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Chapter 1

Introduction

The volume of data being generated globally is increasing at a dramatic rate. This

phenomenon applies to many classes of data, including scientific data. As an example, LLNL’s

Green Data Oasis hosted a 45 Terabyte(TB) data set of CMIP-3 [26] multi-model data in 2010

and the CMIP-5 model contains 3,000 TB of model data [132].

The dramatic increase in the amount of data that is being stored and analyzed has

given rise to the industry of “big data”. A diverse ecosystem of frameworks and methodologies

now exist for processing large amounts of data via clusters of commodity computers. The

various systems currently in existence provide a myriad of options in terms of performance,

latency, resiliency and scalability. However, most of these systems do not support a wide

variety of types of data. Existing research in scalable processing has mostly focused either

on unstructured data (web pages, unstructured text, network traffic logs) [30, 63, 161] or

structured data (fixed-size records, or data in column or row-based storage systems (databases))

[133, 23, 57, 53].

Systems built for unstructured data make no assumptions about the data being pro-

cessed, necessitating pessimistic assumptions when scheduling different portions of the compu-

tation. Conversely, systems imposing structure on their data can make assumptions during the

processing of the data, since they possess some degree of knowledge about the data content and

ordering. However, this later approach requires that the data is re-organized and formatted

during ingest into the system so that the data adheres to the system’s proscribed structure.

The requisite processing represents a cost, both in terms of time and resource usage. Addi-

tionally, systems that store data in a structured format typically only support data access via

query interfaces, such as SQL — the data is no longer accessible via a file interface.

Scientific data is somewhat of an amalgamation of structured and unstructured; often
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structured in nature but stored in file formats that obscure this structure. These formats

present a binary byte-stream to the underlying storage system while exposing the data to

applications via a logical model. Scientific file formats often store fixed-size fields that are

aligned to fairly rigid data models (e.g., dense arrays, dense spheres) but some formats do

allow for less well-defined data models. Scientific file formats have several aspects in common:

they have been developed over time, vary by discipline and are the linqua franca of their

respective communities. Entire ecosystems of tools, themselves often developed over decades,

exist for each file format and represent an investment of time and resources that precludes

wholesale abandonment of these formats.

User-defined record-based file formats, such as Avro [7] and protobuf [105], bear a

resemblance to the scientific file formats just described. However, scientific formats are better

thought of as storing a single, well-defined dataset whose records are consistently sized and

ordered where as Avro and protobuf typically store an unordered sequence of well-defined, but

possibly irregularly shaped, records

In this thesis, we delve into the unique properties of structured data stored in scientific

(binary) file formats and then utilize that knowledge to build an efficient system for processing

scientific data. Our research is realized by augmenting an existing parallel computing framework

(Hadoop). This approach allows us to leverage existing work on scalable, parallel computing

without demanding the abandonment of the existing file formats that scientists use. The

resultant system presents scientists with the means to analyze the growing volume of data that

they are presented with.

The main accomplishments, with specific contributions noted, are:

1. Identification of the challenges inherent in processing data in scientific file formats

(a) Identified the difficulties in achieving data locality when processing scientific data

in its native file format.

(b) Demonstrated that the appropriate level of abstraction for partitioning the input to

a query is the logical level, rather than the physical level, as is currently done in

Hadoop.

(c) Proposed three approaches to logically partitioning scientific data and presented ex-

perimental results showing the degree to which each approach provides data locality.

2. Examination of the assumptions and design decisions in an existing parallel computing

framework, and the identification of approaches to processing scientific data that maintain

those decisions
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(a) Showed that partitioning the input data logically enables tasks to read only the data

that will contribute to the query. This stands in contrast to reading all of the data

and filtering out the non-useful elements in the application logic, which must be

done if data is partitioned physically.

(b) Described how Combiners (an optional component in a MapReduce program) can

integrate structural knowledge to enable their use in situations where they otherwise

would not be applicable, thereby leading to reduced data movement and performance

improvements.

3. A detailed explanation of how those designs can be altered, given knowledge of the struc-

ture of the data being processed, in a manner that improves aspects of the framework

without sacrificing its generality

(a) Formalized the internal data communication logic of Hadoop and identified two

points where inputs and outputs of specific steps in that process cannot be correlated.

(b) Designed and implemented a structure-aware intermediate data partitioning func-

tion, called hash+, that replaces the default structure-oblivious partitioning func-

tion. This new function enables performance improvements and the ability for

Hadoop to better reason about data flow during the execution of a MapReduce

job.

(c) Applied the new found ability to better reason about the flow of data throughout a

MapReduce program to derive the actual data dependencies of Reduce tasks. This

additional knowledge enables Reduce tasks to begin executing once their data de-

pendencies are met, leading to performance gains as well as the production of early

results.

(d) Altered the Hadoop scheduler to temporally co-schedule Map tasks with the Reduce

tasks that depend on them, improving performance and time to first result without

negatively impacting data locality or substantially increasing scheduler complexity.

(e) Modified Hadoop such that intermediate data is transferred directly to the memory

of the Reduce task(s) it is assigned to rather than persisting it to local, stable storage.

Presented associated experiments that quantify the performance benefit achieved in

doing so.

(f) Altered MapReduce’s fault-tolerance mechanism to use the actual data dependencies

(as opposed to the normally assumed global data dependencies) of a Reduce task

when scheduling jobs for re-execution in response to a Reduce task failure.

3



(g) Conducted experiments to determine whether the performance gains realized by

foregoing the persisting of intermediate data coupled with the more precise fault-

recovery scheduling for Reduce tasks presents an attractive alternative to Hadoop’s

current failure recovery model.

4. Revisit framework-specific optimizations presented in previous research and show their

efficacy in the face of our changes to the framework

(a) Adapted an in-memory implementation of an otherwise disk-based process to our

framework and report the measured efficacy.
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Chapter 2

Motivation

This section contains a more detailed explanation of the motivation for this work.

Several different ideas are touched on here, to set the stage for later sections, and a more

thorough treatment of related projects is given in Section 9.

While it is clear that the analytics systems used by scientists will need to scale to

larger data sets, the ability of current scientific analytical tools to do so is unclear, bordering

on doubtful. Many of the current suites of tools used by scientists are file format specific and

run serially on a single computer [88, 21, 44, 84]. Some attempts have been made to parallelize

existing serial tools, such as the SWAMP project [144], but these typically execute serial scripts

in parallel, with no efforts made in regards to global scheduling, inter-process communication

or resiliency. Given the significant fundamental work that would be required to parallelize

an existing scientific analysis framework, we instead look towards existing parallel processing

frameworks and consider what would be required to extend them for scientific data.

2.1 File Management

The topic of file management must be addressed when considering how best to ap-

proach the topic of processing large-scale scientific data. This thesis is predicated on the

contention that processing systems should not place limitations on either the number or size of

files containing data to be processed. A system that does place limitations (say, by enforcing

a maximum file size) implicitly requires that data not conforming to these restrictions must

be reorganized to do so. This would require data movement, with the associated costs in both

time and resources, which is undesirable as data movement is already projected to be a major

cost in running systems as data sizes grow from peta- to exascale [113].
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From a file management perspective, it would be the most convenient, and less error-

prone, to manage a dataset as a single entity. Interacting with a single data set spread across

multiple files places a burden on the meta-data of the storage system and requires extra diligence

when interacting with the files themselves (so as to not accidentally interact with a subset,

thereby introducing errors). Conversely, writing to a storage system via a single file can cause

significant performance issues, due to misalignments between write boundaries and either files

locks or file system block boundaries [111].

The authors of PLFS [11] quantified these issues and strove to provide the IO benefits

of writing to many files while presenting a single-file to the application. Solving the issue

of balancing file management inconvenience against storage system performance is beyond the

scope of this thesis. As we will not solve this issue, our system will work with datasets contained

in any number of files, deferring decisions about data set construction to the user.

2.2 Databases

Research into using databases, in this case defined as classic database management

systems (e.g., MySQL, SQL Server), to solve the issue of processing large scientific data

sets is currently underway within other organizations. Databases typically require data be

ingested into the system prior to allowing users to conduct analysis on it, which incurs the

same data movement and reorganization costs previously mentioned. While restructuring data

can yield performance benefits for later queries, since assumptions can then be made about the

organization of the data, it also has the side-effect of preventing access via the original format.

As previously mentioned, there are large ecosystems of existing scientific analytical

tools that are built around one, or a small set of, scientific file format(s). These tools require

access to the data in its original format because each format has its own approach to presenting

metadata, its own syntax for accessing data and other file format specific idiosyncrasies. A

system that restructures data prior to processing necessitates either abandoning these tools

or maintaining two copies of the data (the original and the restructured), the latter approach

increasing already onerous data storage requirements while also introducing the burden of

keeping the two datasets synchronized.

A common use case for large-scale scientific data, such as simulation output, is “dis-

covery science”. In this scenario, a domain expert interacts with datasets (either visually or

analytically), issuing a series of ad hoc queries in an effort to find “interesting” aspects within

the data. The common use cases for databases is at odds with this approach, as databases are

better suited to the repeated execution of a pre-selected set of queries. Furthermore, ad hoc
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queries often access data along several axes, which is less ideal in terms of generating indexes

as a unique index would be required for each axes and that increases the storage overhead for

indexes. Ad hoc queries often access data along axes that are not known ahead of time or are

run as soon as the data is available, neither waiting for the data to be ingested into a database

nor for indexing to be preformed. This class of queries does not observe the same benefit from

indexes as queries that are well-aligned to a few axes, and therefore can benefit from a small set

of indexes, or are known ahead of time, thereby allowing for indexes to have been specifically

created. Jim Gray, a seminal researcher in the database community and primary contributor

to the SDSS project, would ask scientific researchers “what 20 queries do you want to work

well?” [130], thereby highlighting the requirement that databases be specialized to a given task

in order to be efficient.

2.3 MPI

Some scientific communities utilize MPI [86] for simulations and the parallel processing

of scientific data. MPI, as a framework, is not resilient to failures, makes no efforts to minimize

data movement and requires the application developer to take a much more active role in

choosing how inter-process communication occurs. These attributes are unattractive to us

when considering the problem space we are addressing (large data on commodity clusters) and

we therefore did not elect to build our research on top of MPI.

2.4 Shared Nothing Systems

Both academia and industry are actively working on addressing the need to scale pro-

cessing frameworks to meet the growing mass of data. Many of these research projects represent

“shared nothing” architectures that have been shown to have good scalability properties, both

in terms of data size and degree of concurrency. These systems can be viewed as a response to

the database community in that many of them do not restructure the data they process (i.e.,

enforce schemas) but rather interact with the data in whatever format it is presented to the

system. Also, they present relatively simple designs that strive to enable as much parallelism

as possible, typically via flexible scheduling.

The work presented in this thesis builds upon the “shared nothing” approach as we

view the data formatting requirements necessitated by databases as unattractive and we also

view MPI as both too low-level and too inflexible for our needs. Also, we conjectured, based on

existing literature, that a significant portion of scientific research is done via ad hoc queries along
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multiple axes. Our theoretical work is based on MapReduce [30] due to its role as progenitor

for many of the current shared nothing systems and the simplicity of its communication model.

All contributions to date are built upon Hadoop, the predominant open-source implementation

of MapReduce that several other prominent projects build upon [53, 57, 101].
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Chapter 3

Background

We now present background information on the constituent aspects of this thesis.

This section serves both as context and as a reference point for following discussions on the

interactions of scientific data with MapReduce and Hadoop.

3.1 Scientific Data

As previously mentioned, scientific data is seeing a rampant growth in dataset sizes,

with a significant portion of the data being stored in scientific file formats. In addition to the

CMIP datasets already mentioned, there is the Sloan Digital Sky Survey (SDSS) [115] whose

more recent dataset, DR9, was released in August 2012 and consisted of 60 TB of astronomy

data; the Large Synoptic Survey Telescope (LSST) [79] schedule to come online in 2020 and is

projected to collect 15 TB / night with a total of 100 PB over its lifetime [67]; and the Million

Song Dataset [85], with its 300 GB dataset designed to support research into algorithms for

music analysis. These datasets are stored in a variety of formats including NetCDF (CMIP),

FITS files stored in an SQL database (SDSS), FITS files stored in a custom array-store (LSST)

and HDF (Million Song Dataset). Based on the wide range of file formats used, we contend that

research into scalable scientific computing should take this diversity into account by producing

as general a solution as possible.

Scientific data is often highly structured, modeled as an array; a sphere; or some

other shape [42, 89, 54]; while storage devices are built assuming a byte-stream data model.

As a result, the high-level data models must be translated onto the simpler byte stream model.

This translation (illustrated in Figure 3.1b) is performed by scientific file format libraries (e.g.,

NetCDF and HDF5). These libraries offer the dual benefits of (1) presenting a high-level
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data model and interface (API) that is semantically aligned with a particular problem domain

(e.g., n-dimensional simulation data) while (2) hiding the nitty-gritty details of supporting

cross-platform portable file formats. In Section 4.1 we show that while these benefits are great

for application developers, they work against an efficient use of MapReduce for scientific data

analysis.

3.1.1 Array Data Model

A data model specifies the structure of data and the set of operations available to

access that data. One common representation for scientific data is a multi-dimensional, array-

based data model [126] where data is accessed by specifying coordinates in the n-dimensional

space, as opposed to offsets in a byte-stream. In this section, we present a simple version of such

a data model that will be used throughout this thesis and later we develop a query language

used to express common data analysis tasks.

4 80 5 71 32 96

longitude

la
tit
ud
e

Temperature (lat, long)

A

(a) A 2-dimensional dataset

Data Access Library

Logical Data Model

Byte Stream

(b) Software stack used with sci-

entific access libraries

Figure 3.1: An example of a multi-dimensional dataset and how the coordinates are translated

into accesses of the underlying file’s byte-stream interface.

The work presented in this thesis uses an array-based model that is defined by two

properties. First, the shape of an array is given by the length along each of its dimensions. For

example, the array illustrated in Figure 3.1a has the shape 3×12 and the shaded sub-array has

shape 1× 10. Second, the corner point of an array defines that array’s position within a larger

space. In Figure 3.1a, the shaded sub-array has the corner point (1, 1). Arrays also have an

associated data type that defines the format of information represented by the array, but we
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assume a single integer value per cell in an array in order to simplify presentation 1. Some file

formats support variable length data types, such as a string. We do not consider those data

types in this work as their use does not appear to be common (based on our survey of related

work).

In the following sections, we use the following notation to describe the shape and

corner point of an n-dimensional array, say A:

SA = (s0, s1, . . . , sn−1), si > 0

cA = (c0, c1, . . . , cn−1), ci > 0

where SA and cA are the shape and corner point of A, respectively. Thus, the shaded sub-array

in Figure 3.1a is described as the tuple (SA, cA) where SA = (1, 10), and cA = (1, 1). Note that

we use the terms array, sub-array, and slab interchangeably.

When scientific data is stored in arrays, labels are assigned to each dimension to give

the data semantic meaning. For example, the array shown in Figure 3.1a depicts temperature

readings associated with 2-dimensional coordinates specified by latitude and longitude values.

Thus, the shaded sub-array may represent a specific geographic sub-region within the larger

region represented by the entire dataset A.

3.2 MapReduce

MapReduce is a simple framework for enabling the parallel processing of large, unstruc-

tured datasets. The initial motivation for MapReduce was the observation that the aggregate

bandwidth available within servers (or within server racks) was outstripping the bandwidth

of data center networks (cross-rack links). In response, MapReduce focuses on moving com-

putation to data (rather than the inverse) with the expectation that the first part of a given

computation will likely reduce the dataset size. This reduction in dataset size results in a

reduced burden on the network and enables the processing of larger amounts of data than had

previously been possible.

One of the appealing aspects of MapReduce is that the application developer is not

responsible for controlling inter-process communication or task scheduling. Rather, those tasks

are handled by the framework. This frees the application developer from low-level concerns

and allows them to instead focus on developing the code that is specific to their given work.

1We have omitted values for the non-shaded region in order to simplify the discussion. The non-shaded
regions can be interpreted as null values.
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MapReduce’s rise in popularity has led to its use in problem domains and with types of

data beyond those for which it was originally designed (unstructured data), including scientific

computing [36, 49, 168], and structured data [57, 53, 101]. For large-scale scientific datasets,

MapReduce is an attractive parallel processing framework due to its simple programming model,

ability to scale well on commodity hardware, and the fact that many problems in scientific

computing translate well to its type of parallelization (we expand on these natural alignments

between scientific computing and MapReduce in the following subsections).

3.2.1 MapReduce Data Model and Data Flow

As mentioned in Section 1, the implementation of our work is an extension of Hadoop.

In this subsection, we dive into some Hadoop-specific implementation details as well as some

design decisions originating in the MapReduce paper [30] that inform our later discussions.

Several components within Hadoop assume a byte-stream data model (i.e., the same

format which most file systems support today) and a POSIX-like set of file operators when

reading data from, and writing data to, storage. The user-defined Map and Reduce functions

interact with data as typed key/value pairs, while the same data are treated as collections of

bytes by the Hadoop framework during network transfers and local IO. While it is entirely

conceivable that a MapReduce implementation could interact with data strictly as records, we

focus on existing implementations, which interact with data both as byte-streams and records,

in this thesis.

InputSplit 1
InputSplit 2
InputSplit 3
InputSplit 4
InputSplit 5

Node 1

Node 2

Node 3

Master

assign map
tasks

read

KEYBLOCK 1
KEYBLOCK 2

KEYBLOCK 1
KEYBLOCK 2

KEYBLOCK 1
KEYBLOCK 2

Node 2

Node 3

assign reduce
tasks

output file 1

output file 2

local
write

network read

write

Figure 3.2: MapReduce data flow as depicted in the original MapReduce paper [30] with nota-

tions changed to our terminology
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Sets

T Input to a MapReduce job

I Set of all input splits

O Output from a MapReduce job

B Set of blocks in a distributed file system

Hg Set of hosts with local copies of block bg

Hi Set of hosts with most of Ii stored locally

v′k′ the set of all values in v′ that are part

of a key/value pair where the key is k′

KT set of keys that actually exist in

K for a MapReduce job

KTi set of keys that actually exist in

Ii for a MapReduce job

K′T` set of keys in K ′ that are assigned

to keyblock` for a given job

Elements

Ii the ith input split

bg the gth block in a set

k, k′ a key in spaces K or K ′, respectively

keyblock a partition of K ′

keyblock` the `th keyblock

〈k, v〉 a key/value pair in K × V

〈k′, v′〉i a key/value pair in K ′ × V ′ created by

the Map task processing Ii

RR(Ii) the application of a RecordReader to an Ii

r the number of Reduce tasks

mi a particular Map task

Table 3.1: Summary of common symbols

Figure 3.2 shows an illustration of the data flow for a MapReduce job (also called a

“query” or “program”). When a MapReduce job begins executing, a central coordinator parti-

tions the specified input data, T , into a set I consisting of units (subsets) called InputSplits,

denoted Ii. An Ii is typically defined as byte-ranges in one or more files (e.g., bytes 1024 -
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2048 in a particular file). Each split is assigned to, and processed by, one Map task. The Map

task then employs a file-format specific library, called a RecordReader, that reads the data

indicated by that Map task’s assigned Ii and translates that data into key/value pairs where

the keys are in keyspace K. Those key/value pairs are consumed by said Map task which then

outputs new key/value pairs, referred to as intermediate data, with keys in a logically distinct

keyspace, K ′, where “logically distinct” indicates that specific values in this domain do not

necessarily correspond to the same values in a different domain (e.g., the data at coordinate

{2,4} in the input is not necessarily related to the data at coordinate {2,4} in the intermediate

data). A partitioning function then maps the key for every intermediate key/value pair to

a specific keyblock, where a “keyblock” is a partition of the keyspace K ′ for the given

MapReduce job.

Each Reduce task is assigned a keyblock and processes all intermediate data where

the key portion of the key/value pair is within said keyblock. Prior to the application of the

Reduce function, Reduce tasks perform a merge sort of all their data, combining all key/value

pairs with equal k′ keys into a key/value pair consisting of a single instance of the key and

a list containing the values of all those pairs (denoted v′k′). The sorting and merging ensures

that all values corresponding to a given key will be processed by the Reduce function at the

same time (this property is one of the few guarantees that the MapReduce framework makes).

