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EPIGRAPH

"Do you mean ter tell me," he growled at the Dursleys, "that this boy - this boy!

- knows nothin' abou' - about ANYTHING?"

Harry thought this was going a bit far. He had been to school, after all, and his

marks weren't bad.

"I know some things," he said. "I can, you know, do math and stuff."

-J. K. Rowling, Harry Potter and the Sorcerer's Stone
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ABSTRACT OF THE DISSERTATION

Generalized Shuffle Conjectures for the Garsia-Haiman Delta Operator

by

Andrew Timothy Wilson

Doctor of Philosophy in Mathematics

University of California, San Diego, 2015

Professor Jeffrey B. Remmel, Chair

We conjecture two combinatorial interpretations for the symmetric function∆eken,

where ∆f is an eigenoperator for the modified Macdonald polynomials defined by Gar-

sia and Haiman. The first interpretation is due to Haglund and the second is due to the

author. Both interpretations can be seen as generalizations of the Shuffle Conjecture of

Haglund, Haiman, Remmel, Loehr, and Ulyanov. The primary goal of this dissertation is

to prove various special cases of these conjectures. We accomplish this goal by connect-

ing the interpretations to objects such as ordered set partitions, rook placements, Tesler

matrices, and LLT polynomials. These connections lead to many new results about these

objects, such as an extension of MacMahon's classical equidistribution theorem from

permutations to ordered set partitions.

xiii



Chapter 1

Introduction

Many of the central results in algebraic combinatorics deal with correspondences

between symmetric functions, representations of the symmetric group, and combinato-

rial generating functions. The study of Macdonald polynomials [Mac95] and the Shuffle

Conjecture [HHL+05b] are two such examples. In this chapter, we explain how to view

Macdonald polynomials and the Shuffle Conjecture from this perspective and how these

examples have inspired the work contained in the remainder of this dissertation.

We begin by reviewing the theory of symmetric functions in Section 1.1. In

Section 1.2 we review the history of the Shuffle Conjecture and we generalize the Shuffle

Conjecture to obtain our main focus, which we call the Delta Conjectures. Finally, in

Section 1.3 we give several combinatorial reformulations of the Delta Conjectures which

will be useful in subsequent chapters.

1.1 Symmetric Functions

In this section, we give a brief review of the combinatorics of symmetric func-

tions. This material can also be found in Chapter 7 of [Sta99] or in [Sag02, Hag08];

readers looking for a more leisurely introduction may wish to consult those sources. We

begin by defining the symmetric group of order n, which we will denote Sn, as the set

of bijections from {1, 2, . . . , n} to itself with composition as the group operation. El-

ements of the symmetric group are called permutations. Most often, we will write a

permutation σ ∈ Sn as the word whose ith entry σi, reading from left to right, equals

1
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σ(i). This is called one-line notation. Occasionally we will need to think of σ in cycle

notation, where we use a series of parentheses to denote the cycles in the map σ. For

example, σ = 52143 is written as (1, 5, 3)(2)(4) in cycle notation. The cycle type of σ is

the weakly decreasing list of sizes of cycles in σ. In the previous example, σ has cycle

type (3, 1, 1).

Given a formal power series f in the infinite set of variables x1, x2, x3, . . ., any

permutation σ ∈ Sn acts on f by sending xi to xσi
for each i = 1, 2, . . . , n. The ring

of symmetric functions Λ is the ring of such formal power series that are invariant under

this action for every permutation of every order. For reasons that will become clear later,

we will set C(q, t) as the field of coefficients of Λ. Λ can be graded as Λ =
⊕

n≥0 Λ
(n),

where Λ(n) consists of the formal power series in Λ that are homogeneous of degree n.

1.1.1 The classical bases

There are several classical bases for Λ(n) when it is viewed as a vector space.

Each basis is indexed by the set of partitions of n, which are the weakly decreasing

sequences of positive integers that sum to n. We write λ ⊢ n to specify that λ is a

partition of n and ℓ(λ) to denote the length of λ. For example, (3, 1, 1) ⊢ 5 and this

partition has length 3. We define a partial order on the set of partitions of n by λ ≤ µ

if and only if ℓ(λ) ≤ ℓ(µ) and each part of λ is less than or equal to the corresponding

part in µ. For example, (3, 1, 1) ≤ (3, 2), while (3, 1, 1) and (2, 2, 1) are incomparable.

Later, we will also need to consider compositions α ⊨ n, which are essentially partitions

but with ordered parts. For example, (1, 3, 1) and (1, 1, 3) are two different compositions

of 5.

For any partition λ ⊢ n and any positive integer k, we set

ek(x) =
∑

i1<...<ik

xi1 . . . xik eλ(x) =

ℓ(λ)∏
i=1

eλi
(x)

hk(x) =
∑

i1≤...ik

xi1 . . . xik hλ(x) =

ℓ(λ)∏
i=1

hλi
(x)

pk(x) =
∑
i≥1

xki pλ(x) =

ℓ(λ)∏
i=1

pλi
(x).
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and

mλ(x) =
∑

i1,...,iℓ(λ)≥1

xλ1
i1
. . . x

λℓ(λ)

iℓ(λ)

These are the elementary, homogeneous, and power sum, and monomial symmetric func-

tions, respectively. When the set of variables is clear, we will often omit x from the no-

tation for these symmetric functions. It is a classical fact that taking the union over any

of these sets of symmetric functions for all λ ⊢ n gives a basis for Λ(n). For example,

{p3, p2,1, p1,1,1} is a basis for Λ(3).

There are two more bases for Λ(n) which will be instrumental in our work. The

first is the Schur functions sλ(x), which are deeply connected to topics such as the repre-

sentation theory of Sn and the geometry of the Grassmannian variety. Schur functions

have several nontrivially equivalent definitions. For our purposes, it will be most con-

venient to define them combinatorially. Given a partition λ ⊢ n, the Ferrers diagram of

λ is the diagram consisting of λ1 left-justified squares in the bottom row, λ2 left-justified

squares in the second row from the bottom, and so on. Below we have drawn the Ferrers

diagram for the partition (3, 2) ⊢ 5.

A standard Young tableau of shape λ is a bijective filling of the cells of the Ferrers

diagram of λ with the integers 1, 2, . . . , n such that the entries increase from left to right

in each row and from bottom to top in each column. For example,

3 5

1 2 4

is a standard Young tableau of shape (3, 2). A semistandard Young tableau is a (not

necessarily bijective) filling with positive integers such that the entries increase weakly

from left to right in each row and strictly from bottom to top in each column. Given a

tableaux T , the monomial xT is the product
∏

c∈λ xT (c) over all cells c in λ. Below, we

have drawn a semistandard Young tableau of shape (3, 2) with monomial x1x2x
2
3x4.

3 3

1 2 4
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The set of all standard and semistandard Young tableaux with respect to λ are denoted

SYT(λ) and SSYT(λ), respectively. Now we can define the Schur function:

sλ(x) =
∑

T∈SSYT(λ)

xT .

We will define one more basis for Λ in Subsection 1.1.5.

1.1.2 Properties of symmetric functions

There are number of properties of the ring of symmetric functions that will be

valuable in the sequel. The first is that they have an inner product, usually called the

Hall inner product, which can be defined by any of the following:

⟨sλ, sµ⟩ = χ(λ = µ)

⟨mλ, hµ⟩ = χ(λ = µ)

⟨pλ, pµ⟩ = zλχ(λ = µ)

where χ evaluates to 1 if the statement inside it is true and 0 if the statement is false and

zλ =
∏

i≥1 1
mimi!, where mi is the multiplicity of i in λ.

Next, we define an algebra endomorphism ω from Λ to itself by ω(eλ) = hλ for

all partitions λ. It follows that ω is actually an involution, i.e. ω(hλ) = eλ. One can

also show that ω(sλ) = sλ′ , where λ′ is the partition obtained by reflecting the Ferrers

diagram of λ around the diagonal line y = x.

We will find that the concept of plethysm is quite valuable, as it has been through-

out the study of Macdonald polynomials. Given a power series E in the variables q, t

and x1, x2, x3, . . ., we considerE as a sum of signed monomials. We define the plethysm

pk[E] to be the sum of all the monomials in E raised to the kth power. Extending by

multiplication, this defines pλ[E] for any partition λ. Finally, for any symmetric function

f we compute f [E] by expanding f into the power sum basis and then replacing each

pλ with pλ[E]. Sometimes we will use X to denote the sum x1 + x2 + x3 + . . . . With

this notation, we can state a useful identity that is sometimes called Cauchy's Formula:

for any bases {aλ : λ ⊢ n} and {bλ : λ ⊢ n} that are dual with respect to the Hall inner
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product and two sums X and Y ,

en[XY ] =
∑
λ⊢n

ω (aλ[X]) bλ[Y ]. (1.1)

More information about plethysm can be found in [LR11].

1.1.3 Connections to representation theory

One of the most celebrated applications of symmetric functions is to represen-

tation theory, specifically the representation theory of the symmetric and general linear

groups. We will focus on the symmetric group. Any group representation M is uniquely

associated with a function called the character, denoted χM, which is computed by tak-

ing traces of the matrices associated with the representation. Every character is a class

function, meaning that it is constant on conjugacy classes. There is a natural scalar prod-

uct on the class functions of a group G, defined by

⟨f, g⟩ = 1

|G|
∑
σ∈G

f(σ)g(σ)

where the bar denotes complex conjugation. The Frobenius map sends class functions

of Sn to Λ and is defined by

Frob(f) =
1

n!

∑
σ∈Sn

f(σ)pcycle(σ)

where cycle(σ) is the cycle type of σ. One can show that the Frobenius map is a bijec-

tive ring homomorphism as well as an isometry with respect to the inner product defined

above and the Hall inner product on Λ [Sta99]. It is the key tool to understanding the

irreducible characters of Sn. In particular, the irreducible characters of Sn are in bi-

jection with partitions λ ⊢ n. If χλ is the irreducible character associated with λ, then

Frob
(
χλ
)
= sλ.

We will find that many of the natural Sn-modules that arise in our work have

a natural grading or bigrading, i.e. we can write M =
⊕

i≥0 Mi or M =
⊕

i,j≥0 Mi,j

where each summand is also an Sn-module. In these cases, we will often want to know
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about the Hilbert series of M, defined by

Hilb(M; q) =
∑
i≥0

qi dim(Mi)

Hilb(M; q, t) =
∑
i,j≥0

qitj dim(Mi,j)

as well as the Frobenius series of M, defined by

Frob(M; q) =
∑
i≥0

qi Frob (Mi)

Frob(M; q, t) =
∑
i,j≥0

qitj Frob (Mi,j) .

The presence of the variables q and t should clarify any ambiguity between Frobenius

series and the Frobenius map. Note that any Frobenius series is necessarily Schur posi-

tive, meaning that it can be expressed in the Schur basis for Λ with coefficients in N[q, t].
This is because every Sn-module decomposes as a sum of irreducible modules, and irre-

ducible characters correspond to Schur functions via the Frobenius map. We should also

mention that one can recover the Hilbert series of a module from its Frobenius series by

taking the scalar product with pn1 .

1.1.4 Quasisymmetric functions

The ring of quasisymmetric functions consists of the formal power series in vari-

ables x1, x2, x3, . . . that are invariant under any permutation of the indices that preserves

the order of the indices. We will primarily use the monomial basis {Mα : α ⊨ n} for

the quasisymmetric functions that are homogeneous of degree n. These functions are

defined

Mα(x) =
∑

1≤i1<...<iℓ(α)

xα1
i1
. . . x

αℓ(α)

iℓ(α)
.

In the Shuffle Conjecture as well as the Delta Conjectures, one can reformulate the com-

binatorial side in terms of Gessel fundamental quasisymmetric function; however, since

we opt to use the monomial approach for the remainder of the paper, we will not need

the fundamental quasisymmetric functions. [Sta99] contains more information on qua-

sisymmetric functions.
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1.1.5 Macdonald polynomials

In [Mac95], Macdonald introduced a basis for Λ(n) that generalized several ex-

isting classes of symmetric functions, such as Schur functions, Jack polynomials, Hall-

Littlewood polynomials. In his honor, these new polynomials came to be known as

Macdonald polynomials. One way to define Macdonald polynomial associated with a

partition µ is as the unique symmetric function H̃µ[X; q, t] satisfying the conditions

H̃µ[X(q − 1); q, t] ∈ C[q, t] {mλ : λ ≤ µ′}

H̃µ[X(t− 1); q, t] ∈ C[q, t] {mλ : λ ≤ µ}

⟨H̃µ[X; q, t], sn⟩ = 1.

We have used brackets because the definition involves plethysm; when there are no

plethystic computations in sight, we will often write the Macdonald polynomial as

H̃µ(x; q, t) or even just H̃µ.

There are two properties of Macdonald polynomials which motivate our work.

The first is that Macdonald polynomials are Schur positive, meaning they can be ex-

panded into the Schur function basis as

H̃µ(x; q, t) =
∑
λ⊢n

K̃λ,µ(q, t)sλ(x)

for polynomials K̃λ,µ(q, t) ∈ N[q, t]. These polynomials are known as the q, t-Kostka

coefficients. Although Macdonald himself noticed that his polynomials seemed to be

Schur positive, he was unable to prove that this was the case. In [GH93], Garsia and

Haiman defined a module that they believed had Frobenius series equal to H̃µ. Given a

partition µ ⊢ n and a cell c in the Young diagram of µ (drawn in French notation), we set

a′(c) and ℓ′(c) to be the number of cells in µ that are strictly to the left and strictly below

c in µ, respectively. For example, the cell c in the following partition has a′(c) = 2 and

ℓ′(c) = 1.

c

Garsia and Haiman defined H̃µ to be the linear span of all partial derivatives of the de-

terminant ∣∣∣xℓ′(c)i y
a′(c)
i

∣∣∣
1≤i≤n, c∈µ

.
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H̃µ is an Sn-module under the diagonal action, where σ ∈ Sn simultaneously sends xi

to xσi
and yi to yσi

. After a long program of work, Haiman proved that Frob(H̃µ; q, t) =

H̃µ(x; q, t) in [Hai01], implying the Schur positivity of Macdonald polynomials.

Haiman's proof relies heavily on modern techniques in algebraic geometry; as a

result the proof does not provide much insight into the q, t-Kostka coefficients K̃λ,µ(q, t).

The main result in this direction is a theorem of Haglund, Haiman, and Loehr [HHL05a].

In this paper, the authors prove that

H̃µ(x; q, t) =
∑
T

qinv(T )tmaj(T )xT

where the sum is over all (not necessarily semistandard) fillings of the Ferrers diagram

of µ with (not necessarily unique) positive integers and inv and maj are two statistics

on such fillings. Haglund, Haiman, and Loehr relate their formula to Lascoux, Leclerc,

and Thibon's polynomials [LLT97] in order to show that their formula is symmetric and

that the coefficient of mλ in their formula corresponds to restricting the sum to fillings

with exactly λi i's for all i ≥ 1. Thus, the formula gives the monomial expansion of

H̃µ(x; q, t).

The important takeaway of this work for our purposes is that Macdonald poly-

nomials can be considered from three points of view: as symmetric functions (like in

Macdonald's original work), as Frobenius series (of Garsia-Haiman modules), or as com-

binatorial generating functions (of fillings of Ferrers diagrams). In the next section, we

will explore other polynomials from each of these three perspectives.

1.1.6 Notation

We will often use the standard combinatorial notation for q- and q, t-analogs. To

begin, for any nonzero integer n we set

[n]q =
qn − 1

q − 1
[n]q,t =

qn − tn

q − t
.

Note that when n > 0 we can rewrite these expressions as

[n]q = qn−1 + qn−2 + . . .+ q + 1 [n]q,t = qn−1 + qn−2t+ . . . qtn−2 + tn−1.
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Analogs of factorials and binomial coefficients are defined as follows.

[n]q! = [n]q[n− 1]q . . . [1]q [n]q,t! = [n]q,t[n− 1]q,t . . . [1]q,t[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

1.2 Shuffle Conjectures

In the course of their research, Garsia and Haiman noticed that their modules

were intimately connected with another Sn-module, the ring of diagonal coinvariants.

Later, Bergeron and Garsia noticed that the Frobenius series of this module could be

expressed simply in terms of a Macdonald polynomial eigenoperator. Haglund, Haiman,

Loehr, Remmel, and Ulyanov conjectured a combinatorial formula for this Frobenius

series similar to Haglund, Haiman, and Loehr's formula for Macdonald polynomials

[HHL+05b]. Their formula uses objects known as parking functions. In this section,

we describe this conjectured formula as well as its extensions and refinements.

1.2.1 Diagonal coinvariants

The ring of invariants In ofSn is the set of polynomials in the variablesx1, . . . , xn

which are invariant under the action of Sn. These are simply the symmetric functions

in n variables. The ring of coinvariants Rn is the quotient ring obtained by modding out

by the invariants, i.e.

Rn = C[x1, . . . , xn]/In.

The ring of coinvariants is an Sn-module and it has a natural grading by degree. With

this grading, it has Hilbert series

Hilb(Rn; q) = [n]q!

and Frobenius series

Frob(Rn; q) =
∑
λ⊢n

sλ
∑

T∈SYT(λ)

qmaj(T )



10

where maj is a certain statistic on standard Young tableaux [Hag08].

Garsia and Haiman considered the ring of diagonal invariants DIn, which are

the polynomials in variables x1, . . . , xn and in y1, . . . , yn which are invariant under the

diagonal action. The ring of diagonal coinvariants is the quotient ring (and Sn-module)

DRn = C[x1, . . . , xn; y1, . . . , yn]/DIn.

Garsia and Haiman noticed that the dimension of DRn was (n+1)n−1, which also gives

the number of parking functions of order n (which we define in Subsection 1.2.3). Their

hope was to discover information about the bigraded Hilbert and Frobenius series of

DRn.

DRn is isomorphic to another module known as the module of diagonal har-

monics, denoted DHn. We define DHn to be the set of all polynomials f in the ring

C[x1, . . . , xn; y1, . . . , yn] with the property that

n∑
k=1

∂i

xik

∂j

yjk
f = 0

for any nonnegative integers i, j with i + j > 0. In some ways, the definition of DHn

is reminiscent of the Garsia-Haiman modules. In fact, Garsia-Haiman modules are sub-

modules of the space of diagonal harmonics.

1.2.2 Macdonald eigenoperators

While exploring the module of diagonal coinvariants, Garsia and Bergeron no-

ticed that its Frobenius series could be written in terms of certain operators defined on

Macdonald polynomials. Given a partition µ ⊢ n and a cell c in the Young diagram of

µ (drawn in French notation), recall that a′(c) and ℓ′(c) are the number of cells in µ that

are strictly to the left and strictly below c in µ, respectively. We define

Bµ =
∑
c∈µ

qa
′(c)tℓ

′(c) Tµ =
∏
c∈µ

qa
′(c)tℓ

′(c).

Given any symmetric function f ∈ Λ, we define operators∇, ∆f , and ∆′f on Λ by their

action on the Macdonald polynomial basis:

∇H̃µ = TµH̃µ ∆fH̃µ = f [Bµ]H̃µ ∆′fH̃µ = f [Bµ − 1]H̃µ.



11

Here, we have used the notation that, for a symmetric function f and a sumA = a1+. . .+

aN of monic monomials, f [A] is equal to the specialization of f at x1 = a1, . . . , xN =

aN , where the remaining variables are set equal to zero. We note that∇ = ∆en = ∆′en−1

as operators on Λ(n).

Since these operators act by constant multiplication on Macdonald polynomials,

we call them Macdonald eigenoperators. The fundamental relationship between these

operators and diagonal coinvariants was noticed by Bergeron and Garsia and proved by

Haiman [Hai02]:

Frob(DRn; q, t) = ∇en.

This result provides a symmetric function corresponding to the bigraded Frobenius series

of DRn.

1.2.3 Parking functions

To state the combinatorial generating function connected to diagonal coinvari-

ants, we will need to make several definitions. A Dyck path of order n is a lattice path

from (0, 0) to (n, n) consisting of north and east steps that remains weakly above the

line y = x, which is sometimes called the diagonal, main diagonal, or 0-diagonal. A

parking function of order n consists of a Dyck path of order n whose north steps have

been labeled uniquely with the integers 1, 2, . . . , n such that the labels increase going up

each column. A word parking function of order n has the same condition about increas-

ing columns, but the labeling set can be any multiset of positive integers. We write Dn,

PFn, andWPFn for the Dyck paths, parking functions, and word parking functions of

order n, respectively.

To see why these objects are called parking functions, consider n cars and park-

ing spots, each labeled 1, 2, . . . , n. The labeled north steps correspond to cars, and the

column that contains car i is car i's preferred parking spot. For example, Figure 1.1

corresponds to a parking function where cars 1, 2, …, 5 have preferred spots 4, 2, 1, 5,

and 1, respectively. In increasing order of label, each car drives into a parking lot with

spots labeled 1, 2, . . . , n. The car drives by spots 1, 2, . . . , n in increasing order. If the

car's preferred spot is available, it parks there; otherwise, it parks in the next available
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1

0
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di

1
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Figure 1.1: A parking function P ∈ PF5 with area(P ) = 2, dinv(P ) = 5, and

Val(P ) = {4, 5}.

spot. A list of preferences is a parking function if every car parks successfully, i.e. no

car "drives off the lot.'' One can check that the condition that the underlying Dyck path

remains above the diagonal is equivalent to the condition that every car parks success-

fully.

Given a Dyck path D ∈ Dn, we number the rows of D with 1, 2, . . . , n from

bottom to top. Then, for each row i, we set the area of the row i, written wi(D), to be

the number of full squares between D and the diagonal. A (word) parking function P

inherits the values wi(P ) from its underlying Dyck path D(P ). We also set

di(P ) = |{i < j ≤ n : wi(P ) = wj(P ), ℓi(P ) < ℓj(P )}|

+ |{i < j ≤ n : wi(P ) = wj(P ) + 1, ℓi(P ) > ℓj(P )}|.

where ℓi(P ) is the label in the ith row of P . These are called the primary and secondary

diagonal inversions beginning in row i, respectively. The area and dinv statistics are

defined by area(P ) =
∑n

i=1wi(P ) and dinv(P ) =
∑n

i=1 di(P ). The contractible valleys

of P are

Val(P ) = {2 ≤ i ≤ n : wi(P ) < wi−1(P )}

∪ {2 ≤ i ≤ n : wi(P ) = wi−1(P ), ℓi(P ) > ℓi−1(P )}.

Visually, these are the rows i that are immediately preceded by an east step and, if we

were to remove this east step and shift everything beyond it one step to the west, the

resulting labeled path would still have increasing labels in its columns. Finally, by xP

we mean the monomial
∏n

i=1 xℓi(P ).
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1.2.4 The Shuffle Conjecture, extensions, and refinements

In [HHL+05b], Haglund, Haiman, Loehr, Remmel, and Ulyanov proposed that

a certain combinatorial generating function over word parking functions was equal to

∇en; in particular, their conjecture was that

∇en =
∑

P∈WPFn

qdinv(P )tarea(P )xP .

This has come to be known as the Shuffle Conjecture, since taking scalar products with

hµ involves "shuffles'' of sequences of labels. We will discuss this perspective more in

Chapter 5.

Since its appearance, the Shuffle Conjecture has been refined in a number of

ways. In [Hag04], Haglund defined a new symmetric function En,k and conjectured that

∇En,k was equal to the same generating function restricted to parking functions with k

returns to the diagonal. Haglund, Morse, and Zabrocki refined this conjecture further in

[HMZ12] by defining polynomials Cα for any composition α ⊨ n and conjecturing that

∇Cα was equal to the generating function restricted to word parking functions whose

returns to the diagonal occurred after exactly α1 + . . . + αi north steps for each i. We

call these the Return and Compositional Shuffle Conjectures, respectively. At this point,

we do not know of any modules similar to the module of diagonal coinvariants whose

Frobenius series give these symmetric functions.

The Shuffle Conjecture has also been extended to more general settings. Several

authors noticed computed what happens when∇en is replaced by∇men for any positive

integer m. In this case, the generating function involves labeled paths from (0, 0) to

(mn, n) that remain weakly above the line y = x/m. There is also a module whose

Frobenius series equals ∇men, as proved by Haiman in [Hai02]. Recently, Bergeron,

Garsia, Leven, and Xin have begun to study parking functions whose Dyck paths travel

from (0, 0) to (a, b) for any positive integers a, b and stay above the associated "diagonal''

[BGLX14].

Various special cases of the Shuffle Conjecture have been proved, but in general

it is still quite open. Perhaps the first major case that was proved was the Catalan case

by Garsia and Haglund in [GH03]. In this work, Garsia and Haglund prove that the

two sides of the Shuffle Conjecture are equal after taking scalars product with en. On
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the combinatorial side, this has the effect of restricting the generating function to Dyck

paths, which are counted by the Catalan numbers 1
n+1

(
2n
n

)
. Haglund extended this work

in [Hag04] by proving the Return Shuffle Conjecture after taking scalar products with

either en−dhd or hn−dhd for any integer 0 ≤ d ≤ n. Garsia, Xin, and Zabrocki improved

upon these results by proving the Compositional Shuffle Conjecture after taking scalar

products with any symmetric function of the form eahbhn−a−b [GXZ14].

1.2.5 The Delta Conjectures

The primary goal of this dissertation is to study two new extensions of the Shuffle

Conjecture. In these extensions, the symmetric function∇en is replaced by the symmet-

ric function ∆′eken or ∆eken. Note that, by definition, for any 1 ≤ k ≤ n

∆eken = ∆′ek+ek−1
en = ∆′eken +∆′ek−1

en. (1.2)

Furthermore, for any k > n, ∆eken = ∆′ek−1
en = 0. Therefore ∆enen = ∆′en−1

en. We

will often refer to the following conjectures as the Delta Conjectures.

Conjecture 1.2.5.1 (Delta Conjectures). For any integers n > k ≥ 0,

∆′eken =
∑

P∈WPFn

qdinv(P )tarea(P )
∏

i:wi(P )>wi−1(P )

(
1 + z/twi(P )

)
xP

∣∣∣∣∣∣
zn−k−1

(1.3)

=
∑

P∈WPFn

qdinv(P )tarea(P )
∏

i∈Val(P )

(
1 + z/qdi(P )+1

)
xP

∣∣∣∣∣∣
zn−k−1

. (1.4)

Equivalently, we can replace the left-hand side with ∆eken for integers n ≥ k ≥ 0,

multiply both right-hand sides by (1 + z), and then take the coefficient of zn−k.

We will often refer to (1.3) as the Rise Version and (1.4) as the Valley Version of

the Delta Conjectures. It will also be useful to set Risen,k(x; q, t) equal to the right-hand

side of (1.3) and Valn,k(x; q, t) equal to the right-hand side of (1.4).

The remainder of this dissertation is devoted to the Delta Conjectures. We sum-

marize the current status of our progress on these conjectures in Figure 1.2. Mα is the

monomial quasisymmetric function associated with the composition α, which is defined

in Section 1.1.4.
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Conditions LHS of (1.3) RHS of (1.3) RHS of (1.4)

Coefficient of M1n at q = 0 Chapter 3 Chapter 2 Chapter 2

Coefficient of M1n at t = 0 Chapter 3 Chapter 2 ?

⟨·, en−dhd⟩ at t = 1/q Chapter 5 Chapter 5 ?

⟨·, hn−dhd⟩ at t = 1/q Chapter 5 Chapter 5 ?

k = 1 Chapter 4 Chapter 4 ?

Figure 1.2: This table summarizes the progress of our work on the Delta Conjectures.

For example, the first line indicates that we can prove all three statements in the Delta

Conjectures are equal after setting q = 0 and taking the coefficient of M1n .

1.3 Combinatorial Objects for the Delta Conjectures

In this section, we provide classes of objects which we use to give several com-

pletely combinatorial interpretations of Risen,k(x; q, t) and Valn,k(x; q, t). These objects

will be useful in working through the combinatorics of these polynomials in later chap-

ters.

1.3.1 Decorated parking functions

We begin by decorating parking functions. Specifically, given P ∈ WPFn, let

the double rises of P be the set

Rise(P ) = {2 ≤ i ≤ n : wi(P ) > wi−1(P )}.

We make the same definition for P ∈ PFn. In general, in this section we will often

refer elements of PFn as well as WPFn as parking functions; we will only refer to

the latter elements as word parking functions when disambiguation is necessary. These

are the rows whose north step is immediately preceded by another north step. Similarly,

we define the double falls of P , written Fall(P ), to be the columns of P whose east

step is immediately followed by another east step. Then we can define the double rise-

decorated, double fall-decorated, and contractible valley-decorated parking functions,
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Figure 1.3: An example of the bijection betweenWPFRise
n,k andWPFFall

n,k for n = 6 and

k = 3.

respectively, as follows:

WPFRise
n,k = {(P,R) : P ∈ WPFn, R ⊆ Rise(P ), |R| = k}

WPFFall
n,k = {(P, F ) : P ∈ WPFn, F ⊆ Fall(P ), |F | = k}

WPFVal
n,k = {(P, V ) : P ∈ WPFn, V ⊆ Val(P ), |V | = k}.

There is a trivial bijection betweenWPFRise
n,k andWPFFall

n,k ; namely, given a row

i ∈ R with wi(P ) = a, send i to the column which contains the first east step north of

i that is a lattice steps away from the diagonal. Figure 1.3 contains an example of this

map, which is equivalent to matching open and closed parentheses in Dyck words. We

will give a bijection connecting each of these sets toWPFVal
n,k later in this section. For

now, we define statistics on these objects as follows. For P ∈ WPFn, R ⊆ Rise(P ),

F ⊆ Fall(P ), and V ⊆ Val(P ), we set

area−((P,R)) =
∑

i∈{1,2,...,n}\R

wi(P )

area−((P, F )) =
∑

i∈{1,2,...,n}\F

ci(P )

dinv−((P, V )) =
∑

i∈{1,2,...,n}\V

di(P )− |V |.

where ci(P ) is the number of full squares between P and the diagonal in the ith column.

