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ESTIMATION OF WORKER FRUIT-PICKING RATES WITH AN 1 

INSTRUMENTED PICKING BAG 2 

Z. Fei, J. Shepard, S. G. Vougioukas 3 
HIGHLIGHTS 4 
• We designed a low-cost instrumented picking bag that can monitor the worker's fruit picking process. 5 
• The bag can be used to estimate the worker's picking rate for better workforce management. 6 
• The bag can also be used to estimate the accumulated fruit weight and generate a yield map for orchard management. 7 
• The best root mean squared error over the entire measurement range was 0.36 kg (1.8% of bag capacity). 8 
ABSTRACT.  9 

Estimating and recording a worker's picking rate during tree fruit harvesting can provide useful 10 

information for better workforce management, orchard platform crew management, and generation of 11 

yield maps (in combination with position). A commercial picking bag was instrumented to estimate 12 

harvested fruit weight, in real-time. All electronics were placed inside an enclosure that was placed 13 

between the bag and its shoulder straps, without hindering picking motions. Electronics included: two 14 

load cells to measure the forces exerted on the straps by the bag and fruits; an Arduino microcontroller; 15 

signal conditioning circuits; data storage; wireless communication components, and inertial sensors. 16 

Software was developed for data acquisition, filtering, transmission, and storage. Two calibration 17 

models were developed to estimate fruit weight. One model (#2) utilized inertial sensor data to 18 

compensate for the picking bag's angle with respect to gravity direction, whereas the other model (#1) 19 

did not. Dynamic calibration experiments were performed over the entire weight range of the bag (0 to 20 

20 kg), with reference objects of known weight (baseballs and fresh apples). The weight range was 21 

divided into three operating regions: light load (< 8kg), medium load (8-13kg), and heavy load (>13 22 

kg). Results showed that model #1 performed slightly better in the light-load region, but model #2 was 23 

superior in the medium and heavy load regions, presumably due to bag angle compensation. The best 24 

root mean squared error over the entire range was achieved by model #2 and was 0.36 kg (1.8% of bag 25 

capacity). As an application case study, two bags were used by workers harvesting from a platform in 26 

a commercial apple orchard; from the data, pickers' harvesting speeds were estimated, and fruit yield 27 

distribution was calculated for one side of a tree row. 28 
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Keywords.  29 

Fruit harvesting, Yield monitor, Electronics, Calibration, Labor. 30 

INTRODUCTION 31 

Practically all fresh-market fruits are harvested manually (Zhang, 2017); human pickers use tall 32 

ladders to reach fruit located at higher parts of the canopies and carry picking bags to store the harvested 33 

fruits ( Figure 1a). Once their bag is full, a picker will walk to the closest bin ( Figure 1b), empty the 34 

bag into the bin, and resume picking. In orchards where tree canopies are narrow and form a "fruit-35 

wall," machine-aided or mechanized harvesting can be done; pickers harvest while standing on a mobile 36 

orchard platform, at different levels, and ladders are not needed ( Figure 1c). On many platforms, 37 

pickers still use picking bags to store the harvested fruit temporarily, and unload their bag in the bin 38 

that is carried by the platform; hence, walking to a bin is also eliminated. Picking platforms with fruit 39 

conveyance mechanisms exist (eliminating the need for picking bags), such as the vacuum apple 40 

harvester from Phil Brown, Welding, Conklin, MI. However, the cost of such platforms is higher than 41 

the cost of platforms that don't have a fruit conveyance system, and their adoption has been limited. 42 

a)   b)   c)  43 
 Figure 1 a) A picker on a ladder picks pears and uses a picking bag to store them; b) Pickers unload their picking bags 
into bins that are pre-positioned in the orchard rows; c) Pickers harvest apples from a mobile orchard platform; picking 

bags are used to store fruit during picking. 
 44 

In both manual and machine-aided commercial harvesting, picker productivity and yield are 45 

measured by the number of bins filled per acre. Typically, the weight of a bin is only known roughly 46 
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(from prior experience); i.e., it is not measured. Hence, productivity and yield are tracked at a very low 47 

spatial resolution (per acre), and in terms of bins rather than weight. Also, this information is typically 48 

available only after entire orchard blocks have been harvested, i.e., data are not available in real-time, 49 

while workers are filling their bags. Getting such information at higher spatial resolution and temporal 50 

resolutions during manual picking could drive more informed orchard and workforce management. 51 

A relatively small number of prototype systems have been developed to better track the harvested 52 

yield of horticultural crops (Zude-Sasse et al. (2016)). Schueller et al. (1999) developed a coarse-53 

resolution yield mapping system for hand-harvested citrus by georeferencing all filled containers/bins; 54 

each container carried approximately 400 kg of citrus (containers were not weighed).  Ampatzidis et al. 55 

(2009a; 2009b) developed a yield mapping system for hand-harvested fruits, which utilized a scale on 56 

a tractor. Fruit boxes were weighed manually, and the location was recorded using RFID tags on boxes 57 

and an RFID reader with a GPS. Aggelopoulou et al. (2010) measured an apple orchard's yield by asking 58 

pickers to hand-harvest apples from groups of five adjacent trees, and by recording the GPS location of 59 

the central tree. The apples were placed in plastic bins along the tree rows and weighted afterward. 60 

Ampatzidis et al. (2013) developed a portable picker efficiency monitoring system for manually-61 

harvested sweet cherries. A digital weighing platform was built and deployed to measure the weight of 62 

a commercial fruit bin while pickers emptied their picking bags in it. Data was logged and transmitted 63 

wirelessly to a host computer, and individual worker picking rates (kg/min) were estimated from the 64 

data. A variation of this system was built by Ampatzidis et al. (2016) to monitor picker productivity in 65 

real-time. Pickers had to manually weigh their buckets before unloading them in a bin. Colaço et al. 66 

