106 mmol) and 2,2,2-

cryptand (80 mg, 0.212 mmol), in 1:10 THF/Et2O (5 mL total volume), was added KC8 (29 

mg, 0.215 mmol).  This resulted in immediate formation of a dark red-brown mixture. This 

mixture was allowed to warm to room temperature with stirring, during which time the 

solution transformed to dark brown concomitant with the deposition of a red solid. This 

solution was allowed to stir for 25 min, whereupon the reaction mixture was filtered through 

a Celite column supported on glass wool (0.5 cm × 2 cm), which afforded a large plug of 

bright red solid and a dichroic filtrate, which was green to transmitted light and dark brown 

to reflected light. The volatiles were removed in vacuo to provide a dark green-brown 

residue. This residue was extracted into hexanes (5 mL), filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), and concentrated to 2 mL in vacuo. Storage of this 

solution at -25 °C for 24 h resulted in the deposition of dark brown needles, which were 

isolated by decanting off the supernatant (95 mg, 89% yield). The red solid was identified as 
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[K(2,2,2-cryptand)][CPh3]
54

 by its 
1
H NMR spectrum. Anal. Calcd for C53H89KN4NiO6S:  

C, 63.14; H, 8.90; N, 5.56.  Found: C, 63.51; H, 8.87; N, 5.78.  
1
H NMR (400 MHz, 25 °C, 

benzene-d6): 27.45 (4H, Ar-mH), 24.25 (4H, CH(CH3)2), 16.46 (12H, CH(CH3)2), 6.56 

(12H, CH(CH3)2), 1.40 (12H, 2,2,2-cryptand), 0.97 (12H, 2,2,2-cryptand), -0.87 (18H, 

C(CH3)3), -1.04 (12H, 2,2,2-cryptand) -17.50 (2H, Ar-pH), -110.49 (1H, γ-H) ppm. Evans' 

Method (C6D6, 400 MHz, 25 °C, 0.041 M): 3.10 B.M. IR (KBr pellet, cm
-1

): 1629 (w), 1579 

(w), 1535 (m), 1519 (m), 1477 (m), 1457 (m), 1446 (m), 1412 (s), 1359 (m), 1353 (m), 1319 

(m), 1299 (w), 1259 (m), 1238 (m), 1223 (w), 1193 (w), 1157 (s), 1132 (s), 1105 (vs), 1079 

(s), 1056 (m), 1029 (m), 950 (m), 933 (m), 808 (m), 781 (w), 761 (w), 721 (w), 698 (w), 663 

(m), 615 (w), 575 (w), 526 (w), 455 (w), 418 (w), 406 (w). 

2.4.12 Isolation of [K(18-crown-6)][{L
Me

Ni}2(μ
2
-η

2
-η

2
-S2)] 2.10 from the decomposition 

of [K(18-crown-6)][L
Me

Ni
II

(S)] (2.4) 

Storage of a solution of [K(18-crown-6)][L
Me

Ni
II
(S)] (2.4, 15 mg, 0.0185 mmol) in a 

THF/toluene (0.5:0.5 mL) at - 25 °C for 24 h resulted in the deposition of bright red plates 

of  [K(18-crown-6)][{L
Me

Ni}2(μ
2
-η

2
-η

2
-S2)] which were isolated by decanting off the 

supernatant (6 mg, 49% yield). 
1
H NMR (400 MHz, 25 °C, THF-d8):  = 7.29 (s, 4H, Ar-H), 

6.55 (br s, 8H, Ar-H), 5.50 (s, 2H, γ-H),  5.12 (br s, 4H, CH(CH3)2), 4.79 (br s, 4H, 

CH(CH3)2), 3.60 (s, 24H, 18-crown-6), 1.28 (br s, 24H, CH(CH3)2), 1.02 (br s, 24H, 

CH(CH3)2), 0.77 (br s, 12H, C(CH3)) ppm. Crystallographic details: Triclinic, P-1, a = 

12.93(2), b = 13.03(3), c = 13.73(3),  = 104.98(5),  = 109.76(7),  = 97.99(6), V = 

2036(7) g/cm
3
, Z = 4.      
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2.4.13 Synthesis of [K(18-crown-6)][L
tBu

Ni
I
(SH)] (2.11) 

A NMR tube was charged with a brown solution of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) 

(15 mg, 0.0167 mmol) in C6D6 (0.6 mL) to this solution was added diphenylsilane (Ph2SiH2, 

3.1 μL, 0.0167 mmol).  After addition, the color of the mixture slowly changes to dark red. 

The reaction was followed by 
1
H NMR spectroscopy for 3 h, after which all of the starting 

material had been consumed. The NMR tube was then bought back into a glove box, 

whereupon the volatiles were removed from the filtrate in vacuo yielding a dark red residue 

that was washed with pentane (1 mL × 2). The residue was then extracted into Et2O (2 mL) 

and filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) yielding a 

dark red filtrate. The volume of this solution was reduced in vacuo to 0.25 mL causing some 

colorless solid to crash out. This solution was then filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm) and subsequent storage of the solution at -25 °C 

for 72 h resulted in the deposition of bright red blocks, which were isolated by decanting off 

the supernatant (4 mg, 27%). 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 24.49 (br s), 

20.53 (br s), 13.81 (br s), 4.05 (br s), 3.14 (br s), 3.05 (br s), -1.03 (br s) ppm. 

Crystallographic details: Triclinic, P-1, a = 12.653(6), b = 12.971(6), c = 17.775(8),  = 

78.11 (1),  = 82.90(1),  = 70.47(1), V = 2686(2) g/cm
3
, Z = 2. 

2.4.14 Synthesis of [L
tBu

Ni
II

(SSiMe3)] (2.12) 

A NMR tube was charged with a brown solution of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) 

(22 mg, 0.0250 mmol) in C6D6 (0.6 mL) to this solution was added Me3SiOTf (4.52 μL, 

0.0250 mmol).  After addition, the color of the mixture quickly transformed to dark red, 

concomitant with the deposition of a fine white precipitate ([K][OTf]). A 
1
H NMR spectrum 

taken 10 minutes after addition, confirmed complete consumption of 2.5. The NMR tube 
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was then bought back into a glove box, whereupon the reaction mixture was filtered through 

a Celite column supported on glass wool (0.5 cm × 2 cm).  Volatiles were removed from the 

filtrate in vacuo, and the resulting dark red residue was extracted into hexanes (1 mL) and 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm). This yielded a 

dark red filtrate. The volume of this solution was reduced in vacuo to 0.25 mL. Storage of 

the solution at -25 °C for 48 h resulted in the deposition of dark red plates, which were 

isolated by decanting off the supernatant (11 mg, 70%). 
1
H NMR (400 MHz, 25 °C, 

benzene-d6): δ = 53.56 (s, 4H, Ar-mH, dipp), 34.38 (s, 4H, CH(CH3)2, dipp), 8.61 (s, 12H, 

CH(CH3)2, dipp), 8.57 (s, 12H, CH(CH3)2, dipp), 5.26 (s, 18H, C(CH3)3), 3.35 (s, 9H, 

Si(CH3)3),  -45.1 (2H, Ar-pH, dipp) ppm. Note: the γ-H resonance was not observable in the 

range of 250 to -250 ppm. 

2.4.15 X-ray Crystallography 

Data for 2.1-2.6 and 2.12 were collected on a Bruker KAPPA APEX II diffractometer 

equipped with an APEX II CCD detector using a TRIUMPH monochromator with a Mo  α 

X-ray source (α = 0.71073 Å).  The crystals were mounted on a cryoloop under Paratone-N 

oil, and all data were collected at 100(2) K using an Oxford nitrogen gas cryostream.  Data 

were collected using ω scans with 0.5° frame widths.   rame exposures of 10 seconds were 

used for 2.1 and 2.6.  Frame exposures of 15 seconds were used for 2.2 and 2.4 and 2.12. 

Frame exposures of 20 seconds were used for 2.5. Data collection and cell parameter 

determination were conducted using the SMART program.
81

  Integration of the data frames 

and final cell parameter refinement were performed using SAINT software.
82

  Absorption 

correction of the data was carried out using the multi-scan method SADABS.
83

  Subsequent 

calculations were carried out using SHELXTL.
84

  Structure determination was done using 
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direct or Patterson methods and difference Fourier techniques.  All hydrogen atom positions 

were idealized, and rode on the atom of attachment.  Structure solution, refinement, 

graphics, and creation of publication materials were performed using SHELXTL.
84

  

In complex 4, the C8H18 solvate molecule exhibited mild positional disorder; however, 

alternate positions were not found.  The C–C bonds were constrained to 1.5 Å using the 

DFIX command.  Hydrogen atoms were not added to disordered carbon atoms. Further 

crystallographic details for complexes 2.1-2.6 and 2.12 can be found in Tables Table 2.2 and 

Table 2.3. 
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Table 2.2. X-ray Crystallographic Data for Complexes 2.1, 2.2, and 2.4. 

 2.1·0.5C6H6 2.2·0.33C5H12  2.4·2.5C6H6 

empirical formula C48H56N2NiS·0.5C6H6 C54H68N2NiS·0.33C5H12 C41H65KN2NiO6S·2.5C6H6 

crystal habit, color Block, Purple Block, Blue Block, Green 

crystal size (mm) 0.15  0.15 × 0.15 0.2 × 0.15 × 0.05 0.7 × 0.7 × 0.25 

crystal system Monoclinic triclinic Triclinic 

space group P2(1)/c P-1 P-1 

volume (Å
3
) 4281.6(3) 7264(3) 2821.1(5) 

a (Å) 13.0333(6) 12.686(3) 13.194(1) 

b (Å) 16.6343(7) 19.394(5) 13.298(1) 

c (Å) 19.8726(9) 30.321(8) 16.695(2) 

α (deg) 90 88.294(5) 88.621(2) 

β (deg) 96.392(2) 80.235(5) 74.520(2) 

γ (deg) 90 81.137(5) 88.213(2) 

Z 4 2 2 

formula weight (g/mol) 790.77 859.88 1007.09 

density (calculated) 

(Mg/m
3
) 

1.227 1.179 1.186 

absorption coefficient 

(mm
-1

) 

0.539 0.481 0.502 

F000 1692 2784 1082 

total no. reflections 26749 75714 24286 

unique reflections 8819 29695 12841 

Rint 0.0421 0.1482 0.0227 

final R indices (I >2σ(I)] 
R1 = 0.0328 

wR2 = 0.0729 

R1 = 0.0698 

wR2 = 0.0944 

R1 = 0.0397 

wR2 = 0.1098 

largest diff. peak and 

hole (e
-
 A

-3
) 

0.311 and -0.353  0.425 and -0.446 0.604 and -0.531 

GOF 1.013 0.963 0.860 
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Table 2.3. X-ray Crystallographic Data for Complexes 2.5, 2.6, and 2.12. 

 2.5·0.5C8H18 2.6 2.12 

empirical formula C47H77KN2NiO6S·0.5C8H18 C53H89KN4NiO6S C38H62N2NiSSi 

crystal habit, color Plate, Brown Plate, Brown Plate, Dark  Red 

crystal size (mm) 0.15 × 0.1 × 0.05 0.5 × 0.4 × 0.1 0.2 × 0.1 × 0.05 

crystal system Monoclinic Monoclinic Monoclinic 

space group P2(1)/n P2(1)/n P2(1)/n 

volume (Å
3
) 5911.2(5) 5606.2(5) 7787.1(8) 

a (Å) 18.5580(9) 12.7125(6) 15.3665(9) 

b (Å) 16.8220(8) 22.493(1) 26.029(2) 

c (Å) 19.055(1) 20.053(1) 19.619(1) 

α (deg) 90.00 90 90 

β (deg) 96.441(3) 102.126(4) 97.105(4) 

γ (deg) 90.00 90 90 

Z 2 4 8 

formula weight (g/mol) 1906.14 1008.15 665.74 

density (calculated) (Mg/m
3
) 1.071 1.194 1.136 

absorption coefficient (mm
-1

) 0.475 0.506 0.609 

F000 2068 2184 2896.0 

total no. reflections 25946 35206 15946 

unique reflections 12111 11559 8254 

Rint 0.1058 0.1187 0.1217 

final R indices (I >2σ(I)] R1 = 0.0845 

wR2 = 0.2132 

R1 = 0.0601 

wR2 = 0.1175 

R1 = 0.0591 

wR2 = 0.1240 

largest diff. peak and hole (e
-
 

A
-3

) 

1.279 and -0.485 0.816 and -0.590 0.343 and -0.411 

GOF 1.012 0.964 0.946 
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2.5 Appendix 

2.5.1 NMR Spectra  

 

Figure A 2.1. 
1
H NMR spectrum of [L

Me
Ni

II
(SCPh3)] (2.1) in benzene-d6.  (*) indicates the 

presence of Et2O. 

* 

* 
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Figure A 2.2. 
1
H NMR spectrum of [L

tBu
Ni

II
(SCPh3)] (2.2) in benzene-d6.  (*) indicates the 

presence of hexanes and pentane. 

* 

* 



 

 64 

 

Figure A 2.3. Variable temperature 
1
H NMR spectra of [L

tBu
Ni

II
(SCPh3)] (2.2) in toluene-

d8.  

298 K 

273 K 

253 K 

233 K 

213 K 
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Figure A 2.4. Temperature dependent, solution magnetic susceptibility of complex 2.2 as 

determined by Evans’ method. 
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Figure A 2.5. 
1
H NMR spectrum of [K(18-crown-6)][L

Me
Ni

II
(S)] (2.4) in benzene-d6.  (*) 

indicates the presence of pentane and (◊) indicates the presence of HMDSO. 

* 
◊ 
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Figure A 2.6. 
1
H NMR spectrum of [K(18-crown-6)][L

Me
Ni

II
(S)] (2.4) in benzene-d6.  (*) 

indicates the presence of hexanes. 

* 

* 
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Figure A 2.7. 
1
H NMR spectrum of [K(18-crown-6)][{L

Me
Ni}2(μ

2
-η

2
-η

2
-S2)] (2.10)  in 

THF-d8.  (*) indicates the presence of hexanes and (◊) indicates the presence of Et2O. 

 

* 
◊ 

◊ 
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Figure A 2.8. Partial 
1
H NMR spectrum of the addition of 1 equiv of 18-crown-6 to [K(18-

crown-6)][L
Me

Ni
II
(S)] (2.4) in benzene-d6. (▪) indicates the 18-crown-6 resonance, (*) 

indicates the presence of hexanes and (◊) indicates the presence of Et2O. 

* * ◊ ▪ 

▪ 

Before addition 

After addition 
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Figure A 2.9. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni

II
(S)] (2.4) in benzene-d6.  (*) 

indicates the presence of isooctane. 

* 
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Figure A 2.10. 
1
H NMR spectrum of [K(2,2,2-cryptand)][L

tBu
Ni

II
(S)] (2.6) in benzene-d6.  

(*) indicates the presence of toluene. 

* 
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Figure A 2.11. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni

I
(SH)] (2.11) in benzene-d6.  

(*) indicates the presence of unidentified diamagnetic impurities. 

 

* 
* * * * 

* * 
* 

* 

* 

* 

* 
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Figure A 2.12. 
1
H NMR spectrum of [L

tBu
Ni

II
(SSiMe3)] (2.12) in benzene-d6. (*) indicates 

the presence of hexane. 

 

* 
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Figure A 2.13. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni

II
(S)] (2.4), formed by reaction 

of 2.2 with 1 equiv of KC8.  (*) indicates the presence of isooctane. 

* 



 

 75 

 

Figure A 2.14. Partial 
1
H NMR spectrum of triphenylmethane, formed as a by-product upon 

reaction of 2.2 with 1 equiv of KC8. (*) indicates the presence of toluene.  

* 
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2.5.2 IR Spectra 

 

Figure A 2.15. Partial IR spectra of complexes 2.1 (red) and 2.2 (blue) (KBr pellets). 

 

Figure A 2.16. Partial IR spectra of complexes 2.4 (blue) 2.5 (red), and 2.6 (green) (KBr 

pellets). 
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2.5.3 Magnetization Data 

 

 

Figure A 2.17. Temperature dependent, solid state magnetic susceptibility data for [K(18-

crown-6)][L
Me

Ni
II
(S)] (2.4). χdia = -5.518 × 10

-4
 cm

3
·mol

-1
, mass = 42.0 mg, M = 888.94 

g/mol. Variables used to fit the data were g, D, and Temperature Independent 

Paramagnetism (TIP). Simulation of the data with JulX provided the following fit 

parameters: g = 1.981, D = 90.506 cm
-1

, and TIP = 593.7 × 10
-6

 emu.  Data is shown as 

circles and fits are shown as red lines. 
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Figure A 2.18. Temperature dependent, solid state magnetic susceptibility data for [K(18-

crown-6)][L
tBu

Ni
II
(S)] (2.5). χdia = -6.143 × 10

-4
 cm

3
·mol

-1
, mass = 24.0 mg, M =953.11 

g/mol. Variables used to fit the data were g, D, and Temperature Independent 

Paramagnetism (TIP). The data was also fit with a minor S = 1 impurity (3.5%). Simulation 

of the data with JulX provided the following fit parameters: g = 2.091, D = 88.358 cm
-1

, and 

TIP = 243.1 × 10
-6

 emu.  Data is shown as circles and fits are shown as red lines. 
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3.1 Introduction 

The synthesis of late transition metal (groups 9-11) terminal chalcogenides (especially 

oxygen and sulfur) has long been a target of synthetic inorganic chemists.
1
 This class of 

compounds tends to be highly reactive,
2–4

 and as a result, only a few well characterized late 

metal terminal chalcogenides are known, including [Ir
V
(O)(Mes)3] (Mes = 2,4,6-Me3C6H2) 

and [Pt
IV

(O)(PCN)][BF4] (PCN = C6H3[CH2P(tBu)2](CH2CH2NMe2)).
5,6

   A number of late 

transition metal carbene (CR2
2-

),
7
 nitrene (NR

2-
),

8–15
 nitride (N

3-
),

16,17
 and phosphinidene 

(PR
2-

)
18,19

 complexes have also been reported in recent years. 
20,21

  While a few of these 

complexes have been isolated, they tend to be extremely reactive, and often can only be 

observed spectroscopically.
17,22–24

  Nonetheless, it is clear that synthetic chemists are now 

beginning to identify the combination of ligand requirements and synthetic procedures that 

can successfully generate late-metal ligand multiple bonds.   

In Chapter 2, I detailed the synthesis of  Ni
II
 sulfides, [K(L)][L

R
Ni

II
(S)] (2.4, R = Me, L 

= 18-crown-6; 2.5, R = 
t
Bu, L = 18-crown-6; 2.6, R = 

t
Bu, L = 2,2,2-cryptand),

25
 by 2e

-
 

reduction of Ni
II
 triylthiolate complexes, [L

R
Ni

II
(SCPh3)] (2.1, R = Me; 2.2, R = 

t
Bu), using 

KC8.  This reaction results in the selective cleavage of the S-C bond and release of [CPh3]
-
, a 

strategy that the Hayton group has coined “reductive deprotection”.  A preliminary reactivity 

study, highlighted in Chapter 2, shows that 2.5 can react with Me3SiOTf to form a 

trimethylsilanethiolato complex [L
tBu

Ni
II
(SSiMe3)] (2.12), demonstrating the nucleophilicity 

of the sulfide ligand. Importantly, however, the presence of the coordinating [K(L)]
+
 cation 

likely tempers the reactivity of the sulfide ligand, and possibly limits the extent of reactivity 

of this functional group.  Consequently, I have sought to perform the “reductive 
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deprotection” reaction with a reducing agent that generates a non-coordinating cation, and, 

in particular, I identified Cp*2Co as an ideal choice for this application.  

The research in this chapter details the reductive deprotection of [L
tBu

Ni
II
(SCPh3)] (2.2) 

with Cp*2Co, which unexpectedly leads to the generation of a Ni
I
 cobaltocenium thiolate 

complex, [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] that likely forms via the reaction of a putative 

nickel sulfide, [Cp*2Co][ L
tBu

Ni
II
(S)], with deprotonated decamethylcobaltocenium, 

[CoCp*(C5Me4=CH2)]. 

3.2 Results and Discussion 

3.2.1 Synthesis of [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] (3.1)  

Addition of 2 equiv of Cp*2Co to a stirring, deep blue solution of [L
tBu

Ni
II
(SCPh3)] (2.2) 

in cold (-25 °C) THF, results in a rapid color change to deep red-brown (Scheme 3.1). The 

reaction mixture was stirred for 3 h, and following work-up, [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] 

(3.1) was successfully isolated as dark brown plates in 69% yield.  Interestingly, the reaction 

of [L
tBu

Ni
II
(SCPh3)] with Cp2Co results in no reaction, demonstrating that this reagent is not 

sufficiently reducing to initiate the required C-S bond cleavage. 

Scheme 3.1 Synthesis of 3.1  

 

Complex 3.1 crystallizes in the monoclinic space group P21/c, and its solid state 

molecular structure is shown in Figure 3.1. It features a three coordinate Ni
I
 center ligated 

by a cobaltocenium thiolate moiety. The Ni-S and C-S bond lengths of 2.181(2) Å and 
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1.870(7) Å, respectively, are both consistent with single bonds.
25,26

 For comparison, the Ni-S 

bond length in the starting material is markedly shorter (2.0869(1) Å).
25

  The Ni-N bond 

lengths in 3.1 (1.901(4) and 1.902(5) Å) are also longer than those found in the Ni
II
 starting 

material (1.863(3) and 1.862(3) Å), consistent with the larger ionic radius anticipated for Ni
I
 

vs. Ni
II
. Moreover, the Ni-N bond lengths in 3.1 are consistent with those of other L

tBu
Ni

I
 

complexes.
26,27

  Finally, the average distance from the Co atom to the ring carbon atoms of 

the Cp* ligand is 2.033 Å, which is characteristic of Cp*Co
III

 complexes.
28,29

  

The 
1
H NMR spectrum of 3.1 in C6D6 is typical of those reported for other Ni

I 
β-

diketiminate complexes.
26,27,30

  It features a very broad resonance at -0.8 ppm, which is 

assignable to the 
t
Bu groups on the backbone of the β-diketiminate ligand.  Additionally, a 

broad singlet at 0.7 ppm is assignable methyl groups of the Cp* ligand attached to Co
III

, 

while resonances at 0.3 and 3.9 ppm are assignable to the two unique methyl environments 

of the SCH2Me4C5 ring.  Complex 3.1 exhibits an effective magnetic moment of 1.67 B.M., 

as determined by Evans’ method.
31

  This value is consistent with that anticipated for a Ni
I
 

complex with an S = 1/2 ground state.
26,27
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Figure 3.1. ORTEP drawing of [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)]·C4H10O (3.1·C4H10O) 

shown with 50% thermal ellipsoids. Hydrogen atoms and a C4H10O solvate molecule have 

been omitted for clarity. Selected metrical parameters: Ni1-N1 1.910(4), Ni1-N2 1.902(5), 

Ni1-S1 2.181(2), S1-C1 1.870(7), C1-C37 1.498(8), N1-Ni1-N2 98.2(2)°, N1-Ni1-S1 

130.5(2)°, N2-Ni1-S1 131.2(1)°, Ni1-S1-C1 107.2(2)°. 

3.2.2 Probing the formation of [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] (3.1) using 

1
H NMR 

Spectroscopy    

In an effort to better understand the formation of 3.1, I monitored the reaction of 

[L
tBu

Ni
II
(SCPh3)] with Cp*2Co by 

1
H NMR spectroscopy.  Addition of 2 equiv of Cp*2Co to 

[L
tBu

Ni
II
(SCPh3)] in THF-d8 in a NMR tube, results in a rapid color change from deep blue 

to dark red-brown. A 
1
H NMR spectrum of the reaction mixture, taken 5 min after the 

addition of Cp*2Co, reveals the complete consumption of both [L
tBu

Ni
II
(SCPh3)] and 

Cp*2Co, concomitant with the formation of a new Ni
II
 complex (Figure 3.2, Figures A 3.1-
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3.2).  I have tentatively identified this complex as the Ni
II
 sulfide, [Cp*2Co][L

tBu
Ni

II
(S)] 

(3.2). My assignment was made on the basis of the similarity of its 
1
H NMR resonances with 

those of the previously characterized Ni
II 

sulfide, [K(18-crown-6)][L
tBu

Ni
II
(S)].

25
   For 

example, complex 3.2 features resonances at -101.97, -1.37, and 15.93 ppm, which are 

assignable to the γ-proton of the L
tBu

 ligand, its 
t
Bu substituents, and one environment of its 

diastereotopic 
i
Pr methyl groups, respectively.  For comparison, these resonances appear at -

115.21, -0.88, and 16.25 ppm, respectively, for the original Ni
II
 sulfide, [K(18-crown-

6)][L
tBu

Ni
II
(S)].

25
  Also present in the 5 min spectrum are resonances assignable to the Co

I
 

fulvene complex, [CoCp*(C5Me4CH2)] (3.3) (Figure 3.2, Figures A 3.1-3.2),
32

 as well as 

resonances assignable to HCPh3.
33

   

After 30 min, the resonances assignable to complexes 3.2 and 3.3 decrease in intensity, 

while those assignable to complex 3.1 begin to appear. After 3 h, only trace amounts of 

complex 3.2 can be detected in the 
1
H NMR spectrum of the reaction mixture, while those 

assignable to 3.1 have grown in intensity.  Curiously, I also observe a broad resonance at 

21.0 ppm in the 3 h spectrum, which I have assigned to Cp*2Co.  These spectra also feature 

a broad singlet at about -1.6 ppm, which I have assigned to the 
t
Bu groups of an as-yet-

unidentified Ni
I
 β-diketiminate complex.  This assignment was made on the basis of its 

chemical shift along with the broadness of the resonance.  This complex is present in an 

approximately 2:5 ratio, relative to complex 3.1 (Figure A 3.7). Unfortunately, my efforts to 

isolate and structurally characterize this material have been unsuccessful; however, given 

the similarity of its 
1
H NMR spectrum to that of 3.1, I conclude that it is similar in structure, 

e.g., [L
tBu

Ni
I
(X)]

-
. 
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Figure 3.2. 
1
H NMR spectra of the reaction of [L

tBu
Ni

II
(SCPh3)] (2.2) with two equiv. of 

Cp*2Co in THF-d8. (*) indicates the presence of 3.2, (⌂) indicates the presence of Cp*2Co, 

(†) indicates the presence of an unknown Ni
I
-containing product, and (♠) indicates the 

presence of 3.1. 

3.2.3 Mechanistic Considerations 

To rationalize my observations, I hypothesize that reduction of [L
tBu

Ni
II
(SCPh3)] (2.2) 

with two equiv of Cp*2Co results in formation of 3.2 and one equiv of [Cp*2Co
III

][CPh3] 

(Scheme 3.2).  Deprotonation of [Cp*2Co]
+
 by [CPh3]

-
 subsequently generates 

[CoCp*(C5Me4CH2)] (3.3)
32

 and HCPh3. Finally, coupling of the nucleophilic terminal 

sulfide ligand in 3.2 with the methylene carbon of 3.3 results in formation complex 3.1, 

concomitant with reduction of the [Cp*2Co]
+
 counterion.  The latter observation is 

somewhat surprising given the high reduction potential of [Cp*2Co] (1.94 V vs. Fc/Fc
+
 in 

* * 

* * 

* 

* 

† † 
† 

⌂ 

⌂ 

⌂ 

5 min 

30 min 

1.5 hr 

3 hr 

♠ 

♠ 
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CH2Cl2).
34

  Formally, the C-S bond forming reaction results in a 2e
-
 oxidation of the Co

I
 

center in 3.3.  One of the electrons is transferred to the Ni center in [L
tBu

Ni
II
(S)]

-
, while the 

other is transferred to [Cp*2Co
III

]
+
, reforming Cp*2Co

II
.   

For comparison, there are several other examples of C-S bond formation mediated by 

nucleophilic metal sulfides.
35–40

 For example, [ReS4]
-
 reacts with norbornene to form the 

dithiolate complex, [ReS2(S2C7H10)]
-
. Similarly, [Mo3(μ3-S)(μ-S)3(H2O)9]

4+
 reacts with 

alkynes to generate a dithiolene ligand by formation of two new C-S bonds.
41

 Also of note, 

[CpMo(μ-S)]2(S2CH2) has been reported to catalyze the hydrogenation of acetylene and CS2, 

via a dithiolene intermediate.
42

 My proposed reaction pathway is also consistent with the 

known chemical reactivity of [Cp*Co(C5Me4CH2)] (3.3).  For example, reaction of 

[Cp*Co(C5Me4CH2)] (3.3) with 1-mesityl-2,3,4,5-tetraphenylborole (MesBC4Ph4) results in 

rapid C-B bond formation and generation of a zwitterionic cobaltocenium borate, 

[Cp*Co(C5Me4CH2B(Mes){C4Ph4}].
32

 Similarly, reaction of an [Fe8S7] cluster with 

[Cp*Co(C5Me4CH2)] has been shown to result in Fe-C bond formation.
28
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Scheme 3.2 Proposed mechanism for the formation of 3.1   

 

 To test my mechanistic hypothesis, I monitored the reaction of independently 

prepared [Cp*2Co][PF6] with [K(18-crown-6)][CPh3].  Upon mixing in pyridine I observe 

rapid formation of 3.3 and HCPh3 (Scheme 3.3) (Figure A 3.6).  Given this result, in 

addition to the appearance of 3.3 in the in situ 
1
H NMR experiment, I believe that the 

proposed intermediacy of [Cp*Co(C5Me4CH2)] (3.3) in the formation of 3.1 is reasonable. 

Scheme 3.3 Deprotonation of [Cp*2Co
III

]
+
 with [CPh3]

- 
 

 

I also monitored the reaction of [L
tBu

Ni
II
(SCPh3)] with Cp*2Co by 

1
H NMR 

spectroscopy in the presence of an internal standard. Under these conditions, the yield of 

HCPh3 was determined to be 88% (Figure A 3.5), which is also consistent with the proposed 

mechanism.   
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The solution phase redox properties of 3.1 were investigated by cyclic voltammetry.  In 

THF at room temperature, the cyclic voltammogram of 3.1 displays one quasi-reversible 

redox feature and one reversible redox feature, at -2.20 V and -1.38 V (vs. Fc/Fc
+
), 

respectively (Figure 3.3).  The feature at -2.20 V is tentatively attributed to the Co
II
/Co

III
 

redox couple, while the feature at -1.38 V is tentatively attributed to the Ni
II
/Ni

I
 redox 

couple.  The Co
II
/Co

III
 couple was assigned to be quasi-reversible on the basis of the large 

ip,a/ip,c ratios observed at high scan rates (Table 3.2). In support of my assignments, I note 

that my Ni
II
/Ni

I
 redox potential agrees well with those previously reported for [L

tBu
Ni

II
(SR)] 

(R = Et, -1.40 V; Ph -1.60 V, vs. Fc/Fc
+
).

26
 In addition, the Co

III
/Co

II
 couple in 3.1 is more 

negative than that reported for [Cp*2Co]
0/+

 (-1.94 V vs. Fc/Fc
+
 in CH2Cl2),

34
 demonstrating 

that [3.1]
-
, in fact, can reduce [Cp*2Co]

+
 as proposed in Scheme 3.2.  
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Figure 3.3. Cyclic voltammogram of complex 3.1 (200 mV/s, vs. Fc/Fc
+
).  Measured in 

THF with 0.1 M [NBu4][PF6] as the supporting electrolyte. (*) indicates a feature tentatively 

assigned to Cp*2Co, which is present as a minor impurity. 

Finally, to explore the generality of this transformation, I monitored the reaction of 

[K(18-crown-6)][L
tBu

Ni
II
(S)] with a variety of olefins, including cyclohexene, norbornene, 

and styrene, by 
1
H NMR spectroscopy.  In each case, I observe no reaction, demonstrating 

that common olefins, alone, will not couple with the sulfide ligand in [L
tBu

Ni
II
(S)]

-
.  

Likewise, addition of 3.3 to [K(18-crown-6)][L
tBu

Ni
II
(S)] also results in no reaction.  Thus, 

it appears that the C-S bond forming reaction likely requires the presence of both a redox-

active counter-cation (i.e., [Cp*2Co]
+
) and a formally redox-active olefin (i.e., 

[Cp*Co(C5Me4CH2)]) to proceed.   

CoIII/CoII 

NiII/NiI 

* 



 

 98 

3.3 Summary  

In this chapter, I have demonstrated that the reduction of the nickel 

triphenylmethythiolate complex [L
tBu

Ni
II
(SCPh3)] (2.2) with Cp*2Co generates a transient 

Ni
II
 sulfide complex, [Cp*2Co][L

tBu
Ni

II
(S)] (3.2). A subsequent deprotonation of [Cp*2Co]

+
 

by [CPh3]
-
 gives the Co

I
 fulvenyl complex, [Cp*Co(C5Me4CH2)] (3.3), which couples with 

the sulfide ligand in [Cp*2Co][L
tBu

Ni
II
(S)] to form a Ni

I
 cobaltocenium thiolate complex, 

[L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] (3.1), concomitant with the reduction of the cobaltocenium 

cation.  

Due to unexpected side reactions, this application of the reductive deprotection protocol 

did not lead to the isolation of the desired terminal nickel sulfide complex. Nevertheless, this 

result expands the scope of late metal sulfide reactivity from the preliminary study discussed 

in Chapter 2, and suggests that the sulfide ligand in these complexes may be capable of other 

S-C bond forming reactions. This result also demonstrates that “reductive deprotection” is 

possible with a variety of reducing agents, not just KC8 as previously demonstrated,
25,43,44

 

suggesting a broader scope of this transformation than hitherto recognized. 

3.4 Experimental Procedures 

3.4.1 General Methods 

All reactions and subsequent manipulations were performed under anaerobic and 

anhydrous conditions under an atmosphere of nitrogen.  Hexanes, tetrahydrofuran, diethyl 

ether (Et2O), and toluene were dried using a Vacuum Atmospheres DRI-SOLV Solvent 

Purification system and stored over 3Å sieves for 24 h prior to use. Benzene-d6, THF-d8, 

pyridine-d5, and pentane, were dried over 3Å molecular sieves for 24 h prior to use. 

Decamethylcobaltocene (Cp*2Co) was purified by recrystallization from hexanes at -25 °C. 



 

 99 

[L
tBu

Ni
II
SCPh3], [K(18-crown-6)][L

tBu
Ni(S)], [Cp*2Co][PF6], (CH2C5Me4)Co(Cp*), and 

[K(18-crown-6)][CPh3] were synthesized according to the previously reported 

procedures.
25,32,43,45

 All other reagents were purchased from commercial suppliers and used 

as received.  

1
H and 

19
F NMR spectra, and Evans’ method determinations,

31
 were recorded on a 

Agilent Technologies 400-MR DD2 400 MHz spectrometer or a Varian UNITY INOVA 

500 MHz spectrometer. 
1
H and 

19
F NMR spectra were referenced to external SiMe4 using 

the residual protio solvent peaks as internal standards.
46,47

 IR spectra were recorded on a 

Nicolet 6700 FT-IR spectrometer. Electronic absorption spectra were recorded on a 

Shimadzu UV3600 UV-NIR Spectrometer. Elemental analyses were performed by the 

Micro-Mass Facility at the University of California, Berkeley. 

3.4.2 Cyclic Voltammetry Measurements. 

CV experiments were performed with a CH Instruments 600c Potentiostat, and the data 

were processed using CHI software (version 6.29).  All experiments were performed in a 

glove box using a 20 mL glass vial as the cell. The working electrode consisted of a 

platinum disk embedded in glass (2 mm diameter), the counter electrode and the reference 

electrode were a platinum wire.  Solutions employed for CV studies were typically 1 mM in 

analyte, and 0.1 M in [NBu4][PF6].  All potentials are reported versus the [Cp2Fe]
0/+

 couple. 

3.4.3 Preparative scale reaction of [L
tBu

Ni
II

(SCPh3)] with Cp*2Co to yield 

[L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] (3.1) 

To a deep blue, cold (-25 °C), stirring solution of [L
tBu

Ni
II
(SCPh3)] (50.0 mg, 0.0598 

mmol) in THF (2 mL) was added Cp*2Co (39.4 mg, 0.1196 mmol) in cold (-25 °C) THF (1 

mL). This resulted in immediate formation of a dark red-brown solution. This mixture was 
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allowed to warm to room temperature with stirring. During this time the solution 

transformed to dark brown. This solution was allowed to stir for 3 h, whereupon the reaction 

mixture was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), 

which afforded a small plug of black solid and a brown-red filtrate. The volatiles were 

removed from the filtrate in vacuo to produce a dark brown residue. This residue was 

washed with hexanes (1 mL × 2), extracted into toluene (1 mL), filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm), concentrated to ca. 0.5 mL, and layered 

with pentane (1 mL).  Storage of this solution at -25 °C for 48 h resulted in the deposition of 

dark brown needles of [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] (3.1), which were isolated by 

decanting off the supernatant (17 mg). The supernatant was concentrated in vacuo to 0.25 

mL and layered with pentane (2 mL). Further storage of this solution at -25 °C for 48 h led 

to the deposition of more crystals (21 mg), which were isolated by decanting off the 

supernatant (combined yield: 38 mg, 69%). Anal. Calcd for: C55H82CoN2NiS: C, 71.73; H, 

8.97; N, 3.04.  Found: C, 71.90; H, 8.80; N, 2.73.  
1
H NMR (400 MHz, 25 °C, C6D6):   

20.4 (br s), 13.0 (br s), 3.9 (br s, 6H, CH2C5Me4, CH3), 0.7 (br s, 15 H, Cp*), 0.3 (br s, 6H, 

CH2C5Me4, CH3), -0.8 (br s, 18 H, C(CH3)3), -12.0 (br s).  Of the eleven unique proton 

enviornments expected for 3.1, only seven resonances are observed in the 
1
H NMR 

spectrum. We suggest that the unobserved resonances are either too broad to be obsevered or 

are overlapping with other peaks. Evans’ method (C6D6, 400 MHz, 25 °C, 0.0054 M): 1.67 

B.M. IR (KBr Pellet, cm
-1

): 1624 (w), 1510 (m), 1477 (m), 1446 (s), 1414 (s), 1385 (s), 

1363 (s), 1319 (s), 1254 (w), 1219 (w), 1192 (w), 1182 (w), 1155 (m), 1095 (m), 1059 (w), 

1024 (m), 937 (w), 920 (w), 897 (w), 852 (w), 802 (w), 781 (m), 762 (m), 729 (m), 700 (s), 
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665 (w), 638 (m), 619 (w), 590 (w), 467 (m), 447 (m), 407 (w). UV-vis (C6H6, 1.0 mM, 25 

°C): 443 nm ( = 5770 L·mol
-1

·cm
-1

), 527 nm ( = 1020 L·mol
-1

·cm
-1

).   

3.4.4 NMR scale reaction of [L
tBu

Ni
II

(SCPh3)] with Cp*2Co in THF-d8 

To a J-Young NMR tube containing [L
tBu

Ni
II
(SCPh3)] (30 mg, 0.0359 mmol) in THF-d8 

(0.5 mL) was added Cp*2Co (23.6 mg, 0.0718 mmol). After addition, the color of the 

solution quickly changed from blue to red-brown. An in situ 
1
H NMR spectrum taken 

shortly after addition of Cp*2Co, revealed the presence of [Cp*2Co][L
tBu

Ni
II
(S)] (3.2), 

HCPh3, an unidentified Ni
I
 containing product (3.I), and (CH2Me4C5)Co(Cp*) (3.3). An in 

situ 
1
H NMR spectrum taken after 3 h revealed the disappearance of peaks assignable to 3.2 

and a decrease in the intensity of the resonances assignable to 3.3, and appearance of new 

resonances assignable to 3.1 and free Cp*2Co. The NMR tube was then bought into a 

glovebox and the solution was transferred to a 20 mL scintillation vial. The volatiles were 

removed in vacuo. The resulting brown residue was rinsed with hexanes (1 mL × 2), the 

rinsings were collected, and the volatiles were removed in vacuo to give a brown solid. A 
1
H 

NMR spectrum of this material, taken in C6D6, revealed the presence of HCPh3, as indicated 

by the appearance of the methine proton resonance at 5.50 ppm,
33

 and Cp*2Co, as indicated 

by a broad resonance at 46.7 ppm. The hexanes-insoluble solid was then extracted into THF 

(1 mL), filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), 

concentrated to ca. 0.25 mL, and layered with Et2O (2 mL).  Storage of this solution at -25 

°C for 72 h resulted in the deposition of dark brown plates of 

[L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)], which were isolated by decanting off the supernatant (22 

mg, 67% yield). 
1
H NMR (400 MHz, 25 °C, THF-d8): 5 min:  25.75 (s, 3.2), 25.24 (s, 3.2), 

19.6 (br s, 3.I), 15.93 (s, 3.2), 12.5 (br s, 3.I), 7.3-7.05 (15 H, HCPh3, Ar-H), 6.13 (s, 3.2), 
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5.57 (s, 1H, HCPh3), 2.59 (br s, 2H, 3.3, CH2), 1.78 (br s, 6H, 3.3, CH3), 1.49 (br s, 15H, 

3.3, Cp* CH3), 1.03 (br s, 6H, 3.3, CH3), 0.2 (br s, 3.I), -1.37 (s, 3.2), -1.6 (br s, I), -11.3 (br 

s, 3.I), -15.93 (s, 3.2), -101.97 (s, 3.2). 30 min:  25.71 (s, 3.2), 25.23 (s, 3.2), 19.6 

(overlapping br s, 3.1 and 3.I), 15.92 (s, 3.2), 12.5 (overlapping br s, 3.1 and 3.I), 7.6 (br s, 

Cp*2Co), 7.3-7.05 (15 H, HCPh3, Ar-H), 6.13 (s, 3.2), 5.57 (s, 1H, HCPh3), 2.6 (br s, 2H, 

3.3, CH2), 1.8 (br s, 6H, 3.3, CH3), 1.5 (br s, 15H, 3.3, Cp* CH3), 1.4 (br s, 3.1), 1.0 (br s, 

6H, 3.3, CH3), 0.2 (br s, 3.I), -1.3 (br s, 3.1), -1.35 (s, 3.2), -1.6 (br s, 3.I), -11.4 

(overlapping br s, 3.1 and 3.I), -15.90 (s, 3.2), -101.80 (s, 3.2). 1.5 hr:   25.76 (s, 3.2), 

25.26 (s, 3.2), 19.7 (overlapping br s, 3.1 and 3.I), 15.93 (s, 3.2), 13.7 (br s, Cp*2Co), 7.3-

7.05 (15 H, HCPh3, Ar-H), 6.14 (s, 3.2), 5.57 (s, 1H, HCPh3), 3.5 (br s, 3.1), 2.6 (br s, 2H, 

3.3, CH2), 1.8 (br s, 6H, 3.3, CH3), 1.5 (br s, 15H, 3.3, Cp* CH3), 1.4 (br s, 3.1), 1.0 (br s, 

6H, 3.3, CH3),  0.2 (br s, 3.I), -1.3 (br s, 3.1), -1.35 (s, 3.2), -1.6 (br s, 3.I), -11.3 

(overlapping br s, 3.1 and 3.I), -15.92 (s, 3.2), -101.96 (s, 3.2). 3 hr:   25.71 (s, 3.2), 21.0 

(br s, Cp*2Co), 20.0 (overlapping br s, 3.1 and 3.I), 15.93 (s, 3.2), 12.6 (overlapping br s, 3.1 

and 3.I), 7.3-7.05 (15 H, HCPh3, Ar-H), 6.14 (s, 3.2), 5.57 (s, 1H, HCPh3), 3.5 (br s, 3.1), 

2.6 (br s, 2H, 3.3, CH2), 1.8 (br s, 6H, 3.3, CH3), 1.5 (br s, 15H, 3.3, Cp* CH3), 1.4 (br s, 

3.1), 1.0 (br s, 6H, 3.3, CH3), 0.2 (br s, 3.I), -1.3 (br s, 3.1), -1.30 (s, 3.2), -1.6 (br s, 3.I), -

11.6 (overlapping br s, 3.1 and 3.I) ppm. 