It is not immediately clear from its definition that dinv−((P, V )) is always non-

negative. To see this, consider a (contractible) valley v of a parking function P ∈
WPFn. We will show that there is always at least one diagonal inversion of the form
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(i, v) for i < v with i /∈ Val(P ). By definition, we must have v > 1. If wv−1 = wv,

then by the definition of contractible valleys (v − 1, v) is a diagonal inversion. Now

assume that wv−1 > wv. Then there must be a row j < v with wj = wv such that

j + 1 ∈ Rise(P ). Choose the smallest such j. If j ∈ Val(P ), choose i to be as large

as possible so that each of i+ 1, i+ 2, . . . , j ∈ ValP . By the definition of i and by the

choice of j, i cannot be a valley. Since j+1 ∈ Rise(P ), j+1 /∈ Val(P ). We claim that

at least one of (i, v) and (j + 1, v) is a diagonal inversion. (i, v) is a primary diagonal

inversion unless ℓi(P ) ≥ ℓv(P ); in that case, ℓj+1(P ) > ℓj(P ) > ℓi(P ), so (j + 1, v) is

a secondary diagonal inversion.

The following identities follow directly from the definitions given above. They

give alternate expressions for the right-hand sides of Conjecture 1.2.5.1 and, thanks to

the argument above, show that the powers of q and t in (1.4) are always nonnegative.

Proposition 1.3.1.1. For integers n > k ≥ 0,

Risen,k(x; q, t) =
∑

(P,R)∈WPFRise
n,n−k−1

qdinv(P )tarea−((P,R))xP

=
∑

(P,F )∈WPFFall
n,n−k−1

qdinv(P )tarea−((P,F ))xP .

Valn,k(x; q, t) =
∑

(P,V )∈WPFRise
n,n−k−1

qdinv−((P,V ))tarea(P )xP .

1.3.2 Leaning stacks

In this section, we define a class of objects which will allow us to state the two

forms of the Delta Conjecture on a single set of objects. We consider what we call

leaning stacks. A leaning stack is a sequence of n unit lattice square boxes, each of

which is either just northeast of the box below it or directly north of the box below it.

We denote the set of leaning stacks with n boxes, k of which are diagonally above the

square blow them, by Stackn,k.

For a fixed leaning stack S ∈ Stackn,k, the parking functions with respect to S,

denotedWPF(S), are the lattice paths consisting of north and east steps from (0, 0) to

(k + 1, n) that remain weakly to the left of the left border of S and which are labeled
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Figure 1.4: An example P ∈ WPFStack
6,2 with stack S given by Diag(S) = {1, 2, 6}.

The boxes in the stack are shaded yellow. We have area(P ) = 3, wdinv(P ) = 1, and

hdinv(P ) = 0.

according to the same rules as ordinary parking functions. We denote the unlabeled

versions of these objects by D(S). We setWPFStack
n,k = ∪S∈Stackn,k

WPF(S).
We claim thatWPFStack

n,k is in bijection with each ofWPFRise
n,n−k−1,WPFFall

n,n−k−1,

andWPFVal
n,n−k−1. Furthermore, we can translate the statistics from these sets of objects

toWPFStack
n,k . Given P ∈ WPF(S) with leaning stack S ∈ Stackn,k, for each row of P

set wi(P ) to be the number of squares between P and S and hi(P ) to be the number of

squares strictly below the square just to the right of the north step in row i and weakly

above the bottom square of S in the same column. Then area(P ) =
∑n

i=1wi(P ) is sim-

ply the number of squares between P and S. (Note that this is not equal to
∑n

i=1 hi(P ).)

Set Diag(S) to be the rows of S which are diagonally above the square below them along

with row 1. Then we can define

wdinv(P ) = |{1 ≤ i < j ≤ n : i ∈ Diag(S), wi(P ) = wj(P ), ℓi(P ) < ℓj(P )}|

+ |{1 ≤ i < j ≤ n : i ∈ Diag(S), wi(P ) = wj(P ) + 1, ℓi(P ) > ℓj(P )}|

− (n− k − 1)

hdinv(P ) = |{1 ≤ i < j ≤ n : hi(P ) = hj(P ), ℓi(P ) < ℓj(P )}|

+ |{1 ≤ i < j ≤ n : hi(P ) = hj(P ) + 1, ℓi(P ) > ℓj(P )}|.

Proposition 1.3.2.1. We can construct bijections

ϕn,k :WPFFall
n,n−k−1 →WPFStack

n,k

ψn,k :WPFVal
n,n−k−1 →WPFStack

n,k
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such that

area(ϕn,k((P, F ))) = area−((P, F )) (1.5)

hdinv(ϕn,k((P, F ))) = dinv(P ) (1.6)

area(ψn,k((P, F ))) = area(P ) (1.7)

wdinv(ψn,k((P, V ))) = dinv−((P, V )). (1.8)

and xP is preserved. As a result,

Risen,k(x; q, t) =
∑

P∈WPFStack
n,k

qhdinv(P )tarea(P )xP

Valn,k(x; q, t) =
∑

P∈WPFStack
n,k

qwdinv(P )tarea(P )xP .

Proof. To define ϕn,k, we take some P ∈ WPFn, F ⊆ Fall(P ) with |F | = n− k − 1.

We begin with the leaning stack that consists entirely of diagonal steps between squares.

Then, for each column j ∈ F , we remove the east step in column j + 1 and move the

square of S in column j + 1 one space to the left. The result is ϕn,k((P, F )). To invert

ϕn,k, we simply "push'' over all squares of the stack that appear directly above the square

below them and insert east steps in the columns that were occupied by these squares. To

see that ϕn,k cooperates with the statistics as proposed, we note that, for each j ∈ F ,

the process above removes j squares from between P and the diagonal. This proves

(1.5). (1.6) follows from the fact that hi(ϕn,k((P, F ))) = wi(P ) and the definitions

given above.

Now we define ψn,k for P ∈ WPFn, V ⊆ Val(P ). We begin with the com-

pletely diagonal leaning stack again. For each i ∈ V , we remove the east step pre-

ceding the north step in row i and move the square of S in row i one space to the left.

To invert ψn,k, we push over all vertical squares in the stack and insert east steps pre-

ceding the rows that were occupied by these squares. We notice that, for each row i,

wi(P ) = wi(ψn,k((P, V ))), so ψn,k preserves area. (1.8) follows from the definitions of

wdinv and dinv−.

Figure 1.5 contains examples of the maps ϕn,k and ψn,k. We note that the compo-
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sition ψn,k ◦ ϕn,k is a bijectionWPFFall
n,n−k−1 →WPFVal

n,n−k−1 that preserves the mono-

mial xP . Furthermore, Proposition 1.3.2.1 implies Risen,k(x; 1, t) = Valn,k(x; 1, t).

1.3.3 Densely labeled parking functions

For our final combinatorial formulation, we again begin with integers n > k ≥ 0.

We use a shorter Dyck path D ∈ Dk+1. Now we label each lattice square that occurs

weakly above the line y = xwhose northwest corner intersectsD. A square whose west

edge is a north step of D is called a north square; the other labeled squares are called

east squares. Furthermore, we label these squares with sets of positive integers such that

1. no north square receives the label ∅,

2. for two north squares in the same column, every entry in the label of the lower

square is less than every entry in the label of the upper square, and

3. there are n total elements used in the labels.

We call the resulting collection of objects densely labeled parking functions, written

WPFDense
n,k . Figure 1.5 contains an example of a densely labeled parking function.

In order to move the statistics from our previous objects, for each element r of any

label in some P ∈ WPFDense
n,k we set w(r, P ) to be the number of full squares between

r's square and the diagonal. It is quite difficult to define the height of an entry in this

setting, so we focus only on the area and wdinv statistics. We say

• area(P ) =
∑

label entries r w(r, P ),

• wdinv(P ) is equal to the number of pairs of label entries (r, s) with r minimal in

its square, r's square appearing strictly west of s's square, and either

-- r < s and w(r, P ) = w(s, P ), or

-- r > s and w(r, P ) = w(s, P ) + 1

minus the number of entries in labels in east squares in P .
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Figure 1.5: Examples of the maps ϕ6,2, ψ6,2, and θ6,2. We have marked the selected

double falls and contractible valleys with stars.

Proposition 1.3.3.1. We can construct a bijection θn,k : WPFStack
n,k → WPFDense

n,k such

that

area(θn,k(P )) = area(P )

wdinv(θn,k(P )) = wdinv(P ).

As a result,

Valn,k(x; q, t) =
∑

P∈WPFDense
n,k

qwdinv(P )tarea(P )xP .

Proof. We define θn,k by contracting every north step of P that shares a row with a

vertical square of the leaning stack. The labels whose north steps are removed are simply

combined with the remaining labels to form the set labels. The inverse is direct and the

assertions about the statistic follow from the definitions above.

We summarize all of our bijections in Figure 1.5.

1.3.4 The q = t = 1 case

As an immediate application of these interpretations, we obtain a formula for

Risen,k(x; 1, 1) + Risen,k−1(x; 1, 1). Thanks to the leaning stacks interpretation, we al-

ready know that Risen,k(x; 1, t) = Valn,k(x; 1, t). In Chapter 5, we will see that ∆eken
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also obeys the formula we prove here. This proves the q = t = 1 case of the Delta

Conjecture.

Proposition 1.3.4.1. For any integers 1 ≤ k ≤ n,

Risen,k(x; 1, 1) + Risen,k(x; 1, 1) =
1

k + 1

(
n

k

)(∑
i≥0

eiu
i

)k+1
∣∣∣∣∣∣
un

=
1

k + 1

(
n

k

)
en[(k + 1)X].

Proof. By the definition of Risen,k(x; q, t) appearing in the Delta Conjectures,

Risen,k(x; 1, 1) + Risen,k−1(x; 1, 1) =
∑

P∈WPFn

(1 + z)|Rise(P )|+1xP

∣∣∣∣∣
zn−k

. (1.9)

Given a partition λ ⊢ n, set mi = mi(λ) to be the multiplicity of i in λ. As mentioned

in Equation 4 of [ALW14], the number of Dyck paths with exactly mi vertical runs of

length i for each i is

1

n+ 1

(
n+ 1

m1,m2, . . . ,mn, n− ℓ(λ) + 1

)
. (1.10)

Furthermore, such a Dyck path has n− ℓ(λ) double rises. We label each of the vertical

runs of such a Dyck path with increasing sequences of integers, contributing an eλ term.

Hence (1.9)

=
∑
λ⊢n

1

n+ 1

(
n+ 1

m1,m2, . . . ,mn, n− ℓ(λ) + 1

)
(1 + z)n−ℓ(λ)+1eλ

∣∣∣∣∣
zn−k

(1.11)

=
1

n+ 1

(
n+ 1

n− k

)(∑
i≥0

eiu
i

)k+1
∣∣∣∣∣∣
un

(1.12)

which proves the first identity in the proposition. The second identity follows from

Cauchy's Formula.

1.3.5 Preference functions and undesirable spaces

Finally, we would like to address the relationship between these objects and the

classical notion of a parking function. Parking functions were first introduced in com-

puter science by Konheim and Weiss in the following setting [KW66]. Consider n cars
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Figure 1.6: An example labeled Dyck path corresponding to the parking function

331131.

and n parking spots, each labeled bijectively with the set {1, 2, . . . , n}. We are given

a function F : {1, 2, . . . , n} → {1, 2, . . . , n} that maps each car to its preferred spot.

F is called a preference function. Then, from car 1 through car n, each car drives into

the parking lot towards its preferred spot. Say the preferred spot is labeled p. If this

spot is unoccupied, the car parks in spot p. If it is occupied, the car examines spots

p + 1, p + 2, . . . until it finds an unoccupied spot and it parks in that spot. If none of

the spots p + 1, . . . , n are available, the car does not park. The preference function F

is called a parking function if this process results in every car parking successfully. Of-

ten, a parking function is written as the word F (1)F (2) . . . F (n). For example, 121 is a

parking function but 322 is not, since the latter preference function does not allow car 3

to park. To see how these objects biject to what we have been calling parking functions,

we form a labeled Dyck path by writing F−1(1) in column 1, then F−1(2) in column

2, and so on, writing the cars by increasing label from bottom to top. For example, the

parking function 331131 corresponds to the labeled Dyck path in Figure 1.6.

With this in mind, we say that a parking preference function is a function F

from the integers {1, 2, . . . , n} to {1, 2, . . . , n} such that the ith entry in the increasing

rearrangement of F (1), F (2), . . . , F (n) is at most i for every 1 ≤ i ≤ n. One can check

that this is equivalent to each car parking successfully.

Our goal is to define an analogous set of objects that corresponds to our Delta

Conjectures. We note that decorating double falls is equivalent to decorating empty

columns. These correspond to elements in the set {1, 2, . . . , n} that are not in the image

of the preference function. Therefore, we will allow each spot that is not in the image of

F , i.e. not "preferred,'' to be either marked or unmarked. We can accomplish this through
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the notion of "undesirable spaces,'' which are spaces that are not allowed to be preferred.

We say that the parking preference functions of order n with k undesirable spaces are

the set of pairs (U, F ) with U ⊆ {1, 2, . . . , n}, |U | = k, and F : {1, 2, . . . , n} →
{1, 2, . . . , n} such that image(F ) ∩ U = ∅ and F satisfies the same weakly increasing

property as before. Then parking preference functions of order n with k undesirable

spaces correspond to the any of the combinatorial objects in this section that are related

to the symmetric function ∆′en−k−1
en.

1.4 Outline

In Chapter 2, we focus on the specializations Risen,k(x; q, 0), Risen,k(x; 0, q),

Valn,k(x; q, 0), and Valn,k(x; 0, q). We show that each of these polynomials is equal to

the distribution of a statistic on the set of ordered multiset partitions. That is, given a

composition α, we define OPα,k to be the ordered partitions of the multiset {iαi : i =

1, 2, . . . , ℓ(α)} into k sets. We define four statistics dinv, maj, inv, and minimaj that map

OPα,k to Z≥0 and prove that

Risen,k(x; q, 0)|Mα
=

∑
π∈OPα,k+1

qdinv(π)

Risen,k(x; 0, q)|Mα
=

∑
π∈OPα,k+1

qmaj(π)

Valn,k(x; q, 0)|Mα
=

∑
π∈OPα,k+1

qinv(π)

Valn,k(x; 0, q)|Mα
=

∑
π∈OPα,k+1

qminimaj(π).

Then we prove that the first three distributions are equal. We also explain why we are

currently unable to show that the fourth polynomial is equal to the other tree. Thus

Risen,k(x; q, 0) = Risen,k(x; 0, q) = Valn,k(x; q, 0).

When k = |α|, our result reduces to the famous result of MacMahon that inversion

number and major index are equidistributed over permutations. From this perspective,

our theorem is a generalization of MacMahon's theorem to ordered set partitions. Our
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method is a bijective generalization of Carlitz's insertion method for proving MacMa-

hon's theorem. We ale explain some applications of our result to a problem of Stein-

grímsson and to generalizations of Macdonald polynomials.

In Chapter 3, we show how the symmetric function ∆′eken can be connected to

certain upper triangular matrices we call Tesler matrices. Special cases of what we call

Tesler matrices were introduced in [Hag11] and studied in [AGR+12, GH14, GHX14,

MMR14]. We use the connection between Tesler matrices and ∆′eken to give simple

formulas for ⟨∆e1en, p1n⟩ and ⟨∆′eken, p1n⟩
∣∣
t=0

. We use the second formula to show that

⟨∆′eken, p1n⟩
∣∣
t=0

= ⟨Risen,k(x; q, 0), p1n⟩ = ⟨Valn,k(q, 0), p1n⟩,

verifying two cases of the Delta Conjectures. Symmetry gives us another case of the

Delta Conjectures.

Chapter 4 is a short chapter in which we prove the k = 1 case of the Rise Version

of the Delta Conjecture. We accomplish this by using a reciprocity identity of Haglund

[Hag04] to show

∆e1en =

⌊n/2⌋∑
m=0

s2m,1n−2m

n−m∑
p=m

[p]q,t.

We manipulate LLT polynomials [LLT97] to show that Risen,0(x; q, t) + Risen,1(x; q, t)

also satisfies this identity.

In Chapter 5, we prove recursions for the polynomials that result from taking

inner products between Risen,k(x; q, t) or Valn,k(x; q, t) and en−dhd or hn−d, hd for an

integer 0 ≤ d ≤ n. These recursions involve parking functions with only 2 types of

cars. If we set t = 1/q, we can use these recursions to obtain q-binomial formulas for

the inner products involving Risen,k(x; q, t). We also compute the same inner products

on the symmetric function side when t = 1/q, proving cases of the Delta Conjecture.

Finally, we close by mentioning some potential directions for future research

in Chapter 6. Some of these problems are straightforward conjectures that arose will

pursuing the research in this dissertation, while others are more general long-term goals

for this subject area.

Chapters 1 is currently being prepared for submission for publication. Haglund,

J.; Remmel, J.; Wilson, A.T. The dissertation author was the primary investigator and

author of this work.



Chapter 2

Combinatorics at q = 0 or t = 0

In this chapter, we focus on the specializations Risen,k(x; q, 0), Risen,k(x; 0, q),

Valn,k(x; q, 0), and Valn,k(x; 0, q). In Section 2.2, we show that these polynomials can

be expressed as distributions of certain statistics on ordered multiset partitions, which

we also define in that section. Section 2.3 contains a bijective proof that

⟨Risen,k(x; q, 0), p1n⟩ = ⟨Risen,k(x; 0, q), p1n⟩ = ⟨Valn,k(x; q, 0), p1n⟩.

We prove that these three polynomials are equal in general (i.e. without taking inner

products with p1n) in Section 2.4. Our method of proof is a generalization of a bijection

on permutations due to Carlitz, which is sometimes known as the insertion method. We

begin by reviewing Carlitz's insertion method in Section 2.1.

2.1 MacMahon's equidistribution theorem and Carlitz's

insertion method

2.1.1 Permutation statistics

Given a composition α of length n, we let Sα be the set of all permutations of

the multiset {iαi : 1 ≤ i ≤ n}. Given a permutation σ ∈ Sα in one-line notation, the

descent and ascent sets of σ are

Des(σ) = {i : σi > σi+1} Asc(σ) = {i : σi < σi+1}

26
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The inversions of σ are the pairs

Inv(σ) = {(i, j) : 1 ≤ i < j ≤ n, σi > σj}.

It will be convenient to refine the set of inversions in the following manner:

Invi,□ = {(i, j) : i < j ≤ n, σi > σj} Inv□,j = {(i, j) : 1 ≤ i < j, σi > σj}.

These are the elements of Inv(σ) whose first (resp. second) coordinate is i (resp. j).

These sets allow us to define several statistics on Sα:

des(σ) = |Des(σ)| asc(σ) = |Asc(σ)| inv(σ) = | Inv(σ)| maj(σ) =
∑

i∈Des(σ)

i.

These statistics are known as the descent number, ascent number, inversion number, and

major index of σ, respectively. We will also make use of two refinements of inversion

number:

invi,□(σ) = | Invi,□(σ)| inv□,j(σ) = | Inv□,j(σ)|.

Given a statistic stat on Sα, the distribution of stat over Sα is the polynomial

Dstat
α (q) =

∑
σ∈Sα

qstat(σ).

When α = 1n, we will simply write Dstat
n (q). Two statistics, say stat on Obj and stat′

on Obj′, are said to be equidistributed if their distributions are equal. One particularly

nice way to prove equidistribution is to give a bijection f : Obj → Obj′ such that

stat′(f(σ)) = stat(σ) for every σ ∈ Obj. Our main result will be a bijection of this form.

It will also be convenient to use interval notation for the integers, i.e. [a, b] is the set of

integers at least a and at most b.

In [Mac15], MacMahon showed that inversion number and major index are equidis-

tributed over Sα, and that

Dinv
α (q) = Dmaj

α (q) =

[
|α|

α1, α2, . . . , αn

]
q

=
[|α|]q!

[α1]q![α2]q! . . . [αn]q!
.

MacMahon's proof was not bijective; the first bijective proof of this fact was given in

[Foa68]. A second proof, essentially due to Carlitz [Car75], is sometimes known as the

insertion method. It will be the template for our bijections in Sections 2.3 and 2.4.
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2.1.2 The insertion method for Sn

One consequence of MacMahon's equidistribution theorem is a pair of recursions

for the distributions of the inversion number and the major index over Sn:

Dinv
n (q) = [n]qD

inv
n−1(q) Dmaj

n (q) = [n]qD
maj

n−1(q). (2.1)

On the other hand, these two statements imply MacMahon's result. Carlitz's insertion

method gives bijective proofs of these statements which can be combined to build a

recursive bijection ψn : Sn → Sn such that maj(ψ(σ)) = inv(σ). We say that ψn maps

the inversion number to the major index. We outline Carlitz's insertion method below.

To prove the left statement in (2.1), one simply considers all the possible ways

to insert n into a permutation in Sn−1 to create a permutation in Sn. It is clear that, for

σ ∈ Sn−1, inserting n after the first i elements of σ creates n− i−1 new inversions and

does not affect the previously existing inversions. For example, for σ = 5167324 ∈ S7,

we can ''label'' these positions with subscripts that give the number of new inversions

created by inserting an 8 at that position:

756156473322140.

This proves the inversion side of (2.1). The key to the insertion method is that some-

thing similar is true for the major index. In particular, we can label the spaces between

elements of σ ∈ Sn−1, along with the left and right ends, according to the following

scheme:

1. Label the position after σn−1 with a zero.

2. Label the descents of σ right to left with 1, 2, . . . , des(σ).

3. Label the position before σ1 with des(σ) + 1.

4. Label the ascents of σ from left to right with des(σ) + 2, . . . , n− 1.

For example, σ = 5167324 receives the following labels in this setting:

453156672312740
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n σ Change in inv ψn(σ)
5 52143 24153

4 2143 4 223411430
3 213 1 2211330
2 21 0 22110

1 1 1 110

Figure 2.1: We compute ψ5(52143).

These labels give the change in major index that comes from inserting n at that position;

one proof of this fact can be found in [HLR05]. This completes the proof of (2.1) and

also gives a bijection that takes the inversion number to the major index. We include an

example of this bijection in Figure 2.1. To compteψ5(52143), we remove the 5 and count

the number of inversions lost by removing 5. In this case, we have lost 4 inversions. We

record this number in the third column and the resulting permutation in the σ column. We

repeat this process until we have reached n = 1 and filled the first three columns of the

table. To build our new permutation, we recursively place n at the position that receives

label i in the major index labeling. These labels have been italicized in the example.

2.1.3 The insertion method on Sα

It is natural to hope that this proof can be extended to permutations that may

contain multiple copies of the same number. That is, we would like to give insertion

proofs that

Dinv
α (q) =

[
|α|
αn

]
q

Dinv
α−(q) Dmaj

α (q) =

[
|α|
αn

]
q

Dmaj

α− (q). (2.2)

whereα− = (α1, α2, . . . , αn−1). Such proofs would imply MacMahon's equidistribution

theorem and provide a bijection between inversion number and major index.

The inversion side cooperates nicely. As before, inserting an n to the right of i

elements of σ ∈ Sα increases the inversion number by |α−| − i. Hence this insertion

can create between 0 and |α−| inversions. Furthermore, the position of a new n has no

affect on the number of inversions added by other n's; in other words, each insertion is
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independent of the other insertions. This allows us to compute Dinv
α (q) from Dinv

α−(q):

Dinv
α (q) = Dinv

α−(q)

|α−|∏
i=0

1

1− qkx

∣∣∣∣∣∣
xαn

=

[
|α|
αn

]
q

Dinv
α−(q).

To prove the major index side of (2.2), we essentially recreate the bijection con-

structed in [FH08, CPYY10]. Let
((

S
k

))
denote the family of k-element multisets con-

taining elements drawn from the set S. We would like to establish a bijection

ϕmaj
α : Sα− ×

((
[0, |α−|]
αn

))
→ Sα

such that

maj
(
ϕmaj
α (σ,B)

)
= maj(σ) +

∑
b∈B

b.

Such a map would provide a combinatorial proof of the major index side of (2.2). Before

inserting any n's, we label σ ∈ Sα− in a manner reminiscent of Section 2.1.2:

1. Label the position after σ|α−| with a zero.

2. Label the descents of σ right to left with 1, 2, . . . , des(σ).

3. Label the position before σ1 with des(σ) + 1.

4. Label the non-descents of σ from left to right with des(σ) + 2, . . . , |α−|.

Write B = {b1 ≥ b2 ≥ . . . ≥ bαn}. We insert an n into the position labeled b1. Then we

go through the labeling process again, stopping once we have used the label b1. We insert

an n into the position labeled b2. We repeat this process until we have processed each

element ofB. We omit the proof that this map satisfies the desired properties, which can

be found in [FH08, CPYY10]. Instead, we will work through an example.

Let α = {2, 1, 3, 2}, σ = 323113 ∈ Sα− , andB = {52}. We note that maj(σ) =

4. We begin by labeling σ according to the labeling associated with the major index.

3322431151630.
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α σ B ψA(σ)

{1, 2, 1, 3} 2443214 4432124

4 4332211 20

4332211 20

{1, 2, 1} 2321 {3, 3, 0} 332211420

{1, 2} 212 {2} 2211320

2110

{1} 1 {1, 0} 110

Figure 2.2: An example of the map ψα for α = {1, 2, 1, 3}.

We place a 4 at the label 5 to get 3231413. We relabel this permutation, stopping when

we use the label 5.

43325321 411 30

Then we insert a 4 at the position labeled 5 to get 32431413. As desired,

maj(32431413) = 14 = maj(σ) +
∑
b∈B

b = 4 + 5 + 5.

Just as before, these insertion maps can be combined to yield a bijection ψα :

Sα → Sα that takes inversion number to major index. We illustrateψα with the example

in Figure 2.2. As in Section 2.1.2, we fill the first three columns of the table from top

to bottom by removing all copies of the largest element and recording the multiset of

inversions lost during each removal, which we call B. Then we fill the fourth column

by using the labeling associated with the major index to repeatedly insert a new element

at the position that received the largest remaining label in B.

2.2 Ordered Set and Multiset Partitions

2.2.1 Definitions

The ordered set partitions of order n with k blocks are partitions of the set

{1, 2, . . . , n} into k subsets (called blocks) with some order on the blocks. We write
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this set as OPn,k. For example, 13|45|2 ∈ OP5,3, where we have listed each block as

an increasing sequence and we have used bars to separate blocks. It is not difficult to see

that OPn,n = Sn, so ordered set partitions are a natural extension of permutations.

More generally, given a compositionα of length n, the ordered multiset partitions

OPα,k are the partitions of the multiset A(α) = {iαi : 1 ≤ i ≤ n} into k ordered sets,

which we still call blocks. For example, 24|134|2 ∈ OP (1,2,1,2),3. Note that, although

we are dealing with the elements of a multiset, each block is still a set. The analogous

objects where blocks are also multisets will not arise in our work.

So far, we have written each block of an ordered set or multiset partition in in-

creasing order from left to right. We will often wish to use the opposite notation, i.e. we

will write each block in decreasing order from left to right. Furthermore, we will use

stars as subscripts to ''connect'' elements in the same block instead of bars to separate

blocks. For example, the ordered multiset partition 24|134|2 is written as 4∗2 4∗3∗1 2

in this new notation. We will refer to an ordered multiset partition written this way as

a descent-starred permutation, since every permutation of the given multiset with some

(but maybe not all) of its descents ''starred'' corresponds to an ordered multiset permuta-

tion in this fashion. More formally, we define the descent-starred permutations of A(α)

with k stars as follows:

S>
α,k = {(σ, S) : σ ∈ SA, S ⊆ Des(σ), |S| = k}.

The set S corresponds to the entries of σ which are followed by stars. Then there is

a straightforward bijection OPα,k ↔ S>
α,|α|−k; given an ordered multiset partition, we

write its blocks in decreasing order from left to right, add stars between adjacent elements

that share a block, and remove the bars.

2.2.2 Statistics

Setting q = 0 or t = 0 in Risen,k(x; q, t) or Valn,k(x; q, t) will lead to four

different statistics on ordered multiset partitions. We define these statistics below.

First, given π ∈ OPα,k, inv(π) counts the number of pairs a > b such that a's

block is strictly to the left of b's block in π and b is minimal in its block in π. We call

these pairs inversions. For example, 15|23|4 has two inversions, between the 5 and the
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2 and the 5 and the 4.

For any π ∈ OPα,k, we number π's blocks π1, π2, . . . , πk from left to right. Let

πh
i by the hth smallest element in πi, beginning at h = 1. Then the diagonal inversions

of π, written Dinv(π), are the triples

{(h, i, j) : 1 ≤ i < j ≤ k, πh
i > πh

j } ∪ {(h, i, j) : 1 ≤ i < j ≤ k, πh
i < πh+1

j }.

The triples of the first type are primary diagonal inversions, and the triples of the second

type are secondary diagonal inversions. We set dinv(π) to be the cardinality of Dinv(π).

For example, consider the ordered multiset permutation 24|134|2. It is helpful to ''stack''

the elements in each block vertically, obtaining the diagram

4

4 3

2 1 2

The primary diagonal inversions are (1, 1, 2) (between the leftmost 2 and the 1 in the first

row) and (2, 1, 2) (between the 4 and the 3 in the second row) and the only secondary

diagonal inversion is (1, 1, 2) (between the leftmost 2 in the first row and the 3 in the

second row), for a total of three diagonal inversions.

To define the major index of π, we consider the permutation σ = σ(π) obtained

by writing each block of π in decreasing order. Then we recursively form a word w by

setting w0 = 0 and wi = wi−1 + χ(σi is minimal in its block in π) for each i > 0. Then

we set

maj(π) =
∑

i: σi>σi+1

wi.

Using the ordered multiset permutation π = 24|134|2 again, we obtain σ = 424312 and

w = 0011123, beginning with w0 = 0. The descents of σ occur at positions 1,3, and 4,

so maj(π) = w1 + w3 + w4 = 0 + 1 + 1 = 2.

There is an alternate definition of the major index which we will use in some of

our proofs. It is clear from the definition above that for any π ∈ OPn,n, the major index

defined here is equivalent to the major index defined on permutations in Section 2.1.

