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Effects of Organic Carbon Supply Rates on Mobility of Previously Bioreduced Uranium in 
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1Lawrence Berkeley National Laboratory, Berkeley, California 94720;  
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Abstract   Bioreduction-based strategies for remediating uranium (U)-contaminated sediments 

face the challenge of maintaining the reduced status of U for long times. Because groundwater 

influxes continuously bring in oxidizing terminal electron acceptors (O2, NO3
-), it is necessary to 

continue supplying organic carbon (OC) to maintain the reducing environment after U 

bioreduction is achieved.  We tested the influence of OC supply rates on mobility of previously 

microbial reduced uranium U(IV) in contaminated sediments.  We found that high degrees of U 

mobilization occurred when OC supply rates were high, and when the sediment still contained 

abundant Fe(III). Although 900 days with low levels of OC supply minimized U mobilization, 

the sediment redox potential increased with time as did extractable U(VI) fractions.  Molecular 

analyses of total microbial activity demonstrated a positive correlation with OC supply and 

analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even 

when the effluent Fe(II) became undetectable.  These data support our earlier hypothesis on the 

mechanism responsible for re-oxidation of microbial reduced U(IV) under reducing conditions; 

that microbial respiration caused increased (bi)carbonate concentrations and formation of stable 
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uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing 

potentials. The data also suggested that low OC concentrations could not sustain the reducing 

condition of the sediment for much longer time. 

INTRODUCTION 

 

Production of nuclear weapons and fuel have left soils and sediments at many locations 

contaminated with toxic levels of U.  The mobility of U in the subsurface depends strongly on its 

oxidation state, the presence of terminal electron acceptors (TEAs), and the concentrations of 

complexants. When reduced to U(IV) Uranium becomes much less soluble, and when oxidized to 

U(VI), and especially when strong complexants such as carbonate are present, its solubility is high 

(1).  Earlier studies demonstrated that U(VI) can be reduced by some Fe- and S-reducing bacteria, 

both enzymatically and indirectly (2-5).  Based on these findings, U remediation strategies are 

under development that rely on injecting organic carbon (OC) into contaminated sediments to 

stimulate microbial U(VI) reduction to lower solubility U(IV) minerals (6-8). Because long-term 

stability of microbially reduced U(IV) (permanent U reduction or very low release rates into the 

biosphere) is critical for the success of this potential technology, it is important to understand 

factors that influence U mobility during remediation.   

 Dissolved oxygen, nitrate and denitrification products have been demonstrated to mobilize 

U through oxidization of U(IV) (9-12). Because groundwater influxes bring dissolved oxygen and 

nitrate into the subsurface, continuous or periodic injection of OC will be required after U 

bioreduction is completed in order to maintain the reducing environment.  It has been believed 

that when influxes of highly oxidizing TEAs (especially O2 and NO3
-) are prevented, U(IV) is 

stable in reducing sediments. However, this key assumption underlying in situ U bioremediation 

strategies has been challenged by results from our recent study (13). Through a relatively long-

term (510 day) column experiment under controlled, environmentally relevant conditions, we 
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found that microbially reduced U was re-oxidized under sustained reducing conditions. It was 

hypothesized that the increased CO2 partial pressure (PCO2) and carbonate concentration caused by 

microbial respiration shifted U(IV)/U(VI) equilibrium to lower redox potentials through 

formation of strong U(VI)-carbonate complexes (2). This present study addresses the question of 

whether or not U(IV) remobilization could be avoided, and the impacts of different OC supply 

rates after the U(VI) bioreduction was completed. We continued the column experiments that 

yielded the aforementioned results for an additional 890 days with varied OC supply rate. In this 

paper we refer to the experiments up to 510 days as “Phase I”, and the experiments from 510 to 

1400 days as “Phase II”. 

 

METHODS 

 

Sediment Columns. A historically U-contaminated sediment from “Area 2” of the U. S. 

Department of Energy Environmental Remediation Management Program’s Field Research 

Center in Oak Ridge National Laboratory, Tennessee, was packed into the replicate columns.  

Before packing, the fresh sediment was extruded through a 5.6 mm sieve to remove the coarse 

gravel fraction, and then homogenized. The preparation was performed under a N2 atmosphere. 