3.4.5 NMR scale reaction of [L
tBu

Ni
II

(SCPh3)] with Cp*2Co in THF-d8 to quantify the 

yield of HCPh3. 

To an NMR tube containing [L
tBu

Ni
II
(SCPh3)] (2.2, 10 mg, 0.012 mmol) and 

hexamethyldisiloxane (HMDSO) (2.5 μL, 0.012 mmol) in TH -d8 (0.3 mL) was added 

Cp*2Co (7.8 mg, 0.024 mmol) in THF-d8 (0.3 mL). After addition, the color of the solution 
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quickly changed from blue to red-brown. An 
1
H NMR spectrum taken after 4 h reveals the 

presence of 3.1, 3.3, HCPh3, an unidentified Ni
I
 containing product (3.I), and Cp*2Co.  The 

yield of HCPh3 was determined to be 88% by integration of the methine proton resonance of 

HCPh3 against the HMDSO internal standard. 
1
H NMR (400 MHz, 25 °C, THF-d8):  19.9 

(overlapping br s, 3.1 and I), 17.6 (Cp*2Co), 12.5(overlapping br s, 3.1 and 3.I), 7.25-7.09 

(15 H, HCPh3, Ar-H), 5.57 (s, 1H, HCPh3), 3.5 (br s, 3.1), 2.6 (br s, 2H, 3.3, CH2), 1.8 (br s, 

6H, 3.3, CH3), 1.5 (br s, 15H, 3.3, Cp* CH3), 1.4 (br s, 3.1), 1.1 (br s, 6H, 3.3, CH3), 0.1 (br 

s, 3.I), 0.07 (s, 18H, HMDSO), -1.3 (br s, 3.1), -1.5 (br s, 3.I), -11.7 (overlapping br s, 3.1 

and 3.I) ppm. 

3.4.6 Reaction of [Cp*2Co][PF6] and [K(18-crown-6)][CPh3] to yield 

(CH2Me4C5)Co(Cp*) (3.3) and HCPh3 

To an NMR tube containing [Cp*2Co][PF6] (10.0 mg, 0.0183 mmol) in pyridine-d5 (0.3 

mL) was added [K(18-crown-6)][CPh3] (8.7 mg, 0.0183 mmol) in pyridine-d5 (0.3 mL). 

Upon mixing, the deep red color of [K(18-crown-6)][CPh3] rapidly disappeared and the 

solution became pale brown-green in color. An 
1
H NMR spectrum of the reaction mixture 

revealed the formation of both (CH2Me4C5)Co(Cp*) (3.3) and HCPh3, based upon a 

comparison of the observed resonances with the reported literature spectra for 3.3 and 

HCPh3.
32,33

 
1
H NMR (400 MHz, 25 °C, pyridine-d5):   7.15-7.05 (s, 15 H, HCPh3, Ar-H), 

5.51 (s, 1H, HCPh3), 3.27 (s, 24H, 18-crown-6), 1.46 (br s, 6H, 3.3, CH2C5Me4, CH3), 1.34 

(br s, 6H, 3.3, CH2C5Me4, CH3), 1.28 (br s, 15H, 3.3, Cp*), 0.90 (br s, 2H, 3.3, CH2) ppm. 

19
F NMR (376 MHz, 25 °C, pyridine-d5):   -72.97 (d, 

1
JFP, = 706 Hz, PF6

-
) ppm. 
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3.4.7 NMR scale reaction of [L
tBu

Ni
II

(SCPh3)] with Cp*2Co in THF-d8 to determine 

yield of unidentified Ni(I) product 

To a 20 mL scintillation vial containing [L
tBu

Ni
II
(SCPh3)] (19.7 mg, 0.0235 mmol) and 

HMDSO (5 μL, 0.0235 mmol) in cold, stirring TH -d8 (0.3 mL) was added dropwise a 

solution of Cp*2Co (15.5 mg, 0.0470 mmol) in THF-d8 (0.3 mL). After addition, the color of 

the solution quickly changed from blue to red-brown. The solution was then transferred to 

an NMR tube. A 
1
H NMR spectrum taken after 4 h revealed the presence of resonances 

assignable to 3.3, 3.1, the unidentified Ni
I
-containing product, and free Cp*2Co. Integration 

of the peaks assigned to complex 3.1 and the unidentified Ni
I
-containing product revealed 

that they are present in an approximately 5:2 ratio (Figure A 3.7). 
1
H NMR (400 MHz, 

25 °C, THF-d8):  20.0 (overlapping br s, 3.1 and 3.I), 11.70 (br s, Cp*2Co),  7.3-7.05 (15 H, 

HCPh3, Ar-H), 6.14 (s, 3.2), 5.56 (s, 1H, HCPh3), 3.5 (br s, 3.1), 2.6 (br s, 2H, 3.3, CH2), 

1.5 (br s, 15H, 3.3, Cp* CH3), 1.4 (br s, 3.1), 0.2 (br s, 3.I), 0.07 (HMDSO), -1.3 (br s, 3.1), 

-1.6 (br s, 3.I), -11.9 (overlapping br s, 3.1 and 3.I). 

3.4.8 X-ray Crystallography 

Data for complex 3.1·C4H10O was collected on a Bruker KAPPA APEX II 

diffractometer equipped with an APEX II CCD detector using a TRIUMPH monochromator 

with a Mo  α X-ray source (α = 0.71073 Å).  The crystals were mounted on a cryoloop 

under Paratone-N oil, and all data were collected at 100(2) K using an Oxford nitrogen gas 

cryostream.  Data were collected using ω scans with 0.5° frame widths and frame exposures 

of 20 seconds. Data collection and cell parameter determination were conducted using the 

SMART program.
48

  Integration of the data frames and final cell parameter refinement were 

performed using SAINT software.
49

  Absorption correction of the data was carried out using 
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the multi-scan method SADABS.
50

 Subsequent calculations were carried out using 

SHELXTL.
51

  Structure determination was done using the direct method and difference 

Fourier techniques.  All hydrogen atom positions were idealized, and rode on the atom of 

attachment.  Structure solution, refinement, graphics, and creation of publication materials 

were performed using SHELXTL. 
51

   

Further crystallographic details for complex 3.1·C4H10O can be found in Table 3.1.  
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Table 3.1. X-ray Crystallographic Data for Complex 3.1·C4H10O. 

 3.1·C4H10O 

empirical formula C55H82CoN2NiS·C4H10

O 

crystal habit, color Plate, Brown 

crystal size (mm) 0.25 × 0.10 × 0.05 

crystal system Monoclinic 

space group P21/c 

volume (Å
3
) 5546.8(7) 

a (Å) 12.2784(8) 

b (Å) 25.957(2) 

c (Å) 17.836(1) 

α (deg) 90 

β (deg) 102.645(5) 

γ (deg) 90 

Z 4 

formula weight 

(g/mol) 

995.04 

density (calculated) 

(Mg/m
3
) 

1.192 

absorption coefficient 

(mm
-1

) 

0.715 

F000 2156 

total no. reflections 11410 

unique reflections 5043 

Rint 0.1760 

final R indices (I 

>2σ(I)] 

R1 = 0.0802 

wR2 = 0.1283 
largest diff. peak and 

hole (e
-
 A

-3
) 

1.217 and -0.684 

GOF 0.984 
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3.5 Appendix 

3.5.1 NMR Spectra  

 

Figure A 3.1.  Partial 
1
H NMR spectra of the reaction of [L

tBu
Ni(SCPh3)] with two equiv. of 

Cp*2Co in THF-d8. (*) indicates the presence of 3.2, (Δ) indicates the presence of 3.3, (♠) 

indicates the presence of 3.1, (⌂) indicates the presence of Cp*2Co, (■) indicates the 

presence of HCPh3, (†) indicates the presence of an unidentified Ni
I
-containing product, (◊) 

indicates the presence of Et2O, and (°) indicates the presence of unidentified decomposition 

products.   
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Figure A 3.2. Partial 
1
H NMR spectra of the reaction of [L

tBu
Ni(SCPh3)] with two equiv. of 

Cp*2Co in THF-d8: red (5 min), green (30 min), cyan (1.5 h), and purple (3 h). (Δ) indicates 

the presence of 3.3, (♠) indicates the presence of 3.1, (◊) indicates the presence of Et2O, and 

(°) indicates the presence of unidentified decomposition product.  These spectra, which are 

normalized to the THF-d8 resonance at 1.72 ppm, clearly demonstrate a decrease in the 

intensity of the peaks assignable to complex 3.3 as the reaction progresses. It is important to 

note, however, that, because of the formation of the unidentified Ni(I) by-product, we do not 

expect full consumption of complex 3.3 during this reaction. 
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Figure A 3.3.  
1
H NMR spectrum of 3.1 in C6D6. (*) indicates the presence THF, (†) 

indicates the presence of pentane, (■) indicates the presence of an unidentified impurity. 

* 

* 

† 

† 

■ ■ 
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Figure A 3.4.   Partial 
1
H NMR spectrum of 3.1 in C6D6. (*) indicates the presence THF, (†) 

indicates the presence of pentane, (■) indicates the presence of an unidentified impurity. 

■ ■ ■ 
* * 

† † 
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Figure A 3.5. 
1
H NMR spectrum of the reaction of [L

tBu
Ni(SCPh3)] with two equiv. of 

Cp*2Co in THF-d8 with HMDSO as an internal standard. (†) indicates the presence of 1, (■) 

indicates the presence of HCPh3, (Δ) indicates the presence of 3.3, (⌂) indicates the presence 

of Cp*2Co, (◊) indicates the presence of an unidentified Ni
I
-containing product, (#) indicates 

the presence HMDSO, (*) indicates the presence of 3.2, and (°) indicates the presence of 

unidentified decomposition products. 
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Figure A 3.6. 
1
H NMR spectrum of the reaction of [Cp*2Co][PF6] and [K(18-crown-

6)][CPh3] in pyridine-d5. (*) indicates the presence of 18-crown-6, (†) indicates the presence 

of 3.3, (■) indicates the presence of HCPh3. 
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Figure A 3.7. Partial 
1
H NMR spectra of the reaction of [L

tBu
Ni(SCPh3)] with two equiv. of 

Cp*2Co in THF-d8. (†) indicates the presence of an unknown Ni
I
 product, (■) indicates the 

presence of HCPh3, (#) indicates the presence HMDSO, (♠) indicates the presence of 3.1, (◊) 

indicates the presence of 3.3, and (°) indicates the presence of unidentified decomposition 

products. 
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3.5.2 IR Spectra 

 Figure A 3.8. Partial IR spectrum of complex 3.1 (KBr pellet). 

3.5.3 UV-Vis Spectra 

 
Figure A 3.9. UV-vis spectrum of complex 3.1 (1.0 mM in C6H6). 
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Figure A 3.10. Cyclic voltammogram of the Co(III)/Co(II) redox feature of complex 3.1 

measured in THF with 0.1 M [NBu4][PF6] as the supporting electrolyte (vs. Fc/Fc
+
). 

 

 
Figure A 3.11. Cyclic voltammogram of the Ni(II)/Ni(I) redox feature of complex 3.1 

measured in THF with 0.1 M [NBu4][PF6] as the supporting electrolyte (vs. Fc/Fc
+
). 
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Table 3.2. Electrochemical parameters for [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] (3.1) in THF (vs. 

Fc/Fc
+
, [NBu4][PF6] as the supporting electrolyte).   

Co(III)/Co(II) Feature Scan rate, 

V/s 

Ep,c, V Ep,a, V Ep
a
 ip,a/ip,c 

 0.010 -2.264 -2.150 0.114 0.99 

 0.025 -2.275 -2.139 0.136 1.05 

 0.050 -2.281 -2.124 0.157 1.13 

 0.100 -2.296 -2.111 0.185 1.21 

 0.200 -2.319 -2.094 0.225 1.25 

 0.300 -2.329 -2.076 0.253 1.48 

 0.500 -2.347 -2.053 0.294 1.46 

 1.000 -2.381 -2.021 0.36 1.77 

Ni(II)/Ni(I) Feature Scan rate, 

V/s 

Ep,c, V Ep,a, V Ep
a
 ip,a/ip,c 

 0.010 -1.426 -1.325 0.101 0.94 

 0.025 -1.441 -1.314 0.127 0.95 

 0.050 -1.446 -1.309 0.137 0.97 

 0.100 -1.462 -1.295 0.167 1.00 

 0.200 -1.473 -1.280 0.193 1.01 

 0.300 -1.490 -1.265 0.225 1.01 

 0.500 -1.505 -1.247 0.258 1.01 

 1.000 -1.531 -1.220 0.311 1.03 
a
 ΔEp is defined as the potential difference between the anodic wave and the cathodic wave 

generated after the change in sweep direction. 
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4.1 Introduction 

There are now a number of reports on the synthesis and reactivity of late transition metal 

(groups 9, 10, and 11) complexes containing terminal imido (NR
2-

),
1–8

 phosphido (PR
2-

),
9,10

 

and carbene (CR2
2-

)
11

 ligands.
12,13

 In contrast, the synthesis and reactivity of late transition 

metal complexes containing terminal chalcogenide ligands (O, S, Se, Te) remains largely 

unexplored. This is due, in part, to the paucity of this class of materials.  Only a handful of 

late metal oxo complexes have been reported,
14,15

 including the Pt
IV

 terminal oxo (O
2-

) 

complex, [Pt(O)(PCN)][BF4] (PCN = C6H3[CH2P(tBu)2](CH2CH2NMe2)), which can 

perform inter- and intramolecular electrophilic O-atom transfer.  In Chapter 2, I described 

the synthesis and characterization of a family of “masked“ terminal nickel sulfides, 

[K(L)][L
R
Ni

II
(S)] (2.4-2.6).  Preliminary reactivity studies suggest that the sulfide ligand in 

these comlpexes is nucleophilic.  For example, [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) readily 

reacts with trimethylsilyltriflate (Me3SiOTf), via nucleophilic attack, to form a 

trimethylsilylthiolato ([SSiMe3]
-
) complex (2.12) and the the putative nickel sulfide 

[Cp*2Co][L
tBu

Ni
II
(S)] (3.2) couples with the methylene carbon of [CoCp*(C5Me4CH2)] (3.3) 

to form [L
tBu

Ni
I
(SCH2Me4C5)Co(Cp*)] (3.1)  (Scheme 4.1).   



 

 124 

Scheme 4.1 Nucleophilicity of the sulfide ligand  

 

While our understanding of late metal sulfide reactivity is still relatively limited, early 

transition metal sulfides are widely known to react with carbon disulfide (CS2) to yield 

trithiocarbonate complexes. For example, [V(η2-S2)(S)2(SPh)]
2-

 yields [V2(μ2-S2)2(S,S:2-

CS3)4]
4-

, [MS4]
n
 (M = Mo, n = 2-; M = Re, n = 1-) yields [M(S,S:2-CS3)4]

3-
, and [Mo2S6]

2-
 

yields [Mo2(S)2(μ-S)2(S,S:2-CS3)2]
2-

, upon reaction with CS2 (Figure 4.1).
16–20 

The research 

reported herein, describes the reactions of carbon disulfide (CS2) with the sulfide ligand of 

[L
tBu

Ni
II
(S)]

-
 and expands the known reactivity of late metal sulfides. 
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Figure 4.1. Previously reported activations of CS2 by transition metal sulfides. A, Ref. 16; B, 

Ref. 17,18. 

 



 

 126 

4.2 Results and Discussion 

4.2.1 Synthesis and Characterization of [K(18-crown-6)][L
tBu

Ni
II

(CS3)] (4.1)  

Treatment of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) with one equivalent of CS2 in toluene 

affords a yellow-orange solution from which orange plates of [K(18-crown-6)][L
tBu

Ni
II
(2-

CS3)] (4.1) could be isolated in 76% yield (Scheme 4.2).  

Scheme 4.2 Synthesis of 4.1  

 

Complex 4.1 was shown by X-ray crystallography to contain a 2-trithiocarbonate (CS3
2-

) ligand coordinated to nickel (Figure 4.2). In the solid state, the Ni
II
 ion features a square 

planar ((L-Ni-L) = 360) coordination environment with Ni-N and Ni-S bond lengths that 

are typical of Ni
II
.
21–25

  The C-S bond lengths in 4.1 (C-S = 1.666(4), 1.697(4), 1.696(4) Å) 

are intermediate between C-S single and double bonds, consistent with a trithiocarbonate 

moiety.
26

 In addition, the terminal sulfur atom of the trithiocarbonate ligand is weakly 

interacting with the [K(18-crown-6)] cation as evidenced by the S-K bond distance of 

3.172(4) Å.  Two other nickel [CS3]
2-

 complexes are known, namely, [(dmpe)Ni(S,S:2-

CS3)] (dmpe = PMe2CH2CH2PMe2) and [Et4N]2[(S,S:2-CS3)Ni(μ-SEt)2Ni(S,S:2-CS3)],  

and each features comparable Ni-S and C-S metrical parameters.
22,23
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The 
1
H NMR spectrum of 4.1 in C6D6 is consistent with a C2v symmetric, square planar 

Ni
II
 complex.  For example, this spectrum features only one tert-butyl resonance, at 1.26 

ppm.  Likewise, the spectrum displays only two methyl resonances for the isopropyl 

substituents, which appear as doublets at 1.48 and 2.09 ppm.  

 

Figure 4.2. ORTEP diagram of [K(18-crown-6)][L
tBu

Ni
II
(S,S:2-CS3)] (4.1·C7H8) with 50% 

probability ellipsoids. Hydrogen atoms and a toluene solvate molecule have been omitted for 

clarity. Selected bond lengths and angles: Ni1-N1 1.929(3), Ni1-N2 1.940(3), Ni1-S2 

2.235(1), Ni1-S3 2.210(1), S1-C1 1.666(4), S2-C1 1.697(4), S3-C1 1.696(4), S1-K1 

3.172(4), N1-Ni1-N2 96.6(1)°, N1-Ni1-S2 94.93(9)°, N2-Ni1-S3 94.14(9)°, S2-Ni1-S3 

74.29(4)°, S2-C1-S3 104.5(2)°, S2-C1-S1 129.5(2)°, S3-C1-S1 125.9(2)°. 

4.2.2 Synthesis and Characterization of [K(2,2,2-cryptand)][(S,S:2-CS3)Ni
II

{S,S:2-

CS2(L
tBu

)}] (4.2) 

Treatment of [K(2,2,2-cryptand)][L
tBu

Ni
II
(S)] (2.6) with 1 equiv of CS2 in benzene 

immediately affords a bright red solution that slowly turns purple on standing.  From this 
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solution, [K(2,2,2-cryptand)][(S,S:2-CS3)Ni
II
{S,S:2-CS2(L

tBu
)}] (4.2), the product of 

double CS2 insertion, was isolated in 36% yield as a purple solid.  Alternatively, complex 

4.2 could be generated by reaction of [K(2,2,2-cryptand)][L
tBu

Ni
II
(S)] with 2 equiv of CS2 in 

THF (Scheme 4.3).   

Scheme 4.3 Synthesis of 4.2 

 

Under these conditions, complex 4.2 was isolated in 55% yield. The formulation of 

complex 4.2 was confirmed through elemental analysis, VT 
1
H NMR spectroscopy, and X-

ray crystallography. Complex 4.2 features a square planar Ni center (((L-Ni-L) = 360) 

coordinated by a [CS3]
2-

 ligand and a dithiocarboxylate [CS2(L
tBu

)]
-
 ligand (Figure 4.3).  The 

[CS3]
2- 

ligand in 4.2 possesses C-S bond lengths of 1.66(1), 1.72(1), and 1.72(1) Å; similar 

to those observed in complex 4.1. The [CS2(L
tBu

)]
-
 ligand contains nearly identical C-S bond 

lengths of 1.662(9) and 1.682(9) Å, while the newly formed C-C bond is 1.54(1) Å, 

consistent with a C-C single bond. The Ni-S bonds in 4.2 are within the range expected for 

Ni
II
-S single bonds.

22–24
 Also of note is the angle between the two N-C()-C(

t
Bu) planes in 

the -diketiminate fragment, which is 66(1)° and contrasts to complex 4.1, where the angle 

is only 1.4(7)°.  This angle results in an overall C1 symmetric complex. The 
1
H NMR 

spectrum of 4.2 at 25 °C (thf-d8) is relatively featureless, but upon cooling to -75 °C, the 

resonances sharpen considerably. This spectrum features two distinct tert-butyl resonances, 
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at 1.27 and 1.13 ppm, consistent with the low symmetry of the solid state structure.  Also 

present in the spectrum is a resonance at 5.50 ppm, which I have assigned to the -CH 

environment (see Figures A 4.5 and A 4.6). Examination of the solid state molecular 

structure of complex 4.2 suggests that slow rotation about C3-C4 and C3-C21 bonds would 

explain the broadening observed in the room temperature 
1
H NMR spectrum. 

 

Figure 4.3. ORTEP diagram of [K(2,2,2-cryptand)][(S,S:2-CS3)Ni
II
{S,S:2-CS2(L

tBu
)}] 

(4.2·C4H10O) shown with 50% thermal ellipsoids. Hydrogen atoms, [K(2,2,2-cryptand)]
+
, 

and C4H10O solvate have been omitted for clarity. Selected metrical parameters: Ni1-S2 

2.183(3), Ni1-S3 2.169(3), S1-C1 1.66(1), S2-C1 1.72(1), S3-C1 1.72(1), Ni1-S4 2.223(3), 

Ni1-S5 2.229(3), S4-C2 1.682(9), S5-C2 1.662(9), C2-C3 1.54(1), C3-C4 1.54(1), C3-C21 

1.55(1), C4-N2 1.27(1), C21-N1 1.25(1), S1-C1-S2 126.0(7)°, S1-C1-S3 128.4(7)°, S2-C1-

S3 105.6(6)°, S2-Ni1-S3 78.1(1)°, S2-Ni1-S4 101.5(1)°, S3-Ni1-S5 102.8(1)°, S4-Ni1-S5 

77.7(1)°, S4-C2-S5 113.2(5)°. 
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In complex 4.2, the [CS3]
2-

 moiety is the product of CS2 activation by the sulfide ligand, 

while the dithiocarboxylate [CS2(L
tBu

)]
-
 ligand is the product of nucleophilic attack of a 

second equiv of CS2 by the -diketiminate γ-carbon. Nucleophilic bond forming reactions 

involving the -diketiminate γ-carbon have been reported previously for O2, NO, OCCPh2, 

nitriles, and diazoacetate.
27–31

 However, to my knowledge, this is the first example involving 

CS2.  Interestingly, reaction of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) with two equiv of CS2 

produces a product that I have tentatively identified as [K(18-crown-6)][(S,S:2-

CS3)Ni
II
{S,S:2-CS2(L

tBu
)}] (4.3) (i.e., the product of double CS2 insertion) on the basis of 

the similarity of its 
1
H NMR spectrum with that of complex 4.2 (See Figure A 4.7). 

To rationalize the difference in reactivity between the 18-crown-6 and 2,2,2-cryptand 

salts, I suggest that the rate of CS2 insertion into the putative intermediate, [K(2,2,2-

cryptand)][L
tBu

Ni
II
(S,S:2-CS3)], is faster than the rate of CS2 insertion into complex 4.1.  I 

hypothesize that the faster rate of insertion exhibited by [K(2,2,2-cryptand)][L
tBu

Ni
II
(S,S:2-

CS3)] is due to the enhanced nucleophilicity of its -diketiminate ligand, which results from 

the better separation of [K(2,2,2-cryptand)]
+
 cation from the anionic nickel fragment. 

4.3 Summary  

In summary, the “masked” terminal nickel sulfide complex, [K(18-crown-

6)][L
tBu

Ni
II
(S)] (2.5), readily activates CS2 to give the trithiocarbonate product, [K(18-

crown-6)][L
tBu

Ni
II
(S,S:2-CS3)] (4.1). In contrast, [K(2,2,2-cryptand)][L

tBu
Ni

II
(S)] (2.6) 

preferentially reacts with CS2 to generate the double insertion product, [K(2,2,2-

cryptand)][(S,S:2-CS3)Ni
II
{S,S:2-CS2(L

tBu
)}] (4.2). I attribute this difference in reactivity 

to the difference in the rate of the second CS2 insertion reaction between the two systems.  

This work expands on the nucleophilic reactivity of the sulfide ligand in [L
tBu

Ni
II
(S)]

-
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introduced in Chapters 2 and 3, and further expands the scope of reactivity for late metal 

terminal sulfide complexes. While the K
+
 ion of the [K(L)]

+
 (L = 18-crown-6, 2,2,2-

cryptand) moiety is coordinated to the sulfide ligand of [K(L)][L
tBu

Ni
II
(S)] in both the solid 

state and solution, the S
2-

 ligand in [L
tBu

Ni
II
(S)]

-
 is able to readily activate CS2, resulting in 

my classification of these complexes as a "masked" terminal sulfides. The nucleophilic 

activation of other small molecules (CO, NO, CO2, and N2O) by "masked" terminal nickel 

sulfides is detailed in Chapters 5 and 6.    

4.4 Experimental Procedures 

4.4.1 General Methods 

All reactions and subsequent manipulations were performed under anaerobic and 

anhydrous conditions under an atmosphere of nitrogen.  Hexanes, toluene, and 

tetrahydrofuran (THF) were dried using a Vacuum Atmospheres DRI-SOLV Solvent 

Purification system and stored over 3Å sieves for 24 h prior to use. Benzene-d6, 

tetrahydrofuran-d8, and C8H18 (isooctane) were dried over 3Å molecular sieves for 24 h 

prior to use, and CS2 was dried using CaH2. [K(18-crown-6)][L
tBu

Ni(S)] and [K(2,2,2-

cryptand)][L
tBu

Ni(S)] were synthesized according to the previously reported procedures.
21

  

All other reagents were purchased from commercial suppliers and used as received. 

 
1
H and 

13
C{

1
H} NMR spectra were recorded on a Agilent Technologies 400-MR 

DD2 400 MHz spectrometer or a Varian UNITY INOVA 500 MHz spectrometer. 
1
H and 

13
C{

1
H} NMR spectra were referenced to external SiMe4 using the residual protio solvent 

peaks as internal standards.
32,33

 IR spectra were recorded on a Nicolet 6700 FT-IR 

spectrometer with a NXR FT Raman Module.  Elemental analyses were performed by the 

Micro-Mass Facility at the University of California, Berkeley. 
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4.4.2 Synthesis of [K(18-crown-6)][L
tBu

Ni(S,S:2-CS3)] (4.1) 

To a brown, stirring solution of [K(18-crown-6)][L
tBu

Ni(S)] (2.5) (44.5 mg, 0.0497 

mmol) in toluene (2 mL) was added CS2 (3.0 μL, 0.0497 mmol).  After addition, the color of 

the solution turned from brown to orange. This solution was allowed to stir for 10 min, 

whereupon the volatiles were removed in vacuo. The resulting orange residue was rinsed 

with hexanes (1 mL × 2), extracted into toluene (2 mL), and filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm). This yielded a yellow-orange filtrate. The volume 

of this solution was reduced in vacuo to 0.5 mL and the solution was layered with isooctane 

(2 mL). Storage of the solution at -25 °C for 24 h resulted in the deposition of yellow-orange 

plates of [K(18-crown-6)][L
tBu

Ni(S,S:2-CS3)] (4.1), which were isolated by decanting off 

the supernatant (36.7 mg, 76%). Anal. Calcd for: C48H77KN2NiO6S3: C, 59.30; H, 7.98; N, 

2.88. Found: C, 59.60; H, 8.14; N, 2.69.  
1
H NMR (400 MHz, 25 °C, benzene-d6):  = 6.99 

(m, 6H, Ar-H), 5.56 (s, 1H, γ-H), 4.37 (sept, 
3
JHH, = 6.7 Hz, 4H, CH(CH3)2), 3.09 (s, 24H, 

18-crown-6), 2.09 (d, 
3
JHH, = 6.8 Hz, 12H, CH(CH3)2), 1.48 (d, 

3
JHH, = 6.9 Hz, 12H, 

CH(CH3)2), 1.26 (s, 18H, C(CH3)3). 
13

C{
1
H} NMR (125 MHz, 25 °C, benzene-d6):  = 

166.55 (Ar-C), 150.50 (Ar-C), 142.85 (Ar-C), 124.26 (Ar C), 122.35 (Ar-C), 98.18 (γ-C), 

70.20 (18-crown-6), 42.71 (C(CH3)3), 33.89 (C(CH3)3), 28.70 (CH(CH3)2), 25.66 

(CH(CH3)2), 24.62 (CH(CH3)2). Note: a resonanace assignable to [CS3]
2-

 was not observed; 

it should appear around ca. 250 ppm.
4
 IR (KBr Pellet, cm

-1
): 1633 (w, br), 1541 (m), 1508 

(s), 1464 (m), 1458 (m), 1435 (m), 1403 (s), 1379 (w), 1363 (m), 1348 (m), 1317 (s), 1280 

(w), 1248 (m), 1215 (w), 1186 (w), 1178 (w), 1159 (w), 1105 (s), 1032 (s), 960 (m), 930 

(w), 881 (w), 862 (w), 829 (w), 800 (w), 779 (w), 709 (w, br), 528 (w), 472 (w), 451 (w).  
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4.4.3 Synthesis of [K(2,2,2-cryptand)][(S,S:2-CS3)Ni{S,S:2-CS2(L
tBu

)}] (4.2) 

To a brown, stirring solution of [K(2,2,2-cryptand)][L
tBu

Ni(S)] (2.6) (48.0 mg, 0.0414 

mmol) in THF (2 mL) was added CS2 (5.0 μL, 0.0827 mmol).  After addition, the color of 

the solution quickly changed from brown to red. This solution was allowed to stir for 1 hr, 

slowly becoming deep purple. The volatiles were removed in vacuo and the resulting purple 

residue was rinsed with hexanes (1 mL), extracted into THF (2 mL), and filtered through a 

Celite column supported on glass wool (0.5 cm × 2 cm). This yielded a purple filtrate. The 

volume of this solution was reduced in vacuo to 0.5 mL and the solution was layered with 

C8H18 (2 mL). Storage of the solution at -25 °C for 24 h resulted in the deposition of purple 

needles of [K(2,2,2-cryptand)][(S,S:2-CS3)Ni{S,S:2-CS2(L
tBu

)}] (4.2), which were isolated 

by decanting off the supernatant (31.6 mg, 55%). Anal. Calcd for: C55H89KN4NiO6S5: C, 

56.93; H, 7.73; N, 4.38.  Found: C, 57.02; H, 7.92; N, 4.42.  
1
H NMR (400 MHz, 25 °C, 

benzene-d6): δ = 6.97 - 6.79 (m, 6H, Ar-H, dipp), 5.53 (br s, 1H, γ-H), 3.62-3.57 (24H, 

2,2,2-cryptand), 3.44 (br m, 2H, CH(CH3)2), 2.89 (br m, 2H, CH(CH3)2), 2.58 (12 H, 2,2,2-

cryptand), 1.23 (br m, 42H, CH(CH3)2 & C(CH3)3). IR (KBr Pellet, cm
-1

): 1658 (m, br), 

1587 (w), 1537 (w), 1506 (w), 1473 (m), 1456 (m), 1440 (m), 1429 (m), 1400 (w), 1398 

(w), 1376 (w), 1359 (m), 1319 (m), 1301 (m), 1257 (m), 1234 (w), 1205 (w), 1170 (w), 

1128 (w), 1101 (s), 1076 (w), 1035 (s), 1008 (w, br), 995 (w), 964 (w), 946 (m), 931 (w), 

887 (w), 858 (w), 825 (m), 792 (m), 755 (m), 748 (m), 619 (w, br), 520 (w), 476 (w), 416 

(w). 

4.4.4 Reaction of [K(2,2,2-cryptand)][L
tBu

Ni(S)] with one equiv CS2 

To a J-Young NMR tube containing [K(2,2,2-cryptand)][L
tBu

Ni(S)] (2.6) (15 mg, 0.0155 

mmol) in C6D6 (0.5 mL) was added CS2 (0.9 μL, 0.0155 mmol). After addition, the color of 
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the solution quickly changed from brown to red. This solution was allowed to stir for 1 hr, 

slowly becoming deep purple.  The reaction mixture was then transferred to a 20 mL 

scintillation vial and volatiles were removed in vacuo.  The resulting purple residue was 

extracted into THF (1 mL), filtered through a Celite column supported on glass wool (0.5 

cm × 2 cm), concentrated in vacuo to 0.25 mL, and layered with Et2O (1 mL). Storage of 

this solution at -25 °C for 12 h resulted in the deposition of purple plates of [K(2,2,2-

cryptand)][(S,S:2-CS3)Ni{S,S:2-CS2(L
tBu

)}] (4.2), which were isolated by decanting off 

the supernatant  (6.9 mg, 36%).  
1
H NMR (400 MHz, 25 °C, thf-d8):  = 6.97-6.75 (br m, 

6H, Ar-H), 5.53 (br s, 1H, γ-H), 3.57-3.53 (br m, 24H, 2,2,2-cryptand), 2.90 (br s, 2H, 

CH(CH3)2), 2.55 (br s, 12H, 2,2,2-cryptand), 1.23 (br m, 42H, C(CH3)3 & CH(CH3)2). 

4.4.5 Variable temperature 
1
H NMR spectra of [K(2,2,2-cryptand)][(S,S:2-

CS3)Ni{S,S:2-CS2(L
tBu

)}] (4.2) 

To an NMR tube was added a thf-d8 (0.5 mL) solution of 4.2 (12.6 mg, 0.0109 mmol). 

1
H NMR spectra were collected at ca. 20 °C intervals. 

1
H NMR (500 MHz, 25 °C, thf-d8):  

= 6.97-6.78 (m, 6H, Ar-H), 5.53 (br s, 1H, γ-H), 3.62-3.57 (24H, 2,2,2-cryptand),  3.48 (br 

m, 2H, CH(CH3)2), 2.89 (br m, 2H, CH(CH3)2), 2.59 (m, 12H, 2,2,2-cryptand), 1.23 (br, 

42H, C(CH3)3 & CH(CH3)2). 
1
H NMR (500 MHz, 0 °C, thf-d8):  = 6.97-6.79 (m, 6H, Ar-

H), 5.54 (br s, 1H, γ-H), 3.61-3.57 (24H, 2,2,2-cryptand),  3.45 (br m, 1H, CH(CH3)2), 2.89 

(br m, 2H, CH(CH3)2), 2.58 (m, 12H, 2,2,2-cryptand), 1.21 (br, 42H, C(CH3)3 & CH(CH3)2) 

. 
1
H NMR (500 MHz, -20 °C, thf-d8):   = 6.97-6.76 (m, 6H, Ar-H), 5.52 (s, 1H, γ-H), 3.60-

3.57 (24H, 2,2,2-cryptand), 3.46 (br m, 1H, CH(CH3)2),  3.40 (br m, 1H, CH(CH3)2), 2.91 

(br m, 1H, CH(CH3)2), 2.83 (br m, 1H, CH(CH3)2), 2.57 (m, 12H, 2,2,2-cryptand), 2.09 (br 

d, 3H, CH(CH3)2), 1.28 (br s, 9H, C(CH3)3), 1.14 (br s, 9H, C(CH3)3),  0.63 (br d, 3H, 
3
JHH, 
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= 5.1 Hz, CH(CH3)2). 
1
H NMR (500 MHz, -40 °C, thf-d8):  = 6.99-6.74 (m, 6H, Ar-H), 

5.51 (s, 1H, γ-H), 3.60-3.56 (24H, 2,2,2-cryptand), 3.48 (br m, 1H, CH(CH3)2), 3.39 (br m, 

1H, CH(CH3)2), 2.90 (br m, 1H, CH(CH3)2), 2.82 (br m, 1H, CH(CH3)2), 2.56 (br m, 12H, 

2,2,2-cryptand), 2.11 (br d, 3H, 
3
JHH, = 6.0 Hz, CH(CH3)2), 1.31 (br d, 3H, CH(CH3)2), 1.28 

(s, 9H, C(CH3)3), 1.24 (br d, 3H, 
3
JHH, = 6.6 Hz, CH(CH3)2), 1.14 (s, 9H, C(CH3)3), 1.11 (br 

d, 3H, 
3
JHH, = 6.5 Hz, CH(CH3)2), 1.06 (br d, 3H, 

3
JHH, = 6.5 Hz, CH(CH3)2), 1.00 (br d, 3H, 

3
JHH, = 6.9 Hz, CH(CH3)2), 0.93 (br d, 3H, 

3
JHH, = 6.6 Hz, CH(CH3)2), 0.63 (br d, 3H, 

3
JHH, 

= 6.0 Hz, CH(CH3)2).
 1

H NMR (500 MHz, -75 °C, thf-d8):  = 7.01-6.74 (m, 6H, Ar-H), 

5.50 (s, 1H, γ-H), 3.58-3.56 (24H, 2,2,2-cryptand), 3.47 (br m, 1H, CH(CH3)2), 3.38 (br m, 

1H, CH(CH3)2), 2.88 (br m, 1H, CH(CH3)2), 2.82 (br m, 1H, CH(CH3)2), 2.53 (br, 12H, 

2,2,2-cryptand), 2.14 (d, 3H, 
3
JHH, = 7.1 Hz, CH(CH3)2), 1.30 (br d, 3H,

 3
JHH, = 6.0 Hz 

CH(CH3)2), 1.27 (s, 9H, C(CH3)3), 1.24 (br d, 3H,
 3

JHH, = 6.0 Hz CH(CH3)2), 1.13 (s, 9H, 

C(CH3)3), 1.10 (d, 3H, 
3
JHH, = 6.6 Hz, CH(CH3)2), 1.05 (d, 3H, 

3
JHH, = 6.6 Hz, CH(CH3)2),  

0.99 (d, 3H, 
3
JHH, = 7.1Hz, CH(CH3)2), 0.94 (d, 3H, 

3
JHH, = 6.6 Hz, CH(CH3)2), 0.61 (d, 3H, 

3
JHH, = 6.0 Hz, CH(CH3)2). 

4.4.6 Reaction of [K(18-crown-6)][L
tBu

Ni(S)] with two equiv CS2 

To a J-Young NMR tube containing [K(18-crown-6)][L
tBu

Ni(S)] (2.5) (20.0 mg, 0.0223 

mmol) in thf-d8 (0.6 mL) was added CS2 (2.7 μL, 0.0446 mmol). After addition, the color of 

the solution quickly changed from brown to red. This solution was allowed to stand for 1 hr, 

slowly becoming deep purple.  An in situ 
1
H NMR spectrum taken after 1 h reveals the 

formation of a new product which we have tentatively identified as [K(18-crown-

6)][(S,S:2-CS3)Ni{S,S:2-CS2(L
tBu

)}] (4.3) (i.e., the product of double CS2 insertion) on the 

basis of the similarity of its 
1
H NMR spectrum with that of complex 4.2 (Figure A 3.7).  

1
H 
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NMR (400 MHz, 25 °C, thf-d8):  = 6.98-6.78 (br m, 6H, Ar-H), 5.54 (br s, 1H, γ-H), 3.63 

(br s, 24H, 18-crown-6), 3.46 (br m, 2H, CH(CH3)2), 2.90 (br m, 2H, CH(CH3)2), 1.23 (br 

m, 42H, CH(CH3)2 & C(CH3)3). 

4.4.7 X-ray Crystallography 

Data for 4.1 and 4.2 were collected on a Bruker KAPPA APEX II diffractometer 

equipped with an APEX II CCD detector using a TRIUMPH monochromator with a Mo  α 

X-ray source (α = 0.71073 Å).  The crystals were mounted on a cryoloop under Paratone-N 

oil, and all data were collected at 100(2) K using an Oxford nitrogen gas cryostream.  Data 

were collected using ω scans with 0.5° frame widths.   rame exposures of 20 seconds were 

used for both 4.1 and 4.2.  Data collection and cell parameter determination were conducted 

using the SMART program.
34

  Integration of the data frames and final cell parameter 

refinement were performed using SAINT software.
35

  Absorption correction of the data was 

carried out using the multi-scan method SADABS.
36

  Subsequent calculations were carried 

out using SHELXTL.
37

  Structure determination was done using direct or Patterson methods 

and difference Fourier techniques.  All hydrogen atom positions were idealized, and rode on 

the atom of attachment.  Structure solution, refinement, graphics, and creation of publication 

materials were performed using SHELXTL.
37

   

In complex 4.1, the 18-crown-6 molecule is disordered over two positions.  These two 

orientations were modelled in a 60:40 ratio using the FVAR, EADP, and PART commands 

in SHELXL. The C-C and C-O bonds in the 18-crown-6 molecule in complex 4.1 were 

constrained using the SADI command. Additionally, the positions of the C and O atoms in 

the 18-crown-6 molecule were restrained using the RIGU ADP command. In complex 4.2, 

both the 2,2,2-cryptand moiety and the C4H10O solvate are disordered. The C4H10O 
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molecule was found to be disordered over two positions. These two orientations each were 

modelled in a 56:44 ratio, using the FVAR and EADP commands in SHELXL.  The C–C, 

C-N, C-O, and O-K bonds of 2,2,2-cryptand and C4H10O were constrained using the SADI 

command.  The disordered 2,2,2-cryptand molecule was further refined using the  DELU 

and SIMU commands for the O atoms. Further crystallographic details for complexes 4.1-

4.2 can be found in Table 4.1.  
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Table 4.1. X-ray Crystallographic Data for Complexes 4.1, 4.2. 

