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RESEARCH ARTICLE

Receptor Polymorphism and Genomic
Structure Interact to Shape Bitter Taste
Perception
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Sandra Hübner1, Kristina Lossow1, Stephen P. Wooding2, Wolfgang Meyerhof1*

1 German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal,
Germany, 2 Health Sciences Research Institute, University of California, Merced, California, United States of
America

*meyerhof@dife.de

Abstract
The ability to taste bitterness evolved to safeguard most animals, including humans, against

potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception

is subject to individual variations due to the presence of genetic functional polymorphisms in

bitter taste receptor (TAS2R) genes, such as the long-known association between genetic

polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due

to overlaps in specificities across receptors, such associations with a single TAS2R locus

are uncommon. Therefore, to investigate more complex associations, we examined taste

responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, groshei-

min, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter

receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation,

and characterizing functionally causal allelic variants, we deciphered at the molecular level

how a subjects’ genotype for the whole-family of TAS2R genes shapes variation in bitter taste

perception. Within each haplotype block implicated in phenotypic variation, we provided

evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for

sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for

sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed

also, besides simple associations, complex associations of bitterness sensitivity across

TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity

alleles, phenotypic variation depended on linkage between these alleles. When sensitive

alleles for bitter compounds were maintained in the same linkage phase, genetically driven

perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive

alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g.

for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to

which genetic influences on taste are complex, yet arise from both receptor activation patterns

and linkage structure among receptor genes.
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Author Summary

Human bitter taste is believed to protect us from the ingestion of poisonous substances,
thereby shaping food rejections. Bitter perception differs, however, across individuals, due
to genetic variations in the ~25 bitter taste receptor (TAS2R) genes. A famous example
known since the 1930s is the inherited bitter taste sensitivity to phenylthiocarbamide,
which is associated with genetic polymorphisms in a single TAS2R gene. Yet, such simple
receptor-substance associations do not reflect the full complexity of bitter perception,
since individual bitter substances frequently activate several TAS2Rs. Here, we provide an
in-depth analysis of the genetic variability influencing human bitter taste. While each
study subject carried a different set of genetic polymorphisms, we found that most varia-
tions reside in just six blocks, each harboring only one to five haplotypes. Thus, besides
simple associations between taste and TAS2R gene polymorphisms, we revealed complex
associations dependent on linkage between several high- and low-sensitivity alleles.
Indeed, subjects carried either sensitive or insensitive alleles for receptors sensitive to
grosheimin, a bitter compound in artichoke, or at least one sensitive allele for receptors
specific for absinthin, the bitter principle of absinth. In short, simple associations and
complex genomic linkage determine sensitivity to selected dietary bitter compounds.

Introduction
Bitter taste perception plays a fundamental role in dietary preferences and behaviours, by shap-
ing aversions to foods and drinks. Indeed, averse responses to bitterness are instinctive and
drive rejection and avoidance behaviours widely observed in animal models, but also in human
infants [1–5]. They are hypothesized to originate with bitter perception’s role as a warning sen-
sor against potentially harmful substances contained in the diet, such as toxins released by
plants to deter herbivores, and they belong to diverse chemical classes including acetogenins,
alkaloids, flavonoids, phenylpropanes, terpenoids, and thiol compounds [6–9]. These rejection
behaviours mediated by bitter perception show evolutionary trends, with responses depending
on the occurrence of bitter substances in animal typical diets [10]. Occasionally, bitter sub-
stances known to possess desirable pharmacological activities are also deliberately ingested
(e.g., [11, 12]), nevertheless acceptation of bitter phytonutrient in food remains challenging
(for review see [13]).

Despite the importance of bitter taste in shaping nutritional behaviours and guarding
against toxin ingestion, bitter responses in humans vary profoundly. The classic example of
phenotypic diversity in humans is threshold sensitivity to phenylthiocarbamide (PTC), which
differs by up to 10,000-fold among individuals. Such variation is due to a constellation of inter-
acting factors including environmental effects, age, gender, experience and genetics (for
reviews see [13–15]). Particularly strong effects have been found to arise from polymorphism
in TAS2R genes, which encode a series of ~25 G protein-coupled receptors expressed in taste
buds [16–20]. In the case of PTC perception, polymorphism in TAS2R38 accounts for more
than 55% of observed phenotypic variance [17, 21]. Moreover, genetic polymorphisms occur-
ring at TAS2R loci are common, with numerous high-frequency alleles [22], suggesting the
presence of functionally important receptor variants. Major changes in receptor activity due to
such variants have been observed in a few other cases, i.e., TAS2R9, TAS2R16, TAS2R43, and
TAS2R31 [23–27]. In addition, gene association studies suggested functional polymorphic
alleles at other TAS2R loci, e.g. TAS2R4 or TAS2R13 [28–30].
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An essential aspect of interactions between TAS2Rs and bitter compounds relates to the over-
lapping agonist profiles, with most TAS2Rs responding to multiple agonists and many agonists
stimulating multiple receptors [31]. This combinatorial activation pattern, together with the dis-
tribution of TAS2R genes among only four cytogenic locations, which can lead to false-positive
genotype-phenotype associations arising from sites in linkage with the causal variants, have so
far prevented the full elucidation of bitter perception’s molecular underpinnings [26, 32–34]. To
establish a genetic basis for the observed perceptual differences in the population, we used in this
study an integrative approach, sequencing all known TAS2R loci in humans, inferring long-rang
haplotypes, mapping their effects on perception of several chemically diverse compounds, and
functionally characterizing all allelic variants associated with shifts in perception.

Results

SNP and haplotype diversity
Genetic diversity was assessed by determining whole-gene genotypes of the 25 members of the
TAS2R gene family and corresponding copy number variations (Figs 1 and 2, S1 Table). Across
the 48 Caucasian subjects, a total of 93 coding SNPs (cSNPs), including 65 missense SNPs and 2
nonsense SNPs, were identified. Three indels, including 1 rare three-nucleotide in-frame deletion
and 2 major deletions spanning TAS2R43 or TAS2R45 locus, were also detected. Genes har-
boured a mean of 4 cSNPs with a mean of ~1 synonymous and ~3 non-synonymous SNPs per
gene. The mean number of haplotypes within genes was 3.5 with a range of 1 to 6, which recom-
bined to form a mean number of 5.6 genotypes within genes with a range of 1 to 13.

When only common cSNPs were considered (i.e., with frequency� 0.05), a total of 67
SNPs, including 45 missense SNPs and 2 nonsense SNPs, and 2 indels were identified, all of
which have been reported previously [22, 26, 36–40]. Sequenced genes harboured a mean of ~1
synonymous and ~2 non-synonymous common SNPs per gene. While some genes harboured
no SNPs (e.g., TAS2R10 and TAS2R39), others harboured many. Genes located in the proximal
region of the cluster at 12p13 harboured also highest number of SNPs, with 8 at TAS2R31 and
-42, and 9 at TAS2R20.

