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ABSTRACT OF THE DISSERTATION

Reliability Engineering for Long-term Deployment of Autonomous Service Robots

by

Shengye Wang

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Henrik I. Christensen, Chair

Current service robots perform flawless demos under close human supervision, but they

often fail when working autonomously in long-term deployments. This dissertation studies the

failures in long-term autonomous service robots and proposes methods to improve their reliability.

We built TritonBot, a receptionist and tour-guide robot, as a realistic example to discover

the failure modes of a long-term autonomous service robot. TritonBot recognizes people’s faces,

talks to people, and shows people the labs and facilities in a university building. We deployed

TritonBot for hundreds of hours to identify failure modes and common issues on service robots.

Following the experience from TritonBot, we designed two reliability engineering methods

to improve the robustness of service robots. First, we found software encapsulation and dynamic

xvi



orchestration streamline development workflows and avoid resource contention in service robots.

Software encapsulation allows the developers to pack software into self-contained containers

and simplify development workflows, and dynamic orchestration schedules the components on

demand to avoid CPU/memory resource contention. We developed Rorg, a Linux container-based

scheme to manage software components on service robots. Second, we found simulating a broad

spectrum of rare failures at system level exposes design flaws and improves the robustness of

service robots. Design errors in robotics are challenging to discover due to the need for extensive

and resource-demanding testing. Broad-spectrum system-level failure injection exposes both

software- and hardware-related design flaws and assists developers in reproducing rare failures,

verifying the fixes, and testing the robustness of a robot system. We implemented RoboVac, an

extensible and convenient fault injection framework that works at the system level and covers

many failure patterns seen in long-term autonomous service robot deployments.

After working with TritonBot for two years and implementing reliability engineering

methods, we concluded a few design principles for a long-term autonomous service robot at

different levels in the system hierarchy. These design principles guide robust and reliable long-

term autonomous service robot designs.

We use a set of automated tools, engineering methods, and design principles to build

service robots that are available 24×7, and we call it “Reliability Engineering for Long-term

Deployment of Autonomous Service Robots.”
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Chapter 1

Introduction

Robotic research and application are advancing at an incredible rate over the last few

years. The industry has begun adopting collaborative robots that can work with humans side

by side; self-driving, flying, underwater, and space robots are playing more significant roles in

commercial applications. We are on the edge of seeing service robots getting ready to assist

people in real homes and offices [1]. However, although current service robots perform flawless

demos and win applause under controlled settings with an operator’s guidance, they tend to fail in

prolonged work without close supervision. The lack of long-term autonomy has become one of

the major obstacles that prevent more extensive use of service robots in our daily life.

Previous research studied long-term autonomy in navigation [2], deployment [3], and

human-robot interaction [4, 5], but few of them investigated the system reliability. With the

enhancement of the robot system integration, failures reduce the availability of service robots and

thus prevent its scale-up [3, 6]. This dissertation studies reliability engineering in service robots

and applies reliability engineering methods to software infrastructures, testing approaches, and

robot system design.
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1.1 Motivation

While many researchers have built service robot prototypes that work perfectly under

close supervision, deploying an autonomous robot in an open environment for a long time is not

always trivial. In our early experience with a tour-guide robot prototype, TritonBot, even with

relatively decent engineering practice, we still found many reliability issues in several aspects,

including hardware, software, networking, human-robot interaction, and so on during its initial

deployment [6]. These problems reduced the usability of the TritonBot system, which effectively

degraded the autonomy of TritonBot. In addition to TritonBot, other service robot systems suffer

from similar issues [2, 4, 3].

Without long-term autonomy, service robots are more likely to hinder than help — besides

the inconvenience of service disruption to the end-user, the developer or the user would have to

manually intervene in the running of a service robot and take measures to fix it. Unfortunately,

the lack of resilience rooted in the research and prototype robot system development — many

developers tend to find the simplest method to make the robot “just to work” — and the ad-hoc

solutions usually lead to a fragile system that has difficulties in feature iterations and failure

analysis. The absence of “reliability thinking” drives the robots away from long-term autonomy,

in which the robots continue to work and evolve over an extended period.

Yet service robot reliability engineering did not receive much attention until recently when

more service robots start to show up in airports, shopping malls, and hotels to provide services [7].

With research in reliability engineering, we hope to improve the usability of service robots and

close the gap between the status quo and the expectation that they can enter homes and offices

settings to assist people in their daily lives.
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1.2 Thesis Statement

The design of robust robot systems for service applications poses a significant challenge.

In this dissertation, the primary hypothesis tested is:

Software encapsulation and dynamic orchestration streamline development

workflow and reduce resource contention in service robots; simulating a broad

spectrum of rare failures at system level exposes design flaws and assists

developers in improving the robustness of service robots.

The following approach has been pursued to verify the hypothesis:

1. Identification of typical failure modes in service robots that require intervention using a

tour-guide robot application.

2. Design of reliability engineering methods for long-term autonomous service robots:

• Scalable software infrastructure with encapsulation and dynamic orchestration to

streamline development workflow, to optimize resources scheduling, and to auto-

recover components under failures.

• Simulating a broad spectrum of rare failures using system-level fault injection to

detect design errors and improve the robustness of service robots.

3. Summarization of design principles to improve the reliability of service robot, and evalua-

tion of the benefits of the reliability engineering methods and tools using a tour-guide robot

application.

1.3 Problem Scope

Reliability is a broad concept in robotics. Different robot systems have different character-

istics and therefore different challenges in reliability. While many problems and solutions in this
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dissertation apply to different kinds of robots, we focus on long-term, autonomous service robots.

Service Robots

There are different kinds of robots, including industrial robots, autonomous driving

vehicles, unmanned aerial vehicles, underwater vehicles, and so on. Some of these robots execute

repeated and identical tasks in structured environments. In contrast, service robots perform a

broad spectrum of useful services for the well-being of humans; they work in less-predictable

semi-structured environments. Examples of current service robot applications include providing

information, guiding tours, delivering packages/food/drink, and others [1]. The variable and

diverse usages expand the possible points of failures on service robots, but the all-purpose

generalization also relaxes the user’s tolerance on the robots.

Long-term Autonomy

Many robots are used for a relatively short amount of time: an underwater robot in

scientific research only accompanies a diver on work for a few minutes or hours. Autonomous

driving cars deliver passengers a few hours before they go back to a garage daily where engineers

have a chance to refuel and inspect. On the other hand, a deep spacecraft needs to work

autonomously for years before it reaches its destination.

Although service robots have the chance to charge daily, they are expected to be au-

tonomous for a few months, and should only require maintenance at an interval of years. Without

long-term autonomy, a service robot brings more troubles than services. The users will frequently

try to operate/fix the robot instead of enjoying its convenience. The robot can update its software

and reboot at nighttime (much like the current smartphones); user-doable maintenance task may

happen once per a few months, similar to household appliances such as coffee machines; but

maintenance tasks requiring professionals should occur much less frequently, as a well-designed

automotive only requires a yearly oil change and seldom repair.
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Failures Modes

Failure may happen in any aspect of a service robot system, and an all-in-one solution is

generally not feasible. Many software failures are transient, detectable, and often recoverable.

Hardware failures are detectable but usually hard to be fixed by the robot itself. Other failures,

such as human-robot interaction failures, represent individual sub-fields in robotics and requires

special handling. This dissertation emphasizes software failures in which appropriate engineering

practice can reduce, mitigate, and solve the problems. Besides, we also discuss other detectable

failure modes.

1.4 Summary of Contributions

This dissertation makes four major contributions: (1) identifications of typical failure

modes in service robots using TritonBot, a realistic service robot application. (2) demonstration

that, through software encapsulation and dynamic orchestration, it is possible to streamline

development workflow and reduce resource burden for service robots. We implemented the

software encapsulation and dynamic orchestration using Rorg, a scalable software management

system for service robots. (3) demonstration that, by using fault injection involving hardware,

software, and other failures, it is possible to expose design flaws without extensive and resource-

demanding testing in service robots. We developed RoboVac, a system-level fault injection

framework that simulates a broad spectrum of rare failures to illustrate the use of fault injection

in robot systems. (4) summarizing design principles that improve the reliability of service robots.

1.4.1 Identifications of Failures Modes using TritonBot

Existing research covered failure modes of long-term autonomous service robots in

human-robot interaction [8, 9], localization and navigation [2], long-term deployment [3], but

none of them studied system reliability for a service robot with reasonable system complexity.
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We built TritonBot, a building receptionist and a tour-guide robot, to identify the failure modes in

long-term autonomy with an emphasis on system failures. TritonBot recognizes people’s faces,

talks to people, and shows people the labs and facilities in the building.

TritonBot leverages commercial platforms designed for service robots [10] and software

stack widely used by many other service robots [11]. It has long-term memory, and it performs

multiple tasks (e.g., receptionist and tour guide) without reprogramming. The tour guide task in

open space is slightly challenging but not too difficult, which is similar to other tasks performed by

service robots today. In general, TritonBot represents modern service robots and their applications

in terms of the system architecture.

After a few deployments, we qualitatively and quantitatively studied the failures in

TritonBot and learned first lessons in software, hardware, and human-robot interaction [6, 12].

1.4.2 Scalable Software Management and Orchestration

Experience from TritonBot shows two challenges in scaling up robot software: First,

when the number of software components increases, organizing, deploying, and monitoring them

become tedious and error-prone to the operators. Second, because of the power budget and

weight limit, computationally intensive software often exhausts all the computing resources in an

on-robot embedded computer.

Similar platforms have similar challenges but different solutions. Although smartphone

platforms such as iOS and Android are also size- and weight-constrained, they only need to keep

a single independent user-facing and can easily stop inactive non-foreground tasks. Datacenter

applications are composed of several components that depend on each other like service robots,

but scaling-up in datacenter mainly means spawning more instances of the same program to

handle requests from the users while scaling-up in service robots means adding more features to

the system. Because of the multi-component nature and limited computing resources, scheduling

strategies in iOS and Android from the smartphones, as well as management tools like Borg [13],
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Mesos [14] and Kubernetes [15] from the datacenters, do not apply to service robots.

Software encapsulation and dynamic orchestration were rarely used in the robotics com-

munity due to the lack of a systematic approach and an appropriate tool. To enable scalable

software management in service robots, we implemented software encapsulation and dynamic

orchestration on service robots and designed a software infrastructure “Rorg” that orchestrates,

monitors, and auto-recovers software components. Rorg integrates with ROS [11], the de facto

standard robotic middleware. It leverages Linux containers to encapsulate and organize software.

Using dynamic orchestration, it decreases on-robot computer resource usage without introducing

noticeable latency in the robot’s actions. In addition to methods and tools to automate devel-

opment workflow and optimize resource scheduling, this work also provides experience and

quantitative results showing the benefits of automation in the software system of service robots.

The experimental results from Rorg show that software encapsulation and dynamic

orchestration in service robots reduce maintenance burden and avoid resource contention. The

principles underneath in Rorg, including self-contained component encapsulation and automatic

life-cycle management with dependency resolution, ease maintenance burden and save computing

resources. These principles are useful not only in service robots but also in similar computer

systems composed of numerous simultaneously running tasks that have limitations in computing

resources.

1.4.3 Broad-spectrum System-level Failure Simulation

Failure propagation happened during the TritonBot deployment led us to a lesson that

many service robots are not prepared for failures. Design errors in robotics are difficult to

discover due to the need for extensive and resource-demanding testing.

Fault injection is a conventional technique to reproduce rare errors in normal operations.

While simulating errors was common in software engineering, replicating a broad-spectrum of

errors, including hardware failures, is a less-typical practice in robotics. Existing fault injection
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methods in pure software systems only consider input/output in computer media such as disk

and networking, but service robots interact with the physical environment. Previous works in

robotics inject failures to individual components like navigation [16, 17, 18], or they only work

in simulations [19]. However, no existing effort covers a broad spectrum of failures at the system

level that usually happen in a real service robot deployment.

We illustrated the advantage of broad-spectrum system-level failure simulation for service

robots by implementing RoboVac, a fault injection framework with broad coverage of failure

patterns seen in long-term autonomous service robots. RoboVac is a toolbox that applies various

methods to inject general failures to software processes, software communication layers, and

networking in addition to individual components like robot actuators and navigation stack.

RoboVac generates a broad spectrum of failures, which helps developers to observe the robot’s

behavior under failures, to discover unexpected design errors, and to benchmark a robot system’s

resilience. We applied RoboVac to TritonBot; it covered all of the failure patterns we have seen

in previous deployments, it exposes hidden design flaws that otherwise are hard to discover, and

it helped the developers to verify the fixes and test the robot’s robustness.

Through the RoboVac experience, we verified that system-level fault injection could repli-

cate a broad spectrum of erroneous conditions in cyber-physical systems with only minor changes

to an existing system. These injected failures expose design flaws and allow the developers to

understand the robot’s behavior under unexpected conditions, verify fixes, and prepare the robots

for future failures.

1.4.4 Summarization of Design Considerations in Service Robots

Previous research concluded a few design guidelines for building a robot system using

ROS [20]. From our two-year TritonBot deployment, we summarized the design experience and

principles that will help developers to build service robots with the autonomy of months and/or

years.
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During the past two years, we regularly do maintenance, fix issues, and roll out new

features on TritonBot. We improved the TritonBot system with more robust human detection,

speech interaction, logging, and so on. We summarized the deployment history and the issues that

occurred during the deployments. We identified reliability engineering challenges in three aspects

of long-term autonomy: scalability, resilience, and learning. We formulated various techniques to

confront these challenges, and we applied the above methods, including infrastructure engineering

and fault injection to TritonBot. We concluded a list of practical design principles and rules

that we can use as a “toolbox” to guide a robust and reliable long-term autonomous service

robot design. From the case study of a tour-guide robot, TritonBot, this dissertation shows that

reliability engineering reduces manual interventions and increases the availability of service

robots.

1.5 Outline of the Dissertation

The dissertation is structured as follows: Chapter 2 discusses the background of reliability

engineering and related work in service robots. Chapter 3 presents the design of TritonBot,

a realistic example of service robots. We summarize the early lessons observed in TritonBot.

Chapter 4 discusses scalable software management in service robots and presents Rorg, a software

management system that leverages Linux containers to deploy and monitor software for service

robots. Chapter 5 discusses using broad-spectrum system-level fault injection to test service

robots and presents RoboVac, a fault injection framework, for testing and improving the reliability

of service robots. Chapter 6 presents the full deployment history of TritonBot and summarizes

design considerations and principles that improve the reliability of service robots. Chapter 7

discusses general reliability engineering and future works in service robots, and it concludes this

dissertation.
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Chapter 2

Background

There are previous research and engineering efforts in all of the reliability engineering,

long-term autonomy, and various service robots. This section investigates the background and

related works of these fields.

2.1 Long-term Autonomous Service Robots

A few pioneering long-term autonomous systems share similar goals with this dissertation,

for example: CoBots, STRANDS, BWIBots, and the classic Sage.

CoBots [21], the collaborative robots from Carnegie Mellon University is a long-term

autonomy system with multiple mobile robots that serve users in a building. They have traveled

over 1,000 km in total. Targeting at building-wide, the CoBot robots project intensively study

long-term mapping, localization, and navigation under an unstructured environment. They receive

tasks from a website interface and use a touchscreen to interact with people, but they actively

seek help from a human when the tasks are beyond their capability, such as pressing an elevator

button or making coffee in the kitchen [22]. The developers studied the robustness of the system

using the number of interventions and the mean distance (in km) traversed between interventions.

The European STRANDS project [3] deployed four robots for security and health-care
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scenarios. They gather knowledge about a human-inhabited environment. With auto-charging

capability, the robots reached a few weeks of autonomy with a single deployment, and the long-

term study continued for years. The STRANDS robots have two roles: security and care. The

security robots monitor an indoor office environment, and they generate alerts after detecting

prohibited or unusual events. The care robots work in an elderly care facility; they guide visitors,

provide information to residents, and assist in walking-based therapies.

BWIBots [4] is a custom-designed multi-robot platform for AI, robotics, and HRI that

aims to be an always-on, permanent fixture in the University of Texas at Austin Computer Science

building. They listen to human’s speech from afar, ask questions and understand human intentions,

and also execute a sequence of actions to complete user’s requests.

The classic Sage [23] was a long-term autonomous tour-guide robot deployed in 1998.

Sage worked in a natural history museum and promoted many smaller but equally important

exhibits in the dinosaur hall. Even with many people (including many children) interacting

with it, Sage achieved 135 autonomous, error-free, and totally unsupervised operation days.

The developers summarized the deployment statistics, bugs and issues, and the improvements

throughout the Sage deployment. Sage provided a snapshot of the early tour-guide robots.

Although the sensors are quite similar to the tour-guide robots nowadays, software technologies

such as localization, navigation, and voice recognition and synthesis have significantly improved

since then.

These research projects studied robotic reliability from different perspectives. CoBots

focused on mapping, localization, and navigation. STRANDS emphasized very-long-term

deployments but with a potentially more structured task such as security patrol. BWIBots has the

center of human-robot interaction. Sage was an early attempt to study robotic reliability 30 years

ago, but the algorithms, tools, and best practices for robotic systems have developed significantly

since then. This dissertation studies the reliability of long-term autonomous service robots from a

system perspective.
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2.2 Tour-guide Robots

Tour guiding had been a practical scenario to evaluate many technologies in robotics. Tour-

guide robots in history provide valuable experiences in robot design and deployment. Table 2.1

listed a few highly-recognized successful tour-guide robots.

Sage [23] worked in the Carnegie Museum of Natural History for 174 days, and it

achieved 135 error-free days. RHINO [24] worked at Deutsches Museum Bonn; it moved at

0.8m/s, and it proactively found people to engage them. Minerva [25] was deployed in the

Smithsonian Museum of American History for 14 days, traveled 44 km, gave 620 tours, and

showed 2600 exhibits. Pearl and Flo [26] provided guidance for elderly people in an elderly

living facility. Robox [27] was a robot installed in the Swiss National Exhibition expo.02 with

unique multi-modal interaction capabilities. Jinny [28] guided visitors from a hallway to a room

in a research facility, but it targeted for museums. RoboCart [29] was a shopping assistant that

helps visually impaired customers navigate a grocery store and carry goods. Urbano [30] was

an interactive tour guide in exhibitions; it was also used to demonstrate and test autonomous

navigation algorithms. Robotinho [31] is a humanoid robot that entertains people with intuitive,

multi-modal interaction. The nine TOOMAS robots [32] traveled together 2187 kilometers

in three different home improvement stores in Germany; they guided 8,600 customers to the

locations of their products of choice. CATE [33] was an outdoor tour robot that moved along a

series of waypoints marked by RFID tags. Konrad and Suse [34] were tour guides in a multi-floor

building at Ilmenau University of Technology; they were able to track people using the leg, face,

motion, and upper-body detectors. Obelix [35] was an outdoor robot that works in crowded urban

areas; it was able to travel 3 km autonomously through the city center of Freiburg. SPENCER [36]

was a robot deployed Schiphol airport that guided passengers from passport control point to local

connections gates. A health-check robot [37] in a hospital guided users through a list of scheduled

examinations; it leverages a remote, centralized schedular to optimize examinations for different
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Table 2.1: List of well-known tour-guide robots.

Name Environment Sensors User Interface

Sage [23] Museum Sonar, Camera, Tactile Push-buttons, Display, Speech

RHINO [24] Museum
Laser, Sonar, Camera,

IR, Tactiles
Push-buttons, Display, Sound,

Web UI

Minerva [25] Museum Laser, Sonar, Camera
Touch-screen, Speech, Robot

face, Web UI

Pearl and
Flo [26]

Assisted
Living Facility

Laser, Sonar, Camera,
Microphone

Touch-screen, Verbal, Robot
face

Robox [27] Exhibitions
Laser, Camera,

Microphone, Tactiles
Push-buttons, Verbal, Robot

face

Jinny [28] Museum /
Office

Laser, IR, Microphone,
Tactiles

Touch-screen, Push-buttons,
Verbal, Robot face, Robot arm

RoboCart [29] Shopping Mall Sonar, RFID Keypad, Speech

Urbano [30] Exhibitions
Laser, Sonar,
Microphone

Touch-screen, Verbal, Robot
face, Arm, Web UI

Robotinho [31] Museum
Laser, Sonar, Camera,

Microphone Verbal, Robot face, Arm

TOOMAS [32]
Home

Improvement
Store

Laser, Sonar, Camera,
Microphone, Tactiles

Touch-screen, Speech, Robot
face

CATE [33]
University
(Outdoors) Sonar, IR, RFID Touch-screen, Sound

Konrad and
Suse [34]

University
Building

Laser, Sonar, Camera,
Microphone, RFID,

Tactiles

Touch-screen, Speech, Robot
face

Obelix [35]
City

(Outdoors) Laser, GPS, Camera Touch-screen

SPENCER [36] Airport Laser, RGBD Touch-screen, Boarding pass
reader

Health-check
Robot [37]

Hospital Laser, Camera Touch-screen, IC card reader

KeJia [38] Shopping Mall
Laser, Camera,

Microphone
Verbal, Mobile App, Robot

face, Arm

13



users. Kejia [38] is a shopping assistant in shopping malls that is robust to challenges in dynamic

environments; it was deployed for 40 days and served 530 customers.

2.3 Reliability Engineering

Reliability engineering is not a new concept in engineering; it is a critical study that keeps

an engineered system reliable, available, maintainable, and safe [39]. Some companies in the

industry even have created a Site Reliability Engineer (SRE) role in supporting growing Internet

businesses [40]. Birolini summarizes theories and provides qualitative approaches to the study of

the reliability, failure rate, maintainability, availability, safety, risk, quality, cost, liability, and so

on [39]. O’Connor et al. further give field-specific reliability engineering examples of mechanical

systems, electronic systems, software, design for reliability, manufacturing, and more [41]. Beyer

et al. from Google discuss “site reliability engineering” and the principles and practices that keep

Google’s planet-scale production system healthy and scalable [40]; they combine automated tools

and appropriate engineering and emergency response workflows. Recovery-oriented computing,

or ROC, shifted the concerns from the traditional mean time between failures (MTBF) to mean

time to repair (MTTR) [42]. By taking recovery under failures into primary consideration, the

researchers showed ROC reduced recovery time and increased availability in five case studies.

Program analysis is another approach to test the computer system and find potential issues; these

analyses include static compiler instrumentation [43], symbolic execution [44], dynamic binary

instrumentation [45], and so on.

Although reliability engineering is studied in many other fields, the requirements and

restrictions in these fields are different from service robots. In datacenters, applications require

availability as high as 99.99%, but they have access to almost infinite computing resources, and

on-call engineers supervise the system [40]. In the automotive industry, the ECU performs a

small fixed set of tasks during its life cycle, which makes standard practice and testing methods
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possible [46]. For space applications, the most significant challenge comes from radiation that

affects electronics reliability [47]. As a result, few of the works mentioned above are directly

applicable to service robots given the gap between traditional computer systems and cyber-

physical systems; yet despite the disparity between planet-scale datacenters and mobile robot

platforms, successful engineering practices in traditional computer systems have considerably

inspired robotic reliability engineering.