 4.1·C7H8 4.2·C4H10O  

empirical 

formula 

C48H77KN2NiO6S3·C7H8 C55H89KN4NiO6S5·C4H10

O 
crystal habit, 

color 

Plate, Yellow Needle, Purple 

crystal size 

(mm) 

0.3  0.25 × 0.1 0.3 × 0.1 × 0.05 

crystal system Monoclinic Monoclinic 

space group P2(1)/c P2(1)/c 

volume (Å
3
) 5709.8(1) 6521.8(8) 

a (Å) 17.647(2) 20.301(1) 

b (Å) 17.840(2) 18.450(1) 

c (Å) 18.241(2) 17.415(1) 

α (deg) 90 90 

β (deg) 96.149(6) 90.816(4) 

γ (deg) 90 90 

Z 4 4 

formula 

weight (g/mol) 

1064.23 1232.53 

density 

(calculated) 

(Mg/m
3
) 

1.238 1.257 

absorption 

coefficient (mm
-1

) 

0.570 0.572 

F000 2288 2656 

total no. 

reflections 

35379 27276 

unique 

reflections 

11684 13438 

Rint 0.1186 0.1144 

final R indices 

(I >2σ(I)] 

R1 = 0.0629 

wR2 = 0.1118 

R1 = 0.1404 

wR2 = 0.3083 
largest diff. 

peak and hole (e
-
 

A
-3

) 

0.630 and -0.485 2.299 and -1.076 

GOF 1.007 1.391 



 

 139 

4.5 Appendix 

4.5.1 NMR Spectra  

 

Figure A 4.1. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(S,S:2-CS3)] (4.1) in benzene-

d6. (*) indicates the presence of isooctane and (▪) indicates the presence of Et2O. 

* * ▪ ▪ 
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Figure A 4.2.  
13

C{
1
H} NMR spectrum of [K(18-crown-6)][L

tBu
Ni(S,S:2-CS3)] (4.1) in 

benzene-d6.   
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Figure A 4.3. 
1
H NMR spectrum of [K(2,2,2-cryptand)][(S,S:2-CS3)Ni{S,S:2-CS2(L

tBu
)}] 

(4.2) in THF-d8. (*) indicates the presence of isooctane.   

 

  

* 

* 
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Figure A 4.4.  Variable temperature 
1
H NMR spectra of [K(2,2,2-cryptand)][(S,S:2-

CS3)Ni{S,S:2-CS2(L
tBu

)}] (4.2) in THF-d8. (*) indicates the presence of isooctane and (◊) 

indicates the presence of dichloromethane, and (▪) indicates the presence of an unidentified 

impurity.  

 

298 K 

273 K 

253 K 

233 K 

198 K 

◊ 

* 

▪ 

* 
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Figure A 4.5.  
1
H NMR spectrum of [K(2,2,2-cryptand)][(S,S:2-CS3)Ni{S,S:2-CS2(L

tBu
)}] 

(4.2) at -75 °C in THF-d8. (*) indicates the presence of isooctane and (◊) indicates the 

presence of dichloromethane. 

* * 
◊ 
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Figure A 4.6.   Partial 
1
H NMR spectrum of [K(2,2,2-cryptand)][(S,S:2-CS3)Ni{S,S:2-

CS2(L
tBu

)}] (4.2) at -75 °C in THF-d8. (*) indicates the presence of isooctane and (▪) 

indicates the presence of unknown impurities.  

 

▪ ▪ * * 
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Figure A 4.7. In situ 
1
H NMR spectrum of the reaction of [K(18-crown-6)][L

tBu
Ni(S)] (4.4) 

with two equiv CS2 in THF-d8. (▪) indicate the presence of unidentified impurities and (*) 

indicates the presence of isooctane. 

 

▪ ▪ * 
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4.5.2 IR Spectra 

 

Figure A 4.8. Partial IR spectra of complexes 4.1 (blue) and 4.2 (red) (KBr pellets). 



 

 147 

4.6 References 

(1)  Jenkins, D. M.; Betley, T. A.; Peters, J. C. Oxidative Group Transfer to Co(I) Affords 

a Terminal Co(III) Imido Complex. J. Am. Chem. Soc. 2002, 124 (38), 11238. 

(2)  Shay, D. T.; Yap, G. P. A.; Zakharov, L. N.; Rheingold, A. L.; Theopold, K. H. 

Intramolecular CH Activation by an Open-Shell Cobalt(III) Imido Complex. Angew. 

Chem. Int. Ed. 2005, 44 (10), 1508. 

(3)  Mindiola, D. J.; Hillhouse, G. L. Isocyanate and Carbodiimide Synthesis by Nitrene-

Group-Transfer from a Nickel(II) Imido Complex. Chem. Commun. 2002, No. 17, 

1840. 

(4)  Jones, C.; Schulten, C.; Rose, R. P.; Stasch, A.; Aldridge, S.; Woodul, W. D.; Murray, 

K. S.; Moubaraki, B.; Brynda, M.; La Macchia, G.; et al. Amidinato– and 

Guanidinato–Cobalt(I) Complexes: Characterization of Exceptionally Short Co–Co 

Interactions. Angew. Chem. Int. Ed. 2009, 48 (40), 7406. 

(5)  Mindiola, D. J.; Waterman, R.; Iluc, V. M.; Cundari, T. R.; Hillhouse, G. L. Carbon–

Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a 

Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand. Inorg. Chem. 

2014, 53 (24), 13227. 

(6)  King, E. R.; Sazama, G. T.; Betley, T. A. Co(III) Imidos Exhibiting Spin Crossover 

and C–H Bond Activation. J. Am. Chem. Soc. 2012, 134 (43), 17858. 

(7)  Iluc, V. M.; Miller, A. J. M.; Anderson, J. S.; Monreal, M. J.; Mehn, M. P.; Hillhouse, 

G. L. Synthesis and Characterization of Three-Coordinate Ni(III)-Imide Complexes. 

J. Am. Chem. Soc. 2011, 133 (33), 13055. 

(8)  Kogut, E.; Wiencko, H. L.; Zhang, L.; Cordeau, D. E.; Warren, T. H. A Terminal 

Ni(III)-Imide with Diverse Reactivity Pathways. J. Am. Chem. Soc. 2005, 127 (32), 

11248. 

(9)  Melenkivitz, R.; Mindiola, D. J.; Hillhouse, G. L. Monomeric Phosphido and 

Phosphinidene Complexes of Nickel. J. Am. Chem. Soc. 2002, 124 (15), 3846. 

(10)  Cundari, T. R.; Jimenez-Halla, J. O. C.; Morello, G. R.; Vaddadi, S. Catalytic Tuning 

of a Phosphinoethane Ligand for Enhanced C−H Activation. J. Am. Chem. Soc. 2008, 

130 (39), 13051. 

(11)  Iluc, V. M.; Hillhouse, G. L. Three-Coordinate Nickel Carbene Complexes and Their 

One-Electron Oxidation Products. J. Am. Chem. Soc. 2014, 136 (17), 6479. 

(12)  Waterman, R.; Hillhouse, G. L. Group Transfer from Nickel Imido, Phosphinidene, 

and Carbene Complexes to Ethylene with Formation of Aziridine, Phosphirane, and 

Cyclopropane Products. J. Am. Chem. Soc. 2003, 125 (44), 13350. 

(13)  Iluc, V. M.; Hillhouse, G. L. Hydrogen-Atom Abstraction from Ni(I) Phosphido and 

Amido Complexes Gives Phosphinidene and Imide Ligands. J. Am. Chem. Soc. 2010, 

132 (43), 15148. 

(14)  Hay-Motherwell, R. S.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. 

Synthesis and X-Ray Crystal Structure of Oxotrimesityliridium(V). Polyhedron 1993, 

12 (16), 2009. 

(15)  Poverenov, E.; Efremenko, I.; Frenkel, A. I.; Ben-David, Y.; Shimon, L. J. W.; 

Leitus, G.; Konstantinovski, L.; Martin, J. M. L.; Milstein, D. Evidence for a 

Terminal Pt(IV)-Oxo Complex Exhibiting Diverse Reactivity. Nature 2008, 455 

(7216), 1093. 



 

 148 

(16)  Sendlinger, S. C.; Nicholson, J. R.; Lobkovsky, E. B.; Huffman, J. C.; Rehder, D.; 

Christou, G. Reactivity Studies of Mononuclear and Dinuclear Vanadium-Sulfide-

Thiolate Compounds. Inorg. Chem. 1993, 32 (2), 204. 

(17)  Simonnet-Jégat, C.; Cadusseau, E.; Dessapt, R.; Sécheresse, F. Synthesis and 

Structural Characterizations of New Mononuclear and Dinuclear Molybdenum(V) 

Anions Containing Trithiocarbonate Ligands. Inorg. Chem. 1999, 38 (10), 2335. 

(18)  Dessapt, R.; Simonnet-Jégat, C.; Riedel, S.; Marrot, J.; Sécheresse,  . [Re(η
2
-CS3)4]

3-
, 

a New Trithiocarbonate-Containing Rhenium(V) Dodecahedral Anion. Trans. Met. 

Chem. 2002, 27 (2), 234. 

(19)  Coucouvanis, D.; Draganjac, M. E.; Koo, S. M.; Toupadakis, A.; Hadjikyriacou, A. I. 

Reactivity of the Molybdenum-Polysulfide Functional Groups in Thio- and 

Oxothiomolybdate Complexes toward Carbon Disulfide. Synthesis and Reactivity of 

Trithio- and Perthiocarbonate Complexes of Mo(IV) and Mo(V). Inorg. Chem. 1992, 

31 (7), 1186. 

(20)  Kim, B. J.; Park, J. W.; Koo, S. M. Niobium Persulfide Complexes: Synthesis and 

Structural Characterization of [Et4N][NbO(S2)2(bpy)]·DMF, 

[PPN][NbO(CS3)(S2)(bpy)] and [Et4N][NbO(S2C2(CO2Me)2)(S2)(bpy)]·DMF 

Complexes. Polyhedron 2001, 20 (18), 2279. 

(21)  Hartmann, N. J.  Wu,  .  Hayton, T. W. Synthesis of a “Masked” Terminal Nickel(II) 

Sulfide by Reductive Deprotection and Its Reaction with Nitrous Oxide. Angew. 

Chem. Int. Ed. 2015, 54 (49), 14956. 

(22)  Campora, J.; Gutierrez, E.; Monge, A.; Palma, P.; Poveda, M. L.; Ruiz, C.; Carmona, 

E. Consecutive Insertion Reactions of Unsaturated Molecules into the Ni-C Bonds of 

the Nickelacycle [Cyclic] (Me3P)2Ni(CH2CHMe2-o-C6H4). Formation of 

Heterocycles Derived from Seven-Membered Cyclic Acid Anhydrides. 

Organometallics 1994, 13 (5), 1728. 

(23)  Choudhury, S. B.; Chakravorty, A. A Tris(Thioxanthate) of Nickel(II) and Its 

Transformation to a Dinuclear Trithiocarbonate Complex. Synthesis and Structure of 

[Et4N]2[Ni2(SEt)2(CS3)2]. Inorg. Chem. 1992, 31 (6), 1055. 

(24)  Horn, B.; Limberg, C.; Herwig, C.; Braun, B. Three-Coordinate Nickel(II) and 

Nickel(I) Thiolate Complexes Based on the β-Diketiminate Ligand System. Inorg. 

Chem. 2014, 53 (13), 6867. 

(25)  Yao, S.; Milsmann, C.; Bill, E.; Wieghardt, K.; Driess, M. From a Paramagnetic, 

Mononuclear Supersulfidonickel(II) Complex to a Diamagnetic Dimer with a Four-

Sulfur Two-Electron Bond. J. Am. Chem. Soc. 2008, 130 (41), 13536. 

(26)  Doherty, J.; Fortune, J.; Manning, A. R.; Stephens, F. S. Trithiocarbonate and 

Dithiocarbonate Complexes of [η]-Cyclopentadienyl Cobalt(III): X-Ray Crystal 

Structure of [Co([η]-C5H5)(CNBut)(CS3)]. J. Chem. Soc., Dalt. Trans. 1984, No. 6, 

1111. 

(27)  Scheuermann, M. L.; Luedtke, A. T.; Hanson, S. K.; Fekl, U.; Kaminsky, W.; 

Goldberg, K. I. Reactions of Five-Coordinate Platinum(IV) Complexes with 

Molecular Oxygen. Organometallics 2013, 32 (17), 4752. 

(28)  Kalita, A.; Kumar, V.; Mondal, B. C-Nitrosation of a β-Diketiminate Ligand in 

Copper(II) Complex. RSC Adv. 2015, 5 (1), 643. 

(29)  Basuli,  .  Huffman, J. C.  Mindiola, D. J. Reactivity at the β-Diketiminate Ligand 

Nacnac
-
 on Titanium(IV). Diimine-Alkoxo and Bis-Anilido Ligands Stemming from 



 

 149 

the Nacnac
-
 Skeleton. Inorg. Chem. 2003, 42 (24), 8003. 

(30)  Yempally, V.; Fan, W. Y.; Arndtsen, B. A.; Bengali, A. A. Intramolecular C–C Bond 

Coupling of Nitriles to a Diimine Ligand in Group 7 Metal Tricarbonyl Complexes. 

Inorg. Chem. 2015, 54 (23), 11441. 

(31)  Gregory, E. A.; Lachicotte, R. J.; Holland, P. L. A Cationic Three-Coordinate Iron(II) 

Complex and the Reaction of β-Diketiminate with Ethyl Diazoacetate. 

Organometallics 2005, 24 (8), 1803. 

(32)  Harris Robin, K.; Becker Edwin, D.; Cabral de Menezes Sonia, M.; Goodfellow, R.; 

Granger, P. NMR Nomenclature: Nuclear Spin Properties and Conventions for 

Chemical Shifts. IUPAC Recommendations 2001. International Union of Pure and 

Applied Chemistry. Physical Chemistry Division. Commission on Molecular 

Structure and Spectroscopy. Pure Appl. Chem. 2002, 40 (7), 489. 

(33)  Harris Robin, K.; Becker Edwin, D.; Cabral De Menezes Sonia, M.; Granger, P.; 

Hoffman Roy, E.; Zilm Kurt, W. Further Conventions for NMR Shielding and 

Chemical Shifts. Pure Appl. Chem. 2008, 80, 59. 

(34)  SMART Apex II. Bruker AXS Inc.: Madison, WI 2005. 

(35)  SAINT Software User’s  uide. Bruker AXS Inc.: Madison, WI 2005. 

(36)  Sheldrick, G. M. SADABS. University of Gottingen: Germany 2005. 

(37)  SHELXTL PC. Bruker AXS Inc.: Madison, WI 2005. 

 

  



 

 150 

 

 

 

 

Chapter 5 Reactivity of a Nickel Sulfide with Carbon Monoxide 

and Nitric Oxide 

 

Portions of this work were published in: 

Nathaniel J. Hartmann , Guang Wu, Trevor W. Hayton 

J. Am. Chem. Soc., 2016, 138, 12352-12355. 



 

 151 

Table of Contents  

 

5.1 Introduction ............................................................................................... 152 

5.2 Results and Discussion .............................................................................. 153 

5.2.1 Synthesis and Characterization of [K(18-crown-

6)][L
tBu

Ni
II
(S,C:η

2
-COS)] (5.1) ................................................... 153 

5.2.2 Mechanistic Considerations ......................................................... 159 

5.3 Summary ................................................................................................... 160 

5.4 Experimental Procedures .......................................................................... 161 

5.4.1 General Methods .......................................................................... 161 

5.4.2 Synthesis of [K(18-crown-6)][L
tBu

Ni(C,S:η
2
-C(O)S)] (5.1) ....... 162 

5.4.3 Synthesis of [L
tBu

Ni(NO)] (5.2) and [K(18-crown-6)][SSNO] 

(5.3) .............................................................................................. 163 

5.4.4 Reaction of [K(18-crown-6)][L
tBu

Ni(S)] with one equiv of NO . 165 

5.4.5 Synthesis of [PNP][SSNO] from [PNP][NO2] and S8 ................. 165 

5.4.6 Synthesis of [PNP][SNO] from [PNP][SSNO] and PPh3 ............ 166 

5.4.7 Reaction of [PNP][SNO] with excess NO ................................... 167 

5.4.8 X-ray Crystallography ................................................................. 167 

5.5 Appendix ................................................................................................... 170 

5.5.1 NMR Spectra ............................................................................... 170 

5.5.2 IR Spectra .................................................................................... 177 

5.5.3 UV-Vis Data ................................................................................ 179 

5.6 References ................................................................................................. 180 

 



 

 152 

5.1 Introduction 

There is a widespread interest in understanding the fundamental reactivity of late metal 

sulfides with small molecules, such as NO and CO, which are notable for their roles in 

biological signaling and the carbon cycle, respectively.
1–3

  For example, the reactions of NO 

with the sulfide ligands in metallo-proteins can not only affect its bioavailability, but may 

also play an important regulatory role (e.g., NO/H2S “cross talk”).
4
  In this regard, NO is 

known to react with iron sulfur clusters.
5,6

  The sulfur-containing products from these 

reactions are S
0
, S

2-
, or H2S.  Other sulfur containing products, such as [SNO]

-
, [SSNO]

-
, 

and [ONN(O)SO3]
2-

 have not yet been observed from these reactions; however, these 

compounds have come under increasing scrutiny because they could function as both NO 

and sulfur reservoirs in vivo.
4,7,8

  Similarly, CO is postulated to react with the sulfide ligands 

within metallo-enzymes.  In particular, the first step of CO oxidation by MoCu CODH is 

thought to involve CO insertion into a Cu-S bond.
9
  

In Chapter 2, I detailed the synthesis of the “masked” terminal Ni
II
 sulfides, 

[K(L)][L
tBu

Ni
II
(S)], (2.4-2.6).

10
 In Chapters 3 and 4, I demonstrated the nucleophilic 

reactivity of the sulfide ligand via its reactions with the methylene carbon of 

[CoCp*(C5Me4=CH2)] and CS2, respectively.
11,12

 Given its potent reactivity, I hypothesized 

that [K(L)][L
tBu

Ni
II
(S)] would be a good model for exploring the interactions of late metal 

sulfides with the biologically important small molecules, CO and NO. This survey is 

especially important because late metal (Ni and Cu) sulfides are found in a variety of 

metalloenzyme active sites, including the NiFe and MoCu CO dehydrogenases (CODH),
9,13

  

the “orange protein complex”,
14

 and N2O reductase (N2OR),
15–17

 where they are known to 

play both catalytic
9
 and structural roles,

15,18
 yet our understanding of late metal sulfide (and 
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thiolate) reactivity is still relatively limited.
19–22

 In this chapter, I describe the reactivity of 

[K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) with CO and NO in an effort to better understand the 

fundamental chemistry of these small molecules with metal sulfides. 

5.2 Results and Discussion 

5.2.1 Synthesis and Characterization of [K(18-crown-6)][L
tBu

Ni
II

(S,C:η
2
-COS)] (5.1) 

Exposure of a toluene solution of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) to excess carbon 

monoxide (CO) results in a rapid color change from dark brown to yellow. Work-up of the 

reaction mixture by crystallization from toluene/isooctane provides [K(18-crown-

6)][L
tBu

Ni
II
(S,C:η

2
-COS)] (5.1) as a orange crystalline solid in 88% yield (Scheme 5.1).   

Scheme 5.1 Synthesis of [K(18-crown-6)][L
tBu

Ni
II
(S,C:η

2
-COS)] (5.1) 

 

The solid state molecular structure of 5.1 is shown in Figure 5.1. Complex 5.1 features a 

rare carbonyl sulfide ([COS]
2-

) ligand, formed by the activation of CO by the S
2-

 ligand.  

The [COS]
2-

 ligand features a :
2
,

2
 binding mode, wherein the carbon and sulfur atoms 

are coordinated to the Ni center, while the sulfur and oxygen atoms are coordinated to the 

K
+
 center.  The COS ligand is disordered over two positions, which are related by a C2 

rotation axis. This disorder could not be adequately resolved; consequently, the C-O bond 

length (1.07(1) Å) is anomalously short.  A similar problem was observed in the only other 

structurally characterized COS complex, [(MeCp)2Nb(S,C:η
2
-COS)(CH2SiMe3)].

23
 The Ni-S 

and Ni-C distances in 5.1 are 2.193(2) Å and 1.871(8) Å, while the K-S distance (3.250(4) 
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Å) is longer than that found in the starting material, [K(18-crown-6)][L
tBu

Ni
II
(S)], and is 

indicative of a rather weak dative interaction.  The K-O (2.841(7) Å) distance is similarly 

long.
24,25

 Finally, the Ni-N distances in 5.1 are comparable to those found in the starting 

material.
10

  

 

Figure 5.1. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni
II
(S,C:η

2
-SCO] (5.1·2C6H6) shown 

with 50% thermal ellipsoids. Hydrogen atoms, one orientation of the disordered COS moiety, 

and C6H6 solvate molecules have been omitted for clarity. Selected metrical parameters: 

Ni1-N1 1.929(4) Å, Ni1-N2 1.903(4) Å, Ni1-S1 2.193(2) Å, Ni1-C1 1.871(8) Å, S1-C1 

1.791(8) Å, C1-O1 1.07(1) Å, S1-K1 3.250(4) Å, O1-K1 2.841(7) Å, N1-Ni1-N2 97.3(2)°, 

N1-Ni1-S1 104.7(1)°, N2-Ni1-C1 106.4(3)°, S1-C1-O1 136.6(7)°. 

The 
1
H NMR spectrum of 5.1 is consistent with its formulation as a Cs symmetric, 

diamagnetic, square planar Ni
II
 complex. For example, the 

1
H NMR spectrum of 5.1 in C6D6 

features two tert-butyl resonances at 1.43 and 1.41 ppm and a single γ-CH resonance at 5.48 
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ppm. Additionally, the 
13

C NMR spectrum of 5.1 features a resonance at 214.72 ppm that I 

have assigned to the [COS]
2-

 moiety. For comparison, this chemical shift is an exact average 

of the 
13

C NMR chemical shifts observed for the CE2 ligands in [(dtbpe)Ni
II
(η

2
-CO2)] (dtbpe 

= 
t
Bu2PCH2CH2P

t
Bu2) and [(dtbpe)Ni

II
(η

2
-CS2)], which are found at 164.28 and 264.20 

ppm, respectively.
26

 The IR spectrum (KBr mull) of 5.1 shows a strong νCO mode at 1676 

cm
-1

, which is consentient with that expected for [SCO]
2-

.
23

  

The formation of 5.1 represents a rare example of attack of a S
2-

 ligand by CO, and 

highlights the potent nucleophilicity of the S
2-

 moiety in [K(L)][L
tBu

Ni
II
(S)]. Other examples 

of this transformation include the reaction of [(Ph3P)4Pt2(-S)2] with CO to make COS and 

[(Ph3P)4Pt2(-S)], and the reaction of [Cp*Mo(-S){N(
i
Pr)C(Ph)N(

i
Pr)}]2 with CO and S8 to 

make COS and [Cp*Mo(CO)(η
2
-S2){N(

i
Pr)C(Ph)N(

i
Pr)}].

27,28
  For further comparison, the 

previously mentioned COS complex, [(MeCp)2Nb(η
2
-SCO)(CH2SiMe3)], was formed by 

reaction of [(MeCp)2Nb(CO)(CH2SiMe3)] with elemental sulfur.
23,29,30

  Perhaps more 

importantly, the formation of 5.1 provides support for the first step in the proposed 

mechanism of MoCu CODH,
9
 which is thought to involve insertion of CO into a Cu-S bond 

and formation of a thiocarbonate ligand, [CO2S]
2-

. Additionally, a metal-COS adduct may be 

a proposed intermediate in the catalytic cycle of thiocyanate hydrolase, which catalyzes the 

conversion of thiocyanate (SCN
-
) to carbonyl sulfide.

31–33
 Reaction of [K(18-crown-

6)][L
tBu

Ni
II
(S)] with NO to yield [L

tBu
Ni(NO)] (5.2) and [K(18-crown-6)][SSNO] (5.3). 

Exposure of a toluene solution of [K(18-crown-6)][L
tBu

Ni
II
(S)] to an excess of nitric 

oxide (NO) results in a rapid color change from brown to brown-green.  Work-up of the 

reaction mixture results in isolation of a nitrosyl complex, [L
tBu

Ni(NO)] (5.2), along with a 

perthionitrite salt, [K(18-crown-6)][SSNO] (5.3) (Scheme 5.2).   
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Scheme 5.2 Synthesis of complexes 5.2 and 5.3 

 

Complex 5.2 was isolated in an 80% yield and has been fully characterized by elemental 

analysis, X-ray crystallography (Figure 5.2), IR spectroscopy, and 
1
H and 

13
C NMR 

spectroscopy. Its structural and spectroscopic parameters are consistent with those 

previously reported for the related β-diketiminate nickel nitrosyl complex, [L
Me

Ni(NO)] 

(L
Me

 = {(2,6-
i
Pr2C6H3)NC(Me)}2CH), which was isolated from the reaction of [L

Me
Ni

I
(2,4-

lutidine)] and NO.
34
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Figure 5.2. ORTEP drawing of [L
tBu

Ni(NO)] (5.2) shown with 50% thermal ellipsoids. 

Hydrogen atoms have been omitted for clarity. Selected metrical parameters: Ni1-N2 

1.874(2) Å, Ni1-N1 1.615(3) Å, N1-O1 1.187(7) Å, N2-Ni1-N1 130.61(5)°, Ni1-N1-O1 

164.5(3)°. 

Complex 5.3 was isolated in 86% yield as orange plates (based on sulfur).  Its 

formulation was confirmed through X-ray crystallography, IR spectroscopy, and UV-Vis 

spectroscopy.  Complex 5.3 crystallizes from CH2Cl2/pentane as a CH2Cl2 adduct (K1-Cl1 = 

3.2674(8) Å) and features a perthionitrite [SSNO]
-
 ligand coordinated to a [K(18-crown-6)]

+
 

cation in a 
2
 fashion (Figure 5.3). The [SSNO]

-
 moiety in complex 5.3 possesses O-N, N-S, 

and S-S bond lengths of 1.247(2), 1.669(2), and 1.9526(9) Å, respectively, which agree well 
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with those reported previously reported for [PNP][SSNO] (PNP = Ph3PNPPh3).
35

 In 

addition, the K-S (3.2013(8) Å) and K-O (2.770(2) Å) bond lengths are comparable to those 

observed in 5.1. The UV-vis spectrum of 5.3 in acetonitrile features an absorbance at 443 

nm.  For comparison, [PNP][SSNO] exhibits an absorbance of 448 nm in acetone.
35

 The IR 

spectrum (KBr mull) of complex 5.3 reveals a νNO mode at 1313 cm
-1

, which is somewhat 

lower than those observed for other [SSNO]
-
 salts.

35,36
 This lower value may be a 

consequence of the K


O dative interaction observed in the solid state molecular structure of 

5.3. Complex 5.3 is soluble in aromatic solvents, acetonitrile, and dichloromethane, and 

appears to be indefinitely stable when stored at -25 °C as a solid under inert atmosphere.  

 

Figure 5.3. ORTEP drawing of [K(18-crown-6)][SSNO]·CH2Cl2 (5.3·CH2Cl2) shown with 

50% thermal ellipsoids. Hydrogen atoms have been omitted for clarity. Selected metrical 

parameters: O1-N1 1.247(2) Å, N1-S2 1.669(2) Å, S2-S1 1.9526(9) Å, S1-K1 3.2013(8) Å, 

O1-K1 2.770(2) Å, Cl1-K1 3.2674(8) Å, O1-N1-S2 119.6(1)°, N1-S2-S1 113.27(7)°. 
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5.2.2 Mechanistic Considerations 

The isolation of 5.3 from the reaction of [K(18-crown-6)][L
tBu

Ni
II
(S)] with NO 

demonstrates for the first time that a transition metal sulfide can react with NO to form 

[SSNO]
-
, an observation that may have implications for our understanding of the reactions 

between NO and sulfur-containing metallo-proteins in vivo.
5,6

 To account for the formation 

of 5.3, I hypothesize that the first step of the transformation involves sulfur abstraction by 

NO, forming "[K(18-crown-6)][SNO]" and “[L
tBu

Ni
I
]”.  Subsequent reaction of “[L

tBu
Ni

I
]” 

with NO yields complex 5.2 (Scheme 5.2a), a transformation that has been observed 

previously.
34

 Separately, reaction of "[K(18-crown-6)][SNO]" with NO results in formation 

of complex 5.3 (Scheme 5.2b). Alternatively, it is possible that the first step of the reaction 

yields a nickel-SNO adduct, e.g., [K(18-crown-6)][L
tBu

Ni(SNO)], which subsequently reacts 

with NO to yield the final products.  To test this hypothesis I monitored the reaction of 

[K(18-crown-6)][L
tBu

Ni
II
(S)] with only 5.1 equiv of NO, which resulted in only partial 

consumption of [K(18-crown-6)][L
tBu

Ni
II
(S)], and formation of complex 5.2 as the only 

identifiable Ni-containing product (Figures A 5.6-5.7).  These two complexes are present in 

an approx. 1:2 ratio, respectively.  The observation of unconsumed [K(18-crown-

6)][L
tBu

Ni
II
(S)] is consistent with the proposed mechanism, assuming that the sulfide 

abstraction step is rate determining. In addition, I monitored the reaction of independently 

prepared [PNP][SNO] with nitric oxide by UV-vis spectroscopy (Scheme 5.3).  

Scheme 5.3 Oxidation of SNO
- 
with NO to form SNNO

-
 

 

Thus, exposure of an MeCN solution of [PNP][SNO] to excess NO resulted in complete 

consumption of [PNP][SNO], as revealed by the loss of the absorption band at 334 nm, and 
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the generation of [PNP][SSNO], as revealed by the appearance of a new band at 445 nm 

(Figure 5.4). The other products generated in the transformation remain unidentified; 

however, I can rule out formation of N2O as it could not be detected in reaction mixture by 

either gas chromatography or IR spectroscopy.  While conversion of [SSNO]
-
 to [SNO]

-
 was 

previously reported,
35

 this is the first demonstration that [SNO]
-
 can be converted into 

[SSNO]
-
 upon oxidation.   

 

Figure 5.4. UV-vis spectrum of the reaction of [PNP][SNO] with excess NO in MeCN.
35

 

   

5.3 Summary  

In summary, the “masked” terminal nickel sulfide complex, [ (18-crown-

6)][L
tBu

Ni
II
(S)] (2.5), readily activates CO to give a carbonyl sulfide complex, [K(18-crown-

6)][L
tBu

Ni
II
(S,C:η2-SCO] (5.1), via CO addition across the Ni-S bond.  This result further 

highlights the high nucleophilicity of the sulfide ligand in [K(18-crown-6)][L
tBu

Ni
II
(S)], 

despite the K
+
 capping moiety that is present in both solution and the solid-state. Moreover, 
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complex 5.1 represents a well-defined example of a late metal [COS]
2-

 adduct.
9,31–33

 The 

sulfide ligand in [K(18-crown-6)][L
tBu

Ni
II
(S)] also activates NO to generate a nickel 

nitrosyl, [L
tBu

Ni(NO)] (5.2), and a perthionitrite salt, [K(18-crown-6)][SSNO] (5.3).  This 

result represents the first confirmed generation of [SSNO]
-
 from reaction of transition metal 

sulfide with NO. This observation is significant because it further confirms that metal 

sulfides can play a regulatory role in vivo with respect to NO availability (e.g., so-called 

NO/H2S “cross talk”).
4,37,38

 I have also discovered that oxidation of [SNO]
-
 with NO results 

in formation of [SSNO]
-
.  This represents a new route to [SSNO]

-
, and provides us with a 

better understanding of the fundamental chemistry of this important, but poorly understood, 

ion.     

5.4 Experimental Procedures 

5.4.1 General Methods 

All reactions and subsequent manipulations were performed under anaerobic and 

anhydrous conditions under an atmosphere of nitrogen.  Hexanes, diethyl ether (Et2O), and 

toluene were dried using a Vacuum Atmospheres DRI-SOLV Solvent Purification system 

and stored over 3Å sieves for 24 h prior to use. Acetonitrile, benzene-d6, pentane, and C8H18 

(isooctane) were dried over 3Å molecular sieves for 24 h prior to use. Acetone was dried by 

distillation (twice) from B2O3. [K(18-crown-6)][L
tBu

Ni(S)] and [PNP][NO2] were 

synthesized according to the previously reported procedures.
10,39

 Nitric oxide (NO) and 

carbon monoxide (CO) were supplied by Praxair and used as received. All other reagents 

were purchased from commercial suppliers and used as received. 

 
1
H and 

13
C{

1
H} NMR spectra were recorded on a Agilent Technologies 400-MR 

DD2 400 MHz spectrometer or a Varian UNITY INOVA 500 MHz spectrometer. 
1
H and 
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13
C{

1
H} NMR spectra were referenced to external SiMe4 using the residual protio solvent 

peaks as internal standards.
40,41

 IR spectra were recorded on a Nicolet 6700 FT-IR 

spectrometer.  Electronic absorption spectra were recorded on a Shimadzu UV3600 UV-NIR 

Spectrometer.  Elemental analyses were performed by the Micro-Mass Facility at the 

University of California, Berkeley. 

5.4.2 Synthesis of [K(18-crown-6)][L
tBu

Ni(C,S:η
2
-C(O)S)] (5.1) 

A 50 mL Schlenk flask, equipped with a Teflon rotoflow valve, was charged with a dark 

brown solution of [K(18-crown-6)][L
tBu

Ni(S)] (2.5) (35.0 mg, 0.0391 mmol) in toluene (2 

mL).  The headspace was then evacuated and filled with CO gas (1 atm). After addition of 

CO, the solution rapidly changed from dark brown to pale yellow. After stirring the solution 

for one minute, the headspace was evacuated and replaced with N2. The Schlenk flask was 

then transferred into a glovebox, and the reaction mixture was filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm).  The filtrate was then concentrated to ca. 

0.25 mL in vacuo. Addition of isooctane (1 mL) to this solution and subsequent storage at -

25 °C for 48 h resulted in the deposition of orange plates of [K(18-crown-6)][L
tBu

Ni(C,S:η
2
-

C(O)S)] (1), which were isolated by decanting off the supernatant (31.8 mg, 88% yield). 

Crystals suitable for X-ray diffraction were grown from concentrated solution of 1 in a ~1:1 

mixture of hexanes and benzene that was stored at -25 °C for 24 h.  Anal. Calcd for: 

C48H77KN2NiO7S: C, 62.39; H, 8.40; N, 3.03.  Found: C, 62.02; H, 8.10; N, 2.95.  
1
H NMR 

(400 MHz, 25 °C, benzene-d6): δ 7.25-6.97 (m, 6H, Ar-H, dipp), 5.48 (s, 1H, γ-H), 4.24 

(sept, 
3
JHH, = 6.7 Hz, 2H, CH(CH3)2), 4.19 (sept, 

3
JHH, = 6.7 Hz, 2H, CH(CH3)2), 2.99 (s, 

24H, 18-crown-6), 2.01 (d, 
3
JHH, = 6.8 Hz, 6H, CH(CH3)2), 1.80 (d, 

3
JHH, = 6.8 Hz, 6H, 

CH(CH3)2), 1.55 (overlapping doublets, 12H, CH(CH3)2), 1.43 (s, 9H, C(CH3)3), 1.41 (s, 
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9H, C(CH3)3). 
13

C NMR (125 MHz, 25 °C, benzene-d6): δ 214.72 (SC(O)), 166.17 (Ar-C), 

165.94 (Ar-C), 153.53 (Ar-C), 152.78 (Ar-C), 141.05 (Ar-C), 140.94 (Ar-C), 122.30 - 

121.55 (Ar-C), 95.20 (γ-C), 69.43 (18-crown-6), 42.88 (C(CH3)3), 42.44 (C(CH3)3), 33.87 

(C(CH3)3), 33.48 (C(CH3)3), 28.19 (CH(CH3)2), 27.85 (CH(CH3)2), 25.79 (CH(CH3)2), 

24.36 (CH(CH3)2), 24.23 (CH(CH3)2), 23.85 (CH(CH3)2). IR (KBr Pellet, cm
-1

): 1676 (s, 

νCO), 1624 (br w), 1535 (m), 1510 (s), 1473 (m), 1450 (m), 1444 (m), 1409 (s), 1385 (m), 

1365 (m), 1352 (s), 1321 (s), 1286 (w), 1250 (w), 1221 (w), 1192 (w), 1160 (w), 1111 (s), 

1057 (w), 964 (s), 937 (w), 896 (w), 839 (m), 804 (w), 776 (m), 758 (m), 642 (m), 579 (w), 

530 (w).  

5.4.3 Synthesis of [L
tBu

Ni(NO)] (5.2) and [K(18-crown-6)][SSNO] (5.3) 

A 50 mL Schlenk flask, equipped with a Teflon rotoflow valve, was charged with a dark 

brown solution of [K(18-crown-6)][L
tBu

Ni(S)] (53.0 mg, 0.0592 mmol) in toluene (2 mL).  

The headspace was then evacuated and filled with NO gas (1 atm). After addition of NO, the 

solution rapidly changed from dark brown to brown-green. After stirring the solution for one 

minute, the headspace was evacuated and replaced with N2. The Schlenk flask was then 

transferred to a glovebox, and the volatiles were removed in vacuo to give a pale brown 

solid. This solid was then washed with pentane (3 × 1 mL) and the washings were collected 

and filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) to give a pale 

green solution, while leaving a yellow-orange solid on the Celite column. The volatiles were 

then removed from the green solution in vacuo to give a green-brown solid. The solid was 

extracted into Et2O (0.5 mL) and transferred to a 5 mL vial.  This vial was placed inside a 20 

mL scintillation vial.  Toluene (2 mL) was then added to the outer vial.  Storage of this two 

vial system at -25 °C for 72 h resulted in the deposition of dichroic plates that appear to be 
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blue or orange depending upon their orientation relative to a light source.  This solid was 

isolated by decanting off the supernatant (28.0 mg, 80% yield). Separately, the insoluble 

yellow-orange solid was extracted into dichloromethane (2 mL) to give an orange solution. 

This solution was concentrated to ca. 0.5 mL in vacuo, filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), and transferred to a 5 mL vial. This vial was 

placed inside a 20 mL scintillation vial.  Pentane (2 mL) was then added to the outer vial.  

Storage of this two vial system at -25 °C for 72 h resulted in the deposition of orange plates 

of [K(18-crown-6)][SSNO] (5.3), which were isolated by decanting off the supernatant (10.1 

mg, 86% yield based on sulfur). Anal. Calcd for 5.2: C35H53N3NiO: C, 71.19; H, 9.05; N, 

7.12. Found: C, 70.82; H, 9.02; N, 7.09. 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ 7.21-

7.11 (m, 6H, Ar-H, dipp), 4.91 (s, 1H, γ-H), 3.90 (sept, 
3
JHH, = 6.7 Hz, 4H, CH(CH3)2), 1.67 

(d, 
3
JHH, = 6.8 Hz, 12H, CH(CH3)2), 1.42 (d, 

3
JHH, = 6.8 Hz, 12H, CH(CH3)2) 1.10 (s, 18H, 

C(CH3)3).
 13

C NMR (125 MHz, 25 °C, benzene-d6): δ 169.59 (Ar-C), 152.66 (Ar-C), 141.66 

(Ar-C), 126.00 (Ar-C), 123.66 (Ar-C), 93.74 (γ-C) 43.70 (C(CH3)3), 33.32 (C(CH3)3), 29.16 

(CH(CH3)2), 25.83 (CH(CH3)2), 23.56 (CH(CH3)2). IR (KBr Pellet, cm
-1
): 1784 (s, νNO), 

1647 (br w), 1537 (m), 1508 (s), 1464 (s), 1446 (s), 1435 (s), 1387 (s), 1365 (s), 1321 (s), 

1259 (m), 1252 (m), 1221 (s), 1196 (m), 1180 (m), 1157 (m), 1040 (m), 1101 (s), 1055 (m), 

1032 (m), 966 (w), 931 (w), 897 (w), 820 (m), 802 (m), 779 (m), 756 (m), 723 (w), 687 (w), 

615 (w), 532 (w), 476 (w), 455 (w), 436 (w). IR (C6H6, cm
-1
): 1784 (s, νNO). Anal. Calcd for 

5.3: C12H24KNO7S2 : C, 36.25; H, 6.08; N, 3.52. Found: Trial 1: C, 38.40; H, 6.33; N, 3.21; 

Trial 2: C, 37.93; H, 6.30; N, 3.34.  The high carbon percentage is attributed to the presence 

of a small amount of free 18-crown-6, which could not be separated from 5.3 by 

crystallization.  
1
H NMR (400 MHz, 25 °C, benzene-d6): δ 3.20 (s, 24H, 18-crown-6). IR 
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(KBr Pellet, cm
-1

): 1969 (w), 1778 (w), 1639 (br w), 1473 (m), 1456 (m), 1435 (w), 1385 

(m), 1352 (s), 1313 (m, νNO), 1282 (m), 1252 (m), 1223 (m), 1107 (s), 1030 (m), 962 (s), 

860 (w), 837 (m), 804 (br m), 690 (w), 669 (m), 553 (m), 532 (w), 492 (br m), 409 (w). UV-

vis (MeCN, 1.0 mM, 25 °C): 443 nm ( = 930 L·mol
-1

·cm
-1

). 

5.4.4 Reaction of [K(18-crown-6)][L
tBu

Ni(S)] with one equiv of NO 

A 50 mL Schlenk flask, equipped with a septum, was charged with a dark brown 

solution of [K(18-crown-6)][L
tBu

Ni(S)] (19 mg, 0.021 mmol) in toluene (2 mL) and cooled 

to 0 °C. Under an atmosphere of N2, NO gas (0.52 mL, 0.021 mmol) was slowly bubbled 

into the solution using an airtight, volumetric syringe. Upon addition of NO, the solution 

rapidly changed from dark brown to pale brown. After stirring for 10 min, the volatiles were 

removed in vacuo, and the flask was transferred to the glove box. The reaction mixture was 

dissolved in C6D6 (0.5 mL) to give a green-brown solution and a 
1
H NMR spectrum of this 

sample was recorded.  This spectrum revealed that presence of a mixture of complex 5.2 and 

[K(18-crown-6)][L
tBu

Ni(S)] (I) in a ~ 2:1 ratio, along with a small amount (less than 5%) of 

an unidentified diamagnetic product (Figure S6-S7).
 1

H NMR (400 MHz, 25 °C, benzene-

d6): δ 28.38 (I, s, 4H, Ar-mH), 26.26 (I, s, CH(CH3)2), 16.07 (I, 12H, CH(CH3)2), 7.21-7.11 

(5.2, m, 6H, Ar-H, dipp), 6.71 (I, 12H, CH(CH3)2), 4.91 (5.2, s, 1H, γ-H), 3.90 (5.2, sept, 

3
JHH, = 6.7 Hz, 4H, CH(CH3)2), 2.73 (18-crown-6), 1.67 (5.2, d, 

3
JHH, = 6.8 Hz, 12H, 

CH(CH3)2), 1.42 (5.2, d, 
3
JHH, = 6.8 Hz, 12H, CH(CH3)2) 1.10 (5.2, s, 18H, C(CH3)3), -0.74 

(I, 18H, C(CH3)3), -18.83 (I, 2H, Ar-pH) ppm. 

