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Behavioural individuality in clonal fish
arises despite near-identical rearing conditions
David Bierbach1,*, Kate L. Laskowski1,* & Max Wolf1

Behavioural individuality is thought to be caused by differences in genes and/or environ-

mental conditions. Therefore, if these sources of variation are removed, individuals are

predicted to develop similar phenotypes lacking repeatable individual variation. Moreover,

even among genetically identical individuals, direct social interactions are predicted to be

a powerful factor shaping the development of individuality. We use tightly controlled

ontogenetic experiments with clonal fish, the Amazon molly (Poecilia formosa), to test

whether near-identical rearing conditions and lack of social contact dampen individuality.

In sharp contrast to our predictions, we find that (i) substantial individual variation in

behaviour emerges among genetically identical individuals isolated directly after birth into

highly standardized environments and (ii) increasing levels of social experience during

ontogeny do not affect levels of individual behavioural variation. In contrast to the current

research paradigm, which focuses on genes and/or environmental drivers, our findings

suggest that individuality might be an inevitable and potentially unpredictable outcome of

development.
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B
ehavioural individuality—that is, repeatable and predictable
among-individual differences in behaviour—is a ubiquitous
phenomenon in humans1,2 and a wide range of other

animal species3–8. But what causes us and individuals within
other animal species to be different from each other? Across
the behavioural sciences, a common view is that individuality
is caused by between-individual differences in genes and
environmental conditions, including the social environment.
One powerful way to test this paradigm is to investigate
genetically identical individuals reared in isolation under
‘identical’ (that is, highly standardized) environmental
conditions: if genetic and environmental differences are the key
drivers of individuality, individuality should be largely absent
(that is, not develop) in such a setting; moreover, the contribution
of any other explanatory factor (for example, social rearing
conditions) can be best evaluated against this baseline scenario.

Previous research has shown that substantial between-indivi-
dual variation in morphological and physiological traits still
develops even among genetically identical individuals reared
under highly standardized conditions9–11. This work suggests
that—even in the absence of genetic and environmental
differences—maternal and epigenetic effects and/or minute
experiential/environmental differences during development
act as important drivers underlying phenotypic variation12–14.
Up to now, only a handful of studies have investigated whether
these same mechanisms can promote behavioural individuality in
the absence of genetic and environmental differences between
individuals10,15–18. Most prominently, recent studies on highly
inbred mice find that behavioural individuality emerges among
genetically identical individuals19,20 when reared in the same
environment. The interpretation of these findings, however, is
hampered by the fact that individuals were reared in groups.
Direct social interactions among conspecifics are well known to
be a powerful factor affecting the development of individuality.
Depending on the scenario, direct social interactions may either
promote the development of individuality (for example, via the
formation of social interaction structures like social hierarchies;
via processes like frequency dependence, niche and role
specialization7,21–25) or inhibit the development of individuality
(for example, via positive frequency-dependent social learning
and benefits of conformity26–28).

At present, it is thus not clear (i) whether and to what extent
individuality emerges among genetically identical individuals
reared in isolation under highly standardized environmental

conditions and (ii) how a change in social rearing conditions
affects the development of individuality. The goal of this study
was to investigate these two central issues about the causes of
behavioural individuality. To test this, we split broods of a
genetically identical clonal fish, the Amazon molly (Poecilia
formosa)29,30, among three treatments that differed in the
opportunity for social interactions (Fig. 1) from no social
experience at all (0-day treatment), to a moderate level of
social experience (7-day treatment) and finally extensive social
experience (28-day treatment). Social interactions are of
importance in this species: this species occurs in large shoals in
nature30 and previous work has shown early social experiences
can have long-lasting impacts on later adult behaviour31. We then
repeatedly measured each individual’s behaviour at 7 weeks of age
to assess levels of individuality. The 0-day treatment fish lack
variation in the factors (genes and environment) that are
currently thought to generate individual variation in behaviour,
thus providing a baseline for the level of variation we should
expect under the most controlled conditions. We can then
investigate whether and how the addition of other factors, such as
social rearing conditions, significantly changes the pattern of
individual behavioural variation compared to this baseline
scenario. Our results show that significant repeatable individual
variation, that is, individuality, emerges even in isolated fish and
that the increasing opportunity for social interactions in the other
treatments does not change this pattern. These findings suggest
that there may be further causes to the development of
behavioural individuality than solely variation in genes or
environment.