It also has the secondary effect that all keys in a given keyblock are processed in their sorted

order.

As a Reduce task applies the Reduce function, it emits a new set of values, which are

written to the underlying storage system as the final result of the MapReduce job. In Hadoop,

the default storage systems is a distributed file system referred to as the Hadoop Distributed

File System (HDFS). The total set of data written as output from all Reduce tasks for a given

MapReduce job is denoted O.

The design of MapReduce provides a few simple guarantees:

1. All data in the input will eventually be assigned to some Map task

2. All values for the same k′ will be processed by a single Reduce task and at the same time

3. Output is produced atomically (i.e., only output from one instance of a given task is

ever exposed to the system or included in the final output)

The MapReduce framework is free to partition data and schedule tasks as it sees fit,

typically taking data locality into consideration, as long as it fulfills these guarantees. The lack

of ordering guarantees among tasks of the same type (Map or Reduce) as well as the inability to

associate tasks with physical servers enables a higher degree of flexibility and scalability (both

14



up and down) than is possible with more rigid parallel frameworks (e.g., MPI). This flexibility

also enables a very simple fault-tolerance model based on re-executing failed tasks.

3.3 MapReduce’s Communication Model

While a significant body of work relating to formal definitions of the MapReduce job

model and its relation to other computing models exists [30, 40, 69, 74], little attention has

been given to MapReduce’s internal communication model. In general, this is reasonable as

there are points in the data flow of a MapReduce job where it is not possible to reason about

the relationship between a function’s input and its output, necessitating the use of worst-case

assumptions. These assumptions result in the tasks that make up a MapReduce job having

very little communication with each other. Map tasks are assigned their InputSplit by a central

coordinator and write their output to local storage. Reduce tasks are informed of Map task

completion by the same central coordinator and read their assigned data as resources allow.

Only after all Map tasks have completed, as indicated by the set of Map task completion

messages, are Reduce tasks free to begin processing their assigned data.

3.3.1 Blackboxes in the MapReduce Data Flow

There are two points in the flow of data through a MapReduce program where it is

difficult, or impossible, to correlate a task’s input with its output (or vice versa). These points

present a roadblock to any meaningful optimization of communications within a MapReduce

job. In this subsection, we discuss those two points in detail.

In running a MapReduce job, the user specifies a set of input data and a Recor-

dReader. The MapReduce framework splits up the specified data into a set of InputSplits

(I1, I2, ..., Ii), each of which are read by an instance of the specified RecordReader that then

outputs key/value pairs for use as input to a Map function. In practice, the input to a Recor-

dReader is usually expressed as byte-ranges while the output is a set of key/value pairs where

the key is in some logical keyspace. This mismatch between the format of a RecordReader’s

input (byte-ranges) and output (keys) prevents reasoning about any relationships between the

two without taking drastic steps, such as invoking the RecordReader, providing it with a

byte-range to process and observing its output. This is the first point at which the MapReduce

framework masks the flow of data. A definition for the data flow through a RecordReader

is shown in Formulation (3.1).
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for mi = |Ii| ,

RR(Ii) =
{
〈k1, v1〉i , 〈k2, v2〉i , ..., 〈kmi , vmi〉

i
}

(3.1)

〈kj , vj〉i ∈ K × V ∀j ∈ {1, 2, ...,mi}

The second point at which the MapReduce data flow is opaque is the assignment

of intermediate key/value pairs to keyblocks. This process represents a partitioning of the

keyspace for the intermediate data (K ′) where each subset (keyblock) will be assigned to a

Reduce task. In Hadoop, the assignment of a given key/value pair of intermediate data to a

keyblock is done via modulo arithmetic over a binary representation of the key. In much

the same way as the RecordReader, it is difficult, if not impossible, to reason about the

relationship between this function’s input and output. In this case, the difficulty is caused

by the interaction of the hash function with the key and the implementation specifics that

come into play (e.g., a given class’s hashCode() [52] implementation). A definition of the hash

function is shown in Formulation (3.2).

hash : K ′ → {keyblock` | ` ∈ {1, 2, ..., r}} (3.2)

The goal of this partitioning is to create a roughly even distribution of intermediate

keys across keyblocks (issues of skew in the distribution of data relative to keys is deferred to

Section 9). A side-effect of using a modulo function is that it precludes reversing the process

with any accuracy; it is not possible to take a key/value pair in a keyblock and derive which

Map task generated that data.

3.4 The Array Query Language

Hadoop queries are typically expressed by specifying the input file(s) and the class

(function) that should be applied to each key/value pair in the input. Queries conducted

on scientific data are usually applied to groups of inputs (multiple values) and may require

skipping records in a predictable pattern or excluding certain ranges of data. The need for a

more expressive way to specify queries in Hadoop prompted us to create a simple language for

our research.

At a high-level, our array-based query language, which borrows heavily from AQL

[76], consists of functions that operate on arrays. Specifically, a function in our language takes

a set of arrays as input and produces a new set of arrays as output (thus the language is closed
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under the logical data model). Note that the language is not intended to be a contribution of

this thesis, but rather serves to expose the semantics of queries necessary to perform certain

types of optimizations.

3.4.1 Simple Example

One common task when working with scientific data, especially when the content is

initially unknown, is to evaluate ad hoc aggregation queries. For example, consider the following

query:

Example 1: “What is the maximum observed temperature in the dataset represented

by the shaded sub-array in Figure 3.1a?”

Figure 3.3 depicts a possible execution of this query via 3 Map tasks that each process

their own portion of the shaded region and a single Reduce task that receives 3 inputs and

produces the resulting 1× 1 array, containing the value 9, as the final output.

Filter / Map / 
Combine

Filter / Map / 
Combine

Filter / Map / 
Combine

Reduce

2 6 9

9

partition-1 partition-2 partition-3

{3, 4, 5, 6}{0, 1, 2} {7, 8, 9}
NODE 1 NODE 2 NODE 3

Figure 3.3: Execution of the max aggregate function in MapReduce.

3.4.2 Constraining Space and Extraction Shape

A constraining space is defined as the data that a given query should be applied to and

is denoted T . It is necessary to use a constraining space when specifying that only a portion

of a dataset should be processed by a particular query.

Our query language incorporates the idea of an extraction shape, which is a concrete

representation of how a given Map function translates keys in its input, K, into keys in its

output, K ′. Specifically, the extraction shape is logically tiled, in a given order, over T with

each instance representing a unique k′ key in K ′. The inclusion of an extraction shape in our

17



query language addresses the need expressed earlier in this section for queries to be applied

to groups of values. Furthermore, the existence of an extraction shape enables MapReduce to

translate any k ∈ K to a k′ ∈ K ′ by using the extraction shape to project k → k′. Defining an

extraction shape for a MapReduce program that is applying a query over structured scientific

data is straightforward and can be represented efficiently via an n-dimensional array in the

same way as the shape component of an array is specified [18].

As an example, consider a query over a 2-dimensional dataset that is down-sampling

by taking every disjoint 2x2 region of the input data and outputting the average value of the 4

data points. In this example, the extraction shape would be {2, 2} (indicating every 2x2 input

shape translates into a single element in the output). An example of this translation can be

seen in Figure 3.4(b) as well as an extraction shape that represents an up-sampling in Figure

3.4(a). Strided access (reading data at regularly spaced intervals) can be described by adding

an additional n-dimensional array indicating the stride lengths (and other patterns, such as

nested strides, can be represented as well).

Key Space K Key Space K'

(a) 1 value in K mapping to 4 values in K’

Key Space K Key Space K'

(b) 4 values in K mapping to 1 value in K’

Figure 3.4: Examples of an extraction shape mapping values in K to values in K’.

From a Map task perspective, Algorithm 1 gives a simplified representation of how the

extraction shape is used during the processing of an InputSplit. The input to the Map function

is the extraction shape and the data indicted by the InputSplit. First, the Map function

extracts relevant array data based on the extraction shape using ExtractInput(). A Group ID

is assigned to the data contained in an unique instance of the extraction shape. Then, the Map

task is applied to the repartitioned data (ArrayData) and the resulting value(s) written out as

intermediate data with the Group ID serving as the key.

For some queries, the application of the extraction shape will not produce such regular

output. For value-based queries, such as requesting all of the data where the value exceeds some

threshold, the Map task output may be a single-cell, indicating one position where a threshold

exceeding value was found, or all the cells in an array that meet the threshold (in the latter

case, a list of values may be returned if more than one value in the array exceeds the threshold).
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Algorithm 1: Map()

Input: Extraction Shape, Input Split

(GroupID, ArrayData) ← ExtractInput(Extraction Shape, Data)

value ← Map(ArrayData)

Emit(GroupID, value)

3.4.3 Formal Model

Constraining Space (CS)

A

Input Set (IS)

Slab-Extraction(CS)

Result Set (RS)

...f (IS)

Figure 3.5: Illustration of the query language semantics.

Formally, the language is defined as a 3-tuple (T , SE, F ). First, T denotes a contigu-

ous sub-array called the constraining space that limits the scope of the query. Second, the slab

extraction function SE, which uses the extraction shape to generate a set of sub-arrays, IS,

that are referred to as the input set and where each sub-array s ∈ IS is also contained in T .

Finally, a query function f ∈ F is applied to the set IS yielding a result set R composed of

output arrays r ∈ R. Thus, a function f ∈ F takes the following form:

f : {s1, s2, . . . } → {r1, r2, . . . }

3.5 Types of Queries

For the purposes of this research, we categorize queries as being of one of three types.

Those that:

1. operate over fixed units of cells, based on the coordinate of the cells
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• Example: Average of a latitude by longitude area. Each area will result in exactly

one value being output.

2. operate over the values of the cells, such that the coordinate can be used to organize the

values

• Example: filtering all values in each time-step of an experiment that exceed a spec-

ified threshold. Zero, one or more results can be returned for each time-step.

3. operate over the values of cells, using the values for organizing the results

• Example: sort all of the cells in a time-step by their values with the coordinates

effectively becoming the values.

The work included in this thesis, to be presented in following sections, can be applied to

queries that fall into types 1 and 2. For these two classes of queries, the MapReduce framework

can comprehend the number and value of the keys that will be produced as the data is passed

through the MapReduce framework. This is possible because, in both cases, the keys are derived

from the coordinates of the input and those are readily extracted from the metadata for the

dataset. Queries of type 3, on the other hand, use the values of each input as their key. As a

result, the dataset can have any key representable by the given data type (int, float, long, etc.)

and a given value may appear zero, one or more than one time. This unpredictability renders

our approaches ineffective and would require an indexing of the values of a dataset in order to

achieve the same results described in this thesis. We do not endorse indexing in the general

case, due to the issues outlined in Section 2.2.

3.6 Applicability of This Work

At a high level, the work presented in this thesis can be considered an attempt to

optimize MapReduce programs when there exists some sympathetic alignment between a query

and the dataset it is being applied to. This optimization is, in general, the result of using

more informed logic within MapReduce, rather than defaulting to using worst case assump-

tions. Queries that are antagonistic to the alignment of the data being operated on cannot be

optimized in any meaningful way that we have found without violating the ethos of MapReduce.

In these cases, our work must devolve to using the original approaches outlined in [30].

In the same way that human intervention is typically required for some data manage-

ment tasks (specification of indexes, schema design, query optimization), data in our system

may need to be reformatted if the inefficiencies caused by the misalignment of queries to data
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exceeds the cost of data reorganization. Solutions other than restructuring a data set have

been suggested, including storing replicas with different layouts [147] and aligning data to fit

the query while presenting the original layout via indexes [116]. In the same spirit, the database

community has investigated divergent replicas [29]. We contend that adapting the layout of

data that is not well aligned to the queries being run on that data is best suited to a higher-

level process (some sort of storage manager or query optimizer) and is beyond the scope of this

thesis.

21



Chapter 4

Processing Data in Scientific File

Formats

It is difficult to leverage the structure of data stored in scientific file formats because

that structure is hidden behind the simple APIs exposed by access libraries. This section

describes our research into overcoming this barrier and how we enabled processing of scientific

data with Hadoop (a discussion on why we chose to base our implementation on Hadoop can

be found in Section 1).

4.1 Data Model Incompatibilities

Record
Reader

Input
Split

Physical
(Bytes)

Logical
(Coordinates)

Map

Inter.
Output

Inter.
Output

Reduce

Input Data Intermediate 
Data

Output
Data

Figure 4.1: Variations in the abstraction used throughout the execution of a Hadoop query.

The dashed line indicates network transfer.

The first issue that arises in extending Hadoop for scientific data is the question of

how to specify InputSplits. Scientific access libraries require that data accesses be specified

as sets of coordinates (Section 3.1.1) while many RecordReaders in Hadoop define their
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InputSplits as ranges of bytes (Section 3.2.1). Rather than translating from a set of coordi-

nates into the corresponding byte-ranges, which would require complicated file format specific

code, we chose to elevate the abstraction at which InputSplits are defined from byte-ranges to

coordinates. A depiction of the abstraction-level transitions that occur during a Hadoop query

is shown in Figure 4.1 while Figure 4.2 shows the same query when InputSplits are specified

as coordinates. While necessary to enable the use of scientific access libraries in Hadoop, using

logical coordinates as the unit of definition for InputSplits yields additional benefits that are

further explored in Section 6.2.

Record
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Input
Split

Physical
(Bytes)

Logical
(Coordinates)
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Inter.
Output

Inter.
Output
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Input Data Intermediate 
Data

Output
Data

Figure 4.2: Variations in the abstractions used to interact with data throughout the execution of

a Hadoop query after elevating InputSplits to the coordinate abstraction. The RecordReader

calls the access library which internally converts coordinate accesses into reads of the underlying

byte-stream. The dashed line indicates network transfer.

4.2 Data Locality

One of the impetuses for the development of MapReduce was the observation that

network bandwidth was a limiting factor for data-intensive computations on large clusters. In

recognition of this, MapReduce strives to place computations on nodes that contain a majority

of the specified data locally, thereby reducing network resource requirements. This reduction

in network resource usage enables MapReduce to process otherwise infeasible amounts of data

and is one of the main benefits of MapReduce.

Generally, MapReduce is deployed on top of a distributed file system with Map and

Reduce tasks executing on the same nodes that also host the file system. Files are usually

stored as fixed-size blocks (byte-ranges) that are replicated and distributed among the nodes.

Formally, a file is composed of a set of d blocks, B = {b1, b2, . . . , bd}, where each block bg is

associated with a set of hosts Hg that each store a copy of bg locally. The data contained in a

block bg are accessible indirectly through the file system interface, either remotely via a network
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connection or locally on a host h ∈ Hg. Additionally, the MapReduce framework assumes that

the underlying file system is capable of exposing the set of hosts Hg for any block bg.

4.2.1 Partitioning and Placement in Hadoop

In Hadoop, InputSplits are usually represented as byte-ranges that are typically

aligned to blocks in the underlying storage system (e.g., if the file system has a block size

of 64 MB, then reasonable InputSplits could be 0-64 MB, 64 - 128 MB, etc.). We refer to

this process as “partitioning”. Achieving high rates of data locality is relatively easy in this

situation: query the file system for the list of hosts (Hg) that possess the block that a given

InputSplit was aligned to and then instruct the scheduler to prefer those hosts. We refer to

this second process as “placement”. The combination of these two processes is shown in Figure

4.3.

INPUT
(Physical)

Input Split

PlacementPhysical
Layout

Execution
Plan

Mapper0   Reducer0
Mapper1   Reducer1

       ...                ...

1. Partitioning

2. Placement

Figure 4.3: Partitioning and placement in Hadoop.

4.2.2 Partitioning and Placement for Scientific Data

The decision to define InputSplits as sets of coordinates, rather than byte-extents,

coupled with scientific file format abstracting away data placement in underlying byte-streams

renders the previous approach for achieving data locality ineffective. Therefore, we are faced

with the responsibility of finding a new means for achieving data locality. In other words, we

must find a process for creating sets of coordinates that, when passed to a scientific access

library, results in localized accesses of the byte-stream in the underlying file(s). This require-

ment means that some amount of information describing how scientific data is laid out in the

underlying distributed file system is now needed during partitioning. This new process for

the partitioning and placement of InputSplits is shown in Figure 4.4. The line labeled L is a

contribution of our work that, during partitioning, utilizes knowledge of the physical layout of

the scientific data that we are generating logical level (coordinates) InputSplits for.
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Figure 4.4: Partitioning and placement when InputSplits are defined at the logical level.

In considering how to achieve data locality while specifying InputSplits as coordinates,

an “obvious” solution was not readily apparent. Consequently, we designed, implemented and

evaluated three possible approaches, each requiring a different depth of knowledge about the

internal structure of the file format containing the data being processed by Hadoop.

4.2.2.1 Baseline Partitioning and Placement of Scientific Data

First, we present a simple solution for the partitioning and placement of scientific data

that will serve as a baseline against which further optimizations can be compared. We refer to

this solution as the Baseline strategy and it represents a reasonable approach to the problem

that does not rely on low-level file format details and file system specifics. Unfortunately, as we

will show, the Baseline approach can easily produce inefficient IO that results in long execution

times.

As has been mentioned, scientific access libraries use a black-box design in which file

layout information is obscured, thereby frustrating automatic optimizations that rely on such

knowledge. Thus, most users of the libraries resort to the manual construction of InputSplits,

making the quality of such partitions dependent on how much file layout information is known

by the user. Therefore, we model our Baseline partitioning strategy on what we believe to be

reasonable assumptions about a scientist’s awareness of the physical layout of a data format.

Specifically, we assume that the block size of the underlying file system is available, and that

high-level information regarding the serialization of the logical space onto the byte stream (e.g.,

column-major ordering) is known.

The Baseline partitioning strategy splits the logical input into a set of InputSplits,

one for each physical block of the input file. Consider Figure 4.5a which shows a 3× 12 array

stored within a file occupying three physical blocks, located on nodes NODE1, NODE2,

25



and NODE3. Using knowledge that the file format stores data in column-major order, a

reasonable partitioning strategy is to form three equally sized InputSplits with each containing

four columns. These InputSplits are shown in the figure using dashed frames, and are labeled

as InputSplit 1,2,3.

The baseline placement heuristic is a round-robin assignment of InputSplits to physi-

cal locations. The result of a round-robin placement is shown in Figure 4.5a using the notation

InputSplit x@NODEy (e.g., , InputSplit 2 is processed on node NODE2). The example shown in

Figure 4.5a illustrates the difference in logical and physical InputSplits. In the figure, InputSplit

1 references 4 columns all contained in the block on NODE1, while InputSplit 3 references 2

columns from the block on NODE2, and 2 columns from the block on NODE3. In general,

blocks are distributed over all nodes in a cluster, resulting in the Map task that processes

InputSplit 3 reading at least half the specified data remotely. For infrastructures with network

bottlenecks, and when IO is dominated by Map task reads, this misalignment of logical par-

titioning with physical layout can have a significant impact on performance. However, simple

data sets with well-defined physical layouts (e.g., column-major ordering) that are stored with

typical file block sizes are usually only slightly misaligned. As a result, the Baseline partition-

ing strategy can perform well. Unfortunately, achieving a good partitioning in the general case

can be difficult as, in practice, few files contain a single, well-aligned variable.

4 80 5 71 32 96

InputSplit 1
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(a) Baseline partitioning strategy applied to a

file containing a single array.
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(b) Same scenario when other data shares the same file.

Figure 4.5: Effects of file composition on the Baseline strategy

Consider now the task of partitioning the same logical array shown in Figure 4.5a,

but assume that the array is stored in a file containing additional data. This additional data

could be header information such as data attributes or even other data sets stored within the

same file. A depiction of this new file is shown in Figure 4.5b and there are two things to note.

First, since there are now four blocks storing the larger file, but the logical space of the array

(constraining space) is unchanged, the size of the InputSplits become smaller with the Baseline
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Figure 4.6: Physical-to-Logical Partitioning

strategy. The second, and more important, difference is that a typical round-robin placement

of InputSplits to blocks can result in very poor data placement because of the shifting factor

introduced by the additional data in the file. For instance, the data referenced by InputSplit 1

will be read entirely over the network when it is processed at NODE1.

To illustrate the trade-off between data set complexity and user sophistication we

perform two experiments, both of which evaluate a query over an identical logical array using

the Baseline partitioning strategy. The array used in the first experiment is stored in a file by

itself and in the second experiment the array is stored in a larger file along-side other arrays.

