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ABSTRACT 
Natural ventilation, used appropriately, has the potential 
to provide both significant HVAC energy savings, and 
improvements in occupant satisfaction.  

Central to the development of natural ventilation 
models is the need to accurately represent the behavior 
of building occupants. The work covered in this paper 
describes a method of implementing a stochastic 
window model in EnergyPlus. Simulated window use 
data from three stochastic window opening models was 
then compared to measured window opening behavior, 
collected in a naturally-ventilated office in California. 
Recommendations regarding the selection of stochastic 
window use models, and their implementation in 
EnergyPlus, are presented.  

INTRODUCTION 
The California commercial building sector uses a 
significant  portion  of  the  state’s  primary  energy.  Of  the  
energy used on-site, 48% is used in heating, cooling 
and ventilating office buildings (CEUS). In order to 
meet   California’s   commitment   to   reduce   carbon  
emissions by 25% by 2020 and 80% by 2050 (AB32), a 
significant portion of the existing commercial building 
stock will need to be retrofitted to adopt low-carbon 
HVAC strategies. During the next 25 years, the 
potential energy savings from retrofitting existing 
buildings will greatly exceed the potential savings from 
optimizing new buildings for energy efficiency (Coffey 
2009). 

Natural ventilation offers the opportunity to provide 
energy savings and reductions in greenhouse gas 
emissions from commercial buildings in both California 
and the U.S. at large. Consequently, the California 
Energy Commission is supporting a multi-faceted 
research project that is intended to address barriers to 
broader adoption of natural ventilation in California.   
The principle goal of this project is to conduct a 
comprehensive study of these issues and provide the 
knowledge and new tools to the community that will 
allow owners, designers and policy makers to make 

informed decisions on the pros and cons of natural 
ventilation for cooling and ventilation of commercial 
buildings in California. 

Historically, a significant barrier to realizing these 
potential savings has been the perceived risk associated 
with applying unconventional HVAC strategies. 
Building stakeholders need assurance that natural 
ventilation will provide comfortable indoor air 
temperatures and maintain acceptable indoor air 
quality.  Accurate building-simulation-based natural 
ventilation models can be used to ensure the efficacy of 
natural ventilation and deliver this assurance. The 
validity of these models is critical to limiting perceived 
risks and encouraging the broader adoption of natural 
ventilation.  As a part of this broader research project 
we plan to assess and build upon the performance of 
current natural ventilation models. 

The work covered in this paper describes a method of 
implementing stochastic window use models in 
EnergyPlus. Three variations of an established and 
previously validated window use model (Rijal 2008) 
were implemented. Model prediction results were 
compared to measured window use behavior of 
occupants in a naturally-ventilated office building in 
Alameda, California. Using lessons learned from 
observed behavior in this building case study and other 
published studies, we explore appropriate methods of 
implementing occupant behavior models in EnergyPlus. 
Stochastic window use models offer potential 
improvements   over   EnergyPlus’s   current   deterministic  
window use models. These improved models will be 
used in future work to estimate the impact on building 
energy use and IAQ, of retrofitting existing California 
commercial buildings for natural ventilation.   

Current stochastic occupant models  
The first window state probability model was derived 
from three independent surveys in the UK, Pakistan and 
Europe (Nicol 2001). Since then, a significant number 
of models describing window use have been developed. 
A report by Borgeson (2008) provides a summary of 
developments through 2008. It reports that the 
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references covered have both areas of general 
agreement and disagreement.  

The key areas where current models generally agree are 
as follows. Firstly, human behavior is stochastic, not 
deterministic, but there are clear trends in the measured 
data. Models based on the probability of a window 
being used are therefore best suited to represent this 
behavior.  Secondly, occupants tend not to interact with 
their windows often. 

One area where the current models vary significantly is 
in their approach to implementing these stochastic 
models of window intervention behavior. Simple 
models predict whether or not a window is likely to be 
opened based on environmental conditions, while more 
complex models use Markov chains or survival analysis 
to incorporate time varying factors including the current 
state of the window in their models (Borgeson 2008). 

There is currently no consensus as to whether outdoor 
or indoor temperatures are the dominant factor 
determining behavior. Recent work by Dutton (2010) 
goes part way to explaining this uncertainty by 
proposing that the dominant factor differs depending on 
whether the interventions are to open or close the 
windows. During the heating season, the outside 
temperature was shown to be the dominant factor 
influencing window closing interventions. By contrast, 
during periods where the building was free running (no 
heating), indoor temperatures had the most statistically 
significant impact on window closing interventions.  

Significant differences are noted in the relative 
importance each author places on temporal aspects of 
window control, such as initial entry in to the building, 
as opposed to only considering occupant thermal 
comfort.  Models developed by Haldi et al (2009) and 
Humphreys (Rijal 2008) are based on the idea that the 
principle driver of occupant window intervention is 
occupant discomfort. In contrast, work by Yun-
Steemers (2007, 2008), Pfafferott & Herkel (2008) and 
Dutton (2010) observed that window opening primarily 
occurred immediately after entry into the room. 

MODELING BEHAVOR IN ENERGYPLUS 
Implementing user-defined models using the 
EnergyPlus building simulation tool is non-trivial.  
Several options are currently available. Firstly, 
EnergyPlus is open to collective open source 
development; users can obtain a copy of the Fortran-
based EnergyPlus source code, and implement desired 
changes in their own development version. 
Alternatively, building system controls can be modeled 
in Modelica and then, using the Building Controls 
Virtual Test Bed, EnergyPlus can be linked with the 
Modelica development environment (Wetter 2009). 
This approach holds some significant advantages over 

source code development, including rapid development 
and prototyping, and a free-to-use library of component 
models. A third option is to use a module within 
EnergyPlus, the Energy Management System (EMS). 
The EMS provides a script-based environment where 
users can simulate system control models. The EMS 
allows users to gain access to read and override a range 
of internal simulation variables, some of which are not 
ordinarily accessible to users. Users read variable 
values  using  “sensor”  objects  and  write  into  “actuator”  
objects (EnergyPlus 2011). The EMS brings with it its 
own set of issues. Implementing simple control 
strategies in EMS can be time-consuming, requiring 
considerable duplication of script, and increasing 
occurrences of user error, which is exacerbated by the 
limited debugging capabilities of the module. The EMS 
however, is native to EnergyPlus, and allows complete 
user-defined control of window state based on 
simulation variables or schedules. For these two 
reasons, it was selected as the platform to implement 
our models of occupant window use.   

However, as discussed, most recent models of window 
opening are probabilistic in nature, making them 
difficult to implement in EnergyPlus. EnergyPlus 
performs multiple warm-up simulations using design 
day environmental conditions repeated back to back, 
prior to performing simulation runs. EnergyPlus 
expects that by running the same conditions repeatedly, 
it will eventually reach a stable state.  Since the 
outcome of these stochastic models is likely to change 
each time the warm-up day is simulated, the models are 
likely to diverge, resulting in a non-convergence error 
message in EnergyPlus. Although simulations can 
complete (i.e. the full annual simulation is performed), 
the potential impact of this error on EnergyPlus system 
auto-sizing routines is currently undetermined.  

Implementation in EMS  
By considering the results of studies monitoring 
window use, three potential issues related to the 
application of window opening models in EnergyPlus 
have been identified.  Firstly, a significant proportion of 
published window models generate a binary outcome 
where windows are either opened or closed (Borgeson 
2008). There is some uncertainty as to whether these 
binary models are applicable in the case where 
windows can be opened by varying degrees, such as in 
our Alameda case study. Secondly, developers of large 
building models commonly do not implement each 
individual window in the model. A reduced set of larger 
windows is often used to represent the glazed portion of 
the building facade. An example of this is the DOE 
large office building reference model (NREL 2008). 
Finally, window-opening models typically do not 
consider the variable occupancy of open-plan spaces 
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(Rijal 2008). It is currently uncertain how to apply 
stochastic models of window use in open-plan spaces, 
where multiple occupants with varying schedules are 
impacted.  

Methods of addressing these potential issues were 
explored using three differing implementations of a 
binary stochastic window opening model in 
EnergyPlus’s   EMS   module. The original model was 
selected because it had been previously successfully 
implemented in building simulation and validated 
against measured data (Rijal 2008). The first 
implementation uses Rijal's (2008) model as published 
(we will call this RM1). A second alternative is 
proposed for use in simplified building models (we will 
call this one RM2), and the third (RM3) is identical to 
RM2, except that windows may be opened when 
occupants enter the room as long as the space is 
thermally comfortable.  

Window Opening Model  

The RM1 model was implemented in four steps.  
Firstly, the daily running mean average outdoor 
temperatures (Trm) were calculated (based on the last 20 
days), and used to calculate the adaptive comfort 
temperature (Tcomf). 

𝑓𝑜𝑟  𝑇௥௠ > 10  °𝐶 ∶    𝑇௖௢௠௙ = 0.33𝑇௥௠ + 18.8 

𝑓𝑜𝑟  𝑇௥௠ ≤ 10  °𝐶 ∶    𝑇௖௢௠௙ = 0.0.09𝑇௥௠ + 22.6 

Equation 1 

It should be noted that the result of the RM1 model is 
acutely sensitive to this adaptive comfort temperature. 
It is thus recommended that, if the user uses a weather 
file to calculate the adaptive comfort range, they should 
ensure that the file is representative of local weather 
conditions. In addition, a sensitivity analysis should 
ideally be performed so that a distribution, rather than 
point estimate of outcomes, can be provided. Then 
secondly, hourly measurement periods were categorized 
as either hot, cold or comfortable, determined by 
whether the indoor operative temperature is more than 2 
degrees C above (hot)  or below (cold)  the comfort 
temperature. Thirdly, when occupants were either too 
hot or too cold, an assessment was made of the 
probability that the window either opened or closed 
using Equation 2. 

The operative indoor temperature (Top) and the 
instantaneous outdoor temperature (Tout) were obtained 
using EMS sensor objects and then used in Equation 2. 

𝑙𝑜𝑔𝑖𝑡(𝑝௪) = 0.171  𝑇௢௣ +   0.166  𝑇௢௨௧ − 6.4 

𝑙𝑜𝑔𝑖𝑡(𝑝௪) = 𝑙𝑜𝑔 ቀ ௣ೢ
ଵି௣ೢ

ቁ   Equation 2 

Where pw is the probability of the window opening 
(when   occupants   were   “hot”)   and   closing   (when  
occupants  are  “cold”).   

Finally, whether a window was actually open or closed 
was determined by comparing pw to a randomly-
generated number between 0 and 1. If pw was greater 
than the number, then the window was opened, and if 
pw was less than the random number, then the window 
was closed. This was repeated for all 15 windows and 1 
glazed patio door, rolling a new random number each 
time. Random numbers were obtained in the EMS 
module using the EMS internal function 
“@RandomUniform”,   which   returns   a   uniformly  
distributed pseudo random number between defined 
bounds.  

The key difference between RM1 and RM2 lies in this 
final assessment of whether the window is opened or 
closed. For model RM2, the following simplification 
was made. In RM1 each window is either fully open or 
completely closed based on the comparison between pw 
and the outcome of a dice roll. By contrast, in RM2, the 
window open fraction for all windows in the room is 
adjusted in accordance with Equation 3. When 
occupants  are  either  too  “hot”  or  too  “cold,”  the  fraction  
of windows open is adjusted to account for 
interventions occurring each hour occupants remain 
uncomfortable. The value of pw, and hence the new 
window open fraction (OFnew), can be any value 
between 0 and 1.  

If occupants are too hot: 

𝑂𝐹௡௘௪ = (1 − 𝑂𝐹௣௥௘௩௜௢௨௦) ∗ 𝑝௪   +   𝑂𝐹௣௥௘௩௜௢௨௦ 

If occupants are too cold: 

𝑂𝐹௡௘௪ = 𝑂𝐹௣௥௘௩௜௢௨௦ ∗ 𝑝௪      Equation 3 
The rationale for this simplification follows: in the limit 
where the number of windows within each thermal zone 
is large, the proportion of windows subjected to a 
change in state (either opening or closing) can be 
approximated by pw. This follows, because the value of 
pw will be identical for each window in a thermal zone 
with a common operative temperature.  
Thus, as the number of windows in the zone approaches 
infinity, the portion of opened windows as predicted by 
the RM2 model tends towards an outcome as predicted 
by RM1.  
The RM3 implementation was identical to RM2, except 
that RM3 accounts for the possibility that occupants 
may open a window upon entering the office even if 
they are comfortable. This was implemented as 
Equation 4: 

(𝑈𝑝𝑜𝑛  𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑒𝑛𝑡𝑟𝑦  𝑜𝑛𝑙𝑦)    𝑂𝐹௡௘௪ = 𝑝௪    Equation 4 
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MEASURED DATA COMPARISON 

Occupant Window Use Monitoring 

Installation and collection of window state data was 
performed by our partners at the UC Berkeley Center 
for the Built Environment (CBE). The office used in 
this study occupies the second floor of a two-story 
building located on Alameda Island, California.  The 
office space is nominally split into two large open-plan 
areas, with a total floor area of 2,640 ft.2 The building 
does not have any mechanical ventilation system, and 
space heating is provided when necessary using small 
electrical resistance heaters. Twelve overhead fans with 
fully variable control are available for use by 
occupants. Fifteen sash windows located on all four 
sides of the office provide natural ventilation for fresh 
air and cooling. Figure 1 shows the locations and 
identifiers of the windows and the relative positions of 
the occupants’ desks. Windows f1 through to f8 are 
located in the front office, while windows b1 to b7 are 
located in the rear. Occupants are free to open any of 
the functioning windows in the office. However, 
several of the windows are located above desks and are 
not easily accessible. The work schedules of the 
employees are such that people are often away from the 
office, meeting clients or working remotely.  

 
Figure 1 Office layout and camera locations 

To measure window position, two digital cameras 
(Canon PowerShot A570) each with a wide-angle lens 
converter (Opteka HD  0.20X Professional Super AF 
fisheye lens, real angle of view = 174 deg.) were 

installed on ceiling joists facing the two open-plan 
offices. Figure 1 shows the locations and directions of 
the two cameras.  The camera’s  firmware  was  modified  
to allow the camera to be controlled automatically using 
scripting (Konis, 2011). This feature was used to 
automate the acquisition of JPEG images on regular (5-
minute) intervals.  Daily batches of JPEGs were then 
composited into movies and visually examined to 
determine window position. While it was possible to 
obtain estimates of the window state for the majority of 
observed periods, excessive glare caused by low solar 
altitudes compromised identification for certain periods. 
Figure 3 shows an example image where window state 
was mostly indeterminable, Figure 4 was taken during a 
period with significantly less glare and window states 
are easily discernable. Methods are now available to 
produce calibrated High Dynamic Range (HDR) images 
from bracketed sets of low dynamic range JPEG images 
(Inanici and Galvin 2004), making it possible to 
preserve a greater level of scene detail.  The use of 
HDR images would have been useful in recovering the 
window open fraction and may be used in future 
studies.  

Measurement of Office Environment 
Temperature and humidity were recorded throughout 
the study period at five-minute intervals using four 
HOBO loggers.  HOBOs were positioned at a height of 
approximately 1.5 meters, adjacent to occupied desks, 
and evenly distributed around the office. A weather 
station was installed on a mast attached to the side of 
the building to collect outdoor temperature, humidity, 
wind speed and direction.  

Occupant Comfort and Behavior 
Table 1 gives the fraction of occupied time that the 
given window was open, where occupied time is 
defined as 6 am to 6 pm, Monday through Friday. The 
results support observations that certain windows 
within the space are never used by the occupants.  

Table 1 Fraction of occupied window open time 
Month Percent  of occupied time open 

  F1 F2 F3 F4 F5 F6 F7 F8 

September 19% 19% 29% 27% 0% 49% 31% 54% 

October 10% 0% 3% 3% 0% 13% 3% 15% 

November 0% 0% 0% 0% 0% 1% 0% 0% 

December 1% 0% 0% 0% 0% 0% 0% 0% 
  D B1 B2 B3 B4 B5 B6 B7 

September 71% 8% 0% 0% 0% 0% 9% 0% 

October 34% 4% 0% 0% 0% 0% 26% 0% 

November 16% 0% 0% 0% 0% 0% 3% 0% 
December 4% 0% 0% 0% 0% 0% 0% 0% 
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This may be due in part to a difficulty reaching them, or 
because, a similarly located, but closer, window was 
found to provide sufficient ventilation cooling.   
Figures 7 through 9 show the number of open windows 
for each hour for four periods from September through 
to December. On the same two plots are the coincident 
indoor temperatures and comfort temperature bands.  
Table 2 shows the adaptive comfort state of occupants 
during periods where window opening and closing 
interventions occurred. More specifically, the metric 
presented is the number of interventions that occurred 
when occupants were in a given comfort state, divided 
by the total number of those interventions. 
Figures 7 through 9, and the analysis presented in Table 
2 show that the majority of window interventions 
occurred when the adaptive comfort model predicted 
that occupants were thermally comfortable, consistent 
with  the  ‘open  when  possible’  view  of  behavior. 

Table 2 Occupant comfort state during periods with 
window opening and closing interventions. 

 Comfortable Too hot Too cold 

Window Openings 72% 11% 17% 

Window Closings  85% 3% 12% 

 

Model Comparisons 
A comparison was made between measured window 
use and the outcomes predicted using first the RM1 
model, and then the RM2 and RM3 simplifications. A 
simplified two-zone office model was created in 
EnergyPlus with 15 windows and one door. A short 
weather file was then generated that covered the period 
of study, using the measured outdoor temperature data 
collected from our station. Indoor environmental 
conditions in the space were controlled within a narrow 
range (0.2˚C) to an hourly schedule based on measured 
indoor temperatures. Using the EMS module, the 
window opening state was then set based on the 
outcome of an implementation of our three models. The 
Tout used in Equation 2 was the instantaneous outdoor 
temperature taken from the bespoke Alameda weather 
file. 

A comparison was then made between the daily average 
fraction of open windows (Fractionaverage) using the 
measured and modeled data. For the purpose of this 
comparison, windows that were never used by 
occupants were not included in the calculation of the 
proportion of open windows. Five of the fifteen 
windows were not used throughout the observed period, 
and so were assumed to be either inaccessible, 
inoperable, or superfluous. The daily average fraction 
of open windows was calculated for both measured and 
model results using Equation 5. 

12

0
    

   average

Hourly windowopen fraction
Fraction

Hoursinwork day
    

Equation 5 

Where the hourly window open fraction is the number 
of open windows in a given hour, divided by ten (the 
total number of used windows.) Figure 2 shows that the 
comparison between the hourly fraction of open 
windows over the study period, as measured and 
predicted by RM1, RM2 and RM3, gave Pearson 
product-moment correlation coefficient squared (R2) 
values of 0.54, 0.54, and 0.7 respectively.  

 
Figure 2 Daily window open fraction 

Monthly averages of the daily average fraction of open 
windows were calculated including only occupied 
periods during the work week.  

Table 3 Monthly average open fraction  
Month Measured RM1 RM2 RM3 

September 0.43 0.51 0.50 0.76 
October 0.15 0.27 0.27 0.46 

November 0.03 0.02 0.02 0.06 
December 0.01 0.01 0.00 0.01 

For the total measurement period, predictions of the 
daily average fraction of open windows given by RM1, 
RM2 and RM3 were on average 30%, 29% and 60% 
higher than measured results, respectively. 
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Results showed that the trend of reduced window use 
during colder months was well represented by all of the 
models. However, early morning openings by 
occupants who either desired fresh air or who 
anticipated a requirement for cooling later in the day, 
was found to be reproduced by only RM3. In addition, 
the models were not aware of specific windows that are 
rarely or never used, and so overstated the fraction of 
windows open during hot periods.  

CONCLUSION 
The work presented in this paper presents the 
application of a stochastic window opening model in 
EnergyPlus. In the cases where multiple windows are 
known to exist within the thermal zone, two alternative 
deterministic simplifications of the model were also 
assessed. Reviews of prior studies of window use 
together with this case study reveal inherent problems 
in applying models of window usage. These problems 
would be confounded without supplemental 
information on how occupants actually use, or will use, 
their space. 

It is not currently understood how applicable many of 
the currently published window use models are if 
applied to office configurations that differ significantly 
from the office configurations used to derive the 
models. One possible difference is the type of windows 
used, whether they are either fully open or fully closed 
(hopper type), or variable opening (casement or sash). 
Another potential difference is the office layout, private 
or open plan.  

The window use model applied in this work used a 
binary indicator of occupant presence as per the original 
implementation (Rijal 2008). By contrast, in the 
Alameda case study, occupancy rarely exceeded 80% of 
full capacity, with a wide variation in arrival times. 
This disparity likely contributes to the observed 
differences between modeled and measured behavior. 
Further work would need to be done to establish 
whether scaling model predictions by the fraction of 
occupants present would improve predictions.  

It is recommended that EnergyPlus users select 
occupant models that are derived from data collected 
under similar office configurations (private office, large 
open plan, etc.). When possible, engineers should 
survey occupant building use in an existing or similar 
building to help inform and guide the selection of 
occupant models in general.  

In our sample case study, several windows were found 
to be completely unused throughout the measured 
period over a broad range of internal temperatures. 
Occupants were often shown to use their windows upon 
entry to the building, over a range of thermal comfort 
conditions. This behavior was confirmed by informal 

questioning of the occupants. This observation again 
brings into question the predictive capacity of a window 
opening model that assumes occupants only intervene 
to change the state of their windows based solely on 
their adaptive comfort state. Comparing measured 
window opening data with modeled data confirmed that 
models RM1 and RM2 did not capture observed early 
morning opening, resulting in low R2 values. 
Comparisons between the truly stochastic RM1 model 
and its simplified deterministic derivative, RM2, 
demonstrated that, for this fifteen-window building 
model, the difference between the RM1 and RM2 
models predicted outcomes were statistically 
insignificant.  

The use of the simplified models presents several 
advantages. Firstly, because the models are repeatable, 
EnergyPlus is less likely to give non-convergence 
errors. Secondly, the effort required to model large 
numbers of individual windows in a single thermal zone 
can be significantly reduced, as multiple windows on 
each facade can be represented by a single window of 
equivalent effective area. The main focus of this current 
work was not the validation of a given stochastic model 
however, but rather to demonstrate the application of 
stochastic models in EnergyPlus and explore the 
potential hurdles related to their application.  

Future work will assess different window use models 
from a range of authors. One of these models will be 
used to make estimates of the energy saving and indoor 
air   quality   implications   of   retrofitting   California’s  
commercial buildings to use natural ventilation.   
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APPENDIX 
 

 
Figure 3 High  glare  example  of  “fish  eye”  image 

 
Figure 4 Low glare example  of  “fish  eye”  image 
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 Figure 5 Number of open windows and indoor and comfort temperatures from September to October 

  

 
Figure 6 Number of open windows and indoor and comfort temperatures from October to November 

 

 
Figure 7 Number of open windows and indoor and comfort temperatures from November to December 
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