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CONTINUITY OF HOMOMORPHISMS ON PRO-NILPOTENT
ALGEBRAS

GEORGE M. BERGMAN

Abstract. Let V be a variety of not necessarily associative al-
gebras, and A an inverse limit of nilpotent algebras Ai ∈ V, such

that some finitely generated subalgebra S ⊆ A is dense in A under
the inverse limit of the discrete topologies on the Ai.

A sufficient condition on V is obtained for all algebra homo-
morphisms from A to finite-dimensional algebras B to be contin-
uous; in other words, for the kernels of all such homomorphisms

to be open ideals. This condition is satisfied, in particular, if V
is the variety of associative, Lie, or Jordan algebras.

Examples are given showing the need for our hypotheses, and
some open questions are noted.

1. Background: From pro-p groups to pro-nilpotent algebras

A result of Serre’s on topological groups says that if G is a pro-p group (an
inverse limit of finite p-groups) which is topologically finitely generated (i.e.,
has a finitely generated subgroup which is dense in G under the inverse limit
topology), then any homomorphism from G to a finite group H is continuous
([6, Theorem 1.17], [14, Section I.4.2, Exercises 5–6, p. 32]). Two key steps
in the proof are that (i) every finite homomorphic image of a pro-p group G
is a p-group, and (ii) for G a topologically finitely generated pro-p group, its
subgroup Gp[G,G] is closed.

In [2], we obtained a result similar to (i), namely, that if A is a pro-
nilpotent (not necessarily associative) algebra over a field k, then every finite-
dimensional homomorphic image of A is nilpotent. The analog of (ii) would
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say that when such an A is topologically finitely generated, the ideal A2 is
closed. (To see the analogy, note that G/(Gp[G,G]) is the universal homo-
morphic image of G which is a Z/pZ-vector space, and A/A2 the universal
homomorphic image of A which is a k-vector space with zero multiplication.)

Is this analog of (ii) true?
The proof of the group-theoretic statement (ii) is based on first showing

that if a finite p-group F is generated by g1, . . . , gr, then

(1) [F,F ] = [F,g1] · · · [F,gr],

i.e., every member of [F,F ] is a product of exactly r commutators of the
indicated sorts. From this one deduces that if a pro-p group G is generated
topologically by g1, . . . , gr, then likewise Gp[G,G] = Gp[G,g1] · · · [G,gr]. The
latter set is compact since G is, hence it must be closed in G, as claimed.

If an associative algebra S is generated by elements g1, . . . , gr, it is clear
that, similarly,

(2) S2 = Sg1 + · · · + Sgr.

We shall see below that whether a formula like (2) holds for all finitely gen-
erated S in a variety V of not necessarily associative algebras depends on V.
In particular, we shall find that (2) itself also holds for Lie algebras, while a
more complicated relation which we can use in the same way holds for Jordan
algebras. For varieties in which such identities hold, we obtain an analog of
Serre’s result, Theorem 11 below. Examples in Section 6 show the need for
some such condition on V, and for the topological finite generation of A.

2. Review of linearly compact vector spaces

The analog of the compact topology on the underlying set of a profinite
group is the linearly compact topology (defined below) on the underlying
vector space of a pro-finite-dimensional algebra. Most of the basic theory of
linear compactness of topological vector spaces goes over to modules over a
general associative ring, and we shall sketch the material here in that context.
However, we shall only call on the vector space case, so the reader who so
prefers may read this section with only that case in mind.

Definition 1. Let M be a left module over an associative unital ring R.
A linear topology on M means a topology under which the module oper-

ations are continuous, and which has a neighborhood basis of 0 consisting of
submodules. (A basis of open sets is then given by the cosets of these open
submodules.)

Under such a topology, M is said to be linearly compact if it is Hausdorff,
and if every family of cosets of closed submodules of M that has the finite
intersection property has nonempty intersection.
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(We assume no topology given on R. Indeed, even if R is the real or complex
field, its standard topology is unrelated to the linear topologies on R-vector-
spaces.)

The closed submodules, used in the above definition of linear compactness,
are characterized in the following lemma.

Lemma 2. Under any linear topology on a module M, the closed submodules
are the (not necessarily finite) intersections of open submodules.

Proof. Every open submodule N is closed, since its complement is the
union of its nonidentity cosets, which are open. Hence, intersections of open
submodules are also closed.

Conversely, if N is a closed submodule and x a point not in N, then for
some open submodule M ′, the coset x + M ′ is disjoint from N ; equivalently,
x /∈ N + M ′. Since the submodule N + M ′ is a union of cosets of M ′, it is
open, so N is the intersection of the open submodules containing it. �

We shall see below that the closed submodules of a linearly topologized
module do not in general determine the open submodules, and hence the
topology; but that they do when R is a field and M is linearly compact.

Here are some tools for proving a linear topology linearly compact.

Lemma 3 (cf. [7, Chapter II (27.2–4), (27.6)]). Let R be an associative
unital ring.

(i) If an R-module M with a Hausdorff linear topology has descending
chain condition on closed submodules, it is linearly compact. In particular, if
an R-module M is artinian, it is linearly compact under the discrete topology.

(ii) A closed submodule of a linearly compact R-module is linearly compact
under the induced topology.

(iii) The image of a linearly compact module under a continuous homomor-
phism into a Hausdorff linearly topologized module is again linearly compact.
In particular, any Hausdorff linear topology on a module weaker than a linearly
compact topology is linearly compact.

(iv) The limit (in the category-theoretic sense, which includes inverse lim-
its, direct products, fixed-point modules of group actions, etc.) of any small
system of linearly compact R-modules and continuous maps among them is
again linearly compact. (“Small” means indexed by a set rather than a proper
class.)

Sketch of proof. The verifications of (i)–(iii) are routine. (The Hausdorff-
ness condition in (iii) is needed only because “Hausdorff” is part of the defi-
nition of linearly compact.)