We measured the percentage of reads that are satisfied by disks local to Map tasks, thereby

evaluating the quality of the Baseline partitioning and placement strategy. When a single array

is stored in a file, the Baseline partitioning and placement achieves 71% read locality, but when

multiple arrays are stored in a single file the read locality drops to 5%. This degradation in

locality is due to the additional variable(s) that are present in the file, but not in the query,

causing misalignment during the placement phase.

4.2.2.2 Physical-to-Logical Translation

The second approach we considered is to directly translate the byte-range represented

by a physical block into its equivalent logical representation by replicating the internal logical

of a particular scientific file format. More specifically, the file format specific knowledge is

combined with a new API call we added that takes the coordinate for a specific cell in the

logical space and returns an offset in the underlying file to search out the first and last logical
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cell stored on a block in the underlying distributed file system. The search for the first,

or last, offset is similar to a binary search of the logical coordinate space with the goal of

finding the coordinate that translates into a specific offset in the file. Once the first and last

logical coordinates for a block are found, they are used to form an InputSplit. At the top of

Figure 4.6, a process is shown that uses file metadata to generate a logical representation of

the data contained in a physical block. Since each block is directly converted into its logical

representation, InputSplits are precisely aligned with physical block boundaries. Therefore

placement is trivial; an InputSplit is matched with the block from which it was generated.

Despite the precision of this technique, it can be difficult to implement for complex

file formats and would require a different implementation for each file format as well as every

different on-disk representation for a given format. As an alternative to this complexity, we

next introduce a more general purpose technique for constructing InputSplits.

4.2.2.3 Chunking & Grouping

The third technique that we investigated for partitioning and placing InputSplits of

scientific data is referred to as Chunking & Grouping . This technique decomposes the input

into many fixed-size units called chunks and, for each chunk, a random sampling of byte-

stream locations is taken using the same new call that we mentioned in Subsection 4.2.2.2. The

sampling technique allows Hadoop to then group chunks into flexibly defined InputSplits with

increased locality of reference.

Figure 4.7 illustrates how Chunking & Grouping is used to create InputSplits. At the

top of the figure, fixed-size chunks are grouped together, based on the sampling process, into

InputSplits such that each InputSplit references primarily data within the same physical block

in the distributed file system. Next we describe Chunking & Grouping in more detail.

Chunking. The first step is the decomposition of input at the logical level into a

set of chunks (i.e., fixed-size, contiguous, non-overlapping sub-arrays). The set of chunks that

cover the entire input space is given by C, where each chunk c ∈ C is determined by a chunking

strategy.

There are trade-offs in choosing a chunking strategy. For example, a small chunk

size provides a finer granularity at which InputSplits can be created, but results in more over-

head due to the necessity of managing many small chunks. A larger block size creates less

of a metadata burden while potentially resulting in reduced rates of local data accesses. A

detailed evaluation of chunking strategies is beyond the scope of this thesis, but we provide the

parameters for our experiments in Section 4.3.

Grouping. Grouping is the process by which chunks in the set C are combined to
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form InputSplits. The goal of grouping is to form InputSplits that reference data located in the

fewest number of physical blocks. Thus, the problem of creating InputSplits is equivalent to

grouping chunks c ∈ C by block, such that each group maximizes the amount of data referenced

in the block that the group is associated with. The resulting InputSplits are what we refer to

as the logical-to-physical mapping, defined by the set LTP = {(b0, I0), (b1, I1), . . . , (bm, Im)}
, which associates a physical block bg with an InputSplit Ii that is composed of one or more

chunks.

Sampling. The construction of LTP is based on the examination of a randomly

sampled set of cells taken from a chunk. First, a set of s cells is selected from the logical space

represented by a chunk c using a uniform random distribution. Next, each cell in the sample

is translated into its associated physical location on the byte-stream using a special function,

getOffset(cell), introduced as an extension to scientific libraries. The return value of getOffset

is the byte stream offset of the cell’s logical coordinate. Finally, a histogram is constructed that

gives the frequency of sampled points for a chunk that fall into a given block. The block bg

with the highest frequency is chosen and the chunk being considered is added to the InputSplit

Ii associated with that block.

Sampling is the dominant cost of Chunking & Grouping . In our evaluation section

we use a sampling ratio of 0.01% on a file containing 35 billion logical coordinates resulting

in the sampling operation being performed approximately 3.5 million times. Microbenchmarks

show that our implementation of sampling for NetCDF-3 files can achieve 600,000 samples per

second. The sampling process is parallelizable and, except for a small amount of metadata,

does not need to access data on disk. Furthermore, the sampling results can be cached and

reused for subsequent queries because sampling is consistent for a given file (since its layout on

the distributed filesystem will not change),

Example. First we consider the set of chunks E, consisting of the 6, 3×2 sub-arrays,

shown at the top of Figure 4.7 (indicated by dashed boxes). We refer to these chunks by their

position in the figure (i.e. 1 . . . 6). A random sampling is performed for each chunk e ∈ E.

For chunks 1, 2, 4, 5, and 6, it is clear that any random sampling will definitively associate

the chunk with a given block because each chunk references data contained within exactly one

block. However, a sampling of chunk 3 may result in sample points that fall in either the

block on NODE1 or the block on NODE2. Consequently, remote data access will be required

regardless of which node is assigned chunk 3. In instances where a chunk is not evenly split

across two blocks, uniform random sampling is an effective way to select the block with a

majority of the data and thereby minimize the amount of remote reads for that chunk. The

result of chunking and sampling is shown at the bottom of Figure 4.7. The final LTP mapping
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Figure 4.7: Chunking & Grouping example.

is given as:

LTP (block1)→ {chunk1, chunk2, chunk3}
LTP (block2)→ {chunk4, chunk5}
LTP (block3)→ {chunk6}

Once computed, the LTP mapping can be utilized by MapReduce to schedule the

processing of partitions on the nodes associated with each block in order to reduce the amount

of remote reads resulting from query execution. Since each InputSplit is associated with a block

in the underlying distributed file system, placement is trivial (the InputSplit uses the same host

list associated with the given block).

4.3 Data Locality Experiments (Query 1 & 2)

In order to measure the efficacy of the three proposed solutions, we executed two dif-

ferent queries over a synthetic data set modeled after environmental simulations. The metadata

for the dataset is shown in Figure 4.8 and can be thought of as fifteen years of daily windspeed

measurements over 0.5 ◦ longitude by 1 ◦ latitude regions and at 50 different elevations. A

description of the cluster used for this experiment is presented in Appendix A.

Two exemplary queries are shown in Figures 4.9a and 4.9b. Figure 4.9a finds the

median temperature over two days for a range of 10 elevation steps over a 18 ◦ latitude by 36 ◦

longitude geographical area and Figure 4.9b uses an average function to down-sample from a

daily, 0.5 ◦ latitude resolution dataset to a dataset with weekly measurements at a 1 ◦ latitude
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dimensions:
    time = 5475;
    lat = 360;
    lon = 360;
    elev = 50;

variables:
    int pressure(time, lat, lon, elev);

Figure 4.8: Metadata for the NetCDF dataset used in the data locality experiments.

resolution. In both queries, the constraining shape is used to eliminate the first and last 10%

of the input data from the query.

apply(median, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (2, 36, 36, 10),
)

regrid(average, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (7, 2, 1, 1),
)

(a) Query 1

apply(median, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (2, 36, 36, 10),
)

regrid(average, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (7, 2, 1, 1),
)

(b) Query 2

Figure 4.9: Query declarations for data locality experiments

Test Name Query 1 Query 2

Local Read(%) Local Read(%)

Baseline 9.3 3

Chunking & Grouping 80 84

Physical-to-Logical 88 93

Table 4.1: Locality results for query 1 and query 2.

Table 4.1 shows the locality achieved by the three methods. We define data locality as

the ratio of data read by Map tasks where that data was stored on the same node that the Map

task was executed on relative to the total amount of data read by all Map tasks. The Baseline

approach does not do well, achieving locality rates of 9.3% and 3%, respectively. Chunking &

Grouping achieves 80 and 84% locality on the two queries while Physical-to-logical achieves 88

and 93% locality. Our experiments show that Chunking & Grouping provides approximately

90% of the data locality realized by Physical-to-Logical while using a more general approach

to partitioning and placement.
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All experiments were conducted using the default Hadoop scheduler, which will opt

to place an InputSplit on a computer that does not possess the data locally rather than let that

server sit idle. This has the side-effect of rendering 100% data locality highly improbable bor-

dering on functionally impossible. We did conduct experiments with a weighted-scheduler and

configured it to be heavily biased in favor of data locality. Using this approach, both Physical-

to-Logical and Chunking & Grouping saw data locality improvements, with Physical-to-Logical

achieving greater than 99% locality. However, the total query run-times were negatively im-

pacted in all tests with this scheduler. In light of this, we did not continue to use that scheduler

nor do we include those numbers in this thesis.

4.4 Section Summary

This section describes why scientific data cannot be efficiently processed using the

baseline approach and how perturbations in input partitioning at the logical level can lead to

poor performance. Thus, any efficient solution needs to overcome the restrictions imposed by

scientific access libraries opaque IO processes.

In light of the results reported in this section, we choose to use the Chunking &

Grouping approach for subsequent experiments. The generality of the approach coupled with

the relative efficacy presents a preferable option given that our goal is to create a system

appropriate for use with a wide variety of file formats and problem domains. More specifically,

the additional engineering and format specificity required by the Physical-to-Logical approach

did not seem warranted given the incremental increase in data locality that it provides.
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Chapter 5

Working Within the Current

Communications Model

This section focuses on extending MapReduce for scientific data with the assumption

that the current MapReduce communication model, described in Section 3.2.1, is maintained.

The changes made to Hadoop to support the work in this section involved sub-classing well-

known interfaces that are commonly altered and can therefore be thought of as non-invasive.

The content of an InputSplit not only affects data locality rates; other processes in

the MapReduce framework that consume Map task output are also influenced by what data is

specified as an input to a Map task. For example, the method of constructing an InputSplit

can be adjusted to provide performance benefits. In several of the following subsections, we

explore the interaction of InputSplit composition with processes beyond the Map task.

5.1 Combiners

As a MapReduce program executes, data is transferred between HDFS, local disks

and other tasks over the network. A common optimization for MapReduce queries is to utilize

a Combiner function that performs local data reduction on Map task output. This results in

a (possibly significant) reduction in the amount of data transferred across the network when

intermediate data is read by a Reduce task. Algorithm 2 defines how a Combiner interacts

with Map task output when applying a max function. Note that (ideally) multiple {Group ID ,

ArrayData} tuples will be combined by the same Combiner execution, providing the aforemen-

tioned reduction in intermediate data size. In practice, Combiners are often Reduce functions

that are used to combine the output of multiple Map tasks while they are still local to the
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server that executed the Map task(s).

Algorithm 2: Combine() / Reduce()

Input: GroupID, ArrayData

Max ← Maximum(ArrayData)

Emit(Group, Max)

The execution of a max function over three InputSplits is shown in Figure 5.1. Since

partition-1 and partition-2 happened to both execute on the same node (NODE1), a Combiner

can take their outputs (2 and 6 respectively), combine them, and write a single value (6) to

local storage. In this example, the Combiner reduced both the amount of data written to local

storage and data sent over the network.
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Figure 5.1: Example of a Combiner applying a max function to the output of two Map tasks

on NODE1.

5.1.1 Holistic combiners

Employing a Combiner is straight-forward when the function being applied is dis-

tributive because the order in which sub-results are combined has no bearing on the validity

of the result. The outputs of Map tasks are combined at each node and those values are com-

bined during the Reduce phase to produce a final result. In contrast, holistic functions, such
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as median, require all data be evaluated at the same time in order to produce a correct result.

For Hadoop, this precludes using a Combiner for holistic functions since all inputs for a given

k′ key must be sent to the Reduce task in order to guarantee correctness as the Reduce task is

the only point where MapReduce guarantees that all values for a given key will be present.

Our survey of other attempts at constructing general frameworks for parallel scientific

computing indicates that holistic functions are more common in scientific computing than they

are in general computing. Given this observation, we placed an emphasis on researching what

could be done to support the use of a Combiner for holistic functions. The resulting work

yielded an opportunistic approach that improves performance over the existing system (in

which a Combiner cannot be used).

In our holistic Combiner , we use the extraction shape to determine how many values

exist for a given intermediate key (k′). The holistic Combiner processes each key and if the

correct number of values are present, the holistic function is applied. If, instead, an insufficient

number of values are present, the Combiner is not applied and all of the values are stored as

intermediate data. These values will be routed to the same Reduce task as the other values

for the given key and the Reduce task will apply the holistic function. A holistic Combiner

is made possible by virtue of our use of an explicitly specified extraction shape in the query

language. Without knowledge of the extraction shape, a Combiner would not know how many

values were expected for a given key and therefore could not safely apply a holistic function.

In Subsection 5.3, we discuss an approach for constructing InputSplits that trades

a decrease in data locality for an increase in the rate at which the holistic combiner can be

applied. A performance evaluation is included in that discussion.

5.2 NoScan

Typical MapReduce queries that process unstructured data, such as log-processing,

must read data stored on hard drives and then filter out irrelevant portions in memory. The

structured nature of scientific file formats enables us to avoid these block scans when construct-

ing requests at the logical level by including only the data necessary to complete the current

query. This technique, referred to as NoScan, prunes input partitions to eliminate unnecessary

segments of the logical space, thereby reducing the total amount of data read during query

execution to the minimum required by the query.

Using knowledge of the constraining space component of query Example 1 (Section

3.4.1), the InputSplits that were constructed previously in Figure 4.7 can be trimmed such that

it contains exactly the components of the logical model that are required to complete the query.
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Figure 5.2: Chunking & Grouping with NoScan

Figure 5.2 illustrates this trimming process, in which each of the partitions are reduced to only

the sub-arrays required by the query. Since this process occurs during InputSplit construction,

the data represented by the excluded portion of the logical space will never be read from disk.

Put simply, NoScan is able to remove from consideration data that does not contribute to the

query, reducing the total amount of data read by Map tasks.

We evaluated the impact of the NoScan optimization with query Example 1, whose

constraining space has 80% selectivity, and the results show that 80% of the total data was

being read (106 GB vs 132 GB) when NoScan was turned on. The impact on run-time can be

seen in Table 5.2: Baseline + NoScan ran 11 minutes (85̇%) faster than just Baseline is used

and 4 minutes ( 13%)faster in the experiments with a Combiner .

5.3 Holistic-aware Partitioning

While the holistic Combiner can evaluate a holistic function when the entire input is

contained in the InputSplits on a single node, the partitioning of the input space (T ) is usually

unaware of the query being processed, and thus the ability for the holistic Combiner to provide

a benefit is probabilistic; it only occurs when all of the InputSplits containing portions of a

given instance of the extraction shape happen to be scheduled on the same node. In cases

where the set of all InputSplits containing portions of a given instance of the extraction shape

are not processed by Map tasks on the same node, the application of the specified function

must be deferred until the key/value pairs for that key are processed at a Reduce task.

To account for small misalignments that would otherwise prevent a Combiner from
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Figure 5.3: Holistic-aware partitioning example

being used for holistic functions, we experimented with incorporating knowledge of the query

into the InputSplit generation process. Specifically, we generate InputSplits that are either

even multiples or even divisors of the specified extraction shape. This allows an InputSplit

to contain multiple full instances of the extraction shape or multiple InputSplits to hopefully

be assigned to the same node so that their output can be combined. Figure 5.3b shows how

adjusting the size of the InputSplits allows all of the data for the lighter region to be placed on

NODE1, thereby enabling the Combiner to reduce the data prior to it traversing the network.

Note that Hadoop does not guarantee that both InputSplits will be assigned to NODE1. A

different execution of the same query may result in the middle split being assigned to another

node, in which case the holistic Combiner could not be employed. In practice, it is best to

make InputSplits that are multiples of the extraction shape if possible as only key/value pairs

that are in the same InputSplit are guaranteed to be processed by the same Map task (and

therefore the same Combiner).

5.4 InputSplit Manipulation Experiments

A thorough description of the cluster used to run these experiments can be found in

Appendix A.

To evaluate the query run-time impacts of the different partitioning and placement
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Test Name Local Read Temporary % CPU Run Time Time σ

(%) Data (GB) Utilization (Minutes) (%)

No Holistic Combiner

Baseline 9.3 2,586 34.7 129 7

Baseline +NoScan 9.2 2,588 34.3 118 3

Chunking & Grouping 80 2,608 24.3 145 5

Physical-to-Logical 88 2,588 29.9 138 5

Holistic Combiner with Baseline

Baseline 9.5 107 79.1 31 2

Baseline +NoScan 9.5 107 80.7 27 1

NoScan +HaPart 8.8 107 81.3 27 7

HaPart 8.6 107 79.3 31 0.8

Holistic Combiner with Local-Read Optimizations

Chunking & Grouping +HaPart 70.7 116 84.7 25 0.4

+NoScan

Chunking & Grouping +NoScan 79.3 188 83.1 26 1

Physical-to-Logical +NoScan 88.1 196 82.8 27 6

Table 5.1: Overview of Query 1 Results Run-times of tests without the holistic Combiner

optimization are dominated by writes to temporary storage. All other runs are bound by

CPU (with iowait times < 1%). Runtimes are averages from 10 executions with the standard

deviation, as a percent of the average, is reported in the right-most column. Abbreviations:

HaPart : holistic-aware partitioning.

approaches as well as the optimizations for holistic queries, we present results from query 1

(Figure 4.9a), which applies a median function, and query 2 (Figure 4.9b), which applies an

average function. The holistic combiner and holistic-aware partitioning have a significant im-

pact on run-time for query 1 — roughly an order of magnitude. As Table 5.1 shows, tests using

the holistic Combiner optimization are largely CPU-bound while others are not, implying that

those tests are waiting on IO. We were admittedly surprised by the extent of the performance

impact of the Combiner until we realized that even in a cluster constrained by network band-

width, intermediate data size (“Temporary Data” in the table) can have a significant impact

on total query execution time due to node-local IO contention.

A large volume of intermediate data causes a significant increase in temporary storage

writes due to buffer spills and external sorting, which can occur at each step of a MapReduce

computation. In our experimental setup, each server uses a single disk (shared with the OS) for
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temporary data while HDFS data is striped over 3 SATA drives. This configuration can lead to

a relative IO bottleneck for temporary data. In the case of Query 1, successfully applying the

Combiner at the Map node, rather than at the Reducer , results in a reduction of 25,920 data

values, and their associated metadata, to a single value. This dramatic reduction in key/value

pairs results in a commensurate reduction in temporary data written, shown in the “Temporary

Data” column of Table 5.1, that translates into significant reductions in query execution time.

An interesting result gleaned from these experiments is that it is sometimes preferable

to allow Map task read locality to be diminished if it results in an increase in Combiner efficacy.

Compare the results for the Chunking & Grouping +HaPart +NoScan experiment with the

results for the Chunking & Grouping + NoScan experiment. When holistic-aware partitioning

is used, the rate of data read locality drops from 79.3% to 70.7% and the size of the Temporary

Data produced drops from 188 GB to 116 GB. Total run-time also dropped by 1 minute,

representing a performance improvement of approximately 4%.

Some combinations of optimizations were not tested because their goals would have

been diametrically opposed. For example, testing Physical-to-Logical, which strives to create

InputSplits that are perfectly aligned to blocks in the underlying distributed file system, in con-

junction with holistic-aware partitioning, which reduces data locality in an effort to increase

the efficacy of combiners, would have required allowing one behavior to override the other,

thereby producing a mediocre result of questionable utility. We strove to produce experimental

results that would highlight the characteristics of optimizations, and combinations of optimiza-

tions, that were complimentary, thereby showcasing the largest impact possible for the given

approach(es).

Test Name Local Initial Temporary Run Time Time σ

Read % Read (GB) Data (GB) (minutes) (%)

Baseline 3 132 569 66 2

Baseline +NoScan 3 106 569 63 2

Chunking & Grouping +NoScan 84 106 498 55 3

Physical-to-Logical +NoScan 93 106 498 56 3

Table 5.2: Runtimes for Query 2 All experiments produced 7.7 GB of Reduce task output

and all tests use a Combiner . Values are averages over ten runs.

