
UCLA
UCLA Previously Published Works

Title
A Modular Organization of the Human Intestinal Mucosal Microbiota and Its Association with 
Inflammatory Bowel Disease

Permalink
https://escholarship.org/uc/item/2gr7h3vq

Journal
PLOS ONE, 8(11)

ISSN
1932-6203

Authors
Tong, Maomeng
Li, Xiaoxiao
Parfrey, Laura Wegener
et al.

Publication Date
2013

DOI
10.1371/journal.pone.0080702
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2gr7h3vq
https://escholarship.org/uc/item/2gr7h3vq#author
https://escholarship.org
http://www.cdlib.org/


A Modular Organization of the Human Intestinal Mucosal
Microbiota and Its Association with Inflammatory Bowel
Disease
Maomeng Tong1, Xiaoxiao Li2, Laura Wegener Parfrey3, Bennett Roth4, Andrew Ippoliti2, Bo Wei5, James
Borneman6, Dermot P. B. McGovern2, Daniel N. Frank7,8, Ellen Li9, Steve Horvath10, Rob Knight3,11,
Jonathan Braun1,5*

1 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United
States of America, 2 Cedars-Sinai F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, California, United States of America,
3 Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, United States of America, 4 Department of Medicine, Division of
Digestive Disease, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America, 5 Department of
Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America,
6 Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America, 7 Division of Infectious
Diseases, University of Colorado, School of Medicine, Aurora, Colorado, United States of America, 8 Union Council, Denver Microbiome Research Consortium
(MiRC), University of Colorado, School of Medicine, Aurora, Colorado, United States of America, 9 Department of Medicine, Stony Brook University, Stony
Brook, New York, United States of America, 10 Department of Human Genetics and Biostatistics, David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, California, United States of America, 11 Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of
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Abstract

Abnormalities of the intestinal microbiota are implicated in the pathogenesis of Crohn's disease (CD) and ulcerative
colitis (UC), two spectra of inflammatory bowel disease (IBD). However, the high complexity and low inter-individual
overlap of intestinal microbial composition are formidable barriers to identifying microbial taxa representing this
dysbiosis. These difficulties might be overcome by an ecologic analytic strategy to identify modules of interacting
bacteria (rather than individual bacteria) as quantitative reproducible features of microbial composition in normal and
IBD mucosa. We sequenced 16S ribosomal RNA genes from 179 endoscopic lavage samples from different
intestinal regions in 64 subjects (32 controls, 16 CD and 16 UC patients in clinical remission). CD and UC patients
showed a reduction in phylogenetic diversity and shifts in microbial composition, comparable to previous studies
using conventional mucosal biopsies. Analysis of weighted co-occurrence network revealed 5 microbial modules.
These modules were unprecedented, as they were detectable in all individuals, and their composition and abundance
was recapitulated in an independent, biopsy-based mucosal dataset 2 modules were associated with healthy, CD, or
UC disease states. Imputed metagenome analysis indicated that these modules displayed distinct metabolic
functionality, specifically the enrichment of oxidative response and glycan metabolism pathways relevant to host-
pathogen interaction in the disease-associated modules. The highly preserved microbial modules accurately
classified IBD status of individual patients during disease quiescence, suggesting that microbial dysbiosis in IBD may
be an underlying disorder independent of disease activity. Microbial modules thus provide an integrative view of
microbial ecology relevant to IBD.
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Introduction

Inflammatory bowel disease (IBD), a spectrum of chronic,
relapsing inflammatory intestinal diseases, results from the
interaction of environmental factors, including intestinal
microbiota, with host immune mechanisms in genetically
susceptible individuals [1,2]. Human and animal studies
demonstrate the involvement of intestinal microbiota in the
onset or perpetuation of inflammation, and intensive efforts
have search for individual bacterial species and specific
bacterial products in the pathogenesis of IBD [3-5]. However,
rather than revealing a single agent responsible for disease,
these studies have uncovered a variety of bacterial taxa and
products that can either promote or attenuate the inflammatory
disease state. Moreover, the relevant microbiota differ in
accord with the genetic susceptibility traits of the host [6-9].
These insights have shifted the concept of microbial
pathogenesis in IBD away from specific pathogens and
towards ecologic, community-level change [10], and raised
concomitant challenges of establishing coherent concepts and
analytic strategies to identify microbiota relevant to disease risk
or disease activity in individual IBD patients.

In recent years, the phylogenetic and functional
characterizations of the human enteric microbiota in IBD have
been elucidated with the help of second-generation sequencing
platforms. One striking feature of human intestinal microbiome
is its great inter-individual phylotypic variation [11-13]. This
variability has complicated the association of microbial
phylogenetic composition with disease, in that it is challenging
to determine if the absence of a given phylotype in a healthy or
disease subject is due to the pathogenic physiology or simply
temporal or inter-individual stochastic fluctuations. Although a
“core microbiome” at the gene level is identifiable [14], the core
feature at the organismal lineage level, which resolves
functionally redundant phylotypes into distinct communities,
has not yet been defined. In the context of IBD microbial
pathogenesis, this has prompted the current concept that an
individual’s distinct microbial composition (shaped by host
genetics, founder effects, and diet) may create a disease-
susceptible ecology prone to blooms of pathobionts (and/or
busts of protective taxa) when stressed by environmental,
metabolic, or viral disturbances [15]. However, due to the
limitations of current microbial analysis, reproducible microbial
features established for human IBD are quite limited: reduced
alpha diversity, and a small number of elevated or reduced
taxons detectable at the level of patient categories but only
sporadic at the level of individual patients. Accordingly, these
findings are sufficient neither to test the current pathogenesis
concept, nor to provide a strategy to classify and monitor
individual patients for disease-associated microbial taxa.