Results
Individuality emerges in near-identical animals. In contrast to
the prediction that individuality should not persist among geneti-
cally identical individuals reared under highly standardized
environmental conditions, we found that substantial repeatable
individual behavioural differences, that is individuality, developed
in our 0-day treatment (Table 1 and Fig. 2). Overall, among-
individual differences (that is, repeatability) accounted for roughly
30% of the total behavioural variation (Table 1 and Fig. 2).

Social experience does not strengthen individuality. Moreover,
we found no evidence that increasing levels of social experience
influenced the magnitude of behavioural individuality compared
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Figure 1 | Schematic of experimental design. In the 0-day treatment, directly after birth, genetically identical individuals were isolated (grey arrows) and

housed in the same tightly regulated environmental conditions. In the 7-day and the 28-day treatments, genetically identical individuals were reared with

increasing durations of social experiences (black arrows) and were then isolated (grey arrows) in the same environments. In all treatments, we assessed

the behavioural phenotype of the individuals after 7 weeks.
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to the baseline 0-day treatment (Table 1 and Fig. 2). In our 7-day
and 28-day treatments, as in our 0-day treatment, we observed
the emergence of substantial among-individual differences in
behaviour that are repeatable (Table 1 and Fig. 2). Neither the
level of among-individual variation, nor the amount of total
behavioural variation differed between our three treatments
(Table 1). Indeed, the model containing treatment-specific
variance estimates was not better supported than a model where
individual variance was constrained to be the same across all
three treatments (DDIC¼ þ 0.667), indicating that levels of
repeatable among-individual variation are similar regardless of
social experience. Additionally, the inclusion of mother identity
as a random effect was not well supported (DDIC¼ � 0.445) and
including individual random slopes did not improve model fit
(Supplementary Table 1). If anything, individuals in the treat-
ments with the most social experience tended to exhibit lower
among-individual and within-individual variation (Table 1).
Furthermore, there were no differences in overall activity levels
(treatment estimates in Table 1) or in average body size (0-day:
22.89 mm, 95% confidence interval: (21.75, 24.12); 7-day:
22.34 mm (21.11, 23.51); 28-day: 22.70 mm (21.52, 23.90)). We
note that the absolute levels of behavioural variation exhibited by
these clonal individuals closely resemble that which we have seen
in non-clonal fish measured in a similar way (in the Atlantic
molly, Poecilia mexicana, one of the parental species of
P. formosa)32.

Discussion
Here we report experimental evidence that substantial beha-
vioural individuality emerges even among genetically identical
individuals housed under nearly ‘identical’ (that is, highly
standardized) environmental conditions. This finding is in
contrast to the current research paradigm associated with
adaptive individuality, which focuses on differences in genes
and/or environmental conditions (including the social environ-
ment) as drivers of individual behavioural variation. Importantly,
our findings suggest that other, yet unidentified factors, must
contribute to the establishment of individuality.

First, one potential factor that might have a stronger
contribution on individuality than previously thought is minute
and stochastic experiential/environmental variation between

individuals. In nature, no two individuals experience identical
environmental conditions over development; similarly, experi-
mentally, it is practically impossible to provide identical
conditions to different individuals. Thus, despite our best efforts,
it is likely that different individuals experienced different
microenvironments such as slight differences in water tempera-
ture, olfactory signals or distribution of prey items. Recent theory
on the adaptive development of individuality suggests that even
among initially identical individuals, such minute environmental
or experiential differences can induce positive feedback loops that
eventually fix individuals on different developmental trajec-
tories33–36. As Amazon mollies are known to use olfactory cues to
detect conspecifics37 and lineage-kin38, it is conceivable that
stochastic variation in such chemical cues between individuals
(in combination with positive feedbacks) may be a factor driving
the development of individuality in our experiments. Thus, in the
present study, minute differences in chemical cues experienced by
individuals across treatments may have contributed to distinct
developmental trajectories. Further, the fish in our study received
two types of food (see Methods section), which may have also
contributed as a source of stochastic variation. The importance of
such seemingly minute environmental differences are not yet well
incorporated in the theoretical literature but in combination
with potential feedback mechanisms could provide one potential
mechanism for the development of individuality in otherwise
‘identical’ animals. Future work that closely follows the
developmental experiences and the associated behavioural
responses of individuals should aim to elucidate when and how
such minute experiential differences can trigger the development
of individuality. Moreover, an especially compelling question is
whether developmental divergence triggered by such minute
experiential differences makes the emergence and patterning of
individuality inherently unpredictable.