To get (iv), recall [8, proof of Theorem V.2.1, p. 109] [1, proof of Propo-
sition 7.6.6] that if a category has products and equalizers, then it has small
limits, and the limit of a small system of objects Ai and morphisms among
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them can be constructed as the equalizer of a pair of maps between products
of copies of the Ai. Now the product topology on a direct product of linearly
topologized modules is again linear, and the proof of Tychonoff’s theorem
adapts to show that a direct product of linearly compact modules is again lin-
early compact (cf. [7, Chapter II (27.2)]). The equalizer of two morphisms in
the category of linearly topologized modules is the kernel of their difference,
a submodule which is closed if the codomain of the maps is Hausdorff. In
this situation, (ii) shows that if the domain module is linearly compact, the
equalizer is also linearly compact, completing the proof of (iv). �

Note that by the second sentence of (i) above, every finite-dimensional
vector space over a field k is linearly compact under the discrete topology. In
particular, linear compactness does not imply ordinary compactness. Bringing
in (iv), we see that an inverse limit of discrete finite dimensional vector spaces
is always linearly compact.

Over a general ring R, are the artinian modules the only modules linearly
compact in the discrete topology? Not necessarily: if R is a complete discrete
valuation ring which is not a field, we see that as a discrete R-module, R is
linearly compact. (More on this example later.)

Here are some restrictions on linearly compact topologies.

Lemma 4 (cf. [7, Chapter II (25.6), (27.5), (27.7)]). Let R be an associative
unital ring.

(i) If an R-module M is artinian, then the only Hausdorff linear topology
on M is the discrete topology.

(ii) If an R-module M is linearly compact under the discrete topology,
then M does not contain a direct sum of infinitely many nonzero submodules.

(iii) Any linearly compact submodule N of a Hausdorff linearly topologized
R-module M is closed.

(iv) Every linearly compact R-module M is the inverse limit of an inversely
directed system of discrete linearly compact R-modules.

(v) In a linearly compact R-module, the sum of any two closed submodules
is closed.

Sketch of proof. (i) Hausdorffness implies that {0} is the intersection of all
the open submodules of M. By the Artinian assumption, some finite inter-
section of these is therefore zero. A finite intersection of open submodules is
open, so {0} is open, i.e., M is discrete.

(ii) If M contains an infinite direct sum
⊕

i∈I Ni, and each Ni has a nonzero
element xi, then the system of cosets Ci = xi +

⊕
j∈I− {i} Nj (i ∈ I) has the

finite intersection property (namely, Ci1 ∩ · · · ∩ Cin contains xi1 + · · · + xin),
and all these sets are closed since M is discrete. But they have no element in
common: such an element would lie in

⊕
i∈I Ni since each Ci does, but would

have to have a nonzero summand in each Ni.
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(iii) Suppose x ∈ M is in the closure of the linearly compact submodule N.
Then for every open submodule M ′ ⊆ M, the coset x + M ′ has nonempty
intersection with N, and we see that these intersections form a family of
cosets within N of the submodules N ∩ M ′, which are clearly closed in N.
Linear compactness of N implies that these sets have nonempty intersection;
but the intersection of the larger sets x + M ′ is {x} because M is Hausdorff.
Hence x ∈ N, showing that N is closed.

(iv) Note that the open submodules N ⊆ M form an inversely directed
system under inclusion; let M ′ = lim←−N

M/N, the inverse limit of the system
of discrete factor-modules, with the inverse-limit topology. The universal
property of the inverse limit gives us a continuous homomorphism f : M →
M ′.

Now each point of M ′ arises from a system of elements of the factor-modules
M/N, equivalently, from a system of cosets of the open submodules N, having
a compatibility relation that implies the finite intersection property. Using
the linear compactness of M, we deduce that f is surjective. Since M is
Hausdorff, the maps M → M/N, as N ranges over the open sets, separate
points, hence so does the single map f : M → M ′; so f is also injective.

Finally, every open submodule N of M is the inverse image of the open
submodule {0} ⊆ M/N, hence is the inverse image of an open submodule of
M ′; so the topology of M is no finer than that of M ′, so f is an isomorphism
of topological modules.

(v) Let M1 and M2 be closed submodules of the linearly compact mod-
ule M. By (iv) of the preceding lemma, the direct product M1 × M2 is lin-
early compact under the product topology. The map M1 × M2 → M given
by addition is continuous, hence its image, M1 + M2, is linearly compact by
point (iii) of that lemma, hence closed by (iii) of this one. �

Returning to the curious case of a complete discrete valuation ring R, which
we saw was linearly compact under the discrete topology, one may ask, “What
about its valuation topology, which is not discrete?” The next lemma (not
needed for the main results of this paper) shows that R is linearly compact
under that topology as well.

Lemma 5. Let R be an associative unital ring, M a left R-module, and
T ′ ⊆ T Hausdorff linear topologies on M.

Then if M is linearly compact under T, it is also linearly compact under
T ′. In this situation, the same submodules (but not, in general, the same sets)
are closed in the two topologies.

Proof. The first assertion is the content of the second sentence of Lem-
ma 3(iii).

Now if a submodule N ⊆ M is closed under T, then by Lemma 3(ii) it
is linearly compact under the topology induced on it by T, hence, by the
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above observation with N in place of M, also under the weaker topology
induced by T ′. Hence by Lemma 4(iii), it is closed in M under T ′. The reverse
implication follows from the assumed inclusion of the topologies, giving the
second assertion of the lemma.

For R a complete discrete valuation ring which is not a field, and M = R,
observe that M − {0} is closed in the discrete topology but not in the valuation
topology, yielding the parenthetical qualification. �

We now note some stronger statements that are true when R is a field. (The
proofs of (i), (ii) and (iv) below work, with appropriately adjusted language,
for arbitrary R if “vector space” is changed to “semisimple module”, i.e.,
direct sum of simple modules.)

Lemma 6 (cf. [7, Chapter II (27.7), (32.1)]). Let k be a field and V a
topological k-vector-space. Then

(i) If V is discrete, it is linearly compact if and only if it is finite-
dimensional.

(ii) If V is linearly compact, then its open subspaces are precisely its closed
subspaces of finite codimension.

(iii) The following conditions are equivalent: (a) V is linearly compact.
(b) V is the inverse limit of an inversely directed system of finite-dimensional
discrete vector spaces. (c) Up to isomorphism of topological vector spaces, V
is the direct product kI of a family of copies of k, each given with the discrete
topology.

