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Abstract

Mycoplasma pulmonis infection in rodents causes a chronic inflammatory airway disease with a strong immunological compo-

nent, leading to mucosal remodeling and angiogenesis. We sought to determine the effect of this infection on the shape and number

of dendritic cells and other major histocompatibility complex (MHC) class II expressing cells in the airway mucosa of Wistar rats.

Changes in the shape of subepithelial OX6 (anti-MHC class II)-immunoreactive cells were evident in the tracheal mucosa 2 days

after intranasal inoculation with M. pulmonis. By 1 week, the shape of the cells had changed from stellate to rounded (mean shape

index increased from 0.42 to 0.77). The number of OX6-positive cells was increased 6-fold at 1 week and 16-fold at 4 weeks.

Coincident with these changes, many columnar epithelial cells developed OX6 immunoreactivity, which was still present at 4 weeks.

We conclude that M. pulmonis infection creates a potent immunologic stimulus that augments and transforms the OX6-immuno-

reactive cell population in the airways by changing the functional state of airway dendritic cells, initiating an influx of MHC class II

expressing cells, and activating expression of MHC class II molecules by airway epithelial cells.

� 2003 Published by Elsevier Science (USA).
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1. Introduction

Antigen presentation by cells expressing major his-

tocompatibility complex class II (MHC class II) mole-
cules on their surface is an important step in the

initiation of the primary immune response [1]. Dendritic

cells (DC) are the principal MHC class II expressing

cells in the normal airway mucosa. These cells play a

major role in the processing of inhaled antigens and may

participate in the pathogenesis of infectious and allergic

airway diseases [2–4]. During steady-state conditions,

DC turnover every 36–48 h [5]. However, the DC net-

work rapidly expands after exposure to a variety of

pathogens and antigens [6]. For example, exposure to

aerosolized heat-inactivated Moraxella catarrhalis cau-
ses DC influx into the airways which peaks within 3 h

and remains elevated for 48 h [5]. Inoculation of viable

Bordatella pertussis results in DC recruitment with

similar kinetics but with a maximal cell density at 24 h

[7]. Even at the peak of the inflammatory response, DC

are the principal MHC class II expressing cells—greatly

outnumbering macrophages and B lymphocytes [7].

Such stimuli can also evoke transient expression of
MHC class II molecules by airway epithelial cells [8–10].

Less is known about the involvement of DC and

other MHC class II expressing cells in chronic inflam-

matory airway disease, in part because most disease

models have focused on transient conditions. The long-

lasting consequences of Mycoplasma pulmonis infection

make it useful for studying changes in chronic disease
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[11–13]. The organisms attach to the luminal surface of
the airway epithelium of rats and mice [12] and are not

cleared from the airways despite strong cellular and

humoral immune responses [11,13–15]. The ongoing

stimulus causes an influx of mononuclear cells, including

DC, macrophages, and lymphocytes [15–18]. The de-

velopment of mucosal lymphoid tissue is a prominent

part of the remodeling of the airway mucosa, and is

accompanied by epithelial cell and mucous gland
hyperplasia, fibrosis, angiogenesis, and increased sensi-

tivity of the newly formed blood vessels to the neuro-

peptide substance P [13,14,19,20]. Although some of

these changes may occur after viral infection [20,21], M.

pulmonis infection is unusual in that it causes life-long

disease and, if untreated, can result in severe remodeling

of the airway mucosa [22]. The role of DC and other

MHC class II expressing cells in these changes is un-
known [16,17], but is of interest because of the rapid

cellular response after infection and the strong immu-

nological component of mycoplasmal airway disease.

In the present study, we usedM. pulmonis infection as

a model of chronic inflammation to determine the time

course of changes in shape, number, and distribution of

MHC class II expressing cells in the airway mucosa,

with a focus on the region beneath the airway epithelium
where M. pulmonis organisms are attached. We also

determined whether epithelial cells express MHC class II

molecules after M. pulmonis infection.

MHC class II expressing cells in the tracheal mucosa,

stained immunohistochemically with the OX6 mono-

clonal antibody [3,4,23], were examined in rats infected

with M. pulmonis for 2 days to 4 weeks. Tracheal whole

mounts were used to determine the 3-dimensional shape
and number of OX6-immunoreactive cells within and

near the airway epithelium, and tracheal cross-sections

were used to determine the distribution of these cells

within the thickness of the airway wall.