2.4 Challenges in Long-term Autonomous Service Robots

Reliability engineering for service robots is a less explored area. It has its unique chal-

lenges and opportunities.

First, service robots need many components to perform perception, recognition, navigation,

reasoning, and other tasks. Their system architectures are as complicated as some datacenter

applications. Design principles and testing methods in some more straightforward but critical

systems like automotive computers [46] are not directly applicable to service robots. Second,

service robots carry limited computing resources, and they can not offload many critical or

latency-sensitive tasks to external devices. As a result, although redundancy proved to be a

helpful approach to improve the reliability of computer systems [40], it is hardly applicable

to service robots. Third, service robots are changing and developing systems that meet new

environment, get updates, and learn new knowledge over time, which makes full test coverage

difficult. On the other hand, task-specific robot systems are less dynamic, and demo robots only

need to work for a short amount of time; therefore, extensive but straightforward tests can reveal

most of the issues on them.

Still, service robots have their opportunities. The recent service robots are not performing

life-critical tasks. Therefore, they can tolerate more unavailability (a few minutes per day) without

majorly affecting user experience with proper communication. It can sometimes seek some
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help from humans, although too much human intervention defeats the purpose of service robots.

In general, for long-term autonomous service robots in the near future, reliability engineering

includes both reducing failures and living with failures.
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Chapter 3

TritonBot - A Long-term Autonomous

Service Robot

While service robots usually perform perfect demos with close human supervision, they

often fail when working by themselves for an extended period. To study failure modes and

human-robot interaction patterns in long-term deployments, we built TritonBot, a long-term

autonomous robot working as a building receptionist and a tour guide. It recognizes people’s

faces, talks to them, and guides people to the labs and facilities in an office building. TritonBot

does not only serve the users and visitors of the building, but it also provides a portable toolbox

for long-term autonomy and human-robot interaction research. This chapter presents the design

of TritonBot and the lessons we learned from the first-month deployment with respect to technical

and human-robot interaction aspects. In the following chapters, we will use TritonBot as a

platform to study various aspects of service robot reliability engineering.

In its initial one-month deployment, TritonBot worked for 108.7 hours, actively interacted

with people for 22.1 hours, greeted people 2950 times, guided 150 tours, and traveled 9.9

kilometers. Later deployments provided more experience and lessons from long-term autonomous

tour-guide robots. We share the components of TritonBot using an open license to help the
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community to replicate the TritonBot platform and inspire long-term autonomy and human-robot

interaction research.

3.1 Introduction

Robot technology has advanced significantly over recent years, and we have finally

reached a milestone where we can apply these innovations in real-world applications. However,

while robots often perform flawless demos and win applause under controlled settings with

an operator’s guidance, they frequently fail when working for an extensive length of time in

unstructured environments without close supervision [1]. As discussed in the previous chapters,

long-term deployment adds more uncertainties and covers many corner cases in the technical

components or human-robot interaction behaviors. Long-term autonomy had become a significant

challenge that prevents service robots from entering an office or home environment to assist

people.

We present TritonBot, a long-term autonomous robot deployed in an unsupervised open

environment. TritonBot works as a receptionist and a tour guide of a university office building. It

recognizes people’s faces, talks to people, and shows people the labs and facilities in the building.

However, TritonBot is not only another tour-guide robot: In addition to serving the visitors to the

building, the system is used to discover failure modes in a long-term deployment of a robot that

actively interact with people in an open environment. Besides, TritonBot is also used in other

research projects to discover the short-term and long-term interaction patterns between the robot

and humans since the robot receptionist engages in many interactions every day. Figure 3.1 shows

TritonBot and its variant, BoxBot. Despite the difference in the shapes, BoxBot runs the identical

software and exhibits the same behavior as TritonBot.

In the first month deployment, TritonBot and BoxBot received much attention from

visitors: They have been serving the guests for 108.7 hours in total, actively talked and walked
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Figure 3.1: A picture of TritonBot and its variant, BoxBot. They take turns and work every
weekday, chat with people, and navigate with people to introduce places of interest in an office
building. TritonBot (right) is based on Fetch Research Edition [10], and BoxBot (left) is a
Freight robot with an upper-body made of cardboard boxes.

with people for 22.1 hours, provided 150 tours, traveled 9901.1 meters, have been listening for

4.0 hours (2,616 counts) and speaking for 10.7 hours (14,037 counts). While this chapter focuses

on the initial TritonBot design and deployment, later improvement and deployments discovered

more issues and concluded design principles for long-term autonomous service robots (Chapter 6).

Unlike other long-term autonomous robots, TritonBot is a standalone service robot system that

actively engages people and draws people’s attention. It interprets users’ intent only using voice

interaction and talks back to people. With the deployment, we were able to study potential issues

in resilience, scalability, and learning of a robot system in a dynamic environment. We released

the components in TritonBot under an open-source license to enable the community to replicate

our platform for long-term autonomy and human-robot interaction (HRI) research.
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This chapter is structured as follows: Section 3.2 discusses some existing long-term

autonomous robots and other related work in addition to those in Chapter 2. Section 3.3 presents

TritonBot’s behavior, components, and its ability to be used as a toolbox for HRI studies. Sec-

tion 3.4 discusses the lessons we learned in both technical and human-robot interaction aspects of

TritonBot from the first month of deployment. Section 3.5 presents a quantitative analysis and

statistics on TritonBot’s performance based on the initial deployment, and Section 3.6 concludes

this chapter.

3.2 Related Work

TritonBot shares its goals with a few pioneering long-term autonomous systems, including

Sage [23], CoBots [21], STRANDS [3], and BWIBots [4]; previously Section 2.1 discussed

the highlights about these long-term autonomous service robots. Early tour-guide robots like

RHINO [48] and Minerva [49] provided interactive tours to visitors in museums with an emphasis

on robust localization and navigation in a crowded environment; Section 2.2 listed many successful

tour-guide robots in the history.

Interactive robots have appeared in many scenarios other than guiding tours. Valerie [50],

the “Roboceptionist” at Carnegie Mellon University, is an early robot with a personality that

exhibits social competence and remains compelling to interact with for an extended period.

Kanda et al. deployed Robovie robots in a corridor of a shopping mall for five weeks to provide

information to the public [51]. Komatsubara et al. use the Robovie robots in an elementary school

for five weeks with the intent to increase the curiosity in the science of children [52]. The robot

recognizes the face and asks questions to the students, but it requires an operator’s intervention

for speech recognition. Bohus et al. created a stationary directions robot to study open-world

human-robot interaction [5], and they concluded several failure modes [8]. Chung et al. studied

the Savioke Relay robots in hotels and created a fast-prototyping tool to program the robots [7].
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Tonkin et al. studied social robots at airports and discussed design methodology for designing

communication pattern for interactive robots [9].

TritonBot shares a few similarities with these pioneers, but also has its specialty. TritonBot

only interacts with a human through speech; therefore, it receives many unexpected instructions,

and they help the researchers to understand people’s free expectations on a robot. Also, TritonBot

has long-term memory, recognizes people, and interacts with people every day, so it can collect

and analyze communication patterns and histories, which makes it a toolbox for future systems

and HRI studies.

3.3 TritonBot Design

The TritonBot operates in the hallway of an office building, discovers passersby with face

detection and interacts with them using speech. This section describes the scenario of TritonBot

deployment and the robot’s behavior, components, and its capabilities as a research toolbox.

3.3.1 The Tour Guide Scenario

TritonBot works as a receptionist and a tour guide in Atkinson Hall, which is a six-story,

250,000 sq. ft. building at the University of California San Diego. The building is an office

building for regular users, but sometimes hosts meetings, conferences, or events. Figure 3.4

shows a map and the surroundings of the area where the robot is deployed. TritonBot stands in

the hallway of the building facing the entrance at an angle, the angle sets the camera away from

facing the entrance where excessive outdoor sunlight is coming from. TritonBot continuously

detects human faces in its view. When it sees a person, it actively engages the person by greeting

him or her, but it gives up if the person disappears before it finishes a self-introduction monologue.

Figure 3.2 shows a visitor interacting with TritonBot.

If TritonBot finds a match of a recently seen face with a record in its face database,
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Figure 3.2: A visitor interacting with TritonBot.

it will greet the person by name. Otherwise, it starts asking for name and offers a few trivia

questions. Figure 3.3 shows an example of the interaction between TritonBot and a visitor.

The quizzes are simple, but they provide a time frame when the visitor is looking at the robot.

TritonBot continuously collects face samples while talking to the person and uses the highest-

quality face samples to update its face database. During the entire interaction, TritonBot repeats

the questions if it does not receive an response in time, but it just gives up after three retries.

Afterwards, TritonBot offers a guided tour to the user. If the user accepts the tour, the robot

will show the visitor around and introduce a few places of interest in the building, including a

fast-prototyping facility with 3D printers, a robot showroom (robot zoo), a smart home demo

room, and a gallery (Figure 3.4). If the robot fails to move to a target, it politely asks people to

step back because it “needs personal space to maneuver.”

We try to keep TritonBot autonomous as much as possible to study failure cases. TritonBot
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TritonBot: Good morning. My name is TritonBot. I am a robot working here at the Contextual Robotics
Institute. May I ask what is your name?
Human: My name is Daisy.
TritonBot: Nice to meet you, Daisy. I prepared some quiz for you. Would you like to give them a try?
Human: Sure.
TritonBot: Where does the president of the United States of America live?
Human: The White House.
TritonBot: You got it! The president of the United States of America lives at the White House in
Washington DC. Do you want to try another question?
Human: Yeah.
TritonBot: What is the most popular sport throughout the world?
Human: I don’t know.
TritonBot: No worries. Soccer is the most popular sport throughout the world. Do you want to try
another question?
Human: No, thanks. I’m good.
TritonBot: Thanks for chatting with me. I feel honored. I am a tour guide. Can I show you around?
Human: Yes, please.
TritonBot: Glad to hear that. Please follow me.
(TritonBot moves towards the Prototyping Lab.)
TritonBot: We are now in the Prototyping Lab. The prototyping lab provides prototyping and engineering
services to UCSD researchers, including embedded electronics, mechanical devices, robotic contraptions,
real-time networking software, and 3D printed structures.
(TritonBot moves towards the Robotic Zoo.)
TritonBot: Here is the robot zoo. You can see my fellow robot, Diego-san. He can see people, understand
gestures and expressions, and even learn from people. Diego-san is not the only robot here, many of my
other fellow robots are coming very soon.
(TritonBot introduces a few other locations and stops at the elevators.)
TritonBot: Here is the elevator, and it is our last stop. Thanks for letting me show you around. Please
enjoy your stay. Take care and have a great day.

Figure 3.3: A dialogue between TritonBot and a visitor. TritonBot starts the dialogue when
it sees a face, but gives up if the face disappears during its self-introduction. When TritonBot
matches a face with an acquaintance, it will greet the person with the name and skip the trivia
questions.

is programmed to go to a charging dock when the battery is low, and it returns to work when it

finishes charging. However, in the early deployment, we closely monitor the robot to prevent any

accidents: A student always sits in the “smart home” room when TritonBot is actively working.

He monitors the robot and manually overrides the robot control in case of emergency. Although

the student never engaged the emergency stop in the first month, the working time of the robot

was limited to the student’s schedule. Figure 3.5 presents the simplified representation of the state

machine that controls the behavior of TritonBot.
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Figure 3.4: A map of the hallway in the office building where TritonBot is deployed. The robot
keeps a standby pose when it is waiting for people. The blue trajectory represents the route that
the robot guides people, and the blue vertex indicates the places of interest where the robot will
stop and introduce.

3.3.2 TritonBot System Overview

TritonBot is based on the Fetch Research Edition platform from Fetch Robotics Inc. [10].

we also built a TritonBot variant, BoxBot with a more economic Freight platform from the same

manufacturer with a custom cardboard box torso and head. The cardboard box upper body allows

researchers to change the design or adding new sensors to the platform with a minimal cost.

Despite the differences in shapes, the related hardware features and system architecture of the two

robots are identical. These two robots take turns in the deployment, which opens time windows

for hardware maintenance and software upgrade.
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Figure 3.5: The state machine that represents the behavior of TritonBot. Different color
indicates different state categories. The time spent in each category is shown in Figure 3.9.

The robot has an RGBD camera with about 70◦ field of view, a microphone array with

sound source localization support, and a loudspeaker. We installed a back-facing laser scanner at

the opposite side of the stock laser scanner at the leg level. The base of the robot contains two

differential drive wheels and a consumer-grade computer (Intel i5-4570S CPU, 16 GB memory,

1 TB solid-state disk); two lead-acid batteries keep the robot running for about 6 hours with a

single charge.

TritonBot utilizes many third-party components and open-source software to accomplish

its task. It is running Robotic Operating System (ROS) Indigo version (released in 2014) [11].

Openface [53] pipeline detects human faces in the pictures captured by the camera and converts

these face images to embeddings that are used to calculate the similarity between two faces.

Cartographer [54] provides localization and mapping for the TritonBot platform, and the ROS

navigation stack “movebase” [55] controls the robot to move around. Cloud service comes with

excellent help when an open-source alternative is not available or does not meet our needs. Google

Cloud Speech API [56] translates speech audio to text with nearly real-time feedback. TritonBot

used an Android tablet for voice synthesis initially, but we switched to a commercial solution later

because of its superior performance. To summarize, we integrated many existing components to
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build TritonBot, but we wrote about 100,000 new lines of code (mostly C++ and Python) to build

the entire TritonBot system.

3.3.3 TritonBot for Human-Robot Interaction Studies

TritonBot works closely with people, and the long-term deployment allows it to meet

people and interact with them over a long timespan. Although the early deployment of TritonBot

is targeting long-term autonomy research only, and is not recording any personally identifiable

information (PII), we believe TritonBot is capable of distinguishing people and studying the

human-robot interaction behaviors.

Working as a robot receptionist, TritonBot starts interacting with a person when it sees

a face, which could provide an estimation of the age, gender, or other background information

of a person [57]. Since TritonBot works in an office building, it can see a relatively fixed set of

people. In a long-term deployment, the robot can observe the change in the way that the same

person interacting with the robot. The robot can also observe a general group of people and study

their interaction with the robot.

The tour guide scenario is a test field for social-aware navigation research. TritonBot

observes the environment using a laser scanner, a microphone, and a camera, which provides an

estimation of the number of the humans around and their pose [58]. While a user is following

TritonBot during a tour, the robot observes the relative location between itself, the person, nearby

obstacles, and incoming people, which allow the robot to learn the rules in social-navigation.

Although people’s curiosity about the robots dominates the interaction pattern in the early

deployment, we expect to see a noticeable difference in the interaction pattern of TritonBot and

BoxBot in the future and improve the robot shape and design.

TritonBot is designed as a portable and replicable HRI research platform, and we open-

source TritonBot to provide a research platform for HRI and long-term autonomy researchers.

Most components we built for TritonBot are open-sourced either as ROS packages or standalone
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components and are available at https://github.com/CogRob/TritonBot.

3.4 Lessons from Initial Deployment

In a month-long deployment of TritonBot, we have seen people enjoy chatting and walking

with a robot, but we have also seen many shortcomings in the system. These shortcomings include

failures and faults, improper or inefficient robot operation workflows, and imperfections in

human-robot interaction behaviors. This section presents the main lessons we learned from the

first-month deployment of TritonBot.

3.4.1 Hardware Failures

Just like any other engineered system, failure is unavoidable in robotics. In contrast

to software errors, hardware failures are usually uncommon, but the long-term deployment

extensively tests the system and reveals failure cases. During the development and deployment of

TritonBot, we encountered a few hardware issues:

Battery failure. During our early deployment, the BoxBot over-discharged its batteries

(two 12V lead-acid batteries), and the failed batteries could only support the robot for 10 minutes

(as opposed to 12+ hours of standby time in normal condition). We replaced the faulty batteries

and set up a battery monitoring program to prevent battery from over-discharging.

Electrical part failure. The charging port on TritonBot failed, and the robot attempted

many times going back and forth trying to dock itself to a charging dock when the battery was

low. The student monitoring the robot discovered the unusual behavior and shutdown the robot

program. After that, we programmed the robot to shutdown itself when its battery is low and

auto-charging fails.

Mechanical failure. The connection between a caster and the base on TritonBot became

loose during long-term but normal operation. We fixed the issue and notified the manufacturer.
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Device driver failure. The robot computer fails to recognize a USB camera sometimes

during the deployment, and reconnect the USB connector did not solve the issue. The only known

working solution was to reboot the internal computer, and we ended up replacing the camera with

another model.

Since hardware errors are usually hard to recover from automatically, fail-safe is a critical

design principle: the robot should detect failures and take actions to prevent failure propagation

or further damage. Component-level monitoring is helpful sometimes: A battery voltage monitor

will prevent the batteries from over-discharge, and a retry limit on the docking action and a

vibration sensor will prevent further physical damage to the robot.

Because hardware malfunction is less usual, they are easy to ignore and not covered by

most test cases. In fact, the TritonBot control software was programmed to give up and report

docking failure after five docking attempts, but the higher-level control software immediately

restarted docking because the battery-level was still low. The hardware failures lead us to the need

for extensive testing, which requires a fault injection/simulation mechanism to produce/reproduce

potential errors.

3.4.2 Network Connectivity

TritonBot accesses the Internet via a wireless connection to reach cloud services, receive

commands from operators, and report status to the monitoring station. Since it roams in a large

area of the building and a campus-wide wireless network already exists, setting up an ad hoc

wireless network for it is not worthwhile. Using an existing wireless infrastructure with multiple

access points and broad coverage leads us to a situation that (1) signal strength is not consistent

in all the locations, (2) the robot sometimes loses connection when it roams between multiple

access points, (3) network is not secured.

We took a few measures to confront these issues. First, we did a signal strength survey

in the building and excluded blind spots from the tour path. Besides, the robot checks network
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connection every minute and resets its wireless interface when there is a failure. We also installed

a wireless access point on the robot to provide “escape hatch” access to the robot in case of

unrecoverable connection failures. Furthermore, we set up a firewall on the robot to block

unexpected incoming connections from the Internet.

3.4.3 Software Failures

In a developing system, software errors are frequent when rolling out new features,

improvements, or bug fixes. While most of the software flaws disappear in the testing stage, the

remainders are usually hard to discover or even to reproduce. However, they are easy to recover

from by restarting the program, and the loosely-coupled system architecture in ROS enables

such recovery mechanism without causing a system-wide outage. Nevertheless, this mechanism

requires coordination between the software components. From our experience, we have found two

design principles are particularly useful to tolerate and recover from rare and transient software

errors:

1. Any component must tolerate temporary unavailability of other components and should not

propagate the failure. They should resume working if the depending component recovers.

2. Restarting a program shall always help it to enter a clean and steady state. If a component

fails in some way and cannot recover, it is better to terminate and restart the program than

to remain in an unknown and unresponsive state.

These two principles allow the system to tolerate transient errors. In a typical scenario,

the erroneous programs terminate and return to a normal state; meanwhile, the counterparts will

wait until they recover rather than propagating the error. Moreover, these design rules decouple

the programs at the application level, which allows programs to regularly restart when the system

is idle, as Google points out that “a slowly crash looping task is usually preferable to a task
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that hasn’t been restarted at all [40].” As a bonus, these design principles also enables dynamic

updating of the system at the cost of temporary and short unavailability.

These two principles helped the robot running stable for most of the time. But a slight

violation of the first principle caused unavailability of our system that it could not automatically

recover from: One day, the behavioral control component tried to communicate with a logging

service that timed out, and the behavioral control stalled. The same symptom happened three

times during the entire month deployment, and we discovered the error message in the last

occurrence and fixed the control state machine.

This incident leads us to another lesson: we assumed the reliability of some software com-

ponents (the logging service in this case) since they rarely fail. We are developing a mechanism

to inject errors into software components, which will help discover potential design flaws.

3.4.4 Software Deployment

TritonBot’s ROS system is running about 50 nodes when it is working, and more than

half of them are in-house customized software. Initially, we ran these programs directly under a

Linux system, but this method does not scale. As we were adding more components to the system,

software dependencies started to conflict with each other, runtime configurations scattered at

multiple locations in the file system, and software versions were hard to track. After testing

several solutions, we ended up using Linux containers (Docker [59] specifically) to manage the

robotic software in TritonBot.

Linux containers provide operating-system-level virtualization and allow building and

shipping applications easily as self-contained archives. Pioneer work introduced Linux containers

technology to robotics [60], but to the best of our knowledge, TritonBot is the first robotic system

that uses Linux containers to manage the entire robotic software stack. Every TritonBot robotic

software component is running inside a container, including the ROS master node and the robot

drivers. These containers share the host networking stack to allow smooth communication. A
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container orchestration tool, docker-compose helps managing runtime parameters. All the ROS

runtime configurations, including the roslaunch files, are collected in a single version-control

system, which allows the developers to trace the complete change history of configuration change

through the robot’s life cycle. We arrange the container images in a hierarchy so that some images

share the same base image with common libraries, and updating a base image will also update its

dependents.

In short, Linux containers help to manage robotic software on a developing and scaling

system, help to maintain high availability, limit fault zones, and allow easy replication and

distribution of robotic software.

3.4.5 Navigation

TritonBot uses Cartographer [54] for localization and map creation and uses the ROS

navigation stack, “move base” to move around. On top of the navigation stack, we created a

topological map to guide the robot to predefined routes, as shown in Figure 3.6. The topological

map contains waypoints and path: a waypoint represents a featured location such as an intersection

of aisles or a place of interest, and a path between two waypoints is line-of-sight that the robot

can easily travel. A navigation planning service determines a series of waypoints for the robot to

go through before it reaches a destination. Each path has an estimated travel time and is updated

when a new estimate is available.

The two major failure modes in TritonBot’s navigation behavior are localization failure

and execution failure. Most 2D SLAM software matches current laser scan with a pre-built

map to estimate the current location of the robot, and when the robot is surrounded by many

temporary obstacles (e.g., humans), it may match the observation with an incorrect location. We

only observed this failure once when the robot was surrounded by about ten people, and the robot

quickly corrected the issue afterward as it moved around a bit and gained more observations. A

sudden change in the robot’s location estimation is usually an indicator of a localization failure.
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Figure 3.6: The topological map that TritonBot uses to navigate. Waypoints are marked with
three-letter names, and paths connect the waypoints that the robot can move between.

On the other hand, dynamic obstacles, especially humans are the biggest challenge in robotic

navigation. Some users tried to block the way of the robot to test the robustness of the robot.

When TritonBot fails to move, it says “I need some personal space to maneuver, can you please

step back.” In the most case, people will yield to the robot, and the robot resumes after executing

some recovery behavior.