Now we consider what happens to maj(π) if we decide to insert a star after a descent at

position d. We note that wi decreases by 1 for each i ≥ d. Therefore the major index
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of π has decreased by 1 for each descent weakly to the right of position d. Therefore, if

(σ, S) is the descent-starred permutation representation of π, we can write

maj(π) = maj(σ)−
∑
i∈S

|Des(σ) ∩ {i, i+ 1, . . .}|. (2.3)

Finally, we define the minimum major index of π as follows. We begin by writing

the elements of πk in increasing order from left to right. Then, recursively for i = k− 1

to 1, we choose r to be the largest element in πi that is less than or equal to the leftmost

element in πi+1, as previously recorded. If there is no such r, we write πi in increasing

order. If there is such an r, beginning with πi in increasing order, we cycle its elements

until r is the rightmost element in πi. We write down πi in this order. We continue

this process until we have processed each block of π. For example, consider the ordered

multiset permutation π = 13|23|14|234. Processing the blocks of π from right to left, we

obtain 312341234. We consider the result as a permutation, which we denote τ = τ(π),

and define

minimaj(π) =
∑

i: τi>τi+1

i

i.e. the major index of the permutation τ . The name minimaj comes from the fact that

minimaj(π) is equal to the minimum major index achieved by any permutation that can

be obtained by permuting elements within the blocks of π.

2.2.3 From parking functions to ordered multiset partitions

Now we will show how setting q = 0 or t = 0 in the Delta Conjectures leads

naturally to ordered multiset partitions. We will use the following notation for the dis-

tribution of a statistic stat on the class of ordered set and multiset partitions:

Dstat
n,k(q) =

∑
π∈OPn,k

qstat(π) Dstat
α,k(q) =

∑
π∈OPα,k

qstat(π).
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Figure 2.3: A parking function with area equal to 0 that corresponds to the ordered set

partition 14|2|35.

Proposition 2.2.3.1.

Risen,k(x; q, 0)|Mα
= Ddinv

α,k (q) (2.4)

Risen,k(x; 0, q)|Mα
= Dmaj

α,k(q) (2.5)

Valn,k(x; q, 0)|Mα
= Dinv

α,k(q) (2.6)

Valn,k(x; 0, q)|Mα
= Dminimaj

α,k (q). (2.7)

Proof. To prove (2.4), it is easiest to use the interpretation of Risen,k(x; q, 0) involving

leaning stacks given in Subsection 1.3.2, which gives

Risen,k(x; q, 0)|Mα
=
∑
P

qhdinv(P )

where the sum is over P ∈ PFStack
n,k with area(P ) = 0 and xP =

∏ℓ(α)
i=1 x

αi
i . We consider

the map from such paths P to ordered multiset partitions π ∈ OPα,k+1 where πi consists

of the elements in the ith column of P , counting from right to left. This is clearly a

bijection, and it follows from the definitions that hdinv(P ) = dinv(π), proving (2.4).

For example, the parking function in Figure 2.3 corresponds to the ordered set partition

14|2|35.

To prove (2.5), we consider the interpretation of Risen,k(x; q, t) from Subsection

1.3.1 in which we decorated double rises. This allows us to write

Risen,k(x; 0, q)|Mα
=
∑
P

qarea(P )

where the sum is over (P,R) ∈ PFRise
n,n−k−1 with dinv(P ) = 0 and xP =

∏ℓ(α)
i=1 x

αi
i . We

note that P can only have dinv(P ) = 0 if wi(P ) is weakly increasing from bottom to
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Figure 2.4: This rise-decorated parking function with dinv equal to 0 is sent to the

descent-starred permutation 35∗142, which corresponds to the ordered set partition

3|15|4|2.

1,4

2,3

5

Figure 2.5: This densely labeled Dyck path is sent to the ordered set partition 5|23|14.

top; furthermore, wi+1(P ) > wi(P ) if and only if ℓi+1(P ) > ℓi(P ). To form an ordered

multiset partition from such a path P , we record the labels of P from top to bottom as a

multiset permutation σ. Then, for each i ∈ R, we join the corresponding entry of σ with

the entry to its right to form a block. This map gives a bijection to OPα,k+1 and sends

area to maj. For example, the rise-decorated parking function in Figure 2.4 corresponds

to 3|15|4|2.

For (2.6), we consider the interpretation of Valn,k(x; q, t) from Subsection 1.3.3

involving densely labeled Dyck paths, which implies

Valn,k(x; q, 0)|Mα
=
∑
P

qwdinv(P )

where the sum is over P ∈ PFDense
n,k with area(P ) = 0 and xP =

∏ℓ(α)
i=1 x

αi
i . area(P ) = 0

implies that the underlying Dyck path of P is the path (NE)k+1 that never leaves the

diagonal. To form π ∈ OPα,k, we simply make each label set of P from right to left

into a block. This is a bijection and it is clear that wdinv(P ) = inv(π). For example,

the densely labeled Dyck path in Figure 2.5 is sent to the ordered set partition 5|23|14.

The proof of (2.7) is quite technical, so we have placed it in Appendix A.



37

We will prove results about the polynomials in (2.4), (2.5), and (2.6) in the re-

mainder of this chapter. The polynomial in (2.7) has been more difficult to study; we

discuss these issues in Subsection 2.4.4.

2.3 Equidistribution on Ordered Set Partitions

In this section, we prove that inv, dinv, and maj are equidistributed onOPn,k. We

accomplish this by generalizing the insertion maps defined for permutations in Section

2.1. We will recursively build ordered set partitions in such a way that allows us to keep

track of the relevant statistic. We address the statistics inv, dinv, and maj in Subsections

2.3.1, 2.3.2, and 2.3.3, respectively. We will also see that the distribution shared by these

statistics has a simple form. If we define a q-analog of the Stirling numbers of the second

kind via the recursion

Sn,k(q) = Sn−1,k−1(q) + [k]qSn−1,k(q)

with initial conditions S0,0(q) = 1 and Sn,k(q) = 0 if k < 0 or n < k, then we will prove

Dinv
n,k(q) = Ddinv

n,k (q) = Dmaj

n,k(q) = [k]q!Sn,k(q).

We will refer to this distribution as the Mahonian distribution on OPn,k. Finally, we

will show how these results are related to a new type of rook placement in Subsection

2.3.4 and to the Euler-Mahonian distribution in Subsection 2.3.5.

2.3.1 Insertion for inv

We consider how to build an ordered set partition of order n from an ordered set

partition of order n− 1. Perhaps the most straightforward way to do this is to ''insert'' an

n somewhere. We can either insert n as its own block or we can place it into an existing

block. Say that we are trying to build an ordered set partition in OPn,k. If we want to

insert n as its own block, we must start with an element of OPn−1,k−1; given such an

ordered set partition, there are k places to insert the new block. If we want to insert n

into an existing block, we start with an element of OPn−1,k, and there are k blocks into
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which we could place n. With this in mind, our insertion maps for ordered set partitions

will be bijections

(OPn−1,k−1 ∪ OPn−1,k)× {0, 1, . . . , k − 1} → OPn,k.

We begin by defining

ϕinv
n,k : (OPn−1,k−1 ∪ OPn−1,k)× {0, 1, . . . , k − 1} → OPn,k.

Say we are given an ordered set partition π ∈ OPn−1. If π ∈ OPn−1,k−1, we number

the spaces between the blocks of π from right to left with the integers 0, 1, . . . , k−1. We

call these gap labels. Then, to obtain ϕinv
n,k((π, i)) we simply place n as a new block in

the position labeled i. If π ∈ OPn−1,k, we number the blocks of π from right to left with

0, 1, . . . , k− 1; these are block labels. We set ϕinv
n,k((π, i)) equal to π with n inserted into

the block labeled i. Inverting this map is straightforward and ϕinv
n,k is clearly a bijection.

For example, say n = 5, k = 3, and π = 14|23 ∈ OP4,2. Writing the gap labels,

we obtain 2141|230. Then ϕinv
5,3(π, 1) = 14|5|23.

Lemma 2.3.1.1 (Insertion for inv). For any π ∈ OPn−1,k−1 ∪OPn−1,k and 0 ≤ i < k,

we have

inv
(
ϕinv
n,k(π, i)

)
= inv(π) + i.

Proof. It is clear that inserting n does not affect any of the inversions that existed in π.

Therefore we only need to show that inserting n at the label i creates i new inversions. If

i is a gap label, there are exactly i blocks to the left of the new block containing n. Each

of these creates one new inversion between its minimal element and n. If i is a block

label, there are still i blocks to the right of n's block, and we still get i new inversions.

Lemma 2.3.1.1 implies that the distribution of inv onOPn,k obeys the recursion

Dinv
n,k(q) = [k]q

(
Dinv

n−1,k−1(q) +Dinv
n−1,k(q)

)
.

One can also show that the polynomial [k]q!Sn,k(q) obeys this recursion by using the

definition of Sn,k(q). This implies Dinv
n,k(q) = [k]q!Sn,k(q).
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2.3.2 Insertion for dinv

In this subsection, we define a bijection

ϕdinv
n,k : (OPn−1,k−1 ∪ OPn−1,k)× {0, 1, . . . , k − 1} → OPn,k

with the property

dinv
(
ϕdinv
n,k (π, i)

)
= dinv(π) + i.

We will also show how these maps provide a bijection fromOPn,k to itself which shows

that inv and dinv are equidistributed.

To define ϕdinv
n,k , we begin with an ordered set partition π ∈ OPn−1,k−1. We label

the positions between the blocks, as well as the positions at either end of π, with the

labels 0, 1, . . . , k from right to left. In other words, we use the same gap labels as in the

inversion case. Our block labels will be quite different from before. If π ∈ OPn−1,k,

set h to be the maximum size of any block in π. We obtain the block labels of π by,

beginning with the label 0, repeatedly

1. labeling blocks of π of size h from left to right with increasing labels, and

2. decrementing h.

We repeat until h = 0. For example, consider the ordered set partition pictured below,

where we have stacked each block vertically.

4

5 3

2 1 7 6

The gap labels are 4,3,2,1, and 0 and the block labels are 1, 0, 2, and 3, reading from left

to right.

Lemma 2.3.2.1 (Insertion for dinv). For any π ∈ OPn−1,k−1∪OPn−1,k and 0 ≤ i < k,

we have

dinv
(
ϕdinv
n,k (π, i)

)
= dinv(π) + i.
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Proof. It is clear that inserting an n at a gap labeled b creates b new diagonal inver-

sions, one with each block to the right of the gap, and does not affect any other diagonal

inversions.

Now say we insert an n into a block πi labeled u. Say that πi had size s before

we added an n. After inserting an n, it has size s+1 with an n at height s+1. We claim

that we have created one new diagonal inversion for each block of size greater than s and

for each block of size s that is to the left of πi. First, consider a block πj with |πj| > s.

If j > i, then (s+ 1, i, j) is a new primary diagonal inversion; if j < i, then (s, j, i) is a

new secondary diagonal inversion. There are no other new diagonal inversions between

πi and πj . Now we consider πj with j < i and |πj| = s. There is a new secondary

diagonal inversion (s, j, i). By the definition of our insertion map, there are exactly u

such blocks, so we have created u new diagonal inversions.

Now we will recursively define a bijection θn,k : OPn,k → OPn,k with the

property that dinv(θn,k(ρ)) = inv(ρ) for all ρ ∈ OPn,k. If n > 1, θn,k is defined by

θn,k(ρ) =


(
ϕdinv
n,k ◦ (θn−1,k−1, id) ◦

(
ϕinv
n,k

)−1)
(ρ) n is in its own block in ρ(

ϕdinv
n,k ◦ (θn−1,k, id) ◦

(
ϕinv
n,k

)−1)
(ρ) n shares a block in ρ.

For n = 1, θn,k is simply the identity. Figure 2.6 contains an example of how to compute

θn,k for n = 5, k = 2. We begin by taking an ordered set partition ρ = 134|25 ∈ OP5,2.

We repeatedly take out the largest element in ρ and write down how many inv this costs

and whether or not this decreases the number of blocks in the ordered set partition. Then

we use this information to build up the image of ρ under θ5,3. In particular, we use the

gap labels for dinv if we need to create a new block and block labels otherwise. We have

italicized the label that we chose at each step.

Proposition 2.3.2.1. θn,k is a bijection with

dinv(θn,k(ρ)) = inv(ρ)

for all ρ ∈ OPn,k.

Proof. Let (π, i) be the inverse of ρ under ϕinv
n,k and π′ be the image of π under either

θn−1,k−1 or θn−1,k, depending on whether n is in its own block in ρ or not. Then, using
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ρ inv Lost Label Type θn,k(ρ)
134|25 145|23
134|2 0 block 140|231
13|2 1 block 11|230
1|2 1 block 10|21

1 0 gap 110

Figure 2.6: An example of the recursive bijection θ5,2.

Lemmas 2.3.1.1 and 2.3.2.1, we compute

dinv(θn,k(ρ)) = dinv(π′) + i (2.8)

= inv(π) + i (2.9)

= inv(ρ).

2.3.3 Insertion for maj

In this subsection, we define a bijection

ϕmaj

n,k : (OPn−1,k−1 ∪ OPn−1,k)× {0, 1, . . . , k − 1} → OPn,k

with the property

maj

(
ϕmaj

n,k(π, i)
)
= maj(π) + i.

This map will give us a bijection from OPn,k to OPn,k that carries inv to maj. The

insertion map for maj will be quite different from the maps for inv and dinv. In fact, in

order to deal with maj we will need to rely on the insertion lemma for the major index

over the symmetric group.

First, we will prefer to deal with descent-starred permutations instead of ordered

set partitions. Recall that every π ∈ OPn,k has a unique representation as a descent-

starred permutation (σ, S) ∈ S>
n,n−k where we write each block in decreasing order

from left to right and we use stars to indicate elements that share a block instead of using

bars to separate blocks. For example, the ordered set partition 5|12|4|367 is represented

5 2∗1 4 7∗6∗3.
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To define ϕmaj

n,k, we begin with a π ∈ OPn−1. If π ∈ OPn−1,k−1, then its corre-

sponding descent-starred permutation (σ, S) is in S>
n−1,n−k. We label the rightmost posi-

tion with a zero, and then we label the unstarred descents from right to left with 1, 2, . . ..

We label the leftmost position with the next number. Then we label the unstarred as-

cents from left to right with increasing labels. If π ∈ OPn−1,k, the only difference in

our labeling is that we skip the rightmost position.

For example, say (σ, S) = 5 2∗1 4 7∗6∗3, which corresponds to an element of

OP7,4. If k = 5, we label (σ, S) as

2512∗13447∗6∗30. (2.10)

If k = 4, we label (σ, S) as

1502∗12437∗6∗3. (2.11)

Now we need to define how to build a new descent-starred permutation after

choosing a certain label. This process will be quite different from the process we estab-

lished for the inversion number. We consider π ∈ OPn−1,k−1 ∪ OPn−1,k as a descent-

starred permutation (σ, S). If π ∈ OPn−1,k−1, to obtain ϕmaj

n,k(π, i) we

1. insert n at the label i, and then

2. move each star to the right of n one descent to its left.

This second step is well-defined because, after step 1, n will always be an unstarred

descent. If π ∈ OPn−1,k, we add a third step, which is to

3. add a star to the rightmost descent.

Since every star weakly to the right of n was just moved one descent to the left, this step

is always possible. For example, with (σ, S) = 5 2∗1 4 7∗6∗3 as above, (2.10) gives

ϕmaj

8,5 ((σ, S), 3) = 5 2∗1 8∗4 7∗6 3

and (2.11) gives

ϕmaj

8,4 ((σ, S), 3) = 5 2∗1 4 8∗7∗6∗3.

The key is that we can track the change in major index through this insertion process.
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Lemma 2.3.3.1 (Insertion for maj). For any π ∈ OPn−1,k−1 ∪OPn−1,k and 0 ≤ i < k,

we have

maj

(
ϕmaj

n,k(π, i)
)
= maj(π) + i.

Proof. We begin with π ∈ OPn−1,k−1. We let (σ, S) be the descent-starred permuta-

tion representation of π and (τ, T ) be the descent-starred permutation representation of

ϕmaj

n,k(π, i). Recall that

maj((σ, S)) = maj(σ)−
∑
j∈S

|Des(σ) ∩ {j, j + 1, . . .}|.

If i = 0, we insert n at the far right end. This does not change either term in the above

expression, so we have maj((τ, T )) = maj((σ, S)) + 0, as desired.

Now suppose that the space labeled i is the space immediately following σp where

σp > σp+1 and p ̸∈ S. Suppose that there are a starred descents and b unstarred descents

to the left of σp and c starred descents and d unstarred descents weakly to the right of

σp in (σ, S). Then we must have i = d. We know from Section 2.1 that inserting n

at this position increases the major index of the permutation σ by c + d, i.e. maj(τ) =

maj(σ) + c+ d. Now we need to consider how moving stars changes the term∑
j∈S

|Des(σ) ∩ {j, j + 1, . . .}|.

Since we have inserted n at a descent, we have not increased the number of descents

of σ, i.e. des(τ) = des(σ). Therefore each star to the left of position p has the same

number of descents weakly to its right, so their contribution to this sum does not change.

However, each of the c starred descents to the right of position p gains an additional

descent to its right (since we have moved the stars themselves to the left). Therefore this

sum increases by c, and we have

maj((τ, T )) = maj(τ)−
∑
j∈T

|Des(τ) ∩ {j, j + 1, . . .}| (2.12)

= maj(σ) + c+ d−

(
c+

∑
j∈T

|Des(σ) ∩ {j, j + 1, . . . , }|

)
(2.13)

= maj((σ, S)) + d (2.14)

= maj((σ, S)) + i. (2.15)
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Next, suppose that the space labeled i is the space at the start of (σ, S). Assume

that are c starred descents and d unstarred descents in (σ, S). Then i = d + 1. As

discussed in Section 2.1, inserting n at this position increases the major index of the

underlying permutation by c + d + 1, i.e. maj(τ) = maj(σ) + c + d + 1. Now every

starred descent in τ is weakly to the right of n, so moving stars decreases the major index

of the ordered set partition by c. Then, as above, we argue that

maj((τ, T )) = maj(τ) +
∑
j∈T

|Des(τ) ∩ {j, j + 1, . . .}| (2.16)

= maj(σ) + c+ d+ 1−

(
c+

∑
j∈T

|Des(σ) ∩ {j, j + 1, . . . , }|

)
(2.17)

= maj((σ, S)) + d+ 1 (2.18)

= maj((σ, S)) + i. (2.19)

Now suppose that the space labeled i is the space following σp where σp < σp+1.

Suppose that there are a starred descents and b unstarred descents in (σ, S) strictly to the

left of σp and c starred descents and d unstarred descents in (σ, S) weakly to the right of

σp. Then

i = b+ d+ 1 + p− (a+ b) = d+ p− a+ 1. (2.20)

Furthermore, we have

maj(τ) = maj(σ) + a+ b+ c+ d+ p− (a+ b) + 1 = c+ d+ p+ 1. (2.21)

Now, we claim that moving stars decreases the major index by a + c, i.e. one for each

star. This is because each star to the left of position p picks up an additional descent to

its right with the insertion of n at an ascent. We also note that each star to the right of
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position p picks up another descent to its right after being moved. Hence

maj((τ, T )) = maj(τ)−
∑
j∈T

|Des(τ) ∩ {j, j + 1, . . .}| (2.22)

= maj(σ) + c+ d+ p+ 1−

(
a+ c+

∑
j∈S

|Des(σ) ∩ {j, j + 1, . . .}|

)
(2.23)

= maj((σ, S)) + d+ p− a+ 1 (2.24)

= maj((σ, S)) + i. (2.25)

Finally, we need to consider what happens when π ∈ OPn−1,k. Note that we

obtain the labels for this case by subtracting 1 from each label (except 0) from the π ∈
OPn−1,k−1 case. We also notice that starring the rightmost descent subtracts exactly 1

from the major index, since it adds a new star with 1 descent weakly to its right. This

completes the proof.

Now we can recursively define a bijection ψn,k : OPn,k → OPn,k by setting it

equal to the identity if n = k = 1 and declaring

ψn,k(ρ) =


(
ϕmaj

n,k ◦ (ψn−1,k−1, id) ◦
(
ϕinv
n,k

)−1)
(ρ) n is in its own block in ρ(

ϕmaj

n,k ◦ (ψn−1,k, id) ◦
(
ϕinv
n,k

)−1)
(ρ) n shares a block in ρ.

An analogous argument to the one used to prove Lemma 2.3.2.1 proves that maj(ψn,k(ρ)) =

inv(ρ) for every ρ ∈ OPn,k. Thus Dinv
n,k(q) = Dmaj

n,k(q). We have worked through an ex-

ample of ψn,k in Figure 2.7 for n = 5 and k = 2. We begin by taking an ordered set

partition ρ = 134|25 ∈ OP5,2. We repeatedly take out the largest element in ρ and write

down how many inv this costs and whether or not this decreases the number of blocks

in the ordered set partition. Then we use this information to build up the image of ρ

under ψ5,3. In particular, we use the labels for maj, adding a new star if and only if the

corresponding step did not reduce the block count. We have italicized the label that we

chose at each step.

Furthermore, the equidistribution of inv and maj on OPn,k can be reformulated

as an identity about permutations. By the alternate definition of maj in (2.3),

n∑
k=1

zn−kDmaj

n,k(q) =
∑
σ∈Sn

qmaj(σ)

des(σ)∏
j=1

(
1 + z/qj

)
. (2.26)
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ρ inv Lost Add Star? ψn,k(ρ)
134|25 5∗14∗3∗2
134|2 0 yes 0114∗3∗2
13|2 1 yes 0113∗2
1|2 1 yes 0112
1 0 no 110

Figure 2.7: Here we have an example of the recursive bijection ψ5,2.

We also notice that, for a descent-starred permutation (σ, S),

inv((σ, S)) = inv(σ)−
∑
i∈S

(
inv□,i(σ) + 1

)
(2.27)

where inv□,i(σ) is the number of inversions in the permutation σ whose right entry is at

position i. Therefore we have shown

∑
σ∈Sn

qinv(σ)
∏

i∈Des(σ)

(
1 + z/qinv□,i(σ)+1

)
=
∑
σ∈Sn

qmaj(σ)

des(σ)∏
j=1

(
1 + z/qj

)
. (2.28)

This statement was originally conjectured by Haglund via personal communication. By

considering inversions on ordered set partitions as ascent-starred permutations, we also

see that these expressions are equal to∑
σ∈Sn

qinv(σ)
∏

i∈Asc(σ)

(
1 + z/qinv□,i+1(σ)

)
. (2.29)

2.3.4 Mixed rook placements

Since we have proved that the following three distributions are equal, we can

define

Dn,k(q) = Dinv
n,k(q) = Ddinv

n,k (q) = Dmaj

n,k(q).

We refer to this polynomial as the Mahonian distribution onOPn,k. We will see that the

Mahonian distribution on OPn,k also appears as the distribution of a certain statistic on

mixed rook placements, which are a new type of rook placement in the staircase board.

These rook placements will give a direct combinatorial proof thatDn,k(q) = [k]q!Sn,k(q).
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We given by defining the staircase board Stairn, which is the bottom-justified

collection of cells with 1 cell in the first column, 2 cells in the second column, and so on

until there are n cells in the nth column. Here is the staircase board Stair3:

We will place two types of objects into these boards, both of which we will call rooks

because no two of these objects can be placed in the same column. A right-canceling

rook does not allow other rooks to be placed in its column or in its row to the right.

A column rook does not have the condition about rows; it simply does not allow other

rooks to be placed in its column. The cases where one places only right-canceling rooks

or only column rooks in the staircase board are well-studied [BCHR]. In particular, there

are exactly Sn,n−k ways to place k right-canceling rooks in the board Stairn−1.

We will place both of these types of rooks into the same board, which is a case

that has not been studied previously. We defineMn,k to be the set of all placements of

k column rooks and n− k right-canceling rooks into the staircase board Stairn such that

no right-canceling rooks appear in the bottom row of Stairn. Since no rooks can share a

column, this means that there are no empty columns in such a placement. We call these

mixed rook placements. Below, we have drawn a mixed placement inM5,3. We have

used circles to represent column rooks and crosses for right-canceling rooks.

◦
×

×
◦ ◦

First, we claim that |Mn,k| = k!Sn,k. To see this, we first place n − k right-

canceling rooks in Stairn; there are Sn,k ways to accomplish this [BCHR]. Then we

consider the k remaining empty columns. We say a cell is canceled if it is to the right

of a right-canceling rook. We claim that, from left to right, the k empty rows have 1,

2, …, k uncanceled cells. If this is true, then there are clearly k! ways to place the k

column rooks into these columns. Say that the empty columns are columns c1, . . . , ck
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in Stairn. We must have c1 = 1. Now consider column ci for i > 1. It has ci cells and

ci − 1 − (i − 1) = ci − i right-canceling rooks to its left. Each of these rooks cancels

one cell in column ci, so column ci has i uncanceled cells. This proves the claim.

Next, we will define a statistic on mixed rook placements such that the distribu-

tion of this statistic overMn,k equals [k]q!Sn,k(q). We will also give recursive bijections

between mixed rook placements and ordered set partitions that sends our new statistic to

any of the statistics inv, dinv, and minimaj on ordered set partitions. . The statistic unc

counts the number of cells that are not canceled and that are below some rook but not in

the bottom row of a column containing a right-canceling rook. For example, the mixed

rook placement inM5,3 pictured above unc = 1, since only the bottom right cell meets

all these criteria.

Now we define an insertion map for mixed rook placement and the statistic unc.

We define

ϕunc
n,k : (Mn−1,k−1 ∪Mn−1,k)× {0, 1, . . . , k − 1} →Mn,k

such that

unc
(
ϕunc
n,k(P, i)

)
= unc(P ) + i.

Say we begin with some placement P ∈Mn−1,ℓ for ℓk or ℓ = k − 1. We add a column

with n cells to the right of P . If ℓ = k, then we must add a right-canceling rook to this

new column. Since P had n− k − 1 right-canceling rooks, there are k + 1 uncanceled

cells in the new column. We cannot place a right-canceling rook in the bottom row, so

there are k places we can put the new right-canceling rook. Furthermore, if we number

these places 0,1, …, k − 1 from bottom to top, this numbering gives the increase in unc

in the new mixed placement. If, instead, ℓ = k− 1, we need to add a column rook to the

new column. In this case, P has n − k right-canceling rooks, so there are k places we

can put this new column rook. Again, numbering these places from bottom to top gives

the potential increase in unc.

These insertion maps can be used to recursively construct bijections between
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Mn,k and OPn,k that send unc to any one of inv, maj, or dinv. As a result, we have∑
P∈Mn,k

qunc(P ) = Dn,k(q).

Furthermore, we also have
∑

P∈Mn,k
qunc(P ) = [k]q!Sn,k(q). To see this, we use

the fact that the distribution of unc over placements of n − k right-attacking rooks into

Stairn−1 is Sn,k(q) [GR86]. Since right-attacking rooks are not allowed in the bottom

row of a mixed placement, we can think of this step as placing our n− k right-attacking

rooks. We then wish to ''complete'' such a placement to a placement inMn,k. As we

proved earlier, the empty columns have exactly 1, 2, …, k uncanceled cells, from left to

right. The distribution of unc over all ways to place k column rooks into these columns

is clearly [k]q!. Therefore
∑

P∈Mn,k
qunc(P ) = [k]q!Sn,k(q), and we have shown that

Dn,k(q) = [k]q!Sn,k(q). We also could have proved this fact by induction, using the

recursive definition of Sn,k(q), but this proof is more direct.

2.3.5 An application to the Euler-Mahonian distribution

In this subsection, we show that our equidistribution theorem, paired with the

alternate definition of the major index in (2.3), solves a problem posed by Steingrímsson

about the Euler-Mahonian distribution. Let An,d(q) be the sum of qmaj(σ) over the per-

mutations σ ∈ Sn with exactly d descents. Given any permutation σ ∈ Sn with at least

n − k descents, we can obtain an ordered set partition in OPn,k by placing stars after

n − k of the descents of σ. By (2.3), placing a star after the ith descent of σ, counting

from 1 and from right to left, removes i from the major index of the resulting ordered set

partition. Therefore

Dmaj

n,k(q) =
∑
σ∈Sn

des(σ)≥n−k

qmaj(σ)

des(σ)∏
i=1

(1 + uq−i)

∣∣∣∣∣∣
un−k

=
n−1∑

d=n−k

∑
σ∈Sn

des(σ)=d

qmaj(σ)

d∏
i=1

(1 + uq−1)

∣∣∣∣∣
un−k

=
n−1∑

d=n−k

An,d(q)

[
d

n− k

]
q

q(
n−k
2 )−d(n−k).
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Therefore our equidistribution results on OPn,k provide a combinatorial proof that

[k]q!Sn,k(q) =
n−1∑

d=n−k

An,d(q)

[
d

n− k

]
q

q(
n−k
2 )−d(n−k).

Steingrímsson asked for such a proof in [Ste07].

2.4 Equidistribution on Ordered Multiset Partitions

In this section, we prove the following equidistribution theorem for ordered mul-

tiset partitions.

Theorem 2.4.0.1. For any composition α,

Dinv
α,k(q) = Dmaj

α,k(q) = Ddinv
α,k (q).

As a result of this theorem and Proposition 2.2.3.1, we have

Risen,k(x; q, 0) = Risen,k(x; 0, q) = Valn,k(x; q, 0).

The reader may have noticed that Dminimaj

n,k (q) and Valn,k(x; 0, q) are not included in the

list of equidistributed polynomials; that is because we have not proved this case at this

point. We describe the unique difficulties of this case in Subsection 2.4.4.

Our proof of Theorem 2.4.0.1 is bijective and employs a generalization of Car-

litz's insertion method from permutations to ordered multiset partitions. We describe

''insertion maps'' for inv, dinv, and maj in Subsections 2.4.1, 2.4.3, 2.4.2, respectively.

These maps will be of the form

ϕinv
α,k,ℓ : OPα−,ℓ ×

(
[0, ℓ− 1]

αn − k + ℓ

)
×
((

[0, ℓ]

k − ℓ

))
→ OPα,k

ϕmaj

α,k,ℓ : OPα−,ℓ ×
(

[0, ℓ− 1]

αn − k + ℓ

)
×
((

[0, ℓ]

k − ℓ

))
→ OPα,k

ϕdinv
α,k,ℓ : OPα−,ℓ ×

(
[0, ℓ− 1]

αn − k + ℓ

)
×
((

[0, ℓ]

k − ℓ

))
→ OPα,k

for any composition α of length n where α− is the composition obtained by removing
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the rightmost entry in α. By ''insertion maps,'' we mean that they satisfy the properties

inv
(
ϕinv
α,k,ℓ(π, U,B)

)
= inv(π) +

∑
u∈U

u+
∑
b∈B

b

maj

(
ϕmaj

α,k,ℓ(π, U,B)
)
= maj(π) +

∑
u∈U

u+
∑
b∈B

b

dinv
(
ϕdinv
α,k,ℓ(π, U,B)

)
= dinv(π) +

∑
u∈U

u+
∑
b∈B

b.