(iv) If V is linearly compact, then no strictly weaker or stronger topology on
V makes it linearly compact. Equivalently, no linear topology strictly weaker
than a linearly compact topology is Hausdorff.

Proof. (i) “If” holds by Lemma 3(i), “only if” by Lemma 4(ii).
(ii) This follows from the fact that a submodule N of a linearly topologized

module M is open if and only if it is closed and M/N is discrete, together
with (i).

(iii) (a) =⇒ (b) holds by Lemma 4(iv), and (i) above. To get (b) =⇒
(c), note that if (b) holds, then continuous linear maps V → k separate points
of V ; so a maximal linearly independent family (ϕi)i∈I of such maps gives a
one-to-one continuous map ϕ : V → kI . Moreover, the linear independence of
the ϕi implies that on every finite family of coordinates, the values assumed
are independent; hence ϕ(V ) is dense in kI . Lemmas 3(iii) and 4(iii) now
imply that ϕ is onto; hence by (iv) of this lemma, proved below, it is an
isomorphism of topological vector spaces.

(c) =⇒ (a) follows from Lemma 3(iv) and (i).
(iv) If T is a linearly compact topology on V, then under any Hausdorff

linear topology T ′ ⊆ T, Lemma 5 tells us that V will again be linearly compact,
with the same closed subspaces. Hence the same subspaces will be closed of
finite codimension, i.e., by (ii), open; so the topologies are the same. This
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gives the second sentence of (iv), which in view of Lemma 5 is equivalent to
the first. �

For the remainder of this note, we will study algebras, assuming our base
ring is a field k, though many of the arguments could be carried out for
more general commutative base rings. We record the following straightforward
result.

Lemma 7. Let A = lim←−i
Ai be the inverse limit of an inversely directed

system of k-algebras. Then the multiplication of A is continuous in the inverse
limit topology.

(A very important aspect of the theory of linearly compact vector spaces
which does not come into this note is the duality between the category of such
spaces and the category of discrete vector spaces; cf. [3, Proposition 24.8].
More generally, [7, (29.1)] establishes a self -duality for the category of locally
linearly compact spaces, i.e., extensions of linearly compact spaces by discrete
spaces.)

3. Nilpotent algebras and m-separating monomials

Let A be an algebra over a field k. If B and C are k-subspaces of A, we
denote by BC the k-subspace spanned by all products bc (b ∈ B,c ∈ C).

We define recursively k-subspaces A(n) (n = 1,2, . . .) of A by

(3) A(1) = A, A(n+1) =
∑

0<m<n+1

A(m)A(n+1−m).

It is easy to see by induction (without assuming A associative) that for
n > 0, A(n+1) ⊆ A(n). These subspaces are ideals, since A(n)A = A(n)A(1) ⊆
A(n+1) ⊆ A(n), and similarly AA(n) ⊆ A(n). The algebra A is said to be nilpo-
tent if A(n) = {0} for some n ≥ 1. (Some other formulations of the condition
of nilpotence, which we will not need here, are shown equivalent to this one
in [2, Section 4].)

Let me now preview the proof of our main result in an easy case, that of
associative algebras.

Suppose A is an inverse limit of finite-dimensional associative k-algebras,
and that some finitely generated subalgebra S ⊆ A, say generated by g1, . . . , gr,
is dense in A under the inverse limit topology.

For any n > 1, every element of S(n) is a linear combination of monomials
of lengths N ≥ n in the given generators, each of which may be factored
agi1 · · · gin−1 , where a is a product of N − (n − 1) generators. It follows that

(4) S(n) =
∑

i1,...,in−1∈{1,...,r}
Sgi1 · · · gin−1 .
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Also, S is spanned modulo S(n) by the finitely many monomials in g1, . . . , gr

of lengths < n; hence by Lemma 4(v), A, the closure of S, is spanned modulo
the closure of S(n) by those same monomials. In particular,

(5) The closure of (4) in A has finite codimension in A.

Now consider

(6)
∑

i1,...,in−1∈{1,...,r}
Agi1 · · · gin−1 .

Since the maps a 	→ agi1 · · · gin−1 are continuous, the above sum is closed
in A (by Lemmas 3(iii), 4(iii) and 4(v)); and it obviously contains (4) and
is contained in A(n). So by (5), A(n) contains a closed subspace of finite
codimension in A; hence it is open by Lemma 6(ii).

Suppose, now, that f is a homomorphism from A to a nilpotent discrete
algebra. Then kerf must contain some A(n), hence will be open, hence f will
be continuous.

Finally, by the result from [2] mentioned in the Introduction, if A is an
inverse limit of nilpotent algebras, then any finite-dimensional homomorphic
image of A is nilpotent; so in that case, any homomorphism of A to a finite-
dimensional algebra is continuous.

A key aspect of the above argument was that we were able to express
the general length-N monomial (N ≥ n) in our generators as the image of
a general monomial a under one of a fixed finite set of linear operators (in
this case, those of the form a 	→ agi1 · · · gin−1) defined using multiplications by
our generators. For an arbitrary finitely generated not-necessarily-associative
algebra, no such decomposition is possible, and we will see that our main
result does not apply to algebras in arbitrary varieties. What we shall show
next, however, is that if the identities of our algebra allow us to handle, in
roughly this way, elements of S(2) = SS, then, as above, we can do the same
for all S(n).

We need some terminology. By a monomial, we shall mean an expression
representing a bracketed product of indeterminates. For example, (xy)z and
x(yz) are distinct monomials. (Since our algebras are not unital, we do not
allow an empty monomial. We do allow monomials involving repeated inde-
terminates.) The length of a monomial will mean its length as a string of
letters, ignoring parentheses; e.g., length((xy)z) = 3.

Note that every monomial w of length > 1 is in a unique way a product
of two monomials, w = w′w′ ′. Let us define recursively the submonomials of
a monomial w: Every monomial is a submonomial of itself, and if w = w′w′ ′,
then the submonomials of w other than w are the submonomials of w′ and
the submonomials of w′ ′. For example, the submonomials of (xy)z include xy,
but not yz.

