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Abstract

We developed a high-content image-based screen that utilizes the pro-inflammatory stimulus 

lipopolysaccharide (LPS) and murine macrophages (RAW264.7) with the goals of identifying anti-

inflammatory drug leads. We screened 2,259 bioactive compounds with annotated mechanisms 

of action (MOA) to identify compounds that block the LPS-induced phenotype in macrophages. 

We utilized a set of seven fluorescence microscopy probes to generate images that were used 

to train and optimize a deep neural network classifier to distinguish between unstimulated and 

LPS-stimulated macrophages. The top hits from the deep learning classifier were validated using 

a linear classifier trained on individual cells and subsequently investigated in a multiplexed 

cytokine secretion assay. All 12 hits significantly modulated the expression of at least one cytokine 

upon LPS stimulation. Seven of these were allosteric inhibitors of the mitogen-activated protein 

kinase kinase (MEK1/2) and showed distinct effects on cytokine expression, consistent with the 

complex pharmacology of MEK1/2 inhibition. This deep learning morphological assay identified 

compounds that modulate the innate immune response to LPS and may aid in identifying new 

anti-inflammatory drug leads.
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Introduction

Sepsis is a major health concern, causing profound morbidity and mortality worldwide. 

In the US alone, sepsis causes 270,000 deaths annually and is one of the leading causes 

of death in hospitals1. Sepsis is caused by the immune system's dysregulated response to 

infection, which can lead to an irreversible cascade culminating in shock and multiple organ 

failure. In the clinic, the management of sepsis has relied primarily on antibiotics and fluid 

administration2, neither of which directly addresses the molecular events associated with 

immune hyperactivation. The high incidence and death rate associated with sepsis, and the 

lack of available treatment options, led the World Health Organization in 2017 to elevate 

sepsis to a global health priority.

During bacterial infection, lipopolysaccharide (LPS), a conserved lipoprotein from Gram 

negative bacteria, binds to the Toll-like receptor 4 (TLR4), which activates parallel 

intracellular inflammatory signaling pathways3. Hyperactivation of these pathways can 

cause an overwhelming release of cytokines such as iNOS, interleukins, and tumor necrosis 

factor alpha (TNF-a), leading to sepsis. The immortalized murine macrophage cell line 

RAW264.7 (RAW) can be stimulated by LPS to produce many of the morphological and 

molecular characteristics of the human innate immune response, thus providing a robust in 
vitro model system for investigating the innate immune response4. Upon LPS stimulation, 

RAW cells undergo significant physiological changes, including cytoskeletal changes, the 

production of nitric oxide (NO) and the release of pro-inflammatory cytokines.

Advances in automated microscopy and computer-aided image analysis have enabled 

high-content screening (HCS) approaches in which complex multiparametric phenotypic 

fingerprints are obtained from cells by quantifying images derived from a set of fluorescent 

probes. The distinct cytological effects of LPS stimulation on macrophages make HCS 

an attractive primary screening approach for identifying potential anti-inflammatory 
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compounds5. For example, a recent screen of a library of 2700 curated bioactives yielded 

modulators of the Stimulator of Interferon Genes (STING) pathway6. Machine learning 

approaches have also been applied to microscopy images to distinguish macrophage 

populations based on morphology7, 8.

The most common methods for quantifying high-content screening data require the 

selection of features by the user based on computer-assisted segmentation of images 

into individual cells and/or cellular components. In contrast to these machine learning 

approaches, deep learning methods operate on raw images and do not require a priori 
analysis or segmentation. As computer processing and storage capabilities improve, deep 

learning approaches are being applied more commonly in the analysis of microscopy 

images4, 9-18. Deep learning approaches use machine-learning architectures with multiple 

layers that are trained to extract progressively higher-level features from raw images. The 

layers of filters are separated by nonlinear functions, and each layer combines the filter 

responses of its predecessor, resulting in progressively more complex features. While these 

types of neural network approaches have been used to evaluate immune cell phenotypes19, 

thus far deep learning has not been applied toward the investigation of small molecule 

modulators of macrophage activation. Here, we develop a supervised deep convolutional 

neural network (CNN) classifier to identify compounds that inhibit induction of the LPS-

stimulated phenotype in RAW cells (Fig. 1). The classifier was validated using standard cell-

level segmentation-based methods, and the top hits were confirmed in a cytokine secretion 

assay. This approach provides a framework for identifying new potential anti-inflammatory 

leads, as well as compounds that can be used as chemical tools in the study of innate 

immunity.