To validate this concept and allow clinical translation, we
must move beyond existing studies of taxon and/or gene
composition to instead quantify relevant features of the
microbial community at the ecological level. Extensive inter-
species interactions exist in the highly complex intestinal
microbial ecosystem [16,17]. Investigating the hundreds of
thousands of possible pairwise inter-species interactions in a
defined system is not feasible [18], especially because few

known intestinal microbes are cultivable. 16S rRNA gene
profiling allows us infer inter-species correlations from relative
abundance profiles. Several benchmarking studies have
documented microbial co-occurrence in different environments
[19-22], but the role of inter-species interactions during the
pathogenesis of chronic disease remains largely unexplored.
Here we adopted a methodology for phylogenetic network
analysis to search for such interactions, suggesting that the
human mucosal surface bacterial community is organized into
5 highly preserved modules. Two of these modules are
reciprocally associated with inflammatory bowel disease.

Materials and Methods

Patient cohorts and lavage sample collection
A previously assembled patient cohort of 64 subjects [23]

was examined (Table S1) in accord with human subject
protocols approved by the institutional review boards of
University of California Los Angeles and Cedars Sinai Medical
Center. This included written informed consent of each subject
to participate in the study, performed per protocol approved by
the institutional review boards, which serves as the institutional
ethics committee for human subjects research. All enrolled
subjects were prepared for colonoscopy by taking Golytely®
the day before the procedure. The mucosal lavage samples
representing the mucosal luminal interface were collected from
different intestinal regions as described previously [23]. All the
lavage samples in this cohort were collected from non-involved
intestinal regions, which excluded the potential influence of
active inflammation on the mucosal microbiota as much as
possible. Subjects metadata, including diagnosis, gender, age,
and colon regions sampled, were recorded. The influence of
medication on the microbiome was not evaluated, due to the
unavailability of data.

16S rRNA Gene Sequencing and Microbial Composition
Analysis

After collection, the sample was centrifuged at 3,500g for 15
minutes to separate the microbiota from the soluble fraction.
Genomic DNA was extracted as described in Costello et al.
[24]. The hyper-variable region 4 of the 16S ribosomal RNA
gene was then amplified and sequenced on an Illumina HiSeq
2000 as described in Caporaso et al. [25]. The sequence data
is deposited in European Bioinformatics Institute [EMBL:
ERP001780]. The median read length of sequences that
passed quality filtering is 90 bp and the average read length is
88 bp with a filtering threshold of 75bp. For quality control, all
the singletons were removed, and samples with fewer than
3,000 reads were excluded from the following analyses. The
97% OTUs were picked against the Greengenes reference
database (February 4th, 2011) first, then reads that did not
match a Greengenes sequence at 97% or greater sequence
identity were clustered de novo using uclust [26]. Taxonomy of
each OTU was assigned by blasting the representative
sequence against Greengenes reference database [27] (http://
greengenes.lbl.gov/cgi-bin/nph-index.cgi). These steps were
performed using Quantitative Insights Into Microbial Ecology
(QIIME) v1.4.0 [28].
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Alpha rarefaction was performed using the Phylogenetic
Diversity index. Ten sampling repetitions were performed at
each sampling depth ranging from 10 to 3,000 reads. The
comparison of alpha diversity between two groups at certain
sampling depths was performed using a two-sided Student t
test. Significance was defined as a P value of less than 0.05.
Beta diversity was estimated by computing unweighted UniFrac
distances between samples using QIIME. Principal coordinates
analysis (PCoA) was applied to reduce the dimensionality of
the resulting distance matrix.

Construction of microbial co-occurrence network
We first defined a co-occurrence similarity measure which

was used to define the network. Assume that the vector xi

specifies the abundance of the i-th genus across the samples,
the pair-wise Sparse Correlations for Compositional data
(SparCC) ρij was inferred from the abundance profile of each
genus xi and xj as the measurement of co-occurrence
relationship. A signed weighted adjacency matrix (network)
was defined by raising ρij to a power aij = (0.5 + 0.5ρij) ^ β, with
β = 4 [29]. The power is a soft threshold that preserves the
continuous nature of the underlying co-occurrence information.
The relatively low power of 4 (chosen with the scale free
topology criterion) likely reflected the fact that the network was
comprised of relatively few nodes (263 genera). Once the
network was constructed, modules were then defined as
branches of a hierarchical clustering tree based on the
topological overlap measure, because it is a highly robust
measure of network interconnectedness. The modules were
detected after applying the dynamic tree cut method [30].
These network modules (clusters) were interpreted as
functional microbial communities (FMCs). To summarize the
profiles of co-occurrence modules, we calculated the
eigengenus, which provides a mathematically optimal way of
summarizing the co-occurrence patterns of all genera
belonging to each module. To identify modules (FMCs) that
were correlated with clinical traits, we used correlation tests to
relate each eigengenus to the clinical traits. These steps were
performed using WGCNA package (version 1.13) in R (version
2.13.1) [31]. R tutorials explaining the analysis steps can be
found on the webpage: http://www.genetics.ucla.edu/labs/
horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/.