When k = |α| these maps will reduce to the insertion processes defined in Subsection

2.1.3. We will use these maps to construct a bijective proof of Theorem 2.4.0.1. Subsec-

tion 2.4.5 contains more information about the shared distribution of the polynomials in

Theorem 2.4.0.1.

2.4.1 Insertion for inv

Recall that we need to define a map of the form

ϕinv
α,k,ℓ : OPα−,ℓ ×

(
[0, ℓ− 1]

αn − k + ℓ

)
×
((

[0, ℓ]

k − ℓ

))
→ OPα,k.

We can think of the set U ∈
(

[0,ℓ−1]
αn−k+ℓ

)
as providing the increases in inv that come from

adding a new nwithout creating a new block, and the multisetB ∈
((

[0,ℓ]
k−ℓ

))
as providing

the increases in the statistic that come from adding a new n while creating a new block.

These maps will cooperate with our inversion statistic in the following manner:

inv
(
ϕinv
α,k,ℓ(π, U,B)

)
= inv(π) +

∑
u∈U

u+
∑
b∈B

b (2.30)

Given π ∈ OPα−,ℓ, we label each block of π from right to left with the numbers

0, 1, . . . , ℓ−1. We repeatedly remove the largest element from the multisetU∪B, taking

the element from U if the largest elements are equal. Call this element i. If i came from

U , we place an n in the block that received the label i. If i came from B and is equal

to ℓ, we place an n as a new block to the left of the block that received the label i. If

i came from B and is less than ℓ, we place an n as a new block just to the right of the

block labeled i. The resulting ordered multiset partition is ϕinv(π, U,B).
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For example, say α = {1, 2, 2, 3}, k = 6, and ℓ = 5. We consider π =

3|1|2|2|13 ∈ OPα−,5, U = {2, 0}, and B = {3}. Then U ∪ B = {3, 2, 0}. We la-

bel π as follows, with the labels written as subscripts at the end of each block:

34|13|22|21|130

The largest element in U ∪ B is 3 and it comes from B, so we insert a 4 at the position

labeled 3 as a new block to the right of the block labeled with the 3.

34|13|4|22|21|130

Now the largest remaining element of U ∪ B is 2 and it comes from U , so we put a 4

into the block labeled 2.

34|13|4|242|21|130

Finally, we insert a 4 into the block labeled 0 to obtain ϕinv(π, U,B).

34|13|4|242|21|1340

We can check that (2.30) holds here.

10 = inv (3|1|4|42|2|431)

= inv (3|1|2|2|31) +
∑
u∈U

u+
∑
b∈B

b

= 5 + (2 + 0) + 3.

Lemma 2.4.1.1 (Insertion for inv). For any composition α of length n and positive inte-

gers ℓ ≤ k, ϕinv
α,k,ℓ is well-defined and injective. The image of ϕinv

α,k,ℓ is the ordered multiset

partitions π ∈ OPα,k with exactly k − ℓ singleton blocks containing n. Furthermore,

for any π ∈ OPα,ℓ, U ∈
(

[0,ℓ−1]
αn−k+ℓ

)
, and B ∈

((
[0,ℓ]
k−ℓ

))
,

inv
(
ϕinv
α,k,ℓ(π, U,B)

)
= inv(π) +

∑
u∈U

u+
∑
b∈B

b.

Proof. The only way ϕinv
α,k,ℓ could not be well-defined is if we tried to insert two n's into

the same block. Since U is a set, this does not occur. The statement about the image
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of ϕinv
α,k,ℓ follows from the definition. Furthermore, the insertion map is clearly bijective,

and any function that bijects onto its image is an injection.

We will prove that whenever we remove the largest element i from U ∪ B and

introduce a new n to our ordered multiset partition as described in the insertion map,

we introduce i new inversions to the ordered multiset partition. Specifically, we create

inversions between this new n and the minimal elements of the i labeled blocks of π

that are to the right of the block that received label i. Since n is the largest entry, we do

not create any new inversions that end at n. Finally, we note that we do not destroy any

inversions that existed before we inserted this new n.

2.4.2 Insertion for maj

To define ϕmaj

α,k,ℓ, we will view π ∈ OPα−,ℓ as a descent-starred multiset permuta-

tion (σ, S). We will label the unstarred positions of σ as in Section 2.1. Specifically, we

label the unstarred descents from right to left, then the non-descents from left to right,

using increasing labels 0, 1, . . . , ℓ. Let U+ = {u + 1 : u ∈ U}. We repeatedly remove

the largest element i from U+ ∪ B, taking i from B if the largest elements are equal.

Then we proceed through the following algorithm:

1. Insert an n at the position labeled i.

2. Move each star to the right of the new n one descent to the left.

3. If i came from U+, star the rightmost descent.

4. Relabel as before, stopping at the label i if i came from B and i−1 if i came from

U+.

When we have used each element of U+ ∪B, the result is ϕmaj

α,k,ℓ((σ, S), U,B).

For example, let us again consider α = {1, 2, 2, 3}, k = 6, and ℓ = 5 with

(σ, S) = 3 1 2 2 3∗1 ∈ OPα−,5, U = {2, 0}, and B = {3}. Then U+ ∪ B = {3, 3, 1}.
We label (σ, S) as follows.

2311324253∗10.
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We insert a 4 at the position labeled 3 and then move all stars to the right of that position

one spot to their left. Since we took 3 from B, we do not star the rightmost descent,

resulting in 3 1 4∗2 2 3 1. We re-label to obtain the following.

3321 4∗2 2 3110

Again we choose the position labeled 3. This time we star the rightmost descent after

shifting stars because 3 came from U+, yielding 4 3∗1 4 2 2 3∗1. Finally we label this

element

423∗1 412 2 3∗10.

We insert a 4 at the position labeled 1, shift stars, and star the rightmost descent to get

4 3∗1 4 4∗2 2 3∗1. We check that this new permutation has the desired major index.

10 = maj (4 3∗1 4 4∗2 2 3∗1) = 1 + 1 + 3 + 5

= maj (3 1 2 2 3∗1) +
∑
u∈U

u+
∑
b∈B

b

= (1 + 4) + (2 + 0) + 3.

Now we prove that this process satisfies the necessary properties.

Lemma 2.4.2.1 (Insertion Lemma for maj). For any composition α of length n and

positive integers ℓ ≤ k, ϕmaj

α,k,ℓ is well-defined and injective. Furthermore, for any π ∈
OPα−,ℓ, U ∈

(
[0,ℓ−1]
αn−k+ℓ

)
, and B ∈

((
[0,ℓ]
k−ℓ

))
,

maj

(
ϕmaj

α,k,ℓ(π, U,B)
)
= maj(π) +

∑
u∈U

u+
∑
b∈B

b.

Proof. To show that ϕmaj

α,k,ℓ is injective, we describe its inverse. Given some descent-

starred multiset permutation (τ, T ), we first check if the rightmost descent of (τ, T ) is

starred. If it is, we remove the star and prepare to add an element to U . Otherwise, we

prepare to add an element to B. We scan τ for the rightmost n which is either at the

right end of τ or between two entries such that the entry to the left of n is greater than

the entry to the right of n. If there is no such n, we choose the leftmost n in τ . We move

all stars that are weakly to the right of this n's position one descent to their right and
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then remove n. Say that, at this point, we have decreased the original major index of

(τ, T ) by i. We add i to either U or B, as decided above. Then we repeat this process

until we have removed all n's. It is important to note that the inverse does not depend on

knowledge of ℓ; therefore, each ρ ∈ OPα,k is in the image of ϕmaj

α,k,ℓ for a unique value

of ℓ.

In the remainder of the proof, we show that the map cooperates with the statistic

maj as proposed in the lemma. We consider the labeling of the descent-starred multiset

permutation (σ, S) equivalent to π at any step during the insertion process. Say i is

currently the largest element of U+ ∪B.

Assume first that the position labeled i is a descent. We use d to denote the

number of starred descents to the right of this position. By the insertion method discussed

in Subsection 2.1.3, inserting n into the position labeled i increases maj(σ) by i + d.

Furthermore, we have not created a new descent, so the number of descents weakly

to the right of any starred position has remained the same. Therefore, by the alternate

definition of maj(π) in (2.3), we have increased maj(π) by i+ d after Step 1.

For Step 2, we move all stars to the right of the position labeled i one descent to

their left. Since position i contains an unstarred descent, this is always possible. Further-

more, each of these d stars have picked up an additional descent that is weakly to their

right. Using (2.3) again, we see that the change in maj(π) after Step 2 is i+ d− d = i.

Finally, we need to consider if i came from U+ or B. If i came from U+, we star

the rightmost descent. This subtracts 1 from maj(π). In either case, we have increased

the major index of π by the amount equal to the element from U or B corresponding to

i.

By the insertion process from Subsection 2.1.3, we can relabel the resulting

descent-starred permutation and repeat the process as long as we bound the labels as

described in Step 4. Then, by the same argument as we used above, the insertion pro-

cess will modify the major index as described in the statement of the lemma.

Now we consider where the argument must change when the position labeled

i is not a descent. We still use d to denote the number of starred descents to the right

of position i, and we set c to be the number of starred descent to this position's left.

Since every starred descent occurs before the position labeled i in the labeling order for
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maj(σ), Step 1 increases maj(π) by i + c + d. For Step 2, the position labeled i still

contains an unstarred descent, so we can still move the stars as described. As before,

this means that each of the d stars to the right of the position labeled i adds a descent to

its right, contributing −d to maj(π). Furthermore, inserting n at a non-descent creates

a new descent, so each of the c stars to the left of the position labeled i has added a

descent to its right, contributing −c to maj(π). Therefore the total increase of maj(π) is

i + c + d − c − d = i. Steps 3 and 4 do not depend on whether we are inserting at a

descent or a non-descent.

These two insertion maps work together to provide a bijection ψα,k : OPα,k →
OPα,k that takes inversion number to major index. The bijection is described recursively

as follows.

1. Given an ordered multiset partition ρ ∈ OPα,k, choose ℓ such that ρ has k − ℓ

singleton blocks containing n.

2. Set (π, U,B) to be the inverse of ρ under ϕinv
α,k,ℓ.

3. Recursively send π to π′ = ψα−,ℓ(π).

4. Set ψα,k(ρ) = ϕmaj

α,k,ℓ(π
′, U,B).

Finally, in order to begin the recursion, we declare that ψ1m,m is the identity map. We

work through an example of this bijection in Figure 2.8.

Proposition 2.4.2.1. For any composition α and positive integer k, ψα,k is a bijection

with the property

maj(ψα,k(ρ)) = inv(ρ)

for any ρ ∈ OPα,k.

Proof. We will work by induction on n, the length of α. If n = 1, Then the multiset is

{1α1} and k must be equal to α1. In this case OPα,k only has 1 element, which has α1

parts all equal to 1. This element clearly has inv = maj = 0. We defined ψα,k so that it is

the identity in this case, which clearly is a bijection and satisfies maj(ψα,k(π)) = inv(π)

for the unique π ∈ OPα,k.
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α k π U B ψA,k(π)

{3, 1, 2, 1} 3 134|1|3|12 3∗2∗1 1 4 3 1

{3, 1, 2} 2 13|1|3|12 {4} ∅ 23∗2∗13143110

12∗121 3∗10

{3, 1} 1 1|1|12 {2} {1} 12∗121310

{3} 0 1|1|1 {0} ∅ 1121310

Figure 2.8: An example of the map ψA,k(π).

If n > 1, take any element ρ ∈ OPα,k. We choose ℓ, π, π′, U , andB as instructed

in the definition of ψα,k. The images of ϕinv
α,k,ℓ for ℓ = 1 to k partition OPα,k into the

subsets consisting of elements which have k − ℓ singleton n blocks. (Since we assume

each αi > 0, an element cannot consist entirely of singleton n blocks.) We also noted

while proving Lemma 2.4.2.1 that each ρ ∈ OPα,k is in the image of ϕmaj

α,k,ℓ for a unique

value of ℓ. Since each of these insertion maps is invertible, ψα,k is a bijection.

Finally, we use Lemmas 2.4.1.1 and 2.4.2.1 along with the inductive hypothesis

to compute

maj(ψα,k(ρ)) = maj(π′) +
∑
u∈U

u+
∑
b∈B

b

= inv(π) +
∑
u∈U

u+
∑
b∈B

b

= inv(ρ).

We work through an example of the map ψA,k(π) in Figure 2.8. We repeatedly

remove all of the largest elements (and their stars) from the starred permutation and

recording the number of inversions lost in the U and B columns. Starred elements con-

tribute to the U column and unstarred elements contribute to the B column. Once we

have reached the final row, we use this information to build theψα,k((σ, S)) column from

bottom to top. We use the elements of U+ ∪M to select the positions at which to insert

new largest elements. This insertion follows the procedure laid out in the definition of

ϕmaj.
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There are a number of other consequences of our proof. For example, the right-

to-left minima of a permutation σ are the entries σi such that, for all j > i, σi < σj .

In [RW15], Remmel and the author proved that the α = 1n case of ψα,k preserves the

right-to-left minima of σ, where (σ, S) is the descent-starred permutation representation

of an ordered partition of α. The same is true for general ψα,k.

Corollary 2.4.2.1. For any element of π ∈ OPα,k considered as a descent-starred per-

mutation (σ, S), consider its image ψα,k(π) as the descent-starred permutation (τ, T ).

Then σ and τ have the same right-to-left minima. In particular, σn = τn.

The crux of the proof is that the insertion algorithms only change the last element

of σ when 0 is an element of the multiset B.

2.4.3 Insertion for dinv

In order to prove that dinv is equidistributed with inv and maj, we define an

insertion map for dinv

ϕdinv
α,k,ℓ : OPα−,ℓ ×

(
[0, ℓ− 1]

αn − k + ℓ

)
×
((

[0, ℓ]

k − ℓ

))
→ OPα,k.

Given π ∈ OPα−,ℓ, we will use two different labelings to insert the n's into π. We label

the positions between the blocks, as well as the positions at either end of π, with the

labels 0, 1, . . . , ℓ from right to left. We will call these the gap labels.

We will label the ℓ blocks of π with the labels 0, 1, . . . , ℓ − 1. Set h to be the

maximum height of any element in π. We obtain the block labels of π by, beginning

with the label 0, repeatedly

1. labeling the elements of π at height h from left to right with increasing labels, and

2. decrementing h.

We repeat until h < 0. For example, if π = 124|2|13|134|1, the block labels of π are

0|3|2|1|4.

With these labels in hand, we define ϕdinv
α,k,ℓ(π, U,B) by inserting an n into each

block that receives a block label u ∈ U and into each gap that receives a gap label b ∈ B.

As usual, the key is to prove that this map cooperate with the statistic dinv.
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Lemma 2.4.3.1 (Insertion for dinv). For any compositionα of length n and positive inte-

gers ℓ ≤ k, ϕdinv
α,k,ℓ is well-defined and injective. The image of ϕdinv

α,k,ℓ is the ordered multiset

partitions π ∈ OPα,k with exactly k − ℓ singleton blocks containing n. Furthermore,

for any π ∈ OPα,ℓ, U ∈
(

[0,ℓ−1]
αn−k+ℓ

)
, and B ∈

((
[0,ℓ]
k−ℓ

))
,

dinv
(
ϕdinv
α,k,ℓ(π, U,B)

)
= dinv(π) +

∑
u∈U

u+
∑
b∈B

b.

Proof. The proof is essentially the same as that of Lemma 2.3.2.1. We just have to note

that, since two n's cannot form a diagonal inversion, we can insert n's according to the

u ∈ U and b ∈ B in any order and create the correct number of diagonal inversions.

It follows from Lemma 2.4.3.1 that Ddinv
α,k (q) = Dinv

α,k(q) = Dmaj

α,k(q). We can

form a bijection between any pair of these statistics by using the definition of ψα,k as a

template. Furthermore, any such bijection preserves right-to-left minima.

2.4.4 The statistic minimaj

Data computed in Sage suggests that minimaj shares the distribution of inv, maj,

and dinv; unfortunately, we cannot prove this with the techniques currently available to

us. In fact, we conjecture that minimaj is equidistributed with inv in a particularly strong

way. If we set the shape of an ordered multiset partition π ∈ OPα,k to be

shape(π) = (|π1|, |π2|, . . . , |πk|),

then we have the following conjecture.

Conjecture 2.4.4.1. For any compositions α, β of length n with |α| = |β|,∑
π∈OPα

shape(π)=β

qinv(π) =
∑

π∈OPα
shape(π)=β

qminimaj(π).

This implies Dminimaj

α,k (q) = Dinv
α,k(q) = Dmaj

α,k(q) = Ddinv
α,k (q).

Of the four statistics we have defined on ordered multiset partitions, data implies

that (inv,minimaj) is the only pair for which Conjecture 2.4.4.1 may hold.
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2.4.5 The Mahonian distribution on OPα,k

In this subsection, we describe the distribution shared by the statistics inv, maj,

and dinv on OPα,k. Define the Mahonian distribution on OPα,k to be the polynomial

Dα,k(q) = Dinv
α,k(q) = Dmaj

α,k(q) = Ddinv
α,k (q).

We know from MacMahon's theorem that Dα,|α|(q) =
[ |α|
α1,...,αn

]
q
. In general, we can

only give a recursive description of Dα,k(q). Applying standard q-binomial identities to

the insertion maps given above, we see

Dα,k(q) =
k∑

l=1

q(
αn−k+ℓ

2 )
[

ℓ

αn − k + ℓ

]
q

[
k

ℓ

]
q

Dα−,ℓ(q) (2.31)

with initial condition

D(α1),k(q) = χ(k = α1). (2.32)

We can cancel terms of (2.31) to obtain the identity

Dα,k(q) =
k∑

l=1

q(
αn−k+ℓ

2 )
[

k

αn − k + ℓ, k − αn, k − ℓ

]
q

Dα−,ℓ(q). (2.33)

We can obtain another expression for this polynomial in the special case α1 =

. . . = αn = a. Before we can state this expression, we must define a q-analog of the

(generalized) Stirling numbers of the second kind. The q = 1 case of these polynomials

appear in [BPS03], Equations (20) and (21). We define these polynomials recursively

by

S
(a)
n,k(q) =

k∑
i=1

q(
a−k+i

2 )
[

i

a− k + i

]
q

[a]q!

[k − i]q!
S
(a)
n−1,i(q) (2.34)

S
(a)
1,k(q) = χ(k = a). (2.35)

Note that, at a = 1, the recursion simplifies to the q-Stirling numbers Sn,k(q).

Proposition 2.4.5.1. When α = an,

Dα,k(q) =
[k]q!

([a]q!)
nS

(a)
n,k(q).

When a = 1, this formula reduces to the formula

Dn,k(q) = [k]q!Sn,k(q).
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Proof. We work by induction on n. When n = 1, the right-hand side of Proposition

2.4.5.1 equals

[k]q!

([a]q!)
nS

(a)
1,k(q) = χ(k = a)

which is equal to the left-hand side by (2.32).

If n > 1, we use the induction hypothesis with the recursion (2.33) to compute

Dα,k(q) =
k∑

ℓ=1

q(
a−k+ℓ

2 )
[

k

a− k + ℓ, k − a, k − ℓ

]
q

(
[ℓ]q!

([a]q)
n−1S

(a)
n−1,ℓ(q)

)

=
[k]q!

([a]q!)
n−1

k∑
ℓ=1

q(
a−k+ℓ

2 ) [ℓ]q!

[a− k + ℓ]q![k − a]q![k − ℓ]q!
S
(a)
n−1,ℓ(q)

=
[k]q!

([a]q!)
n

k∑
ℓ=1

q(
a−k+ℓ

2 )
[

ℓ

a− k + ℓ

]
q

[a]q!

[k − ℓ]q!
S
(a)
n−1,ℓ(q)

=
[k]q!

([a]q!)
nS

(a)
n,k(q)

by (2.34) with i = ℓ.

It would be interesting to give a more combinatorial proof of Proposition 2.4.5.1,

especially one that would shed light on why each of the three terms [k]q!, ([a]q!)
n, and

S
(a)
n,k(q) appears.

2.4.6 Extending Macdonald polynomials

In this subsection, we apply our inv and maj statistics to the combinatorial defini-

tion of Macdonald polynomials for hook shapes, as given (for any shape) in [HHL05a].

This yields functions whose coefficients are four-variable polynomials instead of the

usual two-variable polynomial coefficients. Our previous work allows us to prove that

these polynomials are symmetric and to expand them into Schur functions.

For convenience, for any statistic stat, let

stat[a,b](σ) = stat(σaσa+1 . . . σb).
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We will also need two new statistics, one on permutations and one on descent-starred

permutations:

rlmaj(σ) =
∑

i∈Des(σ)

(n− i)

rlmaj((σ, S)) = rlmaj(σ)−
∑
i∈S

|Des(σ) ∩ [1, i]|.

We set H̃n,m(x; q, t, u, v) equal to∑
σ∈{1,2,...}n

qinv[m+1,n](σ)tmaj[1,m](σ)xσ

×
∏

i∈Des(σ)∩[m+1,n]

(
1 + u/qinv

□,i
[m+1,n]

(σ)+1
) |Des(σ)∩[1,m]|∏

j=1

(
1 + v/tj

)
.

We will refer to these polynomials as starred Macdonald polynomials of hook shape.

These polynomials can be thought of as a sum over all descent-starred multiset permuta-

tions (σ, S) in the Young diagram for the shape (n−m, 1m) where we calculate our maj

and inv statistics down the column and across the row, respectively. When u = v = 0,

we obtain the (modified) Macdonald polynomial for the shape (n −m, 1m), as proven

in [HHL05a]. Here is an example filling for n = 8 and m = 3.

2

5∗

3

6∗ 1 7 4 8

The numbers followed by stars are the starred descents. The weight of this filling would

be q2t, since the descent-starred permutation 6∗1748 has 2 inversions, both ending at the

4, and 25∗36 has major index equal to 1.

Our main result in this section allows us to transfer many important properties of

the Macdonald polynomials to the starred Macdonald polynomials of hook shape. The

u = v = 0 case of this result was originally proved in [Ste94]. The result requires some

definitions on standard Young tableaux. The descent set of a standard Young tableau T

(in French notation) is the set of all i such that i + 1 is strictly north (and weakly west)

of i in T . Then, for any standard Young tableau T with n entries,

maj(T ) =
∑

i∈Des(T )

i rlmaj(T ) =
∑

i∈Des(T )

(n− i).
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For example, here is a standard Young tableau with descent set {2, 5}.

3 4 6

1 2 5 7

Theorem 2.4.6.1. The starred Macdonald polynomials of hook shape are symmetric.

Furthermore, for λ ⊢ n the coefficient of the Schur function sλ(x) in H̃n,m(x; q, t, u, v)

is equal to

∑
T∈SYT(λ)

qrlmaj[m+1,n](T )tmaj[1,m](T )

|Des(T )∩[m+1,n]|∏
i=1

(
1 + uq−i

) |Des(T )∩[1,m]|∏
j=1

(
1 + vt−j

)
.

Proof. We begin with a descent-starred multiset permutation (σ, S). Then we apply the

bijection

γ = complement ◦ reverse ◦ ψβ,ℓ ◦ reverse ◦ complement

to the descent-starred multiset permutation (σm+1 . . . σn, S∩ [m+1, n]) for suitable β, ℓ.

Since preserves the rightmost letter, γ preserves σk+1 and sends the inv of (σm+1 . . . σn, S∩
[m + 1, n]) to the rlmaj of the resulting descent-starred multiset permutation. Hence,

H̃n,m equals

∑
σ∈{1,2,...,}n

xσqrlmaj[k+1,n](σ)tmaj[1,k](σ)

|Des(σ)∩[k+1,n]|∏
i=1

(
1 + u/qi

) |Des(σ)∩[1,k]|∏
j=1

(
1 + v/tj

)
.

(2.36)

For any composition α, the coefficient of xα in this expression is just the sum over σ

that are permutations of the multiset {1α1 , 2α2 , . . .}. We would like to show that the

coefficients of xα and xα
(r)

are equal, where α(r) is obtained from α by switching αr and

αr+1. To do this, we apply a procedure known as r-pairing to the permutation τ . We

illustrate r-pairing via the example in Figure 2.9. To perform r-pairing on a sequence,

we begin by temporarily ignoring all entries not equal to r or r + 1. Then we pair off

adjacent occurrences of r + 1 and r, ignoring previously paired entries and iterating

this pairing procedure. When there are no more such pairs, we replace each un-paired

occurrence of r with an r + 1 and vice versa. Finally, we re-insert the entries we had

temporarily removed in their initial positions. We provide an example above with r = 2.
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24231243331324123321

2 23 2 333 32 2332

2 2 333 23

2 2 33 3

3 3 22 2

3 3 223 22

3 33 2 223 32 2232

34331242231324122321

Figure 2.9: An example of r-pairing with r = 2.

For our purposes, it is enough to know that r-pairing replaces σ with a permu-

tation of the multiset {1α1 , . . . , rαr+1 , (r+ 1)αr , . . . , }, and that this permutation has the

same descent set as σ. Therefore r-pairing does not alter any of the expressions in (2.36),

so H̃n,m is symmetric.

Furthermore, if we apply the Robinson-Schensted-Knuth correspondence ([Sta99])

to each permutation σ involved in the coefficient of xλ for a partition λ, we see that the

coefficient of xλ in H̃n,m is

Kλ,(n−m,1m)

∑
T∈SYT(λ)

qrlmaj[m+1,n](T )tmaj[1,m](T )

×
|Des(T )∩[m+1,n]|∏

i=1

(
1 + u/qi

) |Des(T )∩[1,m]|∏
j=1

(
1 + v/tj

)
.

Here Kλ,(n−m,1m) is the Kostka number. Translating from the coefficient of xλ to the

coefficient of sλ(x) exactly consists of removing this Kostka number, so the theorem

follows.

One consequence of Theorem 2.4.6.1 is the identity

H̃n,m(x; q, t, u, v) = H̃n,n−m(x; t, q, v, u). (2.37)
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This parallels the well-known identity

H̃µ(x; q, t) = H̃µ′(x; t, q) (2.38)

for Macdonald polynomials. For Macdonald polynomials of hook shape, there is a direct

bijective proof of (2.38). We would like to find a similar bijective proof of (2.37).

In future work, we hope to define and explored starred Macdonald polynomi-

als for non-hook shapes. The full combinatorial formulation of Macdonald polynomi-

als in [HHL05a] essentially allows one to either star horizontally or vertically, giving

analogs of Macdonald polynomials with three-variable polynomials for coefficients. At

this point, we have been unable to define a four-variable generalization in the non-hook

case that retains desirable properties such as symmetry. It would also be interesting

to develop a connection between these polynomials and some sort of generalization of

Garsia-Haiman modules.

The majority of Chapter 2 has been accepted by the Journal of Combinatorial

Theory Series A, 2015, Remmel, J.; Wilson, A.T., Elsevier Publishing. An extended

abstract of this work was published in the Proceedings of Formal Power Series and Al-

gebraic Combinatorics 2014. The dissertation author was the primary investigator and

author of this work.



Chapter 3

Generalized Tesler matrices and virtual

Hilbert series

In this chapter, we generalize previous definitions of Tesler matrices to allow

negative matrix entries and hook sums. Our main result is an algebraic interpretation

of a certain weighted sum over these matrices. Our interpretation uses virtual Hilbert

series, a new class of symmetric function specializations which are defined by their val-

ues on Macdonald polynomials. As a result of this interpretation, we obtain a Tesler

matrix expression for the Hall inner product ⟨∆fen, p1n⟩. We use our Tesler matrix ex-

pression, along with various facts about Tesler matrices, to provide simple formulas for

⟨∆e1en, p1n⟩ and ⟨∆eken, p1n⟩|t=0 involving q, t-binomial coefficients and ordered set

partitions, respectively. This allows us to conclude the proofs of the q = 0 and t = 0

cases of the Rise Version of the Delta Conjectures and the t = 0 case of the Valley

Version in the Hilbert setting, i.e. after taking scalar products with p1n .

3.1 Introduction

Given a vector α ∈ Zn, we define the Tesler matrices with hook sums α to be the

set of all n× n upper triangular matrices U with entries in Z such that

1. U has no zero rows,

2. each row of U is either entirely non-negative or entirely non-positive, and

66
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3. the kth hook sum of U , defined by

(uk,k + uk,k+1 + . . . uk,n)− (uk,1 + uk,2 + . . . uk,k−1),

equals αk for every 1 ≤ k ≤ n.

We will sometimes refer to a matrix that satisfies condition 1 as essential and a matrix

that satisfies condition 2 as signed. Since previous work on Tesler matrices primarily

addresses matrices with positive hook sums, and conditions 1 and 2 are trivial in that

setting, our definition generalizes previous definitions of Tesler matrices. We denote the

set of Tesler matrices with hook sums α by T (α).
The cases α = (1, 1, . . . , 1) and α = (1,m, . . . ,m) for any positive integer m

are studied in [Hag11], where they are used to give an expression for the Hilbert series

of the (generalized) module of diagonal harmonics. More values of α have appeared in

the study of Hall-Littlewood polynomials [AGR+12], Macdonald polynomial operators

[GHX14], and flow polytopes [MMR14]. It would be particularly interesting to see if

the polytope approach in [MMR14] can be extended to our (essential, signed) Tesler

matrices.

We set the weight of an n× n Tesler matrix U to be

wt(U ; q, t) = (−1)entries+(U)−rows+(U)M nonzero(U)−n
∏

ui,j ̸=0

[ui,j]q,t

whereM = (1−q)(1− t), entries+(U) is the number of positive entries in U , rows+(U)

is the number of rows ofU whose nonzero entries are all positive, nonzero(U) is the num-

ber of nonzero entries of U , and [k]q,t =
qk−tk
q−t , the usual q, t-analogue of an integer k.

SinceU is essential, the exponent ofM is nonnegative and wt(U ; q, t) ∈ Z[q, t, 1/q, 1/t].
When U has no negative entries, this weight function is equal to the weight function

defined in [Hag11]. It is also worth noticing that the weight of a Tesler matrix is inde-

pendent of α. We define the Tesler polynomial with hook sums α to be

Tes(α; q, t) =
∑

U∈T (α)

wt(U ; q, t).