Results

Primary high-content screen image collection

RAW macrophages were treated in 384-well format with a library of 2,259 bioactive 

compounds with annotated mechanisms of action (MOA) and stimulated with LPS. After 

24 h of compound treatment, cells were fixed and stained using two sets of fluorescent 

probes: Stain Set 1 (ss1) consisted of probes for DNA, Golgi, actin, and mitosis, and Stain 

Set 2 (ss2) consisted of probes for DNA, tubulin, mitochondria, and DNA replication. 

As expected, the captured images revealed dramatic cellular feature changes in response 

to LPS stimulation: without stimulation, the cells appeared circular or elliptical, whereas 

LPS-stimulated cells appeared flattened and enlarged, with extensive filopodia protrusions 

(SI Fig. 1).

Optimizing input image format and CNN architecture

Deep learning models are computationally expensive and are often trained on relatively 

small images with side lengths of a few hundred pixels. In order to develop a CNN-based 

classifier that can automate detection of the LPS-induced phenotype, we set out to 1) find 

optimal image resolution and size parameters and 2) identify a CNN architecture that would 

enable classification with minimal computational resources. The initial images obtained 

from the automated microscope had side lengths of 1080 pixels. In order to build an 
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efficient CNN classifier that could be trained using our existing computational resources, 

the information content of each image had to be reduced significantly, either by cropping or 

reducing the image's resolution. In order to decide the best image reduction approach, i.e., 

the importance of detail (cropped, resolution retained) vs. context (not cropped, resolution 

reduced), we compared four different image modifications (Fig. 2A). To emphasize detail 

over context, we cropped the input image into sixteen 270 px (c270) or four 540 px (c540) 

images. To emphasize context over detail, we cropped the image into four 540 px and then 

resized those images to 270 px (cr540), or used the full-sized image of 1080 px, which was 

resized down to 270 px (r1080).

As CNN architectures increase in depth, memory consumption increases significantly, 

slowing down training and analysis. Therefore, shallow architectures are preferable, not only 

because they run faster and require less data for training, but also because they are less prone 

to overfitting, which can lower classification performance. Since the phenotypic expressions 

are at the cellular level, we hypothesized that it is not necessary for the CNN to capture 

details at various scales, which prompted us to develop a custom-built, shallow (3-layer) 

architecture. In one version of this architecture, each stain set was analyzed individually 

(Single Tower Model, STM) (Fig. 2B). In another version, a Siamese network was used to 

bring together both image stain sets (ss1+ss2) in a single head (Combined Tower Model, 

CTM) (Fig. 2C). We compared our custom-built shallow architectures (STM and CTM) to 

a baseline deep learning model called EfficientNet20. EfficientNet is a pre-trained model for 

image feature extraction, generated using a technique called "neural architecture search", 

which finds the optimal neural architecture for a specific task21 (Fig. 2D). The classification 

performance of these CNN models will reveal the complexity of the CNN necessary for this 

task.