2. Materials and methods

2.1. Animals

Male pathogen-free Wistar rats were purchased from

Charles River Breeding Laboratories (Hollister, CA)

and housed under barrier conditions in autoclaved

microisolator units, three animals per cage. Charles

River documented the pathogen-free status of the ani-

mals as evidenced by serological assays for multiple
pathogens, including M. pulmonis, parainfluenza type I

(Sendai) virus, coronavirus (rat coronavirus/sialoda-

cryoadenitis virus), and cilia-associated respiratory ba-

cillus. Animals were 7 weeks old and 175–200 g upon

arrival. All experiments were approved by the Com-

mittee on Animal Research at the University of Cali-

fornia, San Francisco.

2.2. M. pulmonis infection

M. pulmonis strain 5782C was grown in mycoplasma

broth, harvested in the late log phase of growth, and

frozen at )70 �C in 1ml aliquots [24,25]. The frozen

aliquots contained 7:5� 109 colony forming units of M.

pulmonis per milliliter, as determined by quantitative

culture [24,25]. After anesthesia (intramuscular injection

of 0.11–0.15ml of a mixture of ketamine, 83.3mg/ml,
Parke-Davis, Morris Plains, NJ, and xylazine, 3.3mg/

ml, The Butler, Columbus, OH), rats were inoculated

intranasally with 100 ll aliquots of M. pulmonis medium

or sterile culture medium into each nostril daily, on

three consecutive days [13].

2.3. Experimental protocol

At 2 or 4 days or 1, 2, or 4 weeks after the first in-

oculation, rats (n ¼ 5 per time-point) were anesthetized

by intraperitoneal injection of sodium pentobarbital

(50mg/kg, Abbott Laboratories, North Chicago, IL)

and then perfused via the ascending aorta for 2min with

1% paraformaldehyde in phosphate-buffered 0.9% NaCl

(PBS, pH 7.4) at 120–140mmHg. Pathogen-free con-

trols included five uninoculated rats and six rats inocu-
lated with sterile culture medium (three rats at 2 days

and three rats at 1 week). All animals had 1ml of blood

drawn from an external jugular vein for measurement of

serological antibody titers to M. pulmonis, Sendai virus,

and rat coronavirus/sialodacryoadenitis virus. After the

vascular perfusion of fixative, tracheas were removed

and fixed in 4% paraformaldehyde for 1–7 days at 4 �C
before being processing for immunohistochemistry.

2.4. Immunohistochemistry

Tracheas, washed and permeabilized in six 1-h

changes of PBS containing 0.3% Triton X-100 (PBS/

Triton at room temperature, Sigma), were cut trans-

versely into three segments, then were incised longitu-

dinally and pinned flat, mucosal surface up, on Sylgard
slabs (Dow Corning, Midland, MI). Alternatively,

150-lm cross-sections were cut with a Vibratome (Se-

ries 1000, Technical Products International, St. Louis,

MO).

Tracheal whole mounts or cross-sections were pro-

cessed for immunoperoxidase histochemistry using

techniques described previously [26,27]. Briefly, speci-

mens were incubated for 2 h in PBS containing 5%
normal goat serum (Jackson ImmunoResearch Labo-

ratories, West Grove, PA) and then for 36 h in PBS

containing 1% normal goat serum and MRC OX6 anti-

MHC class II monoclonal antibody (PharMingen, San

Diego, CA) at a 1:1000 dilution [3,4]. The tissues were

washed again for 6 h in PBS followed by a 24-h incu-

bation in peroxidase-conjugated goat anti-mouse IgG
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(Jackson) at a 1:200 dilution. The solutions contained
0.01% thimerosal (Sigma) to prevent microbial growth.

Another wash in PBS was followed by 10min in 0.05M

Trizma base–Trizma HCl buffer (Sigma), pH 7.6, con-

taining 0.05% diaminobenzidine and 0.01% hydrogen

peroxide to localize the peroxidase-labeled secondary

antibody. All steps were done at room temperature.

Finally, the specimens were dehydrated in ethanol,

cleared in toluene, and mounted in Permount (Fisher
Scientific, Fair Lawn, NJ). Whole mounts were mounted

mucosal surface up.