Another lesson we learned from robot guiding person is that the person sometimes leaves

the robot in the middle of a tour. As a result, the robot continues to introduce the place of interests

to nobody. Without full user study it is hard to conclude why the users leave the robot, but this

situation hints that the robot should respond to the person leaving or joining the tour. As an

32



improvement, we are integrating leg detection into the system and use it to confirm the person is

still around during the navigation.

TritonBot moved 9901.1 meters in the first month of deployment. Among the 1,722

attempts moving from a location to another, 97.4% attempts were successful, and 44 attempts

failed. Most of them are because of timeout (32 attempts) and move failures (8 attempts) due

to dynamic obstacles partially or fully blocking the robot’s path. Other failures are because

of cancellation command (three attempts, expected behavior) or temporary unavailability in

topological map service (one attempt). Moving from a location to another requires traversal of

several paths in the topological map (Figure 3.6), and TritonBot and BoxBot traversed 4,876

paths. Traveling path PHX-FYV and FYV-LIT caused 20 failures in total. We did not collect

enough data to conclude an exact reason, but we did see some people trying to block the path

of the robot in this spacious aisle, and only walked away when the robot requested space to

maneuver.

3.4.6 Speech and Dialogue

TritonBot has a voice recognition pipeline that converts audio stream to user intent data

structure as shown in Figure 3.7 (a). TritonBot uses Google Cloud Speech API to convert voice

input from the microphone [56], which returns real-time interim results and rich metadata about

the speech, including a confidence score and start/end time for each of the words in the utterance.

A few intent extractors convert utterance transcript to candidate intents. The intent selector either

yield an intent data structure or special intents for “silence” and “not understand.” The intent

selector also stops the robot’s listening when it can return an expected result so that the robot

can respond quickly. Most of the current intent extractors are implemented with matching the

words in the input sequence to regular expressions in a template sequence using longest common

subsequence algorithm, and Figure 3.7 (b) shows an example.

An interesting observation is that sometimes people respond to questions, especially
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Figure 3.7: Speech recognition pipeline in TritonBot and an example of the templates that used
to extract the intent of the user. (a): Speech recognition pipeline for TritonBot. Google Cloud
Speech client converts audio stream to transcripts, and intent extractors interpret the transcript
and generate intent candidates with confidence scores. The intent selector chooses an intent
candidate based on expected intent type, time, and other criteria. The Intent selector also stops
listening if it can return a result. (b): Templates used in “name extractor.” Name extractor
is a template-based intent extractor that converts the response to “what is your name?” to
structural intent representation. Each word in the template is regex<capture name>(weight),
and the template is matched against voice recognition result using longest common subsequence
algorithm to calculate a confidence score based on weight. Words with capture name can be
used to fill in some fields of an intent.

yes-no questions, even before the robot finishes talking. As a result, the robot misses the response

because it was not able to capture the very first part of the utterance. In late deployment, we

changed synchronization mechanism to allow the voice recognition to start 0.3 seconds before

the robot finishes speaking according to previous studies [61], so that the robot can capture the

full response from the human but almost none of the speech from itself.

3.4.7 Face Recognition

TritonBot has a head camera (Primesense Carmine 1.09) at 1.5 meters from the ground

facing 15 degrees upwards, but the camera mounted on BoxBot is at 1.2 meters height facing

about 30 degrees upwards. Both TritonBot and BoxBot can see an undistorted face, but BoxBot

cannot detect people standing too close (less than 0.5 meters) from the robot because of the tilt of
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Figure 3.8: The distribution of cosine distance of the OpenFace embeddings, between the
faces of the same person and the faces of the different persons in the ColorFERET dataset and
TritonBot and BoxBot’s face database.

the camera.

TritonBot uses deep neural networks based on Openface [53] to recognize visitors’ face.

As a starting point, we use the nearest neighbor to find the best match given a face. When

the cosine distance (d(A,B) = 1− A·B
‖A‖‖B‖) is between the detected face and the candidate is

greater than a threshold, the face recognition reports an unknown face indicating a stranger.

The threshold was initially set to 0.5 by balancing false positive and false negatives on the

ColorFERET dataset [62], and we will adjust to reflect the actual dataset for the next deployment.

Figure 3.8 shows the distribution of cosine distance of the Openface embeddings of the same

person and different persons from the ColorFERET dataset, and the actual faces TritonBot and

BoxBot remember.

35



While TritonBot usually recalls the name of a seen person, as expected the mis-classification

ratio increased as the database size is increased. One of the reasons is that sometimes people

face the robot sidewards, and the robot could only see a side face, which is easy to confuse on

different people.

3.4.8 Logging

Logging in long-term autonomy robots provides opportunities for data analysis, testing

new software, and replaying the scene. ROS provides a logging utility, rosbag to log general

communication during the robot operation. We create a program to record a substantial portion

of ROS communication in TritonBot, including laser scanner data, localization estimation, the

command to move the base, etc. Even though the robot only records rosbag files when it is

actively interacting with a person, we have collected 367.8 GB “rosbag” files in the first month of

deployment.

Although “rosbag” records many details in ROS communication, it is far from ideal for

recording internal states for software components in a long-term autonomy robot because of

two major flaws: (1) Changing the log record fields definition in rosbag invalidates all previous

logs, which is inconvenient for an actively-developed long-term autonomy robot. (2) rosbag

is designed to capture the communication between ROS components, and it is costly to send

massive internal states through network sockets when they only meant to be written to a disk.

To overcome these deficiencies, we created a logging library, “Universal Logger” to save

internal states of both ROS and non-ROS components. Universal Logger records structural log

data in an efficient and backward-compatible Protocol Buffer [63] format. While maintaining

strong-typed structure, Protocol Buffer also allows adding new fields without affecting previously

serialized logs. Every robotic component using Universal Logger writes logs to the disk indepen-

dently without going through any communication interface. Also, Universal Logger automatically

creates new binary log files when date changes or a single file is larger than a certain size, and
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we arrange these files in directories with the creation date. For example, speech recognition logs

of Feb 27, 2018, on BoxBot is stored in the following path: boxbot/2018/02/27/dialogue/

speech recognition/1519752112.pb.gz. The logs are transferred to a storage server and

removed from the robots everyday to save the storage space. So far we have collected 2.8 GB

data in Universal Logger format in the first-month deployment, and use them to study long-term

autonomy (and conclude the result in this chapter).

3.4.9 Safety

Safety comes first when a robot is deployed in an open environment. Mobile platforms of

TritonBot and BoxBot have a built-in hardware level safety mechanism that slows it down when the

laser scanner detects movements nearby, but a grad student always monitors the robot physically

close to the robot for the first-month deployment to avoid unexpected malfunctions. However,

in the first-month deployment, the guardian never engaged the emergency stop mechanism.

There was one case that a child tried to put his foot under the robot, but the robot slowed down

immediately, and the child stepped back by instinct.

Requiring in-place human supervision harms the purpose of long-term autonomy experi-

ments, since the robot working time is limited to the guardian’s work time. With more confidence

in robot’s safety, we will slowly move to remote monitoring: we have created a private website to

show the vitals of the robot and the camera image for safety monitoring purpose, and we deployed

remote e-stop buttons that engage run-stop mechanism on the robot via the control network. We

are also setting up bump sensors on the robot to stop its motion when it hits something.

3.5 TritonBot Initial Deployment Results

In the first-month initial deployment, TritonBot and BoxBot together worked 18 days

in total, skipping holidays and special events in February 2018. TritonBot only operated two
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WaitingNot Working Interaction Guide Tour

Figure 3.9: Working log of the robots during the initial deployment. The robots have worked
for 108.7 hours (waiting, interaction, and guiding tour), actively interacted with people for 22.1
hours (interaction and guiding tour). Feb 1, Feb 8, and morning Feb 13 came from TritonBot,
and the others came from BoxBot. Blank indicates the robot is under maintenance or taken to
special events and the top-level control software is not running, and light yellow background
means the robot is charging itself.

and a half days because of maintenance and other projects requiring the platform, but BoxBot

worked for 15 and a half days. Figure 3.9 shows the breakdown of the activity of the robots. The

two robots have been serving the guests for 108.7 hours in total, actively talked and walked with

people for 22.1 hours, and spent 8.25 hour in guiding people around.

TritonBot and BoxBot remembered 167 persons with 8,681 face samples, and they did

97,284 face detection and recognitions. As for speech, they had been listening for 4.0 hours

(2,616 counts) and speaking for 10.7 hours (14,037 counts). The robots greeted people 2950

times. It recognized acquaintances 416 times, although the false positives are not determinable at

the current times. In the 434 attempts of asking a visitors’ name, it heard a response 239 times.

The robots played 133 trivia games and asked 307 trivia questions. Among the 292 answers, 224
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were the correct answer, 47 were wrong answers, and the user indicated they did not know the

answer in the other 21 responses.

The robot moves when they guide people to places of interest or need to go to a charging

dock. The robots traveled 9.9 kilometers during the deployment, giving 150 tours in total. It

attempted to move to a specific location (a waypoint in the topological map, see Figure 3.6) 1,722

times, and 1,678 (97.4%) attempts were successful. To accomplish these targets, it traveled

4,876 times on the edges of the topological map, spent 6.1 hours in total.

3.6 Conclusion

Long-term deployment reliability is one of the most crucial parts of any feasible au-

tonomous service robots. TritonBot served as a study in robot-human interaction patterns and

long-term service viability before they can enter our homes and businesses. This chapter dis-

cussed TritonBot’s design and summarized lessons we learned from the first-month deployment

of TritonBot.

Just like any engineered system, failures are unavoidable in robotics. As a design principle,

the robot design should prevent hardware failures from propagating and cause further and/or

permanent damage to the robot. Software failure should be tolerated in a loosely-coupled system

since most of the failures can recover by restarting a program. More importantly, testing helps

discover design flaws, and fault injection/simulation in hardware, software, and networking will

help to discover and test failures in robotics beforehand. System engineering helps to reduce the

effort of maintaining a long-term autonomy robot development platform, and Linux container

significantly decreased the stress of managing a scaling robot system.

The most significant challenge of robots is still human-beings. From our observation,

people tried to block the path of the robot, try to fool the robot in talking, and ignores the robot

talking to itself when they leave. Sometimes humans unintentionally face the robot side-wards,
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expect the robot to respond when it is working on something else, or talk to the robot in a way

that it could not understand. Long-term deployment exposes all of these cases and helps us design

better robot behavior.

Our future goal is to improve TritonBot to meet and exceed the expectations of its users.

We aim to formalize research questions based on our first-month observations and continue

the long-term deployment of TritonBot to study its autonomy for a longer timespan. In the

next chapters, we will discuss efforts to improve the reliability and the long-term autonomy of

TritonBot in different aspects. After all, when a robot enters our homes and businesses, it should

not require frequent maintenance like automobiles.
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Chapter 4

Scalable Software Management and

Orchestration in Service Robots

From the TritonBot experience, we learned that scaling up the software system on service

robots increases the maintenance burden of developers and the risk of resource contention of the

computer embedded in robots. As a result, developers spend much time configuring, deploying,

and monitoring the robot software system; robots may utilize significant computer resources

when all software processes are running. This chapter presents our method of using software

encapsulation and dynamic orchestration to reduce maintenance burden and resource contention

in service robots. To pave the way for software encapsulation and dynamic orchestration in

service robots, we present a software management system, “Rorg,” that containerizes software

components and a resource time-sharing mechanism incorporated with the Robot Operating Sys-

tem (ROS). Rorg leverages Linux containers for developers to pack software into self-contained

images and runs them in isolated environments. It also allows the robot to perform dynamic

orchestration and to turn on/off software components on demand to avoid resource contention. We

evaluate Rorg with the previously presented long-term autonomous tour-guide robot, TritonBot:

Rorg manages 41 software components on the robot and streamlines our workflow; it reduces
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CPU load by 45.5% and memory usage by 16.5% on average. We believe software encapsulation

will improve the scalability of other service robots, and switching to dynamic orchestration from

static orchestration will reduce resource contention in other multi-purpose systems.

4.1 Introduction

Robotic research and application are advancing at a high pace in recent years, and service

robots have started to enter the consumer market and assist humans at home and offices [1].

Whereas deploying service robots is becoming easier, the robot systems themselves are becoming

more complex [64]. From our previous experience, a tour-guide robot for human-robot interaction

(HRI) research in a university office building consists of about 65 software programs for face

recognition, voice recognition, navigation, and various other tasks [6]; autonomous driving

vehicles have even more components for localization, pedestrian detection, mission planning,

motion planning, and so on [65]. As a robot system evolves and expands, the complexity of the

software components is becoming a more pressing issue that, in turn, challenges scaling up.

Developing software for robot applications has two primary challenges: maintenance

burdens and resource limitations. First, when the number of software components increases,

organizing, deploying, and monitoring them becomes tedious and error-prone [66, 67, 68].

Second, computationally intensive programs use much of the computing resources in the on-board

computer [69, 70]. They challenge scaling up since a service robot can only carry a computer

with moderate processing power and memory capacity due to power and weight considerations.

Efforts have been put into tackling these issues, but the infrastructure side of robot systems has

only received limited attention.

Recently, software encapsulation techniques, such as the Linux containers, have become a

popular tool to deploy software in datacenters and the cloud [59, 71, 15]. Linux container allows

developers to pack software and dependencies into self-contained images, deploy them onto
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different targets with minimal configuration, and isolate them from the host system to varying

degrees. On the other hand, dynamic orchestration enables time-sharing computing resources and

avoids resource contention. These techniques open an opportunity to mitigate the maintenance

burden and resource limitation in service robots. However, few research and commercial service

robots currently benefit from software encapsulation and dynamic orchestration due to three

primary reasons:

• Most of the current research and commercial service robots use certain middleware or

framework [11, 72, 73] to facilitate loosely-coupled architecture design, and among them,

ROS [11] is the most popular representative. While ROS-based software can run inside

encapsulated environments in theory, there are limited experiences to containerize the

robotic software.

• Service robots have numerous software components with complex relationships, and not all

of them are in use at the same time. Although existing tools can leverage Linux containers

to provide interfaces for one component to start/stop/monitor another, few take the dynamic

runtime pattern of programs into account.

• Few orchestration tools are designed for environments with tight overall resource budget,

as they target for datacenters and cloud platforms [15] where almost unlimited computing

resources are available.

Our goal is to enable efficient software organization and scheduling on autonomous

service robots in a high-performance and scalable manner. Combining software encapsulation

and dynamic orchestration, we propose Rorg, a toolkit that leverages Linux containers to manage

and schedule software on service robots. Rorg makes three key contributions:

• Rorg adopts a Linux container engine, Docker [59], to run robot software in individual

containers. Rorg works with ROS [11], the de facto standard robotic middleware. It
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provides default configurations to run ROS software without modification, and we provide

an example setup of a fully-functional tour-guide robot application with Rorg.

• Rorg organizes the robot software into multiple Linux containers and models the static and

dynamic relationships between them. Rorg provides an interface to create, query, update,

delete, start, stop, and restart these containers manually or programmatically.

• Rorg allows the software components to time-share computing resources: It pauses or

shuts down inactive services to save computing resources but reactivates them when they

are required for an upcoming task. Rorg monitors the system and keeps the resources

utilization at a reasonable level.

We evaluate the implementation of software encapsulation and dynamic orchestration

using Rorg on a long-term autonomy tour-guide robot, TritonBot (Chapter 3). Rorg and its early

prototype helped us to keep the robot working for over six months. The tour-guide robot went

through 126 software version updates and 71 configuration changes. Rorg now manages 41

services (containers) on the robot. Rorg dynamically orchestrates the software components, only

runs necessary components, and shuts them down when they are idle to save computing resources.

The robot consumes 89.4% of CPU time and 3.41 GB of memory on average without Rorg.

With Rorg, the average CPU drops to 48.7%, and the memory usage is 2.85 GB, and we notice

the robot responds much faster. Although web service and datacenter applications have wildly

adopted container technology, Rorg addresses the specific challenge on service robots: multi-

purpose systems with limited computing resources but have high performance/responsiveness

requirements.

The rest of this chapter is organized as follows: Section 4.2 discusses related work

and the unique challenges of service robots software management. Section 4.3 presents the

implmentation of software encapsulation and dynamic orchestration, design of Rorg, and its

features to streamline development workflow and avoid resource contention. Section 4.4 evaluates
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software encapsulation and dynamic orchestration with a real tour-guide service robot and

measures its performance, and finally Section 4.5 concludes this chapter.

4.2 Background and Related Work

In some aspects, service robots are similar to smartphones, embedded systems, and

datacenter applications. Like smartphones, service robots are limited by size, weight, and

power constraints. But smartphones have a single, isolated user-facing task packed in a self-

contained package. To save computing resources and power, smartphone system such as iOS and

Android shuts down independent background tasks that are not in use. Service robots, however,

are composed of a variety of different, parallel tasks. The single-foreground-task scheduling

mechanism in smartphones is hardly applicable to service robots.

Many embedded systems have similar constraints. But most of these embedded systems

are specialized in doing one task. All the components of that task need to be running for the

system to function correctly. Yet service robots are required to offer different services and

perform different tasks at different times. The multi-purpose nature of service robots invalids the

scheduling mechanisms in traditional embedded systems.

Datacenter applications share the most similarities in software organizations with service

robots. Both datacenter applications and service robots have a numerous number of loosely

coupled components. However, scaling-up patterns in datacenter applications differ from that

in service robots. Scaling-up in datacenter applications means spawning more instances of the

same program to handle requests from the users. In contrast, scaling-up in service robots means

running a different set of components for various tasks under resource constraints.

Because of the multi-component architecture, multi-purpose natures, and limited comput-

ing resources, scheduling strategies in iOS and Android from the smartphones, real-time designs

in embedded systems, and management tools like Borg [13], Mesos [14] and Kubernetes [15]
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from the datacenters, do not apply to service robots.

Linux containers (or operating-system-level virtualization in general) have received much

attention in datacenters and cloud applications recently [74]. Relying on operating system kernel

features, Linux containers provide isolated runtime environment with minimal performance

overhead. They also provide a convenient approach to build, deploy, and run applications on

different machines. Unlike hypervisors or virtual machines that run fully virtualized kernels,

Linux container leverages the kernel of the host and thus is much lighter weighted [75]. Popular

Linux container engines include Docker [59], LXD [76], and others. Despite different branding

and user interface, they all exploit the same underlying Linux kernel features such as namespaces

and control groups, and thus offer similar performance.

Previous research applied Linux containers to robotics to some extent. White et al.

use Linux containers to run ROS with Docker [60], but their examples do not illustrate actual

challenges on building and maintaining a moderate-scale service robot system. Mabry et al.

exploit Docker to deploy software on a maritime robot [77], but their approach only applies

to application-specific robot and does not scale up to fit the more complex software system of

service robots. Avalon [78] is a crowd-robot scheduler that distributes tasks to multiple robots; it

also leverages Linux containers to encapsulate the applications, but it does not address challenges

on a standalone service robot. Cognitive Interaction Toolkit (CITk) [79] adopts Linux containers

to construct and run robot simulation experiments; a later work RoboBench [80] is a benchmark

suite based on CITk that reproduces robotic simulation on workstations. SwarmRob [81] is a

toolkit to share experimental heterogeneous robots using Linux containers. However, none of

CITk, RoboBench, or SwarmRob was tested on physical robots.

Modern applications in datacenters are often built with the “microservices” pattern:

individual microservices communicate and cooperate with each other to deliver greater func-

tionality [40] — the same pattern also exists in ROS-based robot system design. Besides, other

hierarchies in a robotic system can also find their counterparts in datacenter applications, as shown
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Figure 4.1: Robot systems are similar to datacenters. Each hierarchy in a service robot can find
its counterparts in a datacenter, except for the “software management system.” We built Rorg
to fill in the gap and address the unique challenges of software management in service robots
where resources are sacred.

in Figure 4.1. However, most service robots do not have a “management system” counterpart to

datacenters, and that is where Rorg comes in.

In datacenters, the main challenge for a software management system is redundancy. At

Google, Borg [13] runs two extra instances of each microservice in their planet-scale computer

system to tolerate the failure of one instance while updating another instance [40]; it distributes

the instances across different physical locations to increase reliability. Similarly, Kubernetes [15]

and Mesos [14] are popular open-source software management systems that combine Linux

containers with sophisticated scheduling to provide load-balancing, to avoid single point failures,

and to scale-up when needed.

In summary, no existing solutions address the unique challenges of software management

on service robots — multi-purpose systems with limited computing resources yet have high

performance/responsiveness requirements.
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4.3 Rorg Design

To address the aforementioned challenges, we propose Rorg, a software manager toolkit

for service robots. In essence, Rorg is a set of programs that receives requests from developers or

programs, and creates, starts, pauses, stops, and removes software components on a service robot

at an appropriate time. Rorg consists of three design principles: First, Rorg is effortless to use; it

containerizes robotic applications (ROS-based in particular) with minimal configuration. Second,

Rorg is scalable; it targets managing moderate and large-scale robot applications up to hundreds

of programs or ROS nodes. Third, Rorg avoids the risk of computer resources contention in the

robot; it eliminates unnecessary computation and improves robot responsiveness.

4.3.1 Linux Containers for Robotic Applications

Rorg leverages Docker [59] as its underlying backend to containerize robotic software,

but it provides default configurations to run ROS-based software with minimal configuration

since currently ROS is the most popular robotic middleware. Because ROS applications are

not designed to cross network address translation (NAT) devices, Rorg by default uses the host

computer’s network stack for the containers to exclude default communication barriers that come

with Docker and extra performance overhead in multiple networking stacks. In addition, Rorg

provides a “driver” option to configure microservices that talks to sensors/actuators with higher

privilege to access host peripherals. Rorg monitors these programs for the unexpected restart, and

it asks for extra confirmation when restarting these programs manually. Last but not least, Rorg

still opens all the lower-level Docker parameters to the users, but Rorg alerts users to potential

configuration error. In short, Rorg makes Linux container easier to use for robotic applications

without sacrificing its original functionality.

Rorg enables efficient deep-hierarchy container image building. Docker allows the user to

pack a program along with its dependencies into a standalone “image”; these images can form a
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Figure 4.2: Container images (and their hierarchy) that support a robot receptionist and tour
guide [6]. By carefully arranging the hierarchy, each application can use a most appropriate
“base image” and save build time and disk space without creating conflicts. Rorg provides tools
that help the developer to build the images with a deep hierarchy correctly.

hierarchy to save build time or disk space when they share common parts. Figure 4.2 shows part

of the images hierarchy in a service robot. A deep hierarchy allows each application image to use

an appropriate base image to maximize libraries reuse and minimize the chance of conflicts, but it

also leads to a challenge: the developer needs to build the images in a correct order for the end

image to reflect the updates in the hierarchy. Rorg provides a script to automate the task: it sorts

all of the images in a topological order of the dependency graph, pulls external dependencies,

and then builds dependent images before the children images. Therefore, Rorg retains Docker’s

optimization such as caching while building the images, but it builds the images correctly without

a larger infrastructure such as a continuous integration system.