5.4.5 Synthesis of [PNP][SSNO] from [PNP][NO2] and S8 

The synthesis of [PNP][SSNO] was performed according to the previously reported 

procedure with slight modifications.
35

 To a stirring suspension of S8 (117.5 mg, 0.458 
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mmol) in acetone (1 mL) was added an acetone (15 mL) solution of [PNP][NO2] (PNP = 

Ph3PNPPh3) (1.068 g, 1.832 mmol). The reaction mixture was protected from light and 

allowed to stir 24 h, whereupon the sulfur was consumed and the reaction mixture turned 

dark orange. The reaction mixture was then filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm) to give a dark orange solution. Storage of this solution at -25 °C 

for 48 h results in the deposition of dark orange blocks (306 mg, 26%) that were isolated by 

decanting off the supernatant. This product was identified as [PNP][SSNO] by comparison 

of its unit cell (Orthorhombic P; V = 3098 Å
3
  a = 11.90 Å, b = 15.55 Å, c = 16.74 Å, α = 

90.00°, β = 90.00°, γ = 90.00°) with the previously reported values, and by IR spectroscopy 

(νNO = 1350 cm
-1

, KBr mull).
35

  

5.4.6 Synthesis of [PNP][SNO] from [PNP][SSNO] and PPh3 

The synthesis of [PNP][SNO] was performed according to a previously reported 

procedure with slight modifications. 
35

 To a stirring solution of [PNP][SSNO] (57.0 mg, 

0.0877 mmol) in acetone (5 mL) was added a solution of PPh3 (28.7 mg, 0.1754 mmol) in 

acetone (1 mL). This mixture was protected from light and allowed to stir for 24 h. After 24 

h, the reaction mixture was a pale green color. This solution was concentrated in vacuo to 

ca. 1 mL, and filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) to 

give a pale green solution. This solution was then transferred to a 5 mL vial. This vial was 

placed inside a 20 mL scintillation vial.  Et2O (2 mL) was then added to the outer vial.  

Storage of this two vial system at -25 °C for 24 h resulted in the deposition of white crystals 

of Ph3P=S (identified by 
31
P NMR spectroscopy, δ = 42.29 ppm)

42
 which were isolated by 

decanting off the supernatant. The pale green supernatant was then filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm) and concentrated in vacuo to ca. 0.25 mL 



 

 167 

and transferred into a 5 mL vial. This vial was placed inside a 20 mL scintillation vial.  Et2O 

(2 mL) was then added to the outer vial.  Storage of this two vial system at -25 °C for 72 h 

resulted in the deposition of pale green blocks (34 mg, 63%) which were isolated by 

decanting off the supernatant. This product was identified as [PNP][SNO] by UV-vis 

spectroscopy (λmax = 334 nm, 1.0 mM in MeCN).  

5.4.7 Reaction of [PNP][SNO] with excess NO 

A quartz UV-vis cell equipped with a Teflon rotoflow valve was charged with an MeCN 

solution of [PNP][SNO] (4 mL, 1.0 mmol). A UV-vis spectrum of this solution was 

recorded, which revealed a strong absorbance at 334 nm (Figure S14). The headspace was 

then evacuated and filled with NO gas (1 atm). After addition of NO, the solution rapidly 

changed from pale green to orange. A UV-vis spectrum of the reaction mixture was re-

recorded.  This spectrum revealed the complete consumption of the band assigned to 

[PNP][SNO], and the appearance of a new feature at 445 nm that is attributed to the 

presence of [PNP][SSNO] (Figure 5.4).
35

  

5.4.8 X-ray Crystallography 

Data for 5.1-5.3 were collected on a Bruker KAPPA APEX II diffractometer equipped 

with an APEX II CCD detector using a TRIUMPH monochromator with a Mo  α X-ray 

source (α = 0.71073 Å).  The crystals were mounted on a cryoloop under Paratone-N oil, 

and all data were collected at 100(2) K using an Oxford nitrogen gas cryostream.  Data were 

collected using ω scans with 0.5° frame widths.  rame exposures of 15, 10, and 5 seconds 

were used for 5.1, 5.2, and 5.3, respectively. Data collection and cell parameter 

determination were conducted using the SMART program.
43

  Integration of the data frames 

and final cell parameter refinement were performed using SAINT software.
44

 Absorption 
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correction of the data was carried out using the multi-scan method SADABS.
45

 Subsequent 

calculations were carried out using SHELXTL.
46

  Structure determination was done using 

direct or Patterson methods and difference Fourier techniques.  All hydrogen atom positions 

were idealized, and rode on the atom of attachment.  Structure solution, refinement, 

graphics, and creation of publication materials were performed using SHELXTL.
46

  

In complex 5.1, two of the C6H6 solvate molecules exhibited some positional disorder; 

alternate positions were found for both molecules: one was refined in a 50:50 ratio, and the 

second was modelled in a 57:43 ratio, using the FVAR command in SHELXL. The C-C 

bonds in the C6H6 molecules were constrained to 1.4 Å using the DFIX command.  

Hydrogen atoms were not added to disordered carbon atoms. Additionally, the [SCO]
2-

 

ligand was found to be disordered over two orientations, which were related by a C2 rotation 

about the Ni-K vector. These two orientations were modelled in a 70:30 ratio using the 

FVAR command in SHELXL. In complex 5.2, the O-atom in the NO ligand is disordered 

over two positions, which were modelled in a 50:50 ratio using the FVAR command in 

SHELXL. Additionally, the NO bond lengths were constrained using the SADI command in 

SHELXL.  Further crystallographic details for complexes 5.1-5.3 can be found in Table 5.1. 
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Table 5.1. X-ray Crystallographic Data for Complexes 5.1, 5.2, and 5.3. 

 5.1·2C6H6 5.2 5.3·CH2Cl2 

empirical formula C48H77KN2NiO7S·2C6H6 C35H53N3NiO C12H24KNO7S2·CH2Cl2 

crystal habit, color Plate, Orange Plate, Blue-Orange 

dichroic 

Plate, Orange 

crystal size (mm) 0.15  0.1 × 0.05 0.2 × 0.15 × 0.05 0.5 × 0.4 × 0.1 

crystal system Triclinic Monoclinc Monoclinc 

space group P-1 C2/c P21/n 

volume (Å
3
) 3071.9(9) 3414.4(4) 2205.4(5) 

a (Å) 12.668(2) 16.832(1) 9.477(1) 

b (Å) 13.370(2) 9.3700(6) 14.048(2) 

c (Å) 20.680(3) 22.582(2) 16.771(3) 

α (deg) 80.951(4) 90 90 

β (deg) 88.335(4) 106.526(5) 98.978(4) 

γ (deg) 62.771(3) 90 90 

Z 2 4 4 

formula weight (g/mol) 1080.18 590.51 482.47 

density (calculated) 

(Mg/m
3
) 

1.158 1.149 1.453 

absorption coefficient 

(mm
-1

) 

0.466 0.597 0.704 

F000 1146 1280 1008 

total no. reflections 27019 12977 9506 

unique reflections 12508 4835 4564 

Rint 0.0559 0.0574 0.0280 

final R indices (I >2σ(I)] 
R1 = 0.0791 

wR2 = 0.2006 

R1 = 0.0513 

wR2 = 0.1073 

R1 = 0.0343 

wR2 = 0.0676 

largest diff. peak and hole 

(e
-
 A

-3
) 

1.725 and -0.687  0.642 and -0.643 0.485 and -0.556 

GOF 1.038 1.035 1.016 
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5.5 Appendix 

5.5.1 NMR Spectra  

 

 

Figure A 5.1. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(C,S:η

2
-C(O)S)] (5.1) in 

benzene-d6. (*) indicates the presence of toluene. 

 

  

* * 
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Figure A 5.2. 
13

C NMR spectrum of [K(18-crown-6)][L
tBu

Ni(C,S:η
2
-C(O)S)] (5.1) in 

benzene-d6. 
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Figure A 5.3. 
1
H NMR spectrum of [L

tBu
Ni(NO)] (5.2) in benzene-d6. (*) indicates the 

presence of free 18-crown-6.  

  

* 
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Figure A 5.4. 
13

C NMR spectrum of [L
tBu

Ni(NO)] (5.2) in benzene-d6. (*) indicates the 

presence of free 18-crown-6. 

  

* 



 

 174 

 

Figure A 5.5. 
1
H NMR spectrum of [K(18-crown-6)][SSNO] (5.3) in C6D6. (*) indicates the 

presence of toluene and (◊) indicates the presence of pentane. 

* ◊ ◊ 
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Figure A 5.6.  
1
H NMR spectrum of reaction of [K(18-crown-6)][L

tBu
Ni(S)] with one equiv 

of NO in benzene-d6. (*) indicates the presence of [K(18-crown-6)][L
tBu

Ni(S)] and (◊) 

indicates the presence of [L
tBu

Ni(NO)] (5.2). 

  

* 

* 

* * 
* 

* ◊ 

◊ 
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Figure A 5.7. Partial 
1
H NMR spectrum of reaction of [K(18-crown-6)][L

tBu
Ni(S)] with one 

equiv of NO in benene-d6. (*) indicates the presence of [K(18-crown-6)][L
tBu

Ni(S)], (◊) 

indicates the presence of [L
tBu

Ni(NO)] (5.2), (□) indicates the presence of unidentified 

minor side products. 

* * 

◊ 

◊ ◊ 

◊ ◊ 

◊ 

□ □ □ 
□ □ 
□ □ 

□ 

□ 

□ □ 
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5.5.2 IR Spectra 

 

Figure A 5.8.  Partial IR spectrum of complex 5.1 (KBr pellet). (*) indicates the νCO stretch 

(1676 cm
-1

). 

 

Figure A 5.9.  Partial IR spectrum of complex 5.2 (KBr pellet). (*) indicates the νNO stretch 

(1784 cm
-1

). 

* 

* 
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Figure A 5.10.  Partial solution IR spectrum of complex 5.2 (C6H6, 25 
o
C). (*) indicates the 

νNO stretch (1784 cm
-1

). 

 

Figure A 5.11.   Partial IR spectrum of complex 5.3 (KBr pellet). (*) indicates the νNO 

stretch (1313 cm
-1

). 

* 

* 
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5.5.3 UV-Vis Data 

 

 

Figure A 5.12.  UV-vis spectrum of complex 5.3 (1.0 mM in MeCN). 
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6.1 Introduction 

Nitrous oxide (N2O) features a long atmospheric lifetime and large global warming 

potential (ca. 300 times larger than CO2), making it an important greenhouse gas.
1–4

 

Anthropogenic sources of N2O include agriculture, fossil fuel combustion, adipic acid 

synthesis, and nitric acid production.
1,5

 The latter two sources use on-site N2O mitigation to 

remove N2O from the effluent stream, either by decomposition to the elements
6
 or reduction 

to N2 and H2O, but neither of these methods is completely effective and some N2O is still 

released into the atmosphere.
7
  

Given the above considerations, the development of new catalysts for N2O reduction 

could help reduce its impact on global temperatures.
1,8

 Not surprisingly, a large number of 

heterogeneous systems have been developed to catalyze this reaction.
9
 Of most relevance to 

the current study are the catalyst systems used for automotive applications, which consist of 

nanoparticulate Pt and Rh on a ceramic support. This process uses partially oxidized fuel 

(i.e., CO) to reduce N2O, forming N2 and CO2.
9
 Sita and co-workers developed a 

homogeneous version of this transformation, mediated by the Mo(II) complex, 

Cp*Mo(NCN)(CO)2 (NCN = 
i
PrNC(Me)N

i
Pr).

10
 In this process, N2O oxidizes 

Cp*Mo(NCN)(CO)2 to form a Mo(IV) oxo, Cp*Mo(NCN)(O), which then reacts with CO to 

form CO2 and regenerate Cp*Mo(NCN)(CO)2. However, an N-N bond cleavage reaction, 

which results in irreversible formation of Cp*Mo(NCN)(NCO)(NO), was found to be 

competitive with oxo formation (Figure 6.1).  Similarly, Limberg and co-workers reported 

the stoichiometric oxidation of a Ni(0) CO complex, [K]2[L
tBu

Ni
0
(CO)]2, with N2O to form a 

carbonate complex, [K]6[L
tBu

Ni
II
(CO3)]6, and N2.

11
 Subsequent release of carbonate from the 

metal center was not discussed.  The homogeneous hydrogenation of N2O has also been 

explored.
12,13

 For example, in 2015 Piers and co-workers reported an Ir(III) pincer carbene 
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complex that could hydrogenate N2O;
14

  however, this system was not reported to be 

catalytic.  More recently, Milstein and co-workers reported that the Ru pincer complex, 

(PNP)RuH(CO)(OH) (PNP = 2,6-CH2P
i
Pr2(C5H3N)), was an effective catalyst for the 

hydrogenation of N2O, achieving a turnover number of ca. 400.
15

  

 

Figure 6.1. Homogeneous nitrous oxide reduction. Ref. 10. 

In Chapters 2-5, I established the nucleophilic reactivity of "masked" terminal nickel 

sulfide complexes, [K(L)][L
R
Ni

II
(S)] (2.4-2.6), with a variety of electrophiles (Me3SiOTf, 

[CoCp*(C5Me4=CH2)]) and small molecules (CS2, CO, and NO). In Chapter 6, I will 

describe the reaction of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) with N2O to yield an 

unprecedented thiohyponitrite complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-SNNO)].

16
 Given the 

challenge of activating N2O,
17

 and the novelty of the [SNNO]
2-

 ligand, I also endeavored to 
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explore its reactivity in an effort to uncover new routes to N2O reduction and better 

understand the chemistry of this enigmatic molecule. 

6.2 Results and Discussion 

6.2.1 Synthesis and Characterization of [K(18-crown-6)][L
tBu

Ni(
2
-SNNO)] (6.1) 

Exposure of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) to an atmosphere of nitrous oxide (N2O) 

results in a rapid color change from dark brown to yellow. Isolation of the resulting product 

via crystallization from toluene/isooctane provides [K(18-crown-6)][L
tBu

Ni(
2
-SNNO)] 

(6.1) as an orange crystalline solid in 62% yield (Scheme 6.1).  

Scheme 6.1 Synthesis of  [L
tBu

Ni
II
(

2
-SNNO)] (6.1) 

 

Complex 6.1 crystallizes in the triclinic space group P-1, and its solid state molecular 

structure is shown in Figure 6.2. Complex 6.1 features an unprecedented κ
2
-thiohyponitrite 

([SNNO]
2-

) ligand, formed by [3 + 2] cycloaddition of N2O across the Ni-S bond.  The S-N 

and O-N distances in the [SNNO]
2-

 moiety are 1.787(6) Å and 1.308(1) Å, respectively, are 

suggestive of single bonds, while the N-N bond length of 1.154(9) Å is indicative of a 

double bond.  Finally, the [K(18-crown-6)]
+
 moiety in 6.1 features a dative interaction with 

the thiohyponitrite ligand, and its N-K distances are 2.911(8) and 2.914(6) Å. 

The 
1
H NMR spectrum of 6.1 in C6D6 is indicative of a complex containing a 

diamagnetic S = 0 ground state.  For example, the two isopropyl methyl resonances of the β-
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diketiminate ligand are observed as doublets at 1.52 and 2.01 ppm, while the -CH 

resonance is observed at 5.43 ppm. Curiously, at both room temperature and -85 °C 

(toulene-d8), only one resonance is observed for the 
t
Bu substituents, which argues for a C2v 

symmetric complex in solution, and not Cs, as is observed in the solid state.  This suggests 

facile exchange of the sulfur and oxygen positions within the Ni coordination sphere.  

Similar behavior was observed in the alkyl-substituted hyponitrite complexes, 

[L
Me

Ni(ON=N(R)O)] (R = Et, 3,5-Me2C6H3),
18

 which even at low temperatures feature 

equivalent β-diketiminate backbone methyl resonances in their 
1
H NMR spectra.   

 

Figure 6.2. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni(κ
2
-SNNO)] (6.1·1.5C7H8·0.5C8H18) 

shown with 50% thermal ellipsoids. Hydrogen atoms and C7H8 solvate molecules have been 

omitted for clarity. 
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Complex 6.1 is a rare example of a structurally characterized transition metal complex 

containing activated N2O and features the first example of a thiohyponitrite ([κ
2
-SNNO]

2-
) 

ligand. Its formation is reminiscent of the Frustrated Lewis Pair (FLP) system, 

t
Bu3P/B(C6F5)3, which reacts with N2O to form [

t
Bu3P(NNO)B(C6F5)3],

19
 or the reaction of 

N2O with Na2O, which results in formation of trans-[Na2N2O2].
20,21

 Also relevant is the 

reaction of IPr with N2O to form IPr-N2O (Figure 6.3).
22

  These results support the 

conclusion that the [SNNO]
2-

 ligand is formed by nucleophilic attack of N2O by the sulfide 

ligand in 2.5.
19,22,23

  

 

Figure 6.3. Nucleophilic activation of N2O. A, Ref. 19; B, Ref. 22. 

 

6.2.2 Synthesis and Characterization of [K(18-crown-6)][L
tBu

Ni
II

(
2
-SO)] (6.2) 

Gentle heating of a toluene-d8 solution of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SNNO)] (6.1) at 

45 °C results in the complete thermolysis of 6.1 over the course of 6 d. A 
1
H NMR spectrum 

of this reaction mixture reveals the presence of a new γ-CH resonance at 5.43 ppm (Figure A 

6.5-6.6), which I have assigned to the thioperoxide complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-

SO)] (6.2).  Also present in this spectrum are two minor γ-CH resonances. The first, 

observed at 5.53 ppm, has been tentatively assigned to the disulfur dioxide complex, [K(18-
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crown-6)][L
tBu

Ni
II
(

2
-OSSO)] (6.3), and the second resonance at 5.47 ppm, has been 

assigned to the disulfide complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-S2)] (6.4).  Work-up of the 

reaction mixture affords [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)] (6.2) as an orange crystalline 

solid in 82% yield (Scheme 6.2).  

Scheme 6.2 Thermolysis of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SNNO)] (6.1) 

 

The solid state molecular structure of 6.2 is shown in Figure 6.4. Complex 6.2 features a 

rare example of the thioperoxide ([
2
-SO]

2-
) ligand. It is formed via N2 extrusion from the 

thiohyponitrite fragment.  The [
2
-SO]

2-
 ligand in 6.2 is disordered over two positions in a 

97:3 ratio, which are related by a C2 rotation about the Ni-K axis. The [
2
-SO]

2-
 ligand in 

6.2 is bound in a µ-η
2
,η

2
 fashion, wherein the sulfur and oxygen atoms are coordinated to 

both the Ni and K
+
 centers. The [

2
-SO]

2-
 ligand in complex 6.2 possesses an S-O bond 

length of 1.656(3) Å, consistent with an S-O single bond.
24

 For comparison, the S-O 

distance in free S=O is substantially shorter (1.48108(8) Å), due to its higher bond order.
25

 

The Ni-S (2.127(1) Å) and Ni-O (1.954(3) Å) distances in 6.2 are both consistent with single 

bonds and are comparable with those found in the starting material (6.1), while the Ni-N 

bond lengths (1.881(4) and 1.900(4) Å) are similar to those observed in other square planar 

L
R
Ni

II
 complexes.

16,26
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Figure 6.4. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)]·C7H8 (6.2·C7H8) shown 

with 50% thermal ellipsoids. Hydrogen atoms, a C7H8 solvate molecule, and one orientation 

of the disordered [
2
-SO]

2-
 ligand have been omitted for clarity. Selected metrical 

parameters: S1-O1 1.656(3) Å, Ni1-S1 2.127(1) Å, Ni1-O1 1.954(3) Å, Ni1-N1 1.881(4) Å, 

Ni1-N2 1.900(4) Å, S1-K1 3.162(2) Å, O1-K1 2.881(3) Å, N1-Ni1-N2 99.2(2)°, N1-Ni1-S1 

110.0(1)°, N2-Ni1-O1 103.2(1)°, S1-Ni1-O1 47.65(9)°. 

The 
1
H and 

13
C{

1
H} NMR spectra of 6.2 are consistent with its formulation as a Cs 

symmetric, diamagnetic, square planar Ni
II
 complex. The 

1
H NMR spectrum of 6.2 in C6D6 

features two tert-butyl resonances at 1.32 and 1.37 ppm and a single γ-CH resonance at 5.54 

ppm. The IR spectrum (KBr pellet) of 6.2 reveals a strong SO mode at 902 cm
-1

, which is 

consistent with values reported for other bridging [η
2
-SO]

2-
 ligands (883, 873 cm

-1
).

27,28
 

Only a handful of thioperoxide complexes are known, including [(triphos)Rh(µ-η
2
,η

1
-

SO)2Rh(triphos)][BPh4]2 (triphos = CH3C(CH2PPh2)3), [{RhCl(μ-η
2
,η

1
-SO)(PPh3)2}2], and 

Fe3(3-SO)(S)(CO)9.
27,29,30

 The iron example is notable because it can be prepared by O-
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atom transfer to Fe3(S)2(CO)9,
31

 a manner of preparation that is similar to that of 6.2.  

Interestingly, Mankad and co-workers suggest that a transient SO complex is formed upon 

reaction of [(IPr*)Cu]2(-S) with N2O,
32

 a transformation that parallels the conversion of 2.5 

to 6.1 and then 6.2. 

As mentioned above, I also observe formation of [K(18-crown-6)][L
tBu

Ni
II
(

2
-OSSO)] 

(6.3), as a minor side product, during the conversion of [K(18-crown-6)][L
tBu

Ni
II
(

2
-

SNNO)] to 6.2. Despite its presence in trace amounts, I have been able to obtain a few single 

crystals of 6.3 as orange plates from the reaction mixture.  The solid state molecular 

structure of 6.3 is shown in Figure 6.5. It features the first example of a co-planar [OSSO]
2-

 

ligand (OSSO dihedral angle = 2°). The [
2
-OSSO]

2-
 ligand in 6.3 is bound to the Ni center 

in an 
2
 fashion, via both sulfur atoms, while the O atoms are bound to the [K(18-crown-6)]

+
 

cation in a 
2
 fashion. Its S-S distance is 2.093(3) Å, while the S-O distances are 1.485(5) 

and 1.496(7) Å. For comparison, the S-S (2.0245(6) Å) and S-O (1.458(2) Å) distances in 

free S2O2 are shorter than those observed for 6.3,
33–35

 consistent with the reduced S-S and S-

O bond orders anticipated for the [OSSO]
2-

 fragment in the former.
33,36,37

 Notably, complex 

6.3 is only the third OSSO complex to be reported and only second to be structurally 

characterized.
31,38–40
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Figure 6.5. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni
II
(

2
-OSSO)]·2C6H14 (6.3·2C6H14) 

shown with 50% thermal ellipsoids. Hydrogen atoms and C6H14 solvate molecules have 

been omitted for clarity. Selected metrical parameters: S1-S2 2.093(3) Å, S1-O1 1.485(5) Å, 

S2-O2 1.496(7) Å, Ni1-S1 2.181(2) Å, Ni1-S2 2.173(2) Å, Ni1-N1 1.920(4) Å, Ni1-N2 

1.925(4) Å, O1-K1 2.747(4) Å, O2-K1 2.777(6) Å, N1-Ni1-N2 97.3(2)°, N1-Ni1-S1 

102.1(1)°, N2-Ni1-S2 102.9(1)°, O1-S1-S2 107.4(2)°, O2-S2-S1 107.4(2)°. 

To account for the presence of 6.3 in the reaction mixture, I hypothesize that complex 

6.2 undergoes a formal disproportionation, forming 6.3 and an equivalent of unobserved 

“[ (18-crown-6)][L
tBu

Ni
0
]”.  However, because of the low yield (typically less than 3% 

relative to complex 6.2, as assessed by 
1
H NMR spectroscopy), this transformation must be 

very inefficient. 
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6.2.3 Synthesis of [K(18-crown-6)][L
tBu

Ni
II

(
2
-S2)] (6.4) 

To further support the formation of the disulfide ([
2
-S2]

2-
) complex, [K(18-crown-

6)][L
tBu

Ni
II
(

2
-S2)] (6.4), during the synthesis of 6.2, I endeavored to independently 

synthesize 6.4.  Several research groups have previously shown that terminal metal sulfides 

can react with S8 to form metal disulfides.
41–43

 Thus, I explored the reaction of [K(18-crown-

6)][L
tBu

Ni
II
(S)] (2.4) with elemental sulfur.  Addition of 0.125 equiv of S8 to a toluene 

solution of [K(18-crown-6)][L
tBu

Ni
II
(S)] results in a rapid color change from brown to 

orange. Work-up of the reaction mixture affords [K(18-crown-6)][L
tBu

Ni
II
(

2
-S2)] (6.4), as 

an orange crystalline solid in 81% yield (Scheme 6.3).  

Scheme 6.3 Synthesis of [K(18-crown-6)][L
tBu

Ni
II
(

2
-S2)] (6.4) 

 

The solid state molecular structure of 6.4 is shown in Figure 6.6. The disulfide (S2
2-

) 

ligand in 6.4 has a S-S distance of 2.050(2) Å, consistent with a single bond.
24

 This distance 

is comparable to those reported for other Ni
II
(

2
-S2) complexes.

44–51
 The Ni-S distances 

(2.202(2) and 2.199(2) Å) in 6.4 are consistent with single bonds, and are much longer than 

the Ni-S bond length in the starting material (2.5, 2.064(2) Å). Finally, the Ni-N bonds in 

6.4 are similar to those found in other square planar Ni
II
 -diketiminate complexes.

16,51,52
  

The 
1
H NMR spectrum of 6.4 in toluene-d8 (Figure A 6.10) is consistent with a C2v 

symmetric, diamagnetic, square planar Ni
II
 complex and features one tert-butyl resonance at 

1.30 ppm and a single γ-CH resonance at 5.46 ppm.  Importantly, this latter resonance is 



 

 196 

also present in the in situ 
1
H NMR spectrum of the thermolysis of 6.2 (Figure A 6.5), 

confirming the formation of 6.4 during that reaction, via an as-yet-unknown mechanism. 

 

Figure 6.6. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni
II
(

2
-S2)]·2C7H8 (6.4·2C7H8) shown 

with 50% thermal ellipsoids. Hydrogen atoms and C7H8 solvate molecules have been 

omitted for clarity. Selected metrical parameters: S1-S2 2.050(2) Å, Ni1-S1 2.202(2) Å, 

Ni1-S2 2.199(2) Å, Ni1-N1 1.900(4) Å, Ni1-N2 1.906(4) Å, S1-K1 3.248(2) Å, S2-K1 

3.249(2) Å, N1-Ni1-N2 98.0(2)°, N1-Ni1-S2 103.1(1)°, N2-Ni1-S1 103.4(1)°. 

6.2.4 Reactivity of the (
2
-SO) Ligand 

Not surprisingly, given the rarity of thioperoxide complexes, the reactivity of the SO 

moiety has not been well established.  Previously, Schmid and co-workers reported that 

[(diphos)2Ir(
2
-OSSO)][Cl] reacted with PPh3 to form Ph3PO, Ph3PS, and [(diphos)2IrCl].

38
 

More recently, Rauchfuss and co-workers demonstrated that Cp2Nb(S2O)Cl reacted with 

Ph3P to form Cp2Nb(O)Cl and two equiv of Ph3PS.
31

 Both transformations were presumed 
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to proceed through an unobserved SO intermediate, suggesting that S- or O-atom abstraction 

is a plausible reaction pathway for this ligand. However, the reactivity of the SO ligand with 

CO has not been studied explicitly.  Accordingly, I explored the reactivity of [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SO)] (6.2) with this substrate. Thus, exposure of a C6D6 solution of complex 

6.2 to an atmosphere of 
13

CO results in complete consumption of 6.2 after 6 h. A 
13

C{
1
H} 

NMR spectrum (Figure A 6.14) of the reaction mixture reveals the formation of several 
13

C-

enriched products, indicating the incorporation of 
13

CO.  Specifically, this spectrum features 

resonances at 214.7, 177.3, 165.3, and 152.9 ppm, which are assignable to [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SCO)] (5.1),

53
 [K(18-crown-6)][L

tBu
Ni

II
(S,O:

2
-SCO2)] (6.5), [K(18-crown-

6)][L
tBu

Ni(
2
-CO3)] (6.6), and SCO (6.7),

54
 respectively (Scheme 6.4).  This spectrum also 

features a minor 
13

C-enriched resonance at 206.9 ppm, which I have tentatively assigned to 

[K(18-crown-6)][L
tBu

Ni
II
(S2CO)] (6.8), on the basis of the similarity of its dithiocarbonate 

([S2CO]
2-

) chemical shift with those reported for other dithiocarbonate complexes.
54–56

  

Scheme 6.4 Reaction of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)] (6.2) with CO 

 

A 
1
H NMR spectrum of the reaction mixture further supports these assignments.  

Specifically, an examination of the γ-CH region of this spectrum reveals overlapping 

resonances at 5.48 ppm (Figure A 6.13), which are assignable to [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SCO)] (5.1)

53
 and [K(18-crown-6)][L

tBu
Ni

II
(S,O:

2
-SCO2)] (6.5), and a 

resonance at 5.42 ppm, assignable to [K(18-crown-6)][L
tBu

Ni(
2
-CO3)] (6.6). This spectrum 
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also contains a minor resonance at 5.57 ppm that has been tentatively assigned to [K(18-

crown-6)][L
tBu

Ni
II
(S2CO)] (6.8). Interestingly, at short reaction times, I observe the presence 

of a paramagnetic intermediate in the reaction mixture (Figure A 6.12).  I have tentatively 

identified this intermediate as the Ni
II
 sulfide, [K(18-crown-6)][L

tBu
Ni

II
(S)] (2.5), on the 

basis of the similarity of its 
1
H NMR resonances with those of the previously characterized 

material.
16

 For example, this intermediate features resonances at -130.25, -0.63, and 5.87 

ppm, which are assignable to the γ-proton of the L
tBu

 ligand, its 
t
Bu substituents, and one 

environment of its diastereotopic 
i
Pr methyl groups, respectively.  For comparison, these 

resonances appear at -115.21, -0.88, and 6.56 ppm, respectively, for authentic 2.5.
16

 This 

intermediate is quickly formed upon addition of 
13

CO, but its signals immediately begin to 

decay, and they are completely absent after 6 h (Figure A 6.12).  

I also characterized the products of the reaction of 6.2 and CO by IR spectroscopy.  An 

IR spectrum of the reaction residue, dissolved in hexanes, reveals the presence of CO modes 

at 2021, 1666, and 1620 cm
-1

 (Figure A 6.28), which are assignable to the CO modes of 

[L
tBu

Ni
I
(CO)] (6.9),

57
 [K(18-crown-6)[L

tBu
Ni

II
(

2
-SCO)] (5.1),

53
 and [K(18-crown-

6)][L
tBu

Ni
II
(

2
-CO3)] (6.6), respectively. Curiously, I do not observe any signals in the 

1
H 

NMR spectrum of the reaction mixture that could be assigned to paramagnetic 6.9, 

suggesting that it is only a minor product of the reaction. While I am uncertain as to how 

complex 6.9 is generated, I speculate that it may be formed via decomposition of the known 

Ni(0) carbonyl, [L
tBu

Ni
0
(CO)]

-
,
57

 which itself could be formed by sequential O- and S-atom 

transfer from 6.2, although I do not observe [L
tBu

Ni
0
(CO)]

-
 by either 

13
C{

1
H} or 

1
H NMR 

spectroscopies, or by IR spectroscopy (Figures A 6.12-6.14, 6.28).  
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The 
13

C NMR spectrum of the in situ reaction mixture also features a minor 
13

C-enriched 

resonance at 178.5, as well as a major resonance at 191.4 ppm (Figure A 6.14). While these 

two resonances remain unassigned, I know that neither of the peaks is assignable to [K(18-

crown-6)][L
tBu

Ni
II
(

2
-CO2)] (6.10), as I have performed the independent synthesis of this 

complex for spectroscopic comparison (see below). 

6.2.5 Synthesis and Characterization of [K(18-crown-6)][L
tBu

Ni
II

(S,O:
2
-SCO2)] (6.5) 

To further support the presence of [K(18-crown-6)][L
tBu

Ni
II
(S,O:

2
-SCO2)] (6.5) in the 

reaction of 6.2 with CO, I pursued its synthesis via an independent route.  Thus, exposure of 

a C6D6 solution of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) to excess carbon dioxide (CO2) results 

in a rapid color change from dark brown to gold. The 
1
H NMR spectrum of the reaction 

mixture taken 15 min after addition of CO2 reveals full consumption of the starting material 

and formation of a new diamagnetic product whose spectroscopic signature is consistent 

with a square planar Ni
II
 complex.

53
 Work-up of the reaction mixture provides 6.5 as a pale 

brown crystalline solid in 57% yield (Scheme 6.5).  

Scheme 6.5 Synthesis of [K(18-crown-6)][L
tBu

Ni
II
(S,O:

2
-SCO2)] (6.5) 

 

The solid state molecular structure of 6.5 is shown in Figure 6.7. The thiocarbonate 

([S,O:
2
-SCO2]

2-
) ligand in 6.5 features a :

2
,

2
 binding mode. The [S,O:

2
-SCO2]

2–
 ligand 

in 6.5 is disordered over two positions, which are related by a C2 rotation about the Ni-K 

vector, in a 87:13 ratio. The S-C (1.756(4) Å) and O-C (1.279(5) and 1.238(4) Å) bond 
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lengths in 6.5 are consistent with those observed for previously reported [SCO2]
2-

 

complexes.
58,59

 The Ni-S and Ni-O distances in 6.5 are 2.234(1) Å and 1.922(3) Å, 

respectively, while the K-S and K-O distances are 3.531(1) Å and 2.715(3) Å, respectively, 

which are comparable to other K-S and K-O dative interactions.
60,61

 Finally, the Ni-N 

distances in 6.5 are comparable to those found in the starting material.
16

 To the best of my 

knowledge, complex 6.5 is the first structurally characterized transition metal complex 

containing the [SCO2]
2-

 ligand.  Other structurally characterized thiocarbonate complexes 

include [{((
Ad

ArO)3N)U}2(-η
1
,(O):

2
(O',S)SCO2)] ((

Ad
ArO)3N = N-[(2,4-

adamantyl2C6H2(CH2)O]3), prepared by reaction of [{((
Ad

ArO)3N)U}2(μ-S)] with CO2, and 

[Cp*2Sm(-η
1
:

2
-SCO2)SmCp*2], prepared via reaction of [(Cp*2Sm)2(-O)] with COS.

58,59
  

 

Figure 6.7. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni
II
(S,O:

2
-SCO2)]·1.5C7H8 

(6.5·1.5C7H8) shown with 50% thermal ellipsoids. Hydrogen atoms, C7H8 solvate molecules, 

and one orientation of the disordered [S,O:
2
-SCO2]

2-
 ligand have been omitted for clarity. 

Selected metrical parameters: S1-C1 1.756(4) Å, O1-C1 1.279(5) Å, O2-C1 1.238(4) Å, 
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Ni1-S1 2.234(1) Å, Ni1-O1 1.922(3) Å, Ni1-N1 1.904(3) Å, Ni1-N2 1.899(3) Å, S1-K1 

3.531(1) Å, O2-K1 2.715(3) Å, S1-C1-O1 108.0(3)°, S1-C1-O2 126.2(3)°, O1-C1-O2 

125.9(4)°, N1-Ni1-N2 96.7(1)°, N1-Ni1-O1 91.5(1)°, N2-Ni1-S1 99.22(9)°. 

6.2.6 Synthesis and Characterization of [K(18-crown-6)][L
tBu

Ni(
2
-CO3)] (6.6) 

To further support the presence of [K(18-crown-6)][L
tBu

Ni(
2
-CO3)] (6.6) in the reaction 

of 6.2 with CO, I pursued its synthesis via an independent route. The hexameric nickel 

carbonate complex, [K]6[L
tBu

Ni
II
(

2
-CO3)]6,

11
 first reported by Limberg and coworkers in 

2012, serves as a convenient starting material for the synthesis of [K(18-crown-

6)][L
tBu

Ni
II
(

2
-CO3)] (6.6). Accordingly, addition of 6 equiv of 18-crown-6 to a suspension 

of [K]6[L
tBu

Ni
II
(

2
-CO3)]6 results in the formation of complex 6.6 in 52% yield (Scheme 

6.6).  Its solid state molecular structure of 6.6 is shown in Figure 6.8. The carbonate (CO3
2-

) 

ligand in 6.6 features a :
2
,η

1
 binding mode, identical to that observed for the 

trithiocarbonate (CS3
2-

) ligand in [K(18-crown-6)][L
tBu

Ni(
2
-CS3)].

52
 The O1-C1 (1.306(7) 

Å), O2-C1 (1.309(7) Å), and O3-C1 (1.242(7) Å) bond lengths in 6.6 are consistent with 

those reported for [K]6[L
tBu

Ni
II
(

2
-CO3)]6,

11
 while the Ni-O1 and Ni-O2 distances in 6.6 are 

1.882(4) and 1.901(4) Å, respectively, which are similar to those reported for the starting 

material.  

Scheme 6.6 Synthesis of [K(18-crown-6)][L
tBu

Ni(
2
-CO3)] (6.6) 
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The 
13

C{
1
H} NMR spectrum of 6.6 in C6D6 features a resonance at 165.3 ppm, which is 

assignable to the [CO3]
2-

 moiety (Figure A 6.18).  This chemical shift matches the resonance 

assigned to this complex in the in situ 
13

C NMR spectrum of the reaction mixture of 6.2 and 

13
CO (Figure A 6.14). In addition, the 

1
H NMR spectrum of 6.6 in C6D6 features a γ-CH 

resonance at 5.42 ppm, which is present in the in situ 
1
H NMR spectrum of the reaction 

mixture of 6.2 and 
13

CO (Figure A 6.14). The IR spectrum (hexanes solution) of 6.6 features 

a strong νCO mode at 1620 cm
-1

, which is also present in a solution IR spectrum of the 

reaction mixture formed upon addition of CO to 6.2 (Figure A 6.28).  Overall, these data 

conclusively demonstrate that complex 6.6 is formed during reduction of [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SO)] (6.2) with CO. 

 

Figure 6.8. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO3)]·0.5C5H12 (6.6·0.5C5H12) 

shown with 50% thermal ellipsoids. Hydrogen atoms, a C5H12 solvate molecule, and a 

second independent molecule of [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO3)] have been omitted for 

clarity. Selected metrical parameters: C1-O1 1.306(7) Å, C1-O2 1.309(7) Å, C1-O3 1.242(7) 

Å,  Ni1-O1 1.882(4) Å, Ni1-O2 1.901(4) Å, Ni1-N1 1.883(5) Å, Ni1-N2 1.879(5) Å, O3-K1 
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2.510(4) Å, O1-C1-O2 110.8(5)°, O1-C1-O3 125.0(6)°,  N1-Ni1-N2 97.9(2)°, N1-Ni1-O1 

96.6(2)°, N2-Ni1-O2 96.5(2)°. 

6.2.7 Synthesis and Characterization of [K(18-crown-6)][L
tBu

Ni
II

(
2
-CO2)] (6.10) 

In an effort to assign the resonance at 191.4 ppm in the in situ 
13

C{
1
H} NMR spectrum 

of the reaction of 6.2 and 
13

CO, I endeavored to independently synthesize the carbon dioxide 

complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO2)] (6.10). I rationalized that 6.10 was a plausible 

reaction product, given the presence of CO2 in the reaction mixture. Several previously 

reported Ni(CO2) complexes have been synthesized by reaction of CO2 with a Ni
0
 

precursor.
62–65

 Gratifyingly, the Ni(0) N2 complex, [K]2[L
tBu

Ni
0
(μ-η

1
:η

1
-N2)Ni

0
L

tBu
], 

previously reported by Limberg and co-workers in 2009,
66

 was found to serve as an effective 

Ni
0
 source for the synthesis of 6.10. Thus, exposure of [K]2[L

tBu
Ni

0
(μ-η

1
:η

1
-N2)Ni

0
L

tBu
] to 

two equiv of CO2, followed by addition of 18-crown-6, resulted in the formation of 6.10 

(Scheme 6.7), which was isolated as pale orange plates in 41% yield after work-up.  Its 

formulation was confirmed by X-ray crystallography and its solid state molecular structure 

is shown in Figure 6.9. 

Scheme 6.7 Synthesis of [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO2)] (6.10) 

 

Complex 6.10 features a square planar Ni
II
 center ligated by the -diketiminate ligand 

and a [CO2]
2-

 ligand.  The [CO2]
2–

 ligand in 6.10 features a μ:η
2
,κ

2
 binding mode, similar to 

that observed for the [COS]
2-

 ligand in complex 5.1. The [CO2]
2–

 ligand in 6.10 is disordered 
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over two positions, in a 76:24 ratio, which are related by a C2 rotation axis about the Ni-K 

vector.  The Ni1-O1 (1.897(6) Å) and Ni1-C1 (1.890(6) Å) distances are consistent with 

those previously reported for the Ni(
2
-CO2) fragment.

62,64,65,67,68
 Additionally, the Ni-N 

bonds in 6.10 are consistent with those found in other square planar Ni
II
 -diketiminate 

complexes.
16,60,61

  

The 
1
H NMR spectrum of 6.10 in C6D6 is consistent with a Cs symmetric, square planar 

Ni
II
 complex. It features two tert-butyl resonances at 1.42 and 1.34 ppm, and a single γ-CH 

resonance at 5.42 ppm. Its 
13

C{
1
H} NMR spectrum in C6D6 features a resonance at 167.2 

ppm, which I have assigned to the [
2
-CO2]

2-
 ligand.  This chemical shift is consistent with 

those reported for previously isolated Ni(
2
-CO2) complexes.

63–65
 Most importantly, 

however, these resonances are not observed in the in situ 
13

C{
1
H} and 

1
H NMR spectra of 

the reaction between 6.2 and 
13

CO (Figures A 6.13-6.14). Thus, I can definitively conclude 

that complex 6.10 is not being formed in that reaction.  Finally, complex 6.10 features a CO 

mode at 1664 cm
-1

 in its IR spectrum (KBr pellet), which is similar to those reported for 

other nickel CO2 complexes.
63–65

 This vibration is also not present in the in situ IR spectrum 

(recorded in hexanes) of the reaction residue formed upon reaction of 1 with CO (Figure A 

6.28). 
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Figure 6.9. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO2)]·2C6H6 (6.10·2C6H6) 

shown with 50% thermal ellipsoids. Hydrogen atoms, C6H6 solvate molecules, and second 

orientations of the CO2 and 18-crown-6 fragments have been omitted for clarity. Selected 

metrical parameters: C1-O1 1.231(9) Å, C1-O2 1.22(1) Å, Ni1-C1 1.890(6) Å, Ni1-O1 

1.897(6) Å, Ni1-N1 1.901(6) Å, Ni1-N2 1.896(5) Å, O1-K1 2.980(6) Å, O2-K1 2.71(1) Å, 

O1-C1-O2 144.0(8)°, N1-Ni1-N2 99.2(2)°, N1-Ni1-C1 112.2(3)°, N2-Ni1-O1 110.7(3)°. 