Tracheas were examined with a Zeiss Axiophot mi-

croscope (Carl Zeiss, Thornwood, NY) equipped with

differential interference contrast optics or with an Edge

R400 microscope (Edge Scientific Instrument, Los An-

geles, CA), which uses oblique specimen illumination

to produce 3-dimensional images. Color photographs
taken with Kodak Ektachrome 100 film were scanned

(Polaroid SprintScan 35, Cambridge, MA) and printed

on a digital image printer (Fujix Pictography 3000, Fuji

Film, Tokyo, Japan).

2.5. Shape of OX6-immunoreactive cells

The shape of OX6-immunoreactive (OX6-positive)
cells was estimated using a shape-sensitive parameter

(shape index ¼ 4pA=P 2, where A is the projected cell

area and P the projected perimeter) that expresses the

ratio of area to perimeter relative to that of a circle [28].

Circular cells have a shape index of 1, whereas irregu-

larly shaped cells have smaller shape indices, which de-

crease toward zero as the perimeter increases with

respect to the area. DC with many processes have
smaller shape indices than more rounded cells. The

projected area and perimeter of 25 OX6-positive cells

were measured in the rostral third of each trachea.

Measurements were made with a digitizing tablet on

real-time color video images magnified with a Zeiss

Axiophot microscope (projected magnification approx-

imately 1800�) [28].

2.6. Number of OX6-immunoreactive cells

OX6-positive cells, located within or beneath the

epithelium to a depth of about 50 lm, were counted in

12 consecutive regions of mucosa, each measuring

0.09mm2, in tracheal whole mounts. These particular

cells were selected so the measurements would reflect the

cells near the M. pulmonis organisms in the airway lu-
men, and the values would be comparable to published

data on subepithelial DC [2,3]. Measurements were

made on regions of mucosa over cartilage rings 3–14.

The number of OX6-positive cells was expressed per

square millimeter of mucosal surface. Specimens were

viewed at a projected magnification of 400�. Epithelial

basal cells, which had faint immunoreactivity, and co-

lumnar epithelial cells, which had variable immunore-
activity after M. pulmonis infection, were readily

identified and excluded from the counts of DC. Mucosal

thickness was measured in tracheal cross-sections.

2.7. Serological titers to pathogens

Serological antibody titers to M. pulmonis, Sendai

virus, and rat coronavirus/sialodacryoadenitis virus
were measured by enzyme-linked immunosorbent assays

(ELISA; BioReliance, Rockville, MD).

2.8. Statistical analysis

Values are expressed as means� SE (n ¼ 5 rats per

group, unless specified otherwise). The significance of

differences between groups was evaluated by analysis of
variance and Fisher�s test or Scheff�ee�s F test for multiple

comparisons or, for values that were not normally dis-

tributed, by the Mann–Whitney test. Differences were

considered significant when P < 0:05.

3. Results

In pathogen-free rats, a network of MHC class II

expressing cells, identified by their OX6 immunoreac-

tivity, occupied a thin layer just beneath the epithelium

of the tracheal mucosa (Fig. 1A). In rats infected with

M. pulmonis, the mucosa became progressively thicker

and much more densely populated with OX6-positive

cells over the 4-week period of the study (Figs. 1B and

C). Mucosal thickness increased from about 50 lm in
pathogen-free rats to 200 lm at 1 week after infection,

and 500 lm at 4 weeks after infection.

3.1. Shape of OX6-immunoreactive cells

Most of the OX6-positive cells in the tracheas of

pathogen-free rats had the characteristic branched

morphology of DC [3,4,27]. Cells with 3–5 branched
cytoplasmic processes formed a thin network roughly in

the plane of epithelial basal cells (Fig. 1D). Consistent

with their stellate shape, OX6-positive DC in pathogen-

free rats had a comparatively low shape index

(mean¼ 0.42; Fig. 2).

After M. pulmonis infection, the shape, number, and

distribution of OX6-positive cells in the tracheal mucosa

underwent conspicuous changes. OX6-positive cells be-
came progressively rounder during the first week (Fig.