Table 5.2 presents results for Query 2 with all the combinations from Table 5.1 that

include a Combiner . (HaPart query results were omitted as that optimization is not enabled

for non-holistic functions).
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Figure 5.4: Bytes shuffled in tests with holistic combiner (note the y-axis log scale).

The interplay between the different salient metrics and their effects on run-time be-

come more evident when comparing the results from both queries. Table 5.3 shows select

experiments from both queries as well as an execution of a single-threaded program that com-

pletes Query 2 serially by reading data stored locally on a single hard drive. As the amount

of intermediate data written (Temp Data) and Reduce output increases, so does the observed

run-time. This is expected, as increases in both translate into more IO, increased network

traffic and more data that must be processed in the Combine and Reduce functions.

5.5 The Nature of Scientific Data

The sympathetic alignment of data stored in scientific file formats to the queries run

over them, visible in our test data, stems from scientific data typically correlating to phenomena

in the natural world. Events or measurements that are ”near” each other (for some value of

near) in the logical model are often related and therefore evaluated together. As an example,

consider a time series: time-steps that are near each other in the logical model are temporally

close and therefore more likely to be evaluated together than data that is more temporally

distant. This idea is predicated on logical model proximity translating into proximity in the

underlying storage system, but our observation is this assumption tends to be valid in practice.

40



Test Name Local Temp Reduce Run

Read Data Output Time

% (GB) (MB) (min)

Baseline +NoScan +Combiner

Holistic 9.5 107 0.1 27

Regrid 3 569 7,735 63

Chunking & Grouping +NoScan +Combiner

Holistic 79 188 0.1 26

Regrid 84 498 7,735 55

Physical-to-Logical +NoScan +Combiner

Holistic 88 196 0.1 27

Regrid 93 498 7,735 56

Serial Program

Regrid 100 NA 7,735 3,130

Table 5.3: Impact of Data Volumes on Runtime For comparable queries, run-time is

dictated by the volume of data generated. The serial regrid program ran on a single node and

accessed the data from local storage.

5.6 Section Summary

In summary, this section shows that our optimizations can provide significant perfor-

mance improvements when applying a holistic function. Additionally, the nature of the query

being applied, specifically the amount of data reduction produced by the Map task and Com-

biner , will have a significant impact on run-time. Our experiments also found that sometimes

it is preferable to trade a reduction in Map task data locality in return for an increase in

Combiner efficacy.
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Chapter 6

Redefining the Communications Model

This section contains research into altering Hadoop’s communication model via a

deeper integration of the knowledge of the structure of the data being processed than in pre-

vious sections. Specifically, this knowledge is leveraged to make decisions at points that are

typically data agnostic, requiring alterations to core portions of Hadoop. The modified portions

include: data assignment to keyblocks, deciding when to start a Reduce task and during the

scheduling of Map tasks. In altering Hadoop at a more fundamental level, our research enables

novel performance optimizations and new functionality while maintaining the generality of the

MapReduce framework.

6.1 Communication in Hadoop

To recap from Section 3.2.1, when a Hadoop job is submitted by a client, the central

coordinator generates the corresponding InputSplits and then waits for nodes to request Map

tasks, attempting to assign InputSplits to one of their preferred nodes so as to achieve data

locality. After processing the data indicated by its InputSplit, a Map task produces a (poten-

tially empty) data set for every Reduce task and then notifies the JobTracker which, in turn,

notifies every Reduce task. After receiving a notification, Reduce tasks opportunistically copy

intermediate data from completed Map tasks and merge that data with previously copied data.

By copying data as Map tasks complete, network IO can be overlapped with the computation

of other Map tasks, resulting in performance improvements. A Reduce task continues copying

Map task output until the Reduce task has its assigned data from every Map task. At that

point, it is free to begin processing its data, writing its final output to stable storage as it

finishes. The all-to-all task communication pattern, which is based on a worst-case assumption
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of global data dependencies, is shown in Figure 6.1 with representative wall-clock run-times of

the tasks shown in Figure 6.4a.

Map 1

Reducer 1 Reducer 2

split 1 split 2 split 3 split 4 split 5

Map 2 Map 3 Map 4 Map 5

Figure 6.1: Default communications pattern for the MapReduce program in Figure 6.3.

Map 1

Reducer 1 Reducer 2

split 1 split 2 split 3 split 4 split 5

Map 2 Map 3 Map 4 Map 5

Figure 6.2: Enhanced communications pattern for the MapReduce program in Figure 6.3.

A Map task’s generation of intermediate data highlights the fact that the Map and

Reduce tasks process key/value pairs while the framework naively moves bytes (Section 4.2).

As intermediate key/value pairs are produced, the key for each pair is passed through the

hash function, the output indicating which keyblock the data is destined for and therefore

which intermediate data set the key/value pair should be written to. When a Map task finishes

processing its assigned input, it closes the file containing intermediate data and writes out a

small amount of meta-data for each keyblock, including the number of bytes in the dataset,

to a header. After a Reduce task has acquired its set of intermediate data from a Map task, it

is still not aware of the contents of the data set, merely the data contained in the header. It

is not until the Reduce task starts processing its data that the file containing the intermediate

data is read and the identity of the keys contained within the file are known.
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6.2 Communication Barriers

In Section 4.2, we discussed our research into achieving high rates of data locality while

generating InputSplits at the logical level and we explored the impact of InputSplit construction

on the application of Combiners, specifically holistic Combiners, in Section 5. Stepping back

to consider the communications model for MapReduce, the generation of InputSplits are also

of interest because they dictate what data a given Map task is guaranteed to see together since

an InputSplit is either successfully processed in its entirety or rescheduled and re-executed

on another node while no two InputSplits are guaranteed to be scheduled on the same node.

Additionally, the RecordReader, which consumes InputSplits, represents one of the two

points at which the flow of data through a Hadoop query is obscured (Section 3.3.1).

In Section 4, we show the necessity of defining Ii in terms of logical coordinates,

creating a situation where both RecordReader input and output are defined at the same

level of abstraction and also in the same logical space (coordinates in the logical space of K).

This alignment of abstraction levels enables us to reason between a given Ii and the keys it will

produce for the corresponding Map task, as well as correlating Map task inputs to a given Ii.

In fact, Ii and the set of all keys that RR(Ii) (Figure 3.1) will produce are equivalent. Given

that we can translate from the total input to the set of Ii that will be consumed by the set of

all Map tasks, the system can, at the initialization of a Hadoop job, calculate the set of keys

in K that will actually be processed by the set of all Map tasks; that set of keys is denoted

KT . This newfound knowledge is significant as KT can be used in place of the entire keyspace

K when reasoning about the flow of data, thereby enabling us to make decisions based on the

keys that actually exist in the data set being processed, rather than the set of all representable

keys.

6.2.1 Correctness

The primary ordering constraint in MapReduce is that a Reduce task only processes

data for a given key when it has all of the key/value pairs with that particular key. Given

an inability to make assumptions about the behavior of the hash function for intermediate

data, and the resulting assignment of data to keyblocks, a worst-case assumption of any

Map task creating output for any Reduce task is required. This assumption necessitates a

barrier between the end of the last Map task and the beginning of any Reduce task for a given

MapReduce program. The barrier guarantees that all values for a given key will be processed

at the same time with the side effect of preventing Reduce tasks from beginning to process their

assigned data until the output from all Map tasks is available. Were a Reduce task to start
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Figure 6.3: Annotated data flow for a MapReduce program.

prior to the completion of all Map tasks (i.e., the global barrier), then it may produce final

results that are incomplete or incorrect if any of the remaining Map tasks for which it does not

have intermediate data produces key/value pairs assigned to that Reduce task’s keyblock.

Figure 6.4a depicts the barrier, which was discussed in Section 6.1.

6.2.2 Skew in KEYBLOCK Sizes

keyblock sizes are a function of the distribution of the observed intermediate keys

(K′T ) combined with the hash function. Assuming a modulo-style hash function, a relatively

even distribution of keys in K′T translates into a similarly even distribution among keyblocks.

Skew in keyblock sizes can cause divergence in run-times between Reduce tasks, as

shown here [109]. Given that a MapReduce job typically has many times fewer Reduce tasks

than Map tasks and that the global barrier causes Reduce tasks to all start at the same time,

a disparity across Reduce task run-times typically has a larger impact on total MapReduce job

run-time than Map task skew. Chapter 9 includes references to previous work on avoiding skew

that provide further details on the effect of skew on MapReduce job run-time.
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Time

M1 M2 M3 M4 M5 R1 R2

(a) Hadoop task run-times (the dotted line is a

global barrier)

M1 M2 M3 M4 M5 R1 R2

Time

(b) Same task run-times when using actual depen-

dencies (note per-Reducer barriers)

Figure 6.4: (a): By default, Reduce tasks must wait for all Map tasks to complete prior to

beginning their execution. (b): When Reduce tasks understand their actual data dependencies

(e.g., R1 depends on M1,M2,M3 while R2 depends on M3,M4,M5), they can start after the

last Map task they depend on finishes.

6.3 Replacing the Intermediate Data

Partitioning Function

Given that we have access to the set of keys that will exist for a given query (KT )

and can map keys in that space onto the intermediate space (K ′) via the extraction shape,

we can compute the set of intermediate keys that will exist, denoted K′T . Given that most

queries use their intermediate keyspace to order their output, we can also reason about the

total output space (O). For a particular KT and extraction shape, K′T can be calculated by

dividing the length of each dimension in T by the entry in the corresponding dimension of the

extraction shape. Since an extraction shape can map a single value in K into multiple values

in K ′, multiple values in K into a single value in K ′, or a single value in K into a single value

in K ′, O may be smaller, larger or the same size as T , respectively. The O for a given T and

extraction shape, abbreviated to ‘es’, is denoted OTes.

As part of extending Hadoop’s communications model, we replace the default hash

function with one that incorporates knowledge of K′T , the extraction shape, and OTes. This

new function, referred to as hash+, computes K′T and then partitions that, rather than K ′,

into r keyblocks (where r is the configured number of Reduce tasks). This structure-aware

intermediate data partitioning function provides several benefits, outlined in the following sub-
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sections.

6.3.1 Bounding Skew with hash+

Given that OTes for a query over structured data is a fixed size (for the queries we’re

considering), hash+ can guarantee an upper bound on the skew in sizes between keyblocks.

This is accomplished by the following process: 1) specifying an upper bound (possibly user-

defined or derived from query details) on the permissible amount of variance between key-

blocks, 2) creating an n-dimensional shape whose total size is smaller than the upper bound,

3) determining the total number of instances of the shape that exist in OTes, and 4) dividing the

total count of those instances by the number of Reduce tasks. The final result is the number of

instances of the shape (step 2) that should make up each keyblock. This process guarantees

that each keyblock varies in size by at most one instance of the shape that was selected,

which was chosen to be smaller than the initially specified maximum variance. This process is

shown in Figure 6.5.

6.3.2 Creating Contiguous KEYBLOCKS with hash+

The hash+ function knows not only the size but also the contents of K′T and can

therefore produce keyblocks consisting of keys that are contiguous in K ′. This is accomplished

by partitioning K′T in contiguous ranges in K ′, rather than using a modulo operator. Since

most queries use the ordering of the intermediate keys to order their output, creating contiguous

ranges of intermediate keys results in Reduce tasks writing out their final output in contiguous

ranges. This stands in contrast to the output written when using the default, modulo-based

approach. With the modulo function, a given Reduce task will write data spread throughout

the output space (O). Creating keyblocks that result in the associated Reduce task writing

dense arrays, as opposed to writing randomly throughout O, simplifies interacting with the

total output at a later date and yields performance benefits as a result of requiring fewer

writes than in the default case. The latter point assumes that the scientific library will convert

logically dense arrays into efficient file accesses.

6.3.3 hash+ Performance

The hash+ function displays comparable run-times to the default hash class used by

Hadoop, org.apache.hadoop.mapred.lib.HashPartitioner. We created a micro-benchmark that

loaded a 25 MB file of HDF5 data consisting of 6,480,000 elements into memory and then hashed

them with both functions. This test represents the time taken for a Map task to determine
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3)

KEYBLOCK 1

Shape representing maximum desired skew

Decompose intermediate data space

Create KEYBLOCKS
consisting of said chunks

KEYBLOCK 2 KEYBLOCK 3

KEYBLOCK 4 KEYBLOCK 5

Figure 6.5: Bounding intermediate data size skew with hash+. In this example, we chose a

maximum desired skew of 6 cells. The intermediate data space was broken into instances of

our 6-cell shape, then the desired number of keyblocks (5) were constructed by combining

the set of instances of our 6-cell shape.

the keyblock for 6.48 Million intermediate key/value pairs. Over ten runs, the default hash

function has an average execution time of 200 ms and a standard deviation of 18.8 ms. Our

hash+ function had an average execution time of 223 ms with a standard deviation of 21 ms,

representing an approximately 11% decrease in performance when using our hash+ function.

The effect in absolute terms is negligible, given that the measured execution times of Map

tasks ranges from tens of seconds to tens of minutes. It is conceivable that hash+ could be

optimized to take advantage of the fact that it assigns keys in contiguous ranges, and therefore

may not need to recompute the keyblock for every key, but we found the current performance

sufficient for our needs.
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Figure 6.6: (a): keyblock assignment of the intermediate dataset shown in Figure 6.5 if the

default modulo hash function is used. (b): Comparison of the writes done by Reduce task 3

for a keyblock generated by modulo hash (left) and hash+ (right)

6.3.4 Clarifying MapReduce’s Dataflow

Given that hash+ is based on the total input (T ) and the extraction shape, its effects

are deterministic. This means that the input to and output from the hash function can be

correlated, removing the second point of opaqueness from Hadoop’s communication model

(Section 3.3.1). We are now able to reason about the flow of data from initial input (T ), through

the intermediate keyspace (K ′) and into the output space (OTes). This, and the resultant

optimizations it enables, is one of the primary contributions of this thesis.

6.4 Breaking Down Barriers

Combining the additional knowledge provided by the meta-data from scientific access

libraries, the extraction shape and our hash+ function, it is possible to extend Hadoop to

calculate the set of keys in K that will produce intermediate data for a given keyblock as

well as the specific set of data that will be assigned to a given Reduce task. This ability to

reason about elements in the initial input and their translation, via the Map and hash functions,

into elements assigned to Reduce tasks is a powerful new feature.

The value I` represents the set of Ii (InputSplits) that, when processed by a Recor-

dReader and its associated Map task, will produce at least one intermediate key/value pair

that will be assigned to keyblock`. I` is the actual data dependency of keyblock` and

our modified version of Hadoop uses that as a barrier, rather than assuming a dependency

on all Ii (as is classically done in Hadoop). By using this new, task-specific barrier, Reduce

tasks can begin processing data assigned to their keyblock as soon as the last Ii in their I`
completes while still maintaining MapReduce’s correctness guarantees (detailed in Subsection
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6.5.1). A definition of I` is shown in Formulation (6.3) and the process for computing I` is

described in the remainder of this section. The ability to calculate I` enables the more precise

communications model depicted in the bottom portion of Figure 6.2. The effect of this new

model on scheduling is shown in Figure 6.4(b) where Reduce task R1 is allowed to start prior

to Map tasks M4 and M5 completing because all of R1’s data dependencies are fulfilled.

When a MapReduce job begins, the input is specified and the range of keys in K that

are present (KT ) is determinable via the meta-data provided by the scientific access libraries.

Once KT is partitioned into I, then a given Ii is itself KTi . With this additional information,

we can re-frame Formulation (3.1) as Formulation (6.1).

for mi =|Ii| ,

RR(Ii) ={
〈k1, v1〉i , 〈k2, v2〉i , ..., 〈kmi

, vmi
〉i
}

(6.1)

〈kj , vj〉i ∈ KTi × V ∀j ∈ {1, 2, ...,mi},
mi⋃
j=1

kj = KTi = Ii

An explicit extraction shape enables us to easily understand how a key in K translates

into key(s) in K ′ and likewise from KT to K′T . The term K′Ti denotes the keys in K′T that

result from applying the Map function to the key/value pairs in the corresponding KTi . In

practice, K′Ti is easily calculated by combining the extraction shape with KTi .

The set of all keys in K′T that will be assigned, via the hash+ function, to keyblock`

is denoted K′T` . When Reduce tasks start up, they are supplied an ID, indicating their role

amid the total set of Reduce tasks. A Reduce task can use that ID, the hash+ function, and KT

to calculate its K′T` , which is necessary to determine I` for a keyblock, as shown in Section

6.5.1.

6.5 Early Results

The ability to create per-task barriers, described in the previous section, opens the

door to actually using these smaller barriers within Hadoop and starting Reduce tasks once

their individual barriers are satisfied. In this section, we explain how we implemented this in

Hadoop and how we maintain all of the guarantees set out in the original MapReduce paper

[30].
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6.5.1 Maintaining Correctness

As has been discussed, an extraction shape represents how a key in K is mapped to

a key in K ′. This mapping is accomplished by a series of multiplications involving the K key

and the extraction shape. Given this, it is trivial to also map from K ′ to K; the multiplication

is simply inverted. The function that maps from K ′ to K is referred to as ExSh−1() (short for

“inverse extraction shape”).

Combining K′T` (the set of all keys in K ′ that will be assigned to keyblock`) with the

ability to Map from K ′ to K, a Reduce task can compute the set of keys in KT that produce

intermediate data destined for its keyblock, denoted KT` . A definition of KT` is shown in

Formulation (6.2).

for keyblock`, (6.2)

KT` =
⋃

k | ∃k′ ∈ K′T` such that ExSh−1(k′) = k

The ability to calculate KT` is requisite for maintaining correctness when starting

Reduce tasks early in the case where multiple elements in K map to a single element in K ′

(Figure 3.4(b)). The set of keys in K that map to the same key in K ′ may fall in different

Ii (generating multiple 〈k′, v′〉) or the same Ii (generating a single 〈k′, v′〉). Since the Reduce

task does not know how many 〈k, v〉 were combined to produce a given 〈k′, v′〉, it cannot begin

processing after receiving a particular 〈k′, v′〉 without risking the production of an answer based

on insufficient input. This is a significant issue, as a pessimistic solution would require reverting

back to the original global barrier.

I` = ∀Ii | ∃ k such that k ∈ KT` ∧ k ∈ Ii (6.3)

We identified two methods for resolving the ambiguity as to the number of 〈k, v〉 that

were combined to form a particular 〈k′, v′〉:
1) I`, the set of inputs that will produce data destined for keyblock`, can be com-

puted and that can be used as a proxy for KT` , since it is a super-set (see Formulation (6.3)).

2) each key/value pair in the K ′ space can be annotated to include the number of

elements in the K space that it represents. Each Reduce task can then keep a running tally

of the number of 〈k, v〉 represented by the 〈k′, v′〉 it receives. When it has accumulated data

representing all 〈k, v〉 in its KT` , processing can safely begin.

SIDR uses the former method and also implemented the annotations required for the

latter method as a means of validating the system’s correctness.
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In Hadoop, all 〈k′, v′〉 produced by a particular Map task and assigned to the same

keyblock are written into the same file. We added a field to the header data for that file

indicating how many 〈k, v〉 are represented by the set of all 〈k′, v′〉, for a given keyblock. As

mentioned in Section 6.1, when a Reduce task retrieves its intermediate data, it only has access

to the information in the header. With our additions to the header data, a Reduce task can now

track the count of all 〈k, v〉 represented by the contents of the files containing its intermediate

data without having to read and parse the data.

6.5.2 Benefits of Early Results

The ability for Reduce tasks to begin processing data as soon as possible allows for

additional overlapping of computation with IO beyond that already present in MapReduce.

Previous research [27, 28, 141] indicates that this additional overlapping will translate into

shorter total run-times for MapReduce jobs. Secondary benefits include: resources that are

typically consumed by a Reduce task while waiting for unnecessary Map tasks to complete are

now made available for other work and the storage occupied by intermediate data for completed

keyblocks can be released prior to job completion.