Rorg leverages Linux containers to simplify robotic software development. Rorg comes

with a script that prepares a seamless development environment inside a container, which is based

on the same base image for deployment. The unified environment eliminates the inconsistency

between development and deployment, which helps the developer to prepare for deployment at

the very beginning. Since the development environment is encapsulated inside a container, the

developer can create a fresh environment with minimal effort in case the development environment
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is contaminated.

Rorg keeps the full history of an application for later review or postmortem analysis. It

records the full log of the changes to Docker container in machine-readable “protobuf” [63]

format. Also, Rorg leverages Docker’s “mount” feature to map a directory on the host machine to

a container, so that the developers can store runtime configurations like “roslaunch” files to a

version control system (VCS) and attach them to the container. The history in VCS combined

with the Rorg log allows the developers to recover the state of a robot to any previous checkpoint.

As an example, we provide our TritonBot tour guide system along with Rorg to demonstrate these

practices.

The benefits of Rorg are not free — the developer needs to write extra code to configure

Rorg. Since Rorg runs all programs inside Docker containers, deploying a robotic program

with Rorg requires creating a Docker image and defining runtime parameters. Seemingly an

extra effort, the image blueprint (Dockerfile) and the runtime configuration actually serve as a

document to reproduce the execution environment, which helps organizing robotic software from

another perspective; many readily available ROS images and examples further make this process

easier [60].

The above Rorg features exploit most of Docker’s potentials to build, ship, and deploy

ROS-based robotic software; we plan to extend Rorg support to other robotic middleware in

the future. These features keep indivudal robotic software components organized and lighten

developer’s burden. The next section will discuss Rorg’s effort to organize robotic software

system in a whole and avoid resource contention.

4.3.2 Scalable Robotic Software Organization

The basic element in Rorg is a service. Usually, a service represents one container instance:

for example, each of the localization, navigation, and face recognition software is a service. The

“service” concept is consistent with “microservice” in datacenter applications, and it is similar to
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ROS “nodes” or Linux processes in terms of granularity. Rorg does use non-regular service to

simplify its semantics (for example, developer is a meta-service that represents a developer’s

actions, which will be discussed later in this section), but regular services are created with Docker

images and runtime configurations. Rorg provides interfaces to create, query, update, and remove

a service programmatically or through a command-line interface.

Although each service differs from each other in terms of the role in the system, Rorg sees

them as identical in orchestration. A service may “request” another: a request is a relationship

between services — the requester service will use the requested services until it releases the

request. Rorg only keeps requested services alive and ceases services that are not requested

by any other services. For example, when the robot needs to talk, a behavioral service can

request the speak-text service before invoking voice synthesize. For an active service with implicit

dependencies, Rorg automatically requests the dependent services. For example, a navigation

service must always request localization service because the robot cannot navigate correctly

without awareness of its position. A newly created service is not active until another service

“requests” it. When terminating a service, Rorg also automatically releases all its owned requests

to prevent “requests leak.”

4.3.3 Time-sharing Computing Resources

Rorg avoids resources contention on the on-robot computer by time-sharing computing

resources. Because the robot carries limited computing power, the resource-contented computer

should allocate the appropriate amount of resources on programs’ demands. With the robotic

software informing Rorg of the components usage, Rorg enables the required services and ceases

or pauses inactive services, and thus reduces resources usage.

Figure 4.3 demonstrates a simplified Rorg-powered tour-guide robot example that detects

human faces, chats with people, and offers tours to the visitors. The robot takes five consecutive

actions in its work cycle; Rorg manages services accordingly to avoid resources contention. 1 In
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Figure 4.3: Services in a receptionist and tour-guide robot [6]. Each service is a Linux container;
Rorg itself also runs inside a container, but it is not a service. The services contact Rorg to start
or stop their peers: 1 The developer makes the robot autonomous. 2 The robot starts to detect
visitors. 3 The robot chats with a visitor. 4 The robot moves around to guide a tour. 5 The
robot returns to its standby state.

the beginning, the human developer requests the behavioral service that controls the overall

behavior of the robot through a command-line program. The requester is set to a developer meta-

service that is always assumed active. 2 Then the robot becomes autonomous, and behavioral

requests face-recognition to detect human faces. 3 When the robot sees a visitor, behavioral

requests voice-recognition and speak-text to chat with the visitor. 4 When the visitor decides

to take a tour with the robot, the behavioral requests navigation, which implicitly requests

localization (for robot pose estimation) to move the robot around. The behavioral also releases

its previous request to face-recognition, as the robot does not detect human face during the tour.

5 After the tour, behavioral releases all of the services but requests face-recognition to return to

the initial state. When navigation becomes inactive, Rorg automatically releases localization as

it was only requested by navigation. Note localization, navigation, and face-recognition are all

computationally intensive. In such setup, the robot does not waste CPU time on face-recognition
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during navigation, nor does it assign any resources for localization during the waiting state.

Using Rorg for time-sharing computing resources is easy in general, but it is complicated

for certain services. For example, the developer can specify an implicit dependency between

navigation and localization when creating navigation service, thus localization will always start

when navigation becomes active. Rorg provides several interfaces and client libraries, including

ROS-service interfaces, general remote procedure call (RPC) interfaces [82], Python, and C++

libraries to help developers to write code to send/cancel Rorg requests for services with dynamic

behavior (e.g., behavioral service). Besides, we are investigating more automated methods to

make Rorg more programmer-friendly.

It is worth pointing out Rorg’s time-sharing method is not the only way to reduce resource

usage on service robots. A common option is to offload computation, but it is limited by

latency constraints and privacy concerns on service robots. Another option is to start and stop

individual Linux processes, but Linux containers are much cleaner (e.g. the developers are

free from accidentally leaving orphan processes running) and provide more functionality (e.g.

pausing a process without sending SIGSTOP). A third option is to design an event-driven system

architecture; it can avoid unnecessary computation without shutting down any components, but

such option usually involves a total system overhaul. Besides, by often ceasing services, Rorg

provides an opportunity for them to restart refresh frequently, as a previous long-term autonomous

service robot Sage experienced many memory leak issues which can be mitigated by restarting

components often [23], and as Google points out “a slowly crash looping task is usually preferable

to a task that hasn’t been restarted at all [40].”

4.4 Evaluation

We test Rorg using our TritonBot system, a real long-term autonomous service robot [6].

This section evaluates Rorg from two aspects: First, to show Rorg’s effectiveness on software
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maintenance, we compare our daily workflow before and after introducing Rorg to manage the

software in TritonBot. Second, to show how Rorg reduces the risk of resource contention, we

compare the CPU and memory usage with and without Rorg.

4.4.1 Experimental Setup

Rorg targets at service robots that perform different tasks at different times. In previous

work we built TritonBot to serve as building receptionist and a tour-guide robot [6]. TritonBot

stands to face the building entrance and continuously detects faces with its camera. When

TritonBot sees a visitor, it will greet the person by name if it could recognize the face, or it will

ask the visitor’s name and associate the name with the face. TritonBot also offers trivia questions

and navigates with the visitors and introduces places of interest in the building; it uses a leg

tracker to make sure the visitor is following it. The behavior of TritonBot is controlled by a finite

state machine.

TritonBot is built on a commercial mobile robot platform “Fetch Research Robot” [10].

As discussed in Chapter 3, it senses and interacts with the environment using a camera, a

directional microphone, a loudspeaker, two laser scanners, and a mobile platform with two

differential-drive wheels. The core of the platform is a computer composed by an Intel i5-4570S

CPU (4 cores, 4 threads) operating at 3.20GHz, 16 GB memory, and 1 TB solid-state storage.

Seemingly outdated, the computer was a medium-configuration when the two-year-old robot was

manufactured. We believe TritonBot represents service robots in the middle of their lifecycles.

TritonBot’s software system consists of 65 ROS programs, and it heavily leverages open-source

and third-party software to support its tasks. For example, Openface [53] pipelines human faces

detection and the face similarity calculation; an open-source leg tracker [83] tracks people around

the robot; Cartographer [54] provides simultaneous localization and mapping (SLAM) for the

robot, and the ROS navigation stack “move base” [55] navigates the robot around. TritonBot also

uses cloud service like Google Cloud Speech API [56] to transcribe speech audio to text. These
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Table 4.1: General TritonBot maintenance workflow with and without Rorg.

Maintenance
Task

Without Rorg With Rorg

Deploy a new
software

component.

Copy source files to the robot;
install the dependencies; compile
the software; fix potential
dependencies errors; write a startup
script.

Write and test a Dockerfile; build
and upload the container image to a
“Docker registry”; use a Rorg
command-line tool to create a new
service.

Update a
software

component.

Remove original software and
residuals but keep configuration
and reusable data files; install the
new version; update configuration
files.

Rebuild and update the original
Dockerfile; run a Rorg
command-line tool to refresh the
update.

Rollback a
software

component.

Remove original software and
residuals; reinstall the old version;
rollback configuration files.

Rollback configuration files; run a
Rorg command-line tool to
rollback.

Update software
configuration.

Locate and update the configuration
in scattered places; kill the program
process tree; restart the program.

Update the configuration in a
unified location; run a Rorg
command-line tool to restart the
service.

Develop software.

Install the same libraries and tools
on the robot to the developer
workstation; clean up or even
reinstall the system in case of
library contamination; before
deployment, fix the inconsistency
between deployment and
development environments.

Use the same container image
(with libraries and tools) to develop
on workstations or robots; recreate
the container with Rorg to restart
from fresh; not to worry about
inconsistency between deployment
and development environments.

components were eventually packed as individual Rorg services.

4.4.2 Managing Software System

The complexity of TritonBot system puts a lot of maintenance burden on the developers.

Many of these software components depend on different libraries (the “dependency hell”), and

there are many runtime parameters, configurations, and other supporting files associated with
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each of these components. As the robot system scales up, keeping the system running becomes a

tedious and error-prone task.

Table 4.1 compares our workflows of general maintenance tasks with and without Rorg.

With Rorg, we manage our robotic software in a much cleaner and organized manner. Since the

maintenance effort is a subjective concept and hard to quantify, we leave the decision of whether

Rorg helps the developers in operating and evolving the system to the readers.

At this time, TritonBot is running 65 ROS nodes as 41 Rorg services. We group some

tightly-coupled ROS nodes together as a single Rorg services (for example, the cartographer node

and the accompanying occupancy-grid-map converter). In the past year, we pushed 126 software

version updates and 71 configuration changes to TritonBot with the help of Rorg.

4.4.3 Avoiding Resources Contention

Many of the programs in TritonBot are resources intensive. When the robot is operating

without Rorg, the average CPU usage is often around 90%, the memory utilization occasionally

reaches 100% due to a potential memory leak. Therefore, TritonBot is on the borderline of

resource contention where insufficient performance slows down the robot. As a result, the

response latency of the robot is creating an unsatisfactory user experience — the robot only moves

a few seconds after it says “please follow me.”

We evaluate the decrease in resource usage with Rorg using three setups: simulation,

emulation, and deployment.

Simulation

In the simulation, we feed the state machine trace (state transition log) to a simulator

and assign empirical CPU and memory usage (medium number collected from a month-long

deployment) to each of the services. The simulation experiment is fast and the result is always

consistent, but it does not reflect the dynamic resources consumption by a program. We run
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Figure 4.4: Rorg simulation result of TritonBot using a trace collected on February 6, 2018. We
normalize the CPU and memory usage to a baseline where all the components are always active.
Only calculating active time, Rorg reduces CPU usage by 52.6% and memory usage by 12.5%.

the state machine trace collected on TritonBot back on February 6, 2018, a typical day for

TritonBot [6]. The robot was deployed from 10:40 am to 2:40 pm that day, worked for four

hours in total. It greeted the visitors 188 times and guided ten tours. As shown in Figure 4.4, the

simulation result indicates 52.6% reduction to CPU usage and 12.5% reduction to memory usage

by introducing Rorg to TritonBot.

Emulation

In the emulation, we run the actual components on a workstation with the same specs as

the robot embedded computer, but we play back sensor data and discard the control commands

sent to the actuators. The emulation experiment reflects the dynamic resource allocation of the

programs, and it does not require TritonBot to move when we are profiling the system. The

baseline system has all of the Rorg services running, but the system with Rorg only runs the
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Figure 4.5: Rorg emulation result of TritonBot. The activity of the robot at every moment is
shown along with the CPU/memory usage. Only taking active time into account, Rorg brings
37.2% reduction to CPU usage and 40.2% reduction to memory usage.

services that are required at the emulated moment. Figure 4.5 shows the results from emulation,

which reflects the fluctuation in CPU and memory usage when a service is starting or stopping.

Rorg reduced CPU usage by 37.2% and memory usage by 40.3% in average in the emulation on

average.

Deployment

We also deploy Rorg on the real TritonBot platform to observe its performance. Reduction

of resource usage in deployment is the golden standard to evaluate Rorg’s performance. However,

due to the dynamic nature of the environment, we can only guarantee similar experimental

conditions in a relatively short period. Figure 4.6 shows the variation of resources usage in a 60

minutes TritonBot deployment. We had the robot guided three tours and greeted people 30 times
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Figure 4.6: Rorg deployment result of TritonBot. We deployed the robot for one hour and
collected performance data. With Rorg there is 45.5% reduction in CPU usage and 16.5%
reduction in memory usage on average. Although the events do not align in the baseline and in
the Rorg experiments, the robot gave three tours and greeted people 30 times in both scenarios.

during the experiment. Rorg reduced CPU usage by 45.5% and memory usage by 16.5% during

the deployment on average.

The CPU usage improvements are consistent in three experiments, but the memory usage

differs. We found that the simulation and emulation correctly reflect CPU usage by switching

on and off CPU-intensive tasks like face recognition and navigation, but the memory usage is

less accurate because of difference of sensor/actuator drivers and data playback. Nevertheless,

simulation provides a fast way to evaluate the theoretical benefit of Rorg, and emulation provides

a fair comparison between the baseline and the system with Rorg.
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4.5 Conclusion

Service robots suffer from tedious development workflow and resource contention. We

propose software encapsulation and dynamic orchestration to confront these issues. This chapter

presents our implementation of software encapsulation and dynamic orchestration on service

robot, Rorg, a tool that leverages Linux containers to streamline workflow and reduce resource

consumption. Rorg eases developers’ effort to orchestrate microservices on service robots, and

it enables efficient time-sharing resources to avoid resource contention. We tested Rorg using a

service robot application — TritonBot [6], a receptionist and a tour-guide robot. Experimental

results by simulation, emulation, and deployment show that Rorg reduces 45.5% CPU and 16.5%

memory usage. We release Rorg as open-source software (available at https://github.com/CogRob/

Rorg). We also provide configurations to build, deploy, and run TritonBot as an example of using

Rorg.

Linux containers have the potential to play a more critical role in service robots. The

containers can run inside sandboxes to increase the security of a system. Through the use of

containers, it is easy to share “applications” across robots and institutions; consequently, they

can serve as a vehicle for increased sharing of research methods. In the future, an end-user can

download “container” to a robot just like installing an App on a smartphone.

The underlying ideas in Rorg, including component encapsulation and lifecycle man-

agement with automatic dependency resolution, ease maintenance burden and save computing

resources in cyber-physical systems. These principles are useful not only in service robots but

also in similar computer systems composed of numerous simultaneously running tasks that have

limitations in computing resources. Our future goal is to apply Linux containers and other system

engineering methods to create a more reliable and scalable robot system infrastructure, as well

as exporting our experience from robotics to other fields in engineering. We hope practical

infrastructure research will bridge the gap between robots in the laboratory and robots in real life,

60

https://github.com/CogRob/Rorg
https://github.com/CogRob/Rorg


and we look forward to seeing robots assisting us in daily life in the near future.
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Chapter 5

Testing Robots using Broad-spectrum

System-level Failure Simulation

Design errors in service robots are difficult to discover due to the need for extensive

and resource-demanding testing. As a result, current service robots often encounter unexpected

failures that require manual intervention to recover. Unfortunately, these failures are typically

non-deterministic and hard to reproduce. This chapter introduces our approach of discovering

design flaws and improving the robustness of service robots using broad-spectrum system-level

failure simulation. Traditionally, fault injection offers developers with an effective approach

to study the long-term reliability of service robots: It allows the developers to investigate the

behavior of a robot under erroneous conditions; it also provides a uniformed framework to

benchmark the fault resilience of a robot system. However, replicating a broad-spectrum of

errors, including hardware failures, is a less-typical practice in robotics. Most of the existing

model-based fault injection works in robotics do not scale well to the increasing failure patterns

of modern and future service robots, and the other system-level methods only work in simulations.

We present a broad-spectrum system-level failure simulation approach with RoboVac, a fault

injection framework with broad coverage of failure patterns seen in long-term autonomous service
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robots. It is capable of injecting failures to modern service robot systems (especially those built

with ROS) without specific knowledge about the robot application. Its fault injection methods

can generalize to many service robots with minimal effort. We applied RoboVac to TritonBot, a

real tour-guide robot application (Chapter 3); it covered all of the failure patterns we have seen in

previous deployments, and it helped the developers to discover unknown design flaws and verify

the fixes. We made RoboVac open source to help the developers and researchers to build more

robust and reliable service robot systems.

5.1 Introduction

As robot technology matures, functioning without intervention is now a significant chal-

lenge for long-term autonomy and the wide acceptance of service robots. Previous long-term

deployments [6, 2, 3, 4] revealed the failure modes of service robots in home and office settings.

Since the developers tested these robots to their best effort during the development, most of the

failures happening in the actual long-term deployment are rare, nondeterministic, and hard to

reproduce. As a result, the developers had to rely on hidden clues in a massive amount of log

to debug, and verifying a fix is non-trivial when the condition that triggers the bug is random

or undetermined. Besides, the risks of some unrevealed failures may remain hidden until the

robot is deployed and works in the target environment for an extended period, which could

lead to catastrophic outcomes. Furthermore, the lack of a systematic method to benchmark the

fault-tolerance of a robot system also prevents developers from assessing the resilience of an

autonomous service robot system.

Fault injection is a conventional technique in software engineering that intentionally

introduces failure to test error handling code paths that are rarely followed in normal operations.

With fault injection, developers can reproduce erroneous conditions, and therefore, more easily

debug and verify fix in software systems; they can also discover unhandled exceptions and assess
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the reliability of a system. While this technique is common in software engineering, its application

in service robots is not yet well-rounded, and there are three primary challenges:

• First, few fault injection tools work with modern robotic software architecture. Most modern

systems leverage middlewares like ROS [11] to form a loosely-coupled distributed system,

but none of the popular middlewares [11, 72, 73] provides fault injection capabilities. On

the other hand, handcrafting fault injection for each software component is inefficient,

inflexible, and unscalable.

• Second, service robots have a broad spectrum of failure patterns. Previous work on mobile

platforms [17], telesurgical robots [16], and autonomous vehicles [19] explored model-

based fault injection. However, since many failures in service robots are derived from

various design flaws in corner cases [6], model-based fault injection does not scale well on

service robots.

• Third, service robots are cyber-physical systems with safety concerns. Service robots

interact with surrounding environments using a variety of sensors and actuators, which

makes failure patterns different from those in pure-software systems. Therefore, fault

injection into such systems requires careful design and evaluation of the injection methods.

Our goal is to introduce fault injection to service robots and cover a broad spectrum

of failure modes specific to service robots. To this end, we propose RoboVac, an extensible

and convenient fault injection framework that covers most of the failure patterns seen in long-

term autonomous service robot deployments. Unlike previous work, RoboVac works at the

infrastructure layer of a service robot system; it is capable of injecting a broad spectrum of failure

modes; as a framework, it is extensible to more kinds of failures. It works with standard robotic

middleware, and therefore, it is compatible with many commercial/research robot platforms.

RoboVac has three key contributions:
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• RoboVac works with ROS [11], one of the most popular robot middlewares. By replacing

the basic ROS library with a RoboVac-enhanced version, all existing ROS programs attain

fault injection capability from RoboVac without recompiling.

• RoboVac leverages operating system features, middleware communication channels, and

other general mechanisms to provide a broad-spectrum coverage of failure patterns. It is

capable of injecting failures without specific knowledge about the robot application.

• RoboVac takes the robotics context into account and provides flexibility such as scripting

and multi-failure injection. We used RoboVac on a service robot application, TritonBot, and

demonstrated our practices to confront the challenges in TritonBot deployment. RoboVac

helped us to reproduce previously seen but rare failures and verify the fixes; it also revealed

hidden design flaws in the system.

Our experience RoboVac revealed that system-level fault injection could replicate a

broad spectrum of erroneous conditions in cyber-physical systems with only minor changes to

an existing system. These injected failures expose design flaws and allow the developers to

understand the robot’s behavior under unexpected conditions, verify fixes, and prepare the robots

for future failures. We hope RoboVac will act as a “vaccine” to service robots and prepare them

for potential failures, and we believe effective fault injection approaches will enable much future

research in robot reliability. The rest of this chapter is organized as follows: Section 5.2 discusses

related work about fault injection in robotics and other systems. Section 5.3 summarizes failure

modes commonly seen in service robots. Section 5.4 presents broad-spectrum system-level fault

injection, the overall RoboVac design, and its fault injection methods. Section 5.5 evaluates

RoboVac within the context of TritonBot, a real tour guide and receptionist robot. Finally,

Section 5.6 discusses the potential use of RoboVac and concludes this chapter.
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5.2 Background and Related Work

Fault injection intentionally introduces failure to the system and therefore reproduces

the system state under erroneous conditions [84]. It tests error-handling code paths and enables

many other testing methods such as fuzzing [85]. Fault injection has been applied to many areas,

including robotics and traditional computer engineering.

Fault Injection in Robotics

Previous works have done some fault injections onto robotics. Christensen et al. use fault

injection on mobile platforms to detect failures by comparing actual feedback from sensors with

models corresponding to certain failure conditions [17]. Koopman et al. use fault injection to

simulate failures at the drive-by-wire middleware layer in automotive systems [86]. A later work,

Sabotage [19], a simulation-based fault injection framework for autonomous driving vehicles,

provides a strategy to assess automotive safety throughout the development stages. Similar to the

ISO 26262 [46] standard that recommends identifying potential safety hazards in the automotive

industry, ISO 14971 [87] points out a similar requirement for medical devices. Alemzadeh

et al. use fault injection to validate the robustness of safety mechanisms in telesurgical robot

systems [16]. Targeting embedded systems that are similar to robots, DESTECS uses fault

injection to enhance the dependability of the embedded software for cyber-physical systems [88].