The homogenized sediment had a U concentration of 206 mg (kg sediment)-1.  This sediment 

consisted of 30% sand and fine gravel (50 µm–5.6 mm), 41% silt (2–50 µm), and 29% clay (< 2 

µm).  The sediment contained 3.0 mass % of CaCO3 (pressure calcimetry, sediment reacted with 

2N HCl).  The pH of the water extract (water:sediment  mass ratio = 1:1) was 7.9.  The major 

element composition of the sediment can be found in Wan et al. (13).  The sediment was packed 

into columns to a bulk density of 1.48 Mg m-3 (porosity = 0.45). Columns were 200 mm long, 32 

mm I.D., and made of polycarbonate pipe.  Redox potential measurements were obtained in 

sediments through 6 Pt electrodes embedded along the length of each column. Influent solutions 
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were infused from the bottom of vertically oriented columns. The column effluents were 

continuously discharged into a fraction collector. 

Procedure for the Column Experiments. The influent OC concentration was varied from the 

original 32 mM going into all columns in Phase I to 100, 32, 6, and 0 mM for the 4 columns 

tested in Phase II, respectively.  A constant fluid velocity of 10 mm d-1 was used, which resulted 

in supply rates of 560, 180, 34, and 0 mmol OC (kg sediment)-1 y-1 for the four different influent 

OC concentrations.  Because the flow rate was constant, we will refer to influent OC 

concentrations, rather than rates of OC delivery. To assure long-term anoxic performance, 

columns were placed in a N2 glove box. Sodium lactate as the sole OC source was added to a 

simulated groundwater (1 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 1 mM KCl, pH 7.2), but 

oxidants was excluded for simplicity (except that influents were not degassed, and thus contained 

0.14 mM O2). Near the end of the experiment (D1080), 3 pore volumes (PV) of air-equilibrated 

influents were injected (containing 0.26 mM O2) to test the impact of increased TEA supply on U 

stability after a long period of OC injection.  Concentrations of U (kinetic phosphorimetry, KPA, 

Chemchek), OC and inorganic carbon (TIC-TOC analyzer, O-I Analytical) were measured in 

effluents. Samples for measurements of effluent Fe and Mn concentrations were periodically 

collected into acidified vials and measured using ICP. A total of 70 PV (~80 mL/PV) were 

infused through the columns over a 3.8 years period of time. OC concentrations of inflow 

solutions at different intervals of time are listed in Table 1.  In this table, days zero to 510 

constitute Phase I, in which all the columns received 32 mM OC (10.7 mM lactate).  In Phase II, 

starting from D510 each column received a different OC concentration, and some columns were 

subjected to further variations in OC at later times. At the end of the experiments (D1400), each 

column was sectioned into five segments. A sediment sample was taken from each segment for 

analyses of HCl-hydroxylamine extractable Fe(II) and Fe(III) (14), carbonate extractable U(VI) 

(15), and molecular analyses of microbial biomass and activity.  
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Extracting Sediment Iron. The sediment sampling and iron extraction were conducted under 

anaerobic conditions. A HCl-hydroxylamine method (14) was used to measure extractable Fe(II) 

and Fe(III) on paired sediment samples.  To determine HCl-extractable Fe(II), 0.1 g of sediment 

was reacted with 5 ml of 0.5 M HCl solution at room temperature for one hour. After 

centrifugation, 0.1 mL of the extract was mixed with 5 mL of ferrozine (1 g L-1) solution 

buffered by 50 mM HEPES at pH 7. The suspension was then filtered (0.2 µm polycarbonate 

filter), and the Fe(II) concentration was determined by spectrophotometry (absorbance at 562 

nm). To determine hydroxylamine-reducible Fe(III), a parallel 0.1 g sediment sample was used. 

The sediment sample was extracted using the same procedure as that described above but with a 

5 ml extractant solution containing 0.25 M hydroxylamine hydrochloride and 0.25 M HCl.  The 

hydroxylamine reduces Fe(III) to Fe(II). The hydroxylamine-reducible Fe(III) was obtained by 

subtracting HCl-extractable Fe(II) (previously described) from this measured total extractable 

iron. These Fe extraction procedures were performed at three different times during the 

experimental duration. The original sediment was used for the time point D0. On D900, a 

sediment sample was taken from the top end of each sediment column after temporarily 

removing its end-cap within a N2 glove bag. At D1400 (the end of the experiments), each column 

was sectioned into five segments, and triplicate samples were taken from each segment. For each 

of aforementioned samples, an accompanying sediment sample set was used for measuring 

moisture content in order to report Fe concentrations relative to dry sediment mass.  