We now define a technical concept that we shall need.
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Definition 8. If w is a monomial and m a natural number, we shall say
that w is m-separating if w has a submonomial of length exactly length(w) −
m.

If n ≤ N are natural numbers, we shall call w [n,N ]-separating if it is
m-separating for some m ∈ [n,N ] = {n,n + 1, . . . ,N }.

For example, note that ((x1x2)(x3x4))((x5x6)(x7x8)) has submono-
mials only of lengths 8, 4, 2 and 1, hence it is m-separating only for
m = 0,4,6,7; in particular, it is not [1,3]-separating. On the other hand,
(((x1x2)(x3x4))((x5x6)(x7x8)))x9, being of length 9 and having a submono-
mial of length 8, is 1-separating, hence it is [1,3]-separating.

Recall that a variety of algebras means the class of all algebras satisfying
a fixed set of identities. An identity for algebras may be written as saying
that a certain linear combination of monomials evaluates to zero. Such an
identity is called homogeneous if the monomials in question all have the same
number of occurrences of each variable. (It is easy to show that any variety
of algebras over an infinite field is determined by homogeneous identities. An
example of a variety of algebras over a finite field which is not so determined
is that of Boolean rings, regarded as algebras over Z/2Z; the identity x2 = x
is not a consequence of homogeneous identities of that variety. In this note,
only homogeneous identities will interest us.)

Note that the variety of associative algebras has identities which equate
every monomial with a 1-separating monomial. From this one can obtain
identities which equate every monomial of length ≥ n with an n-separating
monomial; this fact underlies the sketch just given of the proof of our main
result for associative algebras. Here is the analogous relationship for general
varieties.

Lemma 9. Suppose V is a variety of algebras, and d a positive integer, such
that for every monomial w of length > 1, V satisfies a homogeneous identity
equating w with a k-linear combination of [1,1 + d]-separating monomials.

Then for every positive integer n and every monomial w of length > n, V
satisfies a homogeneous identity equating w with a k-linear combination of
[n,n + d]-separating monomials.

Proof. The case n = 1 is the hypothesis. Given n > 1, assume inductively
that the result is true for n − 1, and let w be a monomial of length > n.

By our inductive assumption, w is congruent modulo homogeneous identi-
ties of V to a linear combination of [n − 1, n − 1+d]-separating monomials. By
homogeneity of the identities in question, these monomials can all be assumed
to have length equal to length(w). Suppose w′ is one of these monomials which
is not [n,n+ d]-separating. Since it is [n − 1, n − 1+ d]-separating, it must be
(n − 1)-separating; so it has a submonomial w′ ′ of length length(w) − (n − 1).
By our original hypothesis, this w′ ′ is congruent modulo homogeneous identi-
ties of V to a linear combination of [1,1+d]-separating monomials. If we sub-
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stitute this expression for the submonomial w′ ′ into w′, we get an expression
for the latter as a linear combination of [1+(n − 1),1+d+(n − 1)]-separating,
i.e., [n,n + d]-separating monomials. Doing this for each such w′, we get the
desired expression for w modulo the identities of V. �

The hypothesis of the preceding lemma will be used throughout the re-
mainder of this note, so let us give it a name.

Definition 10. We shall call a variety V of k-algebras [1,1+d]-separative
if every monomial of length > 1 is congruent modulo homogeneous identities
of V to a k-linear combination of [1,1 + d]-separating monomials. We shall
call V separative if it is [1,1 + d]-separative for some natural number d.

4. The main theorem

The proof of the next result, our main theorem, follows the outline sketched
at the beginning of the preceding section; but we will give details, and use
Lemma 9 in place of familiar properties of associativity.

Theorem 11. Let V be a separative variety of k-algebras, and A a linearly
compact topological algebra in V, having a finitely generated dense subalge-
bra S. Then

(i) For all n > 0, the ideal A(n) is open in the inverse limit topology on A.
Hence,

(ii) Every homomorphism of A into a nilpotent k-algebra B is continuous
(with respect to the discrete topology on B). Hence, by [2, Theorem 10(iii)],

(iii) If A is an inverse limit of finite-dimensional nilpotent algebras (topol-
ogized by the inverse limit topology, and still having a dense finitely generated
subalgebra S), then every homomorphism from A to a finite-dimensional k-
algebra B is continuous.

Proof. (i) Given n, we wish to prove A(n) open. Since A(1) = A, we may
assume n > 1.

By the fact that A is the closure of S, and continuity of the operations of
A, we have

(7) The closure of S(n) contains A(n).

Let S be generated by g1, . . . , gr. Then S(n) is spanned as a k-vector space
by (variously bracketed) products of these elements of lengths ≥ n. Let us
understand an “m-separating product” of g1, . . . , gr to mean an element of
S obtained by substituting one of g1, . . . , gr for each indeterminate in an m-
separating monomial. Taking a d such that V is [1,1+d]-separative, Lemma 9
(with n − 1 in place of the n of that lemma) tells us that

(8) S(n) is spanned as a k-vector space by [n − 1, n − 1+d]-separating
products of g1, . . . , gr of lengths ≥ n.
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Let Un,d denote the finite set of all monomials u(x1, . . . , xr, y) of lengths
n, . . . , n + d in r + 1 indeterminates x1, . . . , xr, y, in which y appears exactly
once. The point of this is that if w is any [n−1, n+d−1]-separating monomial
in x1, . . . , xr, as in (8), this means that we can choose a submonomial w′

such that length(w) − length(w′) ∈ [n − 1, n + d − 1]; hence, w can be written
u(x1, . . . , xr,w

′) for some u ∈ Un,d. To each u = u(x1, . . . , xr, y) ∈ Un,d let us
associate the k-linear map fu : A → A taking a ∈ A to u(g1, . . . , gr, a). Then
from (8) we conclude that

(9) S(n) =
∑

u∈Un,d

fu(S).

Now the closure of the right-hand side of (9) is

(10)
∑

u∈Un,d

fu(A)

by continuity of the fu, and Lemmas 3(iii), 4(iii) and 4(v); and this sum (10)
is clearly contained in A(n). On the other hand, as noted in (7), the closure
of the left-hand of (9) contains A(n). So we have equality:

(11) A(n) is the closure of S(n) in A; in particular, it is a closed
subspace.