ASTAA uses fault injection on the inter-component level to stress-test autonomy systems to find

potential bugs [89]. In addition, many other projects in robotic safety analysis and fault diagnosis

also use fault injection to validate their proposals [90, 91]. However, most of these approaches

only focus on a few failure models; adapting these approaches to current service robots is a

time-consuming task. As a result, they do not scale well on modern service robots.
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Fault Injection in Computer Systems

The concepts of software fault injection exist in computer engineering for a long time [92]

and are well studied by the academia and the industry [93]. Software fault injection not only

helps to discover design flaws and track software bugs, but also emulates hardware errors to

evaluate robustness against them. There are three general fault injection approaches: injection of

code changes, data errors, and interface errors [94]. Changing a small set of instructions achieves

code-change error injections, but altering control flow often requires a large number of code

changes. Duraes et al. propose a tool to change the binary code of the application to emulate

specific types of fault [95]. Data errors are the most common form of errors in software, and

analyze tool injects faults in memory or registers at either random or given time [96, 97, 98].

Interface errors refer to the errors appearing in the communication between different software

components (e.g. functions and threads), which usually corrupts input and output [99, 100, 101].

Injecting interface errors does not require software modification or recompilation. Fault injection

in glibc (FIG), is a tool that injects errors at the application/library boundary with minimal

run-time overhead [102]. FIG is a part of recovery-oriented computing (ROC) [42]. Besides, a

wild range of commercial tools in software testing adopt fault injection [103, 104, 105, 106, 107].

Special Challenges in Service Robots

The challenges of fault injection in service robots differ much from that in traditional

computer systems or other types of robots. The computer failures like flipping bits can happen

on robots, but they are not specific to robots, and the countermeasures from computer system

research are equally applicable. For example, memory with ECC capability can detect and

correct data bits flips, and majority voter provides reliable computing circuits. On the other hand,

application-specific robots often have special “weak points” that are more prone to errors. RAVEN

II, a telesurgical robot, only has three major software components: network component, control

component, and console component [16]; the researchers were able to pinpoint a few common
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failure patterns that cause severest faults. But service robot systems are more complicated and

scalable systems; they consist of many loosely-coupled components and thus have a broad

spectrum of failure modes. TritonBot [6], a tour guide and receptionist prototype robot, has

about 41 components for face recognition, voice recognition, voice synthesizer, localization,

navigation, knowledge database, etc.; the developers have observed failure modes scattered in

hardware, software, networking, and so on during its initial deployment. As a result, failures in

special-purpose robots and general computer software only share a small portion of failures seen

in service robots; there is little experience of applying fault injection to modern service robot

systems.

5.3 Failure Modes in Service Robots

Long-term deployments of service robots reveal unexpected failure patterns in the devel-

opment phase. Since the primary goal of RoboVac is to cover a broad spectrum of failure modes,

failures exposed in long-term deployments hints the major failures types that RoboVac targets. A

few long-term autonomous service robots have been deployed for months, and their developers

have reported their failure modes: TritonBot [6] is a receptionist and tour-guide robot that inte-

grates many machine learning and robotics technologies into a single-robot system; it is designed

to discover long-term robotic reliability issues in home and office settings. The classic Sage [23],

CoBots [21], STRANDS [3], and BWIBots [4] are also impactful long-term autonomous service

robot systems that reported reported deployment experiences and failure statistics (Section 2.1).

Besides, some previous work also studied failure in other robot systems [7, 108].

In general, failures in these robot systems fall into one of the three categories: hardware

failures, software failures, and networking failures.
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5.3.1 Hardware Failures

The most obvious difference between a service robot and a traditional computer system is

that service robots are cyber-physical systems that interact with the environment using sensors

and actuators. Although other failures such as mechanical and power failures happened on

TritonBot [6], they either affect sensor readings or actuator functioning, or they are beyond the

reach of software failure injection. The following of the section focuses on sensors and actuators

failures.

Sensor Failures

Sensors have three failure patterns: no reading, wrong readings, and sensor noise. Triton-

Bot once experienced no reading failure from its laser scanner: the failure happened three times

during a one-month deployment, and we had to reconnect the system battery to recover the robot.

Our other robot had a faulty ultrasonic sensor that kept returning maximum readings, and we had

to replace the damaged sensor to solve the issue. In low-light conditions, the consumer-grade

camera on TritonBot has severe luminance and chrominance noise, and it affects face detection

on the robot.

Actuator Failures

Actuators are components that move and control a mechanism or system in the robot and

its surroundings. TritonBot once had a slipping wheel because the gas spring that pushes the

wheel-assembly to the ground was worn out. In another TritonBot incident, the robot was not

able to dock into its charging stand to start charging because of a failed electrical connector. In

addition, the STRANDS robots had issues of getting stuck on a carpet and causing navigation

failures [3]. In all cases, the actuators did not perform the desired action precisely.
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5.3.2 Software Failures

Active deployment and iteration on robot software bring many software issues into long-

term autonomous service robots. There are three common software failure patterns: unexpected

crash, slow response, and incorrect behavior. Each of them has different causes and symptoms.

Unexpected Crash

Unexpected software crash happens because of software bugs, assertion error, out of

memory, and other causes. The STRANDS project explicitly reported crashes in their beta

software [3]. In the early deployment of TritonBot, voice recognition software had memory leak

issue and crashed every few hours. Unfortunately, unexpected crashes are very common on robots,

especially in robot prototypes that heavily utilize open-source software.

Slow Response

Resource contention and concurrency issues lead to slow software responses. On Tri-

tonBot, the face recognition pipeline has seconds of latency when the robot navigates around,

as the software compete for the limited onboard resource due to power and weight constraints.

The STRANDS robots also had task time-outs in their software and even deadlocks that caused

infinite delay [3].

Incorrect Behavior

Imperfect algorithms designs or corner cases lead to incorrect software behavior. In a

previous TritonBot deployment, the face recognition pipeline recognized a round clock as a

person; it kept talking to the clock on the wall until the developers turned it around. Similarly,

STRANDS robots used to get stuck near obstacles [3] due to software design flaws.
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5.3.3 Networking Failures

Many mobile robots leverage network to access to cloud services or other resources.

The throughput, latency, and connectivity often vary by time, location, and Internet service

providers (ISPs). Imperfect networking caused problems on both the TritonBot [6] and the

STRANDS robots [3]. There are two primary modes in networking failures: availability issues

and performance fluctuation.

Availability Issues

Unavailable connection affects the robot components that rely on the Internet to function.

TritonBot occasionally suffers from temporary connection loss when it roams between multiple

access points, as the robot works in a 6,000sq. ft. open space. It also encountered a longer period

of Internet unavailability when the network devices are under maintenance because developers do

not have control over the networking infrastructure in the office building. Similar situations also

apply to other service robots in the home and office settings.

Performance Fluctuation

TritonBot usually has high-bandwidth and low-latency wireless Internet access (125.91

Mbps download, 139.21 Mbps upload, 8 ms round-trip latency connecting to an off-site datacenter

as of writing). However, we also observed performance fluctuation when there is a major event in

the same area or when the robot moves into WiFi blind spots. The latency sometimes spiked to a

few seconds, and the throughput dropped to a few kilobytes per second. TritonBot [6] heavily

depends on Google Cloud Speech API [56] to perform speech recognition, but the cloud service

once refused to serve TritonBot because it could not stream audio in a near-real-time rate.
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5.4 RoboVac Design

RoboVac is designed to integrate into an existing robot system with minimal effort;

it enables the developers to coordinate the fault injection timing and assert properties of the

system during testing. It provides various fault injection methods to cover all the failure modes

discussed in Section 5.3. This section presents framework architecture and fault injection details

of RoboVac.

5.4.1 RoboVac Architecture

A RoboVac system has three major components: a RoboVac controller that coordinates

fault injection in the system, multiple programs loaded with RoboVac fault injection client libraries

that perform the actual fault injection, and test scripts that specify the injection timing and type

of fault. The three components communicate via a remote procedure call (RPC) interface [82].

Figure 5.1 shows the RoboVac framework.

Cooperating with Existing Robot Systems

To realize the easiest adoption of fault injection on an existing robot system, RoboVac

does not require recompilation or modification of any existing code. It takes different approaches

for non-ROS and ROS programs: For non-ROS programs, a user can “preload” the RoboVac client

library into a Linux process using the dynamic linker features (LD PRELOAD); this approach also

works on the Python programs — the RoboVac client library is loaded into the Python interpreter.

For C++ and Python ROS programs, RoboVac replaces the ROS library (libroscpp.so or

rospy) to load and coordinate with the RoboVac C++ or Python library. Both C++ and Python

RoboVac client libraries provide the same functionalities; they spawn a looping thread to poll

fault injection directives from the RoboVac controller, and they pass fault injection directives to

the rest of the program. The RoboVac client library also provides some universal fault injection
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Figure 5.1: The architecture of a system with RoboVac. RoboVac has three parts: controller,
clients, and the test script. The RoboVac library (librobovac.so or robovac Python package)
is loaded into ROS and non-ROS programs; it passes fault injection directives to the rest of
the programs, and it has some basic fault injection capabilities such as crashing the program.
In ROS programs, the ROS library (libroscpp.so or rospy) works with RoboVac to decide
when and what to change in the middleware layer. Besides, user code can optionally interact
with RoboVac library to decide whether to inject failures (the dotted lines). The SOCKS proxy
server also receives commands from RoboVac to reshape the network traffic between the robot
system and the Internet.

capabilities. A previous work, FIG [102] used similar techniques such as preloading a dynamic

library in traditional computer programs, but RoboVac inject errors to a service robot at a system/

infrastructure level.

RoboVac provides application programming interfaces (APIs) for the test script to intro-

spect the system states and the client features, as well as to enable and disable fault injection. The

test scripts can specify a particular RoboVac and decide when and what types of faults to inject to
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the system. The users may program the test script in any RPC-supported programming languages;

they can even perform non-RoboVac actions to set up and tear down a test in the same script.

5.4.2 Fault Injection Methods

RoboVac leverages operating system features, middleware communication channels, and

other general mechanisms to provide a broad-spectrum coverage of failure patterns. This section

explains the implementation details of these mechanisms.

Injection to Middleware (ROS)

Modern service robots often leverage middleware like ROS [11] to decouple the software

components: each software component exposes abstract interfaces through the middleware,

but the implementation details remain hidden from other components. The exposed interfaces

provide a convenient means to manipulate the input and output of a software component, and

RoboVac leverages them to inject failures. While researchers have developed other middlewares

for robots [11, 72, 73] and their constructions are similar, RoboVac firstly supports ROS [11].

ROS provides three channels of communication: ROS topics, ROS service calls, and ROS actions.

RoboVac supports fault injection through all these three channels. Figure 5.2 demonstrates all of

the fault injection methods on the middleware level.

ROS topic is a publish-subscribe framework: a ROS program can “publish” a message

to a topic, and the ROS program that “subscribes” to the topic receives the message through a

function callback. RoboVac supports two mechanisms to inject failure topic: message drop and

message redirection (Figure 5.2 (a)). (1) Message drop: RoboVac can disable the callback upon

reception of a message at a certain probability or on a per-subscriber basis (Figure 5.2 (a) 5 );

it can also stop the publisher from publishing a message to a topic (Figure 5.2 (a) 3 ). This

mechanism simulates the drop of messages due to sensor issues, slow computation, or network

errors. (2) Message redirection: ROS itself provides a “remapping” feature for the topics, but the
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Figure 5.2: Fault injection methods at the middleware (ROS) level, including injecting to ROS
topics, ROS services, and ROS actions. (a) ROS topic fault injection: 1 is the message flow in
without fault injection. 2 and 4 redirects the message flow; they are used with an additional
filter program ( 6 , 7 ) that manipulates the message and injects failures in the message flow. 3
and 5 drops messages at a probability. (b) ROS service fault injection: 1 is the normal service
call. 2 redirects service call: an alternative endpoint handles the service call and injects failures.
3 aborts service calls at a probability. (c) ROS action fault injection. 1 is the normal action
execution flow. 2 redirects the action: an alternative endpoint handles the action execution. 3
aborts action at a probability in different styles such as immediate failure, timing out, etc.

mappings are static and must be set before a program starts. RoboVac allows seamless and online

redirection of messages (Figure 5.2 (a) 2 / 4 ), which is useful when injecting noise to messages.

With message redirection, the developer can insert a “filter” program between the publisher and

the subscriber to add noise or modify other properties of the messages (Figure 5.2 (a) 6 / 7 ). As

an example, to add noise to laser scan ranges, a filter (Figure 5.2 (a) 6 ) subscribes to the original

scan topic (Figure 5.2 (a) 1 ), but RoboVac controls the subscriber to read manipulated messages

from an alternative topic (Figure 5.2 (a) 4 ). The user code in the subscriber is not aware of the

redirection and thus requires no change. To ease the developer’s burden, RoboVac provides a few

common filters such adding Gaussian noise to a few common ROS message types.
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ROS service is a unary RPC framework; a ROS program calls on a “service” and re-

ceives the response from another ROS program. RoboVac provides the service fault injection

by manipulating the service call (Figure 5.2 (b)): RoboVac either sends redirected service call

to an alternative callee which implements a user-defined failure behavior (Figure 5.2 (b) 2 ), or

drops the call to simulate temporary unavailability of the callee at a user-defined probability (Fig-

ure 5.2 (b) 3 ).

The last ROS communication mechanism is ROS action. It is an asynchronous task

execution mechanism (in other words, asynchronous RPC with streaming response). In addition

to user-defined requests and responses, the ROS action library (actionlib) tracks an independent

and universal state such as pending, running, failed, aborted, etc. RoboVac leverages the action

states to simulate failure patterns such as action failures, timeouts, or aborts without knowing

the action details (Figure 5.2 (c) 3 ). It also supports forwarding an action call to an alternative

endpoint and modifies request/response to simulate fault behaviors (Figure 5.2 (c) 2 ).

Injection to Linux Processes

Most service robots (especially those powered by ROS) run on the top of the Linux

operating system. RoboVac leverages Linux signals to simulate many common error patterns in

Linux processes. Table 5.1 shows the signals used by RoboVac and their corresponding failure

patterns. With these signals, RoboVac can reproduce failure patterns such as unexpected program

crash, temporary or permanent program stall, or unavailability of some programs.

RoboVac sends most of the signals to a process from the client library thread in the

process itself. However, it sends SIGCONT from a proxy program with appropriate privilege,

because a SIGSTOPed process cannot send a signal. While SIGSTOP-SIGCONT pair can pause

a program, the program can detect SIGCONT and exhibit different behavior from simple CPU

throttling. We are working on an alternative approach to use a transparent “cgroups freezer”

mechanism, which is especially convenient for the robot systems that leverage Linux containers
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Table 5.1: Linux signals used to inject failures into Linux processes.

Signal Usage Failure Patterns

SIGKILL
Kills a process (cannot be

caught)
Simulates a program encounters an erroneous
condition and quits without cleaning up

SIGSTOP
Pauses a process (cannot

be caught)
Simulates a program temporarily hangs;
resumes on SIGCONT

SIGCONT Continues a process
Continues a stopped process to simulate it
returning to running

SIGINT Exits a process gracefully Simulates a process terminating itself gracefully

for software deployment [109].

Injection to Networking

RoboVac can introduce extra latency, limit the bandwidth, or completely cut off the

connection when a robot software component accesses to the Internet. Both the latency and band-

width are adjustable. Therefore, RoboVac simulates five types of imperfect Internet connectivity

patterns: normal, low throughput, high latency, low throughput with high latency, and discon-

nection from the Internet. It uses a SOCKS proxy [110] to intercept and reshape the networking

traffic (Figure 5.1). Robot software connects to the Internet through a SOCKS proxy [110]. The

proxy server forwards the traffic in full speed during normal conditions, but it reshapes the traffic

pattern under fault injection. RoboVac SOCKS proxy introduces no performance overhead for

local ROS traffic as it only affects the Internet traffic. While other methods are also available

to manipulate Internet connectivity (i.e. iptables), SOCKS proxy provides a much simpler

programming interface to filter, audit, and generate statistics about Internet traffic.
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Ad-hoc Injection to Specific Software

Aforementioned methods are generic and cover a significant portion of failure patterns.

However, some frequent and vital failures are rarely covered by any general approaches. A

common example is that imperfect algorithms do not handle corner cases well. To cover the

special cases, RoboVac supports the ad-hoc fault injection to specific programs. In this approach,

developers implement fault behavior inside the program and specify several injection entries. At

each injection entry, the program checks with the RoboVac client library to determine whether to

inject fault behavior. Therefore, RoboVac framework still holds control over the fault injection.

For example, we modify movebase, the common ROS navigation software, to inject “ghost

obstacles” in the occupancy grid to test the robot’s behavior when it is stuck near obstacles.

Although ad-hoc fault injection is not generic or flexible, it is effective for testing the specific

functions of a program.

Summary

Table 5.2 presents the failure modes, their corresponding fault injection methods, and

their usage. These fault injection methods cover all of the failure modes discussed in Section 5.3.

5.5 Evaluation

This section evaluates RoboVac in the context of real long-term autonomous service

robots. First, we apply RoboVac to the people detection subsystem in our tour-guide TritonBot to

study the impact of sensor noise amplitude on performance. Then, we present our experience of

using RoboVac on the entire TritonBot system to help reproduce failures and verify fixes. Lastly,

we evaluate the performance impact of RoboVac on a service robot system to ensure that the

performance impact of RoboVac does not affect the behavior of the robot.
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Table 5.2: RoboVac covered failures and injection methods.

Failure Mode Injection Method Fault Injection Details

Sensor no reading Middleware topic Cuts the subscriber off from message flow

Sensor wrong
reading/noise

Middleware topic
Redirects the subscriber to a manipulated
message flow

Actuator malfunction Middleware topic
Redirects the actuator driver to a manipulated
message flow

Actuator malfunction
Middleware

service, action
Intercepts the actuator command and always
returns failure

Software crash Linux signal Sends SIGINT or SIGKILL to the process

Software stall Linux signal Sends SIGSTOP then SIGCONT to the process

Algorithm result
error

Ad-hoc fault
injection

Manually modifies the software to include error

Algorithm result
error

Middleware Manipulates data or control flow in the pipeline

Network issues
Network fault

injection
Manipulates Internet connectivity, latency, or
bandwidth

5.5.1 Example Case: People Detection under Sensor Noise

We use RoboVac to study the influence of sensor noise on the TritonBot human detection

subsystem. TritonBot uses both visual perception and the laser scan to confirm the existence of a

person before starting a dialogue with a user: it incorporates the open source OpenFace [53] to

recognize face and an open source leg tracker [83] to detect human legs. TritonBot only starts

talking to a person when it spots a front face and detects legs within a certain range (1.7 m) in front

of it. However, the camera image is noisy in low-light situations, and strong light interferes with

the laser scan beams. Face detection and leg detection algorithms are sensitive to sensor noises.

With more noises, the true positive rate of the algorithms becomes lower, and the algorithms

need to see more samples before they can confirm a positive detection. As prior work requires
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manually setting up a system for emulating those failure situations [111], RoboVac can investigate

the impact of noises with minimal effort.

The experiment runs the person detection pipeline on a computer with identical hardware

configurations as the TritonBot [10]. Since the sensor records data in a standard format (ROS

message type), RoboVac can inject noise to the corresponding data readings through middleware

injection. A test script sets up the fault injection and invokes rosbag to replay the sensor data.

We add Gaussian noises to both image and laser scan readings. Figure 5.3 shows the latency

distribution according to the injected noise levels. When noises added on data from both sensors

are low, TritonBot recognizes the person as soon as he approaches and looks at the robot (within

4.72s); as noises get higher on either sensor, TritonBot spends more time to react to human

appearance; when noises are exceptionally high, the robot cannot recognize human at all. The

observations align up well with our expectation of real failure cases.

5.5.2 RoboVac on TritonBot

In prior work we built TritonBot to serve as building receptionist and a tour-guide robot [6].

It talks to visitors, remembers the visitors’ face, and navigates around to show places to the

visitors. The initial one-month TritonBot deployment revealed many issues on TritonBot. We

used RoboVac to recreate the failure conditions of TritonBot to debug the design flaws in TritonBot

and fix the handling behavior.

Table 5.3 shows the failure patterns on TritonBot and their corresponding injection

methods; RoboVac covers all of them. While some failure patterns do require specific model-

based fault injections to reproduce, most of the failures are generated using generic fault injection

methods. The general injection mechanisms do not require developers to have knowledge of the

specific implementation. For example, RoboVac reproduces the always-fail auto-docking issue on

TritonBot by injecting faults to ROS actions, and the developer only specifies the injection target

(the behavioral state machine) and the action name (/dock). The developers can use the general
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Figure 5.3: Latency to detect a person v.s. noise levels injected on laser scan ranges and image
pixel values. The heatmap represents the latency between the time that a person starts walking
toward the robot and the time that robot detects the person. The noise injected to both sensors
are independent Gaussian noises: The laser scan noise εl ∼ N(0,σ2

l ) is added to original laser
scan ranges (σl is the x-axis), and the pixel noise εi ∼ N(0,σ2

i ) is added to the RGB channels of
the pixels in the image (σi is the y-axis). The latency grows larger as higher noise is injected to
the system.

fault injection methods in RoboVac to test many aspects of the systems; furthermore, RoboVac

has the potential to work with fuzz testing methods to automatically discover design flaws.

We also use RoboVac to inject sensor and actuator failures on TritonBot. For example,

we simulate a free-spinning right wheel by intercepting the velocity commands and setting the

right wheel velocity always to be 0, while the left wheel velocity remains untouched. However,

injecting faults to actuators has a potential safety hazard — the injected failures may bypass the

last safety barrier that prevents the robot from causing catastrophic damages. We engineered our
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Table 5.3: Failures in TritonBot, corresponding fault injection methods and handling behaviors.

Failure Effect Injection Method Handling Behavior

Laser scanner does not
report measurements

Cuts off message flow in the
base scan topic

Emails the developer if
base scan is idle for minutes

Charging port failure Mark dock action as always
fail

Gives up docking after five
attempts and alerts the developers

Cloud speech API not
reachable

Disconnects Internet from the
speech recognition client

Goes back to the charging dock
and waits for Internet recovery

Voice recognition
software random crashes

Kills the program using
Linux signals

Restarts the software in case of
dead process

Voice recognition returns
wrong result

Redirects the message
subscriber to a filtered topic

Enables fuzzy matching in the
recognition results

Face recognition slow
response

Pauses and restarts the face
recognition client.

Monitors the latency of the
pipeline and alerts the developer

to abnormality

emergency-stop protection mechanisms always to use original sensor data and send final actuator

commands, but we consider triggering these mechanisms as an overall failure.

5.5.3 RoboVac Performance Overhead

Computing resources are limited on service robots, but fault injection requires some

additional computation. We evaluate the performance overhead of RoboVac using an emulation of

the TritonBot system with the robot control state machine trace collected in a previous deployment

(February 6, 2018, a typical day of TritonBot deployment). Figure 5.4 compares the CPU usages

of an emulated TritonBot system under two conditions: (1) with fault injection to the camera and

laser scan data using RoboVac, (2) without fault injection to either mentioned sensor. According

to the experimental results, fault injection with RoboVac only introduce slight performance

overhead to the on-robot computer. The CPU usage with fault injection is only 1.29% higher than

that without fault injection. The performance overhead is unlikely to change the performance
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Figure 5.4: The performance impact of introducing RoboVac and fault injection into a system.
We ran TritonBot emulator with and without fault injection (noise injection to laser scan ranges
and image pixel values), and observed the CPU usage is nearly identical. There is only a 1.29%
increase on average CPU usage after enabling fault injection.

profile of the robot, and the behavior of the robot under fault injection shall reflect the state of the

robot under an actual failure.