Training of deep neural network classifier

In order to identify the optimal combination of image reduction strategies and network 

architectures, we compared the accuracy of the 4 image resolution inputs using the STM 

(Fig. 2B) trained on individual stain sets (ss1 and ss2), the CTM trained on the combination 

of the stain sets (ss1+ss2) (Fig. 2C), and EfficientNet trained on the individual stain sets 

(Fig. 2D). The image reduction methods that emphasize context over detail, cr540 and 

r1080, showed the best performance for all of the network architectures, suggesting that 

images containing many, poorly resolved cells produce a better performing classifier than 

images with fewer, more highly resolved cells (Fig. 3A). The custom combined tower model 

(CTM) with both stain sets showed high accuracy among all of the input image resolutions 

(Fig. 3B), with a training set size of only 302 images being necessary to obtain an accuracy 

of 99% using the r1080 image reduction method. When trained on 700 or more images, 

high-performance models with ROC-AUC scores above 0.99 could be achieved using Stain 

Set #2 alone, indicating that the LPS-stimulated phenotype was captured effectively using 

generic cytological features that are not directly related to TLR4 signaling (Fig. 3C).

Dose response titration for hit validation.

To identify compounds that were able to block the LPS-induced phenotype, we ran the 

images from the 2,259 compound treatment wells in the presence of LPS through the 
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highest-performing CNN model as described above (CTM, r1080, 5632-image training set), 

with the goal of identifying wells that, upon LPS stimulation, are phenotypically similar to 

the unstimulated controls. The binary classification model assigns the unstimulated class a 

"deep learning" (DL) score of 0 and the LPS-stimulated class a score of 1; wells with DL 

scores between 0 and 0.01 were classified as hits. The CTM/r1080 model resulted in a total 

of 338 hits. We selected the top 19 hits from the deep learning classifier and investigated 

their effect on the LPS-stimulated phenotype in more detail. Since the primary CNN-based 

assay was designed to capture broad morphological changes upon LPS stimulation and did 

not include markers specific to the inflammatory signaling cascade, we introduced a probe 

for inducible nitric oxide synthase (iNOS), which is up-regulated upon LPS stimulation. 

The 19 top-scoring hits from the primary assay were tested in a secondary image-based 

microscopy assay at multiple doses ranging from 30 nM to 20 μM, using fluorescent stains 

for iNOS, DNA, and tubulin. While there was a clear difference in intensity in the iNOS 

stain between LPS-treated and untreated controls, surprisingly the compounds had little 

effect on iNOS levels in the LPS-stimulated wells (Fig. 4a).

As we had observed earlier in developing the deep learning model (Fig. 2), there were clear 

morphological differences in the DNA and tubulin channels between the LPS-treated and 

untreated conditions. Therefore, we trained a supervised linear classifier on the DNA and 

tubulin images from the LPS-stimulated vs. unstimulated controls, leaving the iNOS channel 

out of the analysis. This model captures the stimulated and unstimulated phenotypes at the 

cellular level, thus providing a measure of the fraction cells with the stimulated phenotype 

in each well. The LPS-treated controls showed ~80% of cells with the activated phenotype, 

whereas the non-LPS treated controls showed ~5% activated cells based on this model (these 

numbers were corroborated by visual inspection of the iNOS channel, which showed similar 

percentages of activated cells, i.e., cells with high iNOS expression, in the +LPS and −LPS 

controls, respectively). When this linear classifier was applied to the entire plate, 12 of the 

19 compounds showed a significant decrease in the number of activated cells at any dose, 

while 8 compounds showed a significant decrease below 1 μM (Fig. 4b). The three most 

potent compounds, which showed a significant decrease in the number of activated cells as 

low as 30 nM, were lapatinib, TAK-733, and PD0325901. Lapatinib is a dual Erb2/EGFR 

tyrosine kinase inhibitor, while TAK-733 and PD0325901 are inhibitors of the mitogen 

activated kinases MAP2K1 and MAP2K2, also known as MEK1 and MEK2. Indeed, all 12 

hits are annotated as kinase inhibitors, with 7 of the 12 hits being annotated as dual MEK1/2 

inhibitors.

Effect of hits on LPS-induced cytokine expression.