6.5.3 Altering Task Scheduling in Hadoop

In order to realize the benefits of starting Reduce tasks once their individual barriers

were fulfilled, we were required to make alterations to the default Hadoop scheduler, JobQueue-

TaskScheduler. As background, here is how the Hadoop scheduler normally operates. When a

Hadoop job begins, all Map tasks are added to a tree structure with the lowest level of nodes

corresponding to specific servers in the cluster and higher level nodes being aggregations of

servers (rack, entire cluster). Tasks are first added to the node(s) in the tree representing

servers where the data for that task is stored (to achieve data locality). That same task is then

added to the parent of those nodes (representing the rack that each data-local server resides in)

and then to the parent of that node (representing the pool of all servers in the cluster). When

a server requests a new Map task, this tree is traversed, starting at the leaf-node representing

that server and working its way up, with the first runnable task encountered being returned.

This process results in tasks that would be local to that server being returned if they exist.

Absent that, a rack-local task is returned if one exists or else, as a last resort, any runnable

task is returned. In contrast, Reduce tasks are scheduled in monotonically increasing order of

their IDs as slots become available. Additionally, Reduce tasks are not scheduled until some

minimum number of Map tasks have started running.
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In terms of Reduce tasks starting once their data dependencies are met, the interaction

between the two default scheduling polices results in those dependencies being met haphazardly

since no effort is made to co-schedule Reduce tasks with the Map tasks they depend on. In

practice, the odds of a Reduce task having its data dependencies met was a function of the

number of Map tasks it depended on combined with how many Map tasks had completed up

to that point; in other words, it was strictly probabilistic.

In the SIDR paper [16], the scheduling process was altered such that a Map task

was only available to be scheduled if at least one Reduce task that depended on it was al-

ready running (dependency information was generated by the FileInputFormat class during

job submission and then read by JobInProgress when scheduling tasks). The actual scheduling

algorithm was unchanged, but rather was not informed of Map tasks until those tasks would

contribute to a running Reduce task. This co-scheduling creates the desired effect of correlating

Map tasks with running Reduce tasks. Along with this change, we also configured Hadoop to

start scheduling Reduce tasks immediately, since a Reduce task starting is now a predicate for

Map tasks being scheduled to run.

Experiments conducted with our modified scheduler showed that even though we were

artificially limiting the pool of Map tasks that were eligible to be scheduled at any point in

time, rates of Map task data locality (Map tasks running on one of the hosts that our placement

strategy had decided was optimal) was as high or slightly higher than with the default Hadoop

scheduler.

6.6 (In)Applicability of Our Work in Hadoop

The approaches described in Section 6.4 and Section 6.5 are not applicable to Hadoop

in the general case but rather are only possible given the additional knowledge we can extract

from the meta-data in scientific file formats and for the classes of queries that we focus on

(Section 3.5). This limitation stems from the fact that Hadoop’s default hash function is

unable to easily map either from K to K ′ or from K ′ to K during the initialization of a

Hadoop job. A mapping from K to K ′ is made difficult by the fact that the modulo-based hash

function operates on the binary representation of each intermediate key. This implementation-

specific knowledge complicates computing the keyblock for each key and likely requires the

serialization of each individual key (a computationally expensive proposition) independent of

the serialization that occurs when the query actually executes. Creating a mapping from K ′

to K is even more difficult because the application of a modulo operator effectively destroys

knowledge (specifically, what the hash function input was). To create this mapping for a given
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Reduce task, every possible K that could map to that Reduce task must be computed (by

running every representable key through the modulo function and maintaining a list of those

that mapped to the task in question) and then the intersection of that set with KT needs to

be calculated. This approach is fairly infeasible, given practical limits on computation and

memory, and even if it were practical, it would require an entry per key be stored. Our use of

contiguous ranges of intermediate keys coupled with an easily invertible function for assigning

intermediate keys to keyblocks is what enables a tractable approach for creating per-task

barriers.

6.7 Reduced Barrier Experiments

This section chronicles experiments conducted as part of the SIDR project that show

the effects of changes made to Hadoop’s task scheduling, intermediate hash function and com-

munication model discussed in this chapter. Details on the cluster hardware can be found in

Appendix A.

6.7.1 Query 3: Median Function

This experiment applied a median function over a 4-dimensional data set with dimen-

sions of lengths {7200, 360, 720, 50} and using an extraction shape of {2, 36, 36, 10} (meta-data

representing this file appears in Figure 6.7). The data set can be thought of as 300 days worth

of hourly windspeed measurements at a resolution of 0.5 ◦ longitude by 0.5 ◦ latitude at 50 dif-

ferent elevations with the query representing finding a median value, over 2 consecutive days,

for each 18 ◦ longitude by 18 ◦ latitude region, in cross-sections of 10 elevation steps. The total

file size is 358 GB.

dimensions:
    time = 7200;
    lat = 360;
    lon = 720;
    elev = 50;

variables:
    int windspeed(time, lat, lon, elev);

Figure 6.7: Metadata for the dataset used in queries 3 & 4.

We first compare Hadoop, SciHadoop [18], and SIDR [16] with the total number of

Reduce tasks configured to 22, with the choice of 22 Reduce tasks owning to best practices
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dictating that 90% of the total node count is a reasonable number of Reduce tasks. Figure 6.8

shows Map and Reduce task completion over time. SIDR starts producing results around 625

seconds while SciHadoop’s first result arrives just after 1,132 seconds and Hadoop’s first result

coming at 2,797 seconds.
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Figure 6.8: Map and Reduce task completion for Hadoop(H), SciHadoop(SH) and SIDR (SS)

The difference in the slopes of both Map and Reduce tasks between Hadoop and

SciHadoop owe to the efficiencies gained by intelligent input split generation and data locality

enabled by SciHadoop [18]. The gap between the first result in SIDR and the first results in

SciHadoop and Hadoop stems from SIDR using the actual data dependencies present in the data

being processed. The query executing with SIDR completes at 1,264 seconds while SciHadoop

completes slightly sooner, at 1,250 seconds. SIDR’s slightly longer run-time is due to its use

of contiguous keyblocks. The last SIDR Reduce task has to copy, merge and process all of

the data in the last 4.5% (1/22nd) of the Map tasks. In SciHadoop and Hadoop, the output of

those Map tasks would be spread evenly across all Reduce tasks. Following experiments show

that SIDR can produce total query run-times that are shorter than SciHadoop’s by increasing

the number of Reduce tasks.

In early versions of our SIDR paper, reviewers were concerned that our changes to the
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Figure 6.9: Map task completion for a fixed query run with Hadoop (H) using 22 Reduce tasks,

SciHadoop (SH) using 22 Reduce tasks and SIDR (SS) running 22, 66, 176 and 528 Reduce

tasks.

scheduler and communication patterns could have a detrimental effect on Map task execution

times. Figure 6.9 shows a graph of Map task execution time as the number of Reduce tasks is

varied. This graph does not change in any appreciable manner as the number of Reduce tasks

varies, with the exception of Hadoop being less efficient than the other approaches. This result

indicates that our changes do not have a detrimental impact on Map task performance. It also

shows that varying the number of Reduce tasks does not affect the run-time of Map tasks.

Next, we present the same query and dataset while varying the number of total Reduce

tasks. By fixing the query and the input, the output produced by the query will likewise

remain fixed. Increasing the number of Reduce tasks will result in each Reduce task having a

proportionately smaller amount of data assigned to its keyblock, which will commensurately

decrease its data dependencies. Figure 6.10 shows this experiment where the query is run with

22 Reduce tasks for SciHadoop as well as 22, 66, 176 and 528 Reduce tasks for SIDR. Given the

size of our dataset (348 GB) and the configured HDFS block size (128 MB), the partitioning

scheme creates 2,781 InputSplits for this job (since there are roughly as many InputSplits
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created as there are blocks occupied by the specified dataset).
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Figure 6.10: Reduce task completion for a fixed query run with SciHadoop (SH) using 22

Reduce tasks and SIDR (SS) running 22, 66, 176 and 528 Reduce tasks.

The results in Figure 6.10 display some interesting interactions that become apparent

as the number of Reduce tasks is scaled. With SIDR, as the number of Reduce tasks increases,

the time to first result and the total job execution time both decrease. The same query run

with SIDR finishes 29% faster than with SciHadoop and nearly three times faster than Hadoop

(shown in Figure 6.8). These performance improvements are attributable to decreasing the size

of the data dependency for each Reduce task, thereby allowing Reduce tasks to start sooner and

overlap more IO with computation. Additionally, as the amount of data that each Reduce task

is assigned shrinks, there are fewer buffer overflows resulting in less disk-based merge-sorting

(with its associated latency) and, we assume, increased cache efficacy. Results for Hadoop are

omitted to allow us to present the graph at a finer resolution, thereby more readily exposing the

variations between the different experiments. The Map and Reduce task completion graphs for

SciHadoop are shown as points of reference. We omit the Map task completion graph for SIDR

as Figure 6.9 shows that Map tasks for SIDR and SciHadoop display the same completion time

graph regardless of the number of Reduce tasks.
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While our modified version of Hadoop must still hold to the requirement that a given

Reduce task cannot begin processing its data until all of its data dependencies have been

satisfied (Subsection 6.5.1), tasks in our system are meeting their individual sets of data de-

pendencies on a rolling basis (rather than a single, global barrier). Given this situation, the

ideal task completion graph for the Reduce tasks would be a line that paralleled the graph for

Map task completion, shifted to the right by the average amount of time it took a Reduce task

to process its assigned data. Figure 6.10 shows that as the number of Reduce tasks increases,

the corresponding task completion graph line converges towards that ideal with 528 Reduce

tasks being close to optimal.

SciHadoop’s reliance on the global barrier precludes it from realizing, in any meaning-

ful way, a performance improvement via an increased number of Reduce tasks. This is caused

by the requirement that all Reduce tasks must wait for the barrier (in order to guarantee

correctness), so increasing the total number of Reduce tasks past the amount that can run

concurrently results in the same amount of work being split into smaller units that then must

queue up. Figure 6.11 shows the Reduce task completion times for Query 3 when the number

of Reduce tasks is scaled for SciHadoop with the results for the same query run via SIDR with

168 Reduce tasks included for comparison. We omit all Map task completion lines except one,

since they do not vary appreciably between the different experiments.

The most significant result that we see when scaling the number of Reduce tasks under

SciHadoop is that total query run-time is largely unaffected. By comparing this to SIDR with

168 Reduce tasks, it is readily evident that breaking the global barrier is key to profiting from

an increased number of Reduce tasks for a given query.

It is worth noting that SciHadoop produces its first result more quickly with 168

Reduce tasks (as opposed to 22) because it is splitting the same amount of intermediate data

up into smaller chunks, so that once the global barrier is satisfied, a given Reduce tasks has

less to process. This still leaves the global barrier as a hard limit on starting Reduce tasks (and

therefore total query run-time).

6.7.2 Query 4: Filter Function

We next apply the same techniques to a different class of queries and find similar results

in that both the time to first result and total run-time are decreased with SIDR, as compared to

SciHadoop. For this query, we created a data set of the same size, {7200, 360, 720, 50} (Figure

6.7), with values generated from a normal distribution via the java.util.Random class. The

query applies a filter to the data that emits only values more than three standard deviations

greater than the mean value. Query 4 uses an extraction shape of {2, 40, 40, 10} out of con-
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Figure 6.11: Reduce task completion for a median query run with SciHadoop (SH) using 22

and 168 Reduce tasks and SIDR running 168 Reduce tasks.

venience; results will contain a list of all the values in the extraction shape that are over the

threshold. Since we’re only returning values greater than three standard deviations, the total

output is approximately 0.1% of the total data set (93.31 million values out of a 93.31 billion

values data set).

Figure 6.12 shows the results for the fourth query when varying the number of Reduce

tasks with SIDR and SciHadoop with 22 Reduce tasks (the SciHadoop Map task completion

results for 22 Reduce tasks is show for reference). Again, Hadoop results are omitted in favor

of showing more detail via a smaller x-axis range.

Query 4 outputs significantly less total data than Query 3. Because of this, the Reduce

task completion lines converge towards optimal with fewer total Reducer tasks than Query 3

since each Reduce task has less data to process and therefore finishes more quickly, freeing

up that server to process another Reduce task. Also, since the Reduce tasks represent such a

small fraction of the total query execution time to start with (indicated by the slope of the

Reduce task completion graph for SciHadoop with 22 Reduce tasks), there is little room for

improvement in total execution time. This query is Map task intensive and the optimizations

presented in this chapter are all focused on post-Map task aspects.
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Figure 6.12: Reduce task completion for a filter query run with SciHadoop (SH) using 22 Reduce

tasks and SIDR (SS) running 22, 66 and 176 Reduce tasks.

By contrasting the results of the two queries on data of the same size, it is evident

that the nature of the query being applied has a significant impact on the number of Reduce

tasks required to approach optimal performance. In general, the ideal number of Reduce tasks

for a given query would be the minimum number required to achieve performance within some

delta from the optimal line since each additional task carries with it a small fixed cost due

to JVM startup and task initialization. At some point (again, query and dataset dependent),

further increasing the number of Reduce tasks will begin to degrade performance because of

this fixed, per-task cost.

6.7.3 Variance

Even with the Hadoop scheduler changes described in Section 6.5.3, there is still a lot

of flexibility in how tasks are scheduled in our system. Figure 6.13 shows the amount of variance

for Map tasks and Reduce tasks when 22 Reduce tasks are used as well as just Reduce task

variance when 88 Reduce tasks are used. The graphed results are averages from 10 runs with

error bars displaying the standard deviation for each data point. In SIDR, data dependencies
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are small(er) global barriers, so a Reduce task will have at least as much variance as the set

of all Map tasks that it depends on. Increasing the number of Reduce tasks makes those sets

of dependencies smaller (per Reduce task) and reduces the likelihood of a given Reduce task

depending on several long-running Map tasks. This relationship is visible in Figure 6.13 where

the experiment with 88 Reduce tasks shows significantly lower variances than the same query

with 22 Reduce tasks but more than the Map tasks for the same experiment.
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Figure 6.13: Variance of task completion, averaged over 10 experiments with standard devia-

tion shown as error bars. SIDR Map task completion for 2783 tasks along with Reduce task

completion for 22 and 88 Reduce tasks.

6.7.4 Contiguous Output

The hash+ function (Section 6.3) leverages query-specific knowledge to partition the

output space into keyblocks that are both balanced in size and contain contiguous portions of

the output space. This latter point is a significant improvement over the default when writing

out structured data in a MapReduce program, assuming that writing logically contiguous data

translates into contiguous file accesses.

The default partitioning approach taken by Hadoop results in each keyblock con-
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sisting of data residing throughout the total output space (Figure 6.6a). Writing a collection

of data spread throughout a space (sparse data) is non-trivial. There are a few common ap-

proaches, one of which is to create a file representing the entire space and using sentinel values

for the missing data points. If we consider a MapReduce program that took this approach, a

few issues become apparent. Firstly, the size of the file written by each Reduce task is the same,

namely the size of the total output, which means that increasing the number of Reduce tasks

for a given query will increase the total amount of bytes written but not the amount of useful

data. This creates a disincentive to increase the degree of parallelization of the query, which

conflicts with the results in Section 6.5.2. Secondly, the time taken by a Reduce task to write

its data will increase as the number of Reducers increases, due to larger seeks between writes

(caused by the default partitioning scheme using a modulo hash function). Table 6.1 shows the

results of a micro-benchmark that simulates these issues by writing sparse data to a NetCDF

file. For the experiment, we fixed the amount of data a single Reduce task would write at 24.8

MB and then scaled the total amount of output along with the number of configured Reduce

tasks (i.e., between measurements we doubled the size of the total output and also doubled

the number of simulated Reduce tasks). The table shows the size of the file created by one

Reduce task and the time it took for the Reduce task to write its data (data generation and

meta-data operations were not included in the timing). All time measurements are averages

across 10 runs with standard deviation shown in parenthesis. As the table shows, even though

the amount of data assigned to a given Reduce task is held constant, the total output written by

each Reduce task increases (since space for the entire dataset is allocated by each Reduce task,

even though they are each writing only a portion of it). The increasing run time is attributable

to a combination of each Reduce task having to allocate a larger file and larger seeks between

writes as the number of Reduce tasks is increased.

Hadoop Reduce Write Scaling

Total Reduce Tasks Avg Time in Seconds Output Size (MB)

(Standard Deviation)

20 6 (.6) 494

40 11.4 (.9) 988

80 24.2 (3.2) 1976

SIDR Reduce Task Write Scaling

* 0.3 (.02) 24.8

Table 6.1: Scaling of write times and sizes for individual Reduce tasks
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The bottom entry in the table shows the same test with a single Reduce task writing

a contiguous portion of the output containing the same amount of useful output data as the

other simulations. Since the single Reduce task will write the same amount of data, regardless

of the number of Reduce tasks, the output file size and write time is constant across tests.

There are other methods for storing sparse data, such as creating a collection of

coordinates and the corresponding data for each coordinate. This approach would create storage

overhead for data written (since both the data and its coordinate are explicitly stored, rather

than the coordinate being implicit, as is normally the case with scientific file formats) that

would be a function of the total output size. This overhead would be a constant scalar, relative

to the amount of useful data, and independent of the number of Reduce tasks. Alternatively,

many file formats provide compression, which would, to some degree, ameliorate the impact

of having many sentinel values. However, the creation of keyblocks of equal sizes and also

consisting of contiguous data presents a superior solution to these alternatives.

6.7.5 Reducing Network Resource Usage

Hadoop Reduce Write Scaling

Map / Reduce Count Hadoop SIDR

(# Connections) (# Connections)

2783/22 61,226 2,820

2783/66 183,678 2,905

2783/132 367,356 3,031

2783/264 734,712 3,267

2783/528 1,469,424 3,760

2783/1056 2,938,848 5,106

Table 6.2: Network connection scaling

As mentioned in Section 6.1, every Reduce task will request an output file from every

completed Map task, regardless of whether there is any actual output to transfer. Table 6.2

shows how the total number of network connections between Map and Reduce tasks scales

as the number of Reduce tasks is increased for a fixed query. The efficiency of SIDR is the

result of each Reduce task only contacting Map tasks that have produced data assigned to its

keyblock and ignoring all other Map tasks. Compare this to Hadoop, where every Reduce task

contacts every Map task. Additionally, there is a limit to the number of concurrent connections

per Reduce task (10 by default in Hadoop 1.0), which can create an undesirable serialization
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of communication. The reduction in network connections required by SIDR diminishes the

likelihood of this serialization occurring and represents a more efficient use of network resources.
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Chapter 7

InMemory Shuffle

The motivating idea behind the work in this section is to eschew writing intermediate

data to disk and rather persist it in memory, ideally for as short a time as possible, without

impinging on the flexibility of the MapReduce model. Our hypothesis is that by transitioning

from disk IO to memory accesses, we should see a reduction in the average execution time

of Map tasks, since they’ll spend less time writing their output (this is predicated on the

assumption that writing to memory is faster than writing to disk). Additionally, we anticipate

a reduction in the time taken to shuffle intermediate data, since the data will already be resident

in memory when a Reduce task requests it, eliminating another disk IO.

In the MapReduce data flow (Section 3.2.1), Map tasks write their output to local

storage in order to achieve two properties:

1. asynchronous communication. MapReduce and Hadoop make no attempt to coor-

dinate the execution of Map tasks with Reduce tasks. As of Hadoop 1.0, there are two

pools of resources allocated, one for each type of task, and each task type is effectively

scheduled independently. Map tasks write their output to node-local storage and Reduce

tasks request that data, as needed, at some later point in time.

2. fault tolerance. When a Reduce tasks fails, a replacement Reduce task is started by the

central coordinator. This replacement task requests the data for its keyblock from every

completed Map task (as well as those that subsequently complete). If Map tasks did not

persist their output, then, in the event of a failed Reduce task, all previously completed

Map tasks would need to be rerun to (re)produce their output for the replacement Reduce

task.

The changes made to the communications model in Section 6 lead us to reevaluate
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the need for asynchronous communication as well as the impact of a Reduce task failure in our

system. Our modified scheduler (Subsection 6.5.3) creates temporal locality between a given

Reduce task and the Map tasks that it depends on, thereby increasing the probability that

Reduce tasks will fetch their assigned data promptly after a given Map tasks completes. While

this does not eliminate the need for asynchronous communication, it does provide a probabilistic

bound on the window of time over which that communication will occur. Somewhat similarly,

our ability to use Reduce task specific barriers (Section 6.4) limits the number of Map tasks that

would need to be rerun in the event of a Reduce task failure, assuming that the intermediate

data were not persisted. Based on these two observations, we experiment with altering Hadoop’s

shuffle phase to persist intermediate data exclusively in memory and only until every dependent

Reduce task has successfully retrieved their assigned data. We refer to this work as SIDR-IM,

since this is the same system detailed in the SIDR paper [16] with the addition of an in-memory

shuffle mechanism (hence the “-IM” suffix).