5.5.4 Potential Applications of RoboVac

RoboVac not only supports injecting individual failures into a robot system. As an

extensible framework that works at the system/infrastructure level, it has many potential usages

that otherwise not achievable by other fault injection methods in robotics.

One of the possible use is fuzzing [85] at the system scope. RoboVac can discover

potential fault injection points automatically. RoboVac can randomly inject a combination of its

built-in failure patterns and extra user-defined failures at different severity levels. Its scripting

features can monitor and system and record the undesirable behavior of the robot along with the

failures being injected.
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We can use RoboVac to build a benchmark suite and quantify the robustness of different

robot systems using the same standard. Many robot systems are based on ROS, and the majority

features of RoboVac works with ROS programs without recompiling them. Therefore, we can

design a common benchmark suite that covers common abnormal conditions in a robot design.

The benchmark suite will be in the form of an automated script that first introspects the system

and finds out system-specific configurations (e.g., the camera topic name) with the help of the

user. Then, RoboVac can inject failures in the benchmark suite into the system while monitoring

the system status. The results from different robot systems represent their resilience to different

failure modes, and they are comparable under the same benchmark suite.

A pitfall in reliability engineering is that some components rarely fail, and the developers

tend to assume they would never fail. Google intentionally introduced downtime to one of their

microservices and break the developers’ false assumption so that they can prepare the dependent

service for failures [40]. RoboVac can achieve the same idea in service robots. Since RoboVac

has a very low resource usage overhead, it is possible to seldomly inject failures while the robot is

operating. Although the robot may encounter more problems initially, as the developers harden the

robot, the robot system will become more reliable in the long run. With this idea, the developers

will be able to discover potential unexpected situations in a much shorter time and, therefore,

prepare the robots for failures earlier.

While RoboVac is not designed to replicate security issues in service robots, it is possible

to test a robot system’s security flaws using the fault injection methods in RoboVac. Instead

of injecting noise into the pipeline, we can inject intentionally constructed images to trick the

image recognition algorithms, or we can perform a man-in-the-middle (MITM) attack on selected

SSL connections. Then we can test whether the image recognition algorithm is robust or if the

programs that use the Internet validates certificates correctly.

While the abovementioned are ideas that have not been implemented, they remain as our

future work. We believe RoboVac opens many research opportunities in the reliability of service
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robots that are worth pursuing at the system level.

5.6 Conclusion

Reliability is a key factor for service robots to achieve long-term autonomy, and fault

injection is a powerful tool for the developers to discover hidden design flaws and assess the

reliability. This chapter proposes and implements RoboVac, a software fault injection tool that

supports modern robotic software architectures and covers a broad spectrum of failure patterns

previously seen in some influential long-term autonomous service robots. RoboVac can inject four

types of failures as of writing: middleware-layer failures, software process failures, networking

failures, and application-specific failures. Most of its fault injection methods can apply to many

service robots with minimal effort. We test RoboVac with our tour guide and receptionist robot –

TritonBot. The experimental results show that RoboVac is able to inject multiple failures into the

system effectively; its fault injection methods cover all of the previously seen failure patterns on

the robot; the performance overhead during fault injection is acceptable.

Through the RoboVac experience, we verified that system-level fault injection could

replicate erroneous conditions in cyber-physical systems with only minor changes to the existing

system. These injected failures can help the developers to understand the robot’s behavior under

unexpected circumstances, verify fixes, and guide a fail-safe robot design. We hope RoboVac

can help robotic reliability researchers to find new research problems and do experiments on

real robots, and we hope broad-spectrum system-level fault injection will directly or indirectly

improve the reliability of other kinds of systems.
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Chapter 6

Design Considerations in Long-term

Autonomous Service Robot

In the past two years, TritonBot was our primary research platform to experiment with

new ideas. This chapter presents our continued experience and results from the TritonBot project.

We regularly did maintenance, fixed issues, and rolled out new features on TritonBot; we deployed

TritonBot several times to study reliability challenges in long-term autonomous service robots; we

identified reliability engineering challenges in three aspects of long-term autonomy: scalability,

resilience, and learning. For the TritonBot experience, we formulated techniques and summarized

design principles to confront challenges in robotic reliability engineering. Our experience shows

that proper engineering practices and design principles reduce manual interventions and increases

general reliability in long-term autonomous service robot deployments.

6.1 Introduction

Recent robots often perform perfect demos under controlled settings and close human

supervision, but they tend to be less reliable when working autonomously for an extended
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period in unstructured environments. To pave the way toward long-term autonomy, we built

TritonBot (Chapter 3) to study reliability challenges in developing and deploying a long-term

autonomous service robot that interacts with people in an open environment. TritonBot is a robot

receptionist and a tour guide deployed in an office building at UC San Diego. It greets visitors,

recognizes visitors’ faces, remembers visitors’ names, talks to visitors, and shows visitors the labs

and facilities in the building. Inspired by the DevOps practices in software engineering [40], we

reconfigured the robot platforms, developed infrastructure, and invented some other techniques to

support our long-term development and experiments. Chapter 3 summarized lessons in the initial

TritonBot development; this chapter presents our continued efforts in making TritonBot more

reliable and our results from the TritonBot project.

Long-term autonomy consists of three primary factors: scalability, resilience, and learning:

Scalability enables a robot system to grow and gain more features smoothly. Resilience allows

a robot to adapt to environmental changes and tolerate transient errors. Learning helps a robot

to benefit from experiences and become more capable over time. Our contributions in this

chapter are: (1) Identification of failure modes and reliability challenges using the TritonBot

deployment history. (2) Formulation of engineering practices that reduce manual interventions

during long-term robot deployments. (3) Collection of design considerations that increase the

reliability of long-term autonomous service robots. We tested the engineering practices and

design considerations on TritonBot, but they are also applicable to other robot systems with

scalability, resilience, and learning requirements.

The chapter is organized as follows: Section 6.2 presents our improvements on TritonBot

since the initial deployment. Section 6.3 presents the TritonBot deployment history in the last

two years and problems during the deployment. Section 6.4 describes our efforts in making

the TritonBot system scalable in its long-term evolvement (Scalability). Section 6.5 shows our

practices in making TritonBot resilient to failures (Resilience). Section 6.6 presents our attempts

to improve TritonBot over time both autonomously or with the help from developers (Learning).
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Section 6.7 summarizes a few practical engineer practices that developers can use as a “toolbox”

to design reliable long-term autonomous service robots. Finally, Section 6.8 concludes this

chapter.

6.2 TritonBot Improvements

We continued to use TritonBot as our primary research platform to study reliability and

long-term autonomy. After the initial deployment (Chapter 3), we improved various aspects of

the TritonBot system. These improvements make TritonBot a more friendly robot, which allows

us to experiment with reliability engineering further.

TritonBot Components

Figure 6.1 shows the current software architecture and the dataflow in TritonBot. We

use many open-source components to build the system, but we wrote more than 100,000 lines

of code to integrate the system in addition to the open-source components we use. Table 6.1

presents an estimate of lines of code in TritonBot. With this complexity, we believe TritonBot

can represent a service robot in the real world.

After the initial deployment, We applied Rorg (Chapter 4) to manage the components on

TritonBot. The TritonBot software splits into 41 Rorg services. The software went through 756

updates, and the Rorg configurations were updated 100 times. We used RoboVac (Chapter 5)

to test not only the individual components such as face recognition and navigation but also the

robot’s behavior at a larger scale.

TritonBot Behavior Control

TritonBot’s high-level behavior is defined by a state machine implemented using a stan-

dard state machine library, SMACH [112]. Figure 3.5 in Chapter 3 demonstrates the simplified
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Figure 6.1: A block diagram shows the primary components in TritonBot and the dataflow be-
tween them. A state machine controls the behavior and standalone components: face recognition,
voice recognition, leg detection and tracking, localization, and navigation.

state machine. Although other models such as behavior trees [113] or hierarchical task net-

works [114] are sometimes more powerful or flexible, we leave them as options for future

TritonBot improvement.

We enhanced the partition of the state machine, and it roughly splits into four parts: idle,

waiting, interaction, and tour guiding. The robot is in the idle states when it is charging; it also

monitors and responds to the developer’s commands such as undocking or moving to the ready

position. When the robot is in the waiting states, it discovers visitors using the output from

the face and leg detection; it also monitors commands so it can go back to the charging dock

when instructed. The robot enters the interaction states when it discovers a visitor, and if the

visitor accepts the tour, it enters the tour states. In these states, the state machine coordinates

different subsystems such as face recognition, leg detection, speech recognition, speech synthesis,

localization, navigation, and others to realize TritonBot’s features. In some states with chances of

failures (e.g., speech recognition or navigation), TritonBot usually attempts three times before it
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Table 6.1: An estimation of lines of code (LOC) in TritonBot.

Language Number of Files Lines of Code

Python 367 38953

C/C++ 374 28069

Build Rules (CMake and Bazel) 334 16437

Rorg Service Defination 188 7847

Shell Scripts (sh, bash, zsh) 340 7633

Protocol Buffers (ProtoBuf) 100 4405

XML 84 3711

YAML 41 2427

ROS Launch 90 1954

Text 149 1742

ProtoBuf Data (ASCII ProtoBuf) 45 1509

diff 15 722

Lua 9 626

ROS (msg, srv, action) 28 147

JSON 3 18

Total 2167 116200

gives up.

In this update, we also added a special stationary “trivia-only” mode that only provides

trivia questions. We put the robot into this mode for demos and long-term unsupervised deploy-

ments because it does not move, and thus it imposes minimal risks on the surroundings. This

mode eventually contributed to a three-month fully unattended deployment.
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Leg Detection

After the initial deployment, we realized TritonBot lacked an efficient approach to check

the user’s proximity when it is not directly facing the user. Therefore we enhanced TritonBot

with an open-source, random-forest-based leg detector to discover people nearby [83]. The input

to the leg detector comes from the laser scan, and the leg detection is used in two scenarios.

First, TritonBot uses leg detection to confirm a person to greet. TritonBot primarily uses

face recognition to discover users. However, because of the wide field-of-view camera, TritonBot

used to talk to uninterested visitors that walk towards the side of the robot; occasionally, TritonBot

talks to the air for the false-positive face detection. With leg detection, TritonBot checks if a

visitor is within a small range in the front of the robot (Figure 6.2 (a)). Usually, the range is a

rectangle of 2 meters length and 1.6 meters width, but the stationary trivia-only mode uses a

much smaller range (1 meter length and 0.6 meter width in front of the robot).

Second, TritonBot checks if a visitor is following the robot during a tour. TritonBot

verbally communicates with a visitor if it does not detect a visitor within a square of 3×3 meters

(Figure 6.2 (b)), and it aborts the tour if both leg detection and verbal communication fail.

Although the leg detector incorporates the static map of the environment to filter static

obstacles that look like legs, it still reports some false-positives (and usually more false-positives

than false-negatives). Therefore, our use of leg detection is a supporting role such that a false

positive has less severe outcomes.

Voice Recognition and Dialogue

In the initial deployment, a common human-robot interaction flaw was that the visitor

gave up and left the robot when TritonBot misunderstood the visitor — it did not offer an

opportunity to correct misunderstanding. Therefore, we improved the dialogue system with four

major improvements: (1) TritonBot asks for confirmation for open-ended questions (e.g., “What

is your name?”). (2) If the robot is not able to understand a response, it repeats the questions with
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Figure 6.2: Leg detection ranges of TritonBot. (a) The leg detection range of reception and
trivia mode. (b) The leg detection range when TritonBot is guiding a tour.

additional instructions. (3) TritonBot repeats the questions if it did not receive any response, but

it gives up if it loses track of the visitor (when face detection and leg detection are both negatives).

(4) TritonBot gives up after too many failures.

For example, Figure 6.3 shows the state machine to ask the question of “what is your

name?” It reads backs the recognized name to the user, and it handles both non-recognizable

results and silence gracefully. While the state machine approach does not grant open dialogue

capability, it proves to be useful for robots that expects a fixed interaction pattern.

Logging

We further improved the logging of TritonBot to provide detailed information. Table 6.2

lists the items we log in TritonBot. We built a backward and forward-compatible universal logging

library to manage these log items (Section 6.4.2).
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Figure 6.3: The state machine to handle question and answer on “May I ask what is your name?”
to the visitor.
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Table 6.2: Types of log entries collected in TritonBot.

Name Description

FaceImage
Cropped and aligned face images for face recognition. Logged in
debug mode only.

VoiceRecognitionLog
Voice recognition results from Google Cloud Speech. Including
interim (partial) and final results.

RobotSpeechLog Text sent to voice synthesis and spoken by the robot.

DirectGoToLog
Logs of navigating the robot from the current position directly to
a waypoint.

AutoDockLog
Logs of directing the robot to its charging dock and starting
charging.

MoveToLocationLog
Navigation logs of moving the robot from the current position to
a waypoint via a few other waypoints.

GoHomeAndDockLog
Navigation logs of moving the robot to its charging dock via
waypoints and starting to charge.

SmachLog
SMACH [112] state machine logs, including entering and exiting
states, state outcomes, and state transitions.

DockerContainerStats
Periodic status snapshots of Docker containers running in the
onboard computer, including resource usage, uptime, etc.

PsUtilStats
Periodic status snapshots of the processes running in the onboard
computer, collected using psutil [115].

EventLog
Manual intervention events logged on the onboard computer,
including manual driving, shell commands issued, etc.

PingStats
Periodic statistics of the latency of accessing the Internet and
local developer network.

SpeedTestStats Periodic statistics of the bandwidth of accessing the Internet.

6.3 TritonBot Deployment History

TritonBot went through three significant deployments. The initial deployment was in

February 2018; the “trivia-only” long-term deployment was between June 2019 and September

2019; the recent TritonBot deployment was between October 2019 and December 2019. This
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Table 6.3: Metrics for long-term autonomous service robots.

Name Description

Mean Time Between
Failures

The average time that the robot can operate normally.

Mean Time To Repair The average time needed to repair a failed robot.

Mean Time Between
Interventions

The average time the robot can run autonomously.

Mean Travel Distance
Between Interventions

The average distance that the robot can move autonomously.
Useful for robots that moving around is a primary features.

Mean User Interactions
Between Interventions

The average user interactions that the robot can perform
autonomously.

On-board Computer
Resource Usage

Average and peak resource usage on the on-board computer. A
resonable amount of slack will allow the robot to respond in a
timely manner.

Internet Connection
Quality

Latency, bandwidth, and uptime for the robot to connect to the
Internet. Important for robots that relies on cloud services.

Task Success Rate The success rate of different tasks performed by the robot.

Task Execution Time
Mean, maximum, and percentiles of task executation time that
represent the general quality of task performed by the robot.

Average Battery Life The time that the robot can work in a single charge.

section presents the history and problems encountered during these deployments.

6.3.1 Metrics for Long-term Autonomy

In reliability engineering and previous long-term autonomy research, the engineers and

researchers use a few metrics to quantify the performance of the robot. Table 6.3 lists a few

metrics that represent the performance of a long-term autonomous service robot.
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Figure 6.4: Work log for TritonBot in the February 2018 deployment.

6.3.2 The Initial Deployment

The initial TritonBot deployment was performed in February 2018. TritonBot worked for

18 days. It was working for 108.7 hours, interacting people for 22.1 hours, talked and listened

for 14.7 hours, traveled 9.9 kilometers. Figure 6.4 presents the deployment log of the initial

deployment.

The initial deployment focused on testing the usability of TritonBot. Some metrics listed

in Table 6.4 are estimated from its logs. Qualitatively, TritonBot encountered the following

problems.

Hardware Issues

• The battery on BoxBot failed and was only able to support BoxBot for 10 minutes, instead

of the regular 12 hours working time. We replaced the battery.
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Table 6.4: Metrics for the initial TritonBot deployment in Feburary 2018.

Metric Value

Days Worked 18 days

Greetings 2950 times

Interacted - New 434 times

Interacted - Known 416 times

Trivia Questions Done 133 times

Tours Guided 150 times

Total Running Time 108.7 hours

Total Interaction Time 22.1 hours

Travel Distance 9.9 km

Mean Time Between Failure 56.1 hours

Mean Time Between Repair 5.9 hours

• The charging port on TritonBot failed, and TritonBot was not able to charge using the

charging dock. We replaced the charging connector.

• The base of TritonBot was generating noise when it was moving. We found a caster on the

bottom became loose, and we tightened the screws.

• BoxBot often failed to use the USB camera (it happened about once per three days). We

initially rebooted the onboard computer when the failure occurs, but we ended up replacing
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the camera.

• TritonBot often lost its wireless Internet connection (it happened about once per three days).

We made a script to check the network connection every minute and reset the wireless

network as needed, and the problem went away.

Software Issues

• TritonBot had localization failure and moved towards the wrong directions during some

tours (it happened about twice per week). After it moved for a short distance, it was always

able to re-localize and continue to function correctly.

• TritonBot once failed to move because its route planner put it too close to obstacles. We

manually drove the robot away from obstacles.

• Occasionally TritonBot failed to plan a route and to move. It was using a laser scanner

to detect and clear obstacles, but sometimes shadows of obstacles could not be cleared,

effectively blocking the robot (it happened about once per day until fixed). We expanded

the clearing range so that the laser scan always detected and cleared a circle of five-meter

diameter around the robot.

• The TritonBot behavioral state machine was not able to communicate with a logging service

and caused TritonBot to stall (happened three times during the entire deployment). We

restarted the whole system to recover TritonBot for the first encounters, but we fixed the

logging service afterward.

Robot-Human Interaction Issues

• TritonBot usually asks the question, “May I ask what is your name?”, some visitors

responded with “Yes,” and TritonBot reply with “Nice to meet you, Yes.” We improved the

handling of the answer to this question after this deployment.
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• When TritonBot was guiding a tour, some visitors left in the middle of the tour, leaving

the robot talking to nobody. We improved the tour behavior using leg detection after this

deployment.

• TritonBot misclassified a clock face afar as a human face, and it tried to talk to it, even

there is no object in close proximity. We improved TritonBot; it comfirms people using leg

detection before greeting the visitor after this deployment.

• TritonBot talks a lot, and a few building users describe the robot as “annoying.”

The lessons we learned from the initial deployment were reported in Chapter 3. After the

initial deployment, we improved TritonBot in different aspects: We introduced Rorg to manage

the software components on TritonBot. We used RoboVac to inject failures to TritonBot to make

sure TritonBot behave well under unexpected situations. We added a leg detector/tracker to check

people around TritonBot. We added more loggers on TritonBot to record what was going on. And

we redesigned the TritonBot state machine to handle more interaction patterns.

6.3.3 The Stationary Deployment in Summer

During the initial TritonBot deployment, we always had a human “chaperone” (a student)

to monitor TritonBot in case of unexpected situations. The chaperone has a wireless emergency

stop button to stop the robot. However, having a student monitoring TritonBot limits its work

time. To test TritonBot for an extended period, we put the TritonBot to a stationary trivia mode

for an entire summer. The robot has a giant blue box in front of it and a label encouraging people

to interact with it. In this deployment, TritonBot still remembered faces, always offered trivia

questions, but it never moved around. Figure 6.5 shows the stationary TritonBot and BoxBot in

deployment.

The stationary deployment began on June 11, 2019, and it ended on September 20, 2019,

covering the summer break of 2019 at UC San Diego. TritonBot worked in the robot zoo for 81
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Figure 6.5: The stationary TritonBot and BoxBot. They start to interact with visitors if they
entered the blue-tape-marked zone.
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Table 6.5: Metrics for TritonBot and BoxBot stationary deployment.

Metric TritonBot BoxBot

Days Worked 81 days 102 days

Greetings 108 times 486 times

Interacted - New Visitors 52 times 181 times

Interacted - Known Visitors 16 times 9 times

Trivia Questions Done 37 times 20 times

Total Running Time 1902 hours 2431 hours

Total Interaction Time 1.10 hours 3.67 hours

Mean Time Between Failure 952 hours 2431 hours

Mean Time Between Repair 545 hours N/A

days during the deployment. The deployment was interrupted because the on-board computer

failed on July 17, 2019, and a developer reset it on August 8. It interacted with people for 108

times. Because the robot zoo is a restricted access area, the interaction is limited. Nevertheless,

the long-term deployment tested the reliability of TritonBot in a “safe” place. BoxBot worked

in a lab for 102 days during the deployment. It interacted with people for 486 times. Access

to the lab is limited to a group of students, so the interaction was limited. But the three-month

autonomy tested the reliability of the system. Table 6.5 summarized a few metrics for this

stationary deployment. The list only contains a few common metrics for long-term autonomous

service robots; robots for different purposes will have their specific metrics as well.
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6.3.4 The Two-month Deployment

After our two-year continued development on TritonBot, we deployed TritonBot for

another two months between September 2019 and December 2019. This time TritonBot worked

for 44 days. It was working for 195.1 hours, interacting people for 17.5 hours, talked and

listened for 13.2 hours, traveled 4.84 kilometers. Figure 6.6 presents the deployment log of this

deployment.

Compared to the initial deployment, TritonBot had less frequent interaction because we

limited its range to detect people to prevent unsolicited interactions. Also, we improved its

face recognition accuracy, so it was less likely to mistake strangers for acquaintances. Because

TritonBot offers trivia questions to strangers but not acquaintances, many people did not have the

patience to finish the session.

Table 6.6 summarized a few metrics for this deployment. A repeated issue was the “rosbag”

service often fail after a ROS library update between this and the previous initial deployment.

The ROS version we use became “end-of-life” and no longer maintained by the time we start this

deployment. Because this repeated failure started to happen after the deployment started, and

it was an example of repeated failure, we decided to keep it for studying repeated problems in

TritonBot.

Comparing the mean time between failures (MTBF) with the previous deployment in

February 2018, even TritonBot gained more features, MTBF slightly increased. We expected a

much higher MTBF without the abovementioned “rosbag” service issue, which must be resolved

by external effort. The mean time to repair (MTTR) was reduced by 39%. The changes in the

metrics are a combined result of applying reliability engineering methods (e.g., scalable software

management and system-level fault injection for testing) and continued TritonBot development as

listed in Section 6.2.

We record all the problems and manual interventions that happened during this deploy-

ment; The interventions include operator’s notes and history from a shell command logger on the
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Figure 6.6: Two month deployment log from TritonBot in 2019.
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onboard computer. Table 6.7 listed the problems, and manual intervention occurred during the

deployment.

Table 6.6: Metrics for the two-month TritonBot deployment between September 2019 and
December 2019.