Of these 45 common missense cSNPs, 27 corresponded to amino acid positions localised in
TAS2R transmembrane (TM) domains, with 9 SNPs affecting amino acids in TM VI and 6 in
TM V (Fig 3). The remaining SNPs were distributed in sequence areas coding for extracellular
domains, intracellular domains, and COOH terminal region, with 8, 5, and 5 SNPs, respec-
tively. In addition, 2 nonsense cSNPs result in a premature stop codon in the reading frame
and therefore to a putatively non-functional, truncated receptor variant.

These common cSNPs recombined across genes to form a total of 59 coding haplotypes,
with a mean of 2.2 per gene and a range of 1 to 4. Again, genes localised to the proximal region
of 12p13 were most diverse, with 4 haplotypes at TAS2R20, -31, and -50. As with common
SNPs, most within-gene haplotypes have been reported previously [22, 26, 36–40]. Two com-
mon haplotypes were newly identified: one at TAS2R14 (frequency = 0.34), and one at
TAS2R42 (frequency = 0.30).

Long-range haplotypes
High levels of genetic diversity were observed although our population sample, only Caucasian
subjects, was relatively homogeneous with respect to ethnic and geographic origin. Thus, chro-
mosomal spatial relations, linkage and block structures among genes might be important con-
tributors to TAS2R-mediated phenotypes. Indeed, the 25 members of the TAS2R gene family
are restricted to just three cytogenetic locations 5p15, 7q31-7q35, and 12p13 (Fig 1). Position
5p15 contains a single gene, TAS2R1, 7q31-35 contains 9 genes distributed across a ~20.5 Mb
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region, and 12p13 contains 15 genes distributed across a ~400 kb region. Further, most of the
TAS2Rs at 7q31-7q35 (TAS2R3, -4, -5, -38, -39, -40, -60, and -41) reside in a 1.8 Mb sub-region.

Estimates of pairwise D0 and r2 revealed extensive linkage in both the 7q31-7q35 and 12p13
regions. Mean values of D0 and r2 between common cSNPs were 0.66 and 0.52 across 12p13,
and associated with low p-values (Fig 4). Nearly identical trends were observed between
TAS2R loci, with mean D0 and r2 values of 0.66 and 0.37. Similarly, across the 1.8 Mb TAS2R3-
38 cluster, mean values were 0.76 and 0.74 for common cSNPs and 0.60 and 0.63 between
TAS2R loci. These trends indicate that TAS2Rs are tightly connected in long-range haplotypes
spanning multiple genes.

Fig 1. Genomic organisation and phylogenetic tree of the TAS2R gene family. TAS2R genes are distributed among the cytogenetic locations 5p15,
7q31-7q35 and 12p13 on chromosome 5, 7 and 12, as shown on the ideogram of the G-banding pattern at the 850 band resolution [35]. One gene, TAS2R1,
is located at 5p15. Nine are located on chromosome 7 in a ~20.5 Mb region spanning the cytogenetic location 7q31-7q35, which contains TAS2R16 and,
separated by a ~18.8 Mb distance on the same chromosome, eight other TAS2R genes: TAS2R3, -4, -5, -38, -39, -40, -60, and -41. Fifteen TAS2R genes
are located on chromosome 12 in a ~400 kb region at 12p13: TAS2R42, -30, -45, -43, -46, -31, -19, -20, -50, -14, -13, -10, -9, -8, and -7. Evolutionary
analyses indicated that genomic location is associated with phylogenetic affiliation, as previously published [20].

doi:10.1371/journal.pgen.1005530.g001
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Fig 2. Coding region SNPs, genotypes and haplotypes of the 25 TAS2R genes. Light grey boxes indicate homozygous major genotypes or haplotypes,
i.e., most common; black boxes, homozygous deleted genotypes or haplotypes, i.e., whole-gene deletion; each other colour box specifies a different
genotype or haplotype, homozygous or heterozygous, as detailed in the colour bar. Haplotypes were named according to previous nomenclature or
according to their respective allele frequencies in our subjects; the most common haplotypes receiving the smallest number [26]. Chromosomal assignments
are specified for cSNPs and TAS2R loci. (A) cSNP genotypes by subject; (B) TAS2R genotypes by subject; (C) genotype frequency by cSNP site; (D)
genotype frequency by TAS2R locus; (E) allele frequency by cSNP site; (F) haplotype frequency by TAS2R locus.

doi:10.1371/journal.pgen.1005530.g002
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Haplotype block partitions and corresponding long-range haplotypes were then determined
for the 25 TAS2R genes (Fig 5). Analyses inferring haplotype blocks identified six blocks dis-
tributed across the TAS2R clusters on chromosomes 7 and 12. These corresponded to blocks
found in the region by previous studies [34, 43, 44]. Two were found on chromosome 7,
encompassing the TAS2R3-5 and TAS2R39-60 regions, each of which harboured two long-
range haplotypes with frequencies at or above 0.05. Four blocks were found on chromosome
12, encompassing the TAS2R7-10, TAS2R13-14, TAS2R50-19, and TAS2R31-42 regions, which
harboured 1, 3, and 5 long-range haplotypes respectively. In addition, whereas blocks on chro-
mosome 7 were flanked by recombination hot spots, we identified no hot spots in the
TAS2R13-42 region on chromosome 12, which seems to indicate that these latter haplotype
blocks are determined by linkage disequilibrium decay [45].

Genotype-phenotype associations
Genotype-phenotype association analyses were conducted to elucidate genetic liability for taste
phenotypes; phenotype data consisting of individual detection and recognition thresholds for
the bitter tastants, as well as concentrations for perceived weak, moderate, strong, and very
strong intensities inferred from intensity ratings. Subsequent functional assays provided fur-
ther insights into the identification of causal TAS2Rs.

Amarogentin. Bitter taste responses to amarogentin exhibited high variance across sub-
jects on both threshold and suprathreshold measures (Fig 6A). Recognition thresholds ranged
11-fold across subjects, with the most sensitive individuals reporting bitterness at a concentra-
tion of 1.2x10-8 M, the least sensitive reporting it at 2.0x10-7 M, and a modal number at 4.0x10-

Fig 3. Identified amino acid positions corresponding to cSNPs represented on the snake plot of the consensus sequence. Highly conserved amino
acids among TAS2Rs, indicated by black circles, occur primarily in inner transmembrane domains [41, 42]. Colour scale corresponds to allele frequency in
our sample.

doi:10.1371/journal.pgen.1005530.g003
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8 M. Concentrations rated as weakly bitter by subjects ranged 17-fold, from 1.2x10-8 to 3.0x10-7

M with a mode at 5.0x10-8 M. In contrast to recognition thresholds and concentrations per-
ceived as weak, the distribution of concentrations perceived as strongly bitter was narrow,
ranging less than 4-fold, from 6.0x10-8 to 3.0x10-7 M and a mode between 1.4x10-7 and 2.0x10-
7 M. Distributions of concentrations perceived as moderately and very strongly bitter exhibited
analogous properties (S2 Fig).