Extractable Sediment U(VI).  Concentration changes of carbonate extractable U(VI) in 

sediments were measured following the procedure of Zhou and Gu (15). About 1.0 g of wet 

sediment was transferred into 20 mL of 0.5 M degassed Na2CO3 solution. The pH of the solution 

was 11.9. Extraction was performed anaerobically. After 65 hrs of stirring the soil suspension 

and then ultracentrifugation, U concentrations were determined using KPA. 
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Molecular analysis of Geobacteraceae populations. Nucleic acids were extracted from 

anaerobically-sampled sediment sections collected at D1400 from the 100, 6 and 0 mM OC 

columns. Samples were flash-frozen in liquid N2 and stored at -80°C until extraction. DNA and 

RNA were extracted using a modification of the Fast DNA SPIN Kit for Soil (MP Biomedicals, 

Irvine, CA) (see Supporting Information). RNA was reverse transcribed and copy numbers of 

Geobacteraceae 16S rRNA were quantified by real-time quantitative PCR (see Supporting 

Information). Correlations between geochemical parameters and 16S rRNA copies were 

performed in the statistical programming environment R (16). 

 

RESULTS AND DISCUSSION 

 

Effects of OC Supply Rates on Mobility of Previously Microbial Reduced U.  Variations in 

effluent OC, inorganic carbon, and U concentrations from the 4 columns over the 3.8 years are 

presented in Figures 1a-c. The pH in effluents remained stable at 7.4 ±0.3 throughout the study.  

Data of Phase I have been previously reported (13).  As these earlier results provide the context 

for this paper, we summarize salient points from the previous report and the hypotheses that 

resulted in this follow up paper.  In Phase I, all columns had the same influx solution containing 

32 mM OC.  As microbial respiration oxidized OC (Fig. 1a) into (bi)carbonate (Fig. 1b), effluent 

U concentrations decreased rapidly (Fig. 1c) to less than 0.03 µM, well below the U.S. EPA 

drinking water standard for U of 15 pCi L-1 (0.126 µM) (17).  In situ reductive remediation of U 

appeared successful at this time. However, beyond 100 days, increased U concentrations in the 

effluents were observed in all of the columns, and reached steady state at about 200 days with U 

concentrations raised to about 1 µM. X-ray absorption spectroscopy of U oxidation states within 

the columns provided direct evidence that the U was reduced (measured at day 107) and then was 

re-oxidized (measured at day 346). Steady methane production indicated that the sediment 
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columns were under very reducing conditions. Steady OC utilization by microorganisms and 

carbonate production indicated that an active microbial population was sustained. We 

hypothesized that the increases in (bi)carbonate concentrations resulting from microbial 

respiration caused formation of very stable uranyl carbonate complexes, thereby increasing the 

thermodynamic favorability of U(IV) oxidation. We also hypothesized that a reactive Fe(III) 

fraction persisted in the sediment and served as the TEA for U reoxidation.  These hypotheses 

were tested in phase II of this study, in addition to exploring if there is an optimal rate of OC 

delivery for preventing U remobilization.  

 

Table 1.  Inflow OC concentrations at different times for different columns. 

Days 1-510 510-720 720-780 780-1400 

Column-Name [OC]  mM 

100 mM 32 100 200 100 

32 mM 32 32 32 100 

6 mM 32 6 6 6 

0 mM 32 0 0 0 

 

 At the beginning of Phase II, the OC supply was switched to 4 different rates; 560, 180, 

34, and 0 mmol OC kg-1 y-1, under a constant flow rate of 0.01 m day-1. For simplicity, in 

discussions throughout this paper we use 100 mM, 32 mM, 6 mM, and 0 mM to refer to the 4 

sediment columns, although the OC supply rates were further varied for two of the columns 

(Table 1). The effluent U, OC, and bicarbonate concentrations collected during the 2.4 year 

Phase II study are also presented in Figures 1a-c.  Clear correlations were observed between the 

effluent U and bicarbonate concentrations, with responses proportional to changes in OC supply 

rates, up to around D800.  The effluent U concentrations increased from ~1 µM in Phase I to 5.5 
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µM and then to 10 µM as OC increased from 32 mM to 100 mM then 200 mM, respectively. 