1E), as reflected by an increase in shape index from 0.42

in pathogen-free rats to 0.66 at 2 days after infection and

to 0.77 at 1 week (Fig. 2). At 2 and 4 days, the shape of

many of the cells was intermediate between stellate and

round. At 1, 2, and 4 weeks, almost all of the OX6-

positive cells had a rounded phenotype.
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OX6 immunoreactivity in tracheas of rats inoculated

with sterile culture medium was indistinguishable from
that in uninoculated rats. The staining was abolished by

omission of the OX6 primary antibody.

3.2. Number of OX6-immunoreactive cells

The numerical density of OX6-positive cells in the

most superficial 50 lm of tracheal mucosa increased 58%

during the first week after infection, from 1231� 89

cells=mm2 in pathogen-free controls to 1942� 101cells=
mm2 in infected rats (P < 0:05; Fig. 3). Increasing OX6

immunoreactivity of mucosal cells made cell-counting

more difficult in tracheal whole mounts after the first

week; however, an analysis of cross-sections showed that

OX6-positive cells were uniformly abundant throughout

the mucosa at 1 and 4 weeks after infection (Figs. 1B

and C). When mucosal thickening was taken into ac-

Fig. 1. OX6-immunoreactive cells in rat tracheal mucosa (A–C). Vibratome cross-sections 150 lm in thickness comparing mucosal thickness (ar-

rowheads) and amount of OX6 immunoreactivity in (A) pathogen-free rat, (B) M. pulmonis-infected rat at 1 week, and (C) M. pulmonis-infected rat

at 4 weeks. Cartilage is located beneath the mucosa in all specimens. (D) Tracheal whole mount from pathogen-free rat: OX6-positive cells just

beneath epithelium have dendritic shape, with multiple, branched cytoplasmic processes. (E) Tracheal whole mount from rat 1 week after

M. pulmonis infection: OX6-positive cells near epithelium are rounder and more numerous than corresponding cells in pathogen-free rat. Scale bar in

(E) applies to all figures. Bar ¼ 60lm (A–C), 10 lm (D, E).
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count, the number of OX6-positive cells was increased

6-fold at 1 week and 16-fold at 4 weeks compared to the

pathogen-free value.

3.3. OX6-immunoreactive epithelial cells

In pathogen-free rats, columnar epithelial cells of the

tracheal mucosa had no OX6 immunoreactivity, but

processes of OX6-positive cells in the lamina propria

penetrated the epithelium (Fig. 4A). Some epithelial

basal cells had faint immunoreactivity but not a dendritic

shape. Scattered columnar epithelial cells had OX6 im-

munoreactivity at 2 days after infection (Fig. 4B), and

the number increased progressively (Fig. 4C). By 1 week,
most of the epithelium had granular OX6 immunoreac-

tivity, which appeared to be associated with intracellular

organelles (Fig. 4C). No epithelial cells were stained

when the OX6 primary antibody was omitted.

3.4. Serological titers to pathogens

Rats that were pathogen-free or infected for 1 week
or less did not have significant serological antibody ti-

ters to M. pulmonis, but at 2 weeks the infected rats had

detectable titers (0:14� 0:01 ELISA units), and at 4

weeks the titers were significantly higher (0:77� 0:07
ELISA units). None of the rats had significant antibody

titers to Sendai virus or rat coronavirus/sialodacryo-
adenitis virus.

4. Discussion

In the present study, M. pulmonis infection resulted

in conspicuous changes in the shape, number, and

distribution of MHC class II expressing cells in the
tracheal mucosa. During the first week after infection,

OX6-positive cells changed in shape from dendritic to

rounded, increased in number, and changed in distri-

bution from a concentration at the base of the epithe-

lium to scattered throughout the mucosa. By 4 weeks,

the mucosa had 10 times the normal thickness and an

even larger increase in number of OX6-positive cells. In

addition, many columnar epithelial cells acquired OX6
immunoreactivity.

Fig. 2. Shape index of OX6-positive cells. Bar graph showing changes

in shape index (4pA=P 2, where A is the projected cell area and P is the

projected cell perimeter) of OX6-positive cells in tracheal whole

mounts of pathogen-free rats (control) and rats infected with M. pul-

monis. Rounder cells have values closer to 1. Values are means� SE,

n ¼ 5 rats per group. *Significantly different from control, P < 0:05.