To show it is open, let Cn be the k-subspace of S spanned by all monomials
of length < n in g1, . . . , gr. Since g1, . . . , gr generate S, we have

(12) S = Cn + S(n).

Since Cn is finite-dimensional, it is closed by Lemmas 3(i) and 4(iii), so taking
the closure of (12), we get A = Cn + A(n) by Lemma 4(v). Hence the closed
subspace A(n) has finite codimension in A, so by Lemma 6(ii), it is open,
giving statement (i) of our theorem.

The remaining assertions easily follow. Indeed, a homomorphism f of A
into a nilpotent algebra B has nilpotent image, hence has some A(n) in its
kernel, hence that kernel is open, so f is continuous. If A is in fact an
inverse limit of nilpotent algebras, then by [2, Theorem 10(iii)], its image
under any homomorphism to a finite-dimensional algebra is nilpotent, so (ii)
yields (iii). �

Remark. We can formally weaken the hypothesis of (iii) above to merely
say A is an inverse limit of nilpotent algebras Ai (not necessarily finite-
dimensional) and has a finitely generated dense subalgebra S. For we may
then replace each Ai by the image of A therein, so that A maps surjectively
to each of them. Then S, being dense in A, also maps surjectively to each Ai;
so if it is finitely generated, so are the Ai; but a finitely generated nilpotent
algebra is finite dimensional, so we are back in the situation of (iii) as stated.



760 G. M. BERGMAN

Let us note the consequence of the above theorem for homomorphisms
among inverse limit algebras.

Corollary 12. Suppose that A is the inverse limit of a system of k-
algebras (Ai)i∈I in a separative variety V, that B is an inverse limit of an
arbitrary system of k-algebras (Bj)j∈J (in each case with connecting mor-
phisms, which we do not show); and that A has a finitely generated dense
subalgebra.

Then if either all the Ai are finite-dimensional and all the Bj nilpotent,
or all the Ai are nilpotent and all the Bj finite-dimensional, then every alge-
bra homomorphism A → B is continuous in the inverse limit topologies on A
and B.

Proof. A basis of open subspaces of B is given by the kernels of its projec-
tion maps to the Bj , so it will suffice to show that the inverse image of each of
those kernels under any homomorphism f : A → B is open in A. Such an in-
verse image is the kernel of the composite homomorphism A → B → Bj . If the
Ai are finite-dimensional and the Bj nilpotent, this composite falls under case
(ii) of Theorem 11, while if the Ai are nilpotent and the Bj finite-dimensional,
it falls under case (iii) (as adjusted by the above Remark). In either case, the
continuity given by the theorem means that the kernel of the above composite
map is open, as required. �

5. Separativity of some varieties, familiar and unfamiliar

Clearly, any monomial w of length > 1 is congruent modulo the conse-
quences of the associative identity to a 1-separating monomial w′xi. So the
variety of associative k-algebras is [1,1]-separative, and Theorem 11 applies
to it.

The variety of Lie algebras is also [1,1]-separative, but the proof is less
trivial. When one works out the details, one sees that the argument embraces
the associative case as well.

Lemma 13. Suppose V is the variety of associative algebras, the variety
of Lie algebras, or generally, any variety of k-algebras satisfying identities
modulo which each of the monomials (xy)z, z(xy) is congruent to some linear
combination of the eight monomials having x or y as “outside” factor:

x(yz), x(zy), (yz)x, (zy)x,
(13)

y(xz), y(zx), (xz)y, (zx)y.

Then V is [1,1]-separative.

Proof. Let w be a monomial of length > 1 which we wish to show congruent
modulo the identities of V to a linear combination of [1,1]-separating, i.e., 1-
separating, monomials. Let us write w = w′w′ ′, and induct on min(length(w′),
length(w′ ′)).
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If that minimum is 1, then w is itself 1-separating. In the contrary case, as-
sume without loss of generality (by the left–right symmetry of our hypothesis
and conclusion) that 1 < length(w′) ≤ length(w′ ′), and let us write the shorter
of these factors, w′, as w1w2, and rename w′ ′ as w3, so that w = (w1w2)w3.
Putting w1, w2 and w3 for x, y and z in the identity involving (xy)z in
the hypothesis of the lemma, we see that w = (w1w2)w3 is congruent mod-
ulo the identities of V to a k-linear combination of products of w1,w2,w3

in each of which w1 or w2 is the “outside” factor. Since w1 and w2 each
have length < length(w′), our inductive hypothesis is applicable to the result-
ing products, so we may reduce them to linear combinations of 1-separating
monomials, completing the proof of the general statement of the lemma.

For V the variety of associative algebras, the associative identity clearly
yields the stated hypothesis, while if V is the variety of Lie algebras, two
versions of the Jacobi identity, one expanding [[x, y], z] and the other [z, [x, y]],
together do the same. �

The case of Jordan algebras is more complicated; but when one works it
out, one sees a pattern of which the preceding lemma is the d = 0 case, while
Jordan algebras come under d = 1. So we may consider the preceding lemma
and its proof as a warm-up for the next result, giving the general case.

We note an easy fact that we will need in the proof. Let w be a monomial
of length n. If n > 1, we can write it as a product of two submonomials; if
n > 2 we may write one of those two as such a product, and hence get w
as a bracketed product of three submonomials; and so on. We conclude by
induction that

(14) For every positive m ≤ length(w), we can write w as a bracketed
product of exactly m submonomials.

We can now prove the following criterion.

Proposition 14. Let V be a variety of k-algebras, and d a natural num-
ber. Then a sufficient condition for V to be [1,1 + d]-separative is that,
for every monomial u obtained by bracketing the ordered string x1 · · · xd+2

of d + 2 indeterminates, each of the monomials uz, zu in d + 3 indetermi-
nates x1, . . . , xd+2, z be congruent modulo the homogeneous identities of V to
a linear combination of monomials of the form u′u′ ′, in which one of u′, u′ ′ is
a product (in some order, with some bracketing) of a proper nonempty subset
of x1, . . . , xd+2. (Thus, the other factor will be a product of z and those of the
xm not occurring in the abovementioned product.)

