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Formulation of a Basic Building-Block Model for Interaction
of High-Speed Vehicles on Flexible Structures

By
L. Vu-Quoct and M. Olsson}

Abstract

In traditional analyses of vehicle/structure interaction, especially when there are
constraints between vehicle masses and the structure, vehicle nominal motion is
prescribed a-priori, and therefore unaffected by the structure flexibility. In this paper, a
concept of nominal motion is defined, and a methodology is proposed in which the above
restriction is removed, allowing the vehicle nominal motion to become unknown, and
encompassing the traditional approach as a particular case. General nonlinear equations
of motion of a building-block model, applicable to both wheel-on-rail and magnetically
levitated vehicles, are derived. These equations are simplified to a set of mildly non-
linear equations upon introducing additional assumptions — essentially on small struc-
tural deformation. An example is given to illustrate the present formulation.
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Formulation of a Basic Building-Block Model for Interaction
of High-Speed Vehicles on Flexible Structures

By
L. Vu-Quoc and M. Olsson

1. Introduction

In recent years considerable interest has been developed in implementing energy-
eflicient, high-speed, low-noise systems for airport-city or inter-city transportation — in
particular, the magnetically levitated (Maglev) vehicle systems (cf. Eastham & Hayes

[1987]). Currently, to ensure success of Maglev systems, guideway structures must be

designed to be stiff so that deflections remain within narrow margins of tolerance. The

cost of a stiff guideway structure can easily exceed 70% of the total cost of a system
(Zicha [1986]). More flexible guideways are less expensive, but present complex
vehicle/structure interaction.t The interaction between high-speed moving vehicles and
flexible supporting structures is the focus of the present paper. Even though the
impetus behind this work is geared toward high-speed vehicles, the problem of moving
loads does find applications in various fields of engineering (cf. Fryba [1972], Blejwas et
al [1979}). Extensive lists of references on the subject of moving loads over elastic struc-
tures are contained in the classical monograph by Fryba [1972], and in several review
papers, e.g., Kortiim & Wormley [1981], Ting & Yener [1983], report of Subcommittee on

Vibration Problems [1985], Kortiim [1986].

Formulation of vehicle/structure interaction for wheel-on-rail vehicles, or for elec-
tromagnetic Maglev vehicles with tight gap control, leads to a complex system of equa-
tions of motion. This complexity stems mainly from the constraints between moving

masses and the flexible structure, and from the existence of convective terms, which are

t Progress in suspension control technology will make possible the use of flexible guideways, and efliciency of
Maglev systems will increase with advance in superconductor research.
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important for high speed regimes. Such problem does not arise for vehicle models con-
nected to the structure via suspension systems where there are no constraints between
moving masses and the structure. In addition, efficient numerical algorithms must be
developed to deal with the resulting complex system of equations of motion; analytical
solution (for simple cases) is possible only when convective terms are neglected (e.g.,
Stanisic [1985]). So far, research effort has been based on the assumption that vehicle
nominal motion is known a-priori (e.g., Ting, Genin & Ginsberg [1974], Venancio-Filho
[1978], Olsson [1985-86], Wallrapp [1986]). Since mathematical models in these work
require prescribed vehicle nominal motion and do not admit driving forces, there is no
possibility to study effects of structure flexibility on vehicle nominal motion, or effects of
applied accelerating or braking forces on the vehicle/structure system. We have not
come across any reference where the assumption of known vehicle nominal motion is not

used.

We propose herein a methodology to analyze the complete vehicle/structure
interaction, valid for high speed regime, without resorting to the usual assumption of
known nominal motion. This general setting clearly includes the case where nominal
motion is prescribed a-priori. The scope of this paper is restricted to a basic model of
planar motion of a rigid wheel, or a Maglev magnet unit with tight gap control, moving
over a flexible beam. Energy-dissipative mechanisms are not considered here. The
present prototype model serves as a basic building-block for more complex
vehicle/structure models. We note that the wheel model also finds application in electro-
dynamic (repulsive) Maglev vehicles since these vehicles move on wheels up to a max-
imum lift-off speed of about 80km /h (Alscher et al [1983]). Further, both high-speed
Maglev vehicles and wheel-on-rail vehicles may possibly run on the same bivalent guide-

way structure.