Association analyses targeting perceived weak intensity of amarogentin revealed significant
signals localized to the region spanning TAS2R31 to TAS2R42, with the lowest p-values occur-
ring at TAS2R30, -31, -43, and -46 (Fig 6B; S2 Table). Associations with recognition threshold
and perceived strong intensity showed similar patterns. However, while significant at the 0.05
level, these did not reach significance at the experiment-wide significance threshold, i.e., when
corrected for multiple testing. Association analyses targeting detection thresholds, perceived

Fig 4. Linkage disequilibrium across SNPs and genes. (A) Pairwise D’, r2 and corresponding p-values between cSNPs, and (B) between TAS2Rs.
Chromosomal assignments are specified. Long-range haplotypes identified in block analyses are located in the conspicuous high LD regions of TAS2R7-
TAS2R42, and TAS2R3-TAS2R38.

doi:10.1371/journal.pgen.1005530.g004
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moderate intensity, and very strong intensity yielded similar results (S2 Fig; S2 Table). Numer-
ous non-synonymous variants in the TAS2R31-42 block were thus observed among the vari-
ants significantly associated with amarogentin perception, indicating that phenotypes are likely
driven by polymorphism in the corresponding TAS2Rs. However, within-block LD across the
implicated sites was high, raising the possibility that in addition to true associations arising
from functional effects, spurious associations were present as the result of linkage between con-
tributory and irrelevant sites. Numerous SNPs in TAS2Rs at 12p13 were also significant at 0.05,

Fig 5. Haplotype block structure, common haplotype and long-range haplotype (LRH) across the TAS2R genes regions on chromosome 5, 7, and
12 parsed using (A) cSNPs and (B) TAS2R genes. Long-range multilocus haplotypes were phased for the TAS2R3-5 and the TAS2R39-60 regions on
chromosome 7; and the TAS2R7-10, the TAS2R13-14, the TAS2R50-19, and the TAS2R31-42 regions on chromosome 12. They are displayed with their
corresponding frequency and connected TAS2R haplotypes with lines if the minor frequency is greater than 0.05. For the TAS2R3-5 and the TAS2R39-60
blocks, two common long-rang haplotypes with a frequency of more than or equal to 0.05 were inferred. The TAS2R7-10, the TAS2R13-14, the TAS2R50-19,
and the TAS2R31-42 harbour 4, 3, 5, and 4 long-range haplotypes, respectively.

doi:10.1371/journal.pgen.1005530.g005
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but not when corrected. These patterns might be also explained by high within-block LD,
accompanied by between-block linkage decay which reduces spurious association signals with
distance. Hence, the mechanistic properties of these variants could not be discerned from geno-
type-phenotype association data alone. To resolve these ambiguities we examined substitution
effects using an in vitromolecular approach.

Fig 6. Amarogentin phenotypes, genotype-phenotype associations, and functional assays. (A) Distribution of bitter taste recognition thresholds, and
concentrations perceived as weak and strong. (B) Genotype-phenotype associations for common SNPs (frequency > 0.05). Dashed line indicates
significance threshold following corrections for multiple testing. Solid line indicates uncorrected significance threshold. (C) Allele-specific dose response
curves for loci harboring SNPs showing significant phenotypic associations.

doi:10.1371/journal.pgen.1005530.g006
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In a previous study, we utilized heterologous expression assays to ascertain the response of
every known TAS2R in humans to a chemical library of synthetic and natural compounds [31].
The resulting inventory identified six TAS2Rs showing baseline responses to amarogentin:
TAS2R1, -4, -39, -43, -46, -30, and -50. Thus, three TAS2Rs (TAS2R43, -46, and -30) previ-
ously shown to exhibit baseline responses to amarogentin also harboured SNPs associated with
amarogentin sensitivity in our subjects, specifically implicating these sites as sources of varia-
tion in both receptor function and downstream measures of amarogentin sensitivity.

In vitro assays revealed extensive variation in receptor response arising from substitutions
associated with amarogentin perception phenotypes (Fig 6C). TAS2R30 harboured two
common receptor variants (i.e., with frequency� 0.05) exhibiting divergent responses,
TAS2R30-H1 and-H2. TAS2R30-H1 was highly sensitive and responsive to amarogentin
(threshold = 1.0x10-8 M; EC50 = 4.1x10-7 M; maximum amplitude = 0.50 ΔF/F) while
TAS2R30-H2 was less sensitive, showing a slightly reduced threshold and severely reduced
maximal signal amplitude (threshold = 3.0x10-7 M; EC50 = 3.9x10-7 M; maximum ampli-
tude = 0.12 ΔF/F). In contrast to TAS2R30, TAS2R43 variants exhibited essentially no response
to amarogentin, with both TAS2R43-H1 and-H2 only being activated at the highest artefact-
free concentration of 3.0x10-4 M. Receptor variants of TAS2R46 exhibited major differences
in amarogentin sensitivity, nonetheless only from the relatively high concentration of 3.0x10-5 M.
TAS2R46-H1 was highly sensitive and responsive (threshold = 3.0x10-5 M; EC50 = 6.7x10-5 M;
maximum amplitude = 0.57 ΔF/F), whereas TAS2R46-H3 was moderately activated (threshold =
1.0x10-4 M). TAS2R46-H2, which is characterized by a premature stop codon resulting in a
severe truncation of the receptor, was not activated at any concentration.

Patterns of activation across TAS2R30, -43, and -46 variants suggest that bitter taste sensi-
tivity to amarogentin is likely solely driven by functional genetic polymorphisms in TAS2R30.
Of all tested receptor variants, only TAS2R30-H1 was highly responsive to amarogentin at con-
centrations matching thresholds in subjects. Further, the second receptor variant of TAS2R30,-
H2, exhibited weak activation regardless the concentration range, explaining the presence of
low-sensitivity subjects and overall patterns of association. In contrast to TAS2R30, activation
of TAS2R43 or TAS2R46 occurred at concentrations 3000-fold or 300-fold higher than
TAS2R30, respectively, and far exceeding observed threshold phenotypes. TAS2R43 and
TAS2R46 failed thus to explain observed patterns of phenotypic variation.

Quassin. Like amarogentin, genotype-phenotype associations and functional analyses
indicate that functional genetic polymorphisms in TAS2R30 are also responsible for the bitter
taste sensitivity of quassin, as expected by the high value of the Pearson’s correlation coefficient
between these two tastants (0.87; p< 0.001). As with amarogentin, distributions of threshold
recognition and concentrations perceived as weak were broad, ranging 38-fold (from 2.6x10-8

M to 1.0x10-6 M) and 26-fold (from 3.9x10-8 M to 1.0x10-6 M), respectively, while distribution
of concentrations perceived as strong was narrow, ranging 8-fold (from 1.3x10-7 M to 1.0x10-6

M) (S3 Fig). In vitro, activation pattern of TAS2Rs differ slightly between the two chemically
distinct tastants amarogentin and quassin, with quassin activating only TAS2R30 and
TAS2R46. TAS2R30-H1 and-H2 exhibited divergent responses to quassin, with-H1 respond-
ing in ranges matching phenotypic recognition threshold. TAS2R46 variants also exhibited
divergent activation patterns, with TAS2R46-H1 being most sensitive,-H3 being intermediate,
and-H2 being least sensitive, but these responded at concentrations exceeding phenotypic rec-
ognition thresholds, suggesting that they are unable to explain observed phenotypes.