A second potential driver of individuality, for which we could
not experimentally control, may be epigenetic variation among
individuals, which may be either stochastic or environmentally
induced. Whether and under which conditions such between-
individual epigenetic variation (and thus the observed indivi-
duality) is the result of an adaptive strategy is currently an open
question. Mothers may, for example, employ a bet-hedging
strategy to generate adaptive epigenetic variation among her
offspring12,14; this may be particularly beneficial in unpredictably

Table 1 | Result from global linear mixed model for activity in an open-field test.

Fixed effects Estimate (95%CIs)

Standard length 0.12 (�0.37, 0.61)
Observation 2.63 (2.11, 3.13)

Treatment
0-day 7.79 (�4.00, 18.72)
7-day 7.41 (�4.58, 17.73)
28-day 9.08 (� 2.17, 20.60)

Variance estimates

Among-mother 3.89

0-day 7-day 28-day

Among-individual variance 19.36 (5.28, 36.28) 17.99 (3.34, 34.83) 11.35 (1.59, 22.61)
Within-individual variance 39.35 (28.37, 51.39) 30.88 (22.23, 39.98) 26.21 (19.11, 34.36)
Repeatability 0.35 (0.13, 0.52) 0.35 (0.13, 0.57) 0.29 (0.09, 0.51)

Our model with (square-root transformed) total distance swam as dependent variable included body size (‘standard length’) and observation (trial 1–4) as covariates and ‘treatment’ as fixed factor. Total
behavioural variation was partitioned into its component parts: among-mothers across treatments (‘among-mother variance’) and among-individuals and within-individuals (that is, residual) within
treatments. Repeatability estimates the proportion of the total variance that is due to among-individual differences within a treatment. Values in parentheses indicate the 95% credibility intervals; values
not overlapping zero for fixed effects indicate that the estimate is significantly different from zero; CI’s for variance estimates are constrained to be positive, therefore, we tested for the support of
variance estimates by comparing the DIC of models with and without the random effect (see main text).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15361 ARTICLE

NATURE COMMUNICATIONS | 8:15361 | DOI: 10.1038/ncomms15361 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


changing environments or in clonal organisms where standing
genetic variation is lacking. Furthermore, between-individual
epigenetic variation may be an adaptive response to minute
experiential/environmental differences between individuals
(see above), thereby potentially contributing to a positive
feedback loop reinforcing such differences11,14. Alternatively,
variation among individuals may not be adaptive at all, but reflect
stochasticity or noise during development which is then canalized
as a result of the developmental process11,39–43.

It is currently thought that direct social interactions are a
powerful causal factor affecting the development of individuality.
As discussed above, dependent on the species ecology and other
factors such as density, risk and so on, direct social interactions can
be predicted to either promote (for example, via the formation of
social interaction structures like social hierarchies; via processes
like frequency dependence, niche and role specialization7,21–25) or
inhibit (for example, via positive frequency-dependent social
learning and benefits of conformity26–28) the development of
individuality. Up to now, however, few studies16 have evaluated
the importance of direct social interactions with a controlled
experimental approach that compares a treatment in which
genetically identical individuals are allowed to directly interact
with each other with an appropriate baseline treatment that does

not allow for such interactions. When comparing our 0-day
baseline treatment with our 7-day and 28-day direct social
experience treatments, we find that the amount of behavioural
individuality observed is not affected by the level of direct social
experience of individuals. We note that—while we do not find
statistically significant differences between treatments—the amount
of among- and within-individual variation does tend to decrease in
the most social treatment (28-day). This finding is in line with
previous studies on clonal fish, which did not find an effect of
direct social experience on the repeatability of behaviour16. We do
not claim that social processes play no role in the development of
behavioural individuality, but our findings strongly suggest that
other more nuanced factors may be substantially more important
for the development of individuality than currently thought.