In order to further evaluate their potential as anti-inflammatory agents, the 12 compounds 

that suppressed the LPS-stimulated phenotype based on the linear classifier described above 

were tested for their effect on a panel of 32 murine cytokines, chemokines and growth 

factors. RAW cells were treated with each of the 12 compounds for 4 h followed by 

treatment with LPS for 20 h, after which the supernatant was collected. Cells were treated 

with compound in triplicate at the following doses: 0.125, 0.375, 1.25, 3.75, and 10.125 

uM. Controls included LPS + DMSO and DMSO alone. The 32 cytokines were measured 

simultaneously using the Luminex xMAP technology (Eve Technologies Corp., Calgary, 
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Alberta). Of the 32 cytokines in the panel, 15 showed a significant increase upon LPS 

stimulation. In addition to these, 4 cytokines whose levels were not affected by LPS alone 

were significantly modulated in the presence of at least one compound. All 12 compounds 

affected the expression of at least one cytokine in the presence of LPS manner, confirming 

the results of the deep learning model and secondary image-based linear classifier for 

identifying candidate anti-inflammatory modulators of the innate immune response (Fig. 5).

The MEK1/2 inhibitors all showed similar effects on cytokine secretion, decreasing levels 

of G-CSF, GM-CSF, IL1-alpha, IL1-beta, LIF, LIX, M-CSF, MIP-2, and TNF-alpha, and 

increasing secretion of IL-6, IL-10, KC, and RANTES. The cytokine profile of the MEK1/2 

inhibitor U0126-EtOH was somewhat different from the other MEK1/2 inhibitors, for 

example, in its effect on RANTES and VEGF. This is perhaps not surprising given that 

U0126-EtOH is in a very different structural class, and is neither as potent nor as specific22 

as the other MEK1/2 inhibitors. We tested a subset of the MEK1/2 inhibitors for their 

effect on cytokine expression in the absence of LPS. For all three inhibitors (MEK162, 

U0126-EtOH, and PD0325901) none showed a significant effect on cytokine secretion in the 

absence of LPS (Supporting Information), thus demonstrating that the upregulation of IL-6, 

IL-10, KC, and RANTES upon treatment with these inhibitors was LPS-dependent. The two 

PI3K/MTOR inhibitors, GDC-0980 and PI-103, had similar effects on cytokine expression, 

while lapatinib, dasatinib, and TWS-119, which target EGFR, BCR-ABL, and glycogen 

synthase kinase-3β (GSK-33β), respectively, show distinct cytokine profiles, consistent with 

differences in their pharmacology.

Discussion

Here we describe the development of a deep-learning model that can distinguish between 

LPS-stimulated and unstimulated immune cells based on raw, high-content screening 

fluorescence microscopy images. The robustness of this model is not surprising given that 

stimulation with LPS induces a noticeable change in cell shape and nuclear morphology that 

was observed in nearly all the cytological probes used. Nonetheless, the highest-performing 

CNN model (CTM) is computationally expensive; alternative image analysis algorithms 

currently available, such as PhenoRipper23 may be faster and advances in machine learning 

and artificial intelligence will undoubtedly increase the efficiency with which high content 

screening data can be analyzed.

Interestingly, while the iNOS channel gave distinct signals differentiating the LPS-

stimulated vs. unstimulated controls, the effect of the compounds on iNOS levels was 

not consistent with their overall anti-inflammatory character based on their effect on 

cell morphology and, as confirmed later, their ability to modulate LPS-induced cytokine 

production. Since LPS has such an unambiguous and strong effect on cell morphology in 

these cells, we hypothesized that training a model on morphological features rather than a 

more targeted readout would cast a broad net and allow identification of compounds that 

impinge on any aspect of the cell’s response to LPS. In retrospect, the weak effect on iNOS 

levels of many of the hits supports this original hypothesis.
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Of the 19 top-scoring hits based on the deep learning classifier, 12 scored as anti-

inflammatory in a conventional linear classifier follow-up assay. Since only these 12 were 

carried forward into the multiplexed cytokine expression assay, we do not know whether 

the remaining 7 were truly inactive or whether potential as anti-inflammatory agents were 

not captured by the follow-up assay. The differences between the deep learning assay and 

conventional linear classifier may indeed reveal compounds with different mechanisms of 

action and could both be useful as primary screens for anti-inflammatory agents.