7.1 Scheduling

For Map tasks that contribute to a single Reduce task, the existing scheduling changes

suffice because that Map will, by virtue of our previous changes, not start until its sole depen-

dent Reduce task is already running. For Map tasks that contribute to multiple Reduce tasks,

we identified three possible approaches:

1. Do not schedule a Map task until all Reduce tasks that it will generate data for are

running. This approach runs the risk of creating a shortage of Map tasks eligible to be

run if the Map and Reduce task dependencies overlap antagonistically or, in the extreme,

a deadlock is possible (similar to the Dining Philosophers problem [33]).

2. Alter the InputSplit generation algorithms to create splits such that all of the data in

an individual split are in a single KT` , resulting in that Map task contributing to a

single Reduce task and thereby precluding this scenario. Data dependencies between

Map tasks and a Reduce task are a result of the structure of the data being processed,

the extraction shape and the InputSplit generation process. It may be possible to take

the lessons learned in creating the Holistic-aware Partitioning function (Section 5.3) and

apply a similar approach to generating InputSplits such that each InputSplit produces

data for fewer (one) Reduce tasks. With this approach, the InputSplit generation process

would attempt to optimize towards two to three independent goals (e.g., data locality,

minimizing Map / Reduce task dependencies and, optionally, combiner efficacy), which

seems likely to result in mediocre results.
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3. Schedule a Map task when at least one of the Reduce tasks that depend on it is running,

then cache the resulting intermediate data until the other Reduce tasks that need it are

scheduled and then request said data. The RAM used to cache this data will be occupied

for an unbound (but likely relatively short) amount of time and the number of Map

tasks in a query that need to cache intermediate data will depend on the combination of

the input data set and the query being applied. This unpredictability means that this

approach may cause OutOfMemory exceptions at run-time, that would result in a given

task failing.

The in-memory shuffle mechanism in SIDR-IM is derived from the Hadoop Online

Prototype [59] (HOP) code, forward ported to Hadoop 1.0. The HOP authors elected to use

the third approach (albeit in a different context than the one that we have created). This choice

seems reasonable to us as well, based on our observations of scientific queries appearing in our

survey of related work. In essentially all of the scientific queries that we have encountered,

Map tasks that would generate data for more than one Reduce task will do so for consecutive

Reduce tasks. Combining this observation with the fact that Reduce tasks are scheduled in

monotonically increasing order (Subsection 6.5.3), leads us to another case of temporal affinity

that results in cached intermediate data being accessed by all interested Reduce tasks in prompt

order and that memory then being freed.

7.2 Fault Tolerance

As mentioned previously in this section, if intermediate data are not persisted for the

duration of the query, then a Reduce task failure necessitates rerunning Map tasks in order to

regenerate the missing intermediate results. In Section 6.5.1, we described how our system can

calculate I` in order to determine actual data dependencies for the purposes of starting Reduce

tasks once those dependencies are met. For fault tolerance, this same mapping is cached during

job initialization and then used to schedule already completed Map tasks for re-execution in

the event of a Reduce task failure. This approach enables a MapReduce query to continue

executing despite Reduce tasks failures and in the absence of persisted intermediate data.

7.3 Memory Management

One of the primary differences between our work in SIDR-IM and the approach pre-

sented in the HOP paper is the management of server memory while a query executes.
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7.3.1 Memory Usage in HOP

The MapReduce Online [27] paper presents several approaches to efficient shuffling

of intermediate data. The HOP authors implemented pipe-lining as a means to enable online

aggregation. With pipe-lining enabled, Map task output is buffered and, once a threshold is

reached, a combiner (if specified) is applied. The resulting output is directly transferred to the

appropriate Reduce tasks with the added requirement that all Reduce tasks are running for the

duration of the query. Intermediate data are integrated into the results as they arrive at the

Reduce task, limiting this approach to supporting only distributive operators. While we do not

support online aggregation in our work, pipe-lining is an interesting avenue for future work.

For non-pipe-lining execution (referred to as “blocking” [27]), a fixed-sized cache is

used to store Map task output. Intermediate data is written to this cache if 1) the output

is below a specified threshold and 2) there is sufficient memory remaining in the cache. If

either of these requirements are not met, the data is written to the local filesystem on the

node executing the Map task and then read again when a Reduce task requests it (exhibiting

behavior identical to unmodified Hadoop). By using a fixed-size cache, HOP’s approach creates

predictable memory consumption, simplifying the specification of a cache size that can co-exist

along side the configured number of concurrent tasks.

7.3.2 Memory Usage in SIDR-IM

In order to guarantee that intermediate data never resides on disk, and without placing

undue restrictions on the InputSplit generation process, SIDR-IM persists all intermediate data

in an in-memory cache and at no point evicts data to disk-based storage. This approach does

present the potential for RAM to be exhausted on a given node and we chose to address this

issue via the tuning of buffer sizes as well as limiting the number of tasks that may concurrently

execute on a single node.

7.4 Implementation

As previously mentioned, SIDR-IM is based on the HOP source code [59]. In HOP,

a memory manager class is created for each TaskTracker (one runs on each node that is used

to execute Map and Reduce tasks). When a Map task completes, it registers its output with

the memory manager on its node. Also, when a Reduce task starts, it registers itself with the

memory manager on every node. In HOP, when a memory manager receives the output from a

Map task, it sends that output to every previously registered Reduce task and also caches it for

any Reduce tasks that may subsequently register. Likewise, when a Reduce task first registers,
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any existing Map task output is sent to it and an entry for that Reduce task is created so

that any subsequent Map task output may be sent to it. This approach gaurantees that every

Reduce task will receive its output from every Map task. HOP only discards intermediate data

when the job completes, meaning that the amount of intermediate data consumed by these

memory managers strictly increases as the query runs.

SIDR-IM leverages the knowledge of which Reduce tasks depend on data from which

Map tasks to initiate transfers only where an actual data dependency exists, resulting in a

dramatic reduction in total network connections (Table 6.2). Additionally, intermediate data

is discarded once it has been successfully transferred to all dependent tasks. Ideally, this will

achieve a relatively steady state, where intermediate data is being discarded at roughly the

same rate as new intermediate data is being generated via Map tasks executing. The temporal

locality induced by our changes to the Hadoop scheduler should contribute towards achieving

this steady state.

7.5 Experiments, Part 1

These experiments focus on measuring the effects of using an exclusively in-memory

shuffle in Hadoop. The hardware specs for the nodes used are listed in Appendix A and the

query being executed is identical to Query 3 from Subsection 6.7.1.

7.5.1 Configuration

Given that SIDR-IM caches intermediate data in the case where a Map task generates

output for more than one Reduce task (Subsection 7.1), we have to account for this added

memory usage. Our research cluster (see Appendix A) consists of nodes that contain two

dual-core CPUs and 8GB DDR-2 RAM. In previous experiments [16], we found that the ideal

per-node configuration was to allocate 3 Map task slots, each with a 832 MB RAM limit, and

2 Reduce task slots, each with a 1344 MB RAM limit. For the experiments presented in this

section, these limits were increased with the Reduce task memory limit increasing to 2560 MB

and the Map task memory limit increasing to 1280 MB. The larger memory allocations were

required for larger output buffers that we found were required to prevent spilling Map output

to disk while also avoiding OutOfMemory errors. Concurrency limits were altered to be 4 Map

tasks and 1 Reduce task.
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7.5.2 Query 5

As a baseline, we ran the same query specified in Subsection 6.7.1 over the same 348

GB dataset so that we could compare our results to those in the previous section. Our nodes

lack sufficient memory to run this query with the 22 Reduce tasks that would normally be

used (recall the rule of thumb mentioned in Subsection 6.7.1); it is not possible to allocate

enough memory for a Reduce task to hold all of the data that would be assigned to it. Via

experimentation, we found that the smallest number of Reduce tasks that were required such

that a given Reduce task could hold all of the data assigned to it was 168 (note, this is a dataset

/ query specific number).
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Figure 7.1: Reduce task completion for SIDR and SIDR-IM

Figure 7.1 shows the Reduce task completion graph for this query and it is clear that

moving the shuffle phase to be exclusively in-memory did not improve total query execution

time. In fact, it yielded slightly worse performance with the final result taking long to produce

than with SIDR (although this may be attributable to SIDR-IM being more sensitive to tuning,

since memory is more scarce).

After further research, presented in the following subsections of this chapter, we iden-

tified the reason that speeding up individual shuffles (Subsection 7.6) did not improve overall
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job performance. In unmodified Hadoop, Map task output is written to disk. On our cluster,

we have configured more concurrent tasks executing per node than a given server has physical

cores to execute. This over-subscription means that when a Map task goes to write its output

to disk (not computationally dense), there are other tasks that can soak up the unused cycles.

In effect, writing Map task output is not in the “critical path” as any inefficiencies in this pro-

cess are hidden by the oversubscription on a given server. In SIDR-IM, the decision to write

Map task output to memory moves this process into the critical path, since it is now entirely

dependent on CPU and memory resources, for which there is heavy contention. This is why,

even though the shuffles themselves are more efficient in SIDR-IM, the total job time does not

change; we took a process that was not in the critical path and, while optimizing it, moved it

into the critical path. In light of this discovery, we revisit previous research in Section 7.7 and

find a means of reducing job run-time while persisting intermediate data in-memory.

7.5.3 Improvements in Shuffle Efficiency

While Figure 7.1 does not show an improvement in job run-time, SIDR-IM does

yield improvements in the times taken for individual shuffles to occur. Table 7.1 shows the

impact that our work has on both the time taken to shuffle intermediate data, the number of

connections over which that data is shuffled, and the total time taken to execute a MapReduce

job. The next subsection discusses these entries and provides further quantitative comparisons

of shuffle performance under differing approaches.

Hadoop Shuffle Scaling

Configuration Total Shuffle Time Total Shuffle Connections Total Job Time

(# Reducers) (Aggregate Seconds) (# Connections) (Wall Clock Seconds)

SciHadoop 22 19,280 61,182 1,173

SIDR 22 6,657 2,851 1,324

SIDR 168 11,161 3,337 1,141

InMemory 168 2,273 3,337 1,027

SIDR 528 6,885 4,510 920

InMemory 528 2,413 4,510 1,223

Table 7.1: Hadoop shuffle scaling
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Figure 7.2: A histogram of per-shuffle transfer sizes for a Hadoop query run with SciHadoop

and SIDR, both configured with 22 Reduce tasks

7.6 A Deeper Discussion of Shuffle Performance

While SIDR-IM’s in-memory shuffle phase did not have an appreciable impact on

total job execution time, the changes in the performance and characteristics of the shuffled

data are interesting. In order to establish a baseline, we compare the characteristics of data

shuffled with our previous projects (SciHadoop and SIDR). The hash+ function dictates which

intermediate data is assigned to each Reduce task. A side-effect of the work done to reduce the

per-task barriers (Section 6.4) is that there are fewer total Map to Reduce data dependencies

(Table 6.2) but the total amount of data that must be shuffled is unchanged. Therefore, each

of the shuffles that does occur must move a larger amount of data, a fact reflected in Figure

7.2.

The default hash function in Hadoop uses a modulo-based approach, resulting in all

Map tasks generating approximately the same amount of output data for each Reduce task

(with the exception of entries in the smallest bin, which are an artifact of how the keys are

serialized; sometimes a Map task produces a very small amount of output for a Reduce task).

The bin that all of the non-trivially small SciHadoop intermediate dataset sizes fall into spans
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the range of 1 MB - 5 MB. In contrast, hash+ constrains the number of Reduce tasks that each

Map task will generate data for. This results in a bi-modal distribution where (non-trivial)

shuffled data sizes are split across two buckets: the 60 - 80 MB range and 100-120 range. The

difference between shuffles that fall in each of these buckets is a direct result of the degree to

which the specified operator was able to be applied in the Map task (i.e., an increased rate of

application yields smaller output Map task output sizes). Unfortunately, these are also the set

of intermediate outputs that contribute to more than one Reduce task (hence the approximately

60 MB step-sizes visible in the memory pressure figures (Figures 7.10 and 7.11).
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Figure 7.3: A histogram of per-Shuffle transfer times for a Hadoop query run with SciHadoop

and SIDR, both configured with 22 Reduce tasks

The larger sizes of the SIDR output require a longer duration to transfer, compared to

individual Map outputs generated by SciHadoop. Figure 7.3 is a histogram of the time required

to shuffle the individual intermediate outputs whose sizes are graphed in Figure 7.2. While the

per-intermediate output time is longer, the aggregate amount of time taken to transfer all

intermediate outputs drops with SIDR, from 19,280 seconds to 6,657 (Table 7.1). We attribute

this reduction in shuffle time to the reduction in the total number of intermediate datasets that

translates into fewer unique datasets per Map task, resulting in a given Map task having to

service fewer concurrent requests by Reduce tasks. That reduction in unique requests, in turn,
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results in fewer parallel reads being required of the single hard drive that services intermediate

data reads and writes as well as the initialization of fewer connections, with their associated

overheads. With SIDR, intermediate data requests result in large, consecutive reads issued to

the hard drive, as opposed to the smaller reads from disjoint portions of the output file induced

by the datasets generated under SciHadoop. We contend that it is this series of interactions

that results in the reduction in total shuffle time. Our inference is predicated on the observation

that mechanical hard drives exhibit better throughput in the face of large, continuous accesses

than they do when presented with smaller accesses that require seeks to service. We would

expect different performance results if the intermediate data was stored on some other medium,

such as flash-based SSDs.
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Figure 7.4: A histogram of per-Shuffle transfer times for a query run with SIDR using 22 and

168 Reduce tasks

Next, we look at the impact that scaling the number of SIDR Reduce tasks from 22 to

168 has on the shuffle metrics. The nodes in our cluster are configured to execute, at most, two

Reduce tasks and 4 Map tasks concurrently. Given that the nodes possess 4 cores, this increase

in total Reduce tasks will lead to 6 tasks (4 Map and 2 Reduce) running concurrently as opposed

to 5 (4 Map and 1 Reduce) when only 22 Reduce tasks are configured. Figure 7.4 presents

the histogram of the shuffle times for these two experiments. The added concurrent task
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increases competition for computational resources but also represents additional opportunity

for overlapping computation with IO. The distribution of shuffle times shows an increase in

the larger buckets, indicating a number of individual shuffles took longer under SIDR with 168

Reduce tasks than they did under SIDR with 22 Reduce tasks. This observation is reflected in

Table 7.1, which shows that the aggregate shuffle time did increase. The notable exception is

an increase in the number of intermediate data that are in the first bucket, representing the 0 -

100 ms range. This increase in shuffles with very short-duration time is caused by an increase

in the number of Map outputs where the operator was very effective at reducing Map output

size. Figure 7.5 shows the increase in the number of Map outputs whose total size is in the

0 - 1 MB bucket (from 56 under SIDR with 168 Reduce tasks to 1109 under SIDR with 168

Reduce tasks). Interestingly, the number of intermediate data that took a very short amount

of time to shuffle (those falling in the <100 ms bucket) increased to a larger degree, from 618

to 1068, in the same tests. We attribute this larger than expected growth (short shuffle times

increased by 450 shuffles while small dataset sizes increased by 278) to the increased number of

total Reduce tasks resulting in an increased probability that a non-“small” intermediate data

set was fortuitously generated on the same server running a Reduce task that depends on it.

In this scenario, what would have been a network transfer instead results in a much faster

in-memory copy.

While aggregate shuffle times increase, the total query execution time drops when in-

creasing the number of Reduce tasks from 22 to 168 for SIDR, as shown in Table 7.1. This result

indicates that the increased ability to overlap computation with IO more than compensates for

the increase in aggregate shuffle time.

These comparisons between SciHadoop and SIDR’s shuffle characteristics form the

context in which we present the detailed experimental results for SIDR-IM. The choice of 168

Reduce tasks for the second SIDR experiment was dictated by the observation that 168 Reduce

tasks is the minimum number required for successful execution of a task with SIDR-IM. The

need for a larger number of Reduce tasks derives from the fact that increasing the number of

Reduce tasks results in each individual Reduce task processing less data and therefore being

dependent on fewer Map task outputs. This enables individual Reduce tasks to exhibit less

variability in the time it takes them to request all of their intermediate data and less data

being cached per Reduce task. The increase in predictability translates into a lower maximum

in terms of memory needed to cache intermediate data at any point in the execution of a job

and depending on fewer Map tasks results in each Reduce task requiring less RAM for caching

intermediate data.

While the value of 168 Reduce tasks as the minimum for SIDR-IM was determined
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Figure 7.5: A histogram of per-Shuffle transfer sizes for SIDR with 22 and 168 Reduce tasks.

experimentally, we anticipate that it would be possible to come up with a fairly simple heuristic

to compute this value based on the specific query, input data size and node memory capacity.

Figure 7.6 is another histogram of per-shuffle transfer times that contrasts SIDR

with SIDR-IM (both with 168 Reduce tasks). The most striking result is that, on the whole,

individual shuffles times improve significantly. All SIDR-IM bins under 1500 ms show increases

and those over 1500 ms all decrease with almost no shuffles taking longer than 3 seconds.

A comparison of the shuffle sizes between SIDR and SIDR-IM is omitted because they

are identical. The processes that dictate the sizes of intermediate data are unchanged between

these two approaches and only the storage medium differs (disk-based vs purely in-memory).

Increasing the number of Reduce tasks for SIDR-IM (Figure 7.6) has a similar effect to

that observed when scaling the number of Reduce tasks under SIDR (Figure 7.4) in that shuffle

times increased, both in terms of the number of shuffles landing in the longer duration bins

and in the aggregate shuffle time for the entire job. The degree to which shuffle times increased

was less: scaling SIDR from 22 to 168 Reduce tasks saw aggregate shuffle times increase from

6,657 seconds to 11,161 seconds while scaling SIDR-IM from 168 to 528 Reduce tasks saw

aggregate shuffle times increase from 2,273 seconds to 2,413 (Table 7.1). In contrast to the

SIDR scaling experiments, total query execution time does not improve when we scale Reduce
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Figure 7.6: A histogram of per-Shuffle transfer times for SIDR and SIDR-IM, both with 168

Reduce tasks.

tasks for SIDR-IM. Total query execution time actually increases, from 1,027 for SIDR-IM with

168 Reduce tasks to 1,223 seconds for SIDR-IM with 528 Reduce tasks. Since SIDR-IM’s shuffle

is CPU and memory intensive, rather than disk IO intensive, increasing the number of tasks

has no impact on Hadoop’s ability to overlap IO with computation. Rather, it just splits the

same amount of work into smaller units that compete in (essentially) the same manner for the

same resources that their counterparts do when fewer Reduce tasks are specified. Furthermore,

increasing the number of Reduce tasks incurs the additional overhead of spinning up (and then

down) additional Java processes.

7.7 Query Aware Input Split Generation

Based on our findings from the end of Section 7.5, we revisited our Holistic-Aware

partitioning approach from Section 5.3. This optimization alters the InputSplit generation

process to favor the creation of splits that increase operator efficacy at the expense of diminished

data locality. This approach yielded modest gains in earlier experiments, see Section 5.4 for

details. Our improved understanding of the shuffle phase, developed as we investigated the (lack

77



100 250 500 1000 1500 2000 3000 4000 5000 10000
Shuffle Time (milliseconds)

0

10

20

30

40

50

P
e
rc

e
n
t 

o
f 

S
h
u
ff

le
s 

p
e
r 

B
in

32.8

0.2
1.7

44.9

15.9

2.6
1.1 0.3 0.2 0.3

49.2

0.2
1.2

33.2

11.9

2.7
1.3

0.2 0.2

Per Shuffle Transfer Times

InMemory 168 Reducers

InMemory 528 Reducers

Figure 7.7: A histogram of per-Shuffle transfer times for SIDR-IM with 168 and 528 Reduce

tasks.

of) performance gains for an in-memory shuffle, lead us to the realization that the relatively

small degree to which job run-time benefited from this alignment of InputSplits is due to the fact

that inefficiencies in the writing of Map task output can be obscured by the over-subscription

of server CPUs. Because the inefficiencies are not contributing to the total run-time in a

meaningful manner, then the impact of optimizing them will likewise be muted.