(2015) described a yield mapping method for manually harvested crops and relied on weighing each 67 

georeferenced bin (bag) manually by the harvest team leader. Vatsanidou et al. (2014) mapped the yield 68 

of a pear orchard by having workers hand-pick pears and place them in plastic bins (one bin per five 69 

trees in a row). The bins were weighted and georeferenced using GPS.  70 

All the above systems require that pickers perform extra operations, such as weighing their bags, 71 
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which interfere with - and are expected to delay - the picking process. Also, the above systems are not 72 

applicable to machine-aided harvesting using platforms, an operation that is becoming increasingly 73 

important as labor shortages increase. Finally, the spatial and time resolutions of these systems are 74 

limited, and data are available only after entire bags or bins have been filled, but not while workers are 75 

picking fruit and placing them in their bags. The importance of real-time data streams with workers' 76 

picking rates is expected to become increasingly important, as automated - and even robotic - harvest-77 

aid machines are developed for specialty crop production (e.g., Khosro Anjom, Vougioukas, 2019). 78 

The objective of this study was to develop a low-cost, easy-to-use system that can measure in real-79 

time the amount of fruit a worker has picked, without intervening with the picking process or requiring 80 

any involvement of the picker.  The envisioned application scenario is pickers harvesting from a mobile 81 

platform. Since the picking bag – or picking bucket - is the standard tool used to harvest fruits in 82 

commercial harvesting operations, a commercially available picking bag was instrumented with 83 

sensors, electronics, a microcontroller, and software to provide real-time measurement of harvested fruit 84 

weight during fruit picking. This approach – of instrumenting an existing industry tool – has been used 85 

successfully in strawberry harvesting (Khosro Anjom, Vougioukas, & Slaughter, 2018), albeit that tool 86 

was not a wearable subject to contact forces – it was a wheelbarrow cart - and hence, estimating 87 

harvested yield from load cells was simpler. The main contributions of this paper are the development 88 

of a force-balance model for the picking bag, the formulation of two calibration models to estimate fruit 89 

weight from sensor data, and the performance of experiments that resulted in very small calibration 90 

errors. The rest of the paper is structured as follows. Section 2 provides a detailed description of the 91 

developed system. Section 3 presents a detailed analysis of forces acting on the picking bag during 92 

harvesting, and Section 4 presents two calibration models to estimate fruit load from sensor 93 

measurements. Section 5 presents calibration and validation procedures for the models, and Section 6 94 

presents experimental results. Finally, Section 7 presents an application case-study, where the bags were 95 

used by pickers in a commercial apple orchard in Lodi, CA, and the data were used to monitor picking 96 
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speeds and estimate fruit distribution along a side of an orchard row. Finally, Section 8 summarizes our 97 

work and discusses the main conclusions and future work. 98 

MATERIALS AND METHODS  99 

SYSTEM OVERVIEW 100 

The system was developed based on a commercially available fruit picking bag (Figure 2a)  (Wells 101 

& Wade Harvest Bucket Deluxe, Wenatchee, WA, USA) that is representative of picking bags used in 102 

commercial harvesting operations. During harvest, each picker carries a bag and places the picked fruit 103 

in it. When the bag is full, the picker opens up the bottom of the bag by lifting the side ropes, so that 104 

the knots that hold them in place are lifted from the side-hooks that keep them in place (Figure 2b), and 105 

lets the fruits roll gently into a bin. Then, the picker secures the side ropes to close the bottom of the 106 

bag and resumes picking. Our goal was to add load cells and instrumentation without making any 107 

changes to the bag. An aluminum enclosure/box was built with two fixed metal snaps at the top (Figure 108 

2d) and two metal bars with holes at the bottom. The metal bars were connected to the load cells inside 109 

the box. The top of the metal box was connected to the shoulder straps, and the bottom was connected 110 

to the metal snaps of the bag (Figure 2c); no changes were made to the bag. All the add-on electronics 111 

were placed inside the metal box (Figure 2d). Electronics included an Arduino microcontroller (Arduino 112 

Pro Mini 328 - 5V/16MHz, SparkFun Electronics, Niwot, Colorado), two load cells (TAL220 10kg 113 

Straight Bar, HT Sensor Technology CO., LTD, XI'AN, China), two HX711 load cell signal 114 

conditioning amplifiers and 24-bit analog-to-digital converters (SparkFun Electronics, Niwot, 115 

Colorado), an Inertial Measurement Unit (IMU) (SparkFun 9DoF Sensor Stick LSM9DS1, SparkFun 116 

Electronics, Niwot, Colorado) for measuring rotation angles, velocities and linear acceleration, an Xbee 117 

module (XBee 1mW Trace Antenna - Series 1 (802.15.4), Digi International, Hopkins, MN) for wireless 118 

data transmission, and a data logging module (OpenLog, SparkFun Electronics, Niwot, Colorado) for 119 

logging data. Two lithium-ion batteries (18650 Cell, 2600mAh, 3.7V) were used for powering the entire 120 

system. Lab tests with the system in full operation (measuring, storing and transmitting data) showed 121 
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that the system can operate continuously for 26.5 hours,  which is enough for three 8-hour work shifts. 122 

If longer battery life is needed, one could replace the 5V/16MHz Arduino Pro Mini with the 3.3V/8MHz 123 

version and set the proper power-saving modes for the microcontroller and Xbee module to save energy. 124 

a)  b)  c)  125 

d)  126 
Figure 2 a) The original fruit picking bag; b) Side-view of the picking bag showing the knot holding the side rope in place; 127 

c) Instrumented picking bag with aluminum enclosure/box that contains all electronics; d) Add-on electronics inside 128 
aluminum box. 129 