During this same time interval, effluent U concentrations remained unchanged for the column 32 

mM with its original OC supply rate kept constant. In contrast, the effluent U concentrations 

dropped from 1 µM in Phase I to near 0.2 µM for the columns 6 mM and 0 mM. These two  

decreased OC supply rates resulted in steep decreases in effluent U concentrations, but did not 

show significant differences between each other. The changes in effluent bicarbonate 

concentrations corresponded well to influent OC concentrations and matched the changes of 

effluent U concentrations.  The effluent OC concentrations remained low, ~ 1 mM and only 

increased to ~ 3 mM when 200 mM OC was injected, indicating near complete microbial 

consumption of OC.  These Phase II data up to ~D800 provided convincing evidence that 

excessive OC supply rates promoted reoxidation of bioreduced U(IV) and/or desorption of 

unreduced U(VI) through formation of stable U-carbonate complexes.  Calculations predicting 

these complexes and confirmation of their prevalence in column effluents by laser fluorescence 

spectroscopy were provided previously (13). 

 Effluent U concentrations declined after about D800, despite continuous OC infusion and 

consequent high bicarbonate concentrations. A sharp decrease for effluent U in column 100 mM 

started at ~D820.  Column 32 mM had its influent OC increased to 100 mM on D780, but its 

effluent U concentrations also declined. The decreased effluent U under sustained high OC 

supply rates and high bicarbonate concentrations suggested that the U-reoxidation process was no 

longer significant. Analyses presented later supports the hypothesis that much of the reactive 

Fe(III) fraction in the sediment was reduced to Fe(II) by around D800 for columns 100 mM and 

32 mM, and thus no longer served as the TEA for U(IV) reoxidation. The relative order of U 

effluent concentrations among the columns remained the same, consistent with enhanced U 

solubility with higher concentrations of bicarbonate.  
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 The bicarbonate concentrations in effluents from columns 6 mM and 0 mM were low, 

reflecting the low/zero OC influx.  In the case of zero OC inflow, the effluent bicarbonate 

concentrations in the mM range indicated that oxidation of OC from soil organic matter and 

microbial biomass accumulated during phase I. Throughout most of this experiment, influents 

were prepared with water containing 0.14 mM O2 (undersaturated with respect to atmospheric 

O2).  Before ending the experiment, we tested the responsiveness of the sediments to influxes of 

air-equilibrated (0.26 mM O2) solutions. At D1080 three pore volumes of air-equilibrated 

influents were injected with all other chemical compositions remaining the same.  The effluent U 

concentrations for the two higher OC supply columns were not affected by the increased influx of 

O2, but the two columns supplied with lower OC levels exhibited increases in effluent U 

concentrations.  Given their long term with low/zero OC supply, these latter two column 

sediments apparently had less capacity for sustaining reducing conditions. Redox potential data 

presented in a later section also indicate gradual oxidation in columns 6 mM and 0 mM.  

 



 10 

 
 

Figure 1. Effluent OC, bicarbonate, and U concentrations (all relative uncertainties < 10%) from 

4 sediment columns.  (a) OC trends show 97% of injected lactate was being consumed, except 

for two columns when very high concentrations of OC were injected. “∆OC” indicates times 

when influent OC concentrations were changed (Table 1).  (b) Bicarbonate concentrations 
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resulting from microbial respiration showed increases to 15 mM in Phase I, and variations 

proportionally responding to the influent OC concentrations in Phase II.  (c) U concentrations in 

effluents showing initial rapid reduction and reoxidation in Phase I, and varied responses to OC 

concentration changes in Phase II.  The interval within Phase II with air O2 equilibrated influent 

solutions is indicated along the time axis.  The U MCL of 0.126 µM is indicated on the y-axis. 