Module preservation analysis
Meta-analysis was performed with two mucosal microbial

datasets: the previously published “Frank” dataset [32], and the
“Tong” dataset presented in this paper (using the same
biospecimens described in a recently reported patient cohort
[23]). Prior to meta-analysis, the taxonomy of each OTU in
Frank dataset was re-assigned by blasting the representative
sequence against Greengenes reference database. The
common phylotypes at genus level that were present in both
dataset were then identified. After this filtering step, 1,196,466
out of 1,236,641 reads (96.8%), or 129 out of 263 genera in
Tong dataset, and 13,165 out of 15,172 reads (86.8%), or 129
out of 263 genera in Frank dataset were included in the
following analysis. To determine whether a FMC found in the
reference dataset was also present in the test dataset, we used

a powerful module preservation statistic implemented in the R
software function modulePreservation [33]. For each module,
the aggregate measure of module preservation was termed the
preservation Z-summary statistic. The higher the value of the
Z-summary statistic is for a given module, the stronger the
evidence that the module is preserved in the test dataset.
Comprehensive simulation studies led to the following
thresholds: a module shows no evidence of preservation if its
Z-summary statistic is smaller than 2; a Z-summary statistic
larger than 5 (or 10) indicates moderate (strong) module
preservation.

Imputation of microbial gene content and
metagenomes of FMCs

The OTU table of the 5 FMCs in Tong dataset was
generated with 1 count for each 97% OTU in a given FMC. The
gene content of 1,119 KEGG reference genomes was used to
infer the approximate gene content of the detected 97% OTUs
in our dataset using Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt) (v0.1). The
functional traits copy numbers of the reference genomes
represented in the format of KEGG KO functions can be
downloaded from the PICRUSt website (http://
picrust.github.com). To predict the functional traits of non-
sequenced microbial genomes (i.e. 97% OTUs) in Tong
dataset, a phylogenetic tree of 97% OTUs in Greengenes
database was constructed using 16S marker gene. The tree
has tips representing both sequenced referenced genomes and
non-sequenced genomes. Then the ancestral state
reconstruction (ASR) was run for this tree to make predictions
for each KO functions for every internal node and unsequenced
tips in the phylogenetic tree. The program output the inferred
metagenome represented by KEGG Orthology for each FMC.
Taking the PICRUST KO gene abundance inferences as
inputs, the metabolic pathways were re-constructed using
HUMAnN (v0.98) [34].

Statistics
Nearest shrunken centroids classification was performed

using pamr package in R (version 2.13.1). For the classification
using both rectum and descending colon samples, 30 of the
451 genus-region variables with at least one nonzero
component were selected at Δ = 1.459. For the classification
using rectum samples only, 39 of the 226 genera with at least
one nonzero component were selected at Δ = 1.030. The
leave-one-out error rate was estimated by setting the number
of cross-validation folds as 47 (which equals the number of
subjects in the dataset).

Results

To study the host-microbial interaction at the mucosal
luminal interface, 179 lavage samples were collected from
different intestinal regions of 64 subjects; this cohort and these
samples were previously used in a metaproteomic study of IBD
[23] (Table S1). The microbiota from these samples were
profiled by multiplex sequencing, and a total of 1,236,641 reads
(6,909/sample on average) were generated after quality
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control. 10,208 species level OTUs were then generated by
collapsing the reads at a 97% sequence similarity threshold. At
the phylum level, the bacterial community from lavage sample
mainly consisted of Bacteroidetes (44.29%), Firmicutes
(35.48%), Proteobacteria (6.76%), Tenericutes (1.63%) and
Verrucomicrobia (1.35%) (Figure 1). Other phyla were also
detected at relatively low abundances (<1%) including
Actinobacteria and Fusobacteria. We compared our dataset
with other 16S sequence datasets generated from fecal or
tissue samples after re-processing them using the same OTU
picking and taxonomy assignment algorithms. Given the
difference of sequencing platforms, primer sets and colon
regions (Table S2), the Tong dataset was comparable with
other intestinal microbial datasets in terms of microbial
composition and phylotype richness.