I also attempted the synthesis of 6.10 via the reductive deprotection of the Ni trityl 

caboxylate complex, [L
tBu

Ni
II
(O,O:

2
-C(O)2CPh3)]. However, reduction of this complex 

with KC8 did not result in the desired deprotection reaction. While, I did not isolate the 

reduction product, it is likely the Ni
I
 complex, [K(18-crown-6)][L

tBu
Ni

I
(O,O:

2
-C(O)2CPh3)] 

based on its 
1
H NMR spectrum which features a broad tert-butyl resonance at -1.48 ppm.  

 

6.2.8 Mechanistic Considerations.   

To rationalize the formation of complexes 5.1 and 6.5, I propose that CO initially reacts 

with 6.2 to form CO2 and [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) (Scheme 6.8). Complex 2.5 
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then reacts with either CO or CO2 to yield [K(18-crown-6)][L
tBu

Ni
II
(

2
-SCO)] (5.1) or 

[K(18-crown-6)][L
tBu

Ni
II
(S,O:

2
-SCO2)] (6.5), respectively. Significantly, their presence, 

along with the observation of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) in the reaction mixture, 

demonstrates the formal reduction of N2O by CO, as originally envisioned.  That said, the 

reaction rates of 2.5 with CO and CO2 are qualitatively similar to the reaction rate of 2.5 

with N2O.  As a consequence, 2.4 is unlikely to be an effective catalyst for N2O reduction 

because off-cycle reaction pathways with CO and CO2 would be competitive with the 

desired N2O capture reaction (Scheme 6.8). 

Scheme 6.8 Proposed Mechanism for Ni Sulfide Mediated N2O Reduction  

 

To rationalize the formation of complex 6.6 and COS, I propose that reaction of the 

newly formed CO2 with unreacted 6.2 results in the formation of a transient, unobserved 

nickel monothiopercarbonate complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-SOCO2)] (6.11). 

Complex 6.11 then transfers a sulfur atom to CO to form [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO3)] 

(6.6) and COS (6.7) (Scheme 6.8), both of which were confirmed to be present in the in situ 
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reaction mixture. This hypothesis also nicely explains the presence of [K(18-crown-

6)][L
tBu

Ni
II
(

2
-S2CO)] (6.8), which could be formed via the reaction of 6.7 with 2.5 (Scheme 

6.8).  While the formation of a monothiopercarbonate complex has not been previously 

reported, the reaction of metal peroxides (O2
2-

) with CO2 is known to yield peroxocarbonate 

([OOCO2]
2-

) complexes.
69–71

 Similarly, metal disulfides (S2
2-

) are known to react with CS2 

to form perthiocarbonates ([SSCS2]
2-

).
72,73

 Moreover, peroxocarbonates are known to be 

very effective O-atom donors.
69,74–77

 

Scheme 6.9 Reaction of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)] (6.2) with CO2 

 

Consistent with my hypothesis, reaction of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)] (6.2) with 

CO2 in C6D6 results in the rapid formation of a new diamagnetic Ni
II
 complex, as evidenced 

by the appearance of diagnostic resonances at 4.49 ppm (γ-CH) and 1.20 ppm (tBu) in the in 

situ 
1
H NMR spectrum of the reaction mixture (Figure S18).  I have assigned these 

resonances to the monothiopercarbonate complex [K(18-crown-6)][L
tBu

Ni
II
(

2
-SOCO2)] 

(6.11) (Scheme 6.9).  Complex 6.11 is the only product observed in the reaction mixture. 

These results provide further support for the overall reaction mechanism proposed in 

Scheme 6.8 and suggest that (SOCO2)
2-

 could function as a very effective a S-atom transfer 

reagent.
78

 Nonetheless, the off-cycle formation of 6.11 further reveals the unsuitability of 

2.5 for catalytic N2O reduction.  
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Complex 6.11 has proven to be quite thermally sensitive, and it decomposed in the 

freezer during an attempted crystallization.  I have been able to identify a number of the 

decomposition products using 
1
H NMR spectroscopy. For example, 

1
H NMR resonances 

matching those for [K(18-crown-6)][L
tBu

Ni
II
(

2
-OSSO)] (6.3), [K(18-crown-6)][L

tBu
Ni

II
(

2
-

S2)] (6.4), [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO3)] (6.6), [K(18-crown-6)][L

tBu
Ni

II
(

2
-S2CO)] 

(6.8), and [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO2)] (6.10) were observed in the 

1
H NMR spectrum 

of the decomposition products in C6D6 (Figure 6.10). In addition, a new 
1
H resonance at 5.54 

ppm has been tentatively assigned to the γ-H of [K(18-crown-6)][L
tBu

Ni
II
(S,S:

2
-SSO)] 6.12 

(see below). Notably, the formation of 6.6 in this reaction offers support for the presence of 

6.11 as the product of CO2 addition to 6.2. 
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Figure 6.10. Partial 
1
H NMR spectrum of the decomposition products of [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SOCO2)] (6.11) in C6D6. (*) [K(18-crown-6)][L

tBu
Ni

II
(

2
-OSSO)] (6.3), (◊) 

[K(18-crown-6)][L
tBu

Ni
II
(

2
-S2)] (6.4), (Δ) [K(18-crown-6)][L

tBu
Ni

II
(

2
-CO3)] (6.6), (⌂) 

[K(18-crown-6)][L
tBu

Ni
II
(

2
-S2CO)] (6.8) (tentative), (°) [K(18-crown-6)][L

tBu
Ni

II
(

2
-CO2)] 

(6.10), and (□) [ (18-crown-6)][L
tBu

Ni
II
(S,S:

2
-SSO)] (6.12) (tentative). 

Interestingly, I was also able to obtain a single crystal of [K(18-crown-

6)][L
tBu

Ni
II
(S,S:

2
-SSO)] (6.12) from this reaction. The solid state molecular structure of 

6.12 is shown in Figure 6.11. It features a rare example of an [SSO]
2-

 ligand. The [SSO]
2-

 

ligand in 6.12 is bound to the Ni center in an 
2
 fashion, via both sulfur atoms, while the O 

atom is bound to the [K(18-crown-6)]
+
 cation. The SSO ligand in 6.12 is disordered over 

two positions, which are related by a reflection across the plane that includes Ni, K and the 

* 
◊ 

Δ ⌂ 
° 

□ 
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β-diketiminate γ-carbon atoms, in a 62:38 ratio. The S-S distance is 2.05(1) Å, which is 

consistent with an S-S single bond while the S-O distance is 1.16(2) Å appears to be 

anomalously short due to the disorder in the structure.
44–51

 The related SSO complex, 

[(Cp*)(PMe2Ph)Ir(SSO)], contains a similarly anomalously short S-O bond length of 

1.162(9) Å, likely due to a related positional disorder.
79

 To the best of my knowledge, 

complex 6.12 is the first structurally characterized nickel [SSO]
2-

 complex. Other 

structurally characterized [SSO]
2-

 complexes include [(CO)2(Cp*)Mn(SSO)], prepared by 

the oxidation of [(CO)2(Cp*)Mn(S2)] with O2, and [(Cp*)(PMe2Ph)Ir(SSO)], prepared via 

reaction of [(Cp*)(PMe2Ph)Ir(SH)(H)] with p-methyl-thionylanaline (PhNSO).
79–86

  

 

Figure 6.11. ORTEP drawing of [K(18-crown-6)][L
tBu

Ni
II
(S,S:

2
-SSO)]·2C6H6·C5H12 

(6.12·2C6H6·C5H12) shown with 50% thermal ellipsoids. Hydrogen atoms, an alternate 

orientation of SSO
2-

, and solvate molecules have been omitted for clarity. Selected metrical 

parameters: S2a-S2b 2.05(1) Å, S1-O1 1.16(2) Å, Ni1-S2a 2.167(7) Å, Ni1-S2b 2.207(8) Å, 
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Ni1-N1 1.898(8) Å, Ni1-N2 1.895(8) Å, O1a-K1 2.65(2) Å, S2b-K1 3.66(1) Å, N1-Ni1-N2 

97.2(3)°, N1-Ni1-S2a 105.5(3)°, N2-Ni1-S2b 101.7(3)°, O1a-S2a-S2b 119.4(11)°.  

To account for the presence of 6.12 in the reaction mixture, I hypothesize that [K(18-

crown-6)][L
tBu

Ni
II
(

2
-SOCO2)] (6.11) transfers a S-atom to unreacted [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SO)] (6.2) to form [K(18-crown-6)][L

tBu
Ni

II
(

2
-CO3)] (6.6) and 6.12, 

however, this does not account for the formation of the other products (Scheme 6.10).  

Scheme 6.10 Proposed formation of [K(18-crown-6)][L
tBu

Ni
II
(S,S:

2
-SSO)] (6.12) 

 

6.2.9 Synthesis of [{L
tBu

Ni}2(μ
2
-

2
-η

2
-SNNO)] (6.13) 

In order to further explore that reactivity of the SNNO
2-

 ligand, I reacted [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SNNO)] (6.1) with trimethylsilyltriflate (Me3SiOTf) in an effort to effect 

silylation or heteroatom abstraction at the SNNO
2-

 moiety. Accordingly, reaction of 6.1 with 

Me3SiOTf in C6D6 resulted in the formation of [{L
tBu

Ni}2(μ
2
-

2
-η

2
-SNNO)] (6.13) in 56% 

yield. Efforts to scale up this reaction were hampered by the limited thermal stability of 6.13. 

Notably, storage of solutions of 6.13 results in spontaneous loss of N2O leading to the 

formation of [{L
tBu

Ni}2(μ
2
-S)] which was identified based on comparison of its 

1
H NMR 

spectrum with a reported 
1
H NMR spectrum of this species (Scheme 6.11).

87
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Scheme 6.11 Synthesis of [{L
tBu

Ni}2(μ
2
-

2
-η

2
-SNNO)] (6.13) 

 

The solid state molecular structure of complex 6.13 is shown in Figure 6.12. Complex 

6.13 features an μ
2
-

2
-η

2
-thiohyponitrite ([SNNO]

2-
) ligand, which is likely formed by the 

trapping of [L
tBu

Ni
II
(

2
-SNNO)]

-
 with "[L

tBu
Ni

II
]

+
"; however, the overall mechanism of this 

transformation is not yet known. The [SNNO]
2-

 ligand in 6.13 is disordered over four 

positions, related by C2 rotations about the Ni-Ni vector and an orthogonal vector the bisects 

the Ni-Ni vector and is contained in the plane of the SNNO ligand.  Due to the disorder 

present in the [SNNO]
2-

 moiety, the bond distances in 6.13 are anomalous, with S-N and O-

N bonds of 1.582(1) Å and 1.432(1) Å, which are too short and too long for typical single 

bonds, respectively, while the N-N bond length of 1.195(9) Å is indicative of a double 

bond.
16

 The 
1
H NMR spectrum of 6.13 in C6D6 is consistent with a diamagnetic, square 

planar Ni
II
 complex and features one tert-butyl resonance at 1.10 ppm and two iPr methyl 

resonances at 2.09 and 1.46 ppm.   
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Figure 6.12. ORTEP drawing of [{L
tBu

Ni}2(μ
2
-

2
-η

2
-SNNO)]·C7H8 (6.13·C7H8) shown 

with 50% thermal ellipsoids. Hydrogen atoms, alternate orientations of SNNO
2-

, and a C7H8 

solvate molecule have been omitted for clarity. Selected metrical parameters: S1-N4* 

1.582(1) Å, N4*-N3* 1.195(9) Å, N3*-O1 1.432(1) Å, Ni1-S1 2.296(6) Å, Ni1-O1 2.296(6), 

Ni1*-N3* 1.83(1) Å, Ni1*-N4* 1.79(1) Å, S1-N4*-N3* 122(1)°, O1-N3*-N4* 126(1)°.  

6.3 Summary  

In this chapter, I detailed the reaction of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) with N2O to 

yield an unprecedented thiohyponitrite complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-SNNO)] 

(6.1).Gentle thermolysis of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SNNO)] (6.1) results in extrusion of 

N2 and formation of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)] (6.2), a rare example of a structurally 

characterized SO complex, along with trace amounts of [K(18-crown-6)][L
tBu

Ni
II
(

2
-

OSSO)] (6.3) and [K(18-crown-6)][L
tBu

Ni
II
(

2
-S2)] (6.4). [K(18-crown-6)][L

tBu
Ni

II
(

2
-SO)] 

(6.2) reacts rapidly with CO, forming the “masked” terminal Ni(II) sulfide intermediate, 

[K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5), along with CO2, via O-atom abstraction. This Ni(II) 
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sulfide intermediate then reacts with CO or CO2 to form [K(18-crown-6)][L
tBu

Ni
II
(

2
-SCO)] 

(5.1) and [K(18-crown-6)][L
tBu

Ni(S,O:κ
2
-SCO2)] (6.5), respectively.  [K(18-crown-

6)][L
tBu

Ni
II
(

2
-SO)] (6.2) can also react with the newly formed CO2 to form a putative 

monothiopercarbonate complex, [K(18-crown-6)][L
tBu

Ni
II
(

2
-SOCO2)] (6.11), which can 

then transfer an S atom to CO, forming COS (6.7) and [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO3)] 

(6.6).   

Significantly, the observation of [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) in the reaction 

mixture, along with the formation of [K(18-crown-6)][L
tBu

Ni
II
(

2
-SCO)] (5.1) and [K(18-

crown-6)][L
tBu

Ni
II
(S,O:κ

2
-SCO2)] (6.5), confirms that the SO ligand is susceptible to O-

atom abstraction, which had not been previously demonstrated.  Perhaps more importantly, 

these reaction products reveal the stepwise conversion of [K(18-crown-6)][L
tBu

Ni
II
(

2
-

SNNO)] (6.1) to [K(18-crown-6)][L
tBu

Ni
II
(

2
-SO)] (6.2) and then [K(18-crown-

6)][L
tBu

Ni
II
(S)] (2.5), which represents a formal reduction of N2O by CO, forming N2 and 

CO2.  While [K(18-crown-6)][L
tBu

Ni
II
(S)] (2.5) could never function as a catalyst for N2O 

reduction because it quickly undergoes off-cycle reactivity under the reaction conditions, the 

stoichiometric transformation parallels the chemistry mediated by nano-particulate Pt/Rh in 

catalytic converters. In contrast to the metal-centered redox of the catalytic converter 

example, however, all of the redox chemistry in this system occurs at the sulfide ligand.  The 

nickel center remains in the 2+ oxidation state at every step.  The use of ligand-centered 

redox is an intriguing strategy for N2O reduction and I suggest that the study of model 

systems, such as the one presented in this chapter, could inspire the design of a new 

generation of homogeneous and heterogeneous N2O reduction catalysts.    
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6.4 Experimental Procedures 

6.4.1 General Methods 

All reactions and subsequent manipulations were performed under anaerobic and 

anhydrous conditions under an atmosphere of nitrogen.  Hexanes, Et2O, and toluene were 

dried using a Vacuum Atmospheres DRI-SOLV Solvent Purification system and stored over 

3Å sieves for 24 h prior to use. Benzene-d6, toluene-d8, thf-d8, pentane, and C8H18 

(isooctane) were dried over 3 Å molecular sieves for 24 h prior to use. [L
tBu

NiCl], and 

[K]6[L
tBu

Ni(
2
-CO3)]6 were synthesized according to previously reported procedures.

11,88
 All 

other reagents were purchased from commercial suppliers and used as received. 

1
H and 

13
C{

1
H} NMR spectra were recorded on a Agilent Technologies 400-MR DD2 

400 MHz spectrometer or a Varian UNITY INOVA 500 MHz spectrometer. 
1
H and 

13
C{

1
H} 

NMR spectra were referenced to external SiMe4 using the residual protio solvent peaks as 

internal standards. The chemical shifts of 
19

F{
1
H} were referenced indirectly with the 

1
H 

resonance of SiMe4 at 0 ppm, according to IUPAC standard.
89,90

 IR spectra were recorded 

on a Nicolet 6700 FT-IR spectrometer.  Elemental analyses were performed by the Micro-

Mass Facility at the University of California, Berkeley. 

6.4.2 Synthesis of [L
tBu

Ni(OTf)] 

A 20 mL scintillation vial was charged with a dark green solution of [L
tBu

NiCl] (41 mg, 

0.0688 mmol) in THF (3 mL). To this stirring solution was added solid AgOTf (17.8 mg, 

0.688 mmol). After addition, the solution gradually transformed from dark green to bright 

green in color, concomitant with the deposition of a white precipitate (presumably AgCl). 

This solution was allowed to stir for 12 h, whereupon the reaction mixture was filtered 

through a Celite column supported on glass wool (0.5 cm × 2 cm).  The solution was 
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concentrated to 0.5 mL in vacuo, layered with hexane (2 mL), and stored at -25 °C for 24 h, 

which resulted in the deposition of bright green needles that were isolated by decanting off 

the supernatant (40 mg, 82% yield). 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ 7.20 (d, 

3
JHH, 

= 7.5 Hz, 4H, m-Ar-H), 6.81 (t, 
3
JHH, = 7.1 Hz, 2H, o-Ar-H), 4.58 (sept, 

3
JHH, = 6.3 Hz, 4H, 

CH(CH3)2), 3.20 (s, 1H, γ-H), 2.55 (d, 
3
JHH, = 6.2 Hz, 12H, CH(CH3)2), 1.33 (d, 

3
JHH, = 6.1 

Hz, 12H, CH(CH3)2), 0.83 (s, 18H, C(CH3)3) ppm.  
19

F{
1
H} NMR (376 MHz, 25 °C, 

benzene-d6): δ -77.98 (s) ppm.  Single crystals of [L
tBu

Ni(OTf)] were analyzed by X-ray 

diffraction.  This analysis unambiguously confirmed the proposed formulation of the 

complex, however the crystals were badly twinned, which greatly reduced the data quality.  

Crystallographic details: Monoclinic, P21/n, a = 25.044(3), b = 10.7335(15), c = 32.146(4), 

 = 90,  = 96.992(8),  = 90, V = 8577(2) g/cm
3
, Z = 4. 

6.4.3 Reaction of [K(18-crown-6)][L
tBu

Ni(S)] (2.4) with N2O. 

A 50 mL Schlenk flask, equipped with a Teflon rotoflow valve, was charged with a dark 

brown solution of 2.5 (41.0 mg, 0.0452 mmol) in toluene (1 mL).  The headspace was then 

evacuated and filled with N2O gas (1 atm). After addition of N2O, the solution gradually 

changed from dark brown to a pale yellow color. After stirring for three hours, the reaction 

mixture was then transferred into a scintillation vial inside a glovebox, filtered through a 

Celite column supported on glass wool (0.5 cm × 2 cm), and concentrated to 0.5 mL in 

vacuo. Addition of isooctane (0.5 mL) to this solution and subsequent storage at -25 °C for 

24 h resulted in the formation of small pale orange plates, which were isolated by decanting 

off the supernatant (26.3 mg, 62% yield). Anal. Calcd for C47H77KN4NiO7S:  C, 60.05; H, 

8.26; N, 5.96; S, 3.41.  Found: C, 60.19; H, 8.31; N, 5.59; S, 3.33.  
1
H NMR (400 MHz, 25 

°C, benzene-d6): 7.05 (6H, Ar-H), 5.43 (1H, γ-H), 4.48 (sept, 
3
JHH, = 6.8 Hz, 4H, 
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CH(CH3)2), 2.93 (24H, 18-crown-6), 2.01 (d, 
3
JHH, = 6.7 Hz, 12H, CH(CH3)2), 1.52 (d, 

3
JHH, 

= 6.8 Hz, 12H, CH(CH3)2), 1.29 (18H, C(CH3)3) ppm. 
13

C NMR (125 MHz, 25 °C, 

benzene-d6): 166.67 (Ar-iC), 143.72 (Ar-oC), 124.08 (Ar-pC), 122.19 (Ar-mC), 70.37 (18-

crown-6), 42.86 (C(CH3)3), 33.89 (C(CH3)3), 28.51 (CH(CH3)2), 26.61 (CH(CH3)2), 24.57 

(CH(CH3)2), ppm. γ-CH resonance not observed.  IR (KBr pellet, cm
-1

): 1628 (w), 1579 (w), 

1537 (m), 1514 (m), 1463 (m), 1442 (m), 1413 (s), 1382 (w), 1365 (m), 1351 (m), 1319 (m), 

1284 (w), 1263 (w), 1251 (m), 1218 (m), 1191 (w), 1180 (w), 1160 (m), 1110 (vs), 1056 

(m), 1031 (w), 960 (s), 937 (w), 898 (w), 837 (m), 800 (m), 779 (m), 759 (m), 667 (w), 530 

(w), 514 (w), 455 (w), 408 (w). 

6.4.4 Variable temperature NMR Spectroscopy of 6.1. 

To an NMR tube was added a toluene-d8 (0.5 mL) solution of 6.1 (7.2 mg, 0.0077 

mmol). The sample was cooled to -85 °C in a 500 MHz NMR spectrometer. 
1
H NMR 

spectra were collected at ca. 20 °C intervals. 
1
H NMR (500 MHz, 25 °C, toluene-d8): 6.90-

7.10 (6H, Ar-H), 5.33 (1H, γ-H), 4.39 (sept, 
3
JHH, = 6.8 Hz, 4H, CH(CH3)2), 2.98 (24H, 18-

crown-6),  1.93 (d, 
3
JHH, = 6.7 Hz, 12H, CH(CH3)2), 1.49 (d, 

3
JHH, = 6.8 Hz, 12H, 

CH(CH3)2), 1.23 (18H, C(CH3)3) ppm.  
1
H NMR (500 MHz, 0 °C, toluene-d8): 6.90-7.10 

(6H, Ar-H), 5.39 (1H, γ-H), 4.40 (sept, 
3
JHH, = 6.8 Hz, 4H, CH(CH3)2), 2.93 (24H, 18-

crown-6),  1.95 (d, 
3
JHH, = 6.7 Hz, 12H, CH(CH3)2), 1.51 (d, 

3
JHH, = 6.8 Hz, 12H, 

CH(CH3)2), 1.25 (18H, C(CH3)3) ppm. 
1
H NMR (500 MHz, -20 °C, toluene-d8):  6.90-7.10 

(6H, Ar-H), 5.42 (1H, γ-H), 4.41 (sept, 
3
JHH, = 6.8 Hz, 4H, CH(CH3)2), 2.90 (24H, 18-

crown-6),  1.97 (d, 
3
JHH, = 6.6 Hz, 12H, CH(CH3)2), 1.52 (d, 

3
JHH, = 6.8 Hz, 12H, 

CH(CH3)2), 1.26 (18H, C(CH3)3) ppm. 
1
H NMR (500 MHz, -40 °C, toluene-d8):  6.90-7.10 

(6H, Ar-H), 5.46 (1H, γ-H), 4.42 (sept, 
3
JHH, = 6.7 Hz, 4H, CH(CH3)2), 2.87 (24H, 18-
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crown-6),  1.98 (d, 
3
JHH, = 6.5 Hz, 12H, CH(CH3)2), 1.52 (d, 

3
JHH, = 6.8 Hz, 12H, 

CH(CH3)2), 1.28 (18H, C(CH3)3) ppm. 
1
H NMR (500 MHz, -65 °C, toluene-d8):  6.90-7.10 

(6H, Ar-H), 5.50 (1H, γ-H), 4.45 (br s, 4H, CH(CH3)2), 2.84 (24H, 18-crown-6), 2.00 (br s, 

12H, CH(CH3)2), 1.54 (d, 
3
JHH, = 6.0 Hz, 12H, CH(CH3)2), 1.31 (18H, C(CH3)3) ppm. 

1
H 

NMR (500 MHz, -85 °C, toluene-d8):  6.90-7.10 (6H, Ar-H), 5.52 (1H, γ-H), 4.47 (br s, 4H 

CH(CH3)2), 2.83 (24H, 18-crown-6), 2.02 (br s, 12H, CH(CH3)2), 1.55 (br s, 12H, 

CH(CH3)2), 1.33 (18H, C(CH3)3) ppm. 

6.4.5 Synthesis of [K(18-crown-6)][L
tBu

Ni(η
2
-SO)] (6.2) 

In a glovebox, a J-Young NMR tube was charged with a yellow orange solution of 

[K(18-crown-6)][L
tBu

Ni(S,O:2-SNNO)] (II) (74 mg, 0.0787 mmol) and toluene-d8 (1 mL).  

The NMR tube was then sealed, removed from the glovebox and heated at 45 °C for 6 d in 

an oil bath, which resulted in a gradual color change from yellow to orange. After 6 d, a 
1
H 

NMR spectrum was recorded, which revealed the presence of [K(18-crown-6)][L
tBu

Ni(η
2
-

SO)] (6.2), along with formation of trace amounts of [K(18-crown-6)][L
tBu

Ni(η
2
-OSSO)] 

(6.3) and [K(18-crown-6)][L
tBu

Ni(η
2
-S2)] (6.4).  

1
H NMR (400 MHz, 25 °C, toluene-d8): δ 

7.01-6.73 (6.2, m, 6H, Ar-H, dipp), 5.53 (6.3, s, γ-H), 5.47 (6.4, s, γ-H), 5.43 (6.2, s, 1H, γ-

H), 4.50 (6.2, sept, 
3
JHH, = 6.7 Hz, 2H, CH(CH3)2), 4.38 (6.2, sept,

 3
JHH, = 6.7 Hz, 2H, 

CH(CH3)2), 3.04 (6.2, s, 24H, 18-crown-6), 2.21 (6.2, d, 
3
JHH, = 6.7 Hz, 6H, CH(CH3)2), 

2.05 (6.2, d, 
3
JHH, = 6.7 Hz, 6H, CH(CH3)2), 1.57 (6.2, overlapping doublets, CH(CH3)2), 

1.30 (6.2, s, 9H, C(CH3)3), 1.25 (6.2, s, 9H, C(CH3)3). The NMR tube was then transferred 

to a glovebox, and the reaction mixture was filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm).  The volatiles were removed from the filtrate in vacuo. The 

resulting orange residue was extracted into toluene (1 mL), filtered through a Celite column 
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supported on glass wool (0.5 cm × 2 cm), and concentrated in vacuo to ca. 0.5 mL. This 

solution was then layered with pentane (2 mL) and subsequent storage at -25 °C for 48 h 

resulted in the deposition of orange plates of [K(18-crown-6)][L
tBu

Ni(η
2
-SO)] (6.2), which 

were isolated by decanting off the supernatant (62 mg, 82% yield).  In one instance, a few 

orange plates of [K(18-crown-6)][L
tBu

Ni(
2
-OSSO)] (6.3) were also isolated from the 

reaction mixture.  These were analyzed by X-ray diffraction. Anal. Calcd for 6.2: 

C47H77KN2NiO7S·C7H8: C, 64.59; H, 8.53; N, 2.79.  Found: C, 63.68; H, 8.38; N, 3.01. 
1
H 

NMR (400 MHz, 25 °C, benzene-d6): δ 7.01-6.73 (m, 6H, Ar-H, dipp), 5.54 (s, 1H, γ-H), 

4.62 (sept, 
3
JHH, = 6.7 Hz, 2H, CH(CH3)2), 4.48 (sept, 

3
JHH, = 6.7 Hz, 2H, CH(CH3)2), 3.01 

(s, 24H, 18-crown-6), 2.31 (d, 
3
JHH, = 6.7 Hz, 6H, CH(CH3)2), 2.15 (d, 

3
JHH, = 6.7 Hz, 6H, 

CH(CH3)2), 1.57 (overlapping doublets, 12H, CH(CH3)2), 1.37 (s, 9H, C(CH3)3), 1.32 (s, 

9H, C(CH3)3). 
13

C{
1
H} NMR (125 MHz, 25 °C, benzene-d6): δ 164.91 (Ar-C), 163.28 (Ar-

C), 155.40 (Ar-C), 150.77 (Ar-C), 142.13 (Ar-C), 140.54 (Ar-C), 122.19 (Ar-C), 120.99 

(Ar-C), 97.87 (γ-C), 69.78 (18-crown-6), 42.34 (C(CH3)3), 42.31 (C(CH3)3), 33.79 

(C(CH3)3), 33.66 (C(CH3)3), 28.80 (CH(CH3)2), 28.64 (CH(CH3)2), 26.24 (CH(CH3)2), 

25.94 (CH(CH3)2), 24.66 (CH(CH3)2), 23.70 (CH(CH3)2). IR (KBr Pellet, cm
-1

):
 
1535 (m), 

1519 (s), 1457 (m), 1429 (m), 1412 (m), 1409 (s), 1385 (m), 1365 (m), 1352 (s), 1321 (s), 

1284 (w), 1250 (w), 1214 (w), 1192 (w), 1160 (w), 1110 (s), 1056 (w), 964 (s), 937 (w), 902 

(s, νSO), 896 (w), 839 (m), 819 (w) 804 (w), 779 (m), 759 (m), 728 (w), 669(w), 636 (s), 561 

(w), 528 (w). 

6.4.6 Synthesis of [K(18-crown-6)][L
tBu

Ni(η
2
-S2)] (6.4) 

A 20 mL scintillation vial was charged with a brown solution of [K(18-crown-

6)][L
tBu

Ni(S)] (2.5) (29.7 mg, 0.0312 mmol) in toluene (1 mL). S8 (1.0 mg, 0.0038 mmol) 
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was then added to the stirring brown solution, which resulted in a gradual color change from 

brown to dark orange. The reaction mixture was stirred for 30 min. The reaction mixture 

was then filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), 

concentrated in vacuo to ca. 0.25 mL, and layered with pentane (1.5 mL).  Storage of this 

vial at -25 °C for 24 h resulted in the deposition of dark yellow plates of [K(18-crown-

6)][L
tBu

Ni(η
2
-S2)] (6.4), which were isolated by decanting off the supernantant (23 mg, 81 

%).  Anal. Calcd for C47H77KN2NiO6S2: C, 60.83; H, 8.36; N, 3.02.  Found: C, 60.61; H, 

8.18; N, 2.70. 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ 7.02-7.00 (m, 6H, Ar-H, dipp), 

5.56 (s, 1H, γ-H), 4.42 (sept,
 3

JHH, = 6.7 Hz, 4H, CH(CH3)2), 3.03 (s, 24H, 18-crown-6), 

2.25 (d, 
3
JHH, = 6.8 Hz, 12H, CH(CH3)2), 1.54 (d, 

3
JHH, = 6.8 Hz, 12H, CH(CH3)2), 1.36 (s, 

18H, C(CH3)3).
 1

H NMR (400 MHz, 25 °C, Toluene-d8): δ 7.09-6.92 (m, 6H, Ar-H, dipp), 

5.46 (s, 1H, γ-H), 4.32 (sept,
 3

JHH, = 6.9 Hz, 4H, CH(CH3)2), 3.05 (s, 24H, 18-crown-6), 

2.17 (d, 
3
JHH, = 6.7 Hz, 12H, CH(CH3)2), 1.51 (d, 

3
JHH, = 6.7 Hz, 12H, CH(CH3)2), 1.30 (s, 

18H, C(CH3)3). 
13

C{
1
H} NMR (125 MHz, 25 °C, benzene-d6): δ 140.05 (Ar-C), 137.47 (Ar-

C), 128.91 (Ar-C), 125.28 (Ar-C), 98.08 (γ-C), 69.56 (18-crown-6), 34.03 (C(CH3)3), 33.70 

(C(CH3)3), 28.16 (CH(CH3)2), 22.33 (CH(CH3)2), 21.03 (CH(CH3)2).  IR (KBr Pellet, cm
-1

):
 

1535 (m), 1519 (s), 1457 (m), 1429 (m), 1412 (m), 1409 (s), 1385 (m), 1365 (m), 1352 (s), 

1321 (s), 1284 (w), 1250 (w), 1214 (w), 1192 (w), 1160 (w), 1110 (s), 1056 (w), 964 (s), 

937 (w), 896 (w), 839 (m), 819 (w) 804 (w), 779 (m), 759 (m), 728 (w), 669(w), 541 (w), 

528 (w). 

6.4.7 Reaction of [K(18-crown-6)][L
tBu

Ni(η
2
-SO)] (6.2) with 

13
CO 

In a glovebox, a J-Young NMR tube was charged with a yellow-orange solution of 

[K(18-crown-6)][L
tBu

Ni(η
2
-SO)] (12.2 mg, 0.0134 mmol) in C6D6 (1 mL). The NMR tube 
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was then sealed and removed from the glovebox. Its headspace was evacuated and replaced 

with 1 atm of 
13

CO.  Over the course of the reaction, the color gradually lightens from 

yellow-orange to yellow.  After 1 h, a 
1
H NMR spectrum was recorded, which revealed the 

presence of the nickel(II) sulfide 2.5, ([L
tBu

Ni(S)]
-
), an unidentified diamagnetic 

intermediate, as well as [K(18-crown-6)][L
tBu

Ni(η
2
-SCO)] (5.1), [K(18-crown-

6)][L
tBu

Ni(
2
-SCO2)] (6.5), [K(18-crown-6)][L

tBu
Ni(

2
-CO3)] (6.6), and [K(18-crown-

6)][L
tBu

Ni(
2
-S2CO)] (6.8).  

1
H NMR (400 MHz, 25 °C, benzene-d6, note: spectral data have 

only been tabulated for the [K(18-crown-6)][L
tBu

Ni(S)] intermediate and the region from 

5.00-5.75 ppm, which is diagnostic for the γ-H environment of the -diketiminate ligand): 

32.92 ([L
tBu

Ni(S)]
-
), 31.91 ([L

tBu
Ni(S)]

-
), 8.50 ([L

tBu
Ni(S)]

-
), 5.87 ([L

tBu
Ni(S)]

-
), 5.62 (s, 1H, 

γ-H, 6.3), 5.57 (s, 1H, γ-H, 6.8, tentative assignment), 5.56 (s, 1H, γ-H, 6.4), 5.54 (s, 1H, γ-

H, 6.2),  5.48 (s, 1H, γ-H, overlapping 5.1 and 6.5), 5.43 (s, 1H, γ-H, unidentified 

diamagnetic intermediate), 5.42 (s, 1H, γ-H, 6.6), -0.63 ([L
tBu

Ni(S)]
-
), -23.24 ([L

tBu
Ni(S)]

-
), 

-130.25 ([L
tBu

Ni(S)]
-
).  Note that the observation of 6.3 and 6.4 in the reaction mixture can 

be rationalized by their presence, in small amounts, in the starting material.  After 6 h, 
1
H 

and 
13

C NMR spectra were recorded.  These spectra revealed the absence of [K(18-crown-

6)][L
tBu

Ni(S)] (2.4) and the aforementioned unidentified diamagnetic intermediate.  The 

spectrum also reveals the presence of [K(18-crown-6)][L
tBu

Ni(η
2
-SCO)] (5.1), [K(18-crown-

6)][L
tBu

Ni(
2
-SCO2)] (6.5), [K(18-crown-6)][L

tBu
Ni(

2
-CO3)] (6.6), COS (6.7), [K(18-

crown-6)][L
tBu

Ni(
2
-S2CO)] (6.8), as well as two unidentified products. 

1
H NMR (400 MHz, 

25 °C, benzene-d6, note: spectral data have only been tabulated for the region from 5.00-

5.75 ppm, which is diagnostic for the γ-H environment of the -diketiminate ligand): 5.62 

(s, 1H, γ-H, 6.3), 5.57 (s, 1H, γ-H, 6.8, tentative assignment), 5.56 (s, 1H, γ-H, 6.4), 5.48 (s, 
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1H, γ-H, overlapping 5.1 and 6.5), 5.42 (s, 1H, γ-H, 6.6). 
13

C{
1
H} NMR (125 MHz, 25 °C, 

benzene-d6, note: spectral data have only been tabulated for the region from 140-220 ppm, 

which is diagnostic for the 
13

C chemical shifts of [COxSy]
2-
–type species): δ 214.72 

([L
tBu

Ni(η
2
-SCO)]

-
, 5.1), 206.88 ([L

tBu
Ni(S2CO)]

-
, 6.8, tentative assignment), 191.38 

(unassigned), 184.00 (CO), 178.47 (unassigned), 177.30 (([L
tBu

Ni(
2
-SCO2)]

-
, 6.5, 165.27 

([L
tBu

Ni(
2
-CO3)]

-
, 6.6), 152.93 (SCO, 6.7). 

6.4.8 Reaction of [K(18-crown-6)][L
tBu

Ni(η
2
-SO)] (6.2) with CO, Monitored by IR 

Spectroscopy 

In a glovebox, a J-Young NMR tube was charged with a yellow-orange solution of 

[K(18-crown-6)][L
tBu

Ni(SO)] (10.0 mg, 0.0110 mmol) in C6D6 (1 mL).  The NMR tube was 

then sealed and removed from the glovebox. The headspace of the NMR tube was then 

evacuated and replaced with 1 atm of CO. The reaction was monitored by 
1
H NMR 

spectroscopy. During the course of the reaction, the color of the solution gradually lightened 

to yellow. After 6 h the J-Young tube was then transferred into a glove box, where the 

solution was transferred into a 20 mL scintillation vial. The volatiles were removed in vacuo 

to yield an orange residue, which was extracted into hexane (0.5 mL) and transferred into a 

solution IR cell. IR (hexanes solution, cm
-1

): 2021 (m, L
tBu

Ni
I
(CO), 6.9),

57
 1666 (m, 

[L
tBu

Ni
II
(η

2
-SCO)]

-
, 5.1),

53
 1620 (m, [L

tBu
Ni

II
(

2
-CO3)]

-
, 6.6). These assignments were 

confirmed by comparison with IR spectra of authentic samples in hexane.  

6.4.9 Synthesis of [K(18-crown-6)][L
tBu

Ni(2-SCO2)] (6.5) 

In a glovebox, a J-Young NMR tube was charged with a brown solution of [K(18-

crown-6)][L
tBu

Ni(S)] (2.5) (35.0 mg, 0.0391 mmol) dissolved in C6D6 (1 mL).  The NMR 

tube was then sealed, removed from the glovebox, and the headspace of the NMR tube was 
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evacuated and replaced with 1 atm of CO2. Upon CO2 addition, the solution quickly changed 

color to gold. A 
1
H NMR spectrum was collected, which revealed the clean formation of a 

new diamagnetic Ni-containing complex. The NMR tube was then transferred to a glove 

box, and the reaction mixture was transferred into a 20 mL scintillation vial. The volatiles 

were then removed in vacuo to give a pale brown residue. The residue was extracted into 

toluene (1 mL), filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), 

and concentrated in vacuo to ca. 0.5 mL. This solution was then layered with hexanes (2 

mL). Subsequent storage at -25 °C for 48 h resulted in the deposition of pale brown blocks 

of [K(18-crown-6)][L
tBu

Ni(η
2
-SCO2)] (6.5), which were isolated by decanting off the 

supernatant (21 mg, 57 %). Anal. Calcd for: C48H77KN2NiO8S·1.5C7H8: C, 65.17; H, 8.32; 

N, 2.60.  Found: C, 64.70; H, 8.17; N, 2.61.  
1
H NMR (400 MHz, 25 °C, benzene-d6): δ 6.95 

(s, 6H, Ar-H, dipp), 5.48 (s, 1H, γ-H), 4.50 (sept, 
3
JHH, = 6.7 Hz, 4H, CH(CH3)2), 3.03 (s, 

24H, 18-crown-6), 2.20 (d, 
3
JHH, = 6.8 Hz, 12H, CH(CH3)2), 1.51 (d, 

3
JHH, = 6.8 Hz, 12H, 

CH(CH3)2), 1.22 (s, 18H, C(CH3)3). 
13

C{
1
H} NMR (125 MHz, 25 °C, benzene-d6): δ 177.31 

(SCO2), 165.85 (Ar-C) , 142.76 (Ar-C), 123.60 (Ar-C), 121.55 (Ar-C), 98.02 (γ-C), 69.61 

(18-crown-6), 41.68 (C(CH3)3), 33.32 (C(CH3)3), 28.34 (CH(CH3)2), 25.51 (CH(CH3)2), 

23.94 (CH(CH3)2). IR (KBr Pellet, cm
-1
): 1606 (s, νCO), 1535 (m), 1519 (s), 1457 (m), 1429 

(m), 1412 (m), 1409 (s), 1385 (m), 1365 (m), 1352 (s), 1321 (s), 1284 (w), 1250 (w), 1214 

(w), 1205(m), 1180 (w), 1161 (w), 1110 (s), 1056 (w), 964 (s), 937 (w), 896 (w), 839 (m), 

819 (w) 804 (w), 779 (m), 759 (m), 728 (w), 669(w), 582 (w), 532 (w), 503 (m). 

6.4.10 Synthesis of [K(18-crown-6)][L
tBu

Ni(
2
-CO3)] (6.6) 

In a glovebox, a 20 mL scintillation vial was charged with a suspension of 

[K]6[L
tBu

Ni(
2
-CO3)]6 (34 mg, 0.00859 mmol) in toluene (2 mL). To this stirring, pale 



 

 224 

brown suspension was added 18-crown-6 (14 mg, 0.0515 mmol). The solution was stirred 

for 2 h, whereupon the pale brown solid was completely consumed. The volatiles were then 

removed in vacuo from the pale yellow solution to give a yellow solid. The solid was 

extracted into pentane (1 mL), filtered through a Celite column supported on glass wool (0.5 

cm × 2 cm), and concentrated in vacuo to ca. 0.25 mL. Addition of hexamethyldisiloxane 

(0.5 mL) to this solution, followed by storage at -25 °C for 48 h, resulted in the deposition of 

colorless crystals of 18-crown-6, which were isolated by decanting off the supernatant. The 

volatiles were then removed from the supernatant in vacuo to give a yellow solid. This solid 

was extracted into pentane (0.5 mL), filtered through a Celite column supported on glass 

wool (0.5 cm × 2 cm), concentrated in vacuo to ca. 0.25 mL, and transferred to a 5 mL vial. 

This vial was placed inside a 20 mL scintillation vial.  Toluene (2 mL) was then added to the 

outer vial, which was then sealed. Storage of this two vial system at -25 °C for 96 h resulted 

in the deposition of yellow plates of [K(18-crown-6)][L
tBu

Ni(
2
-CO3)] (6.6), which were 

isolated by decanting off the supernatant (8.2 mg, 17% yield). The supernatant was then 

transferred to a 5 mL vial. This vial was placed inside a 20 mL scintillation vial. Toluene (2 

mL) was then added to the outer vial, which was then sealed. Storage of this two vial system 

at -25 °C for 10 d resulted in the deposition of a second crop of yellow plates of 6.6, which 

were isolated by decanting off the supernatant (17 mg, overall yield: 52%). 
1
H NMR (400 

MHz, 25 °C, benzene-d6): δ 6.96-6.88 (m, 6H, Ar-H, dipp), 5.42 (s, 1H, γ-H), 4.47 (br s, 4H, 

CH(CH3)2), 3.14 (s, 24H, 18-crown-6), 2.14 (br s, 12H, CH(CH3)2), 1.50 (d,
 3

JHH, = 5.5 Hz, 

12H, CH(CH3)2), 1.15 (s, 18H, C(CH3)3). 
13

C{
1
H} NMR (125 MHz, 25 °C, benzene-d6): δ 

165.74 (Ar-C), 165.29 (CO3
2-

), 146.21 (Ar-C), 142.27 (Ar-C), 123.76 (Ar-C), 121.30 (Ar-C), 
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97.76 (γ-C), 69.75 (18-crown-6), 41.09 (C(CH3)3), 32.99 (C(CH3)3), 28.41 (CH(CH3)2), 

25.34 (CH(CH3)2), 23.40 (CH(CH3)2).  IR (hexanes solution, cm
-1
): 1620 (νCO). 