Fig. 3. Number of OX6-positive cells. Bar graph showing number of

OX6-positive cells in subepithelial tracheal mucosa of pathogen-free

rats (control) and rats infected with M. pulmonis (n ¼ 5 rats per

group). OX6-immunoreactive epithelial cells were not counted. Values

are means� SE of counts made on tracheal whole mounts. *Values

significantly different from control, P < 0:05.
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4.1. Research strategy

Changes in the shape and number of OX6-positive

cells were assessed after immunohistochemical staining

of tracheal whole mounts. In these preparations, we

could see the 3-dimensional shape as well as determine

the distribution of cells in the mucosa. The 150-lm Vi-

bratome sections complemented the whole mounts by

highlighting the increase in mucosal thickness and the

distribution of OX6-positive cells within the mucosa.
Only the most superficial OX6-positive cells were

counted in whole mounts so the values could be related

to data from previous studies [3]. Nonetheless, the

number of these cells found in pathogen-free rats was

50–100% larger than corresponding values obtained

from tangential 10 lm sections of mucosa just beneath

Fig. 4. Tracheal epithelial cells viewed from luminal surface of whole mounts. Comparison of OX6 immunoreactivity in tracheal epithelium of (A)

pathogen-free rat, (B) M. pulmonis-infected rat at 2 days, and (C) M. pulmonis-infected rat at 1 week. Epithelial cells in pathogen-free rat (arrow-

heads) have little or no OX6 immunoreactivity, but some OX6-positive cells located beneath the epithelium have cytoplasmic processes (arrows) that

extend into the epithelium. OX6-positive epithelial cells (arrows) are scattered in the epithelium of infected rat at 2 days. Many OX6-positive co-

lumnar epithelial cells (arrows) are present in infected rat at 1 week. Most of the immunoreactivity in these cells appears to be in intracellular

granules. Scale bar in (C) applies to all figures. Bar ¼ 8lm (A–C).
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the epithelium [3]. This difference could be explained by
the greater thickness of the region analyzed in the

present study.

The combination of whole mounts and cross-sections

produced a picture of OX6-positive cells that neither

method could give independently and could not be

readily obtained from conventional histological sections.

Tracheal whole mounts provided a clear view of the

number and 3-dimensional structure of OX6-positive
cells in pathogen-free rats and during the first week after

M. pulmonis infection. However, as the mucosa became

thicker, only the most superficial cells of whole mounts

were stained, probably due to limited penetration of re-

agents and increasing immunoreactivity of the epithe-

lium. By comparison, cross-sections, which did not have

the limitation of reagent penetration, clearly revealed the

thickening of the mucosa and showed abundant OX6-
positive cells throughout the mucosa. Together, the two

types of preparations revealed that the total number of

OX6-positive cells increased 6-fold over the first week

after infection and 16-fold over 4 weeks.

4.2. Identification of OX6-immunoreactive cells

Pathogen-free animals. Most OX6-immunoreactive
cells in the airways of pathogen-free rats are considered

to be DC because they express MHC class II (Ia) de-

terminants and have the characteristic dendriform

morphology [3,4,27]. Holt and co-workers [4] reported

that virtually all of the cells that stain for MHC class II

in the airways of pathogen-free rats are DC. In addition,

OX6-positive cells, which are most abundant at the base

of the epithelium, can be distinguished from ED2-posi-
tive tissue macrophages, which are most numerous

deeper in the mucosa [18]. Although tissue macrophages

in pathogen-free rats may have cytoplasmic processes,

they typically do not express MHC class II determinants

in the absence of antigenic stimulation [29].

M. pulmonis-infected animals. The phenotypic dis-

tinction between DC and other cell types blurs after

mycoplasmal infection, when multiple cell types express
MHC class II molecules [30,31]. The characteristic

branched morphology of DC in pathogen-free rats was

no longer present in the OX6-positive cell population 1

week after infection and could, therefore, not be used to

distinguish DC from other MHC class II expressing

cells. Accordingly, some OX6-positive cells observed

after infection may represent activated macrophages or

B lymphocytes that have infiltrated the airway mucosa
[15,31]. The exact proportion of DC relative to other

MHC class II expressing cells cannot be definitively

determined without using multiple cell markers. For

example, activated B-cells could be identified by using

OX12 as a marker [8]. However, it is unlikely that ac-

tivated macrophages make a major contribution to the

OX6-positive cell population, because in infected ani-

mals they acquire a distinctive distribution around an-
giogenic blood vessels, quite different from the pattern

of OX6 immunoreactivity [18].