Grosheimin. Taste responses to grosheimin exhibited broad phenotypic distributions
(Fig 7A). Recognition thresholds ranged 25-fold, from 2.0x10-6 M to 5.0x10-5 M, with distinct
modes at 9.9x10-6 M and 2.2x10-5 M. Bimodality is a classic feature of threshold responses to
bitter substances including phenylthiocarbamide (PTC), propylthiouracil (PROP), goitrin,
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saccharin, acesulfame potassium, and aloin, suggesting that genetic effects on grosheimin
response are likely strong [25, 26, 46]. The distribution of concentrations corresponding to per-
ceived weak intensity was also broad, ranging from 2.9x10-6 M to 5.0x10-5 M (17-fold) with a
single mode at 1.5x10-5 M. In contrast, the distribution of concentrations corresponding to per-
ceived strong intensity was narrow, ranging only 5-fold (from 9.9x10-6 M to 5.0x10-5 M) with a
single mode at 3.3x10-5 M. Distribution of detection thresholds was similar to that of recogni-
tion threshold; distributions of concentrations perceived as weak, moderate, strong, and very
strong changed gradually from a broad to a relatively narrow phenotypic distribution (S2 Fig).

SNPs significantly associated with grosheimin response at the experiment-wide significance
threshold were found at multiple loci, depending on the specific phenotype (Fig 7B; S2 Table).
Two loci, TAS2R19 and -31, harboured polymorphisms associated with recognition threshold.
In addition to being found at TAS2R19 and -31, SNPs significantly associated with weak inten-
sity occurred at TAS2R30 and -46; the whole-gene deletion at TAS2R43 was also significant.
Besides these associations, numerous SNPs spanning the TAS2R50-19 and TAS2R31-42 haplo-
type blocks were associated with strong intensity response. Additional SNPs in TAS2R genes
located at 12p13 were also significant at the 0.05 level for recognition threshold, perceived
weak and strong intensities, i.e., uncorrected for multiple testing. Tests for association with
detection threshold, and perceived moderate and very strong intensities were consistent with
these observations (S2 Fig; S2 Table). As previously mentioned for amarogentin and quassin,
LD was high between SNPs associated with grosheimin response, leaving the specific causative
sites unclear. However, in our published inventory of receptor-agonist relationships across the
complete TAS2R family, only TAS2R43 and -46 were activated by grosheimin, and both har-
boured variants associated with grosheimin perception in our subjects [31].

In vitro assays targeting TAS2R43 and -46 confirmed the presence of functional variation at
these loci (Fig 7C). TAS2R43 harboured two receptor variants, TAS2R43-H1 and-H2, both of
which were responsive to grosheimin. However, TAS2R43-H2 was responsive at lower concen-
trations than did-H1 (threshold = 3.0x10-6 M; EC50 = 6.9x10-6 M vs. threshold = 1.0x10-5 M;
EC50 = 1.6x10-5 M), and exhibited stronger responses (maximum amplitude = 0.81 ΔF/F vs.
0.60 ΔF/F). Both receptor variants were activated in the concentration range perceived as bitter
by human subjects. A third allele of TAS2R43 characterized by complete deletion of the gene
(TAS2R43-Δ) was also found at high frequencies, suggesting that it could be an important
driver of phenotypic associations [25, 26]. Among the three observed TAS2R46 variants,
TAS2R46-H1 was highly responsive to grosheimin (threshold = 1.0x10-6 M; EC50 = 5.6x10-6

M; maximum amplitude = 0.87 ΔF/F), and-H3 was moderately responsive (threshold = 3.0x
10-6 M; EC50 = 7.6x10-6 M; maximum amplitude = 0.50 ΔF/F). TAS2R46-H2, a truncated, six-
transmembrane variant of the receptor, was not activated at any concentration. Moreover,
responsive TAS2R43 and -46 variants were activated at concentrations perceived as bitter by
human subjects. Thus, both receptors contributed to the variance of grosheimin perception.

A key aspect of variation in TAS2R43 and -46 was that linkage disequilibrium spanned
gene loci, such that their functional and phenotypic contributions were non-independent.
Inspection of the long-range haplotypes in the TAS2R31-42 block (Fig 5) revealed that the
most common haplotype (frequency = 0.30) harboured both the deleted allele at TAS2R43
and the truncated non-functional allele at TAS2R46. In contrast, all other haplotypes har-
boured sensitive and non-sensitive alleles in varying combinations. The second most common
(frequency = 0.22) harboured a moderately sensitive (TAS2R43-H1) and a sensitive allele
(TAS2R46-H1), and the third most common (frequency = 0.20) a deleted (TAS2R43-Δ) and a
moderately sensitive allele (TAS2R46-H3). A final haplotype (frequency = 0.16) harboured
two sensitive alleles (TAS2R43-H2 and TAS2R46-H1). Thus, while TAS2R43 and -46make
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functionally independent contributions to phenotype they co-segregate, resulting in positively
correlated associations.

Quinine. Quinine elicited also phenotypic responses driven by variation in multiple
TAS2Rs. Threshold recognition exhibited a broad distribution (25-fold, from 1.6x10-6 M to
4.0x10-5 M), followed by perceived weak intensity (17-fold, from 2.3x10-6 M to 4.0x10-5 M).

Fig 7. Grosheimin phenotypes, genotype-phenotype associations, and functional assays. (A) Distribution of bitter taste recognition thresholds, and
concentrations perceived as weak and strong. (B) Genotype-phenotype associations for common SNPs (frequency > 0.05). Dashed line indicates
significance threshold following corrections for multiple testing. Solid line indicates uncorrected significance threshold. (C) Allele-specific dose response
curves for loci harboring SNPs showing significant phenotypic associations.

doi:10.1371/journal.pgen.1005530.g007
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The distribution of perceived strong intensity was narrower (5-fold, from 7.9x10-6 M to 4.0x10-
5 M) (S3 Fig). However, our genotype-phenotype associations failed, in line with previously
reported studies, to identify SNPs explaining phenotypic variation, due to the high linkage dis-
equilibrium spanning functionally distinct TAS2R loci [32, 33]. In vitro, quinine elicited
numerous TAS2R-mediated responses, with TAS2R30, -31, -43, and -46 responding only at
the second or the last artefact-free concentration (1.0x10-5 M or 3.0x10-5 M). Receptor variants
of TAS2R30, -43, and -46 are activated similar to tastants already presented. Additionally,
TAS2R31 harboured one sensitive (TAS2R31-H2), two intermediates (-H1 and-H4), and one
insensitive variants (-H3). Hence, several TAS2Rs contribute to phenotypic variation.

Absinthin. The distribution of recognition thresholds for absinthin was broad, ranging
40-fold, from 5.2x10-8 M to 2.0x10-6 M (Fig 8A). Two modes were present, at 2.6x10-7 M and
one at 5.9x10-7 M. The distribution of concentrations eliciting perceived weak intensity was
narrower, ranging 15-fold, from 1.2x10-7 M to 2.0x10-6 M with a single mode at 3.9x10-7 M.
The distribution of concentrations eliciting perceived strong intensity was yet narrower, rang-
ing 5-fold, from 4.0x10-7 M to 2.0x10-6 M with a single mode at 1.3x10-6 M. Distributions of
detection threshold and concentrations perceived as moderately and very strongly bitter exhib-
ited largely analogous properties, with a detection threshold lower than recognition threshold,
and means for perceived moderate, strong, and very strong intensities shifted gradually upward
relative to perceived weak bitterness (S2 Fig).