 130 

The microcontroller polls all the sensors, reads their outputs, and transmits them wirelessly in real-131 

time – with corresponding timestamps - to a host computer, at a frequency of 10 Hz. It also logs all 132 

sensor data on the SD memory card, for off-line processing, at the same frequency. Software running 133 

on the host computer decodes the serial data received wirelessly, filters the data, first with a median 134 

filter and then with a low-pass filter, to remove outliers from impulsive noise and high-frequency noise 135 

respectively, and predicts fruit weight inside the bag based on the filtered sensor data and a prediction 136 

model. The overall hardware system diagram is shown in Figure 3 below. 137 
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 138 
Figure 3 Hardware system diagram of the instrumented picking bag. If the bag is used by pickers on a platform, a host 139 

computer with a GPS receiver collects bag data and position data. 140 

MICROCONTROLLER 141 

The microcontroller in the system is an Arduino Pro Mini, which is a coin size microcontroller board 142 

with an ATmega328 processor. The advantages of this microcontroller include its tiny size, light-weight, 143 

and low power consumption, which fit for a wearable device as this picking bag; also, its processing 144 

power and I/O port are enough to support our system. The Arduino Pro Mini was programmed using 145 

the C++ language.  146 

LOAD CELLS AND AMPLIFIER 147 

Two straight bar load cells (TAL220) are placed between the bag and its shoulder straps. The load 148 

cells measure the forces exerted on the straps by the bag and fruits, as shown in Figure 2. The bag has 149 

a capacity of 20 kg, and typically, pickers do not exceed it (otherwise, fruits above the fill-level start 150 

falling off the bag). By construction (Figure 2), the weight of the bag is split relatively equally between 151 

the load cells. When the bag is heavy, the accelerations caused by the pickers' activities – and resulting 152 

forces on the load cells - are expected to be small. Therefore, the full measurement scale (FS) of each 153 

load cell was selected to be 10 kg (with 120% FS safe overload, and 150% FS ultimate overload); the 154 

rated error is ± 0.05% FS. The selected range was deemed adequate for the specific bag. If higher loads 155 

are expected or measured (not the case in our experiments), one can increase the safety margin by using 156 

load cells with larger FS. 157 
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An HX711 amplifier and analog-to-digital converter reads the output of each load cell, amplifies it 158 

(gains is 64, corresponding to a full-scale differential voltage of ±40 mV), and communicates with the 159 

microcontroller through the I2C protocol.  160 

INERTIAL MEASUREMENT UNIT 161 

The LSM9DS1 IMU is placed on the back of the aluminum enclosure, as showed in Figure 4. The 162 

LSM9DS1 is a small integrated circuit chip that contains a 3-axis accelerometer, a 3-axis gyroscope, 163 

and a 3-axis magnetometer. The zero-g level offset of this chip is ±90 mg. Its programmable acceleration 164 

measurement range was set at ±4g, with acceleration sensitivity equal to 0.122 mg/LSB. When attached 165 

to a rigid body, the IMU provides the body's three acceleration components, rotational velocities, and 166 

components of the local magnetic field vector (total of nine measurements). Under static conditions, 167 

the accelerometer provides the three Euler angles of the body's weight vector with respect to an internal 168 

reference frame, i.e., body 3D pose.  The IMU communicates with the microcontroller through the I2C 169 

protocol.  170 

 171 
Figure 4 A sketch of the picking bag and the locations of the sensors. 172 

DATA STORAGE AND WIRELESS TRANSMISSION MODULE 173 

The data is transmitted wirelessly through an Xbee module to a host computer. The module is the 174 

XBee 1mW Trace Antenna - Series 1, which is low energy-consuming. It can publish serial 175 

communication to a maximum range of 100 meters. An SD card module is used to backup data and 176 

store it off-line. 177 
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MODELING THE PICKING BAG 178 

FORCE ANALYSIS 179 

The force balance on the picking bag was modeled, as shown in Figure 5, to establish the relationship 180 

between the sensors' measurements and the load weight in the bag. 181 

 182 
Figure 5 Force analysis of the picking bag. 183 

 184 

Where  fload is the force measured by the load cells in the direction of the straps and is equal to the 185 

sum of the individual load cell forces, fload1, fload2, respectively.  fbody is the total reaction force due to 186 

bag-picker contact. m is the mass of the bag and load. 𝛼 is the angle of  fload with x-axis as shown above. 187 

𝛽 is the angle of  fbody with the y-axis as shown above, and 𝜃 is the angle of the bag with the y-axis, as 188 

shown above. 189 

Let 𝑎! , 𝑎" be the bag's accelerations in the x and y directions, in the inertial frame. (In the following, 190 

the absence of frame superscript means the inertia frame; the absence of subscript means the object is 191 

the bag.) 192 

   Here, it is assumed that  fload and  fbody are the only external forces applied to the bag.  Also, by using 193 

the current suite of sensors, there is no method to measure directly the direction and magnitude of  fbody. 194 

SYSTEM ANALYSIS 195 

The force balance in the x and y directions is: given in Eq. 1 and Eq. 2, respectively: 196 