6.4.11 Synthesis of [K(18-crown-6)][L
tBu

Ni(
2
-CO2)] (6.10) 

In a glovebox, a 20 mL scintillation vial was charged with a suspension of [L
tBu

Ni(OTf)] 

(87 mg, 0.113 mmol) in hexane (5 mL). To this stirring bright green suspension was added 

KC8 (45.7 mg, 0.338 mmol), which resulted in a rapid color change to deep red and then 

more slowly to deep purple, concomitant with dissolution of the solid.   The deep purple 

color is indicative of the formation of K2[{L
tBu

Ni}2(N2)].
66

 This solution was stirred for 48 h, 

whereupon it was then filtered through a Celite column supported on glass wool (0.5 cm × 2 

cm) into a 50 mL Schlenk flask equipped with a Teflon rotoflow valve, a ground glass joint 

with a rubber septum, and a magnetic stir bar. The Schlenk flask was then sealed, removed 

from the glovebox, and attached to a Schlenk line in a fume hood. Carbon dioxide (2.5 mL, 

0.113 mmol) was injected into the stirring solution using an airtight syringe. Upon addition, 

the deep purple reaction mixture quickly changed to deep red and then to pale orange. After 

5 min, the Schlenk flask was transferred to a glove box, where a solution of 18-crown-6 

(29.8 mg, 0.113 mmol) in hexane (1 mL) was added to the reaction mixture.  This addition 

resulted in the deposition of a small amount of orange solid, but there was no obvious color 

change. The reaction mixture was then filtered through a Celite column supported on glass 

wool (0.5 cm × 2 cm) and concentrated in vacuo to ca. 1 mL. Benzene (0.25 mL) was then 

added to this solution as a crystallization aid. Storage of this solution at -25 °C for 48 h 

resulted in the deposition of a pale orange plates of [K(18-crown-6)][L
tBu

Ni(
2
-CO2)] (6.10), 

which were isolated by decanting off the supernatant (33 mg, yield 41%). Anal. Calcd for: 

C48H77KN2NiO8·C6H6 : C, 65.78; H, 8.48; N, 2.84.  Found: C, 65.99; H, 8.68; N, 2.76. 
1
H 
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NMR (400 MHz, 25 °C, benzene-d6): δ 7.11-6.81 (m, 6H, Ar-H, dipp), 5.42 (s, 1H, γ-H), 

4.37 (sept,
 3

JHH, = 6.7 Hz, 2H, CH(CH3)2), 4.26 (sept,
 3

JHH, = 6.7 Hz, 2H, CH(CH3)2), 2.99 

(s, 24H, 18-crown-6), 1.96 (d, 
3
JHH, = 6.8 Hz, 6H, CH(CH3)2), 1.86 (d, 

3
JHH, = 6.8 Hz, 6H, 

CH(CH3)2), 1.56 (overlapping doublets, 12H, CH(CH3)2), 1.42 (s, 9H, C(CH3)3), 1.34 (s, 9H, 

C(CH3)3). 
13

C{
1
H} NMR (125 MHz, 25 °C, benzene-d6): δ 167.23 (CO2) 165.74 (Ar-C), 

163.83 (Ar-C), 153.43 (Ar-C), 149.49 (Ar-C), 141.42 (Ar-C), 139.56 (Ar-C), 121.99 (Ar-C), 

121.67 (Ar-C), 121.63 (Ar-C), 121.29 (Ar-C), 95.22 (γ-C), 69.64 (18-crown-6), 42.47 

(C(CH3)3), 42.21 (C(CH3)3),  33.58 (C(CH3)3), 33.08 (C(CH3)3), 28.04 (CH(CH3)2), 27.83 

(CH(CH3)2), 26.01 (CH(CH3)2), 24.10 (CH(CH3)2), 23.82 (CH(CH3)2), 23.37 (CH(CH3)2). 

IR (KBr Pellet, cm
-1

):
 
1664 (m, νCO), 1618 (m), 1514 (m), 1464 (m), 1446 (m), 1433 (m), 

1414 (s), 1381 (m), 1365 (m), 1352 (m), 1321 (m), 1284 (w), 1252 (w), 1221 (w), 1196 (w), 

1159 (w), 1113 (s), 1055 (w), 1032 (w), 962 (m), 937 (w), 896 (w), 983 (m), 831 (w) 804 

(w), 779 (m), 766 (m), 758 (m), 728 (w), 681(w). 

6.4.12 Reaction of [K(18-crown-6)][L
tBu

Ni(η
2
-SO)] (6.2) with CO2, Monitored by 

1
H 

NMR Spectroscopy 

In a glovebox, a J-Young NMR tube was charged with a yellow-orange solution of 

[K(18-crown-6)][L
tBu

Ni(η
2
-SO)] (10.0 mg, 0.0110 mmol) in C6D6 (0.6 mL).  The NMR tube 

was then sealed and removed from the glovebox. The headspace of the NMR tube was 

evacuated and replaced with 1 atm of CO2. Upon addition of CO2, the color of the solution 

lightened slightly to pale yellow. A 
1
H NMR spectrum was taken after 10 min, which 

revealed complete consumption of complex 6.2 and clean formation of a single new 

diamagnetic product, which we have tentatively assigned as the monothiopercarbonate 

complex [K(18-crown-6)][L
tBu

Ni(
2
-SOCO2)] (6.11). (400 MHz, 25 °C, benzene-d6): δ 7.20 
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(d, 
3
JHH, = 7.6 Hz, 4H, meta-Ar-H, dipp), 6.89 (t, 

3
JHH, = 7.5 Hz, 2H, para-Ar-H, dipp), 4.62 

(sept,
 3

JHH, = 6.6Hz, 4H, CH(CH3)2), 4.49 (s, 1H, γ-H), 2.99 (s, 24H, 18-crown-6), 2.37 (d, 

3
JHH, = 6.3 Hz, 12H, CH(CH3)2), 1.52 (d, 

3
JHH, = 6.6 Hz, 12H, CH(CH3)2), 1.20 (s, 18H, 

C(CH3)3). The NMR tube was then bought into a glove box, where the solution was 

transferred to a 20 mL vial, the volatiles were removed in vacuo to yield an orange residue. 

This residue was then extracted into pentane (1 mL), filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), and concentrated in vacuo to 0.25 mL. Storage of 

this solution at -25 °C for 48 h resulted in the deposition of a pale orange plates of [K(18-

crown-6)][L
tBu

Ni(
2
-SSO)] (6.12), along with other crystalline and solid products. The 

resulting mixture of solid products was then characterized by 
1
H NMR spectroscopy in C6D6. 

1
H NMR (400 MHz, 25 °C, benzene-d6, note: spectral data have only been tabulated for the 

region from 5.00-5.75 ppm, which is diagnostic for the γ-H environment of the -

diketiminate ligand): 5.62 (s, 1H, γ-H, 6.3), 5.57 (s, 1H, γ-H, 6.8, tentative assignment), 

5.56 (s, 1H, γ-H, 6.4), 5.54 (s, 1H, γ-H, 6.12, tentative assignment), 5.42 (s, 1H, γ-H, 6.6), 

5.40(s, 1H, γ-H, 6.10) ppm. Crystallographic details for 6.12: Triclinic, P-1, a = 12.706(9), b 

= 13.26(1), c = 20.63(1),  = 81.62(2),  = 88.88(2),  = 63.56(2), V = 3075(4) g/cm
3
, Z = 2. 

6.4.13 Reaction of [K(18-crown-6)][L
tBu

Ni(
2
-SNNO)] (6.1) with Me3SiOTf to yield 

[{L
tBu

Ni}2(μ
2
-

2
-η

2
-SNNO)] (6.13) 

In a glove box, a NMR tube was charged with a yellow-orange solution of [K(18-crown-

6)][L
tBu

Ni(
2
-SNNO)] (6.1) (13 mg, 0.0136 mmol) in C6D6 (0.6 mL). To this solution was 

added TMSOTf (2.5 μL, 0.0136 mmol). Upon addition, the solution darkens to orange-

brown. A 
1
H NMR spectrum taken after 10 min, revealed complete consumption of complex 

6.1 and clean formation of a single new diamagnetic product, [{L
tBu

Ni}2(μ
2
-

2
-η

2
-SNNO)] 
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(6.13). The NMR tube was then bought into a glove box, the solution was transferred to a 20 

mL vial and volatiles were removed in vacuo to give a brown residue. This residue was 

extracted into pentane (0.5 mL), filtered through a Celite column supported on glass wool 

(0.5 cm × 2 cm), concentrated in vacuo to ca. 0.1 mL, and stored at -25 °C for 48 h which 

resulted in the deposition of orange plates of [{L
tBu

Ni}2(μ
2
-

2
-η

2
-SNNO)] (a yield was not 

determined due to the small amount of product isolated). (400 MHz, 25 °C, benzene-d6): δ 

7.20 (d, 
3
JHH, = 7.50 Hz, 8H, meta-Ar-H, dipp), 6.33 (t, 

3
JHH, = 7.5 Hz, 4H, para-Ar-H, 

dipp), 4.74 (sept,
 3

JHH, = 6.7Hz, 8H, CH(CH3)2), 2.13 (d, 
3
JHH, = 6.5 Hz, 24H, CH(CH3)2), 

1.49 (d, 
3
JHH, = 6.6 Hz, 24H, CH(CH3)2), 1.14 (s, 36H, C(CH3)3). A 

1
H NMR spectrum of 

the supernatant from this reaction revealed the formation of a paramagnetic product which 

has been identified as [{L
tBu

Ni}2(μ
2
-S)] based on a comparison to the reported 

1
H NMR 

spectrum of this complex.
87

  Crystallographic details for 6.13: Monoclinic, C2/c, a = 

21.898(3), b = 21.444(3), c = 15.639(2),  = 90,  = 100.825(8),  = 90, V = 7213.0(15) 

g/cm
3
, Z = 8. 

6.4.14 Synthesis of [K(18-crown-6)][C(O)2CPh3] 

In a glovebox, a 50 mL bomb fitted with teflon rotoflow valve was charged with a deep 

red solution of [K(18-crown-6)][CPh3]
60

 (130 mg, 0.238 mmol) in THF (3 mL).  The bomb 

was then sealed and removed from the glovebox. The headspace of the bomb was evacuated 

and replaced with 1 atm of CO2. Upon addition of CO2, the solution rapidly became 

colorless, whereupon the headspace of the bomb was evacuated and the bomb was 

transferred into a glovebox. The volatiles were then removed from the solution in vacuo to 

give a white solid which was extracted into toluene (2 mL), filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), and layered with hexanes (7 mL) followed by 
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storage at -25 °C for 24 h. This yields colorless crystals that were isolated by decanting off 

the supernatant (112 mg, 80%). (400 MHz, 25 °C, benzene-d6): δ 7.97 (d, 6H, ortho-Ar-H), 

7.20 (t, 6H, meta-Ar-H), 7.10 (t, 3H, para-Ar-H), 3.15 (s, 24H, 18-crown-6) ppm. 

6.4.15 Synthesis of [L
tBu

Ni
II

(O,O:
2
-C(O)2CPh3)] 

A 20 mL scintillation vial was charged with a dark green solution of [L
tBu

Ni
II
Cl] (50 mg, 

0.0849 mmol) in THF/toluene (1 mL:1 mL). To this stirring solution was added solid [K(18-

crown-6)][C(O)2CPh3] (51 mg, 0.0849 mmol). After addition, the solution gradually 

transformed from dark green to purple in color, concomitant with the deposition of a white 

precipitate (KCl). This solution was allowed to stir for 30 min, whereupon the reaction 

mixture was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm). The 

volatiles were then removed from the solution in vacuo to give a oily purple residue. This 

residue was extracted into hexane (2 mL), filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm), and concentrated in vacuo to 0.5 mL. Storage of this solution at 

-25 °C for 48 h results in the deposition of purple plates which were isolated by decanting 

off the supernatant. (27 mg, 37% yield). The solid state molecular structure of 

[L
tBu

Ni
II
(O,O:

2
-C(O)2CPh3)] can be found in . 

1
H NMR (400 MHz, 25 °C, benzene-d6): δ 

7.00-6.80 (m, 19H, Ar-H, CPh3 and Dipp), 6.66 (t, 2H, o-Ar-H, Dipp), 4.35 (s, 1H, γ-H), 

4.24 (sept, 4H, CH(CH3)2), 2.09 (d, 12H, CH(CH3)2), 1.39 (d, 12H, CH(CH3)2), 1.00 (s, 

18H, C(CH3)3) ppm. Crystallographic details: Orthorhombic, P2c-2ac, a = 22.257(2), b = 

10.736(1), c = 19.581(2),  = 90,  = 90,  = 90, V = 4679.2(7) g/cm
3
, Z = 6. 

6.4.16 Reduction of [L
tBu

Ni
II

(O,O:
2
-C(O)2CPh3)] 

To a cold (-25 °C) purple, stirring solution of [L
tBu

Ni
II
(O,O:

2
-C(O)2CPh3)] (27 mg, 

0.0318 mmol) and 18-crown-6 (16.8 mg, 0.0637 mmol) in Et2O (2 mL) was added KC8 (8.6 
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mg, 0.0637 mmol). After addition, the color of the solution rapidly became dark red-orange 

and some brown precipitate starts to form. The mixture was allowed to stir for 5 min, 

whereupon 0.5 mL of THF was added to dissolve all of solids that had formed. The reaction 

mixture was then stirred for another 5 min and no changes were observed. This mixture was 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) to give a black 

plug and a red-orange filtrate. Volatiles were removed from the filtrate in vacuo, and the 

resulting red residue was extracted into THF-d8 for 
1
H NMR spectroscopic analysis. The 

1
H 

NMR spectrum reveals the clean formation of a paramagnetic Ni
I
 product, which has been 

tentatively identified as [K(18-crown-6)][L
tBu

Ni
I
(O,O:

2
-C(O)2CPh3)]. However, attempts to 

isolate and characterize this product have been unsuccessful. 
1
H NMR (400 MHz, 25 °C, 

THF-d8): δ = 24.18 (br s), 21.21 (br s), 13.16 (br s), 7.94 (s), 7.17 (s), 7.10 (br m), 3.96 (br s), 

3.08 (s), - 1.48 (br s), -11.91 (br s) ppm. 

6.4.17 Reaction of [L
tBu

Ni
II

(OCPh3)] (7.2) with KC8 in the presence of 18-crown 6 and 

CO2 to yield [K(18-crown-6)][L
tBu

Ni
II

(
2
-CO3)] (6.6) 

In a glovebox, a 50 mL bomb fitted with teflon rotoflow valve and a ground glass joint 

was charged with a cold (-25 °C) bright green solution of [L
tBu

Ni
II
(OCPh3)] (40 mg, 0.0488 

mmol) and 18-crown-6 (25.8 mg, 0.0976 mmol) in THF (5 mL).  The bomb was then sealed 

and removed from the glovebox. The headspace of the bomb was evacuated and replaced 

with 1 atm of CO2. The stopper was then removed from the ground glass joint, with the 

bomb under a positive pressure of CO2 and KC8 (13.2 mg, 0.0976 mmol) was added, and the 

stopper was replaced. Upon addition of KC8, the solution rapidly became red-brown and was 

allowed for 10 min, no further changes were observed. Next, volatiles were removed from 

the reaction mixture in vacuo to give an orange residue. The bomb is then transferred into a 
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glovebox. The orange residue was extracted into toluene (2 mL), leaving behind some 

colorless solid, and filtered through a Celite column supported on glass wool (0.5 cm × 2 

cm) to give a pale orange solution. This solution was then concentrated in vacuo to 1 mL 

and stored at - 25 °C for 24 h resulting in the deposition of colorless crystals which appear to 

contain the -CPh3 moiety based on their 
1
H NMR spectrum. (400 MHz, 25 °C, benzene-d6): 

δ 7.31-7.03 (m, Ar-H, CPh3), 3.51 (s, 18-crown-6) ppm. The pale orange supernatant was 

the filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), concentrated 

in vacuo to 0.25 mL, layered with hexane (2 mL) and stored at - 25 °C for 72 h resulting in 

the deposition of pale brown block crystals of [K(18-crown-6)][L
tBu

Ni
II
(

2
-CO3)] (6.6) 

which co-crystallized with the clear crystals (due to the fact that [K(18-crown-

6)][L
tBu

Ni
II
(

2
-CO3)] co-crystallized with another product with similar solubility, a yield for 

this reaction could not be determined). 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ 6.90-6.87 

(m, 6H, Ar-H, dipp), 5.40 (s, 1H, γ-H), 4.49 (sept, 4H, CH(CH3)2), 3.40 (s, 24H, 18-crown-

6), 2.14 (d, 12H, CH(CH3)2), 1.50 (d, 12H, CH(CH3)2), 1.16 (s, 18H, C(CH3)3). ppm. 

6.5 X-ray Crystallography 

Data for 6.1-6.4, 6.5, 6.6, and 6.10 were collected on a Bruker KAPPA APEX II 

diffractometer equipped with an APEX II CCD detector using a TRIUMPH monochromator 

with a Mo  α X-ray source (α = 0.71073 Å).  The crystals were mounted on a cryoloop 

under Paratone-N oil, and all data were collected at 100(2) K using an Oxford nitrogen gas 

cryostream.  Data were collected using ω scans with 0.5° frame widths.  rame exposures of 

15 seconds were used for all seven crystals. Data collection and cell parameter 

determinations were conducted using the SMART program.
91

 Integration of the data frames 

and final cell parameter refinements were performed using SAINT software.
92

  Absorption 



 

 232 

correction of the data was carried out using the multi-scan method SADABS.
93

 Subsequent 

calculations were carried out using SHELXTL.
94

 Structure determination was done using 

direct or Patterson methods and difference Fourier techniques.  All hydrogen atom positions 

were idealized, and rode on the atom of attachment.  However, hydrogen atoms were not 

added to disordered carbon atoms.  Structure solution, refinement, graphics, and creation of 

publication materials were performed using SHELXTL. 
94

  

In complex 6.1, the one of the solvate molecule sites was modelled with mixed 

occupancy, wherein both toluene and C8H18 were present in a 50:50 ratio. The positions of 

the carbon atoms were constrained using DFIX command in SHELXL.  Hydrogen atoms 

were not added to disordered carbon atoms.   Additionally, the [SN=NO]
2-

 ligand was found 

to be disordered over two orientations, which were related by a C2 rotation about the Ni-K 

vector. These two orientations were modelled in a 70:30 ratio using an FVAR command in 

SHELXL. 

For complex 6.2, the C7H8 solvate molecule is disordered over two positions, which were 

related by a 180° rotation. These two orientations were modeled in a 51:49 ratio using the 

FVAR command in SHELXL. The C-C bonds in the C7H8 molecules were constrained to 

1.4 or 1.5 Å, for the double and single bonds, respectively, using the DFIX command.  

Additionally, one of the O atoms, and the two adjacent C atoms on the 18-crown-6 ring, 

were found to be disordered over two positions. These disordered atoms were modeled in a 

50:50 ratio. Hydrogen atoms were not added to the carbon atoms that were adjacent to the 

disordered carbons. Additionally, the [SO]
2-

 ligand in 6.2 was found to be disordered over 

two positions in a 97:3 ratio, which are related by a C2 rotation about the Ni-K axis. The 



 

 233 

relative occupancy of these two orientations was determined with the FVAR command in 

SHELXL.  

For complex 6.3, one of the C6H14 solvate molecules was found to be disordered over two 

positions, which were modeled in a 50:50 ratio. In addition, the C-C bonds within the 

disordered C6H14 molecule were constrained using the SADI command in SHELXL. 

For complex 6.4, both C7H8 solvate molecules were all found to be disordered over two 

positions, which were each modeled in a 50:50 ratio. The C-C bond lengths in these 

molecules were constrained using the SADI command in SHELXL.   

For complex 6.5, one of the C7H8 solvate molecules was found to be disordered over two 

positions, which were modeled in a 50:50 ratio. The C-C bond lengths in this molecule were 

constrained using the SADI command in SHELXL. Additionally, the [SCO2]
2-

 ligand was 

found to be disordered over two orientations, which were related by a C2 rotation about the 

Ni-K vector. These two orientations were modeled in a 87:13 ratio using the FVAR 

command in SHELXL. The S, C, and O atoms of the [SCO2]
2-

 ligand were refined 

isotropically.  

For complex 6.6, the ligand tert-butyl groups on the -diketiminate ligand were found to 

be disordered over two positions. These disordered groups were modeled in a 50:50 ratio. In 

addition, the C-C bond lengths within the C5H12 solvate molecule were constrained using the 

SADI and FLAT commands in SHELXL. The carbon atoms of the C5H12 solvate were 

refined isotropically.   

For complex 6.10, the 18-crown-6 molecule was found to be disordered over two 

positions. These two orientations were modeled in a 76:24 ratio using the FVAR command 

in SHELXL. The C-C and C-O bond lengths in this molecule were constrained using the 
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SADI command in SHELXL.  These C and O atoms were refined isotropically. Additionally, 

the C-C bonds within the C6H6 solvate molecules were constrained using both the SADI and 

DFIX commands in SHELXL. Additionally, the [CO2]
2-

 ligand was found to be disordered 

over two orientations, which were related by a C2 rotation about the Ni-K vector. These two 

orientations were modeled in a 53:47 ratio using the FVAR command in SHELXL.   

Further crystallographic details for complexes 6.1-6.4, 6.5, 6.6, and 6.10 can be found in 

Table 6.1 and Table 6.2. 
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Table 6.1. X-ray Crystallographic Data for Complexes 6.1-6.4  

 6.1·1.5C7H8·0.5C8H18 6.2·C7H8 6.3·2C6H14 6.4·2C7H8 

empirical formula C47H77KN4NiO7S 

·1.5C7H8·0.5C8H18 

C47H77KN2NiO7S·

C7H8 

C47H77KN2NiO8S2 

·2C6H14 

C47H77KN2NiO6S2 

·2C7H8 

crystal habit, color Plate, Yellow Plate, Orange Plate, Orange  Plate, Yellow 

crystal size (mm) 0.2 × 0.15 × 0.05 0.15  0.1 × 0.02 0.2 × 0.1 × 0.03 0.2  0.1 × 0.02 

crystal system Triclinic Triclinic Monoclinic Triclinic 

space group P-1 P-1 C2/c P-1 

volume (Å3) 3073.9(13) 2743.8(7) 12534.2(2) 3085.8(7) 

a (Å) 11.847(3) 12.564(2) 38.446(4) 12.814(2) 

b (Å) 13.438(3) 13.325(2) 18.600(2) 13.340 (2) 

c (Å) 19.455(5) 17.435(3) 18.970(2) 20.566(3) 

α (deg) 94.052(5) 83.702(5) 90 80.905(4) 

β (deg) 95.344(6) 82.251(5) 112.480(2) 87.457(4) 

γ (deg) 91.766(6) 72.027(5) 90 62.801(4) 

Z 1 2 8 2 

formula weight (g/mol) 2075.34 1004.10 1132.37 1112.30 

density (calculated) 

(Mg/m3) 1.167   1.215 1.200 1.197 

absorption coefficient 

(mm-1) 0.467 0.517 0.493 0.498 

F000 1160 1084 4928 1200 

total no. reflections 29005 18945 27994 12552 

unique reflections 12584 11164 12832 8893 

Rint 0.0932 0.0442 0.0616 0.0684 

final R indices (I >2σ(I)] R1 = 0.0906 

wR2 = 0.2564 

R1 = 0.0730 

wR2 = 0.1674 

R1 = 0.0865 

wR2 = 0.2195 

R1 = 0.0635 

wR2 = 0.1444 

largest diff. peak and 

hole (e- A-3) 1.444 and -0.486 1.585 and -0.961 1.285 and -1.141 2.496 and -0.787 

GOF 1.017 1.004 1.029 1.012 
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Table 6.2. X-ray Crystallographic Data for Complexes 6.5, 6.6, and 6.10. 

 6.5·1.5C7H8 6.6·0.5C5H12 6.10·2C6H6 

empirical formula 
C48H77KN2NiO8S 

·1.5C7H8 

C48H77KN2NiO9 

·0.5C5H12 
C48H77KN2NiO8·2C6H6 

crystal habit, color Block, Pale-Brown Plate, Yellow Plate, Orange 

crystal size (mm) 0.15 × 0.1 × 0.1 0.2  0.2 × 0.05 0.2  0.1 × 0.05 

crystal system Monoclinic Monoclinic Monoclinic 

space group P21/n P21/n P21/c 

volume (Å
3
) 5851.6(9) 10592.8(1) 5909(3) 

a (Å) 12.594 (1) 24.849(2) 20.875(6) 

b (Å) 20.265(2) 17.449(1) 11.044(3) 

c (Å) 22.942(2) 27.016(2) 26.136(8) 

α (deg) 90 90 90 

β (deg) 92.030(5) 115.268(3) 101.289(7) 

γ (deg) 90 90 90 

Z 2 4 4 

formula weight (g/mol) 1078.20 1919.99 1064.14 

density (calculated) (Mg/m
3
) 1.219 1.204 1.196 

absorption coefficient (mm
-1

) 0.491 0.497 0.451 

F000 2308 4152.0 2296 

total no. reflections 35435 47795 24126 

unique reflections 12142 21602 11782 

Rint 0.0980 0.0894 0.0834 

final R indices (I >2σ(I)] 
R1 = 0.0582 

wR2 = 0.1176 

R1 = 0.0905 

wR2 = 0.2063 

R1 = 0.1112 

wR2 = 0.2693 

largest diff. peak and hole (e
-
 

A
-3

) 

0.878 and -0.754 1.776 and -0.986 1.995 and -0.744 

GOF 1.009 1.032 1.070 
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Figure 6.13. ORTEP drawing of [L
tBu

Ni(O,O:
2
-C(O)2CPh3)] shown with 50% thermal 

ellipsoids. Hydrogen atoms have been omitted for clarity. 
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6.6 Appendix 

6.6.1 NMR Spectra  

 

Figure A 6.1. 
1
H NMR spectrum of [L

tBu
Ni(OTf)] in benzene-d6. (*) indicates the presence 

of TH , (◊) indicates the presence of hexane. 

* * ◊ ◊ 
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Figure A 6.2. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(SN=NO)] (6.1) in benzene-d6.  

(*) indicates the presence of toluene, (▪) indicates the presence of hexanes, (◊) indicates the 

presence of Et2O. 

* ▪ ◊ 
▪ 
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Figure A 6.3.  
13

C NMR spectrum of [K(18-crown-6)][L
tBu

Ni(SN=NO)] (6.1) in benzene-

d6. The β-diketiminate backbone -carbon was not observed. It is expected to appear 

between 90-100 ppm.
95
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Figure A 6.4. Variable temperature 
1
H NMR spectra of [K(18-crown-6)][L

tBu
Ni(SN=NO)] 

(6.1) in toluene-d8. (*) indicates the presence of free 18-crown-6.    

 

 

* 

298 K 

273 K 

253 K 

233 K 

213 K 

188 K 
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Figure A 6.5. 
1
H NMR spectra of the thermolysis of [K(18-crown-6)][L

tBu
Ni(S,O:

2
-

SNNO)] (6.1) to form [K(18-crown-6)][L
tBu

Ni(
2
-SO)] (6.2) in toluene-d8 at 45 °C. (♠) 

indicates the presence of 6.2. 

 

♠ ♠ ♠ 
♠ ♠ 

♠ 

♠ 
♠ 

0 d 

4 d 

6 d 

♠ ♠ 
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Figure A 6.6. Partial 
1
H NMR spectra of the thermolysis of [K(18-crown-6)][L

tBu
Ni(S,O:

2
-

SNNO)] (6.1) to form [K(18-crown-6)][L
tBu

Ni(
2
-SO)] (6.2) after 6 days in toluene-d8. (♠) 

indicates the presence of 6.2, (*) indicates the presence of 6.3, and (◊) indicates the presence 

of 6.4. 

♠ 

* 
◊ 
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Figure A 6.7. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(SO)] (6.2) in benzene-d6. (*) 

indicates the presence of toluene, and (†) indicates the presence of pentane. 

 

* 
† † 
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Figure A 6.8.  
13

C{
1
H} NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-SO)] (6.2) in 

benzene-d6. 
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Figure A 6.9. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-S2)] (6.4) in benzene-d6. (*) 

indicates the presence of toluene, and (†) indicates the presence of pentane. 

† * 
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Figure A 6.10. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-S2)] (6.4) in toluene-d8. (†) 

indicates the presence of pentane. 

† 
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Figure A 6.11. 
13

C{
1
H} NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-S2)] (6.4) in 

benzene-d6.  
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Figure A 6.12. Partial 
1
H NMR spectra of the reaction of [K(18-crown-6)][L

tBu
Ni(

2
-SO)] 

(6.2) with 
13

CO in C6D6. (◊) indicates the presence of a [ (18-crown-6)][L
tBu

Ni(S)] (2.4). 

◊ 
◊ ◊ 

◊ 

◊ 

10 min 

1h 

6 h 

◊ 
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Figure A 6.13. Partial 
1
H NMR spectra of the reaction of [K(18-crown-6)][L

tBu
Ni(

2
-SO)] 

(6.2) with 
13

CO in C6D6. (#) indicates the presence of 1, (♠) indicates the presence of 6.2, (□) 

indicates the presence of 6.4, (°) indicates the presence of [K(18-crown-6)][L
tBu

Ni(
2
-SCO)] 

(5.1), (†) indicates the presence of [K(18-crown-6)][L
tBu

Ni(
2
-SCO2)] (6.5), (◊) indicates the 

presence of [K(18-crown-6)][L
tBu

Ni(
2
-CO3)] (6.6), (*) has been tentatively assigned to 

[K(18-crown-6)][L
tBu

Ni(
2
-S2CO)] (6.8), and (Δ) indicates the presence of an unidentified 

diamagnetic intermediate. 

† 

♠ 
□ 

° 

◊ 

* 

1h 

6 h 

# Δ 
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Figure A 6.14.  Partial 
13

C{
1
H} NMR spectrum of the reaction of [K(18-crown-

6)][L
tBu

Ni(
2
-SO)] (6.2) with 

13
CO in C6D6 after 6 h. (†) indicates the presence of [K(18-

crown-6)][L
tBu

Ni(
2
-SCO2)] (6.5), (◊) indicates the presence of [K(18-crown-6)][L

tBu
Ni(

2
-

CO3)] (6.6), (°) indicates the presence of [K(18-crown-6)][L
tBu

Ni(
2
-SCO)] (5.1), (♠) 

indicates the presence of SCO (6.7),
54

 (#) indicates the presence of 
13
CO, and (⌂) indicates 

the presence of unidentified products. (*) has been tentatively assigned to [K(18-crown-

6)][L
tBu

Ni(
2
-S2CO)] (6.8). 

† 

° 

# * 

◊ 

⌂ 

♠ ⌂ 
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Figure A 6.15. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-SCO2)] (6.5) in benzene-

d6. (*) indicates the presence of toluene, and (†) indicates the presence of pentane. 

* 
† † 
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Figure A 6.16. 
13

C{
1
H} NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-SCO2)] (6.5) in 

benzene-d6. (*) indicates the presence of hexane. 

* * * 
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Figure A 6.17. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-CO3)] (6.6) in benzene-d6. 

(*) indicates the presence of pentane. 

* 
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Figure A 6.18. 
13

C{
1
H} NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-CO3)] (6.6) in 

benzene-d6. (*) indicates the presence of pentane. 

* * * 
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Figure A 6.19. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-CO2)] (6.10) in benzene-

d6. (*) indicates the presence of trace unidentified diamagnetic impurities. 

* * 
* 
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Figure A 6.20. 
13

C{
1
H} NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-CO2)] (6.10) in 

benzene-d6. 
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Figure A 6.21. In situ 
1
H NMR spectrum of the reaction of [K(18-crown-6)][L

tBu
Ni(SO)] 

(6.2) with CO2 in benzene-d6. (*) indicates the presence of pentane, (†) indicates the 

presence of toluene. 

* † 
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Figure A 6.22. In situ 
1
H NMR spectrum of the reaction of [K(18-crown-

6)][L
tBu

Ni(SNNO)] (6.1) with TMSOTf in benzene-d6. (*) indicates the presence of pentane, 

(†) indicates the presence of Et2O, (◊) indicates the presence of hexamethyldisiloxane 

(HMDSO), and (▪) indicates the presence of unidentified trimethylsilane containing 

products. 

* 

† 

† ◊ 

▪ 

▪ 
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Figure A 6.23. 
1
H NMR spectrum of products of the decomposition of [{L

tBu
Ni}2(μ

2
-

2
-η

2
-

SNNO)] (6.13) in benzene-d6. (*) indicates the presence of [{L
tBu

Ni}2(μ
2
-S)],

87
 (†) indicates 

the presence of unidentified products. 

* 

† 

† 

† 
* 

* 

* 

* 

* 
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Figure A 6.24. 
1
H NMR spectrum of [K(18-crown-6)][C(O)2CPh3] in benzene-d6. (*) 

indicates the presence of toluene and (†) indicates the presence of hexane. 

† * † 
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Figure A 6.25. 
1
H NMR spectrum of [L

tBu
Ni

II
(O,O:

2
-C(O)2CPh3)] in benzene-d6.  
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Figure A 6.26. 
1
H NMR spectrum of the product of the reaction of [L

tBu
Ni

II
(O,O:

2
-

C(O)2CPh3)] with KC8 in the presence of 18-crown-6 taken in THF-d8.  
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Figure A 6.27. 
1
H NMR spectrum of the colorless crystals isolated from the reaction of 

[L
tBu

Ni
II
(OCPh3)] with KC8 in the presence of 18-crown 6 and CO2 taken in benzene-d6. (*) 

indicates the presence of toluene. 

* 
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Figure A 6.28. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-CO3)] (6.6) isolated from 

the reaction of [L
tBu

Ni
II
(OCPh3)] with KC8 in the presence of 18-crown-6 and CO2 taken in 

benzene-d6. (*) indicates the presence of toluene. 

 

* 
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6.6.2 IR Spectra 

 

Figure A 6.29. Partial IR spectra of complex 6.1 (KBr pellet). 
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Figure A 6.30. Partial IR spectrum of [K(18-crown-6)][L
tBu

Ni(
2
-SO)] (6.2) (KBr pellet), 

(◊) indicates the presence of the νSO mode. 

Figure 

A 6.31. Partial IR spectrum of [K(18-crown-6)][L
tBu

Ni(
2
-S2)] (6.4) (KBr pellet). 

◊ 
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Figure A 6.32. Partial IR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-SCO2)] (6.5) (KBr pellet), 

(◊) indicates the presence of the νCO mode. 

 
Figure A 6.33. Partial IR spectrum of [K(18-crown-6)][L

tBu
Ni(

2
-CO2)] (6.10) (KBr pellet) , 

(◊) indicates the presence of the νCO mode. 

◊ 

◊ 



 

 269 

 
Figure A 6.34. Partial solution IR (hexane) of [K(18-crown-6)][L

tBu
Ni(

2
-CO3)] (6.6). (◊) 

indicates the presence of the νCO mode. 

 
 

Figure A 6.35. Partial solution IR (hexane) of the reaction of [K(18-crown-6)][L
tBu

Ni(
2
-

SO)] (6.2) with CO (blue trace). Hexane background (red trace). (°) indicates the presence of 

[K(18-crown-6)][L
tBu

Ni(η
2
-SCO)] (5.1), (◊) indicates the presence of [K(18-crown-

6)][L
tBu

Ni(
2
-CO3)] (6.6), (♠) indicates the presence of [L

tBu
Ni

I
(CO)] (6.9).

57
 

♠ 

° 

◊ 

◊ 
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7.1 Introduction 

In the past 20 years, the library of late transition metal (groups 9, 10, 11) complexes 

containing metal-ligand multiple bonds has expanded significantly.
1,2 

For example, there has 

been a notable increase in the number of carbene (CR2
2-

),
3
 nitrene (NR

2-
),

4–11
 nitride        

(N
3-

),
12,13

 and phosphinidene (PR
2-

)
14,15

 complexes.
16,17

 Despite these successes, the number 

of terminal chalcogenide (E
2-

, E = O, S) complexes has remained nearly stagnant, reflecting 

the challenges associated with the synthesis of these species. The only two well 

characterized late metal terminal oxo (O
2-

) complexes, [Ir
V
(O)(Mes)3] (Mes = 2,4,6-

Me3C6H2) and [Pt
IV

(O)(PCN)][BF4] (PCN = C6H3[CH2P(tBu)2](CH2CH2NMe2)),
18,19

 both 

feature 3
rd

 row transition metals in high oxidation states that are not commonly accessible 

for first row metals and require the use of 2e
-
 oxidants to install the terminal oxo ligands 

(Figure 7.1).  

 

Figure 7.1. The synthesis of late transition metal terminal oxo complexes. A, Ref. 18; B, 

Ref. 19. 
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In chapter 2, I demonstrated that the reductive deprotection of Ni tritylthiolate 

complexes, [L
R
Ni

II
(SCPh3)] (2.1, R = Me; 2.2, R = 

t
Bu), is an effective route for the 

synthesis of "masked" terminal sulfides, [K(L)][L
R
Ni

II
(S)] (2.4, R = Me, L = 18-crown-6; 

2.5, R = 
t
Bu, L = 18-crown-6; 2.6, R = 

t
Bu, L = 2,2,2-cryptand).

20
 The reductive 

deprotection strategy is advantageous for first row transition metals because installation of 

the terminal ligand does not require a change in metal oxidation state. The Hayton group has 

also recently reported the synthesis of actinide terminal oxos, [K(18-crown-

6)][An(O)(NR2)3] (An = U, Th, R = SiMe3), using reductive deprotection (Scheme 7.1),
21,22

 

indicating that this strategy may also be generally useful for the synthesis of oxo complexes. 

In this chapter, I report on my efforts to extend the scope of the ‘reductive deprotection’ 

reaction to the synthesis of other late transition metal (Fe, Co, Ni) complexes with oxo, 

sulfide, and imido ligands. 

Scheme 7.1  Synthesis of actinide oxo complexes via reductive deprotection.   

 

 

7.2 Results and Discussion 

7.2.1 Synthesis and Characterization of [L
Me

Ni
II

(OCPh3)] (7.1) and 

[L
tBu

Ni
II

(OCPh3)] (7.2) 

Addition of 1 equiv of KOCPh3 to [L
R
Ni

II
Cl] (R = Me, 

t
Bu)

23
 in C6H6 results in the 

formation of [L
R
Ni

II
(OCPh3)] (7.1, R = Me; 7.2, R = 

t
Bu). Complex 7.1 can be isolated as 
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deep aqua blocks from hexanes in 72% yield, while complex 7.2 can be isolated as bright 

green powder in 70% yield (Scheme 7.2).  

Scheme 7.2 Synthesis of [L
Me

Ni
II
(OCPh3)] (7.1) and [L

tBu
Ni

II
(OCPh3)] (7.2) 

 

The formulations of 7.1 and 7.2 were confirmed by elemental analysis, however, only 

7.1 has been characterized by X -ray crystallography. The solid state molecular structure of 

7.1 is shown in Figure 7.2. Complex 7.1 features a three coordinate Ni
II
 center ligated by a 

tritylalkoxide moiety. The Ni-O and C-O bond lengths in 7.1 are 1.756(1) and 1.400(2) Å, 

respectively, and are both consistent with single bonds.
20,24,25

 The Ni-O-C angle in 7.1 is 

150.6(1)° and is larger than the Ni-S-C angles in both 2.1 and 2.2 which could be indicative 

of the presence of some π character in the Ni-O bond. In contrast to [L
Me

Ni
II
(SCPh3)] (2.1), 

the coordination geometry of the Ni center is planar (((L-Ni-L) = 360.0°) and is best 

described as distorted T-shaped with N-Ni-O angles of 144.27(7)° and 119.41(7)°.
26,27

 

Finally, the Ni-N bonds in 7.1 are similar to those found in other Ni
II
 -diketiminate 

complexes.
20,28,29

 The 
1
H NMR spectra of complexes 7.1 and 7.2 in C6D6 are similar to those 

reported for other three-coordinate Ni
II
 β-diketiminate complexes; 7.1 features one backbone 

methyl resonance at -69.62 ppm and a single γ-CH resonance at -188.42 ppm and 7.2 

features one tert-butyl resonance at 2.31 ppm and a single γ-CH resonance at -210.03 

ppm.
20,30–33

 Additionally, Evans' method determination of the magnetic moment of these 
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complexes revealed values of 3.09 and 3.08 B.M. for 7.1 and 7.2, respectively; these values 

are also consistent with S = 1 Ni
II
 complexes.

32–34
 

 

Figure 7.2. ORTEP diagram of [L
Me

Ni
II
(OCPh3)] (7.1) with 50% probability ellipsoids. 

Hydrogen atoms have been omitted for clarity. Selected bond lengths and angles: Ni1-O1 

1.756(1) Å, C1-O1 1.400(2) Å, Ni1-N1 1.901(2) Å, Ni1-N2 1.918(2) Å, N1-Ni1-N2 

96.29(7)°, N1-Ni1-O1 144.27(7)°, N2-Ni1-O1 119.41(7)°, Ni1-O1-C1 150.6(1)°. 

7.2.2 Synthesis and Characterization of [K(18-crown-6) (THF)2][L
Me

Ni
I
(OCPh3)] 

(7.3) 

Subsequent reduction of 7.1 with 1 equiv of KC8, in cold (-25 °C) Et2O, in the presence 

of 18-crown-6, results in the formation of [K(18-crown-6)(THF)2][L
Me

Ni
I
(OCPh3)] (7.3). 