While our previous inventory of receptor-agonist interactions identified TAS2R30 and -46
as responsive to absinthin, and both TAS2R30 and -46 harboured coding variations in our sam-
ple, association analyses found, however, no SNPs significantly associated with perception phe-
notypes (Figs 8B and S2; S2 Table).

Functional assays targeting TAS2R30 and -46 in our sample confirmed that both receptors
are capable of responding to absinthin (Fig 8C). As noted earlier, TAS2R30 existed in two
variants, TAS2R30-H1 and-H2. As with amarogentin and quassin, TAS2R30-H1 was strongly
activated by absinthin (threshold = 3.0x10-7 M; EC50 = 3.1x10-6 M; maximum amplitude =
0.41 ΔF/F) while H2 was less sensitive, with a severely reduced maximal signal amplitude
(threshold = 1.0x10-6 M; EC50 = 1.3x10-6 M; maximum amplitude = 0.15 ΔF/F). Likewise, three
variants of TAS2R46 exhibited responses mirroring their responses to amarogentin and quas-
sin. TAS2R46-H1 (threshold = 3.0x10-6 M; EC50 = 1.1x10-5 M; maximum amplitude = 0.63
ΔF/F) was more sensitive than-H3 (threshold = 1.0x10-5 M; EC50 = 1.4x10-5 M; maximum
amplitude = 0.48 ΔF/F), and TAS2R46-H2 showed no response at any concentration.

The lack of association between absinthin perception and SNPs at TAS2R30 and -46, in
spite of the presence of functional diversity among these receptors, was explained by long-
range haplotypes in the TAS2R31-42 region (Fig 5). Two common long-range haplotypes
coded the sensitive receptor variant TAS2R30-H1, combined with the non-functional
TAS2R46-H2 or the moderately sensitive variant TAS2R46-H3, for the first (frequency = 0.30)
and the third (frequency = 0.20) haplotype, respectively. The two other common long-range
haplotypes, the second (frequency = 0.22) and the fourth (frequency = 0.16), coded the sensi-
tive receptor variant TAS2R46-H1 and the insensitive TAS2R30-H2. Thus, while TAS2R30 and
-46 both harboured alleles with variable sensitivity, such that their individual contributions to
phenotype varied, their organization in long-range haplotypes resulted in 96% of subjects car-
rying exactly two copies of a high-sensitivity allele of at least one of the two genes, and 4% of
subjects carrying one copy. This pattern explains the lack of genotypic association. This clari-
fies also the low concentration perceived as bitter by human subjects when compared with in
vitro activation.

Cascarillin. Cascarillin elicited patterns of phenotypic and functional responses similar to
those elicited by absinthin, but differing in important respects. As with absinthin, threshold
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recognition exhibited a broad distribution (17-fold, from 2.3x10-6 M to 4.0x10-5 M). Distribu-
tion of perceived weak intensity was narrower (11-fold, from 3.5x10-6 M to 4.0x10-5 M), fol-
lowed by perceived strong intensity (S3 Fig). In vitro, the minimum concentration required to
elicit response to cascarillin in functional assays was slightly higher (3.0x10-5 M). Indeed,
receptor variants of TAS2R30 and -46 are activated in similar ways by absinthin and cascarillin,

Fig 8. Absinthin phenotypes, genotype-phenotype associations, and functional assays. (A) Distribution of bitter taste recognition thresholds, and
concentrations perceived as weak and strong. (B) Genotype-phenotype associations for common SNPs (frequency > 0.05). Dashed line indicates
significance threshold following corrections for multiple testing. Solid line indicates uncorrected significance threshold. (C) Allele-specific dose response
curves for loci harboring SNPs showing significant phenotypic associations.

doi:10.1371/journal.pgen.1005530.g008
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with TAS2R30 harbouring sensitive and insensitive variants (TAS2R30-H1 and-H2) and
TAS2R46 harboring sensitive, intermediate, and insensitive variants (TAS2R46-H1,-H3,
and-H2, respectively) (S3 Fig). Again, genotype-phenotype associations between variation at
TAS2R30 and -46 failed to identify SNPs explaining phenotypic variation, likely as the result of
linkage disequilibrium between responsive and nonresponse alleles of TAS2R30 and -46, since
all subjects carried at least one functional allele.

Discussion
Bitter taste perception has long been known to have major heritable components. Common
dominant and recessive alleles shaping sensitivity to specific chemical compounds were identi-
fied as early as the 1930s (for review see [47]). It is now known that much of this heritability is
due to coding variation in TAS2R genes altering receptor affinity, which shapes perception phe-
notypes. In the classic case, patterns of bitter sensitivity are driven by strong, single-gene effects
[17, 21, 25, 26]. However, such associations with only one TAS2R locus appear to be rare. Rela-
tionships between TAS2R variation and perception are likely most often complex due to high
levels of genetic diversity, linkage between loci and overlap in receptor-agonist interactions,
with some agonists stimulating multiple receptors and some receptors responding to multiple
agonists [26, 31]. This hinders elucidation of bitter perception’s molecular underpinnings and,
consequently, their downstream effects on aversion and ingestive behaviours [34]. Therefore,
until now only a limited number of TAS2R genes have been implicated in the modification of
ingestive behavior (for a review see [48]). Our findings reveal the extent to which linkage con-
strains both, variation in TAS2R genes and patterns of overlap in receptor-agonist affinity, and
the impact of these factors on bitter taste phenotypes.

Human TAS2Rs are highly diverse, with per nucleotide heterozygosity significantly higher
than genome-wide averages, elevated rates of non-synonymous substitution, and fixation indi-
ces (FST values) indicative of substantial population differentiation [22]. This suggests that
combinatorial variation across loci could, in principle, be extremely high. However, patterns of
linkage disequilibrium in our sample of the Caucasian population demonstrate that such diver-
sity is limited. While a total of 93 SNPs were present, which could in principle recombine to
form more than 7 quintillion (7.71 x 1030) different combinations, most variation resided in
just six blocks, each harbouring just 1 to 4 haplotypes. This finding has two implications. First,
it suggests that while humans harbour 25 functional TAS2R loci, each of which encodes a
receptor with alleles responsive to different ranges of agonists, phenotypic responses are likely
correlated across compounds regardless of whether they are mediated by the same receptor.
Second, linkage disequilibrium and block structures spanning loci are likely major sources of
spurious genotype-phenotype associations. Because blocks often span several loci, yet few
long-range haplotypes are present, true genotype-phenotype associations will most often be
accompanied by false positives arising from sites in LD with the causal variants. This problem
is compounded by the prevalence of non-synonymous variants in TAS2Rs, which stand out as
potential functional receptor candidates, making them difficult to rule out as causal. These
issues were evident in our association analyses, which were able to localize signals for amaro-
gentin, grosheimin, and quassin at the block level but not with respect to specific SNPs (Figs 7,
8 and S1–S3).