Over the last decades, substantial research effort has been spent
investigating the causes of behavioural individuality and much
of this research has aimed to explain and predict behavioural
individuality with differences in genes and/or environmental
conditions. Regardless of the exact causes of individuality in our
experiments, our findings suggest that individuality may be a
more general phenomenon and potentially an inevitable and
inherently unpredictable outcome of the development of complex
phenotypes.
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Figure 2 | Individual behaviour in an open-field test over four repeated observations. (a,b) show examples of a less active and a highly active individual,

respectively; shown are heat map outputs produced by EthoVision software for each of the four trials. (c) Individual activity levels for the three treatments

are shown. Each line represents one individual with the predicted intercept and slope from the models (N¼ 31 for 0-day and 7-day treatments and N¼ 32

for 28-day treatment). In all three treatments, we observe substantial among-individual differences in behaviour that are repeatable. Neither the level of

among-individual variation, nor the amount of total behavioural variation differed between our three treatments (Table 1).
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Methods
Animal care and maintenance. Stock populations of P. formosa (Amazon molly,
obtained from Manfred Schartl, University of Würzburg) are maintained in large
(100 l) stock aquariums. The all-female Amazon molly originates from a single
natural hybridization event between the sailfin molly Poecilia latipinna and the
Atlantic molly Poecilia mexicana44,45. It reproduces gynogenetically and females
require sperm from one of the parental species to stimulate egg production45–47.
Therefore, several (two–four) males of P. mexicana were kept with each stock
population aquarium. Stock populations experience ambient light conditions
similar to the local light cycle (B14:10 L:D). Fish were fed ab libitum three times
daily on standard flake fish food. We performed weekly water changes to replace
B30% of the total water volume of each tank. To generate the experimental
individuals, we isolated gravid females from a single isogenic line (strain 1304, lab
code Manfred Schartl) in separate 35 l tanks containing a gravel bottom and plastic
plants. To further limit the potential for differences among mothers (for example,
in maternal effects), these gravid females were all sisters from the same brood
ensuring all individuals were the same age, from the same mother and had
experienced similar conditions for their entire lives. Intermittent genetic samplings
of this strain confirm that all individuals are clones. We checked females’ tanks
twice daily for evidence of offspring. In case a female gave birth, we took
12 juveniles from the brood and randomly assigned four siblings to each of our
three treatments (see more details below; Fig. 1). This split-brood design helped to
ensure that any differences in maternal effects were at least split among all our
treatments. Additionally, we only used broods of similar size (12–24 offspring)
to reduce the potential for differences in maternal provisioning. In total, seven
different mothers (one mother contributed two clutches) contributed to the
experimental individuals.

Experimental set-up. Newly born offspring were randomly assigned to one of
three treatments directly after birth (Fig. 1).

In the 0-day treatment, directly after birth, four individuals from a single brood
were transferred into a single 30 cm� 30 cm� 30 cm square tank, which was
covered on all sides with black foil to limit outside disturbances. The tank was
divided into four equally sized quadrants using a blue filter sponge. Each
compartment housed a single individual and the sponge divider allowed water
exchange between the four compartments but no visual or direct interactions of the
fish. Such a design allows olfactory communication among physically isolated fish
which we know is important in this species37,38 and should circumvent
the development of behavioural abnormalities reported in other studies using
teleost fishes that were entirely socially deprived48,49. An air-driven filter was
integrated into the sponge to maintain water quality. We exchanged 50% of the
water on a weekly routine. Water temperature was maintained constantly at 24 �C
through room temperature, and as all tanks were placed on a large table at the same
height no temperature variation greater than 1 �C was observed in our weekly
measurements. The tank contained no gravel or any other substrate. To (i) avoid
size (growth) differences between individuals due to competition for food (we
observed no differences in body size between individuals, see results) and
(ii) maintain good health of all fish throughout the experiment (only 2 out of
96 experimental individuals died before phenotyping), fish were fed ad libitum with
live Artemia-nauplii three times a day as well as with commercially available dusted
flake food (TetraMin) twice a day. Such a feeding regime follows standard
protocols for common garden experiments in mollies50,51. After 7 weeks of
isolation, each fish was individually phenotyped for its exploration and activity
(see ref. 52 for a similar protocol). We chose exploration and activity patterns as
our target trait since locomotion is of central importance for all non-sessile animals
and individual differences in this trait are thought to have substantial ecological
consequences53. Furthermore, activity is influenced by the social environment in
the Atlantic molly (Poecilia mexicana), one of the parental species of the Amazon
molly32.

In the 7-day treatment, four individuals from a single brood were transferred to
a similar square tank as described for the 0-day treatment. However, fish were
reared as a group without a sponge divider for 7 days, allowing unlimited direct
social interactions (for example, social hierarchies31). Afterwards, fish were isolated
via a sponge divider and reared separately for another 6 weeks before being
phenotyped. Maintenance was as described for 0-day treatment.