Complex 7.3 can be isolated as deep red needles from THF/hexanes in 82% yield (Scheme 

7.3).  
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Scheme 7.3 Synthesis of [K(18-crown-6)(THF)2][L
Me

Ni
I
(OCPh3)] (7.3) 

 

I should also note that the reaction of 7.1 with 2 equiv of KC8, in the presence of 18-

crown-6, still affords 7.3, indicating that the trityl O-C bond in this complex is too strong to 

be reduced using KC8. Additionally, it appears likely that the steric pressure from the β-

diketiminate Dipp groups play a role in the outcome of this reaction as O-C bond cleavage is 

observed in the reduction of complex 7.2(see below). The formulation of complex 7.3 has 

been confirmed by X-ray crystallography and elemental analysis. The solid state molecular 

structure of 7.3 is shown in Figure 7.3. The Ni center in complex 7.3 exhibits a planar ((L-

Ni-L) = 357), Y-shaped coordination geometry. The Ni-O (1.875(2) Å) and Ni-N bond 

lengths (1.945(2), 1.958(2) Å) in 7.3 are longer than those in 7.1, consistent with the larger 

atomic radius of Ni
I
 relative to Ni

II
.
31,33,35

 The Ni-O-C angle in 7.3 is 144.3(2)° and is 

slightly more acute than that in 7.1.The 
1
H NMR spectrum of complex 7.3 in THF-d8 

features broad paramagnetic resonances typical of those observed for other Ni
I 

β-

diketiminate complexes, for example, 7.3 features one backbone methyl resonance at -41.13 

ppm and a two diasterotopic isopropyl-CH3 resonances at 6.82 and 6.72 ppm.
31,33,35,36
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Figure 7.3. ORTEP diagram of [K(18-crown-6)(THF)2][L
Me

Ni
I
(OCPh3)]·C4H8O 

(7.3·C4H8O) with 50% probability ellipsoids. Hydrogen atoms and a THF solvate molecule 

have been omitted for clarity. Selected bond lengths and angles: Ni1-O1 1.875(2) Å, C1-O1 

1.378(3) Å, Ni1-N1 1.945(2) Å, Ni1-N2 1.958(2) Å, N1-Ni1-N2 94.61(9)°, N1-Ni1-O1 

133.15(8)°, N2-Ni1-O1 128.94(9)°, Ni1-O1-C1 144.3(2)°. 

 

7.2.3 Synthesis and Characterization of [K(18-crown-6)][L
tBu

Ni
I
(OH)] (7.4) 

Reduction of 7.2 with 2 equiv of KC8, in cold (-25 °C) THF, in the presence of 18-

crown-6, results in the formation of [K(18-crown-6)][L
tBu

Ni
I
(OH)] (7.4). Complex 7.4 can 

be isolated as red-orange plates from Et2O in 69% yield (Scheme 7.4).  
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Scheme 7.4 Synthesis of [K(18-crown-6)][L
tBu

Ni
I
(OH)] (7.4) 

 

The formulation of complex 7.4 has been confirmed by X-ray crystallography, and its 

solid state molecular structure is shown in Figure 7.4. Complex 7.4 features a three 

coordinate Ni
I
 center ligated by a hydroxo (OH

-
) moiety with a Ni-O bond length of 

1.877(4) Å which is longer than that observed in complex 7.1 (1.756(1) Å) and identical to 

that observed in complex 7.3 (1.875(2) Å). The coordination geometry of the Ni center 

((L-Ni-L) = 369.8) is best described as distorted T-shaped. The 
1
H NMR spectrum of 7.4 

in C6D6 contains broad paramagnetic resonances typical of those observed for other Ni
I 
β-

diketiminate complexes, for example, 7.3 features one tert-butyl resonance at -1.48 ppm and 

an isopropyl-CH resonance at 12.64 ppm.
31,33,35,36

 A resonance assignable to the OH
-
 proton 

was not observed in this spectrum. To my knowledge, complex 7.4 is the first example of a 

Ni
I
 hydroxo species. Previously reported Ni OH

-
 complexes have typically been synthesized 

via metathesis with hydroxide salts.
37–42

 For example, reaction of 

[Ni
II
(CH2C6H5)(PMe3)(Cl)] with NaOH resulted in the formation of 

[Ni
II
(CH2C6H5)(PMe3)(μ-OH)]2.

37
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Figure 7.4. ORTEP diagram of [K(18-crown-6)][L
tBu

Ni
I
(OH)]·C4H10O (7.4·C4H10O) with 

50% probability ellipsoids. Hydrogen atoms and an Et2O solvate molecule omitted for 

clarity. Selected bond lengths and angles: Ni1-O1 1.877(4) Å, O1-K1 2.574(4) Å, Ni1-N1 

1.884(4) Å, Ni1-N2 1.908(4) Å, N1-Ni1-N2 98.6(2)°, N1-Ni1-O1 143.4(2)°, N2-Ni1-O1 

117.8(2)°. 

A tentative mechanism for the formation of 7.4 can be found in Scheme 7.5. However, 

this mechanism is definitely not certain as I have not yet been able to identify the trityl 

containing byproduct(s) of this reaction. Based on my observations and 
1
H NMR spectra 

taken of the crude products of this reaction, I can rule out the formation of common 

triphenylmethyl containing products such as [CPh3]
-
, Gomberg's dimer, and 

triphenylmethane (Ph3CH). The absence of [CPh3]
- 

as a product disfavors the direct 

reductive deprotection route that was observed in the synthesis of Ni sulfides from 

[L
Me

Ni
II
(SCPh3)] (2.1) and [L

tBu
Ni

II
(SCPh3)] (2.2). While the absence of Gomberg's dimer

43
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and triphenylmethane disfavor spontaneous homolytic pathways such as that observed in the 

1 electron reduction of [L
tBu

Ni
II
(SCPh3)] (2.2) (Scheme 2.5). Scheme 7.5 depicts the 

formation of an intermediate oxyl radical, which abstracts an H-atom leading to homolysis 

of the tritylalkoxide O-C bond to yield 7.4 and trityl radical. Oxyls are often implicated as 

intermediates in H-atom abstraction reactions.
44,45

 It is possible that the trityl radical could 

couple with solvent radicals formed via the initial oxyl H-atom abstraction step. Notably, 

reductive cleavage of the O-CPh3 O-C bond has only been observed for complex 7.2, I can 

rationalize this difference based on the increased steric pressure on -CP3 by the β-

diketiminate Dipp groups.
46,47

 I hypothesize that this steric pressure facilitates O-C bond 

cleavage in this system. 

Scheme 7.5 Possible mechanisms for the formation [K(18-crown-6)][L
tBu

Ni
I
(OH)] (7.4) 

 

7.2.4 Synthesis and Characterization of [L
Me

Fe
II

(OCPh3)] (7.5) 

[L
tBu

Fe
II

(OCPh3)(NCCH3)]  (7.6) and [K(18-crown-6)(THF)2][L
Me

Fe
I
(OCPh3)] (7.7) 

Addition of 1 equiv of HOCPh3 to [L
Me

Fe
II
(N(TMS)2)]

48
 (TMS = SiMe3) in Et2O results 

in the formation of [L
Me

Fe
II
(OCPh3)] (7.5). Complex 7.5 can be isolated as yellow needles 

from Et2O layered with hexanes in 80% yield (Scheme 7.6).   
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Scheme 7.6 Synthesis of [L
Me

Fe
II
(OCPh3)] (7.5) 

 

The solid state molecular structure of 7.5 is shown in Figure 7.5. Complex 7.5 features a 

three coordinate Fe
II
 center ligated by a tritylalkoxide moiety with a Fe-O bond length of 

1.806(1) Å which is consistent with a single bond.
49–51

 The Fe-O-C angle in 7.5 of 

143.53(1)° is similar to that observed in complex 7.1 suggesting that these two complexes 

have similar M-O bonding interactions. The coordination geometry of Fe center is planar 

((L-Fe-L) = 359.9) and is best described as T-shaped based on the N1-Fe1-O1 angle of 

150.11(6)°. Finally, the Fe-N bonds in 7.5 are similar to those found in other Fe
II
 -

diketiminate complexes. 
23,46,52,53

 The 
1
H NMR spectrum of 7.5 in C6D6 contains 

paramagnetically shifted resonances similar to those of other three coordinate Fe
II
 β-

diketiminate complexes for example, 7.5 features one backbone methyl resonance at 15.25 

ppm and a two diasterotopic isopropyl-CH3 resonances at -15.39 and -90.19 ppm.
23,46,52,53 
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Figure 7.5. ORTEP diagram of [L
Me

Fe
II
(OCPh3)] (7.5) with 50% probability ellipsoids. 

Hydrogen atoms omitted for clarity. Selected bond lengths and angles: Fe1-O1 1.806(1) Å, 

C1-O1 1.404(2) Å, Fe1-N1 1.966(1) Å, Fe1-N2 2.000(1) Å, N1-Fe1-N2 96.58(6)°, N1-Fe1-

O1 150.11(6)°, N2-Fe1-O1 113.24(6)°, Fe1-O1-C1 143.53(1)°. 

Addition of 1 equiv of KOCPh3 to [L
tBu

Fe
II
Cl]

46
 in Et2O results in the formation of 

[L
tBu

Fe
II
(OCPh3)(NCCH3)] (7.6). Complex 7.6 can be isolated as bright orange plates from 

Et2O in 39% yield (Scheme 7.7).   

Scheme 7.7 Synthesis of [L
tBu

Fe
II
(OCPh3)(NCCH3)] (7.6) 
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Complex 7.6 was isolated with a coordinated acetonitrile molecule as a crystallization 

aid due to its high solubility. The solid state molecular structure of 7.6 is shown in Figure 

7.6. Complex 7.6 features a trigonal pyramidal Fe
II
 center ligated by tritylalkoxide and 

acetonitrile moieties with a Fe-O bond length of 1.839(3) Å which is consistent with a single 

bond.
49–51

 The Fe1-N3 bond in 7.6 of 2.134(6) Å and is notably longer than the Fe1-N1 and 

Fe-N2 bonds as would be expected for the neutral NCCH3 ligand. The 
1
H NMR spectrum of 

7.6 in C6D6 contains paramagnetically shifted resonances similar to those of other Fe
II
 β-

diketiminate complexes for example, 7.6 features one tert-butyl resonance at 45.49 ppm and 

two diastereotopic isopropyl-CH3 resonances at -27.64 and -121.31 ppm. 
23,46,52,53 

  

 

Figure 7.6. ORTEP diagram of [L
tBu

Fe
II
(OCPh3)(NCCH3)] (7.6) with 50% probability 

ellipsoids. Hydrogen atoms omitted for clarity. Selected bond lengths and angles: Fe1-O1 

1.839(3) Å, Fe1-N3 2.134(6) Å, Fe1-N1 2.034(4) Å, Fe1-N2 2.033(4) Å, N1-Fe1-N2 

96.5(1)°, N1-Fe1-O1 115.2(1)°, N2-Fe1-O1 140.3(1)°, O1-Fe1-N3 100.5(2)°. 
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With complexes 7.5 and 7.6 in hand, I attempted cleave the O-C bonds in these 

complexes using the reductive deprotection protocol. Reduction of 7.5 with KC8, in cold (-

25 °C) Et2O, in the presence of 18-crown-6, results in the formation of [K(18-crown-

6)(THF)2][L
Me

Fe
I
(OCPh3)] (7.7). Complex 7.7 can be isolated as deep green blocks in 19% 

yield (Scheme 7.8). Reduction of complex 7.6 under the same conditions also appears to 

form a similar Fe
I
 species, which I hypothesize is [L

tBu
Fe

I
(OCPh3)]

-
; however, I have been 

unable to isolate this complex due to its high solubility and its tendency to convert back to 

[L
tBu

Fe
II
(OCPh3)] upon storage in solution. Similar to the attempted reductive deprotection 

of complex 7.1, it appears that steric pressure on the -CPh3 group may also dictate the 

reaction outcome of the reductive deprotection of 7.5 and 7.6. Specifically, since the Fe-O 

bond lengths in 7.5 (1.806(1) Å) and 7.6 (1.839(3) Å) are longer than the Ni-O bond in 7.1 

(1.756(1) Å), there is less pressure to drive the C-O bond cleavage.  

Scheme 7.8 Synthesis of [K(18-crown-6)(THF)2][L
Me

Fe
I
(OCPh3)] (7.7) 

 

The reaction of 7.5 with 2 equiv of KC8, in the presence of 18-crown-6, also affords 7.7, 

indicating that, like complex 7.1, the trityl O-C bond in this complex is too strong to be 

reduced using KC8. The formulation of complex 7.7 has been confirmed by X-ray 

crystallography, its solid state molecular structure is shown in Figure 7.7. The Fe center in 

7.7 exhibits a planar ((L-Fe-L) = 360), T-shaped coordination geometry. The Fe-O bond 
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length in 7.7 (1.832(3) Å) is longer than that in 7.5 (1.806(1) Å), consistent with the larger 

atomic radius of Fe
I
 relative to Fe

II
.
54

 The 
1
H NMR spectrum of complex 7.7 in C6D6 

features broad paramagnetic resonances typical of those observed for other Fe
I 
β-

diketiminate complexes, for example, 7.7 features one backbone methyl resonance at -65.53 

ppm and a one diasterotopic isopropyl-CH3 resonance at -9.73 ppm.
54,55

 

 

Figure 7.7. ORTEP diagram of [K(18-crown-6)(THF)2][L
Me

Fe(OCPh3)] (7.7) with 50% 

probability ellipsoids. Hydrogen atoms omitted for clarity. Selected bond lengths and angles: 

Fe1-O1 1.832(3) Å, O1-C30 1.390(4) Å, Fe1-N1 1.933(3) Å, Fe1-N2 1.915(3) Å, N1-Fe1-

N2 98.8(1)°, N1-Fe1-O1 116.7(1)°, N2-Fe1-O1 144.5(1)°, Fe1-O1-C30 157.5(2)°. 

 

7.2.5 Synthesis and Reduction of [L
tBu

Ni
II

(O,O:κ
2
-PINO)] (7.8) 

Due to the challenges associated with the deprotection of the OCPh3 group outlined in 

the early sections of this chapter, I sought to make use of an alternate oxo protecting group. 

Recently, Baran and co-workers published a series of reports describing the use of 

hydroxyphthalimide esters to perform decarboxylative borylation, alkenylation, and cross 
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coupling reactions.
56–58

 Notably, the decarboxylation step in these reactions involves the 

cleavage of the hydroxyphthalimide ester N-O bond initiated by a one electron reduction 

(Scheme 7.9). Given this precedent, I pursued the synthesis of a nickel phthalimide N-oxide 

complex in order to determine if reductive deprotection of the phthalimide group could yield 

an oxo complex.   

Scheme 7.9 Reductive decarboxylation of a hydroxyphthalimide ester 

 

Addition of 1 equiv of potassium phthalimide N-oxide (K[PINO], PINO = 

C6H4(CO)2NO
-
) to [L

tBu
Ni

II
Cl]

23
 in THF results in the formation of[L

tBu
Ni

II
(O,O:κ

2
-PINO)] 

(7.8). Complex 7.8 can be isolated as red plates from toluene layered with pentane in 91% 

yield (Scheme 7.10).  

Scheme 7.10 Synthesis of [L
tBu

Ni
II
(O,O:κ

2
-PINO)] (7.8) 

 

The solid state molecular structure of 7.8 is shown in Figure 7.8. Complex 7.8 features a 

four coordinate Ni
II
 center ligated in a κ

2
 fashion by the PINO moiety with Ni-O bond 

lengths of 1.921(6) Å and 2.056(6) Å for the N-oxide and carbonyl Ni-O bonds, respectively. 

There is only a slight elongation of the C2-O3 (1.24(1) Å) bond relative to the C1-O2 
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(1.21(1) Å) bond, indicating minimal activation the coordinated carbonyl C=O bond. While 

the N1-O1 bond length of 1.353(7) Å is consistent with a single bond. The coordination 

geometry of the Ni center is best described as pseudo-tetrahedral. The 
1
H NMR spectrum of 

7.8 in C6D6 contains paramagnetically shifted resonances similar to those of other Ni
II
 β-

diketiminate complexes, for example, 7.8 features one tert-butyl resonance at 1.88 ppm and 

two diastereotopic isopropyl-CH3 resonances at 8.10 and 6.94 ppm.
20,23,32

 

 

Figure 7.8. ORTEP diagram of [L
tBu

Ni
II
(O,O:κ

2
-PINO)] (7.8) with 50% probability 

ellipsoids. Hydrogen atoms omitted for clarity. Selected bond lengths and angles: Ni1-O1 

1.921(6) Å, Ni1-O3 2.056(5) Å, N1-O1 1.353(7) Å, C2-O3 1.24(1) Å, C1-O2 1.21(1) Å, 

Ni1-N2 1.909(6) Å, Ni1-N3 1.918(6) Å, N1-Ni1-N2 96.7(3)°, N2-Ni1-O1 117.0(3)°, N3-

Ni1-O1 125.5(3)°, N2-Ni1-O3 132.9(2)°, N3-Ni1-O3 105.3(2)°, N1-Ni1-O3 82.7(2)°. 
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With complex 7.8 in hand, I endeavored to apply the reductive deprotection protocol to 

this system. Accordingly, exposure of a THF/Et2O solution of 7.8 to 2 equiv of KC8 in the 

presence of 18-crown-6 resulted in a color change of the solution from red to red-brown 

along with the deposition of a red-orange solid that I have tentatively identified as [K(18-

crown-6)][PIN] (PIN = C6H4(CO)2N
-
). I have been able to confirm that the identity of the Ni 

containing product of this reaction as [K(18-crown-6)][L
tBu

Ni
I
(OH)] (7.4), which I had 

previously characterized, via the isolation of single crystals from the reaction (Scheme 7.11).  

I was unable to record yields for both of these products. 

Scheme 7.11 Reduction of [L
tBu

Ni
II
(O,O:κ

2
-PINO)] (7.8) in the presence of 18-crown-6 

 

When the reaction of 7.8 with KC8 was performed in the presence of 2,2,2-cryptand, I 

observe a color change of the reaction mixture from red to red-brown. However, I do not 

observe the formation of a significant amount of solids (aside from C8) in this reaction 

(Scheme 7.11). Interestingly, I have also observed the formation of a transient, diamagnetic 

Ni containing species in the 
1
H NMR spectrum of the crude reaction mixture (Figure 7.9). I 

have tentatively identified this species as a Ni
II
 oxo, based on the observation that other 

three coordinate Ni
II
 complexes with metal-ligand multiple bonds to carbon and nitrogen are 

diamagnetic.
3,14,59,60

  For example, the transient diamagnetic product (Ni
II
 oxo) formed in 

this reaction features one tert-butyl resonance at 1.84 ppm and two diastereotopic isopropyl-

CH3 resonances at 1.59 and 1.65 ppm, while the paramagnetic product, "[K(2,2,2-
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cryptand)][L
tBu

Ni
I
(OH)]", of this reaction features a broad tert-butyl resonance at -1.43 ppm. 

Based upon integration of the tert-butyl resonances of these two products, it appears that 

they are present in a roughly 1:1 ratio. Notably, the potassium salt of the ligand, L
tBu

K, is 

not present in this reaction based on comparison of its reported 
1
H NMR spectrum with that 

in Figure 7.9. I was able to isolate and structurally characterize one of the products of this 

reaction as [K(2,2,2-cryptand)][PIN] (7.9) and its solid state molecular structure is shown in 

Figure 7.10. While, I have been unable to isolate the Ni containing product of this reaction, 

based on the formation of 7.4 in the reduction of 7.8 in the presence of 18-crown-6 (Scheme 

7.10), I propose that [K(2,2,2-cryptand)][L
tBu

Ni
I
(OH)] is likely the final product of this 

reaction (Scheme 7.12). 

Scheme 7.12 Reduction of [L
tBu

Ni
II
(O,O:κ

2
-PINO)] (7.8) in the presence of 2,2,2-crypand 
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Figure 7.9. 
1
H NMR spectrum of the crude products of the reaction of [L

tBu
Ni

II
(PINO)] 

(7.8) with KC8 in the presence of 2,2,2-cryptand in C6D6. (◊) has been tentatively assigned 

to a Ni
II
 oxo species, (Δ) has been tentatively assigned to a Ni

I
 hydroxide species, (°) 

indicates the presence of 2,2,2-cryptand, (*) indicates the presence of hexane, and (†) 

indicates the presence of THF. 

 

* * 

† 
† 
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Figure 7.10. ORTEP diagram of [K(2,2,2-cryptand)][PIN] (7.9) with 50% probability 

ellipsoids. Hydrogen atoms and an alternate orientation of [PIN]
-
 omitted for clarity.  

To date, I have been unable to isolate the nickel-containing products of the reaction 

involving 2,2,2-cryptand. However, based upon the formation of 7.9 and the 
1
H NMR 

spectra of the reaction products, it appears to be likely that the ultimate Ni containing 

product of this reaction is identical to 7.4. In contrast to the reduction of [L
tBu

Ni
II
(OCPh3)] 

(7.2) to form 7.4, in which no intermediates assignable to a Ni
II
 oxo species have been 

observed, optimization of reaction and work-up conditions for the reductive deprotection of 

7.8 could lead to the isolation of a Ni
II
 oxo. 

7.2.6 Synthesis and Characterization of [L
tBu

M
II

(SCPh3)] (7.10, M = Fe; 7.11, M = Co, 

7.12, M = Zn) 

Addition of 1 equiv of KSCPh3 to [L
tBu

Fe
II
Cl]

46
, [L

tBu
Co

II
Cl2Li(THF)2]

23
, or 

[L
tBu

Fe
II
Cl]

61
 in benzene results in the formation of [L

tBu
M

II
(SCPh3)] (M = Fe, 7.10; M = Co, 

7.11, M = Zn, 7.12). Complex 7.10 can be isolated as orange needles from hexanes in 68% 
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yield, while complex 7.11 can be isolated as orange needles from hexanes in 53% yield, and 

complex 7.12 can be isolated as colorless needles in 66% yield (Scheme 7.13).  

Scheme 7.13 Synthesis of [L
tBu

M
II
(SCPh3)] (M = Fe, 7.10; M = Co, 7.11, M = Zn, 7.12) 

 

The formulation of Complexes 7.10 - 7.12 were confirmed by X-ray crystallography. 

The solid state molecular structures of 7.10 - 7.12 are shown in Figure 7.11. Complexes 7.10 

- 7.12 feature three coordinate M
II
 centers ligated by a tritylthiolate moiety. The M-S and C-

S bond lengths in 7.10 (Fe-S = 2.2597(8) and C-S = 1.874(3) Å), 7.11 (Co-S = 2.212(1) and 

C-S = 1.878(4) Å), 7.12 (Zn-S = 2.220(1) and C-S = 1.876(4) Å) are consistent with single 

bonds.
62–64

 The coordination geometry of these three complexes is nearly identical, and only 

deviate slightly from planarity ((L-Ni-L) = 352.9, 7.10; 350.8, 7.11; 354.5, 7.12) and the 

coordination geometry of the metal centers is best described as distorted Y-shaped. The 
1
H 

NMR spectra of 7.10 and 7.11 are typical for paramagnetic three coordinate [L
tBu

M
II
(X)] 

complexes. For example, 7.10 features one tert-butyl resonance at 36.34 ppm and two 

diastereotopic isopropyl-CH3 resonances at 7.62 and -14.25 ppm and 7.10 features one tert-

butyl resonance at 31.50 ppm and two diastereotopic isopropyl-CH3 resonances at -8.15 and 

-59.25 ppm.
33

 While the 
1
H NMR spectrum of 7.12 is diamagnetic, as expected for a d

10 

complex and features one tert-butyl resonance at 1.16 ppm and two diastereotopic isopropyl-

CH3 resonances at 1.25 and 1.46 ppm.
64–66
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Figure 7.11. ORTEP diagrams of [L
tBu

Fe
II
(SCPh3)]·C6H14 (7.10·C6H14, top left), 

[L
tBu

Co
II
(SCPh3)]·C6H14 (7.11·C6H14, top right), and [L

tBu
Zn

II
(SCPh3)]·C4H10O 

(7.12·C4H10O, bottom) with 50% probability ellipsoids. Hydrogen atoms and solvate 

molecules omitted for clarity. Selected bond lengths and angles: (7.10) Fe1-S1 2.2597(8) Å, 

C1-S1 1.874(3) Å, Fe1-N1 1.993(2) Å, Fe1-N2 2.003(2) Å, N1-Fe1-N2 98.01(9)°, N1-Fe1-

S1 136.29(7)°, N2-Fe1-S1 118.64(7)°, Fe1-S1-C1 116.50(9)°; (7.11) Co1-S1 2.212(1) Å, 

C1-S1 1.878(4) Å, Co1-N1 1.963(3) Å, Co1-N2 1.944(3) Å, N1-Co1-N2 99.3(1)°, N1-Co1-

S1 115.67(9)°, N2-Co1-S1 135.8(1)°, Co1-S1-C1 115.1(1)°; (7.12) Zn1-S1 2.220(1) Å, C1-
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S1 1.876(4) Å, Zn1-N1 1.969(3) Å, Zn1-N2 1.953(3) Å, N1-Zn1-N2 101.2(1)°, N1-Zn1-S1 

117.4(1)°, N2-Zn1-S1 135.9(1)°, Zn1-S1-C1 117.70(15)°.  

7.2.7 Synthesis of [K(18-crown-6)][L
tBu

Fe(X)(SCPh3)] (X = S
2-

, 7.13a; X = SH
-
, 7.13b) 

With [L
tBu

Fe
II
(SCPh3)] (7.10) in hand, I attempted to cleave the C-S bond in 7.10 using 

the reductive deprotection protocol. Accordingly, addition of two equiv of KC8 to a cold 

Et2O solution of 7.10 in the presence of 18-crown-6 resulted in the apparent cleavage of the 

C-S, as indicated by my observation of the formation of trityl anion in the reaction. However, 

a solid state molecular structure of crystalline material isolated from this reaction reveals 

what appears to be either a Fe
III

 "masked" sulfide tritylthiolate complex, [K(18-crown-

6)][L
tBu

Fe
III

(S)(SCPh3)] (7.13a) or a Fe
II
 hydrosulfide (SH

-
) tritylthiolate complex, [K(18-

crown-6)][L
tBu

Fe
II
(SH)(SCPh3)] (7.13b) (Scheme 7.14). A yield for this reaction was not 

determined as the crystallization method resulted in the deposition of a mixture of products. 

I was also unable to determine the other Fe containing product of this reaction.  

Scheme 7.14 Reduction of (7.10) to yield [K(18-crown-6)][L
tBu

Fe(X)(SCPh3)] (7.13) 

 

Unfortunately, the structural data for 7.13 contains too much disorder to afford any 

meaningful structural analysis beyond the tentative evaluation of the Fe ligand environment. 

Promisingly, the 
1
H NMR spectrum of crystals of this product in C6D6 appears to contain 

one major paramagnetic species (Figure 7.12). Containing one tert-butyl resonance at 12.50 
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ppm and two diastereotopic isopropyl-CH3 resonances at -2.35 and -19.28 ppm. Due to my 

uncertainty about the formulation of 7.13, I am unable to draw any firm conclusions about 

its mechanism of formation aside from the probable intermediacy of an iron sulfide complex, 

based on my observation of the formation of trityl anion as a byproduct of the reduction. 

 

Figure 7.12. 
1
H NMR spectrum of complex 7.13 in C6D6. (*) indicates the presence of 

hexane and (†) indicates the presence of Et2O.  

7.2.8 Synthesis of  [K(18-crown-6)][L
tBu

Co
I
(SH)] (7.14) 

Subsequent reduction of [L
tBu

Co
II
(SCPh3)] (7.11) with 2 equiv of KC8, in cold (-25 °C) 

Et2O, in the presence of 18-crown-6, results in the formation of [K(18-crown-

6)][L
tBu

Co
I
(SH)] (7.14) (Scheme 7.15). I should also note that trityl anion was observed as a 

byproduct in this reaction, indicating the intermediacy of a Co "masked" terminal sulfide in 

this reaction.
20–22

 

* 

† 
† 



 

 304 

Scheme 7.15 Reduction of (7.11) to yield [K(18-crown-6)][L
tBu

Co
I
(SH)] (7.14) 

 

Further optimization of this reaction is required for the clean isolation of 7.14, as 

significant decomposition occurred during the work up. Nevertheless a single crystal 

suitable for X-ray crystallography was obtained from the products of this reaction. The solid 

state molecular structure of 7.14 is shown in Figure 7.13. Complex 7.14 features a three 

coordinate Co
I
 center ligated by a hydrosulfide (SH

-
) moiety with a Co-S bond length of 

2.207(3) Å which is identical to the Co-S bond in the starting material, 7.11 (2.212(1) Å), 

and is consistent with a single bond.
63

 My observation that the Co-S interaction does not 

appear to have any multiple bonding character combined with the Co-S-K bond angle of 

136.4(1)°, which is more acute than the Ni-S-K angle for the closely related complex, 

[K(18-crown-6)][L
tBu

Ni
I
(SH)] (2.11, 142.3(1)°), supports my formulation of 7.14 as a Co

I
 

hydrosulfide complex. The coordination geometry of the Co center in 7.14 is planar ((L-

Co-L) = 359.9) and is best described as Y-shaped. Unfortunately, I was unable to record a 

1
H NMR spectrum of this material. That said, 7.14 does represents only the second 

structurally characterized Co hydrosulfide complex.
67

 It is possible that further optimization 

of the reaction and work-up conditions for this reaction could yield the desired Co "masked" 

terminal sulfide [L
tBu

Co
II
(S)]

-
. 
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Figure 7.13 ORTEP diagram of [K(18-crown-6)][L
tBu

Co
I
(SH)]·C4H10O (7.14·C4H10O) with 

50% probability ellipsoids. Hydrogen atoms and Et2O solvate molecule omitted for clarity. 

Selected bond lengths and angles: Co1-S1 2.207(3) Å, Co1-N1 1.916(6) Å, Co1-N2 

1.929(6) Å, N1-Co1-N2 97.4(3)°, N1-Co1-S1 138.8(2)°, N2-Co1-S1 123.7(2)°. 

 

7.2.9 Synthesis of [K(18-crown-6)][L
tBu

Ni
I
(N,O:κ

2
-NHTs)] (7.15)  

In the final portions of this chapter, I will focus on two attempts to extend the reductive 

deprotection protocol to the synthesis of Ni imido (NR
2-

) complexes. The tosyl (S(O)2C6H4-

p-CH3) group has been shown to be versatile protecting group for amines in organic 

synthesis.
68

 Moreover, in 2008, Ankner and Hilmersson reported a reductive protocol for the 

facile deprotection of tosylamides via S-N bond cleavage (scheme 7.16).
69

 Given this 

precedent, I pursued the synthesis of a nickel tosylamide complex in order to determine if 

reductive deprotection of the tosyl group could yield an imido complex. 
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Scheme 7.16 Reductive cleavage of the tosylamide S-N bond 

 

Accordingly, I synthesized the Ni
II
 tosylamide  (NHTs

-
 = [NHS(O)2C6H4-p-CH3]

-
) 

complex via the reaction of 1 equiv of K[NHTs] with [L
tBu

Ni
II
Cl]

23
 in Et2O/THF resulting in 

the formation of [L
tBu

Ni
II
(N,O:κ

2
-NHTs)] (7.15). Complex 7.15 can be isolated as purple 

plates in 32% yield (Scheme 7.17). 

Scheme 7.17 Synthesis of [L
tBu

Ni
II
(N,O:κ

2
-NHTs)] (7.15) 

 

Complex 7.15 was characterized by X-ray crystallography
 
and 

1
H NMR spectroscopy. 

The solid state molecular structure of 7.15 is shown in Figure 7.14. Complex 7.15 features a 

square planar ((L-Ni-L) = 360.5) Ni
II
 center ligated in a bidentate 

2
-N,O fashion by the 

NHTs moiety with Ni-N and Ni-O bond lengths of 1.967(2) and 1.989(1) Å, respectively, 

which are consistent with a single bonds.
31

 The 
1
H NMR spectrum of 7.15 in C6D6 is 

consistent with a diamagnetic, square planar Ni
II
 β-diketiminate complex. For example, 7.15 

features one tert-butyl resonance at 1.05 ppm and two diastereotopic isopropyl-CH3 

resonances at 2.64 and 1.62 ppm.
23,31 
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Figure 7.14. ORTEP diagram of [L
tBu

Ni
II
(N,O:κ

2
-NHTs)] (7.15) with 50% probability 

ellipsoids. Hydrogen atoms omitted for clarity. Selected bond lengths and angles: Ni1-N1 

1.967(2) Å, Ni1-O1 1.989(1) Å, Ni1-N2 1.875(2) Å, Ni1-N3 1.878(2) Å, N1-S1 1.550(2) Å, 

O1-S1 1.501(2) Å, N2-Ni1-N3 96.71(7)°, N1-Ni1-N2 98.06(7)°, N3-Ni1-O1 94.92(6)°, N1-

Ni1-O1 70.79(6)°. 

With complex 7.15 in hand, I attempted to apply the reductive deprotection protocol in 

order to cleave the N-S bond. Accordingly, addition of two equiv of KC8 to a solution of 

7.15 in cold (-25 °C) THF, in the presence of 18-crown-6, results in a rapid color change of 

the solution from purple to dark red. Workup of the reaction products resulted in the 

isolation of [K(18-crown-6)][L
tBu

Ni
I
(NHTs)] (7.16) as dark red plates in 38% yield (Scheme 

7.18).  
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Scheme 7.18 Synthesis of [K(18-crown-6)][L
tBu

Ni
I
(NHTs)] (7.16) 

 

The formulation of complex 7.16 was confirmed by X-ray crystallography. The solid 

state molecular structure of 7.16 is shown in Figure 7.15. Complex 7.16 features a three 

coordinate Ni
I
 center ligated by the NHTs moiety with Ni-N bond length 1.947(2) Å which 

is only slightly shorter than that in the starting material, complex 7.15. While the β-

diketiminate Ni-N bonds are elongated from 1.875(2) and 1.878(2) Å to 1.884(2) and 

1.929(2) Å consistent with increased iconic radius of Ni(I) relative to Ni(II). The 
1
H NMR 

spectrum of 7.16 in C6D6 is consistent with a Ni
I
 β-diketiminate complex, for example, 7.16 

features one broad tert-butyl resonance at -1.06 ppm.
31,33,35,36

 The change in coordination 

geometry relative to 7.15 is attributable to the coordination of the sulfonyl O-atoms to the 

[K(18-crown-6)]
+
 countercation and the increased electron density at the Ni center.

 
This 

result demonstrates that the NHTs
-
 ligand is not suitable for reductive deprotection as the Ni 

center is reduced instead of the N-S bond, indicating that the N-S bond in this ligand is too 

strong. 
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Figure 7.15. ORTEP diagram of [K(18-crown-6)][L
tBu

Ni
I
(NHTs)] (7.16) with 50% 

probability ellipsoids. Hydrogen atoms omitted for clarity. Selected bond lengths and angles: 

Ni1-N1 1.947(2) Å, Ni1-N2 1.884(2) Å, Ni1-N3 1.929(2) Å, N1-S1 1.560(2) Å, N2-Ni1-N3 

98.32(9)°, N1-Ni1-N2 149.5(1)°, N3-Ni1-N1 111.3(1)°. 
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7.2.10 Synthesis and Reduction of [{L
tBu

(PhNCO)}Ni
II

(N,O:
2
-PhNC(O)OCPh3)] (7.17) 

Addition of two equiv of phenyl isocyanate (PhNCO) to a C6D6 solution of 

[L
tBu

Ni
II
(OCPh3)] (7.2) results in the formation of [{L

tBu
(PhNCO)}Ni

II
(N,O:

2
-

PhNC(O)OCPh3)] (7.17). Complex 7.17 can be isolated as brown plates in 57% yield 

(Scheme 7.19).  

Scheme 7.19 Synthesis of [{L
tBu

(PhNCO)}Ni
II
(N,O:

2
-PhNC(O)OCPh3)] (7.17) 

 

The formulation of complex 7.17 was confirmed by X-ray crystallography
 
and its solid 

state molecular structure is shown in Figure 7.16. Complex 7.17 features a 
2
-carbamate, 

[
2
-N,O-PhNC(O)OCPh3]

-
, ligand which is the result of insertion of PhNCO into the Ni-O 

bond. Insertion of isocyanate into metal alkoxide bonds has been previously reported.  For 

example, Tam and co-workers demonstrated that a lead alkoxide complex, [L
Me

Pb(O
i
Pr)], 

reacts with PhNCO to yield [L
tBu

Pb{(Ph)NC(O)O
i
Pr}].

70
 An additional equivalent of 

PhNCO has also been incorporated into the product via a nucleophilic attack on the 

electrophilic PhNCO carbon atom by the β-diketiminate γ-carbon. While, insertion of 

PhNCO into the Ni-O bond was the intended outcome for this reaction, the incorporation of 

the second equivalent was unexpected. Nucleophilic bond forming reactions involving the 

-diketiminate γ-carbon have been reported previously for CS2, O2, NO, OCCPh2, nitriles, 
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and diazoacetate.
29,71–75

 However, to my knowledge, this is the first example involving 

PhNCO.   

 

Figure 7.16. ORTEP diagram of [{L
tBu

(PhNCO)}Ni
II
(N,O:

2
-PhNC(O)OCPh3)] (7.17) with 

50% probability ellipsoids. Hydrogen atoms omitted for clarity. Selected bond lengths and 

angles: Ni1-N1 1.995(4) Å, Ni1-O1 2.149(4) Å, Ni1-N3 2.023(4) Å, Ni1-N4 2.015(4) Å, 

Ni1-O3 1.989(1) Å, N1-C1 1.336(7) Å, C1-O1 1.252(6) Å, C1-O2 1.348(6) Å, O3-C2 

1.295(7) Å, C2-C51 1.65(1) Å,  N1-C1-O1 117.0(5)°, N1-C1-O2 120.0(5)°. 

Reductive deprotection of this complex is intended to result in the cleavage of the O-

CPh3 bond yielding [CPh3]
-
 and [PhNCO2]

2-
. It is hypothesized that the [PhNCO2]

2-
 moiety 

could then undergo spontaneous release of CO2 to yield the desired imido ([NPh]
2-

) ligand 

(Scheme 7.20). Subsequent addition of two equiv of KC8 to a solution of 7.17 in cold (-

25 °C) Et2O/THF, in the presence of 18-crown-6, results in a rapid color change of the 

solution from brown to dark red. While I have been unable to characterize the product of this 
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reaction, I do not observe the formation of the trityl anion in this reaction, leading me to 

conclude that the reduction of 7.17 did not result in the desired bond cleavage. Curiously, 

the product of this reaction is diamagnetic, indicating the presence of either Ni
II
 or Ni

0
 

(Figure 7.17).  

Scheme 7.20 Proposed reduction of 7.17 

 



 

 313 

 

Figure 7.17. 
1
H NMR spectrum of the product of the reduction of 

[{L
tBu

(PhNCO)}Ni
II
(N,O:

2
-PhNC(O)OCPh3)] (7.17) with KC8 in the presence of 18-

crown-6 in THF-d8. 

7.3 Summary  

The results outlined in Chapter 7 demonstrate the challenges related to the application of 

the reductive deprotection protocol for the synthesis of late transition metal complexes with 

terminal chalcogenide and imido. First, it appears that the O-C bond in the tritylalkoxide 

(OCPh3
-
) ligand is too strong to be preferentially reduced in complexes 7.1, 7.2, 7.5, and 7.6 

based on the formation of metal centered reduction products in these reactions, and 

precluding the formation of the desired "M
II
=O" products. While, in the case of 

[L
tBu

Ni
II
(OCPh3)] (7.2), reduction leads to the isolation of [K(18-crown-6)][L

tBu
Ni

I
(OH)] 

(7.4), it is not clear if this reaction proceeds through a Ni oxo intermediate. In contrast, 

reductive deprotection of the Ni pthalimide N-oxide complex,  [L
tBu

Ni
II
(O,O:

2
-PINO)] 
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(7.8), appears to be more promising, due my the observation of [K(L)][PIN] and 

[K(L)][L
tBu

Ni
I
(OH)] (L = 18-crown-6, 2,2,2-cryptand) as the products of this reaction. 

Promisingly, I also observed a transient intermediate by 
1
H NMR spectroscopy that I have 

tentatively identified as a Ni oxo species. The reductive deprotection of Fe and Co 

tritylthiolates, also presented some unexpected challenges. While there is preliminary 

evidence that reductive cleavage of the tritylthiolate C-S bonds in [L
tBu

M
II
(SCPh3)] (7.10, 

7.11) was successful. The final products isolated from these reactions were not the 

anticipated "masked" terminal sulfides. Further work is needed in order to determine what is 

occurring in these reactions. Finally, attempts to access Ni imidos via the reductive 

deprotection of tosylamide, [L
tBu

Ni
II
(N,O:

2
-NHTs)] (7.15),  and carbamate, 

[{L
tBu

(PhNCO)}Ni
II
(N,O:

2
-PhNC(O)OCPh3)] (7.17), complexes resulted in reduction of 

the Ni center and formation of an unidentified diamagnetic product, respectively. While 

some of these approaches appear to show promise, this work demonstrates that the success 

of these reactions is dictated by a number of different factors, of which, relative bond 

strengths, metal/bond redox potentials, and the steric/electronic properties of the supporting 

β-diketiminate ligand appear to be the most important. 

7.4 Experimental Procedures 

7.4.1 General Methods 

All reactions and subsequent manipulations were performed under anaerobic and 

anhydrous conditions under an atmosphere of nitrogen.  Hexanes, diethyl ether (Et2O), 

toluene, and tetrahydrofuran (THF) were dried using a Vacuum Atmospheres DRI-SOLV 

Solvent Purification system and stored over 3Å sieves for 24 h prior to use. Benzene-d6, 

tetrahydrofuran-d8, toluene-d8, and C8H18 (isooctane) were dried over 3Å molecular sieves 
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for 24 h prior to use. [L
Me

Ni
II
Cl],

32
 [L

tBu
Ni

II
Cl],

23
 [L

Me
Fe

II
(N(TMS)2)],

48
 [L

tBu
Fe

II
Cl],

46
 

[L
tBu

Co
II
Cl2Li(THF)2],

23
  KSCPh3,

76
 and KOCPh3

77
 were synthesized according to the 

previously reported procedures.  All other reagents were purchased from commercial 

suppliers and used as received. 

 
1
H and 

13
C{

1
H} NMR spectra and Evans’ method determinations

34
 were recorded on 

a Agilent Technologies 400-MR DD2 400 MHz spectrometer or a Varian UNITY INOVA 

500 MHz spectrometer. 
1
H and 

13
C{

1
H} NMR spectra were referenced to external SiMe4 

using the residual protio solvent peaks as internal standards.
78,79

 IR spectra were recorded on 

a Nicolet 6700 FT-IR spectrometer with a NXR FT Raman Module.  Elemental analyses 

were performed by the Micro-Mass Facility at the University of California, Berkeley. 

7.4.2 Synthesis of [L
Me

Ni
II

(OCPh3)] (7.1) 

To a dark blue, stirring suspension of [L
Me

Ni
II
Cl] (84.4 mg, 0.165 mmol) in C6H6 (1.5 

mL) was added solid KOCPh3 (49.2 mg, 0.165 mmol).  After addition, the color of the 

solution gradually transformed from dark blue to a dichroic solution which is turquoise to 

reflected light and maroon to transmitted light concomitant with the deposition of a fine 

white precipitate (KCl). This solution was allowed to stir for 15 min, whereupon the reaction 

mixture was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm).  The 

volatiles were removed from the filtrate in vacuo, and the turquoise residue was extracted 

into hexanes (2 mL) and filtered through a Celite column supported on glass wool (0.5 cm × 

2 cm) yielding a turquoise filtrate. The volume of this solution was reduced in vacuo to 1 

mL. Storage of the solution at -25 °C for 24 h resulted in the deposition of dark aqua blocks 

of [L
Me

Ni
II
(OCPh3)], which were isolated by decanting off the supernatnat (87 mg, 72%). 