Metric Value

Days Worked 44 days

Greetings 3506 times

Interacted - New 504 times

Interacted - Known 117 times

Trivia Questions Done 305 times

Tours Offered 286 times

Tours Accepted 101 times

Total Running Time 195.0 hours

Total Interaction Time 17.5 hours

Travel Distance 4.84 km

Mean Time Between Failure 57.0 hours

Mean Time Between Repair 3.6 hours

105



Table 6.7: Operator’s log of TritonBot from the two-month deployment between September
2019 and December 2019.

9/23/2019 3:36 PM

The laser scanner on TritonBot was not sending UDP packets.

Fixed by manually powering off TritonBot entirely and powering

it back on.

9/24/2019 5:33 PM

Multiple ROS action servers failed to receive a goal. Debugged

and found a race condition in ROS implementation. Added extra

delay in our code as a workaround while waiting for their fix.

9/30/2019 2:47 PM
TritonBot’s camera was looking downwards after returning to its

ready position. Fixed the issue and refreshed the configuration.

10/2/2019 2:05 PM

TritonBot’s arm failed to maintain its position. The problem is

not affecting TritonBot’s performance. Noted the problem for

future fix.

10/2/2019 2:20 PM
Logs on TritonBot took too much space. Removed all logs from

TritonBot.

10/3/2019 10:01 AM
Laser Scanner failed on TritonBot. Powered off TritonBot

entirely and powered it on.

10/3/2019 11:13 AM

Robot arm control software (moveit) did not start properly on

TritonBot. Debugged and found misdesigned software from

platform manufacture. Fixed the issue and refreshed the

configuration.

10/4/2019 9:48 AM
Laser Scanner failed on TritonBot. Powered off TritonBot

entirely and powered it on.
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Table 6.7: Operator’s log of TritonBot from the two-month deployment between September
2019 and December 2019, continued.

10/4/2019 9:53 AM
The TritonBot state machine did not start properly because of a

race condition in Rorg. Debugged and fixed the issue in Rorg.

10/7/2019 2:03 PM

The robot’s battery died. It turns out someone engaged the

emergency stop and forced the robot back to its charging dock,

but the robot was not properly plugged in. Recharged the battery.

10/7/2019 2:17 PM
The external speaker was not powered on after the previous

incident. Manually turned on the speaker.

10/9/2019 10:44 AM

TritonBot’s state machine failed. It was not able to communicate

with a logging service because of a communication bug in the

ROS library. Noted the issue and restarted affect parts.

10/9/2019 1:59 PM
Paused the TritonBot deployment because the area (hallway) is

being used for an event.

10/11/2019 12:28 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

10/15/2019 9:08 AM
TritonBot did not receive any response from visitors all day

yesterday. Reason under investigation.

10/15/2019 10:30 AM
TritonBot mislocalized itself. Manually gave TritonBot a pose

estimation.
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Table 6.7: Operator’s log of TritonBot from the two-month deployment between September
2019 and December 2019, continued.

10/15/2019 12:14 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

10/15/2019 1:04 PM

Voice recognition failed. It turns out the microphone was muted

(most likely by a stranger) for an entire day. Reenabled the

microphone.

10/17/2019 12:36 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

10/21/2019 4:19 PM
TritonBot’s battery was dead. The battery percentage reading was

random. Recharged the battery.

10/23/2019 5:24 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

10/28/2019 12:30 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

10/31/2019 11:53 AM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

10/31/2019 11:59 AM

Some students interacted with the robot in a very unexpected way.

They tried to move the head and the arm of the robot. Reset the

robot after they leave.

108



Table 6.7: Operator’s log of TritonBot from the two-month deployment between September
2019 and December 2019, continued.

10/31/2019 5:18 PM
TritonBot’s battery was dead. The battery percentage reading was

random. Fully discharged the battery and recharged it.

11/1/2019 7:17 AM
Expanded the leg detection range (from 0.6m to 1.6m) of

TritonBot to solicit more people. Restarted the state machine.

11/4/2019 5:27 PM
Changed the orientation of TritonBot to solicit more people.

Reloaded the map service.

11/5/2019 12:17 PM
The robot’s head was moved to the side (most likely by a

stranger). Had the robot to go back to its ready position.

11/6/2019 9:04 AM
TritonBot mislocalized itself. Manually gave TritonBot a pose

estimation.

11/6/2019 10:28 AM
The robot’s head was moved to the side (most likely by a

stranger). Had the robot to go back to its ready position.

11/6/2019 12:50 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

11/6/2019 12:52 PM
The e-stop button was pressed (most likely by a stranger).

Manually released the button.
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Table 6.7: Operator’s log of TritonBot from the two-month deployment between September
2019 and December 2019, continued.

11/8/2019 12:25 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

11/13/2019 12:38 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

11/13/2019 1:41 PM
The e-stop button was pressed (most likely by a stranger).

Manually released the button.

11/13/2019 1:41 PM
A curtain was set up in the hallway for an event. Paused

TritonBot deployment for the day.

11/18/2019 12:58 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

11/19/2019 12:05 PM
The robot’s head was moved to the side (most likely by a

stranger). Had the robot to go back to its ready position.

11/20/2019 1:19 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

11/22/2019 2:11 PM

The commander service failed. Collected logs. It turned out to be

a communication issue in ROS. Noted the issue and restarted

affect parts.
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Table 6.7: Operator’s log of TritonBot from the two-month deployment between September
2019 and December 2019, continued.

11/22/2019 5:04 PM
The microphone was muted (most likely by a stranger).

Reenabled the microphone.

12/2/2019 10:19 AM
The state machine failed to receive any external response. It turns

out ROS communication failed.

12/3/2019 11:06 AM

The commander service failed again. Collected logs and it turns

out to be an communication issue in ROS. Noted the issue and

restarted affect parts.

12/4/2019 4:01 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

12/4/2019 4:24 PM
The speaker volume was set to minimal (most likely by a visitor).

Reenabled the speaker.

12/6/2019 4:02 PM
TritonBot’s state machine failed again. It failed to communicate

with a logging service. Noted the issue and restarted affect parts.

6.4 Scaling up TritonBot over the Long-term Deployment

Scalability is one of the three most important characters in long-term autonomy; it allows

the developers to grow and expand a robot system without overhauling the existing architecture of

the system and affecting normal operations. This section discusses our effort in making TritonBot
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scalable.

6.4.1 Scalability Challenges in TritonBot

TritonBot faced many challenges in scalability that add difficulties in its development and

evolvement:

• Backward- and forward-compatibility: Scaling up requires fast software iteration. But the

lack of backward- and forward-compatibility forces the developers to complete coding

and testing on all related components before rolling out a new feature; rolling back one

component also affects all related parts. Long-term logging also becomes a challenge when

the developers add, update, or remove fields in the log format.

• Software architecture: Tightly-coupled software limits the scalability of a computer system,

but decoupling software components introduces difficulties in interfacing and coordination

between the components. Besides, when TritonBot offloads computationally-intensive

software components to other machines, crossing network boundaries and communicating

over the Internet bring in concerns in accessibility, latency, and confidentiality.

• Software management: With numerous robotic programs with different requirements

running together to form a complete system, managing software running on the on-robot

computer and other hardware is challenging. The limited computing power available

on-board worsens the problem when computationally-intensive programs compete for

computing resources; they tend to create resource contention and exhaust all CPU or

memory capabilities.

6.4.2 Forward- and Backward-compatibility

Many robot systems use Robot Operating System (ROS) [11] to split the entire software

system into multiple programs. ROS programs communicate through a publish-subscribe pattern
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to work with each other, and ROS provides an interface description language (ROS messages)

to support the pub-sub framework. But any change to the message definition, no matter how

insignificant it may be, invalidates all previously serialized data and generated libraries. Such

inflexibility helps ROS to become a consistent community-maintained robotic software toolkit,

but it limits the long-term evolution of an autonomous robot system, and it makes serializing ROS

message a bad choice for long-term logging.

In TritonBot, we leverage an open-source libraries Protocol Buffer (ProtoBuf) [63] to

provide forward- and backward-compatibility. ProtoBuf is a language- and platform-neutral

extensible mechanism for serializing structured data, but serialized ProtoBuf messages remain

accessible even if the format description changes (in a compatible way). ProtoBuf can even

work with RPC (remote procedure call) frameworks to provide backward compatibility between

different programs. We use ProtoBuf to store sequential or small structured data, such as the

topological map for navigation, face embedding of visitors, and long-term logs.

As an example, TritonBot leverage ProtoBuf to save its long-term log. We created a

“Universal Logger” that stores a stream of ProtoBuf messages into compressed and size-capped

files and distributes them into directories with a date and timestamp. Because ProtoBuf format

is forward-compatible, adding extra fields to the log format does not affect previously-stored

logs; being backward-compatible, analysis programs written against an old ProtoBuf format will

continue to work with newly generated logs. As an example, the voice recognition program on

TritonBot initially only records voice recognition results that trigger the robot’s response; later,

when we moved to a more capable voice recognition engine, we updated the data format to include

the interim results. Thanks to the compatibility, the analysis script can still read previously-stored

logs.
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6.4.3 Decoupling Software Components

Dividing a large system into smaller modules is a common practice is robotic software

engineering. ROS made this process easier by providing not only a publish-subscribe infrastruc-

ture but also many ready-to-use modules. With the help of ROS and a remote procedure call

framework, gRPC [82], we implemented the TritonBot system as a number of standalone and

independent “microservices.” The “microservices” design pattern not only provides reusability,

but it also isolates failures. We carefully engineered the microservices so that any microservice

can tolerate transient unavailability of its dependencies, and restarting a microservice will help it

to return to a clean state. Under these two design principles, most of the failures we encountered

can be solved by easily restarting one or a few microservice without affecting the entire system.

ROS has two more shortcomings in addition to the lack of compatibility: the inflexi-

ble networking requirements and the lack of security support. ROS programs (nodes) assume

bidirectional direct TCP connection between each other on all ports, and ROS does not provide

any encryption and authentication support. Therefore, ROS programs cannot communicate over

networking environments with firewalls or network address translation (NAT) devices, and it is

dangerous to rely on ROS alone to carry communication over the Internet. To overcome these

shortcomings, we built a part of the TritonBot system with an open-source library, gRPC [82]

alongside with ROS: gRPC is an open-source remote procedure call (RPC) framework that sup-

ports both synchronous or asynchronous, unary or streaming backward- and forward-compatible

ProtoBuf messages in both requests and responses; it leverages HTTP/2 channels with optional

encryption and authentication that can easily pass network devices. We build and released a ROS

package grpc [116] that helps the users to generate, compile, and link ProtoBuf libraries and

gRPC stubs within the ROS build environment. Therefore, we were able to offload computa-

tionally intensive tasks from TritonBot to on-premise servers or even cloud infrastructure in a

scalable manner.

The face recognition pipeline is an important sub-system in TritonBot, and it contains
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Figure 6.7: The face recognition pipeline in TritonBot that is made of a few microservices.
Some ROS-based microservices bridge the ROS system with standalone gRPC servers, so that
TritonBot exploits the existing open-source components in ROS and backward- and forward-
compatibility from gRPC. After running TritonBot for some time, we moved the “OpenFace
server” to a remote computer with powerful GPUs to save computing resources on the on-robot
computer.

multiple microservices (Figure 6.7). Each of these modules perform a relatively simple task: the

“OpenFace server” extracts face from a given image and generates embeddings; the “OpenFace

client feeds image from the driver to the server and makes the embeddings available to other

ROS parts; the “face database” stores faces with labels and looks up potential matches when

given an image; adding to the face database (training) and looking up labels rely on two other

modules — the face training client and the face recognition client. Using gRPC for the OpenFace

server and face database maximizes TritonBot’s scalability: Since the ProtoBuf format is forward-

compatible, the face database file did not require any conversion when we added an option to store

the face images along with the embeddings. ProtoBuf/gRPC format is also backward-compatible:

when we updated the face database server, the old client continued to work, and we had a chance

to test the new server before implementing a new client. In addition, gRPC helped us to offload the

computationally intensive face embedding generation program from the robot: we put a backup

face embedding generation server on a powerful host system behind a firewall (for network

address translation) and a reverse proxy (for authentication); the robot access the service over the

Internet when needed.
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In general, design considerations in decoupling software speed up software iteration and

increase the scalability of a robot system; backward- and forward-compatibility enable decoupling

in many scenarios.

6.4.4 Managing Robotic Software with Linux Containers

In TritonBot, we use Linux containers to manage robotic software deployment and provide

a unified development environment. Linux container [117] provides a convenient approach to

build, deploy, and run applications on different machines. Backed by the Linux namespaces

that isolate and virtualize system resources for a set of processes, Linux containers are much

lighter-weighted than fully virtualized kernels in hypervisors or virtual machines. We run each

microservice inside a dedicated container, so that we can enable, disable, update, roll-back, or

control them independently.

Initially, we adopted Docker [59], a popular and open-source container management tool

to run every software component (41 microservices in total) in separate containers. Docker

isolates the execution environment for each of them. When the TritonBot system grows larger,

resource contention becomes an issue in further scaling up. In datacenters, scaling up software

systems means spawning more program instances and load-balancing the tasks among them;

popular tools like Kubernetes [15] leverage Linux containers to provide a unified platform to

manage the programs. A service robot like TritonBot only carries limited computing resources;

however, it is not using all the components at the same time — for example, TritonBot does not

face recognition results when it is moving, and vice versa. We built Rorg [109], an open-source

container-based software management system. Rorg not only provides an accessible mechanism

to use Linux containers in a robot programming environment, but it also models the component

dependencies and decides what microservices to start to fulfill the robot’s request. With the help

of Rorg, the TritonBot uses 45% less CPU than before, which leaves the developer with plenty of

room to add more features. Rorg also adds some additional benefits to service robots: because
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the software components have chances to stop and restart often, transient issues like memory

leaks have a less significant outcome. This conclusion is consistent with the experience from

Google that “a slowly crash looping task is usually preferable to a task that has not been restarted

at all [40].”

In conclusion, tools like Linux containers not only benefit traditional computer systems

but also improve the scalability of service robots. The different use scenario on service robots

requires unique customization of the tools.

6.5 Tolerating and Coping with Failures

Resilience is the ability of a robot to adapt to environmental changes and tolerate or

recover from transient errors. The TritonBot developers tried to make the robot as robust to

failures as possible, and this section discusses our efforts.

6.5.1 Resilience Challenges in TritonBot

None of the engineered systems is immune from failures, and long-term deployments

further expose the errors in a service robot. The TritonBot system has a few challenges to become

resilient to failures:

• Transient failures: Some failures on service robots are transient and recoverable. For

example, TritonBot sometimes loses its network connection when it enters and exits a

WiFi blindspot, but a simple reconnecting attempt can effectively fix this issue. The

two challenges in dealing with transient failures are (1) identifying the failures and (2)

implementing the fix.

• Overloaded system: Almost all basic robot functionalities rely on the only programmable

part of TritonBot, the on-robot computer. The computer is affording too much functionality
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that a minor issue on the computer will lead to serious outcomes: when the Bluetooth stack

on the computer fails, the developers lose the ability to drive the robot manually; when the

computer encounters networking issues, the developers cannot connect to the computer.

• Lack of monitoring: Autonomous service robots are expected to work without close

human supervision, but the developer does not have the means to understand the system

characteristics and discover failures. However, too close supervision defeats the purpose of

autonomy.

6.5.2 Recover from Transient Failures

Frequent self-diagnosis and self-repair is a practical approach to discover and recover

from some transient failures. TritonBot periodically runs some scripts to check and fix any

potential issues. After the TritonBot encountered WiFi issues multiple times, we created a script

that checks the Internet connection (by pinging a commonly known website) and restarts the

wireless interface in case of a failure. In another case, a Linux system service (sssd) sometimes

gets killed and does not restart properly; we created another script to restart it in case of failure.

However, the challenge in fixing transient failures it not making patches, but instead identifying

the failure cases. Long-term deployments expose these transient failure patterns; occasional

monitoring (Section 6.5.4) helps the developers to capture these failures.

While hand-made scripts are useful in complementary to system service management

tools, another type of transient failure happens in robotic software is that some programs get killed

when they encounter unhandled exceptions or have design flaws. In TritonBot, any unexpected

program crash triggers restarting itself or its programs group. While crash looping programs

often indicate issues in the system, following proper design principles, we observed that some

infrequent programs restarts have little effect on the overall reliability: In the early TritonBot

development, we had an issue that the voice recognition software crashes and restarts every a
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hardware to the Fetch Research Edition.

few hours. The system continued to work (possibly with a few unnoticed attempts to retry voice

recognition); only later did we find the unusual restarts in the logs and fixed a memory leaking

issue. We have concluded three design principles to handle transient failures in robotic software:

(1) Never to hide failures fail silently; it is better to crash a program and expose issues. (2)

Restarting a program should help it to enter a clean state and recover from transient failures. (3)

Any software component should tolerate the unavailability of another component to avoid chain

reaction on failures.

6.5.3 Relying on Separate Subsystems

Much like loosely-coupled microservices limit the scope of failures in the software system,

finer-grain hardware organization improves the stability of the hardware system. Figure 6.8 shows

the hardware components in TritonBot. The bare Fetch Research Edition platform only has two

parts in its system architecture: an embedded computer to run user programs, and a low-level

controller to control the actuators. When we built the early TritonBot prototype, we relied solely

on programming and configuring the embedded computer. Soon we found that the on-robot

computer becomes a frequent point of failure. In the TritonBot evolution, we added a wireless

access point to the robot as an “escape hatch” in addition to the regular encrypted access channel

over the Internet. We also pair the manual-override gamepad directly with a USB dongle that

emulates a joystick device instead of the Bluetooth radio in the embedded computer. As a general
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design principle, we found that relying on dedicated devices reduces single-point failures and

prepares the robot and the developer for unexpected situations.

During the TritonBot deployment, we observed a few times that the laser scanner stopped

to work when its power and ethernet connection are still intact. The only way to recover from this

condition was to power-cycle the laser scanner by toggling the master power switch on the robot.

From this experience, we learned that many hardware failures are also transient, and they can

be fixed by power-cycling the device. If there are individually programmable circuit breakers

before the power supply of the peripherals, the robot will be able to restart part of its hardware

and overcome transient failure without affecting a big portion of the system.

6.5.4 Monitoring the System and Logging

The challenge in fixing transient failures it not making patches, but instead identifying

the failure cases; occasional monitoring and long-term logging help us to achieve such a goal. In

the TritonBot project, we mainly use two tools: First, we built an Android app to see the robots’

view and battery status in real-time. Second, the robot keeps detailed logs about its status and

decisions; it analyzes its log and sends a summary to the developers every night.

The robot monitor (Figure 6.9) is an Android tablet. The robot captures its battery level,

charging status, and camera images every a few seconds, and it sends them to a central server

through an authenticated channel over the Internet. The tablet displays these state of the robot and

gives the developer an overview of the robot status with a simple glance. The minimal real-time

monitoring helps the developers to discover obvious but unexpected conditions: we experienced

several times that a visitor turns the robot’s head to the side; there was once that a visitor touched

the “mute” button on the microphone; another case was that the robot keeps retrying docking the

charging station infinitely because of a failed connector. Only did we discover these problems

were we able to program the robot to respond correctly to these situations.

TritonBot also logs the details about its internal states and events, including CPU and
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memory usage, Linux containers and processes information, network access bandwidth and

latency, behavioral state machine states, speech recognition details and voice synthesis history,

robot localization and navigation status, robot pose and battery status, and manual intervention

and command executed in terminal, etc. The robot analyzes its daily log and sends an E-mail

about its daily work summary to the developers every mid-night. The daily report includes the

interaction transcript and a summary of its daily events such as the number of humans engaged,

trip traveled, and so on. Reading the E-mail allows the developers to understand the robot’s

performance in general, while more detailed logs generated by different components are available

for further analysis. Currently, different components in TritonBot generate 14 different types of

logs in total. The TritonBot log-format is backward- and forward-compatible (Section 6.4.2), and

it is compact: TritonBot generates about 23.3 MB gzip-compressed logs daily on average when

the robot is actively deployed. We collected about 9.6 GB ProtoBuf-based logs from TritonBot

in the past two years, and we were able to generate many insights from the data. Since the log

format is optimized for machine-reading, scanning through all of the log entries only takes a few

minutes.

Both of the monitoring methods retain the robot’s autonomy, but they allow the developers

and the users to understand the robot’s status at different levels.

6.6 Learning from the Past

Learning in long-term autonomy suggests that a system can learn from the past and

improve its performance. TritonBot learns from the deployment experience and improves itself

over time. In addition to the robot learning by itself, the TritonBot developers also learn from the

past failures: we created a fault injection tool to recreate past failure scene on TritonBot, study

rare failure conditions, and improve the robot system.
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Figure 6.9: An Android tablet that displays the robot’s eye view and battery status. The
developer occasionally monitors the general status of the robot during the deployment.

6.6.1 Learning Challenges in TritonBot

TritonBot has two primary learning-related issues:

• Repeated failures: TritonBot moves around when it shows the visitor the places of interest

in the building. However, we have observed that it gets stuck on some paths at a significantly

higher rate than others. Even with much experience of similar failures, it continues to make

the same mistakes because it always plans for the shortest path.

• Rare failure types: Some failures on TritonBot are triggered with a few “coincidences.”

These failures are difficult to reproduce, which prevents the developers from an in-depth

investigation of the failures; when the developers come up with potential fixes, there is no

practical method to verify the fixes.
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Figure 6.10: The topological navigation map of TritonBot. The map shows the average time to
traverse an “airway” on the map as well as the success rate.

6.6.2 Learning from Long-term Deployment

Unlike short-term demos, long-term autonomous service robots accumulate experience

over time. These experiences can turn into precious knowledge that improves the robustness

of the robot. TritonBot applies this idea to navigation — when it moves around, it records the

time of traveling each path on a map, and it avoids the paths that it took too long to travel when

generating a move plan.

The TritonBot moves around to show the places of interest to the visitors. On top of the

classic movebase navigation stack from ROS [55], we added a topological map layer of waypoints

and paths (Figure 6.10). The core of learning is a “traffic control” service: When TritonBot

decides to move to a waypoint, it requests a “traffic control” service to generate a plan — a list of
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waypoints connected by paths. TritonBot calls movebase to execute the plan with some preset

time limit and error allowance. After traveling each path, TritonBot reports the travel time back

to the traffic control service. The traffic control service internally adjust the cost of each path

according to the feedback, and the change affects the future plans. Figure 6.10 also presents the

average traversal time and success rate of each path in a previous TritonBot deployment.

In the TritonBot deployment, using past experience to improve the system is a fundamental

design principle. In another example, TritonBot record all of the utterance that it can not

understand during its conversations with people, and the developers use these utterances to

improve its intent extraction algorithm. In conclusion, learning from past failures is a convenient

and effective way to increase reliability over time in long-term robot deployments.