All 12 of the hits that scored in the secondary assay are kinase inhibitors, and seven of 

those are selective for MEK1/2, central kinases in the signaling cascade that links TLR4 

stimulation by LPS to the downstream upregulation of proinflammatory cytokines involved 

in innate immunity and sepsis. The RAS-RAF-MEK-ERK signaling axis drives cytokine 

production in macrophages upon LPS activation, and MEK1/2 inhibitors have been shown 

to block the release of cytokines and decrease mortality in mouse models of sepsis24-27. 

Studies have also demonstrated the effectiveness of MEK1/2 inhibitors in the treatment 

of autoimmune diseases such as collagen induced arthritis, rheumatoid arthritis, and lung 

diseases25, 27-29.

In addition to the seven MEK1/2 inhibitors, five other kinase inhibitors also scored 

significantly in the secondary assay and modulated the expression of specific cytokines. 

These included the PI3K/MTOR inhibitors PI-103 and GDC-0980, the GSK3B inhibitor 

TWS-119, the EGFR inhibitor lapatinib, and the BCR-ABL/Src-family kinase inhibitor 

dasatinib. PI3K/MTOR dual inhibitors are known to modulate the release of the pro-

inflammatory cytokines IL-1β, IL-6, IL-8, TNF-α, and G-CSF in macrophages upon LPS 

stimulation30. GSK3B is a central node in the signaling pathways linking TLR4 activation 

and cytokine expression, and TWS-119 has been shown to modulate production of pro-

inflammatory cytokines in neurons in response to ischemic injury31. Likewise, dasatinib 

has been shown to decrease the expression of pro-inflammatory cytokines in neuronal 

cells challenged by LPS through the Akt/ERK signaling pathway32, while EGFR inhibitors 

are also known to modulate LPS-dependent cytokine release in acute lung injury model 

in rats33. Thus, all 12 of the compounds that were selected based on their effect in the 

primary high-throughput assays showed a significant, dose-dependent effect on cytokine 

release in RAW cells, and their profiles of cytokine up- and down-regulation were similar for 

compounds in the same mechanistic class.

Conclusion

In this study, we demonstrate the feasibility of using raw images to train a convolutional 

deep learning neural network classifier to distinguish between LPS-stimulated vs. 

unstimulated macrophages. The algorithm was used to investigate the effect of a library 

of 2000 "known bioactives" (including tool compounds and clinically approved drugs) on 

the LPS-stimulated phenotype. Of the 19 compounds that scored the highest from the 

deep learning analysis, 12 inhibited the LPS-stimulated phenotype in a secondary screen 

using traditional segmentation analysis. All 12 compounds that scored in the secondary 

screen were kinase inhibitors, and of these, the majority were highly specific inhibitors 

of MEK1/2. MEK1/2 inhibitors are known to block signal transduction along the TLR4 
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pathway in stimulated macrophages, supporting the discriminatory ability of the original 

CNN model as well as confirming the results of the secondary assay. Therefore, it is 

possible to identify compounds that modulate the LPS response in macrophages based on 

cell morphology using deep learning screening approach, suggesting that such a model could 

be applied to the screening and analysis of a much larger library toward the discovery of 

novel anti-inflammatory agents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CCN convolutional neural network

CTM combined tower model
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Figure 1. Workflow to identify anti-inflammatory hits using deep learning.
RAW264.7 cells adhered in 384-well plates were treated with chemical screening libraries 

or DMSO control for 4 h, then each plate either received media alone or media with 

50ng/mL LPS for a further 20 h. Thus, each plate contains 64 non-drug-treated controls 