Anal. Calcd for: C48H56N2NiO: C, 78.37; H, 7.67; N, 3.81.  Found: C, 78.20; H, 7.56; N, 
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3.79.  
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 43.50 (s, 4H, Ar-mH, dipp), 33.83 (s, 

4H, CH(CH3)2), 9.33  (d, 6H, Ar-mH, CPh3), 9.16 (s, 12H, CH(CH3)2), 6.69 (s, 12H, 

CH(CH3)2), 6.27 (s, 6H, Ar-oH, CPh3), 5.56 (t, 
3
JHH, = 7.0 Hz, 3H, Ar-pH, CPh3), -17.55 (s, 

2H, Ar-pH, dipp), -69.62 (s, 6H, C(CH3)), -188.42 (s, 1H, γ-H) ppm. Evans’ method (C6D6, 

400 MHz, 25 °C, 0.031 M): 3.09 B.M. Crystallographic details: Triclinic, P-1, a = 

11.942(2), b = 12.785(2), c = 14.589(2),  = 94.222(5),  = 90.744(5),  = 115.716(5), V = 

1998.7(5) g/cm
3
, Z = 2.   

7.4.3 Synthesis of [L
tBu

Ni
II

(OCPh3)] (7.2) 

To a dark green, stirring suspension of [L
tBu

Ni
II
Cl] (130 mg, 0.218 mmol) in C6H6 (3 

mL) was added solid KOCPh3 (65.1 mg, 0.218 mmol). After addition, the color of the 

solution gradually transformed from dark green to bright green, concomitant with the 

deposition of a fine white precipitate (KCl). This solution was allowed to stir for 2 hours, 

whereupon the reaction mixture was filtered through a Celite column supported on glass 

wool (0.5 cm × 2 cm). Then, volatiles were removed from the filtrate in vacuo, and the 

resulting green residue was extracted into pentane (3 mL) and filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm) yielding a bright green filtrate. Volatiles 

were removed from the filtrate in vacuo to yield [L
tBu

Ni
II
(OCPh3)] as a bright green powder 

(126 mg, 70%). 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 47.83 (s, 4H, Ar-mH, dipp), 

37.69 (s, 4H, CH(CH3)2), 9.50  (d, 
3
JHH, = 5.1 Hz, 6H, Ar-mH, CPh3), 8.99 (s, 12H, 

CH(CH3)2), 7.94 (s, 12H, CH(CH3)2), 4.63 (t, 
3
JHH, = 7.1 Hz, 3H, Ar-pH, CPh3), 2.31 (s, 

18H, C(CH3)3), 1.71 (s, 6H, Ar-oH, CPh3), -25.08 (s, 2H, Ar-pH, dipp), -210.03 (s, 1H, γ-

H) ppm. Evans’ method (C6D6, 400 MHz, 25 °C, 0.034 M): 3.08 B.M. 
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7.4.4 Synthesis of [K(18-crown-6)(THF)2][L
Me

Ni
I
(OCPh3)] (7.3) 

To a deep aqua, cold (-25 °C), stirring solution of [L
Me

Ni
II
(OCPh3)] (7.1) (42 mg, 0.0571 

mmol) and 18-crown-6 (15.1 mg, 0.0571 mmol), in Et2O (2 mL), was added KC8 (7.8 mg, 

0.0577 mmol).  This resulted in immediate formation of a dark red-brown mixture. This 

mixture was allowed to warm to room temperature and stir overnight. After stirring 

overnight, a red powder had precipitated out of the reaction mixture. The pale gold 

supernatant was decanted and the volatiles were removed from the remaining red powder in 

vacuo. The resulting dark red powder was then extracted into THF (1 mL) and filtered 

through a Celite column supported on glass wool (0.5 cm × 2 cm), which afforded a black 

plug (C8) and a dark red filtrate. This filtrate was then concentrated to 0.25 mL in vacuo, 

layered with hexanes (1 mL), and stored at -25 °C for 24 h.  This resulted in the deposition 

of dark red needles, which were isolated by decanting off the supernatant (55.4 mg, 82% 

yield). Anal. Calcd for C68H96KN2NiO9:  C, 69.02; H, 8.18; N, 2.37.  Found: C, 68.99; H, 

8.02; N, 2.30.  
1
H NMR (400 MHz, 25 °C, THF-d8): δ = 23.15 (br s, Ar-mH), 16.97 (br s, 

CH(CH3)2), 6.82 (br s, CH(CH3)2), 6.72 (br s, CH(CH3)2), 3.70 (br s, 18-crown-6), -24.31 

(br s, Ar-pH), -41.13 (br s, C(CH3)) ppm. Crystallographic details: Triclinic, P-1, a = 

11.995(2), b = 12.785(3), c = 24.637(5),  = 84.129(3),  = 89.750(3),  = 64.814(3), V = 

3397.6(1) g/cm
3
, Z = 2.    

7.4.5 Synthesis of [K(18-crown-6)][L
tBu

Ni
I
(OH)] (7.4) 

To a bright green, cold (-25 °C), stirring solution of [L
tBu

Ni
II
(OCPh3)] (7.2) (70 mg, 

0.0911 mmol) in THF (2 mL), was added KC8 (24.6 mg, 0.182 mmol). This resulted in the 

immediate formation of a dark red-brown mixture. This mixture was allowed to stir for 3 

min, after which a cold solution of 18-crown-6 (44.2 mg, 0.182 mmol) in THF (1 mL) was 
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added drop wise. No color change is observed upon addition of 18-crown-6, the mixture was 

then allowed to stir for another 5 min. The reaction mixture was then stored at - 25 °C for 30 

min, after which it was filtered through a Celite column supported on glass wool (0.5 cm × 2 

cm), which afforded a black plug (C8) and a deep red-brown filtrate. The volatiles were 

removed from the filtrate in vacuo to produce a dark red-brown residue. This residue was 

extracted into Et2O (2 mL) and the resulting solution was filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm), which afforded a deep red-brown filtrate. This 

solution was then concentrated in vacuo to 1 mL and stored at -25 °C for 24 h. This resulted 

in the deposition of a mixture of colorless (18-crown-6) and red-orange plates. The red-

orange plates (26 mg) were isolated by washing the material with small (0.5 mL × 2) 

portions of Et2O to remove the 18-crown-6. A second crop of crystals was isolated by 

layering of the Et2O supernatant with pentane (2 mL) followed by storage at -25 °C for 48 h. 

This material was isolated by decanting off the supernatant (29 mg, total yield: 55 mg, 69% 

yield).  
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 19.73 (br s, Ar-mH), 12.64 (br s, 

CH(CH3)2), 4.03 (br s, CH(CH3)2), 3.55 (br s, CH(CH3)2), 2.37 (br s, 18-crown-6), -1.48 (br 

s, C(CH3)3), -11.40 (br s, Ar-pH). ppm. Crystallographic details: Triclinic, P-1, a = 

12.314(5), b = 13.252(5), c = 18.671(7),  = 69.929(8),  = 87.468(8),  = 69.247(8), V = 

2665.7(2) g/cm
3
, Z = 2.  

7.4.6 Synthesis of [L
Me

Fe
II

(OCPh3)] (7.5)  

To an orange, stirring solution of [L
Me

Fe
II
N(TMS)2]

48
 (100 mg, 0.158 mmol) in Et2O (3 

mL) was added a solution of HOCPh3 (41.1 mg, 0.158 mmol) in Et2O (1 mL). After 

addition, the color of the solution gradually transformed from orange to yellow. This 

solution was allowed to stir for 45 min, whereupon the reaction mixture was filtered through 
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a Celite column supported on glass wool (0.5 cm × 2 cm) to give a yellow filtrate. This 

solution was then concentrated in vacuo to 0.25 mL, layered with hexane (2 mL), and stored 

at - 25 °C for 72 h resulting in the deposition of yellow needles which were isolated by 

decanting off the supernatant (93.4 mg, 80% yield). 
1
H NMR (400 MHz, 25 °C, benzene-

d6): δ = 87.10 (s, 1H, γ-H), 71.88 (s, 4H, CH(CH3)2), 15.25 (c), 12.92 (s, 3H, Ar-pH, CPh3), 

-12.40 (s, 4H, Ar-mH, dipp), -15.39 (s, 12H, CH(CH3)2), -61.59 (s, 2H, Ar-pH, dipp), -90.19 

(s, 12H, CH(CH3)2) ppm. Crystallographic details: Triclinic, P-1, a = 11.941(2), b = 

12.789(2), c = 14.543(3),  = 94.025(4),  = 91.325(4),  =  115.050(4), V = 2003.7(6) 

g/cm
3
, Z = 2. 

7.4.7 Synthesis of [L
tBu

Fe
II

(OCPh3)(NCCH3)] (7.6)  

To a cold (-25 °C), stirring suspension of KOCPh3 (36.4 mg, 0.122 mmol) in Et2O (2 

mL) was added a cold bright red solution of [L
tBu

Fe
II
Cl]

46
 (72.3 mg, 0.122 mmol) in Et2O (2 

mL). After addition, the color of the solution quickly changed from red to bright orange. 

This solution was allowed to stir for 1h, during which a white precipitate (KCl) crashes out 

of the reaction mixture. The mixture was then filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm) to give an off-white plug and a bright orange filtrate. This 

solution was then concentrated in vacuo to 1 mL and transferred to a 5 mL vial. This vial 

was then placed into a 20 mL vial containing hexamethyldisiloxide (HMDSO, 3 mL) this 

two vial system was then sealed and stored at -25 °C for 72 h resulting in the deposition of 

bright orange plates which were isolated by decanting off the supernatant (23 mg). A second 

crop of crystals was obtained by adding one drop of acetonitrile to the Et2O supernatant 

followed by storage at -25 °C for 24 h (16 mg; total yield: 39 mg, 39%)  
1
H NMR (400 

MHz, 25 °C, benzene-d6): δ = 45.49 (s, 18H, C(CH3)3), 21.04 (s, 6H, Ar-H, CPh3), 15.23 (s, 
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6H, Ar-H, CPh3), 4.27 (s, 4H, Ar-mH, dipp), 0.55 (s, 3H, NCCH3), -13.29 (s, 4H, 

CH(CH3)2), -27.64 (s, 12H, CH(CH3)2), -82.96 (s, 2H, Ar-pH, dipp), -121.31 (s, 12H, 

CH(CH3)2) ppm. Crystallographic details: Monoclinic, C2/c, a = 9.803(3), b = 40.09(1), c = 

13.175(5),  = 90,  = 110.150(4),  =  90, V = 4860(3) g/cm
3
, Z = 4. 

7.4.8 Synthesis of [K(18-crown-6)(THF)2][L
Me

Fe
I
(OCPh3)] (7.7)  

To an orange, stirring solution of [L
Me

Fe
II
(OCPh3)] (40 mg, 0.0546 mmol) in THF (2 

mL) was added KC8 (14.8 mg, 0.1091 mmol). After addition, the color of the solution 

quickly transformed to dark green, then 18-crown-6 (26.5 mg, 0.1091 mmol) was added, no 

color change was observed upon this addition. This solution was allowed to stir for 15 min, 

whereupon the reaction mixture was filtered through a Celite column supported on glass 

wool (0.5 cm × 2 cm) to give a black plug and a deep green filtrate. The volume of the 

filtrate was reduced in vacuo to 0.5 mL and transferred to a 5 mL vial. This vial was then 

placed inside a 20 mL vial containing 3 mL of pentane. This two vial system was then 

sealed and stored at - 25 °C for 24 h resulting in the deposition of green blocks of [K(18-

crown-6)(THF)2][L
Me

Fe
I
(OCPh3)] which were isolated by decanting off the supernatant (12 

mg, 19% yield). Note: prolonged storage of this species in solution, results in reformation of 

the starting material via oxidation.  
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 13.43 (br 

s), 11.32 (br s), 9.62 (br s), 8.03 (s), 3.57 (s, THF), 3.30 (s), 1.47 (s, THF), -4.23 (br s), -9.73 

(br s, 12H, CH(CH3)2), -65.53 (br s, 12H, CH(CH3)2) ppm. Crystallographic details: 

Monoclinic, P21/n, a = 17.093(1), b = 19.187(2), c = 20.213(2),  = 90,  = 96.674(6),  = 

90, V = 6584(1) g/cm
3
, Z = 4. 
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7.4.9 Synthesis of K[PINO]  

The preparation of K[PINO] was adapted from a previously reported method which used 

KOH to deprotonate PINOH.
80

 To a colorless stirring solution of hydroxypthalimide 

(PINOH) (92 mg, 0.564 mmol) in toluene (5 mL), was added a solution of potassium 

bistrimethylsilylamide (KN(TMS)2, 118 mg, 0.592 mmol) in toluene (1 mL) drop wise. This 

resulted in immediate formation of a dark maroon mixture. This mixture was allowed to stir 

for 2 hr. After stirring for 2 h, the stir bar was removed and the volatiles were removed in 

vacuo to provide a maroon residue. This residue was washed with THF (1 mL × 2) and 

hexanes (1 mL × 2) and the washings were discarded. K[PINO] was isolated as a dark red 

powder (96 mg, 85% yield). 
1
H NMR (400 MHz, 25 °C, DMSO-d6): δ = 7.38 (doublet of 

doublets, 2H, Ar-H), 7.23 (doublet of doublets, 2H, Ar-H) ppm. 

7.4.10 Synthesis of [L
tBu

Ni
II

(O,O:κ
2
-PINO)] (7.8) 

To a dark green, stirring solution of [L
tBu

Ni
II
Cl] (57 mg, 0.956 mmol) in THF (2 mL) 

was added solid K[PINO] (19.2 mg, 0.0956 mmol). After addition, the color of the solution 

gradually transformed from dark green to dark red-purple, concomitant with the deposition 

of a fine white precipitate (KCl). This solution was allowed to stir for 2 hours, whereupon 

the reaction mixture was filtered through a Celite column supported on glass wool (0.5 cm × 

2 cm) to give a deep red-purple filtrate. Volatiles were removed from the filtrate in vacuo, 

and the resulting red-purple residue was extracted into toluene (2 mL) and filtered through a 

Celite column supported on glass wool (0.5 cm × 2 cm) yielding a red-purple filtrate. This 

solution was the concentrated in vacuo to 1 mL, layered with pentane (3 mL), and stored at - 

25 °C for 24 h resulting in the deposition of red-purple plates which were isolated by 

decanting off the supernatant (36 mg). A second crop of crystals was obtained by removing 
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the volitles from the supernatant in vacuo followed by extraction into toluene (0.5 mL), 

layering with pentane (2 mL), and storage at -25 °C for 72 h. This crop was isolated by 

decanting off the supernatant (27 mg, total: 63 mg, 91% yield). 
1
H NMR (400 MHz, 25 °C, 

benzene-d6): δ = 38.98 (s, 4H, Ar-mH, dipp), 29.11 (s, 4H, CH(CH3)2), 8.10 (s, 12H, 

CH(CH3)2), 6.94 (s, 12H, CH(CH3)2), 5.03 (s, 2H, PINO, Ar-H), 4.15 (s, 2H, PINO, Ar-H), 

1.88 (s, 18H, C(CH3)3), -35.01 (s, 2H, Ar-pH, dipp) ppm. Crystallographic details: 

Monoclinic, P21/n, a = 10.422(9), b = 14.941(1), c = 25.023(2),  = 90,  = 95.85(2),  = 90, 

V = 3876(5) g/cm
3
, Z = 4. 

7.4.11 Reaction of [LtBuNiII(O,O:κ2-PINO)] (7.8) with KC8 in the presence of 18-

crown-6 

To a dark red, cold (-25 °C), stirring solution of [L
tBu

Ni
II
(O,O:κ

2
-PINO)] (7.8) (36 mg, 

0.0498 mmol) and 18-crown-6 (13.2 mg, 0.0498 mmol) in THF/Et2O (1:2 mL), was added 

KC8 (16.8 mg, 0.125 mmol). This resulted in the rapid formation of a dark red-brown 

mixture. This mixture was allowed to stir for 30 min. During this time some dark red 

precipitate forms. The reaction mixture was then filtered through a Celite column supported 

on glass wool (0.5 cm × 2 cm), which afforded a dark plug and a deep red-brown filtrate. 

The plug was washed with pyridine to give a pale brown-orange solution which I have 

tentatively identified as [K(18-crown-6)][PIN]. The volatiles were removed from the main 

filtrate solution in vacuo to produce a dark red-brown residue. This residue was extracted 

into Et2O (2 mL) and the resulting solution was filtered through a Celite column supported 

on glass wool (0.5 cm × 2 cm), which afforded a deep red-brown filtrate. The volatiles were 

removed from this solution in vacuo to yield a red-brown residue. This residue was then 

extracted into toluene (1 mL), storage of this solution at -25 °C for 2 m resulted in the 
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deposition of red-orange plates. The red-orange plates were identified as [K(18-crown-

6)][L
tBu

Ni
I
(OH)] (7.4) by X-ray crystallography and 

1
H NMR spectroscopy. 

1
H NMR (400 

MHz, 25 °C, benzene-d6): δ = 19.65 (br s), 12.81 (br s), 3.58 (br s), 3.08 (br s), 2.99 (br s), 

2.36 (br s), 0.91 (br s), -1.48 (br s) ppm. Crystallographic details: Monoclinic, C2/c, a = 

40.65(1), b = 20.531(7), c = 14.677(4),  = 90,  = 98.74(1),  = 90, V = 12108(7) g/cm
3
, Z 

= 8. 

7.4.12 Reaction of [L
tBu

N
iII

(O,O:κ
2
-PINO)] (7.8) with KC8 in the presence of 2,2,2-

cryptand 

To a dark red, cold (-25 °C), stirring solution of [L
tBu

Ni
II
(O,O:κ

2
-PINO)] (7.8) (27 mg, 

0.0373 mmol) and 2,2,2-cryptand (14 mg, 0.0373 mmol) in THF/Et2O (1:1 mL), was added 

KC8 (10.1 mg, 0.0747 mmol). This resulted in immediate formation of a dark red-brown 

mixture. This mixture was allowed to stir for 30 min. The reaction mixture was then filtered 

through a Celite column supported on glass wool (0.5 cm × 2 cm), which afforded a black 

plug (C8) and a red-brown filtrate. The volatiles were removed from the filtrate in vacuo to 

produce a dark red-brown residue. A 
1
H NMR spectrum of a reaction aliquot in C6D6 reveals 

the presence of both diamagnetic and a paramagnetic products.
 1

H NMR (400 MHz, 25 °C, 

benzene-d6): δ = 7.05-6.96 (m, diamagnetic product), 4.60 (s, diamagnetic product), 3.98 

(sept, diamagnetic product), 3.66 (s, 2,2,2-cryptand), 3.51 (t, 2,2,2-cryptand), 2.91(br s, 

paramagnetic product), 2.53 (t, 2,2,2-cryptand), 2.02 (br s, paramagnetic product), 1.83 (s, 

diamagnetic product), 1.65 (d, diamagnetic product), 1.59 (d, diamagnetic product), -1.43 

(br s, paramagnetic product) ppm.  This residue was extracted into Et2O (1 mL), filtered 

through a Celite column supported on glass wool (0.5 cm × 2 cm), and transferred into a 5 

mL vial. This vial was then placed inside of a 20 mL containing 3 mL of toluene. The two 
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vial system was then sealed and stored at -25 °C for 24 h resulting in the deposition of 

brown-orange plates of [K(2,2,2-cryptand)][PIN] which were isolated by decanting off the 

supernatant. Crystallographic details: Monoclinic, C2/c, a = 12.598(2), b = 16.300(2), c = 

14.378(2),  = 90,  = 97.181(7),  = 90, V = 2929.3(7) g/cm
3
, Z = 4. The supernatant of the 

crystallization mixture appears to contain a Ni
I
 containing product which has been 

tentatively assigned as [K(2,2,2-cryptand)][L
tBu

Ni
I
(OH)]. 

1
H NMR (400 MHz, 25 °C, 

benzene-d6, all [K(2,2,2-cryptand)][L
tBu

Ni
I
(OH)] assignments are tentative): δ = 21.05 (br s, 

[K(2,2,2-cryptand)][L
tBu

Ni
I
(OH)]), 13.19 (br s, [K(2,2,2-cryptand)][L

tBu
Ni

I
(OH)]), 3.93 (br 

s, [K(2,2,2-cryptand)][L
tBu

Ni
I
(OH)]), 3.66 (s, 2,2,2-cryptand), 3.50 (s, 2,2,2-cryptand), 2.53 

(s, 2,2,2-cryptand), 2.23 (br s, [K(2,2,2-cryptand)][L
tBu

Ni
I
(OH)]), 2.02 (br s, [K(2,2,2-

cryptand)][L
tBu

Ni
I
(OH)]), 1.43 (br s, [K(2,2,2-cryptand)][L

tBu
Ni

I
(OH)]), -1.46 (br s, 

[K(2,2,2-cryptand)][L
tBu

Ni
I
(OH)]) ppm.  

7.4.13 Synthesis of [L
tBu

Fe
II

(SCPh3)] (7.10)  

To a bright red, stirring solution of [L
tBu

Fe
II
Cl] (63 mg, 0.106 mmol) in C6H6 (3 mL) 

was added solid KSCPh3 (33.4 mg, 0.218 mmol). After addition, the color of the solution 

quickly transformed to red-orange, concomitant with the deposition of a fine white 

precipitate (KCl). This solution was allowed to stir for 15 min, whereupon the reaction 

mixture was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm).  

Volatiles were removed from the filtrate in vacuo, and the orange residue was extracted into 

hexanes (2 mL) and filtered through a Celite column supported on glass wool (0.5 cm × 2 

cm) yielding a red-orange filtrate. The volume of this filtrate was reduced to 0.5 mL in 

vacuo and the resulting solution was stored at - 25 °C for 48 h resulting in the deposition of 

orange needles which were isolated by decanting off the supernatant (60 mg, 68% yield). 
1
H 
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NMR (400 MHz, 25 °C, benzene-d6): δ = 71.31 (s, 6H, Ar-H, CPh3), 52.17 (s, 1H, γ-H), 

36.34  (s, 18H, C(CH3)3), 15.21 (s, 6H, Ar-H, CPh3), 12.15 (s, Ar-H, CPh3 or Ar-mH, dipp), 

9.50 (s, Ar-H, CPh3 or Ar-mH, dipp), 7.62 (s, 12H, CH(CH3)2), -14.25 (s, 12H, CH(CH3)2), 

-67.48 (s), -79.78 (s, 2H, Ar-pH, dipp), -80.34 (s, 4H, CH(CH3)2) ppm. Crystallographic 

details: Triclinic, P-1, a = 12.070(1), b = 12.194(1), c = 18.365(2),  = 95.465(2),  = 

104.714(2),  = 108.568(2), V = 2432.1(4) g/cm
3
, Z = 2. 

7.4.14 Synthesis of [L
tBu

Co
II

(SCPh3)] (7.11)  

To a dark green, stirring solution of [L
tBu

Co
II
Cl2Li(THF)2] (65 mg, 0.103 mmol) in C6H6 

(3 mL) was added solid KSCPh3 (32.6 mg, 0.103 mmol). After addition, the color of the 

solution quickly transformed to red-orange, concomitant with the deposition of a fine white 

precipitate (KCl). This solution was allowed to stir for 30 min, whereupon the reaction 

mixture was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm).  

Volatiles were removed from the filtrate in vacuo, and the orange residue was extracted into 

hexanes (2 mL) and filtered through a Celite column supported on glass wool (0.5 cm × 2 

cm) yielding a red-orange filtrate. The volume of this filtrate was reduced to 0.25 mL in 

vacuo and the resulting solution was stored at - 25 °C for 24 h resulting in the deposition of 

orange needles which were isolated by decanting off the supernatant (46 mg, 53% yield). 
1
H 

NMR (400 MHz, 25 °C, benzene-d6): δ = 59.80 (s, 6H, Ar-H, CPh3), 31.50 (s, 18H, 

C(CH3)3), 19.12 (s, 3H, Ar-H, CPh3), 4.50 (s, 6H, Ar-H, CPh3), 3.55 (s, 4H, Ar-mH, dipp), -

8.15 (s, 12H, CH(CH3)2), -49.85 (s, 2H, Ar-pH, dipp), -55.56 (s, 4H, CH(CH3)2), -59.25 (s, 

12H, CH(CH3)2) ppm. Crystallographic details: Triclinic, P-1, a = 12.008(1), b = 12.182(1), 

c = 18.394(2),  = 95.698(3),  = 104.610(3),  = 108.973(2), V = 2413.3(5) g/cm
3
, Z = 2. 
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7.4.15 Synthesis of [L
tBu

Zn
II

(SCPh3)] (7.12)  

To a colorless, stirring solution of [L
tBu

Zn
II
Cl]

61
 (50 mg, 0.0830 mmol) in THF (3 mL) 

was added solid KSCPh3 (26 mg, 0.0830 mmol). This solution was allowed to stir for 24 h, 

during this time the deposition of some fine white precipitate (KCl) was observed. The 

reaction mixture was then filtered through a Celite column supported on glass wool (0.5 cm 

× 2 cm), the volatiles were removed from the filtrate in vacuo, and the white residue was 

extracted into Et2O (2 mL) and filtered through a Celite column supported on glass wool 

(0.5 cm × 2 cm) yielding a colorless filtrate. The volume of this filtrate was reduced to 0.25 

mL in vacuo and the resulting solution was stored at - 25 °C for 48 h resulting in the 

deposition of colorless needles which were isolated by decanting off the supernatant (33 mg, 

66% yield). 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 7.44-6.99 (m, 21H, Ar-H, Dipp 

and CPh3), 5.59 (s, 1H, γ-H), 3.20 (sept, 4H, CH(CH3)2), 1.45 (d, 12H, CH(CH3)2), 1.25 (d, 

12H, CH(CH3)2), 1.16 (s, 18H, C(CH3)3), ppm. Crystallographic details: Triclinic, P-1, a = 

12.064(3), b = 12.102(3), c = 18.443(4),  = 95.063(6),  = 105.096(5),  = 108.896(6), V = 

2415.4(9) g/cm
3
, Z = 2. 

7.4.16 Reaction of [L
tBu

Fe
II

(SCPh3)] (7.10) with KC8 in the presence of 18-crown-6 

To an orange, cold (-25 °C), stirring solution of [L
tBu

Fe
II
(SCPh3)] (7.10) (112 mg, 0.134 

mmol) and 18-crown-6 (71.1 mg, 0.269 mmol)  in Et2O (2 mL), was added KC8 (36.3 mg, 

0.269 mmol). This resulted in the rapid formation of a dark red mixture. This mixture was 

allowed to stir for 5 min, after which 1 mL of hexanes was added, resulting in the 

precipitation of a red solid (KCPh3). The mixture was then allowed to stir for another 5 min 

after which it was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), 

which afforded a dark plug and a dark red filtrate. The volatiles were removed from the 
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filtrate in vacuo to produce a dark red-brown residue. This residue was extracted into 

hexanes (2 mL) and the resulting mixture was filtered through a Celite column supported on 

glass wool (0.5 cm × 2 cm), which afforded a dark red filtrate. This solution was then 

concentrated in vacuo to 0.5 mL and stored at -25 °C for 72 h. This resulted in the 

deposition red-brown plates mixed with an oil and other solids. The red-brown plates 

characterized by X-ray crystallography and 
1
H NMR spectroscopy.  

1
H NMR (400 MHz, 25 

°C, benzene-d6): δ = 24.26 (s, 1H, γ-H), 12.50 (s, 18H, C(CH3)3), 7.08 (s), 6.18 (s, 4H, Ar-

mH, dipp), 3.54 (br s, 18-crown-6), -2.35 (s, 12H, CH(CH3)2), -7.14 (s, 4H, CH(CH3)2 s), -

18.64 (s, 2H, Ar-pH, dipp), -19.28 (s, 12H, CH(CH3)2) ppm. Crystallographic details: 

Monoclinic, P21, a = 22.114(5), b = 12.907(3), c = 23.386(6),  = 90,  = 95.92(2),  = 90, 

V = 6639(3) g/cm
3
, Z = 6. 

7.4.17 Synthesis of [K(18-crown-6)][L
tBu

Co
I
(SH)] (7.14)  

To an orange-red, cold (-25 °C), stirring solution of [L
tBu

Co
II
(SCPh3)] (7.11) (46 mg, 

0.0550 mmol) and 18-crown-6 (29.1 mg, 0.110 mmol)  in Et2O (2 mL), was added KC8 

(14.9 mg, 0.110 mmol). This resulted in immediate formation of a dark red mixture. This 

mixture was allowed to stir for 20 min, after which the mixture was filtered through a Celite 

column supported on glass wool (0.5 cm × 2 cm), which afforded a dark plug and a dark red 

filtrate. This solution was then concentrated in vacuo to 1 mL and 0.5 mL of hex was added. 

The resulting mixture was filtered through a Celite column supported on glass wool (0.5 cm 

× 2 cm), which afforded a dark red filtrate. This solution was then stored at -25 °C for 72 h 

which did not result in the formation of any solids. The volatiles were removed from this 

solution in vacuo to produce a dark red-brown residue. This residue was extracted into Et2O 

(1 mL), filtered through a Celite column supported on glass wool (0.5 cm × 2 cm), and 
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concentrated in vacuo to 0.25 mL and stored at -25 °C for 48 h. This resulted in the 

deposition of a mixture of solids including some red plates. The red plates were 

characterized by X-ray crystallography, a 
1
H NMR of the product mixture reveals a 

complicated mixture of paramagnetic products. Crystallographic details: Triclinic, P-1, a = 

12.713(3), b = 13.040(4), c = 17.790(5),  = 78.256(8),  = 83.082(7),  = 70.806(8), V = 

2722 (1) g/cm
3
, Z = 2. 

7.4.18 Synthesis of K[NHTs]  

The preparation of K[NHTs] was adapted from a previously reported method which used 

NaOEt to deprotonate NH2S(O)2C6H4-p-CH3.
81

 To a colorless stirring solution of tosylamine 

(NH2S(O)2C6H4-p-CH3, 151 mg, 0.882 mmol) in THF (5 mL) was added a solution of 

potassium bistrimethylsilylamide (KN(TMS)2, 176 mg, 0.882 mmol) in THF (2 mL). Upon 

addition, a white solid immediately began to form and the mixture was allowed to stir for 20 

min. After stirring for 20 min, the volitiles were removed from the mixture in vacuo to yield 

a fine white powder. This powder was then washed with THF (1 mL × 1) and Et2O (1 mL × 

2). Volitiles were removed from the remaining solid in vacuo to yield K[NHTs], a white 

powder that is insoluble in organic solvents (179 mg, 98% yield).  

7.4.19 Synthesis of [L
tBu

Ni
II

(N,O:κ
2
-NHTs)] (7.15)   

To a dark green, stirring suspension of [L
tBu

Ni
II
Cl] (51.3 mg, 0.0860 mmol) in Et2O (3 

mL) was added solid K[NHTs] (18 mg, 0.0860 mmol). After addition, the color of the 

solution gradually transformed from dark green to pale purple, concomitant with the 

deposition of a fine white precipitate (KCl). Then, 0.25 mL of THF were added and the 

solution was allowed to stir for another 25 min, during which the color of the solution 

changed to magenta. The reaction mixture was then filtered through a Celite column 
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supported on glass wool (0.5 cm × 2 cm) to give a deep purple filtrate. Volatiles were 

removed from the filtrate in vacuo, and the resulting magenta residue was extracted into 

Et2O/Hex (2:1 mL) and filtered through a Celite column supported on glass wool (0.5 cm × 

2 cm) yielding a purple filtrate. This solution was then stored at - 25 °C for 48 h resulting in 

the deposition of purple plates which were isolated by decanting off the supernatant (20 mg, 

32% yield). 
1
H NMR (400 MHz, 25 °C, benzene-d6):  = 8.19 (d, 4H, m-Ar-H, Dipp), 6.75 

(d, 2H, Ar-H, NHTs), 6.56 (d, 2H, Ar-H, NHTs), 5.43 (t, 2H, m-Ar-H, Dipp), 5.26 (sept, 4H, 

CH(CH3)2), 2.63 (d, 12H, CH(CH3)2), 1.91 (s, 3H, CH3, NHTs), 1.62 (d, 12H, CH(CH3)2), 

1.05 (s, 18H, C(CH3)3), 0.27 (s, 1H, γ-H or N-H), -1.62 (s, 1H, γ-H or N-H) ppm. 

Crystallographic details: Triclinic, P-1, a = 10.417(1), b = 12.457(2), c = 16.298(2),  = 

98.336(3),  = 94.103(3),  = 108.770(3), V = 1965.5(4) g/cm
3
, Z = 2. 

7.4.20 Synthesis of [K(18-crown-6)][L
tBu

Ni
II

(N,O:κ
2
-NHTs)] (7.16)   

To a purple, stirring solution of [L
tBu

Ni
II
(N,O:κ

2
-NHTs)]  (20 mg, 0.0289 mmol) and 18-

crown-6 (15.3 mg, 0.0578 mmol)  in THF (1 mL) was added KC8 (7.8 mg, 0.0578 mmol). 

After addition, the color of the solution rapidly transformed from purple to dark red. This 

solution was allowed to stir for 30 min, whereupon the reaction mixture was filtered through 

a Celite column supported on glass wool (0.5 cm × 2 cm) to give a deep red filtrate. 

Volatiles were removed from the filtrate in vacuo, and the resulting red residue was 

extracted into Et2O (1 mL) and filtered through a Celite column supported on glass wool 

(0.5 cm × 2 cm) yielding a red filtrate. This solution was then transferred to a 5 mL vial. 

This vial was then placed inside a 20 mL vial containing 3 mL of toluene. This two vial 

system was then sealed and stored at - 25 °C for 24 h resulting in the deposition of red plates 

of [K(18-crown-6)][L
tBu

Ni
I
(NHTs)] which were isolated by decanting off the supernatant 
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(11 mg, 38% yield). 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 21.25 (br s), 11.61 (br s), 

3.61 (br s), 3.16 (br s), 2.63 (br s), -1.06 (br s) ppm. Crystallographic details: Triclinic, P-1, 

a = 12.920(1), b = 14.091(2), c = 17.146(2),  = 70.283(3),  = 74.811(3),  = 82.629(3), V 

= 2833.1(6) g/cm
3
, Z = 2. 

7.4.21 Synthesis of [{L
tBu

(PhNCO)}Ni
II

(N,O:κ
2
-PhNC(O)OCPh3)] (7.17)   

To a green, stirring solution of [L
tBu

Ni
II
OCPh3] (36.5 mg, 0.0445 mmol) in C6H6 (1 mL) 

was added phenyl isocyanate (PhNCO, 9.73 μL, 0.0890 mmol). After addition, the color of 

the solution gradually transformed from bright green to brown. This solution was allowed to 

stir for 1 h, whereupon the volatiles were removed from the solution in vacuo. The resulting 

pale brown residue was extracted into pentane (2 mL) and filtered through a Celite column 

supported on glass wool (0.5 cm × 2 cm) yielding a brown filtrate. This solution was then 

concentrated in vacuo to 1 mL and transferred to a 5 mL vial. This vial was then placed 

inside a 20 mL vial containing 3 mL of toluene. This two vial system was then sealed and 

stored at - 25 °C for 48 h resulting in the deposition of brown plates of 

[{L
tBu

(PhNCO)}Ni
II
(N,O:κ

2
-PhNC(O)OCPh3)] which were isolated by decanting off the 

supernatant (27 mg, 57% yield). 
1
H NMR (400 MHz, 25 °C, benzene-d6): δ = 30.05 (br s), 

26.98 (s), 20.42 (s), 19.78 (s), 17.08 (s), 12.68 (s), 9.14 (s), 7.91 (s), 7.75 (s), 7.37 (s), 7.30 

(s), 6.58 (s), 3.53 (s), 2.31 (s), 1.18 (s), -10.00 (s), -11.27 (br s), -19.70 (s), -46.40 (br s) 

ppm. Crystallographic details: Triclinic, P-1, a = 12.274(4), b = 13.969(5), c = 17.189(7),  

= 76.71(1),  = 87.25(1),  = 88.91(1), V = 2865(2) g/cm
3
, Z = 4. 
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7.4.22 Reaction of [{L
tBu

(PhNCO)}Ni
II

(N,O:κ
2
-PhNC(O)OCPh3)] (7.17) with KC8 in 

the presence of 18-crown-6  

To a brown, stirring solution of [{L
tBu

(PhNCO)}Ni
II
(N,O:κ

2
-PhNC(O)OCPh3)] (27 mg, 

0.0255 mmol) and 18-crown-6 (13.5 mg, 0.0510 mmol) in Et2O/THF (2:1 mL) was added 

KC8 (6.9 mg, 0.0255 mmol). After addition, the color of the solution rapidly became red-

orange. The mixture was allowed to stir for 3 min, whereupon the reaction mixture was 

filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) to give a red-

orange filtrate. Volatiles were removed from the filtrate in vacuo, and the resulting red 

residue was extracted into THF-d8 for 
1
H NMR spectroscopic analysis. The 

1
H NMR 

spectrum reveals the clean formation of a diamagnetic product, however, attempts to isolate 

and characterize this product have been unsuccessful. 
1
H NMR (400 MHz, 25 °C, THF-d8): 

δ = 7.45 (d), 7.23 (t), 7.16 (d), 7.09 (d), 7.04 (d), 6.92-6.87 (m), 6.76 (t), 6.67 (t), 6.63 (t), 

5.56 (s), 4.98 (s), 4.83 (sept), 4.68 (sept), 3.48 (s), 2.93 (sept), 2.86 (sept), 1.53 (s), 1.29 (d), 

1.22 (d), 1.19 (d), 1.11 (doublet of doublets), 0.95 (d), 0.89 (d), 0.85 (d), 0.77 (s) ppm.  

7.4.23 X-ray Crystallography 

Data for solid state molecular structures were collected on a Bruker KAPPA APEX II 

diffractometer equipped with an APEX II CCD detector using a TRIUMPH monochromator 

with a Mo  α X-ray source (α = 0.71073 Å).  The crystals were mounted on a cryoloop 

under Paratone-N oil, and all data were collected at 100(2) K using an Oxford nitrogen gas 

cryostream.  Data were collected using ω scans with 0.5° frame widths. Data collection and 

cell parameter determination were conducted using the SMART program.
82

  Integration of 

the data frames and final cell parameter refinement were performed using SAINT 

software.
83

  Absorption correction of the data was carried out using the multi-scan method 
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SADABS.
84

  Subsequent calculations were carried out using SHELXTL.
85

  Structure 

determination was done using direct or Patterson methods and difference Fourier techniques.  

All hydrogen atom positions were idealized, and rode on the atom of attachment.  Structure 

solution, refinement, graphics, and creation of publication materials were performed using 

SHELXTL.
85
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7.5 Appendix 

7.5.1 NMR Spectra  

 

Figure A 7.1. 
1
H NMR spectrum of [L

Me
Ni

II
(OCPh3)] (7.1) in benzene-d6. (*) indicates the 

presence of hexanes. 

* 
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Figure A 7.2.  
1
H NMR spectrum of [L

tBu
Ni

II
(OCPh3)] (7.2) in benzene-d6. (*) indicates the 

presence of pentane. 
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Figure A 7.3. 
1
H NMR spectrum of [K(18-crown-6)(THF)2][L

Me
Ni

II
(OCPh3)] (7.3) in THF-

d8.  (*) indicates the presence of hexanes, (Δ) indicates the presence of an unidentified 

impurity. 

  

* 

Δ 
Δ 
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Figure A 7.4. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni

I
(OH)] (7.4) in benzene-d6. (*) 

indicates the presence of Et2O, (Δ) indicates the presence of pentane. 

* 
* 

Δ 
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Figure A 7.5. 
1
H NMR spectrum of [L

Me
Fe

II
(OCPh3)] (7.5) in C6D6. (*) indicates the 

presence of Et2O and (Δ) indicates the presence of hexanes. 

 

* 
* 

Δ 
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Figure A 7.6. 
1
H NMR spectrum of [L

tBu
Fe

II
(OCPh3)(NCCH3)] (7.6) in C6D6. (*) indicates 

the presence of Et2O.  

* 

* 
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Figure A 7.7. 
1
H NMR spectrum of [K(18-crown-6)(THF)2][L

Me
Fe

I
(OCPh3)] (7.7) in C6D6. 

(*) indicates the presence of pentane.  

* 

* 
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Figure A 7.8. 
1
H NMR spectrum of K[PINO] in DMSO-d6. (*) indicates the presence of 

H2O and (Δ) indicates the presence of toluene. 

* 
Δ 



 

 341 

 

Figure A 7.9. 
1
H NMR spectrum of [L

tBu
Ni

II
(O,O:κ

2
-PINO)] (7.8) in benzene-d6.  (*) 

indicates the presence of pentane. 

* 
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Figure A 7.10. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni

I
(OH)] (7.4) isolated from the 

reduction of [L
tBu

Ni
II
(O,O:κ

2
-PINO)] (7.8) with KC8 in the presence of 18-crown-6 in 

benzene-d6. (*) indicates the presence of toluene and (◊) indicates the presence of an 

unidentified diamagnetic impurity. 

* 

◊ 

◊ 
◊ 
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Figure A 7.11. 
1
H NMR spectrum of the crude products of the reaction of  [L

tBu
Ni

II
(O,O:κ

2
-

PINO)] (7.8) with KC8 in the presence of 2,2,2-cryptand in benzene-d6. (*) indicates the 

presence of pentane. 

* 
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Figure A 7.12. 
1
H NMR spectrum of [L

tBu
Fe

II
(SCPh3)] (7.10) in benzene-d6. (*) indicates 

the presence of hexane. 

 

* 
* 
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Figure A 7.13. 
1
H NMR spectrum of [L

tBu
Co

II
(SCPh3)] (7.11) in benzene-d6. (*) indicates 

the presence of hexane and (Δ) indicates the presence of gomberg's dimer.
43

 

* 

Δ Δ 
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Figure A 7.14. 
1
H NMR spectrum of the products of the reduction of [L

tBu
Co

II
(SCPh3)] 

(7.11) with KC8 in the presence of 18-crown-6 in C6D6.  
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Figure A 7.15. 
1
H NMR spectrum of [L

tBu
Ni

II
(N,O:κ

2
-NHTs)] (7.15) in C6D6. (*) indicates 

the presence of Et2O.  

* 
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Figure A 7.16. 
1
H NMR spectrum of [K(18-crown-6)][L

tBu
Ni

I
(NHTs)] (7.16) in C6D6. (*) 

indicates the presence of unidentified diamagnetic impurity and (◊) indicates the presence of 

Et2O.  

* * 

* 

◊ ◊ 
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Figure A 7.17. 
1
H NMR spectrum of [{L

tBu
(PhNCO)}Ni

II
(N,O:κ

2
-PhNC(O)OCPh3)] (7.17) 

in C6D6.  
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