In [Hag11], Haglund showed that Tes(1n; q, t) is equal to the Hilbert series of the module

of diagonal harmonics, which can also be written in terms of Macdonald polynomial
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operators as ⟨∇en, p1n⟩ or ⟨∆enen, p1n⟩. [GHX14] contains an algebraic interpretation

for Tes(α; q, t) for anyαwith positive integer entries. We summarize these results, along

with the necessary notation, in Section 3.2.

In Section 3.3, we develop an algebraic interpretation for Tes(α; q, t) for any

α ∈ Zn in terms of new symmetric function specializations which we call virtual Hilbert

series. Our interpretation is equivalent to the interpretation in [GHX14] for positive hook

sums; in this sense, the Tesler matrix definition we have used here is the natural extension

of previous definitions. These specializations generalize the map that sends a symmetric

function f that is homogeneous of degree n to its inner product with p1n . In the case

that f is the Frobenius image of an Sn-module, this inner product extracts the module's

Hilbert series. With this in mind, for any symmetric function f that is homogenous of

degree n, we will often use the notation

Hilb f = ⟨f, p1n⟩.

In Section 3.4, we show that certain sums of virtual Hilbert series appear in the

study of diagonal harmonics, especially in connection with the Macdonald polynomial

operators ∆f and ∆′f . We use the algebraic interpretation of Tesler polynomials from

Section 3.3 to produce a number of new results about these operators.

3.2 Background

First, we fix some notation. We will use Λ to refer to the algebra of symmetric

Laurent polynomials. Occasionally, we will use Z[q, t] as a subscript to refer to the

subalgebra of symmetric functions or symmetric Laurent polynomials consisting of the

functions with coefficients in Z[q, t].
The only basis we will use for the symmetric Laurent polynomials is the mono-

mial basis {mρ}, defined as the sum of all monomials whose exponents, when arranged

in weakly decreasing order, equal the finite, weakly decreasing vector of nonzero inte-

gers ρ. We will refer to a finite vector of weakly decreasing nonzero integers as a Laurent

partition. By definition, if all of ρ's entries are positive thenmρ is equal to the symmetric

function mρ, so our notation is consistent.
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The main result in [Hag11] is that

Hilb∇en = Tes(1n; q, t).

For f ∈ Λ, the operator ∆′f can be connected to ∆f via the identity

∆mρ = ∆′mρ
+
∑
ξ

∆′mξ
(3.1)

where the sum is over all ξ which can be obtained by removing one part from ρ. In

particular,

∆ek = ∆′ek +∆′ek−1
(3.2)

which, combined with the fact that ∆′fg = 0 if the degree of f is greater than or equal

to the degree of g, implies ∇en = ∆′en−1
en. We allow for f to be a symmetric Laurent

polynomial because it provides a way to obtain negative powers of ∇ in terms of our

operators via the identity

∇−1 = ∆m(−1)n
(3.3)

on Λ(n).

We will make use of the Pieri and skew Pieri coefficients of H̃µ. We define the

skewing operator on Λ by insisting that

⟨f⊥g, h⟩ = ⟨g, fh⟩

for any symmetric functions f , g, and h. Then the skew Pieri coefficients cµ,ν are defined

by

e⊥1 H̃µ =
∑
ν→µ

cµ,νH̃ν

where the sum is over all partitions ν that can be obtained by removing a single cell

from µ. In [GHX14], the authors use a constant term algorithm to provide a formula for

Tes(α; q, t) for any vector α of positive integers in terms of the skewing operator. We

will also use the Pieri coefficients1 dµ,ν , defined by

e1
M
H̃ν =

∑
µ←ν

dµ,νH̃µ

1Some authors do not divide by M in the definition of the Pieri coefficients.
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where the sum is over all µ that can be created by adding a cell to ν.

Finally, we will employ the following standard notation for q, t- and q-analogs

of integers:

[n]q,t =
qn − tn

q − t

[n]q = [n]q,1 =
qn − 1

q − 1
.

Note that [n]q,t ∈ N[q, t] if n ≥ 0 and [n]q,t ∈ Z[1/q, 1/t] if n ≤ 0. This implies

Tes(α; q, t) ∈ Z[q, t, 1/q, 1/t] for any α ∈ Zn. We will also use overlines to indicate

the operation of replacing q by 1/q and t by 1/t; for example, q + t+ qt = 1/q+1/t+

1/(qt).

3.3 Virtual Hilbert Series

In this section, we use new symmetric function specializations to derive an al-

gebraic interpretation for Tes(α; q, t) for any vector of integers α. Our interpretation

generalizes the formulas in [Hag11, GHX14].

3.3.1 Definitions and connections to Tesler polynomials

Given any α ∈ Zn−1 and µ ⊢ n, we make the following recursive definition.

Fα
µ =

∑
ν→µ

cµ,ν(Tµ/Tν)
α1F (α2,...,αn−1)

ν

F
()
(1) = 1

It is worth noting that F 0n−1

µ = Hilb H̃µ, the Hilbert series of the Garsia-Haiman module

associated with H̃µ, which is sometimes denoted Fµ. As a result, Fα
µ can be thought of

as a modification of this Hilbert series. The famous n! conjecture of Garsia and Haiman,

proved in [Hai01], is simply the statement that setting q = t = 1 in Fµ yields n!. We list

some open questions about the Fα
µ below.

• Computations in Sage suggest that F α
µ ∈ Q[q, t]. Is this true?

• For which α, µ is Fα
µ ∈ N[q, t]?
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• [HHL05a] provides a combinatorial formula for Fµ. Is there a similar combinato-

rial formula for Fα
µ ?

Now we define a map

H̃ilbα : Λ(n) → C(q, t)

H̃µ 7→ Fα
µ

We will sometimes refer to H̃ilbαf as the virtual Hilbert series of f with respect to α.

We can justify this terminology by noting that F 0n−1

µ = Fµ implies

H̃ilb0n−1 = Hilb (3.4)

on Λ(n). Furthermore, we have

H̃ilbkn−1 = Hilb∇k. (3.5)

for any k ∈ Z onΛ(n). The following result gives an algebraic interpretation for Tes(α; q, t)

for any α ∈ Zn−1. We note that the right-hand side is equivalent to the right-hand side

of I.9 in [GHX14] if each entry of α is positive.

Theorem 3.3.1.1. For any α ∈ Zn−1, we have

Tes(α; q, t) =
(−1)n−1

[n]q[n]t
H̃ilbαpn.

If we are willing to restrict our attention to vectors that begin with a 1, we can

simplify the right-hand side of Theorem 3.3.1.1 slightly. We also obtain a direct gener-

alization of the results in [Hag11].

Corollary 3.3.1.1. For any α ∈ Zn−1, we have

Tes((1, α); q, t) = H̃ilbαen.

3.3.2 Proof of Theorem 3.3.1.1

We will need the following lemmas in order to prove Theorem 3.3.1.1. For µ←
ν, we abbreviate Tµ/Tν by T .
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Lemma 3.3.2.1. For any partition ν and k ∈ Z, we have

∑
µ←ν

dµ,νT
k =


(−1)k−1ek−1[MBν − 1]/M k > 0

1/M k = 0
(−1)−k

qt
e−k[MBν − 1]/M k < 0

(3.6)

and, as a result,

∑
µ←ν

dµ,ν(1− T )T k =


(−1)k−1ek[MBν ]/M k > 0

0 k = 0
(−1)−k

qt
e−k[MBν ]/M k < 0.

(3.7)

Proof. The k ≥ 0 case of (3.6) was first noticed by Zabrocki and proved in [GHXZ14].

The k ≥ 0 of (3.7) was shown to follow from (3.6) in [Hag11]. We begin by proving

the k < 0 case of (3.6), which follows from the k ≥ 0 case of (3.6) due to the following

argument of Garsia (personal communication, 2015).

First, we need to relate dµ,ν to dµ,ν . We will use the identity H̃µ = TµωH̃µ

[Mac95]. By definition, we have∑
µ←ν

dµ,νH̃µ =
e1
M
H̃ν (3.8)

=
e1
M
TνωH̃ν (3.9)

=
Tν
qt
ω

(
e1

M
H̃ν

)
(3.10)

=
Tν
qt
ω

(∑
µ←ν

dµ,νH̃µ

)
(3.11)

=
Tν
qt

∑
µ←ν

dµ,νωH̃µ (3.12)

=
∑
µ←ν

dµ,ν
1

qtT
H̃µ (3.13)

which implies dµ,ν = 1
qtT
dµ,ν . Now, for k < 0, we have∑

µ,ν

dµ,νT
k =

1

qt

∑
µ,ν

dµ,νT
k−1 (3.14)

=
1

qt

∑
µ←ν

dµ,νT−k+1 (3.15)

=
(−1)−k

qt
e−k[MBν − 1]/M. (3.16)
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This proves (3.6). The same plethystic computation used to derive Lemma 1 from (13)

in [Hag11] can be used to prove (3.7).

Lemma 3.3.2.2 (Lemma 2 in [Hag11]). For any positive integer k,

(−1)k−1ek[M ]/M = [k]q,t.

Our proof of Theorem 3.3.1.1 will closely follow the main proof in [Hag11].

First, we note that [Mac95]

(−1)n−1

[n]q[n]t
pn =

∑
µ⊢n

MΠµ

wµ

H̃µ (3.17)

where

Πµ =
∏
c∈µ

c ̸=(0,0)

(1− qa′(c)tℓ′(c))

wµ =
∏
c∈µ

(qa(c) − tℓ(c)+1)(tℓ(c) − qa(c)+1).

Thus, the right-hand side of Theorem 3.3.1.1 equals

H̃ilbα

(∑
µ⊢n

MΠµ

wµ

H̃µ

)
=
∑
µ⊢n

MΠµ

wµ

∑
ν→µ

cµ,νT
α1F (α2,...,αn−1)

ν (3.18)

=
∑

ν⊢n−1

MF (α2,...,αn−1)
ν

∑
µ←ν

Πµ

wµ

cµ,νT
α1 (3.19)

where we have used the definition of H̃ilbα and switched the order of the sums. Using

Πµ = (1− T )Πν (3.20)

cµ,ν
wµ

=
dµ,ν
wν

(3.21)

from the definition of Πµ and from [GH03], respectively, (3.19) equals∑
ν⊢n−1

MΠν

wν

F (α2,...,αn−1)
ν

∑
µ←ν

dµ,ν(1− T )Tα1 . (3.22)
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Now we use Lemma 3.3.2.1 to simplify the inner sum. For the sake of compactness,

let bk = bk(ν) equal the right-hand side of Lemma (3.7) that corresponds to k ∈ Z and

ak = (−1)k−1ek[M ]/M . Then (3.22) equals∑
ν⊢n−1

MΠν

wν

F (α2,...,αn−1)
ν bα1 . (3.23)

We would like to iterate this argument. The only real difficulty comes from bα1 .

In particular, we need to know how to simplify expressions of the form bk|Bν 7→Bν+T .

From [Hag11], for k > 0 we get

bk|Bν 7→Bν+T = bk + T kak −
k−1∑
j=1

MT k−jak−jbj. (3.24)

From Lemmas 3.3.2.1 and 3.3.2.2, we have

bk = −qtb−k (3.25)

ak = −qtak. (3.26)

We also have M = M
qt

by definition. Using these identities, for k > 0 we compute

b−k|Bν 7→Bν+T = −bk|Bν 7→Bν+T

qt
(3.27)

= −
bk + T−kak −

∑k−1
j=1 MT j−kak−jbj

qt
(3.28)

= b−k + T−kak +

k−j∑
j=1

MT j−kak−jb−j. (3.29)

Iterating this procedure r times, we obtain an expression for the right-hand side

of Theorem 3.3.1.1 of the form∑
ν⊢n−r+1

MΠν

wν

F (αr+1,...,αn−1)
ν Aα

r (3.30)

where Aα
r is some expression in the ak 's and bk 's. Moreover, we can compute Aα

r+1 from

Aα
r by the following recursive procedure.

1. Replace the bk 's in Aα
r with

bk + T kak −
∑k−1

j=1 MT k−jak−jbj if k > 0

bk + T ka−k +
∑−k−j

j=1 MT−k+ja−k−jb−j if k < 0.
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2. Expand to form a Laurent polynomial in T , say
∑

j γjT
j .

3. Replace each T j with bj+αr+1 .

At r = n, we obtain

(−1)n−1

[n]q[n]t
H̃ilbαpn =

∑
ν⊢1

MΠν

wν

Aα
n = Aα

n (3.31)

since Π(1) = 1 and w(1) =M . Our next goal is to prove the following expression forAα
n

in terms of Tesler matrices

Lemma 3.3.2.3.

Aα
n =

∑
U∈T (α)

(−1)entries+(A)−rows+(A)M nonzero(A)−n
∏

ui,i ̸=0

bui,i

∏
ui,j ̸=0: i ̸=j

aui,j

where we have set ν = (1).

Proof. We will prove this claim by induction on n = ℓ(α)+1. The crux of the induction

step is noticing that there is a recursion on Tesler matrices. Given a Tesler matrix U ∈
T ((α1, . . . , αp−1)), we create a Tesler matrix V ∈ T ((α1, . . . , αp)) as follows:

1. For each row i in U , we ''move'' some of the diagonal entry ui,i to the far right to

create vi,p.

2. To create row p, we choose vp,p such that the pth hook sum of V is αp.

Now we check that this recursion matches the recursive procedure for generatingAα
n. We

should think of each bk as representing some integer k on the diagonal in U and each ak

as representing an off-diagonal entry k. Then Step 1 of the procedure for generating Aα
n

corresponds to moving some part of each diagonal entry into the new rightmost column.

The power of T tracks the entries in this new rightmost column. Note that a new M

appears each time we increase the number of nonzero entries in the matrix and a new−1
appears each time we create a new positive entry. Step 3 of the procedure corresponds

to choosing the new bottom right entry such that the final hook sum is correct.

Finally, we note that, for ν = (1),

a|k| = bk = [k]q,t (3.32)
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for any integer k by Lemma 3.3.2.2. This fact, along with Lemma 3.3.2.3, concludes the

proof of Theorem 3.3.1.1. Corollary 3.3.1.1 follows by essentially the same argument

except we use the expansion

en =
∑
µ⊢n

MBµΠµ

wµ

H̃µ. (3.33)

instead of the expansion for pn.

3.4 Applications to Delta Operators

The right-hand sides of Theorem 3.3.1.1 and Corollary 3.3.1.1 bear some simi-

larity to symmetric function expressions popular in the study of diagonal harmonics. In

this section, we explore these connections and use the connections to prove new results

about the Macdonald polynomial operators ∆f and ∆′f .

3.4.1 From virtual Hilbert series to delta operators

Recall that we have defined an operator ∆′f on Λ(n) by stating that it acts on the

Macdonald polynomials by

∆′fH̃µ = f [Bµ − 1]H̃µ.

Although we will not be able to describe every virtual Hilbert series in terms of this

operator, we do have the following result involving symmetric sums of virtual Hilbert

series. We let sort be the map that takes α ∈ Zn, removes the zeros from α, and then

sorts the remaining entries in weakly decreasing order.

Theorem 3.4.1.1. For any Laurent partition ρ and positive integer n,

Hilb∆′mρ
=

∑
α∈Zn−1

sort(α)=ρ

H̃ilbα (3.34)

as operators on Λ(n).
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Proof. We will show that these operators are equal by showing that their actions are equal

on the Macdonald polynomial H̃µ for any µ ⊢ n. The right-hand side of the statement

in the theorem equals ∑
α∈Zn−1

sort(α)=ρ

F α
µ . (3.35)

Now we iterate through the recursive definition of F α
µ in order to obtain an alternative

definition. Rather than just considering ν → µ, we can consider all the saturated chains

in Young's lattice from ∅ to µ. These are in bijection with the standard Young tableaux

of shape µ, denoted SYT(µ). Let cS equal the product of all cµ,ν 's that we encounter on

the saturated chain from ∅ to µ associated with a given S ∈ SYT(µ). Given a cell d in

the Young diagram of µ, let S(d) denote the entry in cell d in S. Then (3.35) equals∑
α∈Zn−1

sort(α)=ρ

∑
S∈SYT(µ)

cS
∏
d∈µ

d ̸=(0,0)

(
qa

′(d)tℓ
′(d)
)αn+1−S(d)

(3.36)

=
∑

S∈SYT(µ)

cS
∑

α∈Zn−1

sort(α)=ρ

∏
d∈µ

d ̸=(0,0)

(
qa

′(d)tℓ
′(d)
)αn+1−S(d)

(3.37)

=
∑

S∈SYT(µ)

cSmρ[Bµ − 1] (3.38)

=Fµmρ[Bµ − 1] (3.39)

=Hilb∆′mρ
H̃µ.

Applying Theorem 3.4.1.1 to the Tesler polynomial expressions obtained in Sec-

tion 3.3, we obtain the following identities.

Corollary 3.4.1.1.

(−1)n−1

[n]q[n]t
Hilb∆′mρ

pn =
∑

α:sort(α)=ρ

Tes(α; q, t) (3.40)

Hilb∆′mρ
en =

∑
α:sort(α)=ρ

Tes((1, α); q, t) (3.41)

As a result, both left-hand sides are in Z[q, t, 1/q, 1/t]. Furthermore, by the linearity in
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the subscript of ∆′f we have

(−1)n−1

[n]q[n]t
Hilb∆′fpn, Hilb∆′fen ∈ Z[q, t, 1/q, 1/t] (3.42)

(−1)n−1

[n]q[n]t
Hilb∆′gpn, Hilb∆′gen ∈ Z[q, t] (3.43)

for any f ∈ ΛZ[q,t], g ∈ ΛZ[q,t]. Finally, by (3.1) we could replace ∆′ by ∆ in (3.42),

(3.43).

Corollary 3.4.1.1 can be thought of as a more concrete version of a special case

of Theorem 1.3 in [BGHT99], in which the authors showed that ∆fΛZ[q,t] ⊆ ΛZ[q,t] for

any f ∈ ΛZ[q,t]. Corollary 3.4.1.1 provides the first direct formulas for Hilbert series of

expressions of this type.

It may be of interest to the reader to use Corollary 3.4.1.1 in order to explicitly

compute some Hilb∆fen. Rather than state the exact analog of (3.41) for this case, we

mention that the following process accomplishes this task.

1. Expand f into variables x1, x2, . . . , xn−1, 1.

2. Replace each monomial xα in this expansion with Tes((1, α); q, t).

As an example, we compute Hilb∆s3,2,1e3 using

s3,2,1(x1, x2, 1) = x31x
2
2 + x21x

3
2 + x31x2 + 2x21x

2
2 + x1x

3
2 + x21x2 + x1x

2
2. (3.44)

Replacing each monomial with its associated Tesler polynomial, we get

Hilb∆s3,2,1e3 =Tes((1, 3, 2); q, t) + Tes((1, 2, 3); q, t) + Tes((1, 3, 1); q, t) (3.45)

+ 2Tes((1, 2, 2); q, t) + Tes((1, 1, 3); q, t)

+ Tes((1, 2, 1); q, t) + Tes((1, 1, 2); q, t).

We have not explored how this method compares to current methods for computing

Hilb∆fen from a computational perspective.

3.4.2 Positive formulas

In this subsection, we use Corollary 3.4.1.1 to obtain formulas for Hilb∆e1en,

Hilb
(−1)n−1

[n]q [n]t
Hilb∆e2pn, and Hilb∆m−1en. Each formula shows that the Hilbert series
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of the given symmetric function is positive with respect to some set of variables. The

operator ∆e1 can be thought of as a translation of Macdonald's original E operator in

[Mac95] to the context of the modified Macdonald polynomials H̃µ.

Corollary 3.4.2.1.

Hilb∆e1en =
n∑

k=1

(
n

k

)
[k]q,t (3.46)

(−1)n−1

[n]q[n]t
Hilb∆e2pn =

n−1∑
k=1

(
n− 1

k

)
[k]q,t. (3.47)

In particular, the left-hand sides of both statements are in N[q, t].

Corollary 3.4.2.2.

Hilb∆m−1en =

(
1− 1

qt

)n−1

.

As a result, the left-hand side is in N
[
− 1

qt

]
.

In [HRW], Haglund, Remmel, and the author use a reciprocity identity to obtain

the full Schur expansion of ∆e1en, implying the e1 statement in Corollary 3.4.2.1. In

general, none of these symmetric functions are currently associated with modules, which

means that direct formulas such as these are the only way to give positivity results at this

point. In order to prove Corollaries 3.4.2.1 and 3.4.2.2, we need the following lemma.

Lemma 3.4.2.1. For any α ∈ Zn,

Tes((1, α); q, t) = Tes(α; q, t) +
n∑

i=1

Tes((α1, . . . , αi−1, αi + 1, αi+1, . . . , αn); q, t).

Proof. Consider a Tesler matrix U with hook sums (1, α). Its first row must consist

of a single nonzero entry, which must be equal to 1. Say this entry occurs in column

j, i.e. u1,j = 1. If j = 1, removing the first row of U produces a Tesler matrix with

hook sums α, and this process produces a new matrix with hook sums (α1, . . . , αn). If

j > 1, we produce a Tesler matrix with hook sums (α1, . . . , αj−2, αj−1+1, αj, . . . , αn).

Finally, we note that removing the first row does not change the weight of such a Tesler

matrix.
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Proof of Corollary 3.4.2.1. By (3.2), the left-hand side (3.46) is equal to

Tes((1, 0n−1); q, t) +
n−2∑
i=0

Tes((1, 0i, 1, 0n−i−2); q, t). (3.48)

In order to simplify this expression, we use Lemma 3.4.2.1 along with the fact that

Tes(α; q, t) = 0 if α1 = 0. As a result, (3.48) equals

= Tes((1); q, t) +
n−2∑
i=0

Tes((1, 1, 0i); q, t) (3.49)

= Hilb∆e1en−1 + Tes((1, 1, 0n−2); q, t). (3.50)

Applying Lemma 3.4.2.1 again, we get

Tes((1, 1, 0n−2); q, t) = Tes((2, 0n−2); q, t) + Tes((1, 0n−2); q, t)

+
n−3∑
i=0

Tes((1, 0i, 1, 0n−i−3); q, t) (3.51)

= Tes((2, 0n−2); q, t) + Hilb∆e1en−1. (3.52)

Therefore

Hilb∆e1en = 2Hilb∆e1en−1 + Tes((2, 0n−2); q, t). (3.53)

We claim that

Tes((2, 0k); q, t) =
k+2∑
i=1

((
k + 1

i− 1

)
−
(
k + 1

i

))
[i]q,t. (3.54)

If we can prove this, induction on (3.53) implies

Hilb∆e1en = 2
n−1∑
k=1

(
n− 1

k

)
[k]q,t +

n∑
k=1

((
n− 1

k − 1

)
−
(
n− 1

k

))
[k]q,t (3.55)

=
n∑

k=1

(
2

(
n− 1

k

)
+

(
n− 1

k − 1

)
−
(
n− 1

k

))
[k]q,t (3.56)

=
n∑

k=1

(
n

k

)
[k]q,t (3.57)

concluding the proof. We consider what happens when we remove the first row of a

Tesler matrix with hook sums (2, 0n−2). The only way such a matrix can avoid having
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a zero row is if its first row contains a 2 in column 2 or a 1 in column 2 and a 1 in some

other column. By removing the first row and inducting, we get

Tes((2, 0k); q, t) = [2]q,t Tes((2, 0k−1); q, t)−M Hilb∆e1ek. (3.58)

Since k < n, we can use induction to write this as

Tes((2, 0k); q, t) = [2]q,t

k+1∑
i=1

((
k

i− 1

)
−
(
k

i

))
[i]q,t −M

k∑
i=1

(
k

i

)
[i]q,t (3.59)

=
k+1∑
i=1

(
(q + t)

((
k

i− 1

)
−
(
k

i

))
− (1− q)(1− t)

(
k

i

))
[i]q,t

(3.60)

=
k+1∑
i=1

(
(q + t)

(
k

i− 1

)
− (1 + qt)

(
k

i

))
[i]q,t. (3.61)

Now all that remains to show is that, for any a, b ≥ 0, the coefficient of qatb in the

previous statement is
(
k+1
a+b

)
−
(

k+1
a+b+1

)
. This coefficient equals

−
(

k

a+ b+ 1

)
+ 2

(
k

a+ b− 1

)
−
(

k

a+ b− 1

)
(3.62)

=

(
k

a+ b− 1

)
−
(

k

a+ b+ 1

)
(3.63)

=

((
k

a+ b− 1

)
+

(
k

a+ b

))
−
((

k

a+ b

)
+

(
k

a+ b+ 1

))
(3.64)

=

(
k + 1

a+ b

)
−
(

k + 1

a+ b+ 1

)
. (3.65)

We omit the proof of (3.47), as it follows directly from the argument above and Theorem

3.3.1.1.

To prove Corollary 3.4.2.2, we will need another lemma about Tesler polynomi-

als.

Lemma 3.4.2.2. Given α ∈ Zn, let −α = (−α1, . . . ,−αn). Then

Tes(−α; q, t) =
(
− 1

qt

)n

Tes(α; 1/q, 1/t).
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Proof. Given U ∈ T (α), consider the matrix−U . Clearly−U ∈ T (−α). Furthermore,

wt(−U ; q, t)

=(−1)entries−(U)−rows−(U)M nonzero(U)−n
∏

ui,j ̸=0

[−ui,j]q,t (3.66)

=(−1)entries−(U)−rows−(U)
(
qtM

)nonzero(U)−n
(3.67)

×
∏

ui,j ̸=0

(
− 1

qt

)
[ui,j]1/q,1/t

=

(
− 1

qt

)n

(−1)entries+(U)−rows+(U)M
nonzero(U)−n ∏

ui,j ̸=0

[ui,j]q,t (3.68)

=

(
− 1

qt

)n

wt(U ; 1/q, 1/t) (3.69)

where in (3.68) we have used the fact that

(−1)entries−(U)−rows−(U)+nonzero(U) = (−1)entries−(U)−(n−rows+(U))+(entries+(U)+entries−(U)

(3.70)

= (−1)−n+entries+(U)+rows+(U) (3.71)

= (−1)n+entries+(U)−rows+(U).

Proof of Corollary 3.4.2.2. We write

∆m−1en = Tes(1, 0n−1; q, t) +
n−2∑
i=0

Tes((1, 0i,−1, 0n−i−2); q, t) (3.72)

= Tes((1); q, t) +
n−2∑
i=0

Tes((1,−1, 0i); q, t) (3.73)

= ∆m−1en−1 + Tes((1,−1, 0n−2); q, t) (3.74)

by induction. It is enough to show that

Tes((1,−1, 0k); q, t) = − 1

qt

(
1− 1

qt

)k

(3.75)

for k ≤ n− 2. To accomplish this, we use Lemmas 3.4.2.1 and 3.4.2.2 to write
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Tes((1,−1, 0k); q, t) as

Tes((−1, 0k); q, t) +
k−1∑
i=0

Tes((−1, 0i, 1, 0k−i−1); q, t) (3.76)

=

(
− 1

qt

)k+1

×

(
Tes((1, 0k); 1/q, 1/t) +

k−1∑
i=0

Tes((1, 0i,−1, 0k−i−1); 1/q, 1/t)

)
(3.77)

=

(
− 1

qt

)k+1

Hilb∆m−1ek+1 (3.78)

=

(
− 1

qt

)k+1

(1− qt)k (3.79)

=

(
− 1

qt

)
(1− 1/qt)k (3.80)

by induction on k.

3.4.3 The t = 0 case

In this subsection, we show how to relate Hilb∆′eken
∣∣
t=0

to the distribution the

inversion statistic on ordered set partitions studied in Chapter 2. Together with Section

2.3, this verifies the case of the Delta Conjectures where we take scalar products with

p1n and set q = 0 or t = 0 in the Rise Version of t = 0 in the Valley Version.

Recall that we setOPn,k to be the ordered partitions of the set {1, 2, . . . , n} into

exactly k blocks. Given a subset S of {1, 2, . . . , n}, we set OPn,S to be the ordered set

partitions in which the minimal elements of the blocks are exactly the elements of S. For

example, 7|236|45|1 is an element of OP7,{1,2,4,7} and OP7,4. For any β ∈ {0, 1}n−1,

we write

set(β) = {1} ∪ {i+ 1 : βi = 1}. (3.81)

Corollary 3.4.3.1.

H̃ilbβen

∣∣∣
t=0

=
∑

π∈OPn,set(β)

qinv(π)

Hilb∆′eken
∣∣
t=0

=
∑

π∈OPn,k+1

qinv(π).
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Furthermore, [RW15] implies that we can restate these results as

H̃ilbβen

∣∣∣
t=0

=
n−1∑
j=1

[1 + β1 + . . .+ βj]q

Hilb∆′eken
∣∣
t=0

= [k + 1]q!Sn,k+1(q).

In order to prove Corollary 3.4.3.1, we first note that Levande defined a map

from Tesler matrices with hook sums 1n to Sn [Lev12]. We will denote this map by Ln.

Furthermore, Levande used a weight-preserving, sign-reversing involution to prove that∑
U∈T (1n)
Ln(U)=σ

wt(U ; q, 0) = qinv(σ). (3.82)

for any σ ∈ Sn. Summing (3.82) over all permutations σ ∈ Sn yields

Tes(1n; q, 0) = [n]q!. (3.83)

We extend Levande's results to our setting as follows. For any β ∈ {0, 1}n−1, we

define a map Lβ from Tesler matrices with hook sums (1, β) onto OPn,set(β). To define

Lβ , we first map a Tesler matrix U with hook sums (1, β) to an intermediary array. This

array is created as follows:

1. First, read the entries of the diagonal uj,j for j = n to 1. If uj,j > 0, record a

j in the rightmost column of the array uj,j times, recording from top to bottom.

After this step, the array will have a single column of length |β|+1 which weakly

decreases from top to bottom.

2. For every j = n to 1, read up the jth column from uj−1,j to u1,j . For every ui,j > 0,

find the highest j in the array that currently has no entries to its left. Place an i to

its left. Place an i in this manner ui,j times.

For example, we send 
0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 2

 7→


1 4

4

2 3

 .

Given such an array, we produce an ordered set partition by the following process.
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1. Read the leftmost entries in each row of the array from bottom to top. Make these

the minimal elements in k different blocks, from left to right.

2. For each i = 1 to n which is not yet placed into the ordered set partition, find the

lowest row in the array in which it appears. Place it in the block which contains

the leftmost entry of that row.