Nonlinear equations of motion of the basic model, valid for large deformation of the

beam, are derived for a class of general (nonlinear) contact constraints via Hamilton’s
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principle of stationary action.} In the present work, structural response in the small
deformation range is, however, our main interest. With assumptions of small deforma-
tion, the nonlinear equations of motion are then reduced, in a consistent manner, to a
system of mildly nonlinear equations. This consistency is an important feature that dis-
tinguishes the present approach from traditional practice of complete linearization: Non-
linear terms of physical relevance, essential for high speed regime, are retained in the
equation for nominal motion of the basic model. Finally, an example of
vehicle/structure interaction at different initial velocities is given to illustrate the present

formulation.

Note that the study of dynamic motion of the complete system, driven by external
forces, as done here, is the only way to explain the Timoshenko paradox: Consider a
constant vertical force traversing, with some prescribed motion, a simply supported
beam. Since the net work done by the force is zero, where does the energy which leaves
the beam in a vibratory state after the traversing come from? The same question can be
asked for a moving mass with prescribed motion. In fact, the "excess" of energy comes
precisely from the work done by (unmodelled) external forces needed for the vehicle to

follow the motion prescribed (cf. Maunder [1960)).

2. Description of basic problem

In this section, we describe the basic problem of planar motion of a high-speed
moving load — a single rigid wheel or a suspended magnet with tight gap control —
over a flexible beam. Attention is focused, however, to the dynamics of the more com-
plex case of a rolling wheel. Several possible models of a Maglev magnet ("magnetic
wheel”) can be obtained from this basic model. Recall that the present basic model

serves as a building-block for more complex vehicle/structure models.

$ The term ‘contact’ is also used here for Maglev magnets with tight gap control.
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2.1. Basic assumptions. Let {E,, E;} be orthonormal basis vectors, and (X', X%
the coordinates along these axes. These objects define a coordinate system for the
material (undeformed) configuration of a beam. The line of centroids of the beam, of
length L and initially straight, is assumed to lie along the axis E,; the coordinate of a
material point on the line of centroids is denoted by S = X" € [0, L]. Let {e,, e,} be the
set of orthonormal vectors spanning the spatial (deformed) configuration, and con-
veniently chosen such that E; =e;, for + = 1,2. The displacement of a material point §

is denoted by u(S,t) = u%(S,t)e,,T where t € [0, + o) is the time parameter.

Consider a rigid wheel with mass M, radius R, and rotatory inertia about its center
of mass I,. Let Y(t)= Y*t)E, be the position of the wheel center of mass in the
material configuration of the beam; its position in the spatial configuration is denoted by

y(t) = y%(t)e,. We consider the following general form of constraint
y(t) = Y(t) + ¢u(Y'(t),¢t), u,s(YYt),t)), fora = 1,2, (2.1)

where ¢%-,-) are some functions of the structural displacement u and its spatial deriva-

B
%% = %%—eﬂ, such that ¢%0, 0) =0. We call Y(t), the motion of the wheel in

tive u,g =
the material configuration of the beam, the nominal motion of the wheel. Thus, for
u(S,t) =0, we have y*(t) = Y*(¢). Given the functions y'(t), u(S,t), and g¢'(u, u,s), rela-
tion (2.1) with a = 1 could be taken as a definition of the (unknown) nominal motion
Y!(t), i.e., Y'(t) is defined to be a solution of (2.1). In this formulation, we consider only
the case where Y? = R, for some constant B. Let 6 denote the angle of revolution of the
wheel, which is considered to be a function of the nominal position Y¥! and the structural

deformation (u, u,s). We will often employ the shorthand notation ¢%(¥',¢)

= ¢%u(Y,t), u,s(Y",t)), and similarly with 6(Y?t) = (17, uf Yht), u,5(¥%t)). Thus,

097 _ 0g% 0w 0g° 0% 00 ab o ouf | ob o%° (
S T ou” 85 T sufg 85° 7 8S T 89S " §uP 88 duf s 85

o
o
S’

t Throughout the paper, summation convention is implied on repeated indices, which take values in {1,2}.
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2.2. Kinetic energy and potential energy. The kinetic energy K of the basic

system (wheel and flexible beam) is given by

K = M {[ Vi g YLe) [P+ [ %Yy ) }+ LB P

(2.3)
+ 5] A,,{[u‘,,(s,t)]2+ [4®,(S )] }45 )
[0, L]
where the superposed " " denotes the total time derivative, i.e., () = —d-t—(), u®, = 6;:

denotes the partial derivative of »® in time, and A, the mass per unit length of the
beam.} Now, consider a function f:[0, L]X [0, o0)—IR, smooth enough in both arguments.
The first and second total time derivatives of f(S5,t), evaluated at S = Y'(t), are

obtained as follows

Of(Yht) g1, S(YN0)