   10 
 

 𝑓#$%&𝑐𝑜𝑠𝛼 − 𝑓'$&"𝑠𝑖𝑛𝛽 = 𝑚𝑎! (1) 197 

 𝑓#$%&𝑠𝑖𝑛𝛼 + 𝑓'$&"𝑐𝑜𝑠𝛽 = 𝑚0𝑎" + 𝑔2 (2) 198 

Solving for the reaction force from Eq. 1, and assuming 𝛽 ≠ 0, we get: 199 

 𝑓'$&" =
(!"#$)$*+,-%%

*./0
  (3) 200 

By combining Eqs. 2 and 3, we get: 201 

 𝑚0𝑎" + 𝑔2 = 𝑓#$%&𝑠𝑖𝑛α +
(!"#$)$*+,-%%

*./1
𝑐𝑜𝑠β  (4) 202 

The mass can be expressed as: 203 

 𝑚 = (!"#$(*./34)$*3)$50)
%&474%%)$50

  (5) 204 

or 205 

 𝑚 = ((!"#$'4(!"#$()(*./+4)$*+)$51)
%&474%%)$51

  (6) 206 

ANGLE ESTIMATION 207 

The poses of the bag and the electronics box are important information to estimate total mass. 208 

However, the roll, pitch, and yaw angles of the bag and box in the inertial frame cannot be directly 209 

measured by our sensor. The accelerometer signals of the IMU can be modeled as following (Beard & 210 

McLain, 2012) 211 

 𝑦%))8#,! = �̇� + 𝑞𝑤 − 𝑟𝑣 + 𝑔𝑠𝑖𝑛𝜃.-: + 𝜂%))8#,!  (7) 212 

 𝑦%))8#," = �̇� + 𝑟𝑢 − 𝑝𝑤 − 𝑔𝑐𝑜𝑠𝜃.-:𝑠𝑖𝑛𝜙.-: + 𝜂%))8#,"  (8) 213 

 𝑦%))8#,; = �̇� + 𝑝𝑣 − 𝑞𝑢 − 𝑔𝑐𝑜𝑠𝜃.-:𝑐𝑜𝑠𝜙.-: + 𝜂%))8#,;  (9) 214 

where 𝑦%))8# is the reading of the IMU's accelerometer; 𝜃.-:, 𝜙.-: are the pitch and roll angles of 215 

the IMU, and u, v, w are velocities along the x, y, z axes in the IMU' s body frame. �̇�, �̇�, �̇�  are 216 

accelerations along x, y, z axes in IMU' s body frame; p, q, r are roll, pitch, yaw rates measured along 217 
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the x, y, z axes in the IMU's body frame, and η is Gaussian noise. 218 

The IMU is firmly attached to the electronics box, so the states of the IMU are also the states of the 219 

object. High-frequency Gaussian noise can be reduced significantly by applying a low pass filter to the 220 

signal. Under the assumption that the object is quasi-static ( �̇� = �̇� = �̇� ≅ 0, 𝑢 = 𝑣 = 𝑤 ≅ 0) and 221 

Gaussian noise has been removed, one gets the following simplified equations: 222 

 𝑦%))8#,! = 𝑔𝑠𝑖𝑛𝜃.-:  (10) 223 

 𝑦%))8#," = −𝑔𝑐𝑜𝑠𝜃.-:𝑠𝑖𝑛𝜙.-:  (11) 224 

 𝑦%))8#,; = −𝑔𝑐𝑜𝑠𝜃.-:𝑐𝑜𝑠𝜙.-:  (12) 225 

The quasi-static assumption corresponds to a simplified approach to calculate roll and pitch angles 226 

in the inertial frame and then calculate α. 227 

 𝜃.-: = 𝜋 − 𝛼  (13) 228 

 𝑦%))8#)*+,! = 𝑔𝑠𝑖𝑛(π − α) = 𝑔𝑠𝑖𝑛α (14) 229 

 𝑦%))8#)*+," = −𝑔𝑐𝑜𝑠(π − α)𝑠𝑖𝑛ϕ.-: = 𝑔𝑐𝑜𝑠α𝑠𝑖𝑛ϕ.-: (15) 230 

 𝑦%))8#)*+,; = −𝑔𝑐𝑜𝑠(𝜋 − 𝛼)𝑐𝑜𝑠𝜙.-: = 𝑔𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝜙.-: (16) 231 

 α = 𝑡𝑎𝑛,<
"#,,-!)*+,%

="#,,-!)*+,&
( 4"#,,-!)*+,/

(
 (17) 232 

The zero acceleration assumption will not hold during real-world harvesting when the picker is 233 

moving, and the picking bag is in direct contact with her/him; this is expected to be more pronounced 234 

when the bag contains little fruit and contact forces will cause accelerations. However, the picking bag 235 

becomes heavy as more fruit is harvested, and in practice, its acceleration and speed due to picker 236 

motion are expected to be small. 237 
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CALIBRATION MODEL 238 

STATIC MODEL WITHOUT IMU (MODEL #1) 239 

       We have derived an equation linking states to mass (Eq. 6); however, not all states in Eq. 6 are 240 

available. We have to make some assumptions before we use Eq. 6. Starting from the easiest solution, 241 

we can use only load cells without any IMU in our system. This solution has the lowest cost and most 242 

stable since it has minimum complexity. Also, this solution limits the information we can use and make 243 

the system less observable. The performance may be reduced if we only use load cells as sensors. 244 

Nevertheless, it is still a good model to start with. 245 

The sensors used in this model are only the load cells. Since we have no method to measure α	, 𝛽 246 

angle or estimate α!, α", so we assume that	𝛼	and 𝛽 are constant and 𝛼! 	= 	𝛼" ≈ 0. By applying these 247 

assumptions to Eq. 6, we get the following Eq. 18: 248 

 𝑚 = ((!"#$'4(!"#$()∗(*./34)$*3)$50)
7

 (18) 249 

The term (𝑠𝑖𝑛𝛼 + 𝑐𝑜𝑠𝛼𝑐𝑜𝑡𝛽) is constant, since α and β are constant. 250 

We can see the mass is now a linear function of measured load cell forces fload1, fload2. 251 