Continuing our example, we obtain the ordered set partition 23|4|1.

Lemma 3.4.3.1. For any β ∈ {0, 1}n−1, Lβ is well-defined. Furthermore, for any π ∈
OPn,set(β), ∑

U∈T ((1,β))
Lβ(U)=π

wt(U ; q, 0) = qinv(π). (3.84)

Proof. First, we argue that an array can always be created from U in the manner de-

scribed above. Consider the jth column of U . At this point in the process of creating the

array associated with U , we have processed all entries of the form uj,k for any k ≥ j.

Since the jth hook sum of U is nonnegative, there are enough j 's available for us to place

ui,j i's to the left of a j for each i.

Next, we show that we can always create an ordered set partition π ∈ OPn,set(β)

from such an array. The number of leftmost elements j in the rows of the array is equal

to the jth hook sum of U . Since β ∈ {0, 1}n−1, the minimal elements of π are unique

and they are indeed equal to set(β). This proves π ∈ OPn,set(β).

Now that Lβ is well-defined, we wish to create an involution that concludes the

proof of the lemma. Our proof is quite similar to the proof for the β = 1n−1 case in

[Lev12]. We begin by noting that, at t = 0, the weight of U is

(q − 1)entries(U)−rows(U)
∏

ui,j ̸=0

qui,j−1 (3.85)

since U may not have any negative entries. We will assign a weight to the associated

array in a way that corresponds to this weight. This weight will take the form of an array

of the same shape as the associated array, except it will be filled with entries q, 1, or

−1. For every entry a in the array, let b be the entry directly to its right. (If a is in the

rightmost column of the array, set b = n+ 1.) If this is not the lowest appearance of the
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adjacent pair ab in the array, we assign a weight of q. If this is the lowest appearance of

ab but it is not the lowest appearance of a, we assign a weight of q or−1. Otherwise, we

assign the weight 1. Then we define the weight of the array to be the product of these

individual weights. For example, the only way to assign weights to the above array is
1 4

4

2 3

→


1 q

1

1 1


where the weights are in parentheses. The total weight of this assignment is q.

Now, we wish to define an involution Φπ on these weighted arrays. Let c be the

highest leading (i.e. leftmost in its row) entry such that there exists a d > c with the

property that either

• d appears below c's row but does not appear in c's row, or

• d appears in c's row and d has a weight of −1.

Choose d to be the smallest (and therefore leftmost) entry in c's row that satisfies one of

these conditions. In the first case, Φπ inserts a d into c's row along with a −1 weight. In

the second case, Φπ removes the d from c's row along with its −1 weight. If no such c

and d exist, Φπ leaves the array as a fixed point.

To prove that Φπ is an involution, first consider the case where d appears below

c's row but does not appear in c's row. Set c′ (respectively d′) to be the largest (resp.

smallest) element in c's row that is less than (resp. greater than) d; in other words, if d

were in c's row c′ and d′ would be its left and right neighbors, respectively. (d′ may be

empty, in which case we consider it to be n+1.) We need to argue that d can be inserted

between c′ and d′ with a weight of -1, which can only happen if the lowest appearance of

the successive pair dd′ is in c's row. Say that there is some lower occurrence of dd′. This

must occur below c's row, which contains the adjacent pair c′d′. This cannot happen, by

the way in which we create these arrays. By a similar argument, the resulting array is

valid, i.e. the new adjacent pairs c′d and dd′ obey the defining property of our matrices:

if ai and bi are pairs with ai occurring above bi, then a > b.

Now assume that d appears in c's row and d has a weight of −1. Removing d

creates the adjacent pair c′d′. We need to show that any weight that had been assigned
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to c′ is still valid now that its right neighbor is d′ instead of d. If c′ had been assigned a

weight of q, then there must have been a lower occurrence of c′, which must still exist.

If c′ had been assigned a 1, then we must be considering the lowest appearance of c′,

and removing d does not alter this. Finally, c′ cannot be weighted with a −1 by the

minimality of d.

It is clear that Φπ is an involution that reverses signs of its non-fixed points. It

only remains to investigate the fixed points of Φπ. In such a fixed point, for every a

that is the leftmost entry in a row of the array and b > a, b must appear in a's row.

Furthermore, the weight associated with b must either be q or 1 (which can only occur

if the entry immediately to the left of b contains the lowest appearance of that element).

Fixed points also contain no−1 weights. From this, we can see that each π has a unique

fixed point. It is the array created by the following process:

1. Write the blocks of π as rows in the array, from left to right in π and bottom to top

in the array.

2. For each entry in the array b and each leftmost element a that appears above b, add

b to a's row if a < b.

3. Add a weight of q at all possible positions.

For example, the fixed point associated with π = 23|4|1 is
1 2 3 4

4

2 3

 ,


1 1 1 1

1

q q

 .

The weight of this fixed point is equal to the number of minimal elements to the right

of b in π that are less than b for each b. This is exactly the inv statistic on ordered set

partitions.

Combined with our results in Chapter 2, we have proved the following special

cases of the Delta Conjectures.

Hilb∆′eken
∣∣
t=0

= Hilb∆′eken
∣∣
q=0, t=q

(3.86)

= Hilb Risen,k(x; q, 0) = Hilb Risen,k(x; 0, q) (3.87)

= Hilb Valn,k(x; q, 0). (3.88)
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3.5 Future Work

In our results so far, we have relied heavily on the fact that we are taking Hilbert

series of the various symmetric functions at hand. It is reasonable to ask how Tesler ma-

trices can be used to give formulas for the symmetric functions themselves. For example,

in [GH14], Garsia and Haglund use Tesler matrices to give a formula for the symmetric

function∇en. A similar (but not equivalent) formula for (rational extensions of)∇en is

given in [GN13].

In a similar vein, it would be interesting to obtain symmetric functions whose

Hilbert series are equal to Fα
µ . Such a result would allow us to replace virtual Hilbert

series with the actual Hilbert series of these symmetric functions.

Finally, it seems possible that the methods used in Subsection 3.4.2 and 3.4.3

could be applied when e1 is replaced by a slightly more complicated function (e2 or m2,

for example). Similarly, we may be able to extend the results in Subsection 3.4.3 to β

with entries not equal to 0 or 1. The computations will be more difficult in these cases,

but they may still be tractable.

Chapter 3 is currently being prepared for submission for publication. An ex-

tended abstract of this work will be published in the Proceedings of Formal Power Series

and Algebraic Combinatorics 2015. The dissertation author was the primary investigator

and author of this work.



Chapter 4

The Rise Version at k = 1

In this chapter, we prove the following special case of the Rise Version of the

Delta Conjectures.

Theorem 4.0.0.1. For any positive integer n,

∆e1en = Risen,0(x; q, t) + Risen,1(x; q, t)

=

⌊n/2⌋∑
m=0

s2m,1n−2m

n−m∑
p=m

[p]q,t.

This verifies the Rise Version of the Delta Conjectures for k = 1.

We deal with the symmetric function component of Theorem 4.0.0.1 in Section

4.1 and the combinatorial component in Section 4.2.

4.1 The Symmetric Side

In this subsection, we prove the ''symmetric side'' of Theorem 4.0.0.1, restated

below.

Proposition 4.1.0.1. For any positive integer n,

∆e1en =

⌊n/2⌋∑
m=0

s2m,1n−2m

n−m∑
p=m

[p]q,t.

89
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Our main tool will be the following reciprocity rule for the operator ∆, which

was proven by Haglund as Corollary 2 in [Hag04].

Lemma 4.1.0.2 (Corollary 2 in [Hag04]). For positive integers d, n and any symmetric

function f ∈ Λ(n), ⟨
∆ed−1

en, f
⟩
= ⟨∆ωfed, sd⟩ .

We set d = 2 and f = sλ for λ ⊢ n, since taking the scalar product of a symmetric

function with sλ yields the coefficient of sλ in the Schur expansion of that symmetric

function. Lemma 4.1.0.2 implies that

⟨∆e1en, sλ⟩ =
⟨
∆sλ′e2, s2

⟩
. (4.1)

We can compute the right-hand side by hand. First, we expand e2 into the modified

Macdonald polynomial basis:

e2 =
1

t− q
H̃1,1 −

1

t− q
H̃2. (4.2)

Then we apply the operator ∆sλ′ .

∆sλe2 =
sλ′ [1 + t]

t− q
H̃1,1 −

sλ′ [1 + q]

t− q
H̃2. (4.3)

Now we expand this expression into the Schur basis and take the coefficient of s2, yield-

ing ⟨
∆sλ′

e2, s2
⟩
=
sλ′ [1 + t]− sλ′ [1 + q]

t− q
. (4.4)

It is already clear that the above expression is a polynomial in q and t. Moreover, for any

monomial u the principal specialization sλ′ [1 + u] is equal to the sum
∑

T u
# 2's in T over

all semi-standard tableaux T of shape λ′ filled with 1's and 2's. This sum is zero if λ′ has

more than two rows, so we can restrict our attention to λ′ = (n−m,m) for some integer

0 ≤ m ≤ ⌊n/2⌋. For such a tableau T of shape (n −m,m), it is clear that the first m

entries in the first row of T must be 1's and all entries in the second row of T must be

2's. Of the remaining n− 2m entries, we are free to choose an integer 0 ≤ i ≤ n− 2m

such that the left i entries are 1's and the right n− 2m− i entries are 2's. Hence

sn−m,m[1 + u] =
n−m∑
p=m

up (4.5)
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Since (n−m,m)′ = (2m, 1n−2m), we have

⟨∆e1en, s2m,1n−2m⟩ =
∑n−m

p=m (tp − qp)
t− q

=
n−m∑
p=m

[p]q,t (4.6)

which proves Proposition 4.1.0.1.

In theory, this method can be used to compute ∆eken for any fixed value of k.

For example, ⟨∆e2en, sλ⟩ equals

(t− q2)sλ′ [1 + t+ t2]− (q + t+ 1)(t− q)sλ′ [1 + q + t] + (t2 − q)sλ′ [1 + q + q2]

(t− q)(t2 − q)(t− q2)
(4.7)

which is a polynomial in q and t. Unfortunately, it is not clear why the resulting expres-

sion should be a positive polynomial in q and t, and this problem only gets more difficult

as k grows.

4.2 The Combinatorial Side

In this subsection, we prove the following proposition, completing the proof of

Theorem 4.0.0.1.

Proposition 4.2.0.2. For any positive integer n,

Risen,0(x; q, t) + Risen,1(x; q, t) =

⌊n/2⌋∑
m=0

s2m,1n−2m

n−m∑
p=m

[p]q,t.

First, we note that Risen,0(x; q, t) = s1n , which accounts for them = p = 0 term

above. We will need to work harder to expand Risen,1(x; q, t). Recall the interpretation

for Risen,k(x; q, t) given in terms of labeled Dyck paths and leaning stacks in Subsection

1.3.2:

Risen,k(x; q, t) =
∑

P∈PFStack
n,k

qhdinv(P )tarea(P )xP . (4.8)

We note that this interpretation is closely related to the LLT polynomials of [LLT97].

Namely, we can refine the sum on the right-hand side by fixing a leaning stack S and
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hi

0

1

2

2

3

4

2

3

4

0

1

2

Figure 4.1: A leaning stack S and a Dyck pathD are mapped to a tuple of skew diagrams

ν = (ν(1), ν(2)). We have filled the cells of the skew diagrams with their contents.

then a Dyck path D ∈ D(S) and considering all ways of labeling the Dyck path D.

Risen,k(x; q, t) =
∑

S∈Stackn,k

∑
D∈D(S)

tarea(D)
∑

P∈PF(S):D(P )=D

qhdinv(P )xP (4.9)

=
∑

S∈Stackn,k

∑
D∈D(S)

tarea(D)LLTS,D(x; q) (4.10)

where we have defined

LLTS,D(x; q) =
∑

P∈PF(S):D(P )=D

qhdinv(P )xP . (4.11)

We call this the LLT polynomial with respect to S and D, since these are special cases of

the polynomials introduced in [LLT97]. We can relate our versions of LLT polynomials

more precisely to the notation for LLT polynomials appearing in [HHL05a] as follows.

Say that the north steps ofD appear in d different columns. Furthermore, for j = 1, 2, . . .

from right to left, if the jth column's bottom row is row i, then we define cj = hi(D).

Consider the tuple of skew diagrams ν = (ν(1), . . . , ν(d)) where the number of squares

in ν(j) is equal to the number of north steps in the jth column of D with the content of

the bottom square equal to cj . Then LLTS,D(x; q) = Gν(x; q), where the latter appears

as Definition 3.2 of [HHL05a]. We show an example in Figure 4.1.

There are many benefits of this connection between Risen,k(x; q, t) and LLT poly-

nomials. The first is that LLT polynomials are known to be symmetric; this fact, along

with (4.10), implies that Risen,k(x; q, t) is symmetric. On the other hand, we are still

unable to prove that Valn,k(x; q, t) is symmetric. More pertinent to our current case,

when D has two columns, much is known about the LLT polynomial LLTS,D(x; q). In
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the remainder of this subsection, we leverage this information to complete the proof of

Theorem 4.0.0.1.

We use the notation that the reading word of a labeled Dyck path P ∈ WPFStack
n,k ,

written w(P ), is obtained by reading its labels from maximum hi value down to hi = 0

from right to left. We say that a word whose entries are positive integers is Yamanouchi

if each of its suffixes has more i+ 1's than i's for every positive integer i.

Lemma 4.2.0.3 (Carré and Leclerc [CL95], van Leeuwen [vL00]). For any S ∈ Stackn,1

and D ∈ PF(S), the coefficient of sλ in the Schur expansion of LLTS,D(x; q) is equal

to the sum ∑
P

qhdinv(P )

over all P ∈ WPF(S) with D(P ) = D such that xP =
∏ℓ(λ)

i=1 x
λi
i and w(P ) is Ya-

manouchi.

For any such P , each integer can be used as a label at most twice. Thus the only

Schur functions appearing in the expansion ofLLTS,D(x; q) are of the form s2m,1n−2m for

some integer 0 ≤ m ≤ ⌊n/2⌋. Furthermore, we can uniquely represent a labeled Dyck

pathP that satisfies the conditions in Lemma 4.2.0.3 by filling a certain two-column array

with X 's and Y 's according to the following procedure. For each height that occurs in P

from 0 up to the maximum height, consider the two columns of P . If the left column of

P contains a label at that height, place a square into the left column of the array. If we

have already come across the value of the label while creating our array, we place a Y in

the new square; otherwise, we place an X . Then we do the same for the right column.

We continue until all heights have been processed. We call this the XY diagram of P .

Since each label appears at most twice in P , this process is well-defined. Fur-

thermore, it is invertible; to obtain the original labeled Dyck path P , we scan the XY

diagram from bottom to top and left to right. For each X or Y , we place a label in

the corresponding column at the corresponding height that counts the number of times

(including the current letter) that we have observed the current letter so far.

It is clear by definition that all XY diagrams have two columns, that the left

column may extend below the right column (but not vice versa), and that the lower left



94

1

2

3

4

5

1

2

6
X X

X Y

X Y

X

X

Figure 4.2: To the left, we have drawn a two-column labeled Dyck path whose word

is Yamanouchi with its leaning stack shaded yellow. To the right, we have drawn the

corresponding XY diagram.

square of a diagram always contains anX . The crux of the proof of Proposition 4.2.0.2 is

that we can use the Yamanouchi restriction on w(P ) to completely classify the possible

XY diagrams. We note that w(P ) is Yamanouchi if and only if, reading the diagram

from bottom to top and left to right, we have always seen at least as many X 's as Y 's.

Furthermore, the labels of P are increasing up columns if and only if there are no Y 's

on top of X 's. Since the entry in the lowest entry in the left column must be an X , this

implies that Y 's always occur in the right column.

These conditions are enough to allow us to classify the possible XY diagrams.

From bottom to top, every diagram begins with a ≥ 0 rows consisting of only a left

square which contains an X . Then it has b ≥ 0 rows which have two squares where

the left square contains an X and the right square contains a Y . From this point on, the

diagram can have one of two types. We say that Type I XY diagrams have a sequence

of c ≥ 0 rows with two squares, both of which contain X 's, followed by a sequence of

d ≥ 0 rows with a single square containing an X . The final d rows must either consist

entirely of left squares or of right squares. In Type II XY diagrams, the b XY rows are

followed by c′ rows with only a right square containing a Y . (For Type II diagrams, we

must have b ≥ 1.) Here, c′ is an integer satisfying 1 ≤ c′ ≤ a. Finally, a Type II diagram

has d′ ≥ 0 rows with only an X in the right square.

We would like to recover the area and hdinv of the original labeled Dyck path P

from its XY diagram. It is not hard to see that area(P ) is equal to a, the number of rows

at the bottom of the diagram containing only an X . The hdinv of a diagram is equal to
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Figure 4.3: A Type I diagram on the left and a Type II diagram on the right.

the number of pairs of left and right squares such that either

• the left square appears immediately northwest of the right square, or

• the two squares are in the same row and both contain X 's.

Now we can use this characterization to find the coefficient of s2m,1n−2m in

Risen,1(x; q, t) for any 0 ≤ m ≤ ⌊n/2⌋. Since there are always at least as many X 's as

Y 's in a diagram, we restrict our attention to diagrams withmY 's and n−mX 's. Clearly

the area of such a diagram may range between 0 and n − m − 1, which corroborates

the formula in Proposition 4.2.0.2. More precisely, we fix the area to be some value

0 ≤ j ≤ n−m− 1. If we can show that there is exactly one diagram with area j, n−m
X 's, and m Y's with hdinv = i for each max(0,m− j − 1) ≤ i ≤ n−m− j − 1, then

we have completed the proof of Proposition 4.2.0.2.

First, we consider the possible Type I diagrams. We know that such a diagram

must begin with j rows consisting only of X 's in the left square followed by m rows

consisting of an X in the left square and a Y in the right square. Let us assume m ≥ 1

for now. Then we have already accumulated m − 1 hdinv. We must place n − 2m − j
more X 's. There are exactly n− 2m− j + 1 ways to accomplish this task. Namely, we

choose any integer 0 ≤ r ≤ n − 2m − j. We repeatedly place an X in the left square,

then the right square, then the next left square up, and so on, placing r X 's this way.

After this, we stack the remaining X 's above the last of the r X 's we had just placed. (If

r = 0, we place every X in a stack above the highest Y .) We have created every Type

I diagram with area j, n − m X 's and m Y 's. Furthermore, the resulting diagram has
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hdinv = m− 1 + r, so have contributed

n−m−j−1∑
i=m−1

qi (4.12)

to the coefficient of tjs2m,1n−2m . Ifm = 0, the same logic shows that we have contributed

n−j−1∑
i=0

qi (4.13)

to the coefficient of tjs1n .

Now we consider the Type II diagrams with area j, n − m X 's, and m Y 's. A

Type II diagram only exists if m ≥ 2. Such a diagram must begin with j rows of just an

X in the left square, followed by 1 ≤ b ≤ m − 1 rows of an X and a Y , contributing

b− 1 hdinv. Then the rest of the diagram is determined, as it must have m− b rows that

just have a Y on the right followed by n−m−j−b rows consisting of anX on the right.

Recall from the characterization of Type II diagrams that we must have 1 ≤ m− b ≤ j,

so actually max(1,m− j) ≤ b ≤ m− 1. This yields a contribution of

m−2∑
i=max(0,m−j−1)

qi (4.14)

to the coefficient of tjs2m,1n−2m . Gathering (4.12), (4.13), and (4.14), the coefficient of

tjs2m,1n−2m in Risen,1(x; q, t) is

n−m−j−1∑
i=max(0,m−j−1)

qi. (4.15)

This concludes the proof of Proposition 4.2.0.2.

Chapter 4 is currently being prepared for submission for publication. Haglund,

J.; Remmel, J.; Wilson, A.T. The dissertation author was the primary investigator and

author of this work.



Chapter 5

Decorated Schröder Paths and

Two-Car Parking Functions at t = 1/q

The goal of this chapter is to investigate cases of the Delta Conjecture of the form

⟨−, en−dhd⟩|t=1/q and ⟨−, hn−dhd⟩|t=1/q. First, we use plethystic techniques to obtain

a formula for the symmetric function ∆fen at t = 1/q for any f ∈ Λ. We spend the

remainder of the chapter addressing the combinatorial sides of the Delta Conjectures. We

develop recursions for refinements of the polynomials ⟨Risen,k(q, t), g⟩, ⟨Valn,k(q, t), g⟩
for any g of the form en−dhd or hn−dhd. These generalize the recursions used in [Hag04,

HL13]. At t = 1/q, these recursions allow us to manipulate q-binomial coefficients to

resolve the Rise Version of the Delta Conjecture at t = 1/q after taking scalar products

with en−dhd or hn−dhd. We hope that these recursions may be used to prove the same

results without the assumption t = 1/q in the future, fully generalizing Haglund's results

in [Hag04].

5.1 ∆fen at t = 1/q

In this section, we obtain a plethystic formula for ∆eken at t = 1/q. We prove the

plethystic formula below and then use it to show that ∆eken is Schur positive at t = 1/q

up to a power of q. This formula also completes the proof of the q = t = 1 case of the

Delta Conjectures; we proved the corresponding combinatorial statements in Subsection

1.3.4.

97
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Theorem 5.1.0.2. For any symmetric function f ∈ Λ(k),

∆fen|t=1/q =
f [[n]q]en[X[k + 1]q]

qk(n−1)[k + 1]q
.

Proof. First we note that

H̃µ[X; q, 1/q] = Csµ

[
X

1− q

]
(5.1)

for some constant C. This fact can be derived from [Mac95]. We use Cauchy's Formula

to write

en[X] = en

[
(1− q) X

1− q

]
=
∑
µ⊢n

sµ′

[
X

1− q

]
sµ[1− q]. (5.2)

For any monomial u, sµ[1− u] is zero if µ is not a hook shape and

sµ[1− u] = (−u)r(1− u) (5.3)

if µ = (n− r, 1r) [Mac95]. Therefore, summing over hook shapes µ, we have

en[X] =
∑

µ=(n−r,1r)

sµ′

[
X

1− q

]
(−q)r(1− q). (5.4)

Next, we note that, for µ = (n− r, 1r), µ′ = (r + 1, 1n−r−1) and

Bµ′(q, 1/q) = q−(n−r−1)[n]q. (5.5)

Therefore

f [Bµ′(q, 1/q)] = q−k(n−r−1)f [[n]q]. (5.6)

Combining (5.4) with (5.6), we see that ∆fen[X]|t=1/q is equal to∑
µ=(n−r,1r)

q−k(n−r−1)(−q)r(1− q)f [[n]q]sµ′

[
X

1− q

]
(5.7)

=
f [[n]q]

qk(n−1)[k + 1]q

∑
µ=(n−r,1r)

(−qk+1)r(1− qk+1)sµ′

[
X

1− q

]
. (5.8)

Applying Cauchy's Formula again, we get∑
µ=(n−r,1r)

(−qk+1)r(1− qk+1)sµ′

[
X

1− q

]
= en [X[k + 1]q] . (5.9)
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From Theorem 5.1.0.2, it is easy to compute

∆eken|t=1/q =
q(

k
2)−k(n−1)

[k + 1]q

[
n

k

]
q

en[X[k + 1]q]. (5.10)

We can also use Theorem 5.1.0.2 along with a recent result of Garsia, Leven, Wallach,

and Xin to prove a Schur positivity result for our symmetric function at t = 1/q.

Corollary 5.1.0.2. qk(n−1)−(
k
2)∆eken

∣∣∣
t=1/q

is a Schur positive symmetric polynomial.

Proof. Let d = gcd(k + 1, n). Then Theorem 2.1 in [GLWX15a] implies that

[d]q
[k + 1]q

en [X[k + 1]q]

is a Schur positive symmetric polynomial. By Theorem 5.1.0.2, it is enough to show

that 1
[d]q

[
n
k

]
q
∈ N[q]. Furthermore, Proposition 2.4 in [GLWX15a] implies that if 1

[d]q

[
n
k

]
q

is a polynomial then it must have nonnegative coefficients (since
[
n
k

]
q

is known to be

a unimodal positive polynomial). Therefore we only need to show that 1
[d]q

[
n
k

]
q

is a

polynomial.

To accomplish this, we will use the q-Lucas Theorem, first proved in [Oli65]

and given a nice combinatorial proof in [Sag92]. To state the q-Lucas Theorem, given

integers n, k, and p, we divide n and k by p to obtain n = n1p + n0 and k = k1p + k0

for n0, k0 < p. Then [
n

k

]
q

≡
(
n1

k1

)[
n0

k0

]
q

(mod Φp(q)). (5.11)

where Φp(q) is pth cyclotomic polynomial. Consider any p such that Φp(q) divides [d]q.

If we can show that all such Φp(q) divide
[
n
k

]
q
, we are done. Since p divides d and d

divides both n and k + 1, p divides n but it does not divide k. This means that n0 = 0

and k0 > 0. By the q-Lucas Theorem,[
n

k

]
q

≡
(
n1

k1

)[
n0

k0

]
q

≡ 0 (mod Φp(q)) (5.12)

so Φp(q) divides
[
n
k

]
q
.
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5.2 Combinatorial Objects

In this section, we describe the combinatorial effect of taking scalar products

with functions of the form eλhµ. Recall that, for a parking function P ∈ WPFn, the

reading word of P is the word obtained by reading the labels of P from maximum to

minimum area and from right to left. To understand the necessary scalar products, we

need to consider parking functions with a larger alphabet of labels

A = {1, 2, 3, . . .} ∪ {1, 2,∪ . . .}

along with the relation <A defined as follows:

1. a <A b if and only if a < b as integers.

2. a <A b if and only if a ≤ b as integers.

3. a <A b for any integers a and b.

Then we can define WPFλ,µ to be the set of parking functions consisting of labeled

Dyck paths from (0, 0) to (|λ|+ |µ|, |λ|+ |µ|) that are labeled with words consisting of

exactly λi i's and µj j 's for every i and j such that, in each column, the labels are strictly

increasing from bottom to top according to the relation<A. We extend the definitions of

dinv and area to these sets of objects with the relation<A. See Figure 5.1 for an example.

On the left we have drawn a Dyck path of order 8. We have written the corresponding

entries of its area vector to its right. One can see that its total area is 6. On the right, we

have labeled the Dyck path to obtain a word parking function of order 8 over the alphabet

A. One can check that the parking function has 7 diagonal inversions, 2 of which are

primary and 5 secondary.

The Shuffle Conjecture got its name from the following fact: if we choose parti-

tions λ and µ and set n = |λ|+ |µ|, then we have⟨ ∑
P∈WPFn

qdinv(P )tarea(P )xP , eλhµ

⟩
=

∑
P∈WPFλ,µ

qdinv(P )tarea(P ). (5.13)

Analogously, if we take scalar products with eλhµ in the Delta Conjectures, we get sums

over rise- or valley-decorated elements ofWPFλ,µ. We will be particularly interested

in the cases λ = (a), µ = (b) and λ = 0, µ = (a, b) where a+ b = n. We discuss these

cases in the next two subsections.
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Figure 5.1: A Dyck path of order 8 with area 6 and 7 diagonal inversions.

5.2.1 Decorated Schröder Paths

We note that taking a scalar product with eahb means that we only need to con-

sider word parking functions labeled by exactly a 1's and b 1's. By the definition of <A,

1's may be placed on top of one another and 1's may be placed on top of 1's, but no

labels may be placed above 1's. This allows us to replace north steps labeled with 1's

(and their following east steps) with diagonal steps and north steps labeled with 1
′
s with

unlabeled north steps. As a result, we obtain a bijection between such parking functions

and Schröder paths Sa,b, the set of lattice paths from (0, 0) to (a+ b, a+ b) that consist

of a north steps, a east steps, and b diagonal steps while remaining weakly above the

main diagonal. We can define dinv and area on Schröder paths using this bijection. That

is, given a Schröder path P ∈ Sa,b, we set areai(P ) to be the number of squares whose

lower right corner is between P and the line y = x in the ith row from the bottom and

dinvi(P ) counts the number of pairs i < j such that

• areai(P ) = areaj(P ) and row i contain a north step, or

• areai(P ) = areaj(P ) + 1 and row j contains a north step.

For an example of a Schröder path, see Figure 5.2.

In order to relate Schröder paths to the Delta Conjectures, we need to define

decorated versions. Double rises and valleys are defined as before; we set Rise(P ) to

be the set of 2 ≤ i ≤ n such that areai(P ) > areai−1(P ) and Val(P ) to be the set of
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Figure 5.2: A Schröder path of order 8 with 4 diagonal steps, area 6, and 3 diagonal

inversions, 2 of which are primary and 1 secondary.

removable valleys of P . Then

RSa,b,k = {(P,R) : P ∈ Sa,b, R ⊆ Rise(P ), |R| = k}

VSa,b,k = {(P, V ) : P ∈ Sa,b, V ⊆ Val(P ), |V | = k}.

These are the double rise- and removable valley-decorated Schröder paths, respectively.

We define

area−((P,R)) = area(P )−
∑
i∈R

areai(P )

dinv−((P, V )) = dinv(P )− |V | −
∑
i∈V

dinvi(P ).

Now we can state the restriction of the Delta Conjectures to these objects. We will prove

the t = 1/q case of the first statement in this conjecture later in this chapter.

Conjecture 5.2.1.1. For any nonnegative integers a, b, and k,

⟨∆′ea+b−k−1
ea+b, eahb⟩ =

∑
(P,R)∈RSa,b,k

qdinv(P )tarea−((P,R))

=
∑

(P,V )∈VSa,b,k

qdinv−((P,V ))tarea(P ).
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We will need several refinements of the setRSa,b,k and VSa,b,k. We define

RS(h)
a,b,k ={(P,R) ∈ RSa,b,k : P returns to the main diagonal h times}

RS(r,s,i)
a,b,k ={(P,R) ∈ RSa,b,k : (P,R) has r north steps, s diagonal steps,

and i decorated rises on the main diagonal}

RS(r,s,i)

a,b,k ={(P,R) ∈ RS(r,s,i)
a,b,k : the lowest rise in P is not in R}

VS(g)
a,b,k ={(P, V ) ∈ VSa,b,k : P has g returns to the diagonal that are not in V }

VS(r,s,i)
a,b,k ={(P, V ) ∈ VSa,b,k : (P, V ) has r north steps, s diagonal steps,

and i decorated valleys on the diagonal}.