6.6.3 Learning from Rare Failures

Software fault injection is a conventional technique in software engineering; it intention-

ally introduces failure to test a system’s response to failures. We created a fault injection tool,

“RoboVac” to inject failures to the TritonBot system. It helps us to find unknown design flaws, to

verify fixes, and to benchmark the system’s resilience.

RoboVac offers a unified framework for general fault injection needs on service robots. It

leverages the ROS message passing framework (topics) to simulate failures in sensors, actuators,

or even between software; it also enables the developer to inject failures at the general Linux

process level to simulate a program crashing or stuck; it can reshape the network traffic to simulate

different networking conditions. RoboVac offers an efficient workflow for the developers to

improve a robot’s performance under failures. With RoboVac, we were able to inject failures in

the software, ROS message passing, networking, and ad-hoc components. During the TritonBot

evolution, we founded many unseen design flaws using fault injection, and we used RoboVac

to verify our fixes. We are continuing to work on RoboVac to offer a fuzz-testing scheme that

enables automatic error discovery on service robots.
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6.7 Toolbox for Reliable Long-term Autonomous Robots

While building and maintaining the TritonBot system, we have been using various tools

and following a few rules to make the robot system more reliable. This section presents a series of

practical rules and design principles that contribute to the long-term reliability and maintainability

of TritonBot. These guidelines and practices may be used as a toolbox to build reliable long-term

autonomous service robots.

Coding

• Use a version control system for the source code to track the changes in long-term develop-

ment.

• Follow a consistent coding style. Furthermore, using a version control system with code

formatter will make it easier to track the changes in the long-term evolving code.

• Leverage compiler checks. Complier analysis, like thread-safety analysis warns about

potential race conditions in code. Code sanitizers such as AddressSanitizer [118], Thread-

Sanitizer (tsan), and MemorySanitizer (msan) help the developers to discover hidden coding

errors. Modern compiler like Clang provides many useful tools to ensure the correctness of

the code [119].

• Use automated unit tests to ensure the correctness between code changes.

• Try and adopt appropriate other software engineering methods and best practices. Most

general coding rules apply to service robots programming.

Components

• Clearly define the interfaces and dependencies of a software component. Document a robot

system design using the experience from the software industry.
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• Use automated tools to manage the dependencis and deploy a software component. Tools

like Docker and Rorg (Chapter 4) provide a replicable environment to build the software,

and Rorg even manages inter-component dependencies.

• Expose the problems. It is better to crash a program and expose the problems than to hide

them.

• Leverage tools like continuous integration/delivery (CI/CD) to find potential breakings

during the development.

• Restarting a program should help it to enter a clean and healthy state. Therefore restarting

a program will always be a viable last resort to restore an unhealthy component.

Integration

• Choose the appropriate granularity for loosely coupled components. Too fine- or too

coarse-grain component partition both reduces scalability of a system.

• Architect the ROS system. Malavolta et al. summarized 49 evidence-based guidelines from

335 ROS-based systems [120], and some of these guidelines are practical to implement on

service robots.

• Think outside ROS-ecosystem. Many ROS design decisions are made from a large-scale,

ambitious, and community-driven open-source project perspective. They do not always

align well with long-term autonomy.

• Any component should tolerate transient failures from other components. In this way, the

robot will only go through temporary performance degradation, instead of total collapse, in

case of minor issues.

• Isolate failures. In a multipurpose robot, the robot may be able to perform some tasks in

case of partial failure (TritonBot can be a receptionist even if it can not guide tours).
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• Design for testing. Take testing a subsystem into consideration when designing its architec-

ture.

• Use fault injection to test a robot’s resilience to certain kinds of failures. RoboVac (Chap-

ter 5) provided experiences of using fault injection on robot systems.

• Take scalability into account while building the system. By making the components loosely

coupled with each other, the developers can iterate faster without the fear of a potential

system overhaul.

Robot System

• Communicate with the user. Users of service robots are sometimes tolerant and cooperative.

Good communication mitigates the outcomes from failures.

• Use long-term knowledge to improve the robot system over time. A long-term autonomous

service robot has the advantage of accumulating experiences that are valuable to long-term

reliability. Taking advantage of these experiences makes the robot more robust over time.

• Automate monitoring, self-diagnose, and alerting. As an autonomous system, a robot can

always self-diagnose and send out alerts during failures. A fleet of robots can use the same

method to be monitored and diagnosed at scale.

• Keep the logs. A robust and well-rounded logging system provides useful and vital

information from past failures. This informaiton can be used to perform a thoughtful

post-mortem analysis, which will improve the system and reduce/eliminate future failures.

• Be prepared to live with failures. Failures are unavoidable in any engineered system,

including service robots. However, a service robot can operate normally when the failures

are rare, minor, and gracefully handled.
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6.8 Conclusion

This chapter presents a high-level view of robotic reliability engineering. We discuss

our continued experience and reliability engineering practices in the context of TritonBot, a tour

guide and receptionist robot in a university building.

We presented the deployment history and the problems encountered during the deployment

within the last two years. As a long-term autonomous service robot, it has challenges in the three

aspects of long-term autonomy: scalability, resilience, and learning. TritonBot optimizes data

compatibility, software architecture, and resource management to retain scalability. TritonBot

tolerates transient failures, avoids single-point failures, and leverages monitoring to improve

its resilience. TritonBot also learns from the experience and takes advantage of software fault

injection. All these efforts increase the reliability of TritonBot. We also summarized a few

practical rules to guide building a reliable long-term autonomous service robot system.

The complete TritonBot source code is available at https://github.com/CogRob/TritonBot.

In our process of updating TritonBot to the next generation of the ROS ecosystem — ROS2, we

incorporate our experience from previous deployments and take advantage of new features such

as a more efficient communication mechanism from ROS2 to improve TritonBot further. We

hope TritonBot will inspire more robust long-term autonomous service robot designs.
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Chapter 7

Conclusion

This dissertation represents many years of study and research around the reliability and

system engineering aspects in the robotics field. The interest in this topic was initially inspired by

an incident: The author and his teammates built a “selfie robot” demo and took it to a fund-raising

campaign; the robot operated flawlessly for an entire night except when the author and his advisor

were showing the robot during a live interview. That embarrassing moment eventually led to

further research in the reliability engineering of services robots and the contributions in this

dissertation.

7.1 Summary of the Dissertation

This dissertation contains four primary contributions: (1) We built TritonBot as a realistic

example of a tour-guide robot, and we summarized reliability challenges and lessons in TritonBot

that represents a class of long-term autonomous service robots. (2) We showed that software

encapsulation and dynamic orchestration reduce maintenance burden and resource contention

in service robots; we implemented Rorg, a Linux container-based scheme to manage software

components for service robots, to support this claim. (3) We showed that simulating a broad

spectrum of rare failures at system level exposes design flaws and assists developers in improving
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the robustness of service robots. We built RoboVac, a fault injection framework for service

robots, to support this claim. (4) We summarized of design principles from our experience with

TritonBot, Rorg, and RoboVac. They will guide reliable service robot design.

In addition to these contributions, we believe the underlying concepts and principles are

not only applicable to service robots, but they are also generalizable to other cyber-physical/

computer systems. These concepts include software encapsulation and dynamic orchestration, as

well as broad-spectrum system-level failure simulation as a testing method.

TritonBot: A Long-term Autonomous Service Robot

We built TritonBot as a realistic example of a long-term autonomous service robot in an

open environment. TritonBot works as a building receptionist and a tour guide. It recognizes peo-

ple’s faces, talks to people, and shows people the labs and facilities in the building. We deployed

TritonBot for more than three months to discover failure modes in long-term deployments of a

robot that actively interact with people in an open environment.

In the initial TritonBot deployment, TritonBot served the guests for 108.7 hours in total,

actively talked and walked with people for 22.1 hours, provided 150 tours, traveled 9901.1 meters,

listened for 4.0 hours (2,616 counts) and spoke for 10.7 hours (14,037 counts). We took a peek

at the common failures in the long-term deployment of an autonomous service robot, and we

learned the initial lessons in hardware failures, network connectivity, software failures, software

deployment, navigation in open environment, speech and dialogue, face recognition, long-term

log collection, safety, etc.

Hence, TritonBot became the primary experiment platform for our reliability engineering

research. The following projects, Rorg and RoboVac, are both tested on TritonBot. We open-

sourced the entire stack of TritonBot and hoped it would serve as an experiment platform for

many robotics research projects in the community.
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Scalable Software Management and Orchestration

From the experience of managing numerous software components on TritonBot and

adding more features to it, we concluded that software encapsulation and dynamic orchestration

reduce maintenance burden and resource contention in service robots. As TritonBot evolves and

expands, the complexity of its software components is becoming a pressing issue that challenges

TritonBot’s scaling up. Comparing software management on robots and other computer systems

(e.g., smartphones and datacenter applications), developing software for robots has two primary

challenges: maintenance burdens and resource limitations.

With the recent rise of container technology, we proposed Rorg, an open-source Linux

container-based scheme to manage, schedule, and monitor software components on service

robots. Rorg allows developers to pack software into self-contained images and runs them in

isolated environments using Linux containers; it also allows the robot to turn on and off software

components on demand to avoid resource contention.

Rorg adopts a Linux container engine, Docker [59], to run robot software in individual

containers. Rorg works with ROS, the de facto standard robotic middleware. It provides default

configurations to run ROS software without modification. Furthermore, Rorg organizes the robot

software into multiple Linux containers and models the static and dynamic relationships between

them. Rorg provides an interface to create, query, update, delete, start, stop, and restart these

containers manually or programmatically. Rorg allows the software components to time-share

computing resources: It pauses or shuts down inactive services to save computing resources but

reactivates them when they are required for an upcoming task. Rorg monitors the system and

keeps the resources utilization at a reasonable level.

We evaluated software encapsulation and dynamic orchestration on TritonBot using

Rorg. With software encapsulation, TritonBot went through 126 software version updates and 71

configuration changes within a year. Rorg now manages 41 services (containers) on the robot.

Dynamic orchestration reduced resource consumption on TritonBot significantly compared the
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original static orchestration: The robot consumes 89.4% of CPU time and 3.41 GB of memory

on average without dynamic orchestration. With dynamic orchestration, the average CPU drops

to 48.7%, and the memory usage is 2.85 GB, and we notice the robot responds much faster.

These numbers are derived from TritonBot specifically, but we expect similar improvements

by switching to dynamic orchestration from static orchestration in other multi-purpose service

robots.

The experience of Rorg inspired us that many tools in other computer systems have great

potential to be adapted in service robot systems. The proper identification of unique challenges in

robotics will lead to solutions that improve various aspects of service robots, including system

and reliability engineering.

Testing Robots using Broad-spectrum System-level Failure Simulation

In the process of finding potential errors in TritonBot and fixing them to improve Tri-

tonBot’s reliability, we found that simulating a broad spectrum of rare failures at system level

exposes design flaws and assists developers in improving the robustness of service robots.

In the long-term deployment of TritonBot, we faced a few repeated but rare failures that

are nondeterministic and hard to reproduce. As a result, the developers had to rely on hidden

clues in a massive amount of log to debug, and verifying a fix is non-trivial when the condition

that triggers the bug is random or undetermined. Fault injection offers developers with a practical

approach to study the long-term reliability of service robots. But most of the existing fault

injection works in robotics do not scale well to the increasing failure patterns of modern and

future service robots.

In response to these issues, we built RoboVac, an extensible and convenient fault injection

framework that works at the system level and covers many of the failure patterns seen in long-term

autonomous service robot deployments. Currently, RoboVac can inject four types of failures:

middleware-layer failures, software process failures, network failures, and application-specific
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failures. These failure types are consistent with failure modes we observed on TritonBot.

RoboVac works with ROS, one of the most popular robot middlewares. By replacing

the basic ROS library with a RoboVac-enhanced version, all existing ROS programs attain

fault injection capability from RoboVac without recompiling. RoboVac leverages operating

system features, middleware communication channels, and other general mechanisms to provide

a broad-spectrum coverage of failure patterns. It is capable of injecting failures without specific

knowledge about the robot application. RoboVac takes the robotics context into account and

provides flexibility such as scripting and multi-failure injection.

We applied RoboVac on TritonBot and demonstrated our practices to confront the chal-

lenges in TritonBot deployment. RoboVac helped us to reproduce previously seen but rare failures

and verify the fixes; it also revealed hidden design flaws in the system; the performance overhead

of fault injection has little effect on the overall performance of the robot system. Through the

application of RoboVac on TritonBot, we concluded that simulating a broad spectrum of rare

failures at system level exposes design flaws and assists developers in improving the robustness

of service robots.

Design Considerations in Long-term Autonomous Service Robot

We continued to develop TritonBot and deployed it for an extended period. TritonBot

received new features such as leg detection, a more sophisticated dialogue system, and better

logging. We did an extended deployment of TritonBot in stationary mode totaling 4,333 hours,

as well as a regular tour-guide mode deployment of 195 hours. From the TritonBot experience,

we summarized the design principles for a long-term autonomous service robot.

After the two-year long-term experience with TritonBot, we concluded three significant

aspects of reliability engineering for long-term deployment of autonomous service robots: scala-

bility, resilience, and learning. Scalability enables a robot system to grow and gain more features

smoothly. Resilience allows a robot to adapt to environmental changes and tolerate transient
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errors. Learning helps a robot to benefit from experiences and become more capable over time. In

each of these aspects, we demonstrated TritonBot’s design consideration to make it more capable

of long-term autonomy.

We concluded a few design principles as a “toolbox” to build reliable long-term au-

tonomous service robots. These design principles stand on different levels from programming,

single component, subsystem integration, and all way up to the entire robot system. These design

principles help guide robust and reliable long-term autonomous service robot designs.

7.2 Future Work of This Dissertation

Many opportunities remain open in reliability engineering for long-term autonomous

service robots, either as the continuance of the contributions in this dissertation or as individual

projects. This section provides some insight into on-going and future work related to this thesis.

TritonBot is designed as a general platform for service robot experiments. In addition to

reliability engineering research, we anticipate TritonBot to be a suitable platform for human-robot

interaction research as well. A separate on-going research project is attempting to transfer the

experience of guiding tours to follow people; with much experience from observing visitors

following itself, we hope TritonBot will be able to follow humans more naturally and robustly.

With TritonBot being open-source, we hope it will become a common testbed for robot reliability

and other research.

Rorg is a Linux-container-based software management system for a service robot that

relives maintenance burdens and reduces resource contention. We have a follow-up project,

“fast recovery for autonomous vehicles”: taking advantage of services that are encapsulated in

containers in Rorg, we try to periodically snapshot the self-contained services to help them to

return to normal operation in case of failure as fast as possible; we plan to apply this technology

to autonomous driving vehicles where software failures introduce prolonged degraded operation.
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The RoboVac project finally provides a seamless framework to inject various kinds of

failures into a robot system. There is a great potential to use RoboVac to do fuzz-testing on

service robots. In essence, we can inject random combinations of failures into the robot at scale

and discover design flaws in a service robot design. Similarly, the resistance to random failures

can be used as a metric to evaluate the robustness of a service robot quantitatively.

To gain more experience in long-term autonomous service robots in real life, we are

continuing the deployment of TritonBot. We are also working on making TritonBot a permanent,

always-on fixture of our building at UC San Diego, which will provide us with insights of

long-term autonomy at the scale of years.

7.3 Future of Reliability Engineering for Robots

Much of previous robotics research efforts were focused on “traditional” robotics topics

such as perception, planning, control, etc. System and reliability research remained overlooked

in robotics until service robots recently started to assist people in everyday life. Works in this

dissertation call for the attention of reliability and system engineering in service robots.

Innovations in many computer science fields can inspire reliability engineering for service

robots. For example, Rorg is based on Linux containers, which is an innovation in the computer

system. Robot systems are similar to traditional computer systems in many aspects; therefore

technologies in computer science such as computer system, computer architecture, embedded

system, and security may all have impacts on robotics. While experiences in computer science

and engineering may not be directly applicable to service robots, they can be tailored to fit the

unique requirements in robotics.

Besides bringing in existing ideas in computer systems, thinking of the unique opportuni-

ties in long-term autonomous service robots can also contribute to their reliability. For example,

the robots can use their long-term experience to improve their reliability (Section 6.6). Or, with
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the slightly larger tolerance of failures, the robots can perform reinforcement learning over a long

period and at scale. The distinctive characteristics of long-term autonomous service robots can

inspire novel ideas to improve their reliability.

As robotics technologies are becoming more mature, we hope reliability engineering

research in long-term autonomous service robots will pave the path toward the broad application

of service robots in home and office settings. We look forward to seeing robots assisting us in

daily life in the very near future.
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Heidelberg: Springer Berlin Heidelberg, 2012, pp. 49–58.

[35] R. Kmmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard, “Autonomous robot
navigation in highly populated pedestrian zones,” Journal of Field Robotics, vol. 32, no. 4,
pp. 565–589, 2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
rob.21534

[36] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila, M. Chetouani, D. Cremers,
V. Evers, M. Fiore, H. Hung, O. A. I. Ramı́rez, M. Joosse, H. Khambhaita, T. Kucner,
B. Leibe, A. J. Lilienthal, T. Linder, M. Lohse, M. Magnusson, B. Okal, L. Palmieri,
U. Rafi, M. van Rooij, and L. Zhang, SPENCER: A Socially Aware Service Robot for
Passenger Guidance and Help in Busy Airports. Cham: Springer International Publishing,
2016, pp. 607–622. [Online]. Available: https://doi.org/10.1007/978-3-319-27702-8 40

[37] K. Song, Y. Chiu, S. Song, and K. Zinchenko, “Scheduling and control of a cloud robot
for reception and guidance,” in 2017 International Automatic Control Conference (CACS),
Nov 2017, pp. 1–6.

[38] Y. Chen, F. Wu, W. Shuai, and X. Chen, “Robots serve humans in public
placeskejia robot as a shopping assistant,” International Journal of Advanced

140

https://doi.org/10.5772/5950
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21534
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21534
https://doi.org/10.1007/978-3-319-27702-8_40


Robotic Systems, vol. 14, no. 3, p. 1729881417703569, 2017. [Online]. Available:
https://doi.org/10.1177/1729881417703569

[39] A. Birolini, Reliability engineering. Springer, 2007, vol. 5.

[40] B. Beyer, C. Jones, J. Petoff, and N. Murphy, Site Reliability Engineering: How Google
Runs Production Systems. O’Reilly Media, Incorporated, 2016.

[41] P. O’Connor and A. Kleyner, Practical reliability engineering. John Wiley & Sons, 2012.

[42] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox,
E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft, “Recovery oriented computing (roc): Motivation, definition, techniques,,”
USA, Tech. Rep., 2002.

[43] D. Hutchins, A. Ballman, and D. Sutherland, “C/c++ thread safety analysis,” in 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation, Sep.
2014, pp. 41–46.

[44] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI08. USA:
USENIX Association, 2008, p. 209224.

[45] E. Stepanov and K. Serebryany, “Memorysanitizer: Fast detector of uninitialized memory
use in c++,” in 2015 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2015, pp. 46–55.

[46] International Organization for Standardization, “ISO 26262: Road vehicles – Functional
safety,” 2011.

[47] Y. Chen, A. M. Gillespie, M. W. Monaghan, M. J. Sampson, and R. F. Hodson, “On com-
ponent reliability and system reliability for space missions,” in 2012 IEEE International
Reliability Physics Symposium (IRPS), April 2012, pp. 4B.2.1–4B.2.8.

[48] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,
and S. Thrun, “The interactive museum tour-guide robot,” in Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial
Intelligence, ser. AAAI ’98/IAAI ’98. Menlo Park, CA, USA: American Association for
Artificial Intelligence, 1998, pp. 11–18.

[49] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Hahnel,
C. Rosenberg, N. Roy, J. Schulte, and D. Schulz, “Minerva: a second-generation museum
tour-guide robot,” in Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), vol. 3, 1999, pp. 1999–2005 vol.3.

141

https://doi.org/10.1177/1729881417703569


[50] R. Kirby, J. Forlizzi, and R. Simmons, “Affective social robots,” in Robotics and Au-
tonomous Systems, vol. 58, Pittsburgh, PA, March 2010.

[51] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and N. Hagita, “A communication robot
in a shopping mall,” IEEE Transactions on Robotics, vol. 26, no. 5, pp. 897–913, Oct 2010.

[52] T. Komatsubara, M. Shiomi, T. Kanda, H. Ishiguro, and N. Hagita, “Can a social robot
help children’s understanding of science in classrooms?” in Proceedings of the Second
International Conference on Human-agent Interaction, ser. HAI ’14. New York, NY,
USA: ACM, 2014, pp. 83–90.

[53] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “Openface: A general-purpose face
recognition library with mobile applications,” CMU-CS-16-118, CMU School of Computer
Science, Tech. Rep., 2016.

[54] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam,” in
2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp.
1271–1278.

[55] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office marathon:
Robust navigation in an indoor office environment,” in 2010 IEEE International Conference
on Robotics and Automation, May 2010, pp. 300–307.

[56] Google LLC. (2017, May) Cloud speech api – speech to text conversion powered by
machine learning. [Online]. Available: https://cloud.google.com/speech

[57] Y. Fu, Y. Xu, and T. S. Huang, “Estimating human age by manifold analysis of face pictures
and regression on aging features,” in 2007 IEEE International Conference on Multimedia
and Expo, July 2007, pp. 1383–1386.

[58] O. A. I. Ramrez, H. Khambhaita, R. Chatila, M. Chetouani, and R. Alami, “Robots learning
how and where to approach people,” in 2016 25th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), Aug 2016, pp. 347–353.

[59] Docker Inc. (2018, Nov.) Docker is an open platform to build, ship and run distributed
applications anywhere. [Online]. Available: https://www.docker.com

[60] R. White and H. Christensen, “Ros and docker,” in Robot Operating System (ROS): The
Complete Reference (Volume 2), A. Koubaa, Ed. Springer International Publishing, 2017,
pp. 285–307.

[61] T. Stivers, N. J. Enfield, P. Brown, C. Englert, M. Hayashi, T. Heinemann, G. Hoymann,
F. Rossano, J. P. de Ruiter, K.-E. Yoon, and S. C. Levinson, “Universals and cultural
variation in turn-taking in conversation,” Proceedings of the National Academy of Sciences,
vol. 106, no. 26, pp. 10 587–10 592, 2009.

142

https://cloud.google.com/speech
https://www.docker.com


[62] National Institute of Standards and Technology. color feret database. [Online]. Available:
https://www.nist.gov/itl/iad/image-group/color-feret-database

[63] Google Inc. (2018, Apr.) Protocol buffers are a language-neutral, platform-
neutral extensible mechanism for serializing structured data. [Online]. Available:
https://developers.google.com/protocol-buffers/

[64] Y. M. Youssef and D. Ota, “A general approach to health monitoring & fault diagnosis of un-
manned ground vehicles,” in 2018 International Conference on Military Communications
and Information Systems (ICMCIS). IEEE, 2018.

[65] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, “An open
approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6, pp. 60–68, Nov 2015.
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