By expanding Eq. 18, we get Eq. 19: 252 

 𝑚 = (!"#$'∗(*./+4)$*+)$51)
7

+ (!"#$(∗(*./+4)$*+)$51)
7

 (19) 253 

We constructed a linear model based on Eq. 19 to fit parameters that can give the least-squares error. 254 

Considered that two load cells may have different calibration equations, we use different 𝑐< and 𝑐?	as 255 

correction coefficients and added a bias compensate factor 𝑏@. We formalized the linear regression Eq. 256 

20, as shown below. 257 

 𝑚K = 𝑏@ + 𝑏<𝑥< + 𝑏?𝑥? (20) 258 

The dependent variable 𝑚K  is the predicted mass of the bag and load. Independent variables 𝑥<, 𝑥?  259 

represent fload1, fload2. 260 
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The parameter 𝑏@ is the bias compensation factor, 𝑏< is the estimation of the term 𝑐< ∗
(*./34)$*3)$50)

7
, 261 

and 𝑏? is the estimation of the term 𝑐? ∗
(*./+4)$*+)$51)

7
. 262 

STATIC MODEL WITH IMU ON THE ELECTRONICS BOX (MODEL #2) 263 

In addition to the data from the two load cells, additional data are available from the IMU sensor on 264 

the electronics box. These data can be used to estimate the 𝛼	angle; however, the 𝛽 angle and the bag 265 

accelerations cannot be determined from the IMU data. To improve the accuracy of the model without 266 

increasing complexity, we assume that 𝛽 is constant and 𝛼! 	= 	𝛼" ≈ 0. By applying these assumptions 267 

to Eq. 6, we get Eq. 21: 268 

 𝑚 = (!"#$'∗(*./+4)$*+)$51)
7

+ (!"#$(∗(*./+4)$*+)$51)
7

 (21) 269 

Where 𝑐𝑜𝑡β is a constant and 𝛼 can be estimated using Eq. 17 270 

After expanding Eq. 21, we get Eq. 22: 271 

 𝑚 = (!"#$'*./3
7

+ (!"#$')$*3)$50
7

+ (!"#$'*./3
7

+ (!"#$')$*3)$50
7

  (22) 272 

The mass is a linear function of four independent variables. Α linear regression equation can be 273 

expressed as follows:  274 

 𝑚K = 𝑏@ + 𝑏<𝑥< + 𝑏?𝑥? + 𝑏A𝑥A + 𝑏B𝑥B  (23) 275 

The dependent variable 𝑚K  is the predicted mass of the bag and fruit yield. Independent variable 𝑥< 276 

corresponds to the term 𝑓#$%&<𝑠𝑖𝑛α , independent variable 	𝑥?  corresponds to the term 𝑓#$%&?𝑠𝑖𝑛𝛼 , 277 

independent variable 𝑥A corresponds to the term 𝑓#$%&<𝑐𝑜𝑠𝛼, and independent variable 𝑥B corresponds 278 

to 𝑓#$%&?𝑐𝑜𝑠𝛼. The parameter 𝑏@ is the bias compensation factor,  𝑏< is the estimation of the term  )'
7

, 279 

𝑏? is the estimation of the term   )(
7

, 𝑏A is the estimation of  )')$50
7

, and 𝑏B is the estimation of  )()$51
7

., 280 

where 𝑐<	and 𝑐? are the correction coefficients for the load cells. 281 
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EXPERIMENTAL DESIGN 282 

DATA COLLECTION 283 

Calibration dataset: Reference object (baseball) batch-drop dataset 284 

Dynamic calibration was performed in the lab over the entire weight range. Baseballs were used as 285 

reference objects to perform calibration because their weight is standardized; each ball has mass equal 286 

to 0.14239 ± 0.0008 kg.   287 

The following procedure was followed for calibration. 288 

1. A person put on the bag and all baseballs were placed on the surface of a table, at chest height. 289 

2. Five baseballs were placed together - as a batch – in the bag to produce a stair-case weight signal 290 

that was used as ground truth. Each weight level differed from the previous one by 0.71195±0.004 291 

kg. 292 

3. The edge of the bag was manually pushed to generate an easily-detectable impulse signal for 293 

separating batches. 294 

4. Picking-like movements (move upper body and arms to reach 'fruits') were performed continuously 295 

to mimic apple picking on a harvesting platform. 296 

5. Steps 1-4 were repeated until the bag was full. 297 

Eight bags were filled using the above procedure by eight people with different heights and body 298 

weights. Figure 6 a) and b) show the example trace of the ground truth signal and the load cell signals. 299 

Figure 6 c) Shows the mean of the estimated α angle and its standard deviation with respect to the load 300 

weight, from all experiments. The figure suggests that the α angle was slightly decreasing as the weight 301 

of the bag increased and the deviation (fluctuation) did not change significantly. A possible explanation 302 

is that, since the bottom part of the bag leans on the picker legs (Figure 2 c), the α angle is largely 303 

determined by the body shape and posture; the lab experiments were done in the lab by subjects 304 

deliberately move their body in a “consistent” magnitude, as they pick, and therefore the weight of the 305 

bag does not affect significantly the α angle deviation.   306 

 307 
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a) b) c)  308 
Figure 6 a) Example of staircase weight signal (ground truth) when baseball batches of five were dropped in the bag. b) 309 