Shifts of Microbial Composition in IBD Patients
The IBD-associated dysbiosis of mucosal microbiota has

been delineated in detail in several investigations [9,32,35].
Specifically, IBD patients have fewer Firmicutes and a
concomitant increase in Proteobacteria, validated in several
independent cohorts [36,37]. To determine whether previously
reported alterations were also observed in our dataset, we
compared the relative abundances of each phylum between
disease states using analysis of variance (ANOVA). In contrast
to controls, IBD patients harbored relatively more abundant
Actinobacteria (FDR corrected P = 0.006 for UC, < 0.0001 for
CD), accompanied with the depletion of Firmicutes (FDR
corrected P = 0.056 for UC, 0.25 for CD) in these subjects
(Figure 2A, Dataset S1 and S2). The increases of
Proteobacteria (FDR corrected P = 0.254 for UC, 0.143 for CD)
and Tenericutes (FDR corrected P = 0.115 for UC, 0.157 for

Figure 1.  Phylum level microbial compositions of faeces, lavage and tissue samples.  Biospeciemens from faeces (Costello
[45], Turnbaugh [12] and Caporaso [11]), lavage samples (Tong) and tissue samples (Frank [21]) were compared. Only
predominant phyla with relative abundances higher than 0.1% in Tong dataset were depicted in the bar graph, and the phyla with
low abundances were grouped together. For Costello and Caporaso datasets, only the fractions of intestinal microbiota were shown
here.
doi: 10.1371/journal.pone.0080702.g001
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CD) were also observed in IBD patients, although not
statistically significant. Taken together, microbial composition
represented by this study cohort, and captured by lavage
sampling, reflected the changes of relative abundances of
enteric microbiota in IBD subjects at phylum level observed in
other datasets and sampling methods.

The reduction in bacterial diversity in IBD patients is a
consistent finding across studies [32,38,39], although it is still
unknown whether this alteration is causative or a secondary
effect of IBD. Compared with controls, the phylogenetic
diversities of UC and CD subjects at 97% OTU level were
significantly lower (Figure 2B), and the difference was more
evident in CD (t-test, P = 0.0003) than that in UC subjects (t-
test, P = 0.0056) at the depth of 3,000 reads per sample. This
data indicates that the lower microbial diversity previously
observed in patients with active IBD also persists in clinically
quiescent phases of disease.

To evaluate the similarity between microbial communities in
lavage samples from control and IBD subjects, the beta-
diversity measured by unweighted distance matrix was
calculated for each sample. The principal coordinate analysis
(PCoA) plot showed that the samples clustered by diagnosis
(Figure 2C). The IBD-associated dysbiosis of mucosal
microbiota was reflected by the cluster of samples enriched for
IBD, especially CD subjects. 55% of the IBD samples (49% of
UC and 61% of CD) were in this cluster, whereas only 8% of
the controls were in this IBD enriched clusters. The clustering
was evident considering the heterogeneity of the pathogenesis
of IBD [40], although control samples can be observed in the
IBD enriched cluster and not all the IBD samples were grouped
into this subset.

A critical clinical question is whether we can develop
quantitative microbial biomarkers to monitor differences in
microbial composition associated with established IBD,
because the absence of such biomarkers is currently a barrier
to developing and assessing treatments targeting IBD-
associated dybiosis. To develop such a tool, we determined
whether the relative abundances of genera in the mucosal
lavage samples could classify subjects by disease states, using
a predictive model based on nearest shrunken centroids
analysis [41]. Among the 64 subjects, we chose the 47 subjects
where matched samples from both descending colon and
rectum were available. Using 30 of the 451 genus-region
variables, the optimal classification was achieved with the
leave-one-out cross-validated error rate of 18/47 (38.3%)
(Methods and Figure S1). We further assessed the
effectiveness of disease discrimination based only on rectal
samples, as these can be collected in a simple office procedure
[42]. Strikingly, the error rate of classification, when using 39
genera from rectum samples only, was even lower (14/47, or
29.8%) (Figure S1). Considering that the IBD patients in our
cohort were all in remission, this data demonstrated the
potential of using microbial signatures as a disease classifier,
but also suggested that higher precision than analysis of taxa
independently is required for clinical utility.

Defining a microbial co-occurrence network at the
intestinal mucosal surface

Extensive inter-species interactions are likely to operate
among mucosal-associated microbiota residing in the complex
and functionally diverse ecosystem of the intestines, either
locally through formation of biofilms or through diffusion of
nutrients and metabolites longitudinally along the intestine
[43,44]. Such interactions can thus be potentially reflected by
the co-occurrence and co-exclusion patterns inferred from
abundance profiles of phylotypes [45]. Therefore, in addition to
individual phylotypes, we must identify IBD-associated
microbial community structures. To test the hypothesis that
interactions among microbes increase our ability to classify
samples according to clinical state, we constructed the
microbial co-occurrence network using an approach specifically
tailored for the 16S profiling data (Figure S2). The edge
connecting each pair of nodes was the co-occurrence estimate
inferred from the relative abundance profiles of genera using
the sparse correlation measure SparCC [46], which ranged
from -0.541 to 0.774, suggesting strong co-exclusion and co-
occurrence relationships between phylotypes. As described in
Methods, we transformed the SparCC correlation measure into
a weighted network.