(32 unstimulated controls and 32 LPS-stimulated controls). The cells are fixed, processed, 

and stained with the established probes that target cell cycle, organelles, and cytoskeletal 

features. The images are used to train a deep neural network classifier on unstimulated 

and LPS-stimulated macrophages. Primary hit compounds that exhibit the unstimulated 

phenotype in the presence of LPS are selected for dose-response and cytokine assays.
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Figure 2. Deep learning parameters: image resolution and CNN models.
A. Image resolution input format: starting with image size 1080 x 1080 pixels (px) that 

are cropped into sixteen: 270 x 270 px images (c270); cropped into four: 540x540px 

(c540); cropped into four: 540x540px and resized to 270x270px (cr270); and one: resized 

to 270x270px (r1080). B. Single Tower Model (STM) costume built simple 3-layer deep 

model that analyzes individual stain sets separately (ss1 and ss2) C. Combined Tower Model 

(CTM) a Siamese network which consists of a simple 3-layer tower and brings together 

both image stain sets (ss1+ss2) in a single head. D. EfficientNet Model (EM) is an image 

classification baseline model that analyzes individual stain sets separately (ss1 and ss2).
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Figure 3. Best classification performance. Image resolution r1080 and cr540 and CNN 
architecture: CTM, EM(ss1), and EM(ss2).
A. Comparison of the classifier performance of varying image resolutions (c270, c540, 

cr540, r1080), models (STM, CTM, EM), and stain sets (ss1 and ss2). B. Comparison 

of the classifier performance on varying training dataset sizes. Training was performed 

on 302, 704, 2816, and 5632 images. C. Table summarizing the model classification 

confidence, measured by the Receiver Operating Characteristic (ROC curve) and Area 

Under the Curve (AUC) metrics. Data is split into 70:15:15. Each model is trained on 70% 

of the unstimulated and LPS-stimulated controls images, then 15% is for validation during 

training, and 15% is used for testing. Information for EfficientNet c540 (cropped 540 x 

540px) is missing due to its high complexity and the lack of computational power. Training 

each model took from 1 to 3 hours depending on the architecture and the input format. 

We used two Nvidia GeForce GTX 1080Ti GPUs with two Intel Xenon E5-2640 (40 cores 

total).

Lau et al. Page 13

Chembiochem. Author manuscript; available in PMC 2024 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Dose-response of iNOS expression and linear classification of single cell phenotypes.
RAW264.7 macrophages were treated with compounds (or DMSO vehicle control) and LPS 

(or media vehicle control), fixed and stained for DNA, actin, and iNOS, imaged, segmented 

into nucleus and cytoplasm, and quantified at the single-cell level. Shown is the average and 

standard error of 3 biological replicate wells. Shown is the average and standard error of 

3 biological replicate wells, with asterisk (*) showing those with t-test significance cutoff 

<0.01 as compared to LPS control. A. We quantified the sum of the intensity in the iNOS 

channel for all pixels within each cell, then averaged this across all cells in each well. B. 

We trained a linear classifier on iNOS-negative cells from unstimulated control wells and 

iNOS-positive cells from LPS as having the stimulated phenotype.
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Figure 5. 
Heat maps showing effect on cytokine secretion of the 12 hit compounds selected based on 

their effect in the linear classifier assay. Cells were treated with LPS plus compound under 

the conditions described above in the high-throughput assays, at 5 doses per compound: 

0.125, 0.375, 1.25, 3.375, and 10.125 uM. Of the 32 cytokines measured, 19 showed a 

significant enhancement or depletion in the presence of drug. The cells in the heat maps 

represent the Z-scores, calculated as (μa - μb)/σb , where μa is the mean cytokine level in the 

presence of LPS plus drug, μb is the mean cytokine level in the presence of LPS plus DMSO, 

and σb is the standard deviation of the cytokine level in the presence of LPS plus DMSO. 

There were three biological replicates per treatment. The color range from blue to yellow 

represents a range of Z-scores from −5 to +5, respectively; thus, blue represents a decrease 

and yellow represents an increase in cytokine secretion in the presence of drug.
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