Corresponding load cell signals. c) Mean of the estimated α angle, and its standard deviation with respect to the load 310 
weight. 311 

 312 

Validation datasets: Reference objects (baseballs) and fresh apple fruits single-drop datasets 313 

The first validation dataset was collected using the same five-step procedure described above - for 314 

the calibration dataset – with one difference: one reference object (baseball) was added at a time (single-315 

drop), instead of five objects. Adding one baseball at a time is closer to actual fruit picking, and was 316 

used to test the validity of the model. The second validation dataset was collected using fresh apples 317 

('Red Delicious'); the average apple weight was measured to be 0.21 kg. A single-drop procedure was 318 

used to collect the real fruit dataset (one fruit at a time). Each fruit's weight was measured using a 319 

precision digital scale (L-EQ 10/20, Tor Rey Electronics Inc, Houston, TX, USA) and recorded before 320 

the fruit was dropped into the bag. One bag was filled for each of the validation datasets. 321 

PERFORMANCE METRICS 322 

The main performance metric used in this paper is the root mean square error (RMSE) between the 323 

predicted mass and the measured ground truth mass. 324 

 RMSE = ∑ (-D ),-))
0
)1'

/
 (24) 325 

where 𝑚K . is the predicted mass and 𝑚. is the ground truth mass at timestep sample i. The mean error, 326 

the standard deviation of error, and the 90th percentile of the absolute error are also used as 327 

supplementary error descriptive metrics. 328 

REGRESSION AND VALIDATION 329 

For the baseball batch-drop datasets, a cross-validation procedure was followed, i.e., the entire 330 
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dataset was split into a training set and a validation set. The training set consisted of seven people's 331 

data, and the validation set was the remaining person's data. The cross-validation procedure was 332 

repeated eight times. Every person's data was used as a validation set. Regression (training) was 333 

performed on the training set, and validation was done on the validation set to get the performance 334 

indices. The errors for eight cross-validations were aggregated together to calculate the total estimation 335 

of performance for a specific regression model. The regression model from the batch-drop dataset was 336 

applied to the single-drop baseball and apple validation datasets. All load cell data were pre-filtered 337 

using a median filter of size 11 (which is about one second's data) to reject outliers from impulse 338 

noise/spikes. 339 

APPLICATION CASE STUDY: APPLE-HARVESTING FROM AN ORCHARD PLATFORM 340 

The purpose of this experiment is to demonstrate the functionality of the instrumented picking bags in 341 

real-world, commercial harvesting conditions. Two instrumented picking bags were calibrated in the 342 

lab and then used by two pickers to harvest Fuji apples, in a commercial apple orchard at Lodi, CA, on 343 

September 10, 2019. Trees were trained in a V-trellis architecture. The pickers were picking from a 344 

modified orchard platform (Bandit Xpress, Automated Ag Systems, Moses Lake, WA, USA), as shown 345 

in Figure 7. 346 

a)   b)  347 
Figure 7 a) Two pickers harvesting on an orchard platform, using the instrumented bags. b) Close-up of a picker carrying 348 

his picking bag. 349 
 350 

A Real-Time Kinematic GNSS receiver (Piksi Multi, Swift Navigation, San Francisco, CA, USA) 351 
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with real-time corrections over a cellular network was mounted on the top of the platform to record 352 

position at cm-level accuracy. We harvested one side of a 50 m long tree row in the orchard. All the 353 

sensor data from the picking bags were transmitted to a computer on the platform in real-time. The 354 

sensor data was used for a) estimating each picker’s bag weight at real-time; b) estimating the total 355 

weight of the fruit harvested so far by each picker by accumulating fruit weight - bag by bag; c) 356 

estimating individual worker’s picking speed by calculating the average slope (increase rate) of the time 357 

series of the accumulated picked weight using a five-minute time window; d) estimating the yield 358 

distribution at a spatial resolution of three meters along one side of a tree row, by splitting the row's 359 

length into three-meter segments and calculating the total weight of the fruit picked by both pickers in 360 

each segment.  361 

RESULTS AND DISCUSSION  362 

CALIBRATION RESULTS FROM THE BASEBALL BATCH-DROP  DATASET 363 

Both models were calibrated with data from the baseball batch-drop experiments and then used to 364 

estimate/predict the weight of the baseballs in the calibration dataset. Figure 7 shows the ground truth 365 

and predicted weight signals from one randomly selected batch-drop dataset for models #1 and #2. The 366 

waveforms of the predictions of the two models in these graphs look similar (but are not identical), 367 

because they utilize the same load cell ground truth, and they are both reasonably accurate (they don't 368 

deviate much from ground truth). The error metrics in Table 1 show the overall cross-validation error 369 

statistics. The results indicate that model # 2's prediction fits the ground truth better than model #1 (it 370 

has 11.3% smaller 90th percentile error). The calibrated model trained by all the available calibration 371 

data is saved on the device, and the model should remain valid, as long as the load cells are not changed, 372 

and the sensor installation positions don't change. Calibration needs to be done for each individual 373 

picking bag if the load cells are not pre-calibrated. If the load cells are pre-calibrated to the standard 374 

unit (kg), and the sensor installation positions are the same, the picking bag model can be shared across 375 

devices. 376 
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    377 

a)  b)  378 
Figure 8 Two examples of predicted vs. ground truth weight, during the baseball batch-drop experiments, using a) model 379 

#1, and b) model #2. 380 
 381 
 382 

 Model #1 Model #2 
RMSE (kg) 0.5463 0.5038 

Mean |Error| (kg) 0.4206 0.3898 
SD |Error| (kg) 0.3486 0.3192 

|Error| 90% Percentile (kg) 0.9315 0.8258 
RMSE /Bag Capacity(20kg) 2.732% 2.519% 