For each of these sets, we will remove the italics and append variables q and t to mean

the polynomial obtained by summing qdinv(P )tarea−((P,R)) (if the set is rise-decorated) or

qdinv−((P,V ))tarea(P ) (if the set is valley-decorated) over all the objects in the set. For ex-

ample,

RS
(r,s,i)
a,b,k (q, t) =

∑
(P,R)∈RS(r,s,i)a,b,k

qdinv(P )tarea−((P,R)).

5.2.2 Two-Car Parking Functions

In this subsection, we deal with the case of taking scalar products with hahb. This

corresponds to word parking functions of order a+ b that use a 1's and b 2's as labels and

no other labels. We write the class of all of these parking functions as Ta,b. The usual

definitions of area, dinv, double rises, and blank valleys apply to these objects with no

modifications necessary. We set

RT a,b,k = {(P,R) : P ∈ Ta,b, R ⊆ Rise(P ), |R| = k}

VT a,b,k = {(P, V ) : P ∈ Ta,b, V ⊆ Val(P ), |V | = k}.

The relevant restriction of the Delta Conjectures is as follows. As with the Schröder case,

we prove the t = 1/q case of the first statement in this conjecture later in this chapter.
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Conjecture 5.2.2.1. For any nonnegative integers a, b, and k,

⟨∆′ea+b−k−1
ea+b, hahb⟩ =

∑
(P,R)∈RT a,b,k

qdinv(P )tarea−((P,R))

=
∑

(P,V )∈VT a,b,k

qdinv−((P,V ))tarea(P ).

As in the Schröder case, it will be convenient later to have several refinements

ofRT a,b,k and VT a,b,k.

RT (h)
a,b,k ={(P,R) ∈ RT a,b,k : P has h 2's on the main diagonal}

RT (r,s,i)
a,b,k ={(P,R) ∈ RT a,b,k : (P,R) has r 1's, s 2's, and i decorated rises

on the main diagonal}

RT (r,s,i)

a,b,k ={(P,R) ∈ RT (r,s,i)
a,b,k : the first rise in P is not in R}

VT (g)
a,b,k ={(P, V ) ∈ VT a,b,k : P has g 2's on the diagonal that are not in V }

VT (r,s,i,j)
a,b,k ={(P, V ) ∈ VT a,b,k : (P, V ) has r 1's, s 2's, and i decorated 1's,

and j decorated 2's on the diagonal}.

As above, we remove italics to obtain polynomials equal to the relevant q, t-sum over

the class of objects.

5.3 Recursions

In this section, we state and prove recursions for the polynomials defined in the

previous section. We will use these recursions in Section 5.4 to prove q-binomial for-

mulas for the rise versions of these polynomials at t = 1/q. However, we note that these

recursions do not use the t = 1/q assumption, so they may be useful in future work that

removes this assumption.

We will use two well-known results which can be thought of as q-analogs of the

binomial theorem:

n−1∏
i=0

(1 + qix) =
n∑

k=0

q(
k
2)
[
n

k

]
q

xk (5.14)

n−1∏
i=0

1

1− qix
=

n∑
k=0

[
n+ k − 1

k

]
q

xk. (5.15)
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These identities have the following combinatorial significance. In (5.14), we are choos-

ing k objects without replacement out of n objects which have ''weights'' 0, 1, . . . , n−1.

Then the sum of q to the sum of the chosen objects' weights over all possible choices

is equal to q(
k
2)
[
n
k

]
q
. For (5.15), we have the same setup but we are now choosing with

replacement. The identity asserts that the same generating function in q is now equal to[
n+k−1

k

]
q
. We will use these identities repeatedly to develop our recursions.

5.3.1 Rise-decorated Schröder paths

Proposition 5.3.1.1.

RS
(r,s,i)

a,b,k (q, t) = q(
r
2)+(

i+1
2 )ta−r+b−s−k

[
r + s

r

]
q

×
a−r+b−s∑

h=1

[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

RS
(h)
a−r,b−s,k−i(q, t).

Proof. We claim that the following process uniquely creates each path inRS(r,s,i)

a,b,k .

1. First, we choose h ∈ {1, . . . , a− r + b− s}. We begin with any path (P1, R1) ∈
RS(h)

a−r,b−s,k−i.

2. We prepend a north step and append an east step to P1 to obtain (P2, R2) ∈
RS(1,0,0)

a−r+1,b−s,k−i. Since this increases the area of each row in P1 that is not in

R1 by 1, we have

area−((P2, R2))− area−((P1, R1)) = a− r + b− s− (k − i).

3. Next, we break P2 into h segments, where each segment begins with a north or

diagonal step from the superdiagonal and each segment ends with the next return

to the superdiagonal. (The first segment includes the initial north step.) We ignore

the first segment and choose i out of the remaining segments to which we prepend

an east step followed by a north step. We decorate the first row of each of these

chosen segments. This results in a path (P3, R3) ∈ RS
(i+1,0,i)

a−r+i+1,b−s,i.

We need to check how we have altered our area and dinv statistics. We note that

area−((P3, R3))− area−((P2, R2)) = −i
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(1) (2) (3)

(4) (5)

Figure 5.3: An example of the process in this proof with a = 6, b = 4, r = 4, s = 2,

h = 3, k = 2, i = 1, u = 01101, and v = 111010.
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so we have

area−((P3, R3))− area−((P1, R1)) = a− r + b− s− k.

None of the remaining steps will affect the area, so we have explained the ta−r+b−s−k

term in our recursion. Skipping the first segment (which we were not allowed to

choose), we note that choosing the jth segment from the bottom contributes j sec-

ondary diagonal inversions. No matter which segments we chose, we obtain
(
i
2

)
primary diagonal inversions on the main diagonal. As a result, summing over all

possible choices yields a contribution of q(
i
2)+(

i+1
2 )
[
h−1
i

]
q
.

4. Now we will add the r − i − 1 remaining north steps to the diagonal of P3. We

accomplish this by dividing P3 into segments once again. We proceed from the

bottom to the top of P3, ending each segment (and then beginning the next seg-

ment) whenever we encounter an east or a diagonal step which ends at the super-

diagonal. (We include the final east step in the last segment.) We have h segments

in all. Given any word u consisting of r − i − 1 0's and h 1's, we build a new

path P4 by beginning at (0,0), reading the word u from left to right, and acting as

follows:

• Assume we are considering uj , the jth letter of u. Say uj = 0. If we are

on the superdiagonal, we add an east step. Then we must be on the main

diagonal. We add a north step. If the next unplaced segment (from bottom

to top) of P3 was on the main diagonal in P3, place an east step immediately

after this north step.

• Otherwise, uj = 1. If we are currently on the superdiagonal and the next

unplaced segment was on the main diagonal in P3, we add an east step. We

append the next unplaced segment from P3. One may note that, if this seg-

ment was on the diagonal in P3, then it gets placed on the diagonal of this

new path, and if this segment was on the superdiagonal in P4, then it gets

placed on the superdiagonal of this new path.

We denote this new path (P4, R4), which must be in RS(r,0,i)

a,b−s,i. We note that

area−((P4, R4)) = area−((P3, R3)). To count diagonal inversions, we must notice
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that the new secondary diagonal inversions in P4 are in bijection with the inver-

sions of u. Since we automatically gain
(
r
2

)
−
(
i
2

)
new primary diagonal inversions,

summing over all words u contributes q(
r
2)−(

i
2)
[
h+r−i−1

h

]
q

to the recursion.

5. Finally, we need to place s diagonal steps on the main diagonal of P4. To do this,

we break P4 into segments upon each return to the main diagonal and we choose

any word v consisting of s 0's and r 1's. We build a new path (P5, R5) by reading v

from left to right and adding a diagonal step for each 0 and a segment ofP4 for each

1. Summing over all words and counting the new (primary) diagonal inversions,

we get a new term of
[
r+s
r

]
q
.

By reversing these steps and recording the words u and v, one can see that this process

is bijective. Figure 5.3 depicts a particular example of this process. We have drawn the

path created at the end of each step of a particular example with a = 6, b = 4, r = 4,

s = 2, h = 3, k = 2, i = 1, u = 01101, and v = 111010. We have shaded in the

canceled area cells and used dashed lines to separate the path into segments when the

next step requires it. To go from (2) to (3) we chose segment 3 out of the possible choices

of segments 2 and 3.

5.3.2 Valley-decorated Schröder paths

Proposition 5.3.2.1.

V S
(r,s,i,j)
a,b,k (q, t) = q(

r−i
2 )+(

j
2)ta−r+b−s

[
r − 1

i

]
q

[
r − i
j

]
q

[
r − i+ s− j

r − i

]
q

×
a−r+b−s∑

g=1

[
g + r − 1

g

]
q

V S
(g)
a−r,b−s,k−i−j(q, t).

Proof. We build up valley-decorated Schröder paths in a bijective fashion, as in the

example in Figure 5.4.

1. We choose h ∈ {1, 2, . . . , a − r + b − s} and a valley-decorated Schröder path

(P1, V1) ∈ VS(h)
a−r,b−s,k−i−j .
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(1)

∗

(2)

∗

(3)

∗

(4)

∗
∗

(5)

∗

∗
∗
∗

(6)

∗

∗
∗
∗

Figure 5.4: An example of this process with a = b = 6, k = 4, r = 3, s = 4, i = 1,

j = 2, and h = 1.
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2. We prepend a north step and append an east step to P1 to obtain (P2, V2) in

VS(1,0,0,0)
a−r+1,b−s,k−i−j . This increases the area of each of the a− r+ b− s rows in P1

by 1, for a total increase of a− r + b− s.

3. We break (P2, V2) into h segments by breaking wherever P2 returns to the super-

diagonal unless this return is in V2. We insert the remaining r− 1 north steps into

the h + 1 spaces below, between, or above these g segments. Call the resulting

decorated Schröder path (P3, V3) ∈ VS(r,0,0,0)
a,b−s,k−i−j . Since we can insert multiple

north steps at a single space, this step contributes
[
g+r−1

g

]
q

secondary diagonal

inversions. We postpone counting the new primary diagonal inversions until the

next step.

4. Now we will decide which of these new north steps on the diagonal are decorated.

It is clear that each of them except the very first north step occurs at a removable

valley. We choose i of the remaining r − 1 north steps to decorate. From a com-

plementary viewpoint, we choose to r − j − 1 of the north steps and we count

the primary diagonal inversions ending at these steps. These north steps have

0, 1, . . . , r − 2 primary diagonal inversions above them, from top to bottom. We

also must count the diagonal inversions ending at the bottom north step. Hence,

this choice contributes
[
r−1
i

]
q
q(

r−i−1
2 )+r−i−1 =

[
r−1
i

]
q
q(

r−i
2 ) primary diagonal in-

versions. The result is a decorated path (P4, V4) ∈ VS(r,0,i,0)
a,b−s,k−j .

5. Now we place the j diagonal steps on the diagonal that will be decorated valleys.

We can do this after any east step that returns to the diagonal that is not already part

of a decorated valley. There are r − i such places, we have j decorated diagonal

steps to insert, and we can put at most one decorated diagonal step at each place.

Furthermore, the places contribute 0, 1, 2, . . . , r − i − 1 new primary dinv, from

bottom to top. Therefore this step contributes
[
r−i
j

]
q
q(

j
2) new primary diagonal

inversions. We call the resulting decorated path (P5, V5) ∈ VS(r,j,i,j)
a,b,k .

6. Finally, we wish to place the s− j remaining diagonal steps on the main diagonal.

We can do this at the very bottom of the path or after any return to the diagonal

that is not part of a decorated valley, and we can place more than 1 step in each

place. There are r− i+1 such places, and we have s− j diagonal steps to insert.
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We note that each such place, from bottom to top, contributes 0, 1, . . . , r − i new

primary diagonal inversions. Thus, this step contributes a term of
[
r−i+s−j

r−i

]
q

new

primary diagonal inversions, and the result is our final path (P6, V6) ∈ VS(r,s,i,j)
a,b,k .

As before, this process is directly invertible.

5.3.3 Rise-decorated two-car parking functions

Proposition 5.3.3.1.

RT
(r,s,i)

a,b,k (q, t) = q(
i+1
2 )ta−r+b−s−k

[
r + s

r

]
q

×
b−s∑
h=1

[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

RT
(h−1)
a−r,b−s−1,k−i(q, t).

Proof. As is evident by the formula, the proof will be quite similar to the proofs of

previous recursions. The main difference is that we can only place 1's underneath 2's,

whereas before we could place north steps under both north steps and diagonal steps.

Figure 5.5 shows an example of this process.

1. Choose h ∈ {1, . . . , b − s}. We begin with any parking function (P1, R1) ∈
RT (h−1)

a−r,b−s−1,k−i.

2. To form (P2, R2) ∈ RT
(1,0,0)

a+−r+1,b−s,k−i, we prepend a north-north-east sequence

and append an east step to P1, labeling the two new north steps 1 and 2 from

bottom to top. This introduces a+ b− r − s− (k − i) new area.

3. We split P2 into h segments, beginning a new segment each time we see a 2 on the

superdiagonal. (We include the initial 1 as part of the first segment.) We ignore

the first segment and then choose i of the remaining segments to prepend with an

east step and a north step labeled 1. We cancel the rows following these new north

steps. This process yields a parking function (P3, R3) ∈ RT
(i+1,0,i)

a+b−r−s+i+1,b−s,k.

This step contributes a factor of t−iq(
i+1
2 )
[
h−1
i

]
q
.

4. Now we place the remaining r − i − 1 1's on the main diagonal. We do this by

separating (P3, R3) into h segments which begin each time we encounter either a
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Figure 5.5: We have drawn the path created at the end of each step of a particular ex-

ample with a = 5, b = 5, r = 4, s = 1, h = 3, k = 1, i = 1, u = 11001, and

v = 11101.
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1 on the main diagonal (which is either the first 1 or is followed by a canceled row)

or a 2 on the superdiagonal in a row that is not canceled (discounting the very first

2). We place 1's on the main diagonal by the same process used in Step 4 in the

proof of Proposition 5.3.1.1, labeling each new north step with a 1. The result is a

parking function (P4, R4) ∈ RT
(r,0,i)

a,b−s,k and a factor of
[
h+r−i−1

h

]
q
.

5. Finally, we break (P4, R4) into segments each time it hits the main diagonal. We

interlace the s new 2's the same way we introduced the new diagonal steps in Step 4

in the proof of Proposition 5.3.1.1, resulting in a factor
[
r+s
s

]
q

and the final parking

function inRT (r,s,i)

a,b,k .

As before, it is straightforward to verify that this process is bijective.

5.3.4 Valley-decorated two-car parking functions

Proposition 5.3.4.1.

V T
(r,s,i,j)
a,b,k (q, t) = q(

i
2)+(

j
2)ta−r+b−s

[
r − i
j

]
q

[
r − i+ s− j

r − i

]
q

×
b−s∑
g=1

[
g + r − i− 1

g

]
q

[
g

i

]
q

V S
(g−1)
a−r,b−s−1,k−i−j(q, t).

Proof. As usual, we build up the relevant objects recursively. We show an example of

this process in Figure 5.6.

1. We begin with (P1, V1) ∈ VT (g−1)
a−r,b−s−1,k−i−j for some g ∈ {1, . . . , b− s}.

2. As in the proof of Proposition 5.3.3.1, we prepend two north steps and an east step

to P1 and append an east step. We label the first two north steps 1 and 2 and the

resulting path (P2, V2) ∈ VT (1,0,0,0)
a−r+1,b−s,k−i−j . This step introduces a ta−r+b−s term

to the recursion.

3. Next, we break our path into segments at each undecorated 2 on the superdiagonal

(except for the lowest 2 that we just introduced). We will place the r − i − 1

undecorated 1's on the diagonal. We can insert these before any segment or at

the end of the sequence, for a total of g + 1 total slots. Since we are inserting
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Figure 5.6: We have depicted an example with a = b = 6, r = 5, s = 3, k = 3,

i = j = 1, and g = 2.
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''with multiplicity,'' i.e. more than one 1 can go in each slot, and each slot yields

0, 1, . . . , g new secondary dinv, from bottom to top, this yields a term of
[
g+r−i−1

g

]
q
.

We call the resulting path (P3, V3) ∈ VT (r−i,0,0,0)
a−i,b−s,k−i−j .

4. Now we place the j decorated 2's on the diagonal. These can precede any 1 on the

diagonal except the first or they can go at the end of the sequence, for a total of r−i
possibilities. These possibilities introduce 0, 1, . . . , r − i − 1 new primary dinv,

from bottom to top, and we can choose each possibility at most once, so we get a

new term of
[
r−i
j

]
q
q(

j
2). The new parking function is (P4, V4) ∈ VT (r−i,j,0,j)

a−i,b−s+j,k−i.

5. The next step is to place the i decorated 1's on the diagonal. These 1's can go at

any of the g returns to the diagonal from the superdiagonal. At most one 1 can go

in each of these spots, and such an insertion introduces 0, 1, . . . , g − 1 secondary

dinv, from bottom to top, yielding a term of
[
g
i

]
q
q(

i
2).

6. Finally, we place the s − j undecorated 2's on the diagonal. They can be placed

(with multiplicity) before any of the r − i undecorated 1's on the diagonal or at

the very top, for a total of r − i + 1 spots. Inserting at each spot contributes

0, 1, . . . , r − i new secondary dinv, from bottom to top, so we get a contribution

of
[
r−i+s−j

r−i

]
q
.

As in all other cases, inverting this bijection is straightforward.

5.4 Inductions at t = 1/q

In this section, we prove q-binomial formulas for some of the polynomials intro-

duced in the previous section with the additional assumption that t = 1/q. Together with

Theorem 5.1.0.2, this completes the proof of two more cases of the Delta Conjectures.

We will need the following three lemmas to simplify the various q-binomial and q-integer

expressions which will appear in our calculations. All three lemmas are elementary and

previously known, but we provide a citation or a short proof for each lemma for the sake

of completeness.
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Lemma 5.4.0.1. If 1 ≤ m ≤ n and ℓ ≥ 0, then[
n+ ℓ

n

]
q

=
ℓ∑

j=0

qm(ℓ−j)
[
m+ j − 1

m− 1

]
q

[
n−m+ ℓ− j

n−m

]
q

Lemma 5.4.0.1 is proven (as Lemma 3.1) in [HL13].

Lemma 5.4.0.2. If 0 ≤ m ≤ n+ ℓ and ℓ ≥ 0, then[
n+ ℓ

ℓ

]
q

=
ℓ∑

j=0

qj(n−m+j)

[
m

j

]
q

[
n+ ℓ−m
ℓ− j

]
q

Proof. We can think of
[
n+ℓ
ℓ

]
q

as
∑

σ∈S
1n,2ℓ

qinv(σ). We fix some index m and assume

there are j 2's in the first m entries of the permutation. Then we choose a permutation

for the first m entries and a permutation for the remaining n+ ℓ−m entries.

Lemma 5.4.0.3. For m,n ≥ 0 and 0 ≤ ℓ ≤ m,n,

qℓ[m− ℓ]q[n− ℓ]q + [ℓ]q[m+ n− ℓ]q = [m]q[n]q

Proof. Using the definition of q-integers, we see that the left-hand side is

= [m− ℓ]q ([n]q − [ℓ]q) + [ℓ]q[m+ n− ℓ]q

= [m− ℓ]q[n]q + [ℓ]q ([m+ n− ℓ]q − [m− ℓ]q)

= [m− ℓ]q[n]q + qm−ℓ[ℓ]q[n]q

=
(
[m− ℓ]q + qm−ℓ[ℓ]q

)
[n]q

= [m]q[n]q.

It will also be convenient to abbreviate the set of variables (q, 1/q) with just (q).

For example, by RSa,b,k(q) we mean RSa,b,k(q, 1/q).

5.4.1 Rise-decorated Schröder paths

Proposition 5.4.1.1. For each formula, we assume a ≥ 0, b ≥ 0, 0 ≤ r ≤ a, 0 ≤ s ≤ b,

0 ≤ p ≤ a+ b, and 0 ≤ k ≤ r, a− r+ b− s, a+ b− p. If any of these conditions fails,

then the polynomial at hand is equal to zero.
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(i) If r = 0, then

RS
(r,s,i)

a,b,k (q) = χ(a = k = i = 0)χ(b = s).

Otherwise,

RS
(r,s,i)

a,b,k (q) = q(
a
2)+(

k+2
2 )−1−(a−r)(a+b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×
[
2a− r + b− s− k − 1

a

]
q

qi(a−r−k+i)

[
r − 1

i

]
q

[
a− r
k − 1

]
q

.

(ii) If a = 0, then

RS
(h)
a,b,k(q) = χ(k = 0)χ(b = h).

Otherwise

RS
(h)
a,b,k(q) = q(

a+1
2 )+(k+1

2 )−a(a+b−h+1) [h]q
[a+ b]q

[
a

k

]
q

×
[
a+ b

a

]
q

[
2a+ b− h− k − 1

a− 1

]
q

.

Corollary 5.4.1.1. (i) We have

RSa,b,k(q) =
q(

a+1
2 )+(k+1

2 )−a(a+b)

[a+ b]q

[
a+ b

a

]
q

[
a

k

]
q

[
2a+ b− k
a+ 1

]
q

(ii) We have

RSa,b,k(q) +RSa,b,k−1(q) =
q(

b
2)+(

k
2)−(

a+b
2 )

[a+ b− k + 1]q

[
a+ b

k

]
q

×
[
a+ b− k + 1

b

]
q

[
2a+ b− k

a

]
q

Proof of Proposition 5.4.1.1. We proceed by induction on N = a+ b. In particular, we

will assume Proposition 5.4.1.1.(ii) and use that to prove Proposition 5.4.1.1.(i). Then

we will prove Proposition 5.4.1.1.(ii).

By Proposition 5.3.1.1, RS
(r,s,i)

a,b,k (q, t) equals

q(
r
2)+(

i+1
2 )ta−r+b−s−k

[
r + s

r

]
q

a−r+b−s∑
h=1

[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

RS
(h)
a−r,b−s,k−i(q, t).
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If a = r then, by induction and Proposition 5.4.1.1.(ii), the only nonzero term occurs

when i = k and h = b− s. Thus

RS
(r,s)

a,b,k(q) = q(
a
2)+(

k+1
2 )−(b−s−k)

[
r + s

r

]
q

[
b− s− 1

k

]
q

[
a+ b− s− k − 1

b− s

]
q

= q(
a+1
2 )+(k+2

2 )−b+s−1
[
r + s

r

]
q

[a]q
[b− s]q

[
a− 1

k

]
q

[
a+ b− s− k − 1

a

]
q

after canceling out [b − s]q! terms and introducing [a]q! terms to the q-binomial coeffi-

cients. This expression is equal to that in Proposition 5.4.1.1.(i) when a = r.

If a > r, by induction,

RS
(r,s,i)

a,b,k (q) =q(
r
2)+(

i+1
2 )ta−r+b−s−k

[
r + s

r

]
q

a−r+b−s∑
h=1

[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

× q(
a+1
2 )+(k+1

2 )−a(a+b−h+1) [h]q
[a+ b]q

[
a

k

]
q

[
a+ b

a

]
q

[
2a+ b− h− k − 1

a− 1

]
q

.

We will rearrange some of the terms in this last expression. We can write

[h]q

[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

= [r]q

[
r − 1

i

]
q

[
h+ r − i− 1

r

]
q

.

At this point, only two of the q-binomials depend on h. Next, we carefully rewrite the

power of q as follows.(
r

2

)
− (a− r + b− s− k) +

(
i+ 1

2

)
+

(
k − i+ 1

2

)
+

(
a− r
2

)
− (a− r)(a− r + b− s− h)

=

((
r

2

)
+

(
a− r
2

))
+

((
i+ 1

2

)
+

(
k − i+ 1

2

))
− (a− r)(a− r + b− s− h)− a+ r − b+ s+ k

=

(
a

2

)
+ r2 − ar +

(
k + 1

2

)
+ k + i2 − ik

− (a− r)(a− r + b− s− h)− a+ r − b+ s

=

(
a

2

)
+

(
k + 2

2

)
− 1− (a− r)(a+ b− s)

+ i(a− r − k + i) + (a− r)(h− i− 1).
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This allows us to write RS
(r,s,i)

a,b,k (q) as

q(
a
2)+(

k+2
2 )−1−(a−r)(a+b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

× qi(a−r−k+i)

[
r − 1

i

]
q

[
a− r
k − 1

]
q

×
a−r+b−s−k+i∑

h=i+1

q(a−r)(h−i−1)
[
h+ r − i− 1

r

]
q

[
2(a− r) + b− s− h− k + i− 1

a− r + b− s− h− k + i

]
q

.

Let us examine the sum over h. By putting j = a − r + b − s − h − k + i, ℓ =

a− r + b− s− k − 1, m = a− r, and n = a, we can apply Lemma 5.4.0.1 replace the

sum over h with [
2a− r + b− s− k − 1

a

]
q

.

Hence

RS
(r,s,i)

a,b,k (q) = q(
a
2)+(

k+2
2 )−1−(a−r)(a+b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×
[
2a− r + b− s− k − 1

a

]
q

qi(a−r−k+i)

[
r − 1

i

]
q

[
a− r
k − 1

]
q

.

This verifies Proposition 5.4.1.1.(i).

Next, we sum over i to obtain

RS
(r,s)

a,b,k(q) =
k∑

i=0

RS
(r,s,i)

a,b,k (q)

= q(
a
2)+(

k+2
2 )−1−(a−r)(a+b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×
[
2a− r + b− s− k − 1

a

]
q

k∑
i=0

qi(a−r−k+i)

[
r − 1

i

]
q

[
a− r
k − 1

]
q

= q(
a
2)+(

k+2
2 )−1−(a−r)(a+b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×
[
2a− r + b− s− k − 1

a

]
q

[
a− 1

k

]
q

by Lemma 5.4.0.2 with j = i, ℓ = k, m = r − 1, and n = a− k − 1.

Our next goal is to remove the bar from over our polynomials. If k = 0, we

notice that, if a > r and b > s, then RS
(r,s)
a,b,0(q) = RS

(r,s)

a,b,0(q). Otherwise, we must have
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a = r and b = s. In this case, we only consider paths that remain on the diagonal. It

follows that RS
(a,b)
a,b,0(q) = q(

a
2)
[
a+b
a

]
q
. Now we deal with k > 0. By definition,

RS
(r,s)
a,b,k(q) = RS

(r,s)

a,b,k(q) + qRS
(r,s)

a,b,k−1(q).

We now know that the right-hand side is equal to

q(
a+1
2 )+(k+1

2 )−(a−r+1)(a+b−s) [r]q
[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×

(
qk
[
a− 1

k

]
q

[
2a− r + b− s− k − 1

a

]
q

+

[
a− 1

k − 1

]
q

[
2a− r + b− s− k

a

]
q

)

= q(
a+1
2 )+(k+1

2 )−(a−r+1)(a+b−s) [r]q
[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

× [a− 1]q![2a− r + b− s− k − 1]q!

[a]q![a− r + b− s− k]q![k]q![a− k]q!

×
(
qk[a− r + b− s− k]qa− k + [k]q[2a− r + b− s− k]q

)
.

After setting ℓ = k, m = a, and n = a− r + b− s in Lemma 5.4.0.3, we see that

qk[a− r + b− s− k]qa− k + [k]q[2a− r + b− s− k]q = [a]q[a− r + b− s]q.

Making this substitution and gathering terms into q-binomial coefficients, we obtain

RS
(r,s)
a,b,k(q) = q(

a+1
2 )+(k+1

2 )−(a−r+1)(a+b−s) [r]q
[2a− r + b− s− k]q

[
a

k

]
q

×
[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

[
2a− r + b− s− k

a

]
q

.

Now we sum over r and s to get the desired formula for RS
(h)
a,b,k(q). The a = 0

case of Proposition 5.4.1.1.(ii) follows from inspection. If a > 0, by definition we have

RS
(h)
a,b,k(q) =

a∑
r=1

RS
(r,h−r)
a,b,k (q).

The following identity will be helpful in rewriting our previous formula.

[r]q
[2a− r + b− s− k]q

[
r + s

r

]
q

[
2a− r + b− s− k

a

]
q

=
[r + s]q
[a]q

[
r + s− 1

r − 1

]
q

[
2a− r + b− s− k − 1

a− 1

]
q
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Now we have

RS
(h)
a,b,k(q) =

a∑
r=1

RS
(r,h−r)
a,b,k (q)

= q(
a+1
2 )+(k+1

2 )−a(a+b−h+1) [h]q
[a]q

[
a

k

]
q

[
2a+ b− h− k − 1

a− 1

]
q

×
a∑

r=1

q(r−1)(b−h+r)

[
h− 1

r − 1

]
q

[
a+ b− h
a− r

]
q

.

Applying Lemma 5.4.0.2 with j = r − 1, ℓ = a − 1, m = p − 1, and n = b completes

the proof of Proposition 5.4.1.1.(ii).

Proof of Corollary 5.4.1.1. We sum over h to get a formula for RSa,b,k(q). If a = 0,

every parking function must remain on the main diagonal, so we cannot cancel any rows.

Therefore

RS0,b,k(q) = χ(k = 0)

which is equal to the given formula when a = 0. Now assume a > 0. Using Proposition

5.4.1.1.(ii), we have

RSa,b,k(q) =
a+b−k∑
h=1

S
(h)
a,b,k(q)

=
q(

a+1
2 )+(k+1

2 )−a(a+b)

[a+ b]q

[
a+ b

a

]
q

[
a

k

]
q

×
a+b−k∑
h=1

qa(h−1)
[
h

1

]
q

[
2a+ b− h− k − 1

a− 1

]
q

=
q(

a+1
2 )+(k+1

2 )−a(a+b)

[a+ b]q

[
a+ b

a

]
q

[
a

k

]
q

[
2a+ b− k
a+ 1

]
q

.

using Lemma 5.4.0.1 with j = a+ b− p− k, ℓ = a+ b− k− 1, m = a, and n = a+1.