Functional assays characterizing the kinetic properties of individual TAS2R variants in our
sample were successful in resolving the positions of sites shaping phenotypes, revealing com-
plex variation in response across loci and alleles (Figs 6–8; S2 Table). Within each haplotype
block implicated in associations, we found at least one locus harboring functionally polymor-
phic alleles corresponding to receptor variants activated in the concentration range perceived
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as bitter by subjects, thus pinpointing the sites underlying variable perception of four tastants.
However, the mechanisms underlying variation in sensitivity varied from locus to locus. At
TAS2R30, the high- and low-sensitivity receptor variants, which differed drastically in response
to amarogentin and quassin, were distinguished by a single amino acid position (L252F) in the
third extracellular domain of the receptor, which is hypothesized to interact directly with ago-
nists. High- and low-sensitivity TAS2R46 variants also differed at a single amino acid position
(L228M); however, this site, located in the sixth transmembrane domain of the receptor, is
highly conserved among TAS2Rs and thought to be essential to the basic functionality of the
receptor, which likely explains the strong effects of TAS2R46-L228M on phenotype. TAS2R46
also harbored a common allele coding a premature stop codon (W250X), resulting in the pro-
duction of a severely truncated, dysfunctional receptor [22]. At TAS2R43, the high- and low-
sensitivity receptor variants differed at position W35S in the first intracellular domain and
H212R in the fifth transmembrane domain; by considering the high degree of sequence simi-
larity between TAS2R43 and TAS2R31, the sole presence of amino acid substitution W35S,
corresponding to the deleterious substitution TAS2R31-R35W, likely explains the severe
impaired functionality of the receptor [26]. Beyond these substitutions, TAS2R43 harboured a
high-frequency whole-gene deletion allele completely lacking an open reading frame, and
unable to produce protein at all [25, 26].

In addition to identifying simple phenotypic associations with alleles at single loci, our anal-
yses revealed associations arising from linkage disequilibrium across loci, demonstrating the
complexity of relationships between TAS2R variation and phenotypic response. In the case of
amarogentin and quassin, several loci (TAS2R30, -43, and -46) harboured both high- and low-
sensitivity alleles, suggesting that loci could individually contribute up- or downward shifts in
phenotype. However, only TAS2R30 harboured receptor variants responsive across the thresh-
old ranges of subjects, indicating that it alone accounts for most variability in perception. This
relationship is similar to long known patterns of bitter sensitivity driven by strong, single-gene
effects. In the case of grosheimin, two loci (TAS2R43 and -46) harboured both high- and low-
sensitivity alleles. However, these were maintained in the same linkage phase such that the sen-
sitive allele of TAS2R43 was linked with the sensitive allele of TAS2R46 and the insensitive
allele of TAS2R43 was linked with the insensitive allele of TAS2R46. Thus, while both loci har-
boured variation able to explain observed phenotypes, their contributions were strongly corre-
lated. In the case of absinthin and cascarillin, again two loci (TAS2R30 and -46) harboured
both high- and low-sensitivity alleles. However, linkage disequilibrium maintained these in
opposite phase such that the sensitive allele of TAS2R30 was linked with the insensitive allele of
TAS2R46, and the insensitive allele of TAS2R30 was linked with the sensitive allele of
TAS2R46. Thus, most subjects carried at least one allele sensitive to absinthin and cascarillin,
explaining both the low mean threshold response to these compounds in subjects and the weak
statistical associations for individual loci. These findings, together with prior evidence of exten-
sive overlap in sensitivity across loci and agonists, suggest that while strong associations
between a single TAS2R locus and phenotype may occur, they are likely uncommon. Moreover,
linkage between TAS2R loci can cause confounds resulting in both false positive and false nega-
tive results in association analyses. Thus, dissecting genetic effects on bitter taste sensitivity
through association analysis alone is likely to be inaccurate in most situations.

An essential aspect of TAS2R diversity in our sample of the Caucasian population, which
has been broadly observed in population genetic studies, was that diversity is extremely high.
In total we identified 93 SNPs, of which 67 SNPs were common, with frequencies above 5%
(Fig 3). Moreover, every subject harboured a different allele combination at the SNP positions.
Thus, inherited variation in taste responses was not a rarity as is the case for many phenotypes,
such as diseases, but the norm. Further, our European sample, though ethnically homogeneous,
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captured most TAS2R variation found to date in worldwide populations [22, 40]. For example,
beyond the 93 SNPs found in our subjects, Kim et al. (2005) reported only 10 additional com-
mon SNPs (5 synonymous and 5 non-synonymous) across a panel of 55 Africans, Asians,
Europeans, and Native Americans. Hence, differences at TAS2R loci between individuals from
ethnically diverse populations are modest in comparison to differences among individuals
from the same population, consistent with more general observations on large-scale data sets
[49, 50]. These patterns suggest that the association trends in our data are likely not restricted
to Europeans, but relevant in most populations.

Yet, even if receptor polymorphism and genomic structure dominantly shape bitter taste
perception, further studies need to be performed to enable a complete comprehension of varia-
tion in bitter taste perception, taking into account that other relevant factors may also play a
significant role. Indeed, besides receptor-agonist interactions, differences in taste receptor gene
expression levels could also contribute to individual differences in bitter taste perception. The
importance of polymorphisms in the putative promoter regions of taste genes further indicates
overlapping genetic influences on receptor expression and functionality [51, 52]. In addition,
differences at peripheral level, e.g. in taste signaling cascade components [53], may also influ-
ence taste perception, as well as differences in signal transmission by afferent taste nerves and
signal processing at central level. Hormones may also, at the level of the individual, impact bit-
ter taste perception, e.g. hunger-satiety hormones as well as sex hormones (for review see [54,
55]).

Nonetheless, deciphering receptor activation patterns and linkage structure among TAS2R
genes is an important prerequisite to establish a solid basis to assess bitter taste variations in
the population. This may pave the way to evaluate the consequences of these variations in food
rejection and ultimately help to improve public health.

Material and Methods

Ethics statement
This work was conducted in accordance to the Declaration of Helsinki on Biomedical
Research Involving Human Subjects and approved by the Ethics Committee of the University
of Potsdam (Germany) through decision 11 / 27. Session / 2009. All participants gave written
informed consent.

Subjects
The subject panel was composed of 48 unrelated Caucasian subjects (39 women, 9 men; age
range 21 to 59 years, mean age 30.6 years), recruited at the German Institute of Human Nutri-
tion Potsdam-Rehbruecke (Germany). All were pre-screened to avoid inclusion of individuals
with health problems and overt taste pathologies; pregnant and breast-feeding women were
also excluded. Each subject participated in the entire course of the study, which included one
training session and nine experimental sessions. Visits consisted of DNA collection and psy-
chophysical tests for genotyping and phenotypic analyses, respectively. General taste abilities
were also assessed for the bitter, salty, sour, and sweet taste during the first session.

Taste compounds
Six structurally diverse bitter substances, found at low concentrations in various beverages, and
known to exhibit pharmacological properties at high concentrations, were used to probe phe-
notypic and molecular responses (S1 Fig). These included absinthin (a dimeric sesquiterpene
lactone), amarogentin (a secoiridoid glycoside), cascarillin (a diterpene lactone), grosheimin (a
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sesquiterpene lactone), quassin (a triterpene lactone), and quinine (a quinoline alkaloid).
Absinthin, cascarillin, and grosheimin were isolated from crude vegetable material as detailed
in previous studies [31, 56]. Amarogentin and quassin were purchased from Chromadex Inc.
(Irvine, CA, USA), quinine hydrochloride from Sigma-Aldrich Co. (St. Louis, MO, USA). Sali-
cin, sodium chloride, citric acid, and sucrose (Sigma-Aldrich Co.) were used as reference
tastants for assessing bitter, salty, sour, and sweet perception, respectively.