In particular, the preceding lemma is the case d = 0 of this result.
The variety of Jordan algebras over a field of characteristic not 2 satisfies

this criterion with d = 1.

Sketch of proof. Following the pattern of the proof of the preceding lemma,
assume w is a monomial of length > 1 that we want to express as a linear
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combination of [1,1 + d]-separating monomials. If it is not already [1,1 + d]-
separating, we write w = w′w′ ′, note that min(length(w′), length(w′ ′)) ≥ d+2,
and induct on that minimum. Assuming without loss of generality that w′ has
that minimum length, we use (14) to write w′ = u(w1, . . . ,wd+2), for submono-
mials w1, . . . ,wd+2 of w′. We now apply to w = w′w′ ′ = u(w1, . . . ,wd+2)w′ ′ an
identity of the sort described in our hypothesis for uz, putting w1, . . . ,wd+2

for x1, . . . , xd+2, and w′ ′ for z, and note that our inductive hypothesis applies
to each monomial in the resulting expression, completing the proof of our
main statement.

It is easy to see that for d = 0, this result is equivalent to that of the
preceding lemma.

To see that the variety of Jordan algebras has the indicated property with
d = 1, first note that modulo relabeling of x1, x2, x3, and consequences of the
commutative identity (satisfied by Jordan algebras), all the monomials uz
and zu for which we must verify that property are congruent to z(x1(x2x3)).
Hence, we need only verify it for that monomial.

To do so, we take the Jordan identity

(15) (xy)(xx) = x
(
y(xx)

)
,

make the substitutions x = x2 +x3 +z and y = x1, and take the part multilin-
ear in these four indeterminates. Up to commutativity, this has only one term
with z “on the outside”, namely z(x1(x2x3)), which occurs on the right-hand
side. It occurs twice, but since we are assuming char(k) �= 2, we can divide
out by 2 (which is in fact the multiplicity of every term occurring, due to
the presence of a single (xx) on each side). The resulting identity expresses
z(x1(x2x3)) in the desired form. �

(In the case, we have excluded from the final statement of the proposition,
where char(k) = 2, Jordan algebras are usually defined to involve operations
quadratic in one of the variables, rather than just the bilinear multiplication;
hence they fall outside the scope of this note. If one wants a concept of
Jordan algebra over such a k involving only the bilinear multiplication, it
would be natural to include among the identities of that operation the one
gotten by taking the identity in x1, x2, x3, z obtained by multilinearization
above, written with integer coefficients, dividing all these coefficients by 2,
and then reducing modulo 2. If such a definition is used, our argument for
Jordan algebras is valid without restriction on the characteristic.)

One may ask whether the condition of the above proposition is necessary
as well as sufficient for the stated conclusion. It is not. Using the same
general approach as in the above two proofs (but noting that in proving the
final statement below, one does not have recourse to left–right symmetry),
the reader should find it easy to verify the following observation.
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Lemma 15. The variety V of k-algebras defined by the identity

(16) (x1x2)(x3x4) = 0

is [1,1]-separative.
More generally, this is true of any variety V such that modulo homoge-

neous identities of V, the monomial (x1x2)(x3x4) is congruent to a linear
combination of monomials of the forms ux3 and ux4.

6. Counterexamples

Let us now construct a k-algebra A which is an inverse limit of finite-
dimensional k-algebras, and has a finitely generated subalgebra S dense in
the pro-discrete topology, but which does not lie in a separative variety, and
for which the conclusions of Theorem 11 fail.

We need to arrange that for some n, S(n) is not the sum of the images
of finitely many linear polynomial operations on S. Hence we need to build
up, out of a finite generating set for S, an infinite family of monomials whose
sums of products will create this “problem” in S(n). The smallest number of
generators that might work is 1, and the smallest n is 2. It turns out that we
can attain these values.

Starting with a single generator p, let p2 = q1, and recursively define pqm =
qm+1. Our S will be spanned by p, these elements qm, and the products
qmqn = rmn. Letting all products other than these be 0, we can describe S
abstractly as having a k-basis of elements

(17) p, qm, rmn (m,n ≥ 1),

and multiplication

(18) pp = q1, pqm = qm+1, qmqn = rmn, with all other products of basis
elements 0.

For every i > 0, S has a finite-dimensional nilpotent homomorphic image Si

defined by setting to zero all qm with m ≥ i and all rmn with max(m,n) ≥ i.
Let A be the inverse limit of the system · · · → Si+1 → Si → · · · → S1. This
consists of all formal infinite linear combinations of the elements (17), with
multiplication still formally determined by (18).

Now if we multiply two elements a, b ∈ A, the array of coefficients of the
various rmn in the product, arranged in an infinite matrix, will clearly be
given by the product of the column formed by the coefficients of the q’s in the
element a, and the row formed by the coefficients of the q’s in the element b.
Hence it will have rank ≤ 1, where we define the rank of an infinite matrix as
the supremum of the ranks of its finite submatrices. In a linear combination
of d such products, the corresponding matrix of coefficients may have rank as
large as d, but we see that in no element of A(2) will it have infinite rank.

The set of a ∈ A such that the matrix of coefficients in a of the rmn has
finite rank forms a proper k-subspace of A; e.g., it does not contain the “diag-
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onal” element
∑

m rmm. Thus (given the Axiom of Choice) there is a nonzero
linear functional ϕ : A → k annihilating that subspace. Let kε denote a 1-
dimensional k-algebra with zero multiplication (i.e., let ε2 = 0), and define a
k-linear map f : A → kε by f(a) = ϕ(a)ε. From the fact that ϕ(A(2)) = {0}
and the relation ε2 = 0, we see that f is an algebra homomorphism. Since
kerf contains all finite linear combinations of the p, qm and rmn, it has all of
A as closure. But it is not all of A, so f is not continuous.

By Theorem 11, this A cannot lie in a separative variety of k-algebras.
However, it does lie in the variety determined by the rather strong identities

(19)
(
(x1x2)x3

)
x4 = 0, x4

(
(x1x2)x3

)
= 0.