 
 
Bioreduced Fe(II) in the Effluents and Sediments. Iron concentrations were measured 

periodically from D440 to D960 on effluents collected in acidified vials because it can be a 

useful indicator of Fe(III) reduction occurring in sediments (Figure 2). The effluents obtained on 

D440 (Phase I) contained Fe2+ concentrations greatly exceeding values for equilibrium with 

respect to siderite (18), showing that all sediments were actively undergoing Fe(III) reduction, 

some of which could support U(IV)-reoxidation. At D560 (50 days and 2.5 PV into Phase II), 

changes in effluent [Fe] reflected responses to changes in OC supply, with increased Fe(III) 

reduction and U(IV) reoxidation for column 100 mM, and much decreased Fe(III) reduction for 

columns 6 and 0 mM.  For column 32 mM, decreased Fe(III) reduction was observed starting 

from D560 and continued toward the end, although this column was provided with an increased 

OC supply at D780. Decreases in available reactive Fe(III) may explain why the OC increase and 

resulting (bi)carbonate concentration increase (Figure 1b) did not result in increased effluent [U] 

(Figure 1c) from that column. Upon depletion (reduction) of the reactive poorly crystalline Fe(III) 

fraction, no other TEAs would be present to support U(IV) reoxidation.  All the effluent Fe data 

after D560 showed time trends of decreasing concentrations. After D900 effluent [Fe] became ≤ 

0.02 µM (the detection limit), indicating significant decreases in rates of Fe(III) reduction, even 

at the highest OC supply rate.  
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Figure 2.  Time trends in effluent Fe concentrations.  The concentration of Fe2+ ≈2 µM for 

equilibrium with siderite under characteristic Phase I conditions (pH 7.4, 15 mM HCO3
-) is 

indicated on the y-axis.  Effluent Fe concentrations in excess of this level are indicative of rapid 

reductive Fe(III) dissolution in each sediment column during phase I, and in the 32 mM and 100 

mM columns during the first half of Phase II. 

 Increases in microbially reduced Fe(II) in the reacted sediments were determined through 

measuring HCl-extractable Fe(II) (Figure 3). An additional data point presented in Figure 3 

shows the total Fe in the sediment, 786.0±1.8 mmol kg-1 (4.39±0.01 mass%, X-ray fluorescence 

analysis). The original sediment (D0) had an HCl-extractable Fe(II) concentration of 0.9 mmol 

kg-1, and a hydroxylamine-reducible Fe(III) concentration of 9.0 mmol kg-1.  The hydroxylamine-

reducible Fe(III) has been considered an indicator of Fe(III) available for microbial reduction 

(14), and amounted to 1.1% of the total iron for the original sediment. At D900, data of extracted 

Fe(II) are presented at the top of the figure. These sediment samples were collected from top 

surface of each column (vertical distance 20 cm). The extractable D900 Fe(II)/Fe(III) levels are 

110.4/0.28, 152.8/0.22, 61.2/0.12, and 76.6/0.002 mmol kg-1 for the 100, 32, 6, and 0 mM 

columns, respectively. Relative to the D0 Fe(II) value (0.9 mmol kg-1), these D900 indicators of 

microbial reduced Fe(II) are large, and roughly proportional to the OC supply rates. Comparing 
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the Fe(II) data from Day 900 (up to 153 mmol kg-1) with the D0 extracted Fe(III) (9.0 mmol kg-

1), shows that the actual microbially-reducible ferric iron fraction was much larger than that by 

the hydroxylamine-reduction method estimated.  

 At D1400 (end of the experiment), each column was sectioned into five segments and one 

sediment sample was collected from each segment. The extractable Fe(II) data are presented in 

Figure 3 as concentration profiles along the column (flow direction upwards), connected with 

solid lines. The values of hydroxylamine-reducible Fe(III) at D1400 are very low (the majority ≤ 1 

mmol kg-1) relative to the Fe(II) concentrations and no exhibited spatial trend, thus are not plotted. 

The Fe(II) data show a clear trend of increased microbial reduced Fe(II) (from ~100 to ~600 mmol 

kg-1) with increased OC supplied to the sediment. The amounts of microbial reduced Fe(II) are 

very large, with 10-50% of the total iron (786 mmol kg-1) in the sediment having been reduced.  