Identification of highly preserved functional microbial
communities (FMCs)

To understand the topological structure of a network, one
crucial step is to define modules, which are groups of highly
connected nodes. In biological networks, modules can
correspond to functional subunits such as protein complexes
[47] or molecular pathways [48]. There is an extensive
literature on clustering procedures, including simple k-means,
partitioning around medoid, hierarchical clustering, message
passing and model-based methods[49-52]. To determine if the
genera in the microbial co-occurrence network can form
network modules, we adapted weighted correlation network
analysis (implemented in the WGCNA package) to construct
microbial modules which can be interpreted as functional
microbial communities (FMCs). WGCNA uses a measure of
shared protein neighbors (based on the topological overlap
measure) as input of hierarchical clustering. The height in the
dendrogram is a measure of dissimilarity based on the
topological overlap matrix; modules are defined as branches of
a hierarchical cluster tree[29,31]. WGCNA is attractive in our
study since it provides module preservation statistics that
allowed us to assess the reproducibility of modules across
different data sets; provides a measure of intramodular
connectivity that can be used to define intramodular hub
genera[53]; and, allows us to summarize each module by its
module eigengenus.

We first calculated the pair-wise topological overlap matrix
after the soft-thresholding step to reduce the noise-level weak
correlations (Methods). After grouping the nodes based on their
topological overlaps using hierarchical clustering, we identified
5 functional microbial communities (Figure 3A), which
consisted of 5 to 167 phylogenetically diverse genera (Table
S3 and Dataset S3). Using the same method, analysis of the
Frank dataset (263 genera) identified 6 microbial modules
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Figure 2.  Shifts of mucosal microbial composition in IBD patients in remission.  (A) The change of relative abundance
between disease states at phylum level. *: P < 0.05 compared to control, ANOVA. (B) Phylogenetic diversity curves for the
microbiota from lavage samples. Mean ± 95% CI was shown. (C) Communities clustered using PCoA of the unweighted UniFrac
distance matrix. Each point corresponds to a sample colored by disease phenotype. The dotted line indicated the cluster of samples
enriched for IBD subjects.
doi: 10.1371/journal.pone.0080702.g002
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(Figure 3B), with a similar numerical range of genera per
module (Table S3). The Tong and Frank datasets shared 129
genera. This reduced, common set of shared phylotypes
yielded a similar module organization: 4 modules in the Tong
dataset, and 2 modules in the Frank dataset (Figure S3). The
reduced number of modules in the Frank dataset was probably
due to the relatively low sequencing depth. The module
memberships of the original and reduced datasets were highly
concordant (Table S4, S5 and Dataset S3).

To quantitatively evaluate the degree of module
preservation, we carried out a Z-summary test (Methods).
Alternative statistics are available to assess the quality and
reproducibility of clusters among datasets [33,54-58]. An
advantage of the Zsummary statistic is that it allows for
significance thresholds: Z-summary <2 indicates no significant
module preservation; 2<Z-summary<10 indicates moderate
preservation; and, Z-summary>10 indicates strong
preservation. Also, in previous work comparing WGCNA's
module preservation statistics to a robust alternative method
(the in-group proportion test of Kapp and Tibshirani [59]), both
tests were highly correlated under a number of simulation
conditions, and the Zsummary statistic had distinct advantages
for studying the preservation of network modules[31,33,60].

As expected, all 4 modules of the shared 129 genera from
the Tong dataset were highly preserved in the Frank dataset
(Figure 3C), with the blue FMC demonstrating the strongest
preservation. Conversely, all the modules in the Frank dataset
were also well-preserved in the Tong dataset (Figure 3D).
Given the methodological differences between Tong and Frank
datasets, the co-occurrence pattern of these genera can still be
observed at mucosal surface. We expected even more
significant preservation when comparing datasets collected
from same compartment and analyzed using same
methodology. Indeed, when using another lavage sample
dataset, referred hereafter as the mucosal luminal interface or
MLI dataset, as the reference, 4 modules of the shared 233
genera from the Tong dataset were highly preserved in the MLI
dataset (Table S6), with much higher Z-summary statistics
(Figure S4). Thus, there were 2 core modules (turquoise and
blue) in these datasets, despite the difference of sampling
methods. These results indicated that the FMCs identified
using our approach were not dataset specific, but robust and
reproducible ecological structures commonly existing at the
intestinal mucosal surface.

Identification of functional microbial communities
(FMCs) associated with IBD

An optimal summary of the genus abundance profiles of a
given FMC is the module eigengenus (defined in Methods). In
the Tong dataset, we found that the turquoise FMC was
significantly associated with Crohn’s disease state (P = 4 ×
10-5, Pearson correlation) (Figure 3E). The blue FMC was
negatively associated with IBD states, although not statistically
significant. If the turquoise FMC was merely a group of
individual CD-associated genera, it would include most of the
17 genera that were significantly enriched in CD samples
(ANOVA, FDR corrected P < 0.05) (Dataset S4). However, only
7 of them were assigned to the turquoise FMC, indicating that