Finally, we wish to prove Corollary 5.4.1.1.(ii). First, let us examine the case

where k = 0. Then our desired coefficient is equal toRSa,b,0(q). By Corollary 5.4.1.1.(i),

RSa,b,0(q) is equal to the desired formula. Now we assume k > 0. By the definition of

RSa,b,k(q), we want to show thatRSa,b,k(q)+RSa,b,k−1(q) is equal to the formula given in

the statement of Corollary 5.4.1.1.(ii). By Corollary 5.4.1.1.(i),RSa,b,k(q)+RSa,b,k−1(q)
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equals

q(
a+1
2 )+(k2)−a(a+b)

[a+ b]q

[
a+ b

a

]
q

(
qk
[
a

k

]
q

[
2a+ b− k
a+ 1

]
q

+

[
a

k − 1

]
q

[
2a+ b− k + 1

a+ 1

]
q

)

=
q(

a+1
2 )+(k2)−a(a+b)[a]q![2a+ b− k]q!

[a+ b]q[k]q![a− k + 1]q![a+ 1]q![a+ b− k]q!

×
(
qk[a− k + 1]q[a+ b− k]q + [2a+ b− k + 1]q[k]q

)
.

If we set ℓ = k, m = a+ 1, and n = a+ b in Lemma 5.4.0.3, we see that the inner sum

is equal to [a+ 1]q[a+ b]q. Therefore the entire expression is

=

[
a+ b

a

]
q

q(
a+1
2 )+(k2)−a(a+b)[a+ 1]q![2a+ b− k]q!

[k]q![a− k + 1]q![a+ 1]q![a+ b− k]q!

=
q(

a+1
2 )+(k2)−a(a+b)[a+ b]q![a+ 1]q![2a+ b− k]q!

[a]q![b]q![k]q![a− k + 1]q![a+ 1]q![a+ b− k]q!
.

Replacing both occurrences of [a+1]q! with [a+b−k+1]q! and partitioning q-factorials

into q-binomial coefficients, we can get

=
q(

a+1
2 )+(k2)−a(a+b)

[a+ b− k + 1]q

[
a+ b

k

]
q

[
a+ b− k + 1

b

]
q

[
2a+ b− k

a

]
q

.

Finally, we notice that
(
a+1
2

)
− a(a + b) =

(
b
2

)
−
(
a+b
2

)
. This gives the result stated in

Corollary 5.4.1.1.(ii).

5.4.2 Rise-decorated two-car parking functions

Proposition 5.4.2.1. For each formula, we assume a ≥ 0, b ≥ 0, 0 ≤ r ≤ a, 0 ≤ s ≤ b,

and 0 ≤ k ≤ r, a − r + b − s. If any of these conditions fails, then the polynomial at

hand is equal to zero.

(i) If r = 0, then

RT
(r,s,i)

a,b,k (q) = χ(a = k = i = 0)χ(b = s).

Otherwise,

RT
(r,s,i)

a,b,k (q) = q(
k+2
2 )−(a−r+1)(b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×
[
a+ b− s− k − 1

a

]
q

qi(a−r−k+i)

[
r − 1

i

]
q

[
a− r
k − i

]
q

.
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(ii) If a = 0, then

RT
(s)
a,b,k(q) = χ(b = s)χ(k = 0).

Otherwise,

RT
(s)
a,b,k(q) = q(

k+1
2 )−a(b−s) [s+ 1]q

[b+ 1]q

[
a+ b

a

]
q

[
a+ b− s− k − 1

a− 1

]
q

[
a

k

]
q

.

Corollary 5.4.2.1. (i)

RTa,b,k(q) =
q(

k+1
2 )−ab

[a+ b− k + 1]q

[
a+ b

k

]
q

[
a+ b− k + 1

a+ 1

]
q

[
a+ b− k + 1

b+ 1

]
q

.

(ii)

RTa,b,k(q) +RTa,b,k−1(q) =
q(

k
2)−ab

[a+ b− k + 1]q

[
a+ b

k

]
q

×
[
a+ b− k + 1

a

]
q

[
a+ b− k + 1

b

]
q

.

Proof of Proposition 5.4.2.1. We will follow the proof of Proposition 5.4.1.1 quite closely.

Again, we work by induction on a+ b = N . By Proposition 5.3.3.1,

RT
(r,s,i)

a,b,k (q) =q−(a−r+b−s−k−1)
[
r + s

r

]
q

×
b−s−k+i∑
h=i+1

q(
i+1
2 )
[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

RT
(h−1)
a−r,b−s−1,k−i(q).

If r = a then, by induction and Proposition 5.4.2.1.(ii), the only nonzero terms occurs at

i = k and h = b− s. Thus RT
(r,s)

a,b,k(q) equals

q−(b−s−k−1)+(
k+1
2 )
[
r + s

r

]
q

[
b− s− 1

k

]
q

[
b− s+ a− k − 1

b− s− k

]
q

RT
(b−s−1)
0,b−s−1,0(q)

= q(
k+1
2 )−(b−s−k−1)

[
r + s

r

]
q

[
b− s− 1

k

]
q

[
a+ b− s− k − 1

b− s− k

]
q

= q(
k+2
2 )−(b−s) [a]q

[b− s]q

[
r + s

r

]
q

[
a+ b− s− k − 1

a

]
q

[
a− 1

k

]
q

which is the desired formula.
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Now we assume that a > r. The induction hypothesis gives

RT
(r,s,i)

a,b,k (q) = q−(a−r+b−s−k−1)
[
r + s

r

]
q

×
b−s−k+i∑
h=i+1

q(
i+1
2 )
[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

RT
(h−1)
a−r,b−s−1,k−i(q)

= q−(a−r+b−s−k−1)
[
r + s

r

]
q

b−s−k+i∑
h=i+1

q(
i+1
2 )
[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

× q(
k−i+1

2 )−(a−r)(b−s−h) [h]q
[b− s]q

[
a− r + b− s− 1

a− r

]
q

×
[
a− r + b− s− h− k + i− 1

a− r − 1

]
q

[
a− r
k − i

]
q

.

We will rearrange some of the terms in this last expression. We can write

[h]q

[
h− 1

i

]
q

[
h+ r − i− 1

h

]
q

= [r]q

[
r − 1

i

]
q

[
h+ r − i− 1

r

]
q

At this point, only two of the q-binomials depend on h. Therefore we have

RT
(r,s)

a,b,k(q) = qk−(a−r−1)(b−s+1) [r]q
[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

× q(
i+1
2 )+(

k−i+1
2 )+(a−r)(i+1)

[
r − 1

i

]
q

[
a− r
k − i

]
q

×
b−s−k+i∑
h=i+1

q(a−r)(h−i−1)

×
[
r + h− i− 1

r

]
q

[
a− r − 1 + b− s− h− k + i

a− r − 1

]
q

.

Let us examine the sum over h. By putting ℓ = b − s − k − 1, j = b − s − h − k + i,

m = a− r, and n = a, we can apply Lemma 5.4.0.1 to this sum, resulting in the identity

b−s−k+i∑
h=i+1

q(a−r)(h−i−1)
[
r + h− i− 1

r

]
q

[
a− r − 1 + b− s− h− k + i

a− r − 1

]
q

=

[
a+ b− s− k − 1

a

]
q

.
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Now we have

RT
(r,s,i)

a,b,k (q) = qk−(a−r−1)(b−s+1) [r]q
[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×
[
a+ b− s− k − 1

a

]
q

q(
i+1
2 )+(

k−i+1
2 )+(a−r)(i+1)

[
r − 1

i

]
q

[
a− r
k − i

]
q

We compute that (
i+ 1

2

)
+

(
k − i+ 1

2

)
=

(
k + 1

2

)
− ik + i2.

Therefore

T
(r,s,i)

a,b,k (q) = q(
k+2
2 )−(a−r+1)(b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×
[
a+ b− s− k − 1

a

]
q

qi(a−r−k+i)

[
r − 1

i

]
q

[
a− r
k − i

]
q

.

Now we want to show that the sum over i is equal to
[
a−1
k

]
q
. This follows from

an application of Lemma 5.4.0.2 with j = i, ℓ = k, m = r − 1, and n = a− k − 1.

If k = 0, RT
(r,s)

a,b,k(q) = RT
(r,s)
a,b,k(q). Otherwise, we know that

T
(r,s)
a,b,k(q) =qT

(r,s)

a,b,k−1(q) + T
(r,s)

a,b,k(q).

We now know that the right-hand side is equal to

q(
k+1
2 )−(a−r+1)(b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

[
a− r + b− s

a− r

]
q

×([
a+ b− s− k

a

]
q

[
a− 1

k − 1

]
q

+ qk
[
a+ b− s− k − 1

a

]
q

[
a− 1

k

]
q

)
.

Canceling common terms from both sides and using the identity

[a]q[b− s]q = [k]q[a+ b− s− k]q + qk[a− k]q[b− s− k]q.

which follows from Lemma 5.4.0.3 with m = a, n = b− s, and ℓ = k, we get

RT
(r,s)
a,b,k(q) = q(

k+1
2 )−(a−r+1)(b−s) [r]q

[a− r + b− s]q

[
r + s

r

]
q

×
[
a− r + b− s

a− r

]
q

[
a− k + b− s− 1

a− k

]
q

[
b− s
k

]
q

.
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Finally, we sum over r to get the desired formula for T
(s)
a,b (q).

T
(s)
a,b,k(q) =

a∑
r=1

T
(r,s)
a,b,k(q)

= q(
k+1
2 )−ab [s+ 1]q

[b− s]q

[
a− k + b− s− 1

a− k

]
q

[
b− s
k

]
q

×
a∑

r=1

q(r−1)(b−s)
[
r + s

r − 1

]
q

[
a− r + b− s− 1

a− r

]
q

.

Applying Lemma 5.4.0.1 with m = b − s, j = a − r, ℓ = a − 1, and n = b + 1, we

obtain

= q(
k+1
2 )−ab [s+ 1]q

[b− s]q

[
a− k + b− s− 1

a− k

]
q

[
b− s
k

]
q

[
a+ b

a− 1

]
q

= q(
k+1
2 )−ab [s+ 1]q

[b+ 1]q

[
a+ b

a

]
q

[
a+ b− s− k − 1

a

]
q

[
a

k

]
q

.

Proof of Corollary 5.4.2.1. If a = 0, every parking function must remain on the main

diagonal, so we cannot cancel any rows. Therefore

RT0,b,k(q) = χ(k = 0)

which is equal to the given formula when a = 0.

Now assume a > 0. Using Proposition 5.4.2.1.(ii), we have

RTa,b,k(q) =
b−k∑
s=0

RT
(s)
a,b,k(q)

=
q(

k+1
2 )−ab

[b+ 1]q

[
a+ b

a

]
q

[
a

k

]
q

b−k∑
s=0

qas
[
s+ 1

1

]
q

[
a+ b− s− k − 1

a− 1

]
q

=
q(

k+1
2 )−ab

[a+ b− k + 1]q

[
a+ b

k

]
q

[
a+ b− k + 1

b+ 1

]
q

×
b−k∑
s=0

qas
[
s+ 1

1

]
q

[
a+ b− s− k − 1

a− 1

]
q

.

To simplify the sum, we use Lemma 5.4.0.1 with ℓ = b− k, j = b− s− k, m = a, and

n = a+ 1. Thus

RTa,b,k(q) =
q(

k+1
2 )−ab

[a+ b− k + 1]q

[
a+ b

k

]
q

[
a+ b− k + 1

a+ 1

]
q

[
a+ b− k + 1

b+ 1

]
q

.
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To prove Corollary 5.4.2.1.(ii), we examine the case where k = 0. Then our

desired coefficient is equal to RTa,b,0(q). By Proposition 5.4.2.1.(i), RTa,b,0(q) is equal

to the desired formula.

Now we assume k > 0. By Proposition 5.4.2.1.(i), RTa,b,k−1(q) + RTa,b,k(q)

equals

q(
k
2)−ab

(
qk

[a+ b− k + 1]q

[
a+ b

k

]
q

[
a+ b− k + 1

a+ 1

]
q

[
a+ b− k + 1

b+ 1

]
q

+
1

[a+ b− k + 2]q

[
a+ b

k − 1

]
q

[
a+ b− k + 2

a+ 1

]
q

[
a+ b− k + 2

b+ 1

]
q

)

=
q(

k
2)−ab[a+ b]q![a+ b− k + 1]q![a+ b− k + 1]q

[a+ b− k + 1]q![k]q![a+ 1]q![b− k + 1]q![b+ 1]q![a− k + 1]q!

×
(
qk[b− k + 1]qa− k + 1 + [k]q[a+ b− k + 2]q

)
.

We can write the inner sum simply as [a + 1]q[b + 1]q after setting ℓ = k, m = a + 1,

and n = b+ 1 in Lemma 5.4.0.3. Gathering terms into binomial coefficients concludes

the proof.

5.4.3 Valley-decorated cases

One may notice that we have only proved q-binomial formulas for the rise-decorated

polynomials in this section. We should explain why we do not have analogous results

for the valley-decorated polynomials at this point. The main reason is the historical de-

velopment of the Delta Conjectures. The Rise Version of the Delta Conjecture has been

circulated since early 2014, while the Valley Version is only a few months old and has

not received the same amount of study.

However, there are some real barriers in the Valley Version case. First, compu-

tations performed in Sage suggest that V S
(h)
a,b,k(q) does not always factor as a product of

q-binomial coefficients1. For example,

V S
(2)
3,2,2(q) = q−3[4]q

(
q4 + 2q3 + 2q2 + q + 1

)
.

1Interestingly enough, the polynomials V S
(r,s,i,j)
a,b,k (q) do seem to factor into q-binomial coefficients,

so the summation is the problem.
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This would mean that the methods we used above would be unlikely to work in this case.

These computations are still preliminary, but they suggest that this case may be difficult.

In the valley-decorated two-car case, we do not have the same issue. In fact, the

same computations suggest the surprising identity

V T
(h)
a,b,k(q) = RT

(h)
a,b,k(q)

which we cannot prove at this moment. The difficulty in this case comes from the re-

cursion in Proposition 5.3.4.1. In particular, we have not been able to find a way to

rearrange the q-binomial coefficients so that fewer than three q-binomial coefficients de-

pend on g. All of our current q-binomial coefficient lemmas involve sums over at most

two q-binomial coefficients. Perhaps this issue can be addressed by finding another re-

cursion or by employing more sophisticated techniques, such as those coming from the

study of hypergeometric series or the automated techniques developed by Petkovsek,

Wilf, and Zeilberger [PWZ96].



Chapter 6

Future Directions

In this final chapter, we discuss several ways in which our research could be

extended in the future. While we intend on investigating these areas ourselves, we wel-

come other mathematicians to think about these problems on their own or to ask their

own questions. Although we have done our best to extend the knowledge of the Shuffle

Conjecture to our Delta Conjectures, the huge amount of existing work on the Shuffle

Conjecture makes this an impossible task for a single mathematician.

6.1 A Refinement of the Delta Conjectures

The original Shuffle Conjecture has seen a number of refinements based on how

the underlying Dyck paths return to the main diagonal. In this section, we review these

refinements and explain the issues involved in their transition to the setting of the Delta

Conjectures.

In [GH01], Garsia and Haglund define polynomials En,r via the plethystic equa-

tion

en

[
X
1− z
1− q

]
=

n∑
r=1

(z; q)r
(q; q)r

En,r

where (a; q)n = (1 − a)(1 − aq) . . . (1 − aqn−1). One can show that
∑n

r=1En,r = en.

In [Hag04], Haglund conjectured that

∇En,r =
∑
P

qdinv(P )tarea(P )xP

129
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where the sum is over word parking functions P ∈ WPFn with exactly r returns to the

main diagonal.

In [HMZ12], Haglund, Morse, and Zabrocki refine this conjecture further. Given

a composition α ⊨ n of length r, they define

Cα[X; q] = Cα1 . . .Cαr1

via the operator

Cmf [X] = (−1/q)m−1
∑
i≥0

q−ihm+i[X]hi[X(1− q)]⊥f [X]

for any symmetric function f . We have used the skewing operator, which is defined by

⟨f⊥g, h⟩ = ⟨g, fh⟩.

The authors then conjecture that

∇Cα[X; q] =
∑
P

qdinv(P )tarea(P )xP

where the sum is over word parking functions P ∈ WPFn whose r returns to the main

diagonal come after exactly α1, α1 + α2, …north steps.

Unfortunately, the full generality of these conjectures do not hold in the delta

setting. In particular, the symmetric functions ∆ekEn,r are not in ΛN[q,t] or even ΛZ[q,t],

i.e. they are not positive or even polynomial in the monomial basis. For example,

∆e1E2,1 =

(
qt− 1

q

)
m1,1 −

1

q
m2.

This makes it essentially impossible to provide a combinatorial formula for these poly-

nomials.

However, we can salvage these conjectures in the Catalan case. In order to formu-

late these conjectures, we consider unlabeled Dyck paths with respect to leaning stacks,

as defined in Subsection 1.3.2. We compute statistics on these objects by taking their

maximum possible value among all labelings; this is analogous to how dinv is computed

on Dyck paths. Then we have the following conjectures.
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Figure 6.1: This Dyck path and stack pair is assigned to the composition α = (2, 1).

Conjecture 6.1.0.1 (Compositional Catalan Delta Conjectures). For any integers 1 ≤
k < n and any composition α ⊨ n,

⟨∆′ekCα, en⟩ =
∑

S∈Stackn,k

∑
D

qhdinv(D)tarea(D)

=
∑

S∈Stackn,k

∑
D

qwdinv(D)tarea(D).

where the second sums are over D ∈ D(S) whose intersections with southeast edges of

boxes in S occur exactly after α1, α1 + α2, …north steps.

For example, the Dyck path and stack pair in Figure 6.1 would be assigned the

composition α = (2, 1).

We obtain the ⟨−, en⟩ case of the Compositional Shuffle Conjecture when k =

n − 1. It would be interesting to see what other refinements can be made and if any

of these refinements are amenable to proof. For example, it was obtaining a recursion

for ⟨∇En,r, en⟩ that finally allowed Garsia and Haglund to prove the Catalan case of the

Shuffle Conjecture [GH03].

6.2 An Extension of the Delta Conjectures

In this section, we propose a generalization of the Delta Conjectures that we

hope will lead to a better understanding of the delta operators in general. In particular,

we will conjecture a formula for the symmetric function ∆′ek∆hℓ
en. In order to state this

conjecture, we need to define a new generalization of parking functions. Given a Dyck

path D ∈ DN , we obtain a parking function with ℓ blank valleys by labeling N − ℓ of

the north steps of D with positive integers such that

• the labels strictly increase up each column, and
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2

4

1

3

5

2

Figure 6.2: An element P ∈ WPFBlank
8,2 with area(P ) = 6 and dinv(P ) = 4.

• each of the ℓ north steps that does not receive a label is a valley, i.e. it occurs

immediately after an east step.

We have drawn an example P ∈ WPFBlank
8,2 with area(P ) = 6 and dinv(P ) = 4 in

Figure 6.2. More precisely, to compute dinv we count the pairs (1, 5), (2, 3), (2, 4),

(2, 5), (4, 5), and (7, 8) and then subtract ℓ = 2.

We will write the set of all such labelings asWPFBlank
N,ℓ . Each P ∈ WPFBlank

N,ℓ

inherits the area statistic from its underlying Dyck path, i.e. area(P ) = area(D(P )) and

areai(P ) = areai(D(P )). The diagonal inversion statistic must be stated more carefully.

We say that dinv(P ) counts the number of pairs (i, j) with 1 ≤ i < j ≤ N such that

• areai(P ) = areaj(P ) and either row j is blank or neither row is blank and ℓi(P ) >

ℓj(P ), or

• areai(P ) = areaj(P ) + 1 and either row j is blank or neither row is blank and

ℓi(P ) < ℓj(P )

minus ℓ. Recall that ℓi(P ) is the label in the ith row of P . One can check that when

ℓ = 0 this recovers the usual notion of diagonal inversions on parking functions. Now

we can state our conjectured combinatorial interpretation.

Conjecture 6.2.0.2. For any positive integers n, k, and ℓ with k < n,

∆′ek∆hℓ
en =

∑
P∈WPFBlank

n+ℓ,ℓ

qdinv(P )tarea(P )xP
∏

i:wi(P )>wi−1(P )

(
1 + z/twi(P )

)∣∣∣∣∣∣
zn−k−1
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We note that Conjecture 6.2.0.2 directly generalizes the Rise Version of the Delta

Conjecture but not the Valley Version; it would be interesting to develop a connection

between the Valley Version and this conjecture.

Currently, all evidence we have for Conjecture 6.2.0.2 is data computed in Sage.

It would be interesting to prove some special cases of the conjecture, like we have done

for the Delta Conjectures. In particular, it would be interesting to investigate the q = 0

or t = 0 cases of this new conjecture. The relevant objects are an extension of ordered

set partitions, but it is unclear what statistics appear and if we can show these statistics

are equidistributed. It also seems as if the Catalan case of this conjecture, i.e. taking

scalar products of both sides with en, has some approachable recursions. In fact, any of

the work in this dissertation could feasibly be extended from the Delta Conjectures to

Conjecture 6.2.0.2.

Finally, it is straightforward to adjust Conjecture 6.2.0.2 to obtain a conjectured

formula for the symmetric function ∆ekhℓ
en. It would be nice to use the identity ekhℓ =

sℓ,1k +sℓ+1,1k−1 to obtain a conjectured formula for ∆sλen for any hook shape λ. Further

in this direction, we may hope to eventually have some combinatorial understanding of

any symmetric function of the form ∆fen for any f ∈ Λ, perhaps by understanding

∆sλen or possibly ∆eλen for all partitions λ.

6.3 Cyclic Sieving

We would also like to investigate whether our objects have any relationship to

the cyclic sieving phenomenon of [RSW04]. Given a set of objects X , an action of the

cyclic group C = ⟨c⟩ of order n on X , and a polynomial X(q), the triple (X,C,X(q))

is said to exhibit the cyclic sieving phenomenon if

#{x ∈ X : cd(x) = x} = X(e2πid/n)

for every integer 1 ≤ d ≤ n. In words, plugging roots of unity into the polynomial

X(q) recovers the sizes of fixed point sets for the action of C on X . This phenomenon

suggests a particularly strong relationship between the generating functionX(q) and the

set X .
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Since its introduction, many authors have shown that various sets of combina-

torial objects exhibit the cyclic sieving phenomenon; their work is nicely surveyed in

[Sag11]. Perhaps the most relevant instance for us is the Catalan case. For any positive

integer n, we set X to be the set of non-crossing partitions of the integers {1, 2, . . . , n}.
We can draw such a partition by writing the integers 1 through n around a circle and

connecting adjacent integers that share a block in the partition. Non-crossing partitions

are the ones whose connecting arcs do not cross in such a depiction. The group Zn = ⟨c⟩
acts on X by rotation by 2π/n radians. If we set X(q) = 1

[n+1]q

[
2n
n

]
q
, then (X,C,X(q))

exhibit the cyclic sieving phenomenon [RSW04]. Much work has been done to refine

this case (by number of blocks, for example). Conjecture 6.2.0.2 suggests a natural gen-

eralization of Dyck paths: Dyck paths with some number of decorated double rises and

some number of decorated valleys. One can translate these objects to decorated non-

crossing partitions via standard bijections between the non-crossing partitions and Dyck

paths. It would be interesting to see if these decorated objects, or some similar set of

objects, exhibit a cyclic sieving phenomenon.

6.4 Other Problems

We have already seen at least two straightforward ways in which our work could

be extended. The first is Conjecture 2.4.4.1, in which we proposed a distribution for the

statistic minimaj on ordered multiset partitions. The second is in Chapter 5, where we

were able to prove formulas for the Rise Version of the Delta Conjecture at t = 1/q

but not the Valley Version; it would be nice to develop the same results for the Valley

Version.

On the other hand, there are several potential extensions of our work that are

currently less concrete. For example, there have been several efforts to extend (at least

part of) the Shuffle Conjecture to other reflection groups [Stu10]. It would be interesting

to see if the Delta Conjectures can be generalized in the same way. In particular, there is a

notion of an ordered set partition for any reflection group; given the Coxeter hyperplane

arrangement for a reflection group, an ordered set partition is defined to be an intersection

of some number of regions which have been closed along their adjacent hyperplanes.
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123

1|2|3

1|3|2

3|1|23|2|1

2|3|1

2|1|3

12|3

3|12

1|23

23|1 13|2

2|13

Figure 6.3: The set OP3, depicted as intersections of closed Coxeter regions.

In Figure 6.3, we have drawn the Coxeter arrangement for the symmetric group S3.

The regions are labeled by permutations, i.e. ordered set partitions with 3 blocks. The

intersections of their closures are the 6 rays, which are each labeled (in blue) by an

ordered set partition with 2 blocks. The intersection of all the rays is the origin, which

receives the label 123 (in red), the only ordered set partition with 1 block.

It would be interesting to see any of our ordered set partition statistics could be

generalized to this setting, particularly if the generalized statistics were equidistributed.

Finally, there has been a huge amount of research recently on rational extensions

of the Shuffle Conjecture [BGLX14, ALW14, GLWX15b]. In Chapter 5, we even used

some of this work to prove a Schur positivity result for our delta operator at t = 1/q.

It seems possible that there is a stronger connection between the ''rational world'' and

our ''delta world,'' and this possibility should be investigated. At the very least, one

can explore if decorating double rises or falls of rational parking functions leads to any

interesting conjectures.



Appendix A

Completing the Proof of Proposition

2.2.3.1

In this appendix, we prove the following statement, which appears as (2.7) in

Proposition 2.2.3.1:

Valn,k(x; 0, q)|Mα
=

∑
π∈OPα,k+1

qminimaj(π).

We will define a map

γα,k : OPα,k+1 → {P ∈ PFDense
n,k : wdinv(P ) = 0, xP =

ℓ(α)∏
i=1

xαi
i }.

Then we will prove that this map is a bijection which satisfies area(γα,k(π)) = minimaj(π).

Given π ∈ OPα,k+1, we consider the permutation τ = τ(π) as in the definition of

minimaj. Let T be the positions of τ of the entries which are minimal in their blocks in

π. We define the runs of τ to be its maximal, contiguous, weakly increasing sequences.

For convenience, we label the runs from right to left, saying that the rightmost run is the

0th run. Say that τ has s runs, and define positive integers n = r0 > r1 > . . . > rs = 0

such that the ith run of τ is equal to τri+1+1 . . . τri . Define bi1 < . . . < bipi to be the

positions of entries in the ith run of τ which are the leftmost entries in blocks which are

entirely contained in the ith run of τ . Finally, for each i < s− 1, set bi0 to be the position

of the leftmost entry in τ which shares a block with τrs−i
.

136
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For example, set π = 13|23|14|234 with τ = 312341234. We decorate τ with

bars after its minimal elements to obtain 31|23|41|234. τ has 3 runs with r3 = 0, r2 = 1,

r1 = 5, and r4 = 9. Using dashes to separate the runs, we get 3 − 1|23|4 − 1|234. We

compute b01 = 7, b00 = 5, b11 = 3 and b10 = 1. Since the leftmost run does not contain any

blocks, there are no b2j 's.

We define γα,k(π) as follows. For i = 0 to s−1, we will insert the elements of the

ith run of τ such that their rows inP each have area equal to i. After each i, we will obtain

a partial densely labeled Dyck path P (i+1), which is densely labeled Dyck path whose

set of labels does not necessarily form a composition. We begin with the empty densely

labeled Dyck path P (0). To create P (1), we begin with the Dyck path (NE)p0 . We label

the squares from top to bottom with the sets τb01 . . . τb02−1, τb02 . . . τb03−1, …, τb0p0 . . . τn.

Now we insert the entries τb00 . . . τb01−1 in a slightly more complicated fashion. We find

the maximum entry in the northernmost square which is less than τb00 ; call this element

c. By the definition of τ , such a c must exist. We insert a north step and then an east step

immediately after the north step adjacent to this northernmost square. The new north

square receives the label τb00 . . . τr1 . The new east square's label contains τr1+1 . . . τb01−1

along with the entries in c's square which are greater than c. In other words, we move

these entries from c's square to the new east square. The result is P (1). We can check

wdinv(P (1)) = 0.

For greater values of i, we "repeat'' this process as follows. We repeatedly insert

τbij . . . τbij+1−1 for j = pi down to 1 just above the last east step added above. We leave

the labels τri+1 . . . τbi−1
1 −1 in their east square and push the labels that were originally in

c's square that are greater than c so that they are always in the highest east square with

area equal to i− 1. Then we find the maximum entry c in the northernmost square with

area i such that c < τbi0 and add new north and east squares as described above. The only

remaining case to consider is if there is no bi0; then the new east squares label is just the

entries in c's square which are greater than c. We produce an example in Figure A.1.

We note that, at each step, we have introduced zero wdinv, so γα,k indeed maps

to the paths

{P ∈ PFDense
n,k : wdinv(P ) = 0, xP =

ℓ(α)∏
i=1

xαi
i }.
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234 23

4 14

23

4 1

23 4

23

4 1

2

3 13 4

Figure A.1: We compute ϕ(2,2,3,2),3(13|23|14|234). From left to right, we depict P (1),

P (2), P (3), and finally P (4).

To see that γα,k is injective, we construct its inverse. We begin with the squares at max-

imum area in P . We remove them from top to bottom, using their labels to construct the

blocks in the leftmost run in τ . When we only have one square remaining at that area,

we remove that square and form a block that consists of the labels in that square along

with the smaller labels in the east square just to the right of that square (if there are any

such labels). Then we move the larger labels into the north square below the square we

just removed. We continue at the next largest area until all squares have been removed.

Next, we claim that γα,k is surjective. Carefully inspecting the image of γα,k, we

note that it contains any P ∈ PFDense
n,k with wdinv(P ) = 0 with the additional condition

that every nonempty east square occurs either adjacent to the lowest two north squares

with a given area or to the right of the uppermost north square at a given area. Essentially,

if we see something of the form

A
B C
D E
F G

then we must have E = ∅. It only remains to show that this condition is necessary in

order to have wdinv(P ) = 0. If E ̸= ∅, it contains some element e. For f = min(F )

and d = min(D), we must have e < f ≤ d, since we have zero total wdinv, so e < d.

In order to have zero wdinv, e cannot be involved in any more diagonal inversions.

However, either e > a = min(A) or e ≤ a < b = min(B), so e is involved in at least

one more diagonal inversion, meaning that the total wdinv cannot be zero. Thus we must

have E = ∅.
Finally, we need to show that area(γα,k(π)) = minimaj(π). By definition, the
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minimum major index of π is equal to maj(τ), which is equivalent to the sum

s−1∑
i=0

i(# of elements in run i in τ).

Since each element of the ith run in τ is placed in a square with area i in γα,k(π), we

have area(γα,k(π)) = minimaj(π).
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