The bottom end of column 100 mM yielded very high concentrations of reduced Fe(II), 

amounting to as much as 80% of the sediment total Fe.  It should be noted that these Fe-extraction 

data were all obtained though analyses of triplicate samples, with standard deviations ≤ 10% (the 

majority of them < 6%), and spike recoveries 100±3%.  These data (from effluents and sediments) 

collectively provide evidence supporting our hypothesis that a Fe(III) fraction capable of U-

reoxidation persisted throughout Phase I and the early portion of  Phase II.  It should be noted that 

this Fe fraction capable of reoxidizing U is limited to amorphous Fe(III) and ferrihydrite, and that 

other common Fe(III) oxyhydroxides and oxides such as goethite and hematite are incapable of 

driving U-reoxidation (13,19).  In a similar study, direct measurements of Fe oxidation states 

using X-ray absorption spectroscopy showed that 12% of the Fe(III) in this sediment was reduce 

up to 400 days (20).  These results collectively indicate that only a small Fe(III) fraction is readily 

available for bioreduction and for U-reoxidation, and that a much larger Fe(III) fraction is 

gradually bioreduced over longer times (1400 days). 
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Figure 3.  HCl-extractable Fe(II) in column sediments at different times. Day 900 Fe(II) data 

appear at the top of the figure (only one sample was collected from the top surface of each 

column). Day 1400 Fe(II) data are from 5 samples along the length of each sediment column. The 

total Fe content of the original sediment was obtained by X-ray fluorescence.  

 
 
Changes of Sediment Redox Potentials. Platinum electrode measurements of sediment redox 

potential profiles are presented in Figure 4a-d. The measurements were conducted at four time 

points during the final 240 days, through 6 electrodes distributed along the length of each 

column. The data show generally more oxidized conditions at the first time point, D1160, except 

for column 0 mM.  These somewhat higher D1160 Eh values may have resulted from injection of 

air-equilibrated influent solutions (during days 1080-1140). Although the D1160 Eh values were 

relatively higher than that at the later days for the two columns receiving higher OC, the Eh 

profiles remained strongly reducing, and the effluent U was maintained at low concentrations 

during the final 300 days (Figure 1c). Upon resuming injection of influents under-saturated with 

respect to atmospheric O2, the Eh values decreased for all the columns except column 0 mM. 

Although effluent U concentrations remained low at the end of the experiments, the trends in 

increased Eh indicate that U re-oxidization and remobilization might have occurred in the 0 mM 

Eoin Brodie
It would be good to have the Fe(III) data either in a second panel or use an additional axis with an appropriate scale.
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column if the experiment were continued longer because microbial activity will eventually 

deplete the available organic carbon.  

 
 

 
 

Figure 4.  Direct redox potential measurements of the 4 sediment columns conducted for 4 times 

within the final 240 days.  Note that the middle electrode of column 0 mM was damaged.  The 

first time point, D1160, was obtained 20 days after the injection of 3 PVs of air-equilibrated 

influents. 

 

Carbonate-extractable U(VI).  In Figure 5, the far right dashed black line indicates the total U 

concentration in original sediment (0.86 ±0.03 mmol/ kg sediment, by XRF and KPA analyses of 

acid-digested sediment). The U remaining in sediments at the end of this study was calculated 

based on subtraction of U removed in effluent solutions (Figure 1c) from the total U 
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concentration in original sediment. These calculated final U concentrations are 0.765, 0.818, 

0.816, and 0.824 mmol kg-1 for columns 100, 32, 6, and 0 mM, respectively. After 1400 days of 

permeation the total U in these sediments are reduced by 11% to 4% for columns 100 to 0 mM, 

respectively. These values further underscore the fact that the highest level of OC supply caused 

the most U mobilization instead of U immobilization in these reducing sediments. The 

carbonate-extractable U(VI) concentrations showed good reproducibility, relative variability 

among triplet extractions of subsamples being less than 5%.  The purple dashed line indicates the 

carbonate-extracted U(VI) (0.54 mmol kg-1) from the original sediment, which amounts to 62% 

of the total sediment U. The carbonate-extracted U(VI) from the four column sediments at the 

end of the experiment are presented as profiles of five sampling locations from each column. 