Indeed, substituting any elements of A for x1 and x2, we find that x1x2 yields
a formal k-linear combination of q’s and r’s only. Multiplying this on the right
by an arbitrary element gives a formal linear combination of r’s only; and this
annihilates everything on both the right and the left. (Contrast Lemma 15.)

We summarize this construction as follows.

Example 16. Let A be the linearly compact k-algebra of all formal infinite
linear combinations of basis elements (17), with multiplication determined by
(18), and S the subalgebra of A generated by p. Then S is dense in A, and A is
an inverse limit of finite-dimensional nilpotent homomorphic images Si of S,
and satisfies the identities (19); but A admits a discontinuous homomorphism
f to the 1-dimensional square-zero k-algebra kε.

We can get an example Acomm with similar properties, but with commu-
tative multiplication, if we modify the description of the above algebra A by
supplementing each relation pqm = qm+1 with the relation qmp = qm+1, and
taking rmn and rnm to be alternative symbols for the same basis element, for
all m and n. (If char(k) �= 2, Acomm can be obtained from the algebra A of the
above example by using the symmetrized multiplication x ∗ y = xy + yx, and
passing to the closed subalgebra of A generated by p under that operation.)
In this algebra, the matrix gotten by starting with the matrix of coefficients of
the rmn (now a symmetric matrix), and doubling the entries on the main diag-
onal, will have rank ≤ 2 for any product ab, so on every element of (Acomm)(2),
its rank will again be finite. We deduce as before that this algebra admits a
discontinuous homomorphism to kε; we also note that it satisfies the identities

(20) x1x2 = x2x1,
(
(x1x2)(x3x4)

)
x5 = 0.

We can likewise get a version Aalt of our construction that satisfies the
alternating identity x2 = 0, again by an easy modification of the algebra of
Example 16, or (this time without any restriction on the characteristic), by
taking an appropriate closed subalgebra of that algebra under the operation
x ∗ y = xy − yx. In this case, we can’t have a relation p2 = q1; rather, Salt
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is generated by the two elements p and q1. We find that Aalt satisfies the
identities

(21) x2
1 = 0,

(
(x1x2)(x3x4)

)
x5 = 0.

We end this section with an easier sort of example, showing the need for the
assumption in Theorem 11 that A have a finitely generated dense subalgebra.
Let kε again denote the 1-dimensional zero-multiplication algebra.

Example 17. For any infinite set I, the zero-multiplication algebra (kε)I

(which is the inverse limit of the finite-dimensional zero-multiplication alge-
bras (kε)I0 as I0 runs over the finite subsets of I, and is trivially associative,
Lie, etc.) admits discontinuous homomorphisms to the 1-dimensional zero-
multiplication k-algebra kε.

Proof. Clearly any linear map between zero-multiplication algebras is an
algebra homomorphism; and there exist discontinuous linear maps (kε)I →
kε. For example, since there is no continuous linear extension of the partial
homomorphism taking every element of finite support to the sum of its nonzero
components, any linear extension of that map will be discontinuous. �

In contrast, if we consider algebra homomorphisms f such that the image
algebra f(A) has nonzero multiplication, then there are strong restrictions on
examples in which, as above, the domain of f is a direct product algebra.
Namely, it is shown in [4, Theorem 19], [5, Theorem 9(iii)] that if k is an
infinite field, and f a surjective homomorphism from a direct product A =∏

I Ai of k-algebras to a finite-dimensional k-algebra B, and if card(I) is
less than all uncountable measurable cardinals (a condition that is vacuous
if no such cardinals exist), then writing Z(B) = {b ∈ B | bB = Bb = {0}},
the composite homomorphism A → B → B/Z(B) is always continuous in the
product topology on A (though the given homomorphism f : A → B may not
be).

7. Some questions

The result quoted above suggests the following question.

Question 18. If k is an infinite field, and A an inverse limit of k-algebras
(Ai)i∈I such that the indexing partially ordered set I has cardinality less
than any uncountable measurable cardinal, can one obtain results like The-
orem 11(ii) and (iii) for the composite map A → B → B/Z(B) if f : A → B
is surjective, without the requirement that A have a finitely generated dense
subalgebra S, and/or without the hypothesis that it lie in separative variety?

A different (if less interesting) way to achieve continuity, if A does not
have a dense finitely generated subalgebra, might be to refine the topology in
which we try to prove our maps continuous. The topology on A defined in
the next question is such that a linear map is continuous under it if and only
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if its restrictions to all “topologically finitely generated” subalgebras A′ ⊆ A
are continuous in the restriction of the inverse limit topology. The question
asks whether this topology is a reasonable one.

Question 19. Suppose A is an inverse limit of finite-dimensional algebras,
and we define a new linear topology on A by taking for the open subspaces
those subspaces U whose intersections with the closures A′ of all finitely gen-
erated subalgebras S′ of A are relatively open in A′ under the pro-discrete
topology on A.

Will the multiplication of A be continuous in this topology?

For A = (kε)I as in Example 17, the topology described above is the discrete
topology on A, so in that case the answer is affirmative.

Recall next that in each of the results of Section 5, separativity was obtained
from some finite family of identities. We may ask whether this is a general
phenomenon.

Question 20. Suppose V is a separative variety of k-algebras. Will some
overvariety V′ determined by finitely many identities still be separative?

If this is so, will there be such a V′ which is [1,1 + d]-separative for the
least d for which V has that property?

In Example 16, the fact that A(2) was not closed in A was related to the
fact that it consisted of sums of arbitrarily large numbers of elements of

(22) {ab | a, b ∈ A}.

One may ask whether the set (22) (not itself a vector subspace) is nevertheless
closed in our topology on A (though a positive answer would not lead to any
obvious improvement of our results). Let us generalize this question.

Question 21. If A, B and C are linearly compact vector spaces, and
f : A × B → C is a continuous bilinear map, must {f(ab) | a ∈ A,b ∈ B} be
closed in C?

(Examination of the algebra of Example 16 shows that for that map, the
answer is yes. What this says is that one can test whether an element of A
has the form ab by looking at its coordinates finitely many at a time.)