FMCs also captured other intricate and underlying ecological
relationships. Strikingly, classification of IBD status using the
two core FMCs as quantitative microbial biomarkers achieved
higher accuracy (17/47, or 36.2%) compared to using individual
genera (Figure S1), indicating that the microbial modules
allowed quantitative and reproducible microbial monitoring of
the intestinal mucosa. Because the two core FMCs were highly
preserved in both datasets, the same associations were also
observed in the Frank dataset. The turquoise FMC was
positively associated with IBD states, most significantly with UC
(P = 9 × 10-7, Pearson correlation), whereas the blue FMC was
negatively associated with CD (P = 1 × 10-9, Pearson
correlation) (Figure 3F). The associations were stronger in the
Frank dataset than those in the Tong dataset, possible
because the samples were from patients with active disease.
Consistent with previous observation [9], the blue FMC was
also negatively associated with the NOD2 risk allele in the
Frank dataset, supporting the hypothesis that the CD-
associated dysbiosis was driven by the NOD2 risk allele [6,61].

After defining modules, we sought to analyze them by
intuitive topological concepts such as intramodular connectivity,
to better describe the network structure. Therefore, we
determined the kME value (intramodular connectivity based on
the module eigengenus) to define the correlation between each
genus and the respective module eigengenus. Because nodes
with high connectivity, i.e. the hubs, are centrally located within
the module, they may be functionally essential as keystone
species in the context of biological networks [62] and during the
assemblage of a disease associated FMC. Indeed, in the
turquoise FMC, the intramodular connectivities of the genera
enriched in CD samples were significantly higher than those of
the other members (t-test, P < 0.001) (Figure S5). Potential
pathobiont genera such as Enterococcus [63] and Escherichia
(including adherent-invasive Escherichia coli [64]) can also be
observed among the hub genera of CD-associated turquoise
FMC. In the blue module, one of the intramodular hub genera
was Faecalibacterium, a genus including the anti-inflammatory
commensal bacterium Faecalibacterium prausnitzii, that is
negatively associated with Crohn’s disease [35,65,66].
Accordingly, the relative abundance of Faecalibacterium
decreased by 2-fold in Crohn’s disease samples (ANOVA, FDR
corrected P = 0.006, Dataset S2). Other short-chain fatty acid
(SCFA) producing bacteria including Eubacterium, Roseburia,
Faecalibacterium and Coprococcus were also observed in the
blue FMC [67-69]. Taken together, these data demonstrated
the functional importance of the FMCs associated with CD.

Metabolic inference and reconstruction of functional
microbial communities

The disease associations of the well preserved FMCs
suggest that these co-occurred microbial communities
represent distinct functional units at the mucosal surface. To
profile the metabolic capabilities of FMCs, the approximate
gene contents of the detected phylotypes in each FMCs were
inferred using the 1,119 KEGG reference genomes. After
aggregating the individual inferred genomes according to
module membership, the relative abundances of metabolic
pathways in each FMC were re-constructed. The functional
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profiles of FMCs were significantly variable (Figure 4). The
representation of the functional groups that were likely
essential for life in the gut was highly consistent across FMCs

including those for carbohydrate and amino-acid metabolism
(for example glycolysis/gluconeogenesis (KO00010), pyruvate
metabolism (KO00620) and glycine, serine and threonine

Figure 3.  Identification of preserved functional microbial communities (FMCs) associated with disease phenotype across
studies.  Hierarchical clustering dendrograms of genera based on microbial co-occurrence network using the Tong dataset (A) and
the Frank dataset (B) are shown. In the dendrograms, each color represents one FMC, and each branch represents one genus. The
Z-summary statistic plots (y-axis) as a function of the module size are shown for the Tong dataset (C) and the Frank dataset (D).
Each point represents a module labeled by color. The dashed blue and red lines indicate the thresholds Z = 2 and Z = 10,
respectively. FMC-trait correlations and P values of the Tong dataset (E) and the Frank dataset (F). Each cell reports the correlation
coefficient (and P value) derived from correlating FMC eigenvectors (rows) to traits (columns). The table is color-coded by
correlation according to the color legend. Collection site: University of California Los Angeles or Cedars Sinai Medical Center; Colon
region: 5 anatomical regions coded from 0 to 5, which are cecum, ascending colon, transverse colon, descending colon and rectum.
doi: 10.1371/journal.pone.0080702.g003
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metabolism (KO00260)). In contrast, several virulent pathways
including bacterial invasion of epithelial cells (KO05100) and
pathogenic Escherichia coli infection (KO05130) were only
present in the IBD-associated turquoise FMC. Variably
represented pathways included glycan degradation (KO00511)
and glycosaminoglycan degradation (KO00531), which were
over-represented in the UC-associated brown FMC; and,
glutathione metabolism (KO00480), which was enriched in
turquoise FMC (Dataset S5). With respect to the former,
murine defects in mucosal barrier function due to depletion of
intestinal O-glycans causes spontaneous colitis [70]. Regarding
the latter, an increase in glutathione metabolism is a feature of
intestinal microbiome in inflammatory bowel disease [71].
These observations, combined with the disease association,
indicated that the imputed virulent metabolic functions carried
out by the disease associated FMCs contributed to the
pathogenic and chronic inflammatory state of intestinal
mucosal surface.