Genotype analysis
Gene locations and coding sequences of the 25 TAS2R genes were obtained from genomic scaf-
folds 1103279188109, 1103279188381, 1103279188228, and 1103279188408 of the whole
genome assembly released by the Venter Institute human reference genome as well as from all
subjects in the present study [57] (Fig 1). Corresponding amino acid sequences were aligned
according the modified version of the Feng-Doolittle progressive alignment algorithm (Align
X, Vector NTI; Life Technologies, Carlsbad, CA, USA) [58]. Alignment was then manually
adjusted on the basis of previous in silico and in vitro experiments, in order to conserve struc-
tural and functional key domains, e.g., transmembrane domains and the conserved glycosyla-
tion site [41, 42, 59]. A neighbour-joining tree with bootstrap values was then constructed
from aligned sequences using Clustal X [60].

Genomic DNA was obtained from saliva samples collected using Oragene DNA self-collec-
tion kits (Oragene DNA; DNA Genotek Inc., Kanata, Canada), and purified using prepIT-L2P
kits (prepIT-L2P; DNA Genotek Inc.). Complete nucleotide sequences of every TAS2R coding
region were then obtained for all subjects. Locus-specific primers localized in the flanking
regions of each gene, ~100 bp upstream of the start codon and ~100 bp downstream of the stop
codon, were designed using the Primer-Blast tool or obtained from previous studies [22, 26, 40,
61]. Corresponding DNA fragments of at least ~1 kbp were amplified by PCR using a high-
throughput polymerase (Advantage 2 polymerase mix; Takara Bio Inc., Otsu, Japan). Ampli-
fied DNA fragments were sequenced by capillary electrophoresis of both forward and reverse
strands (Eurofins MWGOperon, Ebersberg, Germany). Reads were assembled and trimmed to
remove low-quality sequence (Vector NTI; Life Technologies). All single-nucleotide polymor-
phisms (SNPs) were then identified and individual genotypes were determined. Departures
from the Hardy-Weinberg equilibrium were tested to rule out genotyping problems.

Copy number determination
Previously reported major deletions at TAS2R43 and -45 loci, ~39k b and ~32 kb in length,
respectively, were characterised by multiplex PCR reactions. These were performed using
primer sets targeted within, outside, and spanning the deleted regions such that amplifications
produced alternate products in deleted and non-deleted alleles (S4 Fig). Gel separation and
sequencing of the resulting fragments (Advantage 2 polymerase; Takara Bio Inc.) revealed
whether a subject carried zero, one or two copies of each gene.

Haplotype estimation
DNA sequence and copy-number data were jointly used to call genotypes. Haplotypes were
then either directly ascertained for homozygous individuals or inferred using PHASE, which
utilizes Bayesian algorithms to resolve haplotypes in heterozygous individuals [62, 63]. In cases
of uncertain phase, haplotypes were confirmed by comparison with previously published data
or identified by cDNA cloning and sequence analysis [26]. Linkage disequilibrium measures
were then obtained by calculating D’, r2 and corresponding p-values between multi-allelic loci
for both SNPs and genes [64, 65]. Haplotype block partitions were generated according to the
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four gamete rule with a 5% cut-off score, and manually adjusted for TAS2R19 and TAS2R42,
which SNPs spanned several blocks [66, 67]. Corresponding long-range haplotypes were then
inferred [62, 63]. Algorithms for visual representation were specifically implemented in
Matlab, based on the population genetics and evolution toolbox (Matlab; The MathWorks Inc.,
Natick, MA, USA) [68].

Phenotype analysis
Experiments were conducted at the sensory analysis laboratory of the German Institute of
Human Nutrition Potsdam-Rehbruecke, according to good practice guidelines [69, 70]. Detec-
tion and recognition thresholds were assessed using a procedure adapted from the norm ISO
13301:2002 of the International Organization for Standardization: a four-alternative ascending
forced-choice procedure, followed by yes-no questions about the bitter taste quality of the
quoted samples [71]. Perceived bitter taste intensities were rated on the general Labelled
Magnitude Scale (gLMS; [72–74]). Concentration series consisted of geometric sequences of
twelve steps, with a 1.5 common ratio and the following concentration ranges: 2.3x10-8–
2.0x10-6M, 3.5x10-9–3.0x10-7 M, 4.6x10-7–4.0x10-5 M, 5.8x10-7–5.0x10-5 M, 1.2x10-8–1.0x10-6

M, 4.6x10-7–4.0x10-5 M, for absinthin, amarogentin, cascarillin, grosheimin, quassin, and qui-
nine, respectively. For each 4-AFC test, four coded samples containing 10 ml solution were pre-
sented simultaneously; one containing the bitter tastant diluted in mineral water (Evian;
Danone, Paris, France) and three containing mineral water only. At each concentration, sub-
jects were challenged to identify the different sample, specify whether the quoted sample tasted
bitter, and rate the perceived bitter intensity. Tests were performed with nose clips and oral
rinsing, with a 45 s pause between concentrations. Training sessions were first used to familiar-
ize subjects with the experimental procedures, and secondly, to assess general taste abilities.
Concentration series consisted of geometric sequences of six steps, with a 1.5 common ratio
and the following concentration ranges: 3.5x10-5–2.0x10-3M, 6.9x10-4–4.0x10-2 M, 2.6x10-4–
1.5x10-2 M, 6.9x10-4–4.0x10-2 M, for salicin, sodium chloride, citric acid, and sucrose used as
reference tastants for bitter, salty, sour, and sweet taste, respectively. Following training, sub-
jects tested each tastant in triplicate over nine sessions. Latin square designs extended for first-
order carry-over effects were used to counterbalance presentation order of the test compounds
over the test sessions, across subjects and for each test compound, as well as presentation order
of the samples at each concentration across both repetitions and subjects. Sensory sessions
were monitored and data automatically collected (Fizz; Biosystèmes, Couternon, France).

Detection and recognition probabilities of the bitter samples were analysed per repetition
and subject. Relationships between probabilities (detection or recognition probabilities) and
concentrations were fitted by a logistic regression model using the maximum-likelihood
method. Threshold value and slope of the logistic curves were then obtained per repetition and
subject, using a self-implemented toolbox (Matlab; The MathWorks Inc.). No repetition effect
was observed. Where required, outliers were discarded according to the Peirce’s criterion [75,
76]. Perceived intensities, expressed in percentage of the scale length, were analysed similarly.
Concentrations were subsequently inferred for weak, moderate, strong, and very strong inten-
sities, corresponding respectively to 6, 17, 34.7, and 52.5% of the scale length.