Finally, in the 28-day treatment, four individuals from a single brood were
transferred to a similar square tank as described for the 0-day treatment. Fish were
then reared as a group without a sponge divider for 28 days, allowing unlimited
direct social interactions. Afterwards, fish were isolated via a sponge divider and
reared separately for another 3 weeks before being phenotyped. Maintenance was
as described for 0-day treatment.

We repeatedly assayed all individual’s behaviour at the age of 7 weeks. To limit
the possibility of differences in energy status among individuals affecting our
behavioural measures, we did not feed fish the morning before the tests, which were
always done between 10:00 hours and 13:00:00 hours. We used an open-field arena
that consisted of a circular tank (48.5 cm in diameter, made of white plastic) filled
with system water to a depth of 3 cm. Lighting was provided from neon tubes
positioned at the room ceiling, which helped to avoid shadows or reflections within
the tank. In each trial, a single fish was introduced into an opaque plastic cylinder
in the centre of the arena and let to acclimate for 3 min. Then, the cylinder was

carefully removed and we videotaped fish exploration and activity with a webcam
for the next 6 min. After that, we transferred the fish back into its rearing
compartment. We exchanged the water in the open-field arena after every trial to
exclude any effect of released chemicals on subsequently tested fish. Measurements
were repeated every other day until we completed four measurements per
individual. Fish were tested in random order, so that no fish was always tested as
first or last in a day. Videos were analysed using the automated video tracking
software EthoVision XT Version 10.1 (Noldus Information Technologies, Inc.),
thus, experimenters were blinded about individual fish treatment identity. Position
scoring started 10 s after the fish was released from the cylinder and we measured
the total distance swam within the following 5 min. After completing the four
activity measures, standard length of all fish were measured to the nearest 0.1 mm.
Two experimental individuals died before phenotyping, resulting in final sample
sizes of: 0-day treatment N¼ 31; 7-day treatment N¼ 31; 28-day treatment N¼ 32.
Choosing our sample size, we followed the recommendations in ref. 54, and the
number of animals as well as the number of repeats per individual is large enough
to yield sufficient power in detecting repeatability if present54. The reported
experiments comply with current German law approved by LaGeSo Berlin
(GO124/14 to D.B.).

Statistical analysis. Our behavioural measure, total distance swam, was square-
root transformed before analysis to meet assumptions of normality and homo-
geneity of variance. We first tested for differences in body size (standard length)
among fish from our different treatments using a linear mixed model with standard
length as the response variable and treatment as the fixed effect; mother identity
was included as a random effect. To investigate whether levels of individual
behavioural variation differed across treatments, we used a linear mixed model
including the covariates ‘observation (trial 1 to 4)’ to account for behavioural
changes over the course of the experiment55 and ‘standard length’ to account for
individual body size differences as well as ‘treatment’ as a fixed factor. We included
treatment-specific variance estimates for individual and residual variance.
Additionally, we included the global (that is, not treatment specific) random effect
of mother identity. The resulting variance components were used to estimate the
proportion of variance attributable to the individual, that is, behavioural
repeatability54,56. We did not include any variation attributed to mother identity in
these repeatability estimates as this random effect was not well supported by the
model (see Results section) and any variation attributable to mother identity would
be split across all treatments (due to our split-brood design). A significant
repeatability estimate is interpreted as evidence of consistent individual differences.
Significant differences in variance components and repeatability between the
treatments can be assumed when the 95% confidence intervals of the estimates do
not overlap. We additionally tested whether there was overall support for the
treatment-specific variance estimates (that is, whether among-individual variance
was different across treatments) by comparing this model to a model where we did
not allow the among-individual variance in individual intercepts to vary across
treatments (that is, we fit one variance estimate for individuals across all three
treatments). We compared the resulting deviance information criterion (DIC) of
each model, and if the DIC was reduced by greater than three by including the
treatment-specific random effect, we considered this statistical support that the
treatment-specific variance estimates better fit our data. Finally, in preliminary
analyses, we tested for the possibility that individuals within each treatment
exhibited differing plasticity over the repeated testing (that is, random slopes/
regression). We did this by running a separate model for each treatment where we
included random intercepts and slopes for individuals and mothers. However,
there was no evidence that