Discussion

We have developed a novel strategy using an ecologic
mucosal microbial framework, minimally invasive mucosal
sampling, short-read Illumina sequencing, network analysis,
and imputed metagenomics. This strategy uncovered 5
microbial modules detectable in the mucosa of all individuals,
and reproducible in an independent mucosal resection dataset
(Figure 3). The quantitative levels of two modules were
significantly associated with disease states (Figure 3E). More
than 70% of the subjects can be correctly classified as control
or IBD patients using genera from rectal sampling alone
(Figure S1), which is a minimally invasive procedure compared
to endoscopic biopsy, and thus notable for clinical translation.
Imputed metagenome analysis indicated the functional
importance of the disease associated modules reflected by the
enrichment of virulent and pathogenic pathways (Figure 4).
Thus, these modules appear to define novel microbial
communities within the intestinal microbial ecology, some of
which are commonly and stably modified by the IBD disease
state, and may be of particular relevance for microbial
pathogenesis and intervention.

Mucosal sampling and module analysis provided robust
differentiation at the individual patient level that has not been
achieved previously by analysis of the fecal compartment and
conventional analyses (individual phylotypes levels, community
alpha-diversity, or principal component analysis) [36,37]. How
might the design features of the study have contributed to this
outcome? One distinction was the first use of mucosal lavage
for depth microbial analysis. Lavage samples microbiota
embedded in the superficial mucin, but may also include
luminal fecal residue remaining after intestinal preparation.
Mucosa-associated microbial composition varies across
segments of the intestine, and distinct as well from the fecal
compartment [24,72]. Due to the predominant inter-individual
signal, it is uncertain whether the lavage compartment yields a
distinct microbial composition from mucosal or fecal sampling.

Nonetheless, compared to fecal samples, mucosal lavage is
from a defined (~1 cm2) area of mucosal surface [23], and

therefore captures a local microbial community more
homogeneous for local metabolic exchange and interaction in
the microenvironment. Indeed, since the local habitat modifies
the functional state of the microbial community, lavage samples
can be analytically extended to define microbial state (by
transcriptional and metagenomic analysis of the bacterial
pellet) and the habitat (by biochemical analysis of supernatant
proteins and metabolites). We have recently reported high
yields of soluble fraction proteins and metabolites by lavage
sampling, and have uncovered robust, disease-specific
biochemical features of the mucosal surface [23]. Lavage
sampling, by permitting microbial and biochemical analysis
from the same mucosal site, could be extended to integrated
multi-omic analysis to functionally characterize the intestinal
microbial ecosystem. And, owing to its noninvasiveness,
lavage sampling in contrast to biopsy or surgery permits
longitudinal sampling which is an important barrier to
monitoring the mucosal microbiota and its dynamic temporal
state [11,24].

A second distinction of this study was the use of WGCNA
module analysis, built on co-occurrent or co-exclusive
microbiota, to uncover functional microbial communities within
the intestinal mucosal compartment. Prior studies of the fecal
compartment have not reported such microbial modules
between individuals, and early findings of recurrent
communities dominating the entire fecal microbiome [73] have
not been consistently observed [13,74-76]. Recently, Faust et
al. analyzed the HMP dataset to define co-occurrence and co-
exclusion microbial interaction networks within and between 18
body sites [22]. Among these, only the vaginal compartment
revealed a robust modular community structure. In the fecal
compartment, this study reported 67 interactions (2.2% of total
phylotypes), but limited modular features (for example,
Bacteroides and Prevotellaceae co-excluded), presumably
reflecting metabolic specialization and niche competition of
these family members based on diet and other factors
[13,73-75]. It should also be noted that the HMP dataset is from
healthy subjects only, and from a much larger population. Such
characteristics therefore potentially explain a decrease of the
modular aspect in the stool samples.

The present study uncovered similar networks of co-
occurrent and co-exclusive microbiota, confirming shared
features detected in the fecal and mucosal lavage
compartments. In addition, extending the analysis to WGCNA
uncovered 5 reproducible microbial modules, each comprised
of distinct but phylogenetically mixed group of organisms, and
a blend of positive and negative microbial interactions. We
have termed them functional microbial communities (FMCs),
with the speculation that they reflect a physically localized and
biologically integrated microbial network. Since each module is
defined by both positively and negatively microbial interactions,
we speculate that they will be defined by a distinctive ensemble
of biologic factors, such as host microenvironment and
microbial gardening, microbial cross-feeding and competition,
and microbial small molecule and environmental modification
[77-80].