4.3. Changes in OX6-immunoreactive cell shape and

number

In rats exposed to heat-killed M. catarrhalis, ‘‘small,

round, intensely class II positive cells’’ migrate to the
airway epithelium and reach a maximal density of ap-

proximately three times normal [32]. In sections of air-

way epithelium stained for OX6 immunoreactivity, class

II-positive cells become pleomorphic about 8 h after

challenge with M. catarrhalis and by 24 h develop into

mature DC with highly branched processes [32]. Roun-

ded DC precursors are not seen in control animals, and

their transformation from rounded to stellate phenotype
is most likely explained by local factors affecting DC

maturation [5]. In our experiments, OX6-positive cells

with a rounded phenotype accumulated in the airways

during the first week afterM. pulmonis infection. Perhaps

the transformation from stellate to rounded phenotype

reflects changes in DC maturation, differentiation, or

motility. Alternatively, the apparent change in DC

phenotype may represent the gradual replacement of
stellate DC by rounded MHC class II expressing cells

such as B-cells.

The number of OX6-positive cells remained fairly

constant during the first 4 days after M. pulmonis in-

fection and then increased significantly. The number

continued to increase along with the 10-fold increase in

thickness of the tracheal mucosa evident at 4 weeks. The

accumulation of OX6-positive cells in the airway mu-
cosa after M. pulmonis infection was accompanied by

the accumulation of airway-associated lymphoid tissue

[16,17].

Changes in the number of OX6-positive cells after

intranasal inoculation of M. pulmonis differed both in

onset and duration from what has been found after

exposure to other bacteria or to viruses. Exposure to

aerosolized bacteria can increase the number of OX6-
positive DC within 1 h [5,6]. By contrast, the kinetics

and time course of OX6-positive cell recruitment seen

with M. pulmonis infection is closer to the response

demonstrated by Sendai virus infection, which peaks at

3–5 days and remains elevated for 2 weeks [8]. Similarly,

in rats exposed to heat-killed bacillus Calmette-Gu�eerin,
numerous OX6-positive DC accumulate at the borders

of pulmonary granulomas, peaking at 2 weeks and then
gradually decreasing [33].

4.4. Epithelial cells with OX6 immunoreactivity

The strong OX6 immunoreactivity of columnar epi-

thelial cells that developed after M. pulmonis infection is

consistent with the establishment of persistent infection
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and the corresponding immune response. In pathogen-
free rats, some basal cells had faint staining but other

epithelial cells had none. After infection, immunoreac-

tivity was detectable in scattered columnar epithelial

cells at 2 days, was strong and fairly uniform at 1 week,

and was still strong and uniform through 4 weeks. The

upregulation of MHC class II determinants by airway

epithelial cells has also been observed during Sendai

virus infection [8]. Additionally, OX6 immunoreactivity
has been reported in other types of epithelial cells after

exposure to endotoxin or IFN-c [9,10,34]. It is not clear

whether the M. pulmonis organisms themselves or per-

haps their ability to stimulate IFN-c production is

driving the MHC class II expression by epithelial cells.

The granular immunoreactivity of epithelial cells re-

sembles MHC-rich vacuoles in DC [35–37], where in-

ternalized antigen associates with MHC molecules.

4.5. Conclusions

M. pulmonis infection provides a potent immunologic

stimulus that augments and transforms the MHC class

II-expressing cell population of the airway mucosa.
MHC class II-expressing cells become much more

abundant in the mucosa during the first four weeks after

infection, and concurrently, columnar epithelial cells

begin to express MHC class II molecules. The rounding

of OX6-positive cells after infection suggests that exist-

ing DC change shape during maturation or differentia-

tion or are replaced by OX6-positive cells with a

rounded phenotype. Changes in the OX6-positive cell
population probably reflect the activation of an adaptive

immune response and may play a role in the progression

to chronic disease by persistently stimulating T lym-

phocyte responses.
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