We saw in Lemma 4(iv) that every linearly compact vector space is an
inverse limit of finite-dimensional discrete vector spaces. Is every linearly
compact algebra (i.e., every linearly compact vector space made an algebra
using a continuous multiplication) an inverse limit of finite-dimensional alge-
bras? For associative algebras—yes; in general—no! Indeed, it is not true for
Lie algebras [3, Example 25.49].

In the case of Corollary 12 where A is assumed an inverse limit of finite-
dimensional algebras, it is nevertheless easy to see from Theorem 11(iii) that
that assumption could be weakened to make A any linearly compact algebra



CONTINUITY OF HOMOMORPHISMS ON PRO-NILPOTENT ALGEBRAS 767

with a finitely generated dense subalgebra. But I don’t know what happens
if, in the case where B is assumed pro-finite-dimensional, we attempt the
corresponding weakening.

Question 22. Does the case of Corollary 12 where A is assumed an inverse
limit of nilpotent algebras and B an inverse limit of finite-dimensional algebras
remain true if B is merely assumed a linearly compact algebra?

Equivalently, in Theorem 11(iii), can the assumption that B is finite-
dimensional be weakened to say that it is a linearly compact topological al-
gebra?

Recall also that Corollary 12 has the peculiar hypothesis that either the Ai

are finite-dimensional and the Bj nilpotent, or the Ai are nilpotent and the
Bj finite-dimensional. Of the two other possible ways of distributing “finite-
dimensional” and “nilpotent” among the Ai and the Bj , the arrangement that
puts both conditions on the Aj and no such condition on the Bi certainly does
not imply continuity; for one can take a nondiscrete A arising in this way, and
let B be the same algebra with the discrete topology, regarded as an inverse
limit in a trivial way. But I do not know about the reverse arrangement.

Question 23. If in the last sentence of Corollary 12 we instead assume
that the Bj are finite-dimensional and nilpotent (with no such condition on
the Ai), can we still conclude that every algebra homomorphism A → B is
continuous?

Everything we have done so far has depended on pro-nilpotence; but we
may ask the following question.

Question 24. Is the analog of Theorem 11(iii) true with nilpotence either
replaced by other conditions (e.g., solvability, some version of semisimplicity,
etc.), or dropped altogether?

The generalization of Serre’s result on pro-p groups analogous to the result
asked for above, i.e., with “pro-p” generalized to “profinite,” has, in fact, been
proved [10], [11]. The proof of this deep result uses the Classification Theorem
for finite simple groups.

In connection with Question 24, let us recall briefly the meaning of solv-
ability for a general k-algebra A; it is the straightforward extension of the
condition of that name arising in the theory of Lie algebras [13, p. 17]: One
defines subspaces A(n) (n = 0,1, . . .) of A recursively by

(23) A(0) = A, A(n+1) = A(n)A(n),

and calls A solvable if A(n) = {0} for some n.
A difference between nilpotence and solvability which may be relevant to

the above question is that a finitely generated solvable algebra, unlike a finitely
generated nilpotent algebra, can be infinite-dimensional. (E.g., the S of Ex-
ample 16 is solvable. There exist similar examples among Lie algebras.) So it
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might be necessary to make finite codimensionality of the S(n) in S an addi-
tional hypothesis in a version of that theorem for solvable algebras, if such a
result is true.

8. Questions on subalgebras of finite codimension

The referee has raised the following interesting question.

Question 25. In cases where we have proved or conjectured that all ideals
of finite codimension in an algebra A must be open (Theorem 11(iii) and Ques-
tion 24), can one show more generally that all subalgebras of finite codimension
in A are open?

While the condition that an ideal I be open means that the homomorphism
A → A/I is continuous with respect to the discrete topology on A/I, the
condition that a subalgebra be open has no similar interpretation. However,
since a basis of open subspaces of A = lim←− Ai is given by the kernels of the
projection maps A → Ai, a subalgebra will be open if and only if it contains
one of these open ideals; equivalently, if and only if it is the inverse image in
A of a subalgebra of one of the Ai.

Mekei [9] shows that in an associative algebra A, any subalgebra of finite
codimension n contains an ideal of finite codimension ≤ n(n2 + 2n + 2) in A.
Hence for associative A, we can indeed get results of the sort asked for: The-
orem 11(iii) and Mekei’s result together imply that in a topologically finitely
generated inverse limit of finite-dimensional nilpotent associative algebras, ev-
ery subalgebra of finite codimension is open. Positive results on Question 24
would likewise yield further results of this sort in the associative case.

Riley and Tasić [12, Lemma 2.1] prove for p-Lie (a.k.a. restricted Lie) al-
gebras (which lie outside the scope of this note) a result analogous to Mekei’s
(though with an exponential bound in place of n(n2 + 2n + 2)). But as they
note in [12, Example 2.2], the corresponding statement fails for ordinary Lie
algebras over a field k of characteristic 0: The Lie algebra of derivations of
k[x] spanned by the operators xnd/dx (n ≥ 0) has a subalgebra B of codimen-
sion 1, spanned by those operators with n > 0; but A is simple, so B cannot
contain an ideal of A of finite codimension.

This example can be completed to a linearly compact one: In the Lie al-
gebra A of derivations on the formal power series algebra k[[x]] given by the
operators p(x)d/dx (p(x) ∈ k[[x]]), the operators such that p(x) has constant
term 0 again form a subalgebra B of codimension 1; but again, A is simple.
An example not limited to characteristic 0 can be obtained from [3, Exam-
ple 25.49]. There, we don’t get simplicity, but still have too few ideals for
there to be one of finite codimension in a certain B.

These examples show that we do not have a result like Mekei’s in the variety
of Lie algebras over k, and hence cannot obtain positive answers to cases of
Question 25 for that variety in the way we did for associative algebras. But
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this does not say that such results don’t hold. Indeed, the above examples
used Lie algebras with a paucity of open ideals of finite codimension, while
a pro-finite-dimensional algebra necessarily has a neighborhood basis of the
identity consisting of such ideals. So the answer to Question 25, even for Lie
algebras, remains elusive.

It would also be of interest to know for what varieties an analog of Mekei’s
result does hold.

Question 26 (A. Mekei, personal communication). For what varieties V
of k-algebras is it true that any subalgebra B of finite codimension in an
algebra A ∈ V contains an ideal of A of finite codimension?
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