In SIDR-IM, we moved the writing of Map output into the critical path. Therefore,

any alterations to the performance of this process should now be fully visible. This lead us to

revisit the Holistic-Aware partitioning work (which we now refer to as QueryAware). Figure

7.8 shows the same query from Section 7.5, run with QueryAware both off and on. In this

experiment, we see that job run-time is improved significantly (nearly 40% in this case); much

more than the 4% (Table 5.1) seen in earlier experiments for this same optimization.

7.7.1 Map Phase Performance Analysis

In light of our previously flawed assumption that simply caching intermediate data

in memory would improve job run-time, we wanted to identify the precise reason that the

78



0 200 400 600 800 1000 1200

Time from Job Start (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
T
o
ta

l 
O

u
tp

u
t 

A
v
a
ila

b
le

MapReduce Job CDF - 168 Reduce Tasks

Mappers - QA Off
Mappers - QA On
Reducers - QA Off
Reducers - QA On

Figure 7.8: A comparison of Map and Reduce task completion lines for the same query run

with QueryAware On and Off

combination of an in-memory shuffle with the QueryAware partitioning was yielding the run-

time benefit visible in Figure 7.8. In order to accomplish this, we broke the Map task into four

phases and then analyzed how long each phase took with and without these optimizations.

The four phases are:

• Input IO: time taken to read the data indicated by the InputSplit

• Apply Map(): time taken to apply the indicated map function to each input key/value

pair in the data read during the previous phase

• Register Output: time taken to serialize each intermediate key/value pair

• Commit: time taken to track the serialized data as it is packed into buffers that will

either be written to the local file system or buffered in memory

The highlight of Figure 7.9 is that the median time for an entire Map task to complete

drops from a little over 24 seconds to just over 11 seconds when SIDR-IM and QueryAware

partitioning are used in concert. These median values are represented by the red lines within

the respective boxes. The top and bottoms of the boxes represent the 75th and 25th quantiles,
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respectively, and the “whiskers” that cap the dashed lines represent the 95th and 5th percentiles,

respectively. The goal of this representation of the nearly 2900 Map tasks is to display the

changes in not only the median observed Map execution times but also the alteration to their

distributions and those of their constituent phases.

As we look at the per-phase breakdown, we see that the impact that using SIDR-IM

with QueryAware partitioning had varies by phase. The “Input IO” phase improves somewhat

(just over 600 ms) but we attribute this to an improvement in overall system efficiency leaving

spare cycles that aid this phase. The same amount of total data is being read by the set

of all Map tasks and the re-alignment of InputSplits should not have a noticeable impact on

individual read times.

The performance of the “apply Map()” phase improves significantly as a result of

the QueryAware partitioning generating InputSplits that lead to significantly higher operator

efficacy. This increased efficacy is evident in the reduction in Map task output shown when

comparing the second and third-to-last entries in Table 5.1. The speedup of the “apply Map()”

phase stems from each Map task having significantly less data to serialize.

7.8 Intermediate Data Memory Pressure

As mentioned earlier in this section, caching intermediate data destined for non-

running Reduce tasks increases memory requirements for a TaskTracker. Figure 7.10 graphs

the memory consumed by intermediate data, on a single node, over the time span of a Hadoop

job. The memory is allocated dynamically, as Map tasks complete, and is freed after the last

Reduce task that requires that intermediate data successfully retrieves it. The same data de-

pendencies used in to diminish the Map / Reduce barrier (Section 6.4) is cached and reused by

the TaskTracker to determine which Reduce tasks will request output from which Map tasks.

It is this aggressive approach to memory reclamation that enables the relatively steady state

behavior shown in the figure. This TaskTracker stores a little over 18 GB of intermediate data

over the duration of the query, which is more than twice the total memory our servers possess.

SIDR-IM is able to cache this data with, at most, 350 MB of memory.

The maximum memory consumed by cached intermediate data at any given time

is a probabilistic combination of the configuration of several components but the primary

contributing factors are the number of concurrently executing Reduce tasks and the number

of InputSplits that will contribute to more than one Reduce task. The configured number of

shuffle threads contributes to a lesser degree as do tasks that are re-executing due to prior

failures. Figure 7.11 shows the memory pressure exerted for the same query as Figure ?? run
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over the same data but with 528 Reduce tasks configured (note that each node will execute

a maximum of 2 Reduce tasks concurrently). The maximum amount of memory used at any

point in time is comparable to the immediately preceding figure, with the smaller peak resulting

from those previously mentioned probabilistic interactions. Improved Reduce task performance

reduces the duration that a given output remains in a cache, dropping the peak. For this query,

dataset and cluster combination, the cached intermediate buffers are roughly 50 MB each, so

this variance represents one fewer Map task output being cached at the peak compared to figure

7.10.

7.8.1 Alternate Approaches

HOP’s approach to caching intermediate data has the benefit of consuming a pre-

dictable amount of RAM, where as SIDR-IM requires a variable amount that can, as mentioned,

potentially result in run-time exceptions. One approach to correcting this unpredictability
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Figure 7.10: Amount of memory occupied by intermediate shuffle data, over time, for a single

TaskTracker (SIDR-IM with 168 Reduce tasks).

would be to utilize a fixed-size cache and incorporate the allocation of the cache memory into

the task scheduling process. We conjecture that it should be possible to fairly accurately esti-

mate the amount of memory required to cache the output for a Map task (or at least calculate

an upper bound with a reasonable amount of confidence) based on a combination of histori-

cal information for the same query and run-time observations. The scheduler could continue

using its locality-based approach to scheduling Map tasks and add the caveat that the chosen

TaskTracker have at least the estimated amount of necessary cache memory available, or else

the scheduler would remove that TaskTracker from consideration and continue looking for a

suitable host. We reiterate that only Map tasks that contribute to more than one Reduce task

would require this extra constraint while Map tasks contributing to a single Reduce task can be

scheduled via the existing approach since they will consume effectively no intermediate cache

space (their output will be transferred to the cache and then immediately requested by the

single already running dependent Reduce task). To further prevent the output of this class of

Map tasks from consuming cache space in the TaskTracker, we could further alter SIDR-IM to

have Map tasks directly transfer their output to the running Reduce task. The HOP authors

took this approach in an early iteration of their work, but found that it had the undesirable
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Figure 7.11: Amount of memory occupied by intermediate shuffle data, over time, for a single

TaskTracker (SIDR-IM configured with 528 Reduce tasks).

effect of causing the given Map task to occupy its Map task slot for the duration of the transfer,

causing individual task execution time to increase and driving down total cluster utilization.

We share their view that this is a disadvantageous trade-off.

7.9 Further Observations

While persisting intermediate data in memory does not improve query execution time,

we contend that this result makes a strong statement about the impact of our previous work;

specifically, that per-Reduce task barriers enable us to profitably increase the number of Reduce

tasks to the point where otherwise disk-based processes can remain memory resident in existing

in-memory caches. What that means in the context of this experiment is that when we increased

the number of Reduce tasks to the point that SIDR-IM could fit all of its intermediate data

in memory, then SIDR could as well (since they are processing the same query that generates

the same amount of intermediate data), albeit in caches. In both approaches, the Reduce tasks

were doing in-memory merging and sorting, skipping the disk-based merge-sort needed when a

Reduce tasks intermediate data exceeds its memory capacity. The only functional difference is
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that with SIDR-IM, Map tasks hand their output off to a memory manager rather than writing

it out to local storage and that data is likewise not read from local storage when requested

by a Reduce task. Furthermore, the temporal locality induced by our changes to the Hadoop

scheduler in the SIDR work increases the likelihood that a Map task output in SIDR will still be

resident in the node’s filesystem cache when it is requested by a Reduce task, thereby providing

memory-level latencies while also providing fault tolerance.
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Chapter 8

Future Work

This section describes work that, while related to what we present, was deemed beyond

the scope of this thesis.

8.1 Pipe-lining

The idea of pipe-lining MapReduce jobs, with the output of one serving as the input

to the next, is a common concept that has been researched, both explicitly [70] and as part

of larger projects [27, 156]. Oozie [95], an Apache incubator project, is a workflow scheduler

for Hadoop jobs that makes pipe-lining straight-forward. Most “shared-nothing” systems can

be used as part of larger workflows that use some degree of pipe-lining to accomplish more

complicated actions than would be possible with a single query / program.

8.1.1 How Early Results Benefits Pipe-lining

Previous work on producing early results during the execution of a MapReduce pro-

gram [28] noted that the goals of early results and pipe-lining are complementary. By sending

early results to the next phase of a pipe-lined MapReduce program, it is possible to achieve

additional overlapping of computation and IO as well as potentially receiving early results from

the next MapReduce program.

The type of early results that our work produces, correct results for subsets of the

total input, is a better fit for pipe-lining than the alternate form of early results, probabilistic

results for the entire output based on some fraction of input processed, since the latter requires

that the MapReduce program consuming the pipe-lined data be rerun as more accurate versions

of the output are produced.
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8.1.2 Anticipated Research Questions

We hypothesize that rerunning the pipe-lining experiments from MapReduce Online

[27] with our version of early results would result in lower resource utilization (since subsequent

MapReduce jobs would not need to re-execute as more output is sent to it). While this may or

may not decrease the total query run-time, we would expect it to benefit other queries running

on the same cluster, since more resources would be available to them.

8.2 Leveraging a Parallel Filesystem

The filesystem that ships with Hadoop, HDFS, supports append-only write semantics.

The scientific file formats that we have used in our experiments and development (NetCDF and

HDF5) update meta-data in their files as those files are written, even if the data itself is written

in a sequential, append-only manner. Because of this incompatibility, our work to date has been

unable to write out results in the same scientific file format that the input to the MapReduce

program was read from.

Given the limitations of HDFS, we experimented with running Hadoop on top of the

Ceph file system. Ceph is a general purpose parallel, distributed file system that supports

mutable data. While not included in any published results, we have created an HDF5 Virtual

File Driver (VFD) for Ceph. This allows us to conduct experiments that both read and write

HDF5 files from a distributed file system (Ceph). In addition to enabling experiments that

more closely resemble real-world use cases, we can now consider alterations to Hadoop that are

not possible with HDFS.

8.2.1 Anticipated Research Questions

The addition of the extraction shape to our query language enables code in the Map

task and Combiner function to determine if they possess all of the elements that will exist

for a given instance of an extraction shape. This same knowledge that enables the holistic

combiner can be leveraged to allow Map or Combiner tasks to write to the final output files if

they determine that all the data that will contribute to the result for a given cell in the output

file is present. Data written in this manner would bypass the Reduce task, thereby generating

less intermediate data and IO which we conjecture would lead to a reduction in total execution

time.

Writing to the final output from potentially many tasks, as opposed to just one task

(the Reduce task assigned the keyblock for that file) will place different requirements on

the distributed file system that stores persistent data. Lock contention and scientific access
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libraries’ internal caching are of particular interest when considering this change. We envision a

set of experiments to show how the ratio of final output written from Map and Combiner tasks

affects the performance of MapReduce jobs. This effort will also require changes to Hadoop’s

process for committing output to HDFS, the code for rescheduling failed tasks and Hadoop’s

process for notifying Reduce tasks of completed Map tasks.

An issue resulting from moving to Ceph as the underlying distributed file system for

our experiments is that the data placement function used by Ceph, CRUSH [150], does not

necessarily store data on the node that writes it, as HDFS does, but rather calculates the

correct nodes that will store said data. This functionality can be used to co-locate Reduce

tasks on nodes that will store a copy of the output file those tasks will write, turning what

would normally be writes to a remote server into local IO, for one of the replicas. A set of tests

quantifying the effects of non-local Reduce task writes along with the impact of attempting to

co-locate Reduce tasks on nodes that will store the data they produce would ideally be carried

out as part of this effort.

8.3 Structuring the Unstructured

All of the work discussed up to this point has focused on approaches for processing

structured scientific data. We hypothesize that it may be possible to apply similar approaches

to unstructured data, with the general approach of creating artificial structure over the data.

Specifically, we propose partitioning the data into separate sub-datasets, processing each of

those sub-datasets independently and then integrating the results of those sub-datasets into

the final result (likely via a Map-Reduce-Merge [156] type system).

8.3.1 Anticipated Research Questions

Our hypothesis is that the performance benefits gained from enabling Reduce tasks

to start early as well as the anticipated benefits of the above proposed pipe-lining research will

overcome the cost of adding an additional merge phase after the standard Map and Reduce

phases. This hypothesis would require experiments to quantify the effects on query run-time

induced by this work.

Given that we can not compute the data dependencies for unstructured data, we

would have to resort to producing probabilistic early results for the entire dataset. However,

our probabilistic results would be produced with knowledge as to which portion (in terms of

byte-ranges) of the total dataset has been processed up to that point. This added knowledge

could be useful for scientists attempting to understand the early results as they are produced.
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This is a qualitative benefit that we would not plan to validate via experimentation.

Since we propose a partitioning of the dataset into sub-datasets, each dataset can be

scheduled in any order. If a domain-specialist believes that interesting results are more likely

to occur in a given region of the input, then that region can be scheduled first and when its

results are available, the system can guarantee that those early results contain all the input in

the specified sub-dataset. This is also a qualitative benefit whose value is not readily validated

via experimentation.

88



Chapter 9

Related Work

The work presented in this thesis draws from several different research areas. We’ve

split the related works into categories for ease of reference and comparison.

9.1 MapReduce

Phoenix [108, 157] is a MapReduce implementation that is optimized for multi-core

computers, as opposed to distributed, networked systems, and several papers have built upon

the original project. A follow-on project [131] added reservoir-based Reduce tasks to Phoenix.

Some of the Phoenix-based work has looked into using MATE [68], which is derived from

Phoenix, to process scientific data [147]. While it is vague in their paper [147], personal

correspondence with the author confirmed that this system scheduled tasks at the file-level,

requiring pre-processing of large datasets and the associated additional data movement and file

management issues. We view this tactic as not viable at large scales, and therefore a major

impediment to wide-spread adoption. Tile-MapReduce [24] is another attempt at optimizing

MapReduce for multi-core systems. Its focus is extracting maximum performance on a single-

host and it therefore does not contribute to the topics presented in this thesis.

Two closely related projects implemented server-side filtering and aggregation for data

stored in NetCDF [128] and HDF5 [148] as alternatives to OPeNDAP [96]. This is comparable

to issuing queries to a MapReduce cluster and then returning the results to a remote client.

Dryad [63] is a MapReduce competitor that has a more flexible communications model

and can use a query compiler (DryadLINQ [159, 64]) that integrates information about the

dataset, query and cluster into execution plan generation. Work on processing scientific data

with Dryad [35] indicates that the parallel analysis enabled by the framework yields performance
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benefits. However, this research used input files that were all quite small (less than 33 MB)

and therefore did not approach the issue of data locality or processing a subset of the data

contained in a file. Their equivalent of the RecordReader simply uses a scientific access

library to read an entire file and then passes that data, as a whole, to the application logic.

This represents a fairly basic attempt at enabling the processing of scientific data and fails to

utilize the structure present in the input.

Similar to Dryad, is Nephele / PACT [8] , which are a programming model and exe-

cution framework, respectively. The framework utilizes a three-stage process that incorporates

a Map, Reduce and Merge phase (the Merge phase can come before or after the Reduce phase).

The programming model supports contracts, where the operators applied in a given phase can

inform the framework of certain properties that it will guarantee for the data, such as the

output maintains the same keys as the input or that the output is partitioned in a certain

manner.

Previous attempts at reducing the impact of the global barrier between Map and

Reduce tasks in a MapReduce program serve as an interesting comparison point to our approach.

In [141], the authors focused on distributive functions and required that all Reduce tasks be

running prior to any Map tasks producing output. They then use reservoir-based versions of

their functions to maintain a constantly updating result for each key. This approach, while

interesting, has several drawbacks. The paper points out that this work requires a larger

memory footprint, which may require resorting to a disk-based merge-sort. As dataset sizes

increase, we see this becoming more of an issue. This approach is also limited to the types of

functions it can apply (only distributive), and it is incompatible with our approach of increasing

the number of Reduce tasks past the best practice of 90% of the nodes. Under this system,

it is not possible to increase the total number of Reduce tasks, due to the requirement that

they run throughout the duration of the query, thereby preventing the use of several of the

optimizations that we have identified in our work.

Recent work on caching in Hadoop [5] recognizes that many large Hadoop clusters

are multi-tenant and individual jobs typically cannot run all of their Map tasks at the same

time. This results in “waves” of tasks running for a given job. The authors show that the

total job only benefits when a waves-width worth of tasks were served out of the cache (with

the optimal solution being that all tasks within a job read their input from the cache). An

interesting application of this work to our research would be to adapt the PACMan system to

apply their “all-or-nothing” model to the set of Map tasks that contribute to the same Reduce

task. Since this set is almost always smaller than the set of all Map tasks for an entire job

(and very possibly smaller than a “wave-width”), it may be possible to produce more granular

90



scaling than was observed with PACMan in terms performance improvements relative to the

amount of memory available for caching.

Work on extending MapReduce to produce early results [27, 28] has focused on online

aggregation, a concept that originated in the database community [56]. In online aggregation,

results are provided early in the query process and presented as a range with an associated

probability. As the query continues to execute, the range of the answer shrinks and the prob-

ability increases, until the final answer is computed. In applying this approach to MapReduce

[27, 28], the authors opted to output results at fixed points in the progression of the query (i.e.,

when 25%, 50%, 75% and 100% of the input had been processed by Map tasks). They did

not attach a probability value to the results, letting the percent of the input processed serve

as an indicator of the veracity of the early results. Early results of this type give an intuition

as to the entire, final result of the query being run while our work on producing early results

(Section 6.5.2) emits final results as they are produced.

CGL-MapReduce [36] used a modified version of MapReduce to process scientific data

but depended on their content distribution network for communicating data between tasks and

deferred failure recovery to its central coordinator. This work did not strive to achieve data

locality and also did not leverage the structure inherent in the data being processed. Simi-

larly, another research effort built a MapReduce implementation on Microsoft’s Azure platform

[49]. This second project also relied on the communications services unique to its environment

(Azure) for communication between Map and Reduce tasks with resiliency provided by Azure’s

persistent queues service. Since this system was operating in a shared environment (cloud),

data locality was not addressed. The nature of the data being processed was not leveraged but

the research rather focused solely on using the parallelism provided by MapReduce to improve

the performance of scientific analysis.

Sailfish [109] is a project that aims to reduce the impact of intermediate data skew

in Hadoop. Their solution is to collect all intermediate data in rack-local files, evaluate the

distribution of intermediate data by key and then assign intermediate data to Reduce tasks

based on the observed intermediate key distribution. The Sailfish framework dynamically sets

the number of Reduce tasks based on the size of the intermediate dataset. Their experiments

displayed performance improvements for data exhibiting a significant amount of intermediate

data skew. This approach introduces more serialization as Reduce tasks cannot start copying

their data until after all the Map tasks have finished and the key distribution analysis has

completed. Additionally, the failure of any of the rack-local nodes collecting intermediate data,

while less likely than an arbitrary node-failure, necessitates rerunning all the Map tasks in the

same rack that had written their output up to that point.

91



9.2 Databases

Databases have been used for processing large amounts of structured data for decades.

However, the difficulty with which most databases scale horizontally, that is increasing the

number of nodes running a database in parallel, was one of the motivations for the creation

of MapReduce. The rise in prominence of MapReduce has inspired database manufacturers to

revisit their designs and incorporate ideas, such as schema-less tables, from MapReduce into

their systems as a means of enabling better scaling. At the same time, the shared nothing

community has been integrating aspects of databases including indexing, views, and query

optimizers [34, 77, 156].

A typical database use case is to ingest data from outside sources, reformat the data

to match a schema, and then an experienced administrator configures indexes according to the

anticipated workload for the data. These steps can lead to very efficient processing if the query

is well aligned with the structure of the data. Queries that are not well-aligned to the structure

of the data run less efficiently, with the worse-case resulting in the full data set being read in

order for the query to be satisfied.