Note that theses data show increased extractable U(VI) with decreased OC supply. Using the 

average value of each column to compare with the total U in the original sediment, we obtained 

carbonate-extractable U(VI) of the reacted sediments under different OC supply rates: 20%, 26%, 

35%, and 43% for columns 100, 32, 6, and 0 mM. This trend of carbonate-extractable U(VI) 

increase with decreasing OC supply rates is consistent with redox potential data in Figure 4, 

suggesting 9% and 14% of originally microbial reduced U(IV) were reoxidized in the columns 6 

and 0 mM, respectively, in comparison with the column 32 mM. These results also show that 

effluent U concentrations provide an incomplete understanding of U status at the time of Phase 

II.  

 

Berkeley Lab
Please check these numbers!
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Figure 5.  Carbonate-extractable U(VI) from reacted sediments at D1400, compared with U 

concentrations in the original sediment.   

 

Molecular analysis of microbial and Geobacteraceae specific activity. Consistent with OC 

supply rate, total microbial activity (sediment RNA concentrations) was higher in 100 mM 

columns compared with 6 and 0 mM (32 mM column was not analyzed for microbiology). Total 

microbial activity also declined with distance from the inflow. We specifically assayed the 

activity of Geobacteraceae due to their recognized importance as metal and radionuclide reducers 

in subsurface sediments. Their abundance has been demonstrated to correlate with iron and 

uranium reduction (21). Previous studies using FRC sediments have shown that composition of 

the active microbial community (RNA) differs from DNA-based community analysis (22) and 

that microbial communities vary spatially in columns (23). Quantitative PCR analysis of 

Geobacteraceae populations in these columns revealed a decline in activity (16S rRNA) with 

distance from the inflow similar to total microbial activity (Fig. 6A and B). Significantly, 

Eoin Brodie
Should we state why?
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Geobacteraceae activity was similar in some sections of columns receiving low or no OC to those 

receiving 100 mM OC. Maintenance over 2.5 years of active Geobacteraceae in columns without 

OC supply was unexpected. As all columns originally received 32 mM OC for the first 500 days 

substantial microbial biomass would have accumulated (24). Therefore continued Geobacteraceae 

activity after almost 2.5 years without OC may have been sustained through cryptic growth, 

whereby microbial communities recycle nutrients from dying bacteria that leak metabolizable 

substrates (25). Geobacteraceae activity correlated strongly with HCl-extractable Fe(II) (r = 0.79, 

p < 0.05). The Geobacteraceae activity continued through the end of the experiments, although 

effluent Fe(II) concentrations were very low during the second half of Phase II. The syntrophic 

mode of electron transfer could have also contributed to Geobacteraceae survival during periods 

of low bio-available Fe.  

  

    

 

Figure 6. (a) Concentration of RNA in sediment extracted from column sections as a proxy for 

microbial activity (b) specific activity of Geobacteraceae species through column sections. All 

data represent the mean of technical replicates performed in triplicate. 

 

Eoin Brodie
Jiamin, I left the y-axis label as ﬁdistance form bottom, cm. I noticed in some of your figures you have either this label or ﬁdistance along flow direction, cmﬂ Œ let me know which one you prefer and I™ll change if necessary.



 19 

Implications for in-situ U remediation. Several findings from this 3.8 year laboratory 

simulation are important when considering application of OC-stimulated U bioremediation as a 

potential remediation strategy. 

1. After initial U(VI) microbial reduction has been achieved, the OC supply rate is a key factor 

controlling the degree of U reoxidation/remobilization when reactive Fe(III) is still available. 

Elevated bicarbonate concentrations resulting from OC stimulated microbial respiration cause 

U(IV) reoxidation/remobilization even under reducing condition.  

2. The reducible ferric iron concentration can be very large (much larger than we previously 

understood), especially relative to levels of U contamination.  

3. Lower OC supply rates prevented carbonate driven U-remobilization for the moment within 

the experimental time frame. However, the sediment had become more oxidized and U(VI) ratio 

had significantly increased. The low OC supply rates we tested could not sustain the sediment 

being reduced for long times, even under the experiment conditions of excluding TEAs such as 

NO3
-(NO2

-) and SO4
2-. 
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Brief 

The extent of reoxidation and remobilization of previously bioreduced U(IV) was proportional to 

the organic carbon supply rate before reactive Fe(III) was reduced.  