Fryvt vy —
Jar v = 2 =

ot S 9 (YNE) sy *f(YLt) iye G O2f (Y 8) =y o*f(Yt) 9 .
fYLYLY ) = 53 '+ Y (Y9 + 2 CYEY Y+ e .(2.4b)

We will often omit to specify (1}1,5’.1) in the argument lists of quantities such as f and _.f.,
and simply write f(Y‘,t) and ;‘.(Yl,t).'f' Thus, employing (2.2) and (2.4) with f = g¢* to
evaluate ¢*(Y',t) and §(Y%,t), one obtains an expanded form of the kinetic energy (2.3).
The convective terms in (2.4) — i.e., the first term in (2.42), and the first three terms in
(2.4b) — play an important role in the interaction between high-speed moving vehicles
and the supporting flexible structures, as shown in Blejwas, Feng & Ayre [1979], where
numerical results corroborated experimental findings (see also Ting, Genin & Ginsberg
[1974]). Further, by the assumed smoothness of the function f in (2.4), total time
derivatives and spatial derivatives are interchangeable,

d
dt’

(YL | 87 Ay
387 887 det ’

t It should be noted that in {2.3) we do not consider the rotatory inertia of the beam cross-section; however, an
analysis including this term could be carried out following the same methodology presented in this paper.
+ This shorthand notation had been used in (2.3).
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and thus notation such as f,S(YI,t) can be used without confusion.

The wheel is subjected to an applied force F = F%,, and a torque T about its
center of mass. Without loss of generality, for the moment, the applied force and torque
can be considered constant in time for the purpose of deriving the equations of motion.
The work done by the external forces is then given by W := Fey + T9. Further, let
¥(u) denote the elastic strain energy stored in the beam. The formulation is so far valid
for large deformation in the beam, and we have not yet introduced assumptions of small
deformation at this stage. Explicit expression of ¥(u) for finite deformation of a beam in

plane motion can be found in Simo & Vu-Quoc [1986).

3. Derivation of equations of motion

In this section, we derive the equations of motion for the basic problem, valid for
large structural deformation, by employing Hamilton’s principle of stationary action.
Additional assumptions of small deformation in the structure are subsequently intro-
duced to further simplify the equations of motion. This simplification process is care-
fully carried out in a manner that is consistent with the assumptions. It should be indi-
cated that even though particularized to small structural deformation the resulting equa-
tions of motion do retain some crucial nonlinear terms, for an adequate description of

the dynamics at high speed regime.
3.1. The general nonlinear equations of motion. The Lagrangian of the sys-
tem can be written as
L(Y'u):= K(Y'u)-¥(u)+ W(Y'u) i (3.1)

Consider the time interval [t,t5]. Let (¥(¢),n'(S,t),n%(S,t)) be the admissible variations
corresponding to the functions (Y',x',4%), and vanishing at time ¢ = ¢, and ¢ = ¢t,. The

equations of motion are obtained from the stationary condition of the action integral,

} We omit the time derivatives of (Y,u)in the argument lists of L and I to alleviate the notation.
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i.e., the Euler-Lagrange equations corresponding to (3.1):

L[ L(Y'fep, uten)dt| =0, (3.2)

de [t to

€=

for all admissible variations (¥,n), where 5 = nﬂe,g‘ It follows that the equations for nom-

inal motion Y! and for structural displacement u are respectively given by

—di- [ L(Y'+ ey, u)dt = -Hd* [ L(Y', u+ en)dt = 0, Y admissible (¢, n)(3.3)
€ [t e =0 € [ty tgl =0

Nominal motion Y'. We first note that from (2.4a) one has

af (YL Yhe)  af(yhe)

ay' . 4§ (3.42)
Then, it follows from (3.4a) and (2.5) that
dlef(yhe) | |esyie | af(ytey
dt [ oYL | dt 8S - a5 (3-4b)
Further, the variation of f with respect to Y! is given by
d 2, _af(Yh) af(Y't) = _
dej(Y+€¢’ t) o 55 Y+ 55 v, (3.5)

where we have made use of (2.4a).t Next, after evaluation of the directional derivative