Scientific research often involves running ad hoc queries to suss out interesting aspects

of the data being processed or queries that analyze data along different axes, thereby making

those queries poor candidates for indexes. Additionally, the data used for scientific research

can be unique or difficult to reacquire, for example sensor data or the results of an expensive

simulation, so loading that data into a database either represents additional storage resource

usage (if the original copy is kept in its original format for archival purposes) or else the scientist

must trust the database to safeguard the fidelity of the dataset. Furthermore, if the data resides

solely in the database, then existing tools are unable to access it, since they usually require a

file interface and databases expose a query interface. All of these issues contribute to our view

that a shared nothing style system interacting with binary file formats on top of a distributed

file system is ideally suited for discovery science and providing efficient analytics for ad hoc

queries.

Recent research delved into the unique characteristics of scientific data and how those

properties can be leveraged to provide more efficient indexing of scientific data [98]. Another

project [155] looked at building file indexes for scientific data and storing those in a distributed,

in-memory hash ring in order to provide real-time support for efficient querying. The latter

project suffers from the issue of requiring that the appropriate dimensions to index be known

ahead of time and the utilization of in-memory storage for the indexes both bounds their size

and raises fault-tolerance concerns.

Recent attempts to tackle the growing size of scientific data sets with databases include
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the Sloan Digital Sky Survey (SDSS) [129] and SciDB [127]. It is worth noting that the

former project had the personal involvement of Jim Gray, one of the foremost authorities on

databases, and focuses on the efficient execution of a set of pre-selected queries, rather than

supporting efficient ad hoc queries. The latter is an on-going research project that represents

the intersection of databases and array-based storage systems. SciDB’s primary use case is the

classic database model of data ingest and then enforcing its internal structure on that data.

The project does aspire to eventually support queries over external data, but as their approach

to doing so has not been published or implemented, we are unable to evaluate how it will serve

the scientific community or compare to our work.

Other instances of databases being used for scientific data analysis include Mon-

etDB/SQL [66] and a project that presents an array-based interface for querying data stored

in a database [6] . A recent project [167] also extended MonetDB to treat arrays as first-class

citizens. One of their key innovations is supporting structure-based operators that are very

similar to our tiling approach that is defined via the extraction shape.

A 2005 paper [46] that discussed the applicability of databases, cloud and grid comput-

ing to scientific computations identified several issues inherent in using databases for processing

scientific data. Among these issues were two that echo our concerns: a lack of set-oriented access

to data and the inability to access the scientific data via existing tools.

9.2.1 Databases That Are Not Actually Databases

As previously discussed in Section 2, databases can provide very efficient query support

by reorganizing data and creating indexes over that data. This requires a priori knowledge of

the queries to be run and the data is typically only accessible via the query interface. Research

into systems that fit this approach, reorganizing data for efficient query support, but that

use an internal structure other than the row (or column) based format used by most modern

databases has been conducted with the intent that these alternative representations would be

more closely aligned to target problem domains and their data models. One of the first array-

based data stores was RasDaMan[9], with ArrayStore [123] (and associated projects [121])

being a more recent implementation of this idea and this work [25] suggesting that those arrays

be stored in files within HDFS. The latter looked at several approaches to decomposing and

storing multi-dimensional data in terms of the effects on query performance. Similarly, SciDB

[13, 126] and Pyramid [136] store their data as chunked, 2-dimensional arrays. In this way,

they are database-like since the data is reformatted to the system’s internal storage format and

data model.

An early paper on an array-based query language [76] laid out a calculus of arrays

93



and approaches to optimizing queries over arrays.

HAMA[118] is a BSP-based system designed for processing scientific data. It supports

matrices and graphs as data models with data residing in a structured store (HBase in the

literature). The work presented in this thesis could be used to support running HAMA over

scientific data in their native file formats but that is beyond the scope of this thesis. All work

presented in this thesis, both completed and proposed, is based on the MapReduce processing

model.

Cumulon [60] is a framework for efficient execution of matrix computations within

Hadoop that processes data stored in HDFS. An interesting aspect of this work is that the

scheduler both assigns tasks to resources and allocates virtual machines on Amazon’s EC2

service, based on time and cost constraints.

Some scientific computations are better modeled as graphs. While we have not ad-

dressed graph computations in our work, existing frameworks [83, 153] could likely be modified

in a manner similar to the changes to Hadoop outlined in this work, thereby enabling those

frameworks to access in-situ scientific data.

Research into distribution rules for queries over arrays [138] approaches the issue of

presenting an array-based interface for scientific data analysis while storing the actual data in

a classic relational database (MonetDB in this case). Similarly, RIOT [166] provides users of R

with the ability to specify operations over arrays that are transparently stored in a traditional

database. Yet another project [122] looked at methods for processing arrays in parallel within

Hadoop (the data residing in HDFS).

SCOPE [22], Hive [133] and Tenzing [77] adopt SQL-like syntax and access their data

as strongly typed columns (or rows) stored in files in a distributed storage system, Cosmos

(part of Dryad [63]), HDFS and BigTable, respectively. It is worth noting that Tenzing can run

over structured data, so it could be extended to read from scientific file formats by mapping

multi-dimensional data to a table-based scheme. A solution of this variety would still need

to address the issues of achieving data locality and mapping from the logical model to the

byte-stream model described in this thesis.

HadoopDB[1] takes an interesting approach to mixing SQL with Hadoop: they run a

database on each node and then use Hadoop for job scheduling and fault tolerance. Data are

replicated among nodes just as it would be on HDFS, it simply resides in a database on each

node. This approach has the data reorganization drawbacks already mentioned but does offer

both good performance and scalability by merging aspects of two previously distinct approaches

in a novel way.

Systems such as Piccolo [104] and Spark [161] exist at an intersection of simple, par-
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allel frameworks and in-memory databases. They both provide a simple programming model

with the framework taking responsibility for fault-tolerance, task scheduling and inter-task

communications. Since they are memory-resident, they either fail to work or degrade to disk-

based storage if the dataset being processed cannot readily fit in the collective memory of the

cluster. In the latter case, they start to resemble MapReduce with the major exception that

they assume a table model, rather than a file-model for interacting with storage. Either system

could be extended to map multi-dimensional data to their table model and adapters for scien-

tific file formats could be created, at which point they could be evaluated for their effectiveness

at processing scientific data. This line of research is outside the scope of this thesis.

The Active Storage Fabrics Model [41] suggests using the main memory of a computing

cluster as the storage medium for an in-memory database for the purpose of analyzing scientific

data. While this would substantially improve performance over a disk-based analytics system,

it also limits the input dataset size to the size of aggregate memory and has data movement

costs.

Indexing within Hadoop has been shown to reduce total query times for subsequent

queries [99, 3], assuming the correct dimensions to index are known ahead of time. Another

project [146] combined the idea of content-addressable networks (CAN) with distributed, hi-

erarchical R-trees. This allows queries to quickly (measured by the number of hops required)

find desired data. This work generates many indexes on each node and then each node pub-

lishes the indexes that appear profitable given recently issued queries. The variability of which

dimensions benefit queries over scientific data would likely render this approach less effective

than was observed in the paper [146].

An index’s ability to preclude data from needing to be read, as in [3], is very similar

to our NoScan feature.

9.2.1.1 Resilient Distributed Datasets

One of the contributions of the Spark project is the idea of Resilient Distributed

Datasets (RDDs) [160], which are immutable datasets whose keys are range-partitioned. Since

RDDs are immutable and range partitioned, Spark can, given an operator (query), understand

the relation between the input to an operator and that operator’s output at the granularity of

an RDD partition. This is fairly analogous to the process by which we compute I` (Subsection

6.4). From the available literature [161, 38, 160], it appears that Spark categorizes dependencies

between input and output RDDs as either one-to-one or one-to-all. We were unable to find an

explanation of why they did this, but we assume that the authors found that most queries fall

into one of these two behaviors, and those that do not were either so rare as to be inconsequential
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or that the impact on those queries was small enough to be tolerated. We consider Spark, and

related works, to be excellent research projects in their own right(s), but we would have liked

to see a further discussion on how RDD mappings are constructed and used in Spark. This

would have enabled us to more intelligently contrast our work to theirs.

Given what is published about RDDs, we feel that our work on understanding how keys

are mapped through different keyspaces in the MapReduce model is a more extensive treatment

than those presented in the existing Spark [161], RDD [160] and Shark [38, 154] papers. Our

intent in presenting formal definitions of how keys are translated between keyspaces as well as

how our alterations to the MapReduce model affects these translations is to elucidate our lines

of reasoning as well as the precise mechanics employed in our implementation.

The Spark platform has also served as the basis for a streaming computing platform

[162]. In place of RDDs, this system used discretized streams as its unit of computation and

resiliency.

9.3 MPI

Research into using MPI for processing large scientific datasets in parallel is underway

at other institutions. One project created an HDF5 driver to write files to a distributed shared

memory cluster that stored the data in an in-memory file system [124]. These “files” can then be

analyzed very quickly with existing tools (ParaView in this case). This approach obviously has

scalability limits (the aggregate amount of main memory) and is primarily targeted for analysis

done immediately after a simulation executes, which is not the use case we are targeting.

Research into merging MPI with MapReduce has taken place with the goal being to

run MapReduce on top of MPI [58] or, alternatively, using MPI within Hadoop [51]. Neither

presents a compellingly novel approach given the previous systems already considered in the

course of deciding to base our work on a shared nothing system.

9.4 Other Related Work

Other research groups have compared databases with MapReduce-based systems for

analyzing large, scientific data sets [124, 102]. Some have focused on data from certain com-

munities, such as Astrophysics [78], but they did not alter the underlying system, they simply

used the stock implementation that we have previously described and benchmarked against.

The expressiveness of the MapReduce model [69] and how it compares to other models,

such as bulk synchronous parallel (BSP) [40], and Dryad and Oracle [158], serve as good
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background material for understanding MapReduce itself.

One of the more interesting alternatives to MapReduce is Ceil [87]. It is a distributed

data flow framework that allows for run-time, data dependent decisions in terms of data routing

and barriers. While it is beyond the scope of this paper, it would be interesting to see how

simple it would be to extend a Ceil-based system to incorporate our research into using scientific

meta-data and query-awareness into the processing framework.

As Hadoop has matured, more concepts from the database community have found

their way into MapReduce-based research projects. Indexing and co-partitioning (partitioning

datasets so that related data from different tables reside near each other) were added to Hadoop

as part of the Hadoop++ project [34]. Both features were implemented in such a way as to

have minimal impact on query run-time (indexing is done incrementally as queries execute and

co-partitioning occurred during data ingest, requiring a priori knowledge of which data would

be queried at the same time). Building the indexes incrementally is attractive as it commits

small amounts of work over time, resulting in often queried data realizing the benefits of an

index without effort being wasted to build indexes on rarely accessed data. Co-partitioning

during ingest is less attractive as we envision providing query support on top of primary stor-

age (i.e., requiring no explicit ingest phase) but it may be possible to create co-partitions

via a background process that is incorporated into the data placement or replication strate-

gies. Somewhat similar to co-partitions, divergent replicas store redundant data in different

arrangements with each being optimized for different access patterns.

While the issue of data locality for Map task input was well researched as part of this

thesis, we do not plan to invest effort into improving Reduce task data locality. This topic

has been investigated by previous research efforts [117, 70] in the context of shared compute

clouds (virtual machines). In general, the goal is to schedule a Reduce task on a node that will

execute at least one Map task that will contribute data to the identified Reduce task. This

results in what would previously have been a network transfer of intermediate data turning

into a node-local read. While this does represent a savings in resources, for large clusters and

large datasets, the savings does not seem commensurate given the complexity added to task

scheduling by correlating Map output with Reduce keyblock assignment and then scheduling

those tasks to be co-located on the same node.

Recent research suggests that data locality is becoming less important as networking

technology starts to catch up to disk-based storage throughput [4, 91]. While this may or may

not hold true over the next several years, the paper points out that work on placing tasks where

they can access their required data on local hard drives can be re-purposed to place tasks on

nodes where the data is resident in the local memory (such as with RAMClouds [97]). The
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multiple levels at which data locality can yield performance benefits serves as further validation

of the work presented in this thesis.

In discussing the issues inherent in using a database or a system that reorganizes

data, we have claimed that access to the data in its original format is forfeited due to the

reformatting. The work presented in the MRAP paper [116] (and a more recent, very similar

paper [152]) can be used to overcome this issue; its indexing system could provide access to

the data in its original format while internally storing it in some other layout that was better

aligned to the anticipated query load. For example, pairing MRAP with the ArrayStore file

format could be an interesting approach to providing improved query performance while still

allowing access of the file in its binary format. The research required to quantify the trade-offs

in doing so is outside the scope of this thesis.

Efforts to enable in-situ processing of data pre-date MapReduce, with the active disk

[110, 2] work taking place in the mid-to-late 1990’s. While a forefather of MapReduce, work

in this area typically assumed that all required data was present on a given hard drive. Also,

since the execution occurred on a processor attached to the hard drive, which is not the case

in current systems, the programming environment was difficult to work within and there was

little to no central coordination of processes.

Attempts at creating remote procedure calls (RPC) for active storage [120], published

in 2002, represents preliminary work towards combining the concepts of active storage with

distributed systems in a more centralized, coordinated manner. Another project in the active

storage space is MVSS [80] (and, to a lesser extent, quFiles [140]), which provides in-situ

processing of files by specifying views that, when read, transform the original data and return

the derived content.

In addition to skew in per-key intermediate data sizes, another concern is compu-

tational skew, which is typically observed when Map tasks spend differing amounts of time

processing datasets of equal sizes. Existing research attempts to create InputSplits represent-

ing equal computational requirements, rather than equal amounts of data, by leveraging a

user-defined cost function [71]. This thesis does not include investigating this type of skew.

More recent works [72, 73] on addressing skew (both in size and computational load)

looked at simply tracking the completion percentage of running tasks and then reassigning

portions of long-running tasks input to idle tasks. This is a very general approach that could

be applied to our work, but special care would be required to transfer contiguous ranges of

intermediate keys when re-balancing intermediate data across Reduce tasks.

Integrating query support into a primary storage system results in processing tasks

competing with existing storage services for resources (CPU, memory, etc.). While it is outside

98



the scope of this thesis, some solution for providing isolation between these competing tasks

will be required in a production in-situ processing system. Work on providing quality of service

(QoS) guarantees for IO [103] serves as a good starting point for researching solutions to this

issue.

A more tractable approach is to augment a file system to enable batch computing sys-

tems to issue hints or commands that inform the storage system of impending data accesses.

BADFS [10] presented this idea along with supporting evidence that workload-informed de-

cisions in the storage system yielded performance benefits. A more recent paper [137] builds

on this, suggesting that data replication and layout be adjusted to support more efficient data

accesses by batch computations.

In our discussion on pipe-lined MapReduce programs, we mentioned Oozie as one

option for executing a pipe-lined query. It is also possible to express queries as a Pig Latin

[94] program, which will generate a series of MapReduce programs to perform the specified

work. Previous work into integrating scientific workflow systems with Hadoop include Kepler

+ Hadoop [145, 90]. Furthermore, multiple versions of Hadoop built specifically for queries

that require multiple iterations of a given MapReduce query exist: Twister [37], HaLoop [14],

and Iterative MapReduce for Azure Cloud [48]. These focus on lowering latency between

MapReduce jobs, minimizing cross-job data movement and keeping data in memory between

iterations. Another project [32] looked at modifying Hadoop to perform better in the face of

dynamic (multi-stage with multiple communication patterns) scientific workflows.

Domain specific solutions, including [170], combine open-source components with an

interface specific to a given topic, geoinformatics information systems (GIS) in this case. Sim-

ilarly, [164] presents a SQL interface as a means to process GIS data with MPI and PnetCDF

being used for the underlying data access. While this approach yields a solution that is custom-

tailored to the data and queries common to that field, we would advocate building a general

system and then layering a thin domain-specific interface on top of that.

Another domain-focused solution is MERRA [114], which is an entire computation and

storage software stack built to serve climate data. It is a virtual machine image that connects

to other installations over the internet (grid-enabled), uses iRODS [62] for data management

and provides some data processing capabilities via supplied MapReduce queries. MERRA’s

storage layer is also similar to databases in that it extracts data from its native file format and

restructures it (with the associated overhead and lack of access in its original format). While

the MapReduce component in MERRA uses the standard Hadoop distribution, and therefore

does not add to our discussion of extending MapReduce, the project serves as an example of

how the work presented in this thesis could be utilized.
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An early project that attempted to build a general, extensible data store that could

support scientific data sought to use SQL as the general interface to the data and then delegated

the storage and processing of that data to external, format-specific stores [12]. This work serves

as a spiritual successor to ours, albeit with the significant difference that we chose MapReduce

as the computational framework and model, as opposed to SQL.

The authors of a project enabling parallel particle tracing [100] presented some inter-

esting solutions to dealing with iterative computations whose computational densities vary over

time. This approach, which uses per-iteration statistics to adjust work distribution on subse-

quent iterations, could be integrated into a dynamic hash function for assigning intermediate

data in an iterative MapReduce job.

The alterations to the Hadoop scheduler presented in this paper share the default

scheduler’s assumption of homogeneous per-node performance. Existing work in efficient schedul-

ing of Hadoop jobs on heterogeneous clusters [165, 55] is equally applicable to our work.

Hadoop has been used as a means to parallelize existing serial analysis processes. As

example, this work [61] utilized Hadoop as a means for fault-tolerant task execution with R

[112] providing the actual data processing. Similarly, this work [163] uses Hadoop for task

scheduling (and resource allocation) with actual data processing occurring via serial programs

executed by a given task. This latter project incorporates HBase as a means to track data

provenance and metadata.

Several projects [163, 66, 126, 106] conducted surveys of scientific workloads and we

look to the information presented in these papers for both inspiration (in our early work) and,

in the case of the more recent works, validation of our design decisions.

The MapReduce approach has been applied to computations in the realm of data

visualization with some success [142].

We feel that our work fits well into the model of scientific computing laid out in

a recent paper that sought to describe the requirements for a cloud computing system for

science [107]. Specifically, our contributions would serve as the middle-ware layer in a scientific

computing software stack.

The work presented in this thesis focuses on scientific file formats that have Java

implementations available. For file formats with no Java implementation, Hadoop supports

a more basic interface called Hadoop streaming. This form of Hadoop has been shown to be

less efficient, due to its less granular approach to reading data (input data is presented as a

byte-stream to the Map task which then must convert that data into key/value pairs). The

MARISSA project [31] notes that several scientific file formats lack Java libraries and sought to

improve the performance of Hadoop streaming for scientific data. Their work utilizes a shared
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filesystem for storage and seems to ignore data locality of any kind. While interesting for small

clusters, the ability of the shared filesystem to serve an increasing load of non-coordinated

accesses seems questionable.
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Chapter 10

Conclusion

The work described in this thesis represents the first, to our knowledge, attempt to

extend Hadoop to efficiently process scientific data while maintaining the goals of the orig-

inal MapReduce project: high rates of data locality, flexible scheduling and fault tolerance.

Furthermore, we have leveraged the unique properties of scientific data to further extend the

MapReduce model, improving performance and adding new capabilities to Hadoop that were

not previously possible. Our work to date has contributed to the current state of the art by

producing new analysis of existing aspects of MapReduce (holistic combiners and MapReduce’s

internal communication model), new theory for extending MapReduce to efficiently process sci-

entific data, and thorough experiments showing the efficacy of implementations based on these

theories.
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Appendix A

Experimental Setup

Our experiments were conducted on a cluster of 25 nodes, each with two 2.0GHz

dual-core Opteron 2212 CPUs, 8GB DDR-2 RAM, four 250GB Seagate 7200-RPM SATA hard

drives, and Gigabit Ethernet, running Ubuntu 10.10 [15, 18] or 12.04 [17, 16]. SIDR built

upon the SciHadoop code [45] that we ported from Hadoop 0.23 to Hadoop 1.0. Our Hadoop

cluster has a single node acting as both the NameNode and JobTracker while the other 24

nodes serve as both DataNodes and TaskTrackers. The 24 DataNode/TaskTracker nodes use

one hard drive for the OS, supporting libraries and for temporary storage while the other 3

hard drives are dedicated to HDFS. All nodes have a single Gigabit network connection to an

Extreme Networks’ Summit 400 48-t switch. HDFS is configured with 3x replication and 128

MB block size. Each TaskTracker is configured with 4 Map task slots and 3 Reduce task slots

(testing showed these were the optimal settings for our cluster).
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