Table 1 The overall cross validation error statistics of the baseball batch-drop dataset, for Models #1 and #2 383 

RESULTS ON THE BASEBALL SINGLE-DROP VALIDATION DATASET 384 

Both models were used to estimate/predict the weight of the baseballs in the single-drop validation 385 

dataset. Figure 9 a), b) show the ground truth and predicted weight signals of both models. The error 386 

metrics in Table 2 indicate that model #2 performed significantly better than model #1 (e.g., 55.93% 387 

less 90th percentile error). From Figure 9 c), we can see that the error tended to increase when the load 388 

increased, for both models; however, Model # 1's error increased more than the error of Model #2. 389 

Figure 9 d) shows that the relative error (error as a percentage of the load) increased for Model #1 but 390 

didn't increase much for Model #2. This can be attributed – to some extent – to the estimation and 391 

incorporation of angle α into model #2 (see section 7.3).  392 

 393 
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a) b)  394 
 395 

c)  d)  396 
 397 
Figure 9 a) Predicted weight vs. ground truth weight for the baseball single-drop dataset, using Model #1. b) Predicted vs. 398 
ground truth weight for the baseball single-drop dataset, using Model #2. c) Mean absolute error vs. current load for the 399 
baseball single-drop dataset for both models. d) Corresponding mean absolute relative error (percentage of current load) 400 

for both models. 401 
 402 

 Model #1 Model #2 
RMSE (kg) 0.4679 0.1899 

Mean |Error| (kg) 0.4118 0.1560 
SD |Error| (kg) 0.2220 0.1084 

|Error| 90% Percentile (kg) 0.7130 0.3142 
RMSE /Bag Capacity(20kg) 2.340% 0.950% 

Table 2 The overall cross-validation error statistics of the baseball single-drop dataset, for Models #1 and #2.  403 

RESULTS FROM THE APPLE SINGLE-DROP VALIDATION DATASET 404 

Both models were used to estimate/predict the weight of fresh apples in a single-drop validation 405 

dataset. Figure 10 a), b) shows the ground truth and predicted weight signals of both models. Figure 10 406 

c) shows that the error increased with increasing load for both models; however, Model # 1's error 407 

increased more than Model #2 because Model #1 does not include α angle compensation.  Figure 10 d) 408 

shows that the mean absolute relative error (% of the load) for Model #1 is always higher than that of 409 

Model #2. In the light-load range, we can see that both models have high relative errors; this is due to 410 
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the fact that the total load is small, so the relative error is very sensitive to changes in the absolute error.  411 

a) b)  412 
 413 

c)   d)  414 
 415 
Figure 10 a) Predicted vs. ground truth weight for the apples single-drop dataset, using Model #1. b) Predicted vs. ground 416 

truth weight for the apple single-drop dataset, using Model #2. c) Mean absolute error vs. current load on the apples 417 
single-drop dataset, for both models. d) Corresponding mean absolute relative error (percent of current load) for both 418 

models. 419 
 420 

 Model #1 Model #2 
RMSE (kg) 0.5997 0.3594 

Mean |Error| (kg) 0.4697 0.2942 
SD |Error| (kg) 0.3729 0.2064 

|Error| 90% Percentile (kg) 0.9609 0.5566 
RMSE /Bag Capacity(20kg) 2.999% 1.797% 

Table 3 The overall cross-validation error statistics of the apple single-drop dataset, for Models #1 and #2  421 
 422 

From the above results, one can see that both models gave prediction RMSE less than 0.26 kg (which 423 

is less than the weight of one average-sized apple) in the light-weight range (< 8kg), when applied to 424 

the baseball and apple validation datasets. Figure 9 indicates that model #2 performed better than model 425 

#1 when the bag was heavier than 8 kg; model # 1's prediction started underestimating weight, whereas 426 

model # 2's prediction still predicted the ground truth closely. A possible explanation is that model #1 427 
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assumes that angle α doesn't change, whereas, in reality, it did (Figure 6 shows that angle α decreased 428 

– on average - as the load weight increased; model #2 incorporates the angle in the weight estimate. 429 

Most of the errors made by model #2 were within 0.5 kg, and the 90% percentile of the error was 0.56 430 

kg, which was 42.08% less than the corresponding error of model #1. 431 

Error distributions of both models for apple dataset 432 

a) b)  433 
Figure 11 a) Frequency histogram of fresh-apple weight error using model #1. b): Frequency histogram of fresh-apple 434 

weight error using model #2. 435 
 436 

Figure 11 shows the frequency histograms of the errors of the two models; both distributions are 437 

biased toward negative errors(the mean error was -0.347 kg for model #1 and -0.088 kg for model #2), 438 

which means that both models tended to underestimate the true weight of the fruits in the bag. The 439 

underestimation effect was more significant in model #1, as it is also evident from Figure 10.  440 

Errors in different ranges for apple dataset 441 

To study the errors quantitatively under different load conditions, and gain insight into the 442 

performance of each model under varying load conditions, the total weight range was divided into three 443 

operating regions: light load (< 8kg), medium load (8-13kg), and heavy load (>13 kg).  444 

 Model #1 Model #2 
 Light Medium Heavy Light Medium Heavy 

RMSE (kg) 0.2189 0.4573 0.9876 0.2595 0.2250 0.5597 
Mean |Error| (kg) 0.1825 0.3862 0.9586 0.2429 0.1827 0.5181 

SD |Error| (kg) 0.1208 0.2448 0.2374 0.1167 0.1313 0.2118 
|Error| 90% Percentile (kg) 0.3412 0.7496 1.330 0.4061 0.3553 0.8630 