Therapeutic intervention targeting microbial dysbiosis in
inflammatory bowel disease is an important prospect for
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Figure 4.  Variations of KEGG metabolic pathways in the functional microbial communities.  The heatmap shows the
functional profiles of FMCs (columns) based on the relative abundance of KEGG metabolic pathways (rows) after z score
transformation. The color bar on top shows module membership. The dendrograms show the hierarchical clustering of columns and
rows respectively using Euclidean distance.
doi: 10.1371/journal.pone.0080702.g004
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changing the natural history for patients with inflammatory
bowel disease. However, the heterogeneity and temporal
variation of microbial composition requires new concepts to
define the target of microbial intervention, and analytic tools to
accurately sub-stratify and monitor individual patients. In our
study, all 5 of the FMCs identified were present in all the
subjects, but with different overall abundances that varied with
disease states. In the CD-associated turquoise FMC, the
difference of intramodular connectivity suggested that the
pathogenic microbes were more likely to be the core members
of the microbiota, rather than opportunistic pathogens. Direct
evidence for the physical localization of such ecological
structures could be validated using methods such as
fluorescence in situ hybridization, whereas functional features
of these communities would require comprehensive
metagenomic or biochemical analysis. In this respect, a recent
metaproteomic study of the mucosa surface detected a
physical microgeographic mosaic of proteins, which might
represent a biochemical counterpart to the microbial modules
(Li X et al., submitted).

Meta-analysis of genome-wide association studies (GWAS)
has increased the number of confirmed IBD susceptibility loci
to 99 [81,82], indicating that IBD is biologically heterogeneous.
This heterogeneity may also extend to the microbial level, as a
subset of IBD samples in our dataset clustered with control
samples in the PCoA plot, and 4 IBD subjects were incorrectly
categorized as controls based on their rectum microbial
compositions in the shrunken centroids analysis. Host genetic
factors are contributors shaping individual microbiome diversity
in mammals [7,9,83]. The low disease penetrance in individuals
carrying disease risk loci favors the hypothesis that several
genetic and environmental factors interact to cause IBD [84].
These results presented here, combined with host genetic
information, serve as an important step towards understanding
the factors that govern the assemblages of gut microbiota
associated with IBD. The understanding of the ecological
interactions that govern the assemblage of FMCs will help us
design interventions that counteract the environmental or
genetic factors that cause perturbation of FMCs into unhealthy
states, and perhaps shift our search of the causes of IBD away
from detection of specific pathogens and towards dysregulation
of microbes that are harmless or beneficial in other contexts
but are dangerous weeds in the context of IBD.

Supporting Information

Table S1.  Demographic information of Tong dataset. Note:
on average, 3 samples of different intestinal regions were
collected from each subject. UC, ulcerative colitis; CD, Crohn’s
disease; CE, cecum; AS, ascending colon; TR, transverse
colon; DE, descending colon; RE, rectum.
(PDF)

Table S2.  Comparison of published intestinal microbiota
datasets. The factors that may affect the microbial
compositions, including technical parameters of sequencing
pipeline (platform, variable region, primer set) and sample type,
are listed.

(PDF)

Table S3.  Sizes of FMCs in the Tong Total, Tong Overlap,
Frank Total and Frank Overlap datasets.
(PDF)

Table S4.  Module membership comparison between FMCs
from the Tong dataset and those from the shared
phylotypes in Tong dataset.
(PDF)

Table S5.  Module membership comparison between FMCs
from the Frank dataset and those from the shared
phylotypes in Frank dataset.
(PDF)

Table S6.  Module membership comparison between FMCs
from the Tong dataset and those from the Tong-MLI
shared dataset.
(PDF)

Figure S1.  Classification of control and IBD subjects
using nearest shrunken centroids analyses of the relative
abundances of bacterial genera and FMCs from lavage
samples. Only subjects (n = 47) that had matched samples
from both descending colon and rectum regions were included
in the analysis. Control and IBD samples with leave-one-out
cross-validated probabilities higher than 50% were considered
correctly classified. Diamond, classification using 30 genus-
region variables (error = 18/47, or 38.3%); Square:
classification using 39 rectum genera variables (error = 14/47,
or 29.8%); Triangle, classification using 4 FMC-region variables
(error = 17/47, or 36.2%).
(PDF)

Figure S2.  Overview of the methodology for inferring
microbial co-occurrence network and identifying
functional microbial communities.
(PDF)

Figure S3.  Identification of functional microbial
communities in co-occurrence network of 129 shared
genera. Hierarchical clustering dendrograms of genera based
on microbial co-occurrence network using the Tong dataset (A)
and the Frank dataset (B) are shown. In the dendrograms,
each color represents one FMC, and each branch represents
one genus.
(PDF)

Figure S4.  Preservation of FMCs in Tong dataset using
MLI as reference. The Z-summary statistic plots (y-axis) as a
function of the module size are shown for the Tong dataset.
Each point represents a module labeled by color. The dashed
red lines indicate the thresholds Z = 10.
(PDF)
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Figure S5.  Intramodular connectivity of CD enriched
genera and other members in turquoise FMC of Tong
datset. Mean ± standard error is shown.
(PDF)

Dataset S1.  OTU significance results between UC and
control subjects.
(XLSX)

Dataset S2.  OTU significance results between CD and
control subjects.
(XLSX)

Dataset S3.  Lists of module memberships of Tong, Frank,
and shared datasets.
(XLSX)

Dataset S4.  Intramodular connectivity of genera in each
FMC from Tong dataset.
(XLSX)

Dataset S5.  Relative abundances of metabolic pathways in
each FMC from Tong dataset.

(XLSX)
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