Genotype-phenotype association analyses
General linear mixed model analyses were performed at SNP, gene, and LD block level (SAS
Institute Inc., Cary, NC, USA). Concentrations corresponding to detection thresholds, recogni-
tion thresholds, or perceived intensities were treated as dependent variables following a log-
normal distribution. Genotype or haplotype with frequencies above 0.05 were used as
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independent variables and subjects as random variables. For analyses at the SNP level, proba-
bility values were assessed at an uncorrected significance level of 0.05, and at an experiment-
wide significance threshold required to keep a significance level of 0.05, thus correcting for
multiple comparisons [77]. For analyses at gene-specific level and LD block level, a Bonferroni
correction for multiple corrections was applied.

Functional analyses of TAS2R variants
Allelic responses to agonists were quantified using in vitro heterologous expression assays
designed in previous studies of TAS2R receptor function, which successfully mimic responses
in vivo with respect to both magnitude and concentration range [17, 23, 25, 26, 46]. DNA frag-
ments containing TAS2R coding sequences were first amplified from genomic DNA by PCR
using a proofreading polymerase (PfuUltra II Fusion HotStart DNA Polymerase; Agilent Tech-
nologies, Santa Clara, CA, USA) and cloned into a plasmid vector according to the manufac-
turer’s protocol (Zero Blunt TOPO PCR Cloning Kit; Life Technologies). A second PCR was
performed using specific cloning primers to facilitate subcloning into the expression vector,
which was then modified to add an N-terminal signal for cell surface localisation and a C-ter-
minal epitope for immunocytochemical detection to the receptor sequence (Fast Link DNA
Ligation Kit; Epicentre, Illumina Inc., Madison, WI, USA) (pcDNA5/FRT Mammalian Expres-
sion Vector; Life Technologies). Empty vector was used as a negative control [23, 31].

Functional assays were carried out in HEK 293T cells stably expressing the G protein chi-
mera Gα16gust44 and transiently transfected with TAS2R alleles subcloned into the expression
vector [78]. Calcium imaging was performed using an automated fluorometric imaging plate
reader by exposing transfected cells to test compounds dissolved in assay buffer or to assay
buffer alone (FLIPR Tetra; Molecular Devices, LLC, Sunnyvale, CA, USA). Changes in cyto-
solic calcium levels were monitored by measuring fluorescence intensity of a calcium-sensitive
dye previously added (Fluo-4 AM; Life Technologies). Six replicates were carried out for each
bitter stimulus, on separate experimental days, with each replicate consisting of concentration
series of each bitter tastant.

Prior to final analysis, fluorescence data from functional assays, expressed in relative fluo-
rescence units (RFU), underwent three corrections. First, a correction calculated from baseline
values was applied to compensate for well-to-well fluctuations. A second correction calculated
from negative control values was applied to correct for receptor independent artefacts and sig-
nal drift. A third correction calculated from positive control values was applied to facilitate
comparison of data obtained from different experimental days. Fluorescence ratios ((F-F0)/F0),
obtained by subtracting the background fluorescence from fluorescence peak height and then
dividing the difference by the background fluorescence, were then used for data analysis. Vari-
ance analyses were performed, followed by Bonferroni multiple comparisons tests (SPSS 20;
IBM Corporation, Armonk, NY, USA). Threshold response values were then defined as the
first concentration eliciting a significant activation of the receptor, with empty vector acting as
a negative control. Finally, dose-response curves were fitted to the Hill equation by nonlinear
regression in order to determine half maximal effective concentrations (EC50) and maximal
amplitude [79] (SigmaPlot; Systat Software Inc., Chicago, IL, USA).

Supporting Information
S1 Table. Coding SNPs and haplotypes of TAS2R genes.Haplotypes are detailed for each
gene, along with each variable codon and its alternative nucleotide and encoded amino acids.
Allele and carrier frequencies for each haplotype are detailed, as well as minor allele frequency,
heterozygosity, and Hardy-Weinberg p-value for each SNP. Haplotypes were either (1) directly
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ascertained for homozygous individuals or (2) inferred using a Bayesian approach for heterozy-
gous individuals [62, 63]. In case of uncertain haplotype phases, haplotypes were confirmed (3)
by comparison with previously published data [26] or identified by cDNA cloning and
sequence analysis. Haplotypes were named (6) according to previous nomenclature [26] or
according to their respective allele frequencies in our sample of the European population; the
most common haplotypes receiving the smallest number. Previously published protein-coding
haplotypes (4) [31] or receptor variants obtained through single point mutagenesis (5) [39]
were also detailed. Haplotypes were named according to previous nomenclature or according
to their respective allele frequencies in our subjects; the most common haplotypes receiving the
smallest number [26].
(PDF)

S2 Table. Probability values of the genotype-phenotype associations determined for the bit-
ter substances absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine. Prob-
ability values are detailed per receptor for each common SNPs. Probability values, which
reached significance level of 0.05, are underlined in grey; probability values, which reached the
experiment-wide significance threshold, appear in bold type.
(PDF)

S1 Fig. Structural formulas of bitter tastants. Formulas are detailed for absinthin, amarogen-
tin, cascarillin, grosheimin, quassin, and quinine.
(PDF)

S2 Fig. Phenotype and genotype-phenotype associations determined for the bitter sub-
stances absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine. Distribution
of the subjects is plotted for detection and recognition thresholds, as well as for concentrations
corresponding to weak, moderate, strong, and very strong bitter taste intensities (left panel).
Identically, genotype-phenotype associations for each common SNP are specified for detection
and recognition thresholds, as well as for concentrations corresponding to weak, moderate,
strong, and very strong bitter taste intensities (right panel). Significance level of 0.05 (dotted
line), or at the experiment-wide significance threshold required to keep a significance level of
0.05 (dashed line) are specified.
(PDF)

S3 Fig. Phenotype, genotype-phenotype associations, and functional assays determined for
the bitter substances cascarillin, quassin, and quinine. (A) Distribution of the subjects is
plotted for recognition thresholds, as well as for concentrations corresponding to weak and
strong bitter taste intensities. (B) Identically, genotype-phenotype associations for each com-
mon SNP are specified for recognition thresholds, as well as for concentrations corresponding
to weak and strong bitter taste intensities. Significance level of 0.05 (dotted line), or at the
experiment-wide significance threshold required to keep a significance level of 0.05 (dashed
line) are specified. (C) Variants of TAS2R candidates were functionally challenged in heterolo-
gous cell-based assays.
(PDF)

S4 Fig. Copy-number variations at the TAS2R43 and -45 loci.Major overlapping deletions of
~39kb and ~32kb in length were identified at the TAS2R43 locus and at the TAS2R45 locus,
respectively. Consistent with these findings, PCR with primers in the flanking regions of
TAS2R43 (PCR1) or TAS2R45 (PCR5) failed. Multiplex PCR distinguished subjects with zero,
one or two copies of each gene. The sole presence of DNA fragments spanning a deletion indi-
cates a copy number zero (PCR4 at TAS2R43 locus; PCR8 at TAS2R45 locus), whereas the sole
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presence of DNA fragments obtained with primers located within a potentially deleted DNA
region indicates a copy number of two (PCR2 and PCR3 at TAS2R43 locus; PCR6 and PCR7 at
TAS2R45 locus). The presence of both kinds of DNA fragments indicates a copy number one.
(PDF)
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