Table 4 Error statistics in different load weight ranges (light load (< 8kg), medium load (8-13kg), and heavy load (>13 kg) 445 
for the apples single-drop dataset 446 

 447 
The results indicate that the errors of both models, in the light and medium-load regions, were smaller 448 
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than the overall error, and the errors in the heavy-load region were higher than the overall error. Model 449 

#1 performed slightly better than model #2 in the light-load region, whereas model #2 outperformed 450 

model #1 significantly, in the medium and heavy-load regions. One possible explanation why Model 451 

#2 had better performance in the medium and heavy-load regions, is that the angles 𝛼 and 𝛽 changed 452 

as loads became heavier. Model #1 did not incorporate any of these angles, and could not capture the 453 

effect of their change; hence, errors increased when the load increased. Model #2 captured the effect of 454 

changing 𝛼, so it performed better than model #1; still, it underestimated the fruit weight as the load 455 

increased, because it did not capture the effect of changing 𝛽.  The possible reason that Model #1 456 

outperformed Model #2 in the lightweight range is that although Model #2 utilized the α angle, the α 457 

angle estimation is based on a quasi-static-bag assumption (Eq.10 – Eq.12), which is not strictly true; 458 

hence, it seems that the error introduced by the violation of the quasi-static assumption was higher than 459 

the error introduced by not incorporating the angle at all, as in Model #1. The reason why the quasi-460 

static assumption is violated in the light-weight region is that contact forces cause the bag to accelerated 461 

or decelerate  more, and move at higher speeds, thus rendering the angle estimation less accurate. In the 462 

medium and heavy-weight ranges, the benefit of using the angle compensation is larger than the extra 463 

error introduced by α angle estimation error; thus, Model #2 performs better. Nonetheless, Model # 2's 464 

RMSE is 0.26 kg in the light-weight range, which is below the error over the full range.  465 

The average weight of the 'Red Delicious' apple was measured to be 0.21 kg. Based on the mean 466 

absolute error of Model #2. This model can estimate the weight in the bag at 1-2 apple accuracy at the 467 

light and medium load and 2-3 apple accuracy at the heavy load range. The error at maximum load in 468 

the real apple experiment (16 kg, cannot put more apple in the bag) is 5.2%, which can be considered 469 

as the worst-case error in yield/picking rate estimation. 470 

RESULTS OF THE COMMERCIAL APPLE-HARVESTING CASE STUDY 471 

The data collected by the instrumented picking bags during commercial apple harvesting from a 472 

platform were used to calculate the picker productivities and yield information. The results are shown 473 
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in Figure 12. Each picking bag's weight was estimated in real-time, as in Figure 12 a). The cumulative 474 

weight of the fruits harvested by each picker is shown in Figure 12 b). Individual worker picking speeds 475 

are shown in Figure 12 c). The apple yield distribution on the trees on the right side along the row is 476 

shown in Figure 12 d); the distribution is georeferenced and superimposed on a satellite image of the 477 

orchard.  The productivity information shows the temporal variability in picker’s picking rate, and the 478 

yield information shows the spatial variability in fruit distribution. They could be used for better labor 479 

and orchard management. 480 

a) b)  481 
 482 
 483 

c)  d)  484 
Figure 12 a) An example of two time-series of the pickers' estimated bag weights; b) The cumulative fruit weight 485 

harvested by each picker, as a function of time; c) The corresponding estimated fruit-picking speed of each picker; d) The 486 
corresponding estimated fruit density along the row, on one side of the trees (kg/m) 487 

SUMMARY AND CONCLUSIONS 488 

This paper reported the design, implementation, calibration, validation and real-world utilization of 489 

an instrumented fruit picking bag that can measure in real-time the weight of fruit harvested by a picker 490 
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who carries and uses the bag to harvest. Two models were developed to predict true weight from load 491 

cell measurements. Model #1 used linear regression on the load cell values, whereas Model #2 used an 492 

IMU and incorporated the measurement of the bag angle that affects the projection of the true weight 493 

force onto the load cell measured forces. Overall, Model #2 was found to be more precise. The RMSE 494 

and 90th percentile errors of the weight predicted by Model #2 - in dynamic conditions - were less than 495 

0.36 kg and 0.56 kg, respectively; these errors correspond to 1.8% and 2.8% of the bag capacity (20kg). 496 

Both models had higher errors when the fruit load was in the medium-to-full ranges. However, Model 497 

#2 had better performance in the heavy-load range. Two instrumented bags were used by two pickers 498 

to pick apples on a harvesting platform, during commercial harvesting. It was demonstrated that data 499 

from the bags could be used to estimate picker productivities and – in conjunction with a GPS – high-500 

resolution yield maps. These results suggest data from the instrumented picking bags could be used for 501 

labor and orchard management.  502 

A limitation of our commercial-harvesting case study is that ground truth data could not be collected, 503 

since the weights of the picked apples were unknown, and interrupting pickers regularly to weigh their 504 

bags with an accurate scale would alter the picking motions and signals; also, it was not acceptable by 505 

the grower and crew. Therefore, this case study was not used to validate the calibration models under 506 

real harvesting conditions.  507 

Future work could apply each model in the load range it performs best to improve the overall 508 

performance. Also, a dynamic model that incorporates bag accelerations could be developed to better 509 

estimate bag weight under heavy loads. Finally, incorporation of a GPS receiver inside the electronics 510 

box – with a small external antenna - could enable the generation of high-resolution yield maps for all-511 

manual harvesting (on ladders); however, it is expected that GPS signal availability would present a 512 

significant challenge for such applications 513 
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