(3.3);, and applying integration by parts with the boundary conditions ¥(¢t,) = ¥(¢t,) =0,

we obtain
1f vt .o v
de 085
[ty tg e=0  lftptd
09%(Yht) wyon 00(Y't) 7 .1
+ M 55 g (Yt + I, 75 (Y e) o dt (3.6a)

+ Another way to obtain {(3.5) is by interchanging d/d¢ and d/dt, and then using (2.5).
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gl (Y1) 209 Y1 t) a0( Y t)
b Fy b 3
Y+ = |7 a5t TG v,

(3.6b)

where use has been made of (3.4) and (3.5) with f = ¢® to allow cancellation of certain
terms. The stationary condition (3.3); and relations (3.6) yield the equation for the nom-

inal motion Y

g (YLt) | e "1yl ,‘992(}’1yt) 200 101 A9(Y,t) e _
M1+——6—S—[Y+g(Y,t)]+ M 55 gH(YLt)+ I, 53 (Yht) =
1 8g'(Y',t) 200%(Y' 1) o8(Y",t)
Fiii+ 55 + F s+ T 33 (3.7)

Structural motion (u',u?). Similar to relations (3.4), one can prove that the fol-

lowing identities hold

850(11: ufS) . 8g“(u, u»S) _d_ [ag'a(u’ urS) ] 8.‘;&(“; uyS)
Todt

3 == ¥ g 3
EP ou? EME EPCEN (3.8a)
ag.a(ur u)S) . aga(u, 11,5) _d_ (650(11’ u:S) . ag'o'(u’ u)S) (3 8b)
oufs T eufy T dt | ou7s T ouf .

Now, computation of the directional derivative in (3.3),, and integration by parts with

respect to time yield the following results

.o 8 af 371 (o3 1
~ L R weea| = [ e g 20000 e g g 80000
de (tl’ td €=0 [el' tzl Ou Ju 'S

oYt a9yt
L 4 ot 200

(YY) WYt
]w (YI ) [77( ) Buﬁ,g

+ [ APl dS }dt , (3.9a)

[0.L]

d

— W(Y! dt

de f (Y?, ut en) du
[ty

€= 0

80 1 8a% 1
= J {F“[rzﬂ(yaz)—-—-—-g“;"%rnﬁ,s(w,z)———-—--”f,f“
[ty ta) Ju N

88( Y 1) 80( Y1 t) .
TP (Y )=l Be(vh )22t gy 3.9b
+ T (Y ==+ n"s(Y'0) R (3.9b)

where we have made use of the (homogeneous) boundary conditions of (5',7?) at ¢ = ¢,
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and ¢ = ty, relation (2.4a), and the identities (3.8).f Next, let the weak form of the
stiffness operator be denoted by G(:,), and

4

Gun) = T

Y(u + €n) , (3.10a)

€=0

where we recall that ¥(u) designates the strain energy of the beam — see Vu-Quoc
[1986] and Simo & Vu-Quoc [1986] for an expression of G(u,n). Therefore, using (3.3),,

(3.9) and (3.10a), the weak form of the structural equations of motion is then given by

»e (1) 8 1 Yl,t a ! Ylyt
PFh»Mﬂ“+g%wnﬂpﬁwn—ﬂbrl+n%uﬂnJ%F—l]
'S

- 20 31 20 vl
+PW+Mﬂwnnﬂwnﬁﬁ%ﬂ+WAwnﬁﬁiq

du duf ¢
. 1 1
+ Fr+ nion) |y o200 e, n 2000,
du ou’ g
+ f Apnﬁ(S,t) uﬂ,“(S,t)dS + G(u,p)= 0, Y admissible 5. (3.10b)

[0, L]

The corresponding partial differential equations of motion can be easily obtained from
(3.10) by integration by parts in S, and by invoking the fundamental lemma of calculus
of variations.t We prefer, however, to retain the structural equations of motion in its

weak form for numerical work.

Remark 3.1. Energy balance. The balance of system energy at time ¢ can be
written as follows
t

K, + ¥, = [[F(0)y°() + T(@i(7) Jdr= I, + ¥, (3.11)

where K, is as given in (2.3), ¥, as given in Simo & Vu-Quoc [1986]; the integral term is

the work done by (time-varying) external forces. On the right-hand side of (3.11) are

t We could also obtain these results by making use of the interchangeability of d/de¢ and d/dt.
+ The containing space of the variations (7%,7%) should be suitably chosen and should include the essential
boundary conditions at $ = 0 and § = L (see, e.g., Rektorys [1980}).
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respectively the initial kinetic energy I, and the initial potential energy ¥,. The
discrete form of the system energy balance (3.11) has proved to be a very useful criterion
in the design of reliable numerical integration algorithms for the equations of motion; we

refer to Vu-Quoc & Olsson {1987,1988a] for the details. O

3.2. Contact constraints and contact forces. The wheel is assumed to be in
permanent contact with, and rolling without slipping on, the beam.} Clearly, without
structural deformation (u(S,t) =0), the revolution of the wheel is related to its nominal
motion by 6 = Y'/R. Let R (= Y?) denote the distance from the beam centroidal line
to the center of mass of the wheel (Figure 1). For B = R, the wheel is moving with its
circumference tangent to the beam centroidal line. An explicit form of the function g% in
the general constraint equations (2.1) for wheel/beam contact, or magnet/beam with

constant gap, can be written exactly as follows

g'(u, u5) = u! —Rsinx(u,s), g¢¥u, us) = u? —ﬁ[l —cosx(u,s)] , (3.12a)
u215

h (u,5) = tan™! oo 1 3.12b

where x(u,s) an” |- F— ] ( )

represents the slope angle of the deformed beam (cf. Figure 1). It should be noted that
the expressions in (3.12) are written for beam theory without shear deformation, and are

valid for a finitely deformed beam.

Remark 3.2. "Magnetic wheel." The above formulation encompasses several
possible models for a Maglev vehicle using electromagnetic suspension (attractive system)
with tight gap control.t By letting I, =0 (6 =0) in the kinetic energy (2.3), we have a
model (A) of a moving magnet, where R represents the distance from the beam cen-
troidal line to the magnet center of mass (Figure 1). Next, by letting [, = & =0, in

which case the constraints (2.1) becomes y'(¢t) = Y'(t) + «'(Y't) and y%(t) = «3(Y'1), we

1 The velocity of the contact point on the wheel is only about one thousandth of the velocity of the wheel
center of mass (rigid slip); see Kalker [1979].

t The gap between a magnet and the guideway is in the range of 10-15 mm, independently of vehicle speed
(Eastham & Hayes [1987]). See also the review paper by Kortlim & Wormley [1981].
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obtain yet another model (B) of a moving magnet. In practice, often even simpler con-
straints are chosen so that (model C) y'(¢t)=Y't) and y¥t)= u*(Y.t) (cf., eg.,
Wallrapp [1986]). Thus, there is no direct coupling between vehicle nominal motion and
structural axial deformation. In this case, the equations of motion (3.7) and (3.10) (in

weak form) simplify to

du’(Yt)
a5

gaua(Yl,t)

N ‘.l
MY + 55 ,

W (YLt) = F' + F (3.13a)

n(YLe)[=F2+ MaH(Yht) + [ A%S,6) wPu(S,6)dS + Gum)= 0, (3.13b)
0 L]

which are also valid for a finitely deformed beam. In (3.13), the equation for axial dis-
placement and the equation for transverse displacement are coupled through the non-

linear nature of G(u,n) for the finite deformation case. O

In the design of flexible structures under moving vehicles, it is important to quan-
tify the (dynamic) contact forces. In particular, these forces are crucial in studying
structural response to emergency braking of a vehicle. For the basic problem considered
herein, let F, = F e, be the contact force acting on the beam. Once Y' and u«® have
been solved for, the contact force can be evaluated by F, = F —Afy, obtained from con-
sidering the equilibrium of forces acting on the wheel. Recall that y is evaluated using
(2.1), (3.12), and with the aid of (2.4b). In the case of a moving magnet, the contact
force F. is the required active control force that should be exerted on the magnet to

maintain a constant gap.

3.3. Assumptions on small structural deformation. Equations (3.7) and
(3.10) form the complete set of coupled, fully-nonlinear equations describing the motion
of a rigid wheel moving over a flexible beam. In the present work, we consider the fol-
lowing additional assumptions to reduce the equations (3.7) and (3.10) to a mildly non-
linear form: (A1) |u®s]|<<1, for a = 1,2; (A2) The Euler-Bernoulli hypothesis is

adopted for beam response,
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V(w) = < [ {EA [v's)® + EI[u2,55]2}ds, (3.14a)

2oL

where EA is the axial stiffness, and EI the bending stiffness; (A3) All nonlinear terms in
the displacement «® are neglected in the equations for structural motion: (A4) The

wheel rolls without slipping and with little influence from structural deformation,

YUYy 1 Y e s
9(Yl,t)% —1‘%—, —L‘a—g—)*% f, ﬁ(Yl,t),-’.\J —}*?—, H(Yl,t)’,tj —
o6 a6
—s = 0, d ~ 0. 3.14b
du’ an Buﬂ,g ( )

Note that the above assumptions are not only physically relevant in real operational con-
ditions of the system, but carry important implications on the numerical treatment as

well (see Vu-Quoc & Olsson [1988a)).

3.4. The mildly nonlinear equations of motion. Considering the structural
equations of motion (3.10b), assumption (A3) implies that we neglect nonlinear terms in

1

u! and u?

in the fully-expanded expressions of g' and of g2 obtained from using (2.2),
and (2.4b) in (3.12). Thus, together with assumption (Al), we arrive at the approxima-

tions

ey e e, oy ..,

¢~ u'—Ru’s, g%~ u?. (3.15)
Note that approximations (3.15) together with relations (2.4) when applied to ¢! and ¢°
imply

aH-jgl N 8i+;'111 —_61'+J'+1u’.2 6{+;'g2 N at'+ju2
astat’ T aSiatt 88197 7 8Siatr T 857

(3.16)

for (i,5) = (1,0), (2,0, (1,1), (0,2). Further, assumptions (A1) and (A3) lead to the follow-

ing approximations

1 - 1 — 8a° 2 —
% Ry, xR, 9 Lo, 07~ —Rts,  (3.17a)
du',s du~,g Ou’ ¢ du”,g
1 — 8 2 .
1+ % ~ 1 —Ru“ss, 3‘2— ~ U, (3.17b)
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where (3.17b) are obtained with the additional aid of (3.16) (or (2.2);). As a result of
(2.4b), (3.15), (3.17), together with assumption (A4) (i.e., (3.14b)), the equation for nomi-

nal motion (3.7) can be approximated by
e YLOF 4 e VLT 4 cf(YLOY + ¢, (Yt) =0, (3.18a)

where
eo(Yht) v —FUL —Ru?,g5(Y)0)] = F2u 5( Y1) *%

+ ML= Ru (1 0)[ut e (Y1,0) = Ru® (V0] + W s(YL 6t (¥Y1,0)], (3.180)
eu(Y1) m 2M L =Bl oY 0)][ut n( Y1) = Rusq (Y',0)] + w2 5(YL0u%a (Y1), (3.18¢)

CQ(Yl,t) =~ M[{l '—ﬁuz,sg(yl,t)][ul,gs(Yl,t) ——ﬁuz,sss(yl,t)} -+ U‘Z,S(Yl,t)‘uz,,gg(yl,t):l B (318d)

w

C3(Y1,t) =~ M[l —-R—UQ,SS(Yl,t)]Q -+ R2 .

(3.18e)

Remark 3.3. Consistency in the formulation. The nonlinear term in ¢2 in the

equation for the nominal motion (3.7) is, according to (3.15) and (3.17), approximated by

ag*(Y't) 2

55 (Yht) = u?s(YLe)a (Y t), (3.19a)

which is also nonlinear in v® Using (2.4b), we obtain the term (3.19a) in expanded form
as given in (3.18). This term plays an important role in representing the influence of
transverse structural displacement on vehicle nominal motion at high speed. To see this,
we rewrite the equation for nominal motion (3.13a) of Maglev model C, for F! = 0, as

follows
MP = g (Y0 [ F2 = MER(Y0) | = (VL) FE(2) (3.10D)

At high speed, the amplitude of the vertical contact force F? may significantly exceed
that of the vertical force F°. We will present below an example with high speed vehicle

motion where one has | F(¢) | > 1.5 | F? |, for some time ¢. In other words, the inertia
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force Mu? could be of the same order of magnitude as that of F? and should be retained
In equation (3.18). Hence, it is shown that the formulation would not be appropriate for
high speed regime, had we systematically removed all nonlinear terms in «® from the
equations of motion. This is at variance with the usual practice of complete linearization

(see discussion in Kortim [1986]), which is therefore inconsistent in the present situation.

0

Next, applying assumptions (A1-A4) and relations (2.4) to (3.10b), the weak form of

the equations for structural motion, linear in the displacement u® 1s given by

A{T]l(}f],t)[ul,“(}’l,t) ~§u2,5tt(yl,t)]+ [J‘ 44,,7]1(5,!)111,“(5,!)(15}
0, L]

+ 2MP ) [ (V0) = Rutsn (VL0 |+ bani(r ) (Pt s(v,0) — Fu go(r 1)

+ EAn‘,S(S,t)ul,S(S,t)dS}= 7 (YL[F - MY (3.20a)
for 1)

and

{—I?MnQ,S(YI,t)[u‘,n(}"l,t)-—ﬁuﬂ,su(}”,t)]+ MY ), (Y4t) + fA,,nQ(S,t)uz,"(S,t)dS}
[o, L]

+ 2P R0 sV ) — R ss (Y0 )4 (Y 0u,0(10) |

v [w {-—E (V) o5 ) = Rt ss(10)) + 1 Yl,t)uz,s(yl,t)}
+ M().’l)z{—Rﬂz,s(Yl,t)[ul,ss(Yl,t)"ﬁuz,sss(ylyt)]'* 7;2(Y1,t)u2,55(}”,t)}

+ EFQUQ,S(YIJ)UQ,S(YIJ)+ f EIn®ss(S,t)u’,s5(S,t)dS
o, L]

= —Ry?g(YLO[F = MY + 9%V t)F?, (3.20b)

for all admissible variations (', 5°), where terms are grouped in square brackets accord-

ing to their nature (mass, velocity-convective, and stiffness terms on the left-hand side,
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and applied forces on the right-hand side). Note the geometric stiffness character of the
term with factor R[F' —M7Y"), and of the term with factor BF? in the stiffness operators
of (3.20a) and (3.20b), respectively. Even though equations (3.18) and (3.20) are the
simplified versions of the fully-nonlinear equations (3.7) and (3.10), according to assump-
tions (A1) to (A4), they remain nonlinear and coupled. Moreover, these equations in
spatially-discrete form are not explicit ordinary differential equations, and special algo-
rithms must be designed for numerical computation. The system is driven by the initial
conditions { Y*(0), Y'(0), u(S,0), u,(5,0)} and the forces {F', F?, T} applied on the wheel.

Remark 3.4. In connection with Remark 3.3, we note that the linearized struc-
tural equations of motion (3.20b) contains the (low order) effect of the contact force
F?= F? —Mu? (the term Mu" appears in (3.20b) in expanded form using (2.4b)). Thus,

the contact force F¥ is consistently accounted for in both equations (3.18) and (3.20). ©

Remark 3.5. With assumptions (A1-A3), equation (3.13b) is decoupled into an
equation of motion for axial vibration and an equation of motion for the transverse
vibration. But this means that the Maglev model C, unlike models A and B (see
Remark 3.2), cannot be used to study effects of vehicle accelerating or braking on the

axial structural response. O

4. An illustrative example

In this section, an example is given to illustrate the above basic model for interac-
tion between a vehicle, starting with different initial velocities, and a flexible supporting
structure. Emphasis is focused on results which are not achievable using formulations
based on the traditional assumption of known vehicle nominal motion. The results,
obtained by numerical method, correspond to the set of mildly nonlinear, coupled equa-
tions (3.18) and (3.20). We refer to Vu-Quoc & Olsson [1987,1988a] for details and dis-

cussions on the numerical algorithms employed in solving these equations.
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Consider a basic model with parameters M = 3000kg, I, = 135kgm?, R = 0.3m,
R =09m, L = 24m, A, = 1250kg/m, EA = 5x 10°N, and EIl = 10°Nm?2. The beam has
simple supports at its ends. The wheel is subjected to a constant vertical force
F?= —600,000N (with F'= T —=0), whose magnitude is about 20 times that of the
weight of the wheel (acceleration of gravity 9.81m/s?), creating a maximum mid-span
static deflection of 0.1728m or about L /140. The lowest flexural frequency of the beam is
2.44Hz; its lowest axial frequency is 20.8H:. Initial conditions are set to: YY0) = 0,
u(S,0) = u,(5,0)=0. The vehicle moves mainly due to its own initial velocity };1(0).

Nominal velocity. Figure 2 shows the variation of the nominal velocities, normal-
ized with respect to their respective initial values (at the entry of the beam) of
Y!(0) = 50m /s and 100m /s, as functions of the nominal position Y'. From this figure,
one can clearly observe a loss in nominal velocity at the end of the traversing: An entry
velocity of 50m /s drops by 1.2% at the exit, while an entry velocity of 100m /s drops by
0.7% at the exit. The peak-to-peak variations in nominal velocity for these two cases
are respectively 1.7% and 1.0% of their initial velocities. These variations stand in con-
trast to traditional analyses where the velocity Y!is prescribed to its initial value

throughout the traversing.

The drop in velocity is related to a drop in vehicle kinetic energy, as part of this
initial kinetic energy is transferred to the beam; we refer to Vu-Quoc & Olsson [1987] for
the details. This energy transfer, which keeps the beam in free vibration after the pas-
sage of the vehicle, effectively explains the Timoshenko paradox. We note that for a
sufficiently long multiple-span structure, a vehicle moving under its initial velocity,
without the aid of any other external force than a vertical one, and even in the absence
of all energy-dissipative force, will experience a continuous drop in velocity as a result of

this type of energy transfer (examples are given in Vu-Quoc & Olsson [1988a-b]).

It is also interesting to note that at very low speed, one has a large relative increase

in velocity during the traversing. For instance, for Y!0)= 1m/s, the increase in
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nominal velocity is about 400%, i.e., the maximum velocity is about 5m/s. As a result,
the traversing time ( ~ 9s) is only about one third of the traversing time on a rigid
structure (24s). This increase in velocity is, however, drastically reduced to about 10%

for Y'(0) = 10m/s (see Vu-Quoc & Olsson [1988a)).

Structural deflection. The greater relative loss of velocity for );‘(0) = 50m /s is due
to larger vertical displacement at contact point, compared to the same displacement for
1'/1(0) = 100m /s, as recorded in Figure 3. Also plotted on this figure are displacement at
contact point for Y'(0) = 1m/s (close to a static curve) and for ¥'(0) = 10m/s. We note
the shift of the location of maximum displacement closer to the exit as entry velocity

increases.

Contact force. Recorded in Figure 4 are time histories of the vertical contact force
F2, for initial velocities of 50m/s and 100m/s. As noted in Remark 3.2, the inertia force
Mu? is non-negligible at high-speed: For I;‘(O) = 100m /s, this inertia force could reach
60% of the vertical force F? (Figure 4). Again, this points to the consistency of the

present formulation, which is crucial for a high-speed regime.

5. Closure

We have presented a basic building-block model for analyzing the interaction
between high-speed vehicles and supporting flexible structures. The present formulation
departs completely from traditional practice of assuming known vehicle nominal motion.
Nonlinear equations of motion for the basic model, with a general form of constraints
and valid for large structural deformation, are derived using Hamilton’s principle. Addi-
tional assumptions, essentially on small structural deformation, are introduced to sim-
plify these equations to a mildly nonlinear form. The applicability of the present model
is demonstrated through an example. In subsequent publications, we will present
efficlent algorithms to integrate the nonlinear equations of motion of the complete

vehicle/structure interaction problem, and further results.
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Figure captions

Figure 1. Basic problem. Building-block models for wheel-on-rail and Maglev
vehicles.

Figure 2. Vehicle/structure interaction at different initial velocities, Nominal velo-
city (normalized wrt initial values) vs. Nominal position. Solid line: Y'(0) = 100m /s.
Dotted line: Y'(0) = 50m/s. Beam length L = 24m.

Figure 3. Vehicle/structure interaction at different initial velocities. Vertical dis-
placement at contact point (normalized wrt 0.1728m) vs. Nominal position.
YY0) = 1m/s, 10m /s, 50m /s, 100m/s. L = 24m.

Figure 4. Vehicle/structure interaction at different initial velocities. Vertical con-
tact force F? (normalized wrt vertical force F?) vs. Time (normalized wrt traversing time
on rigid structure). Solid line: Y*(0) = 100m/s. Dotted line: Y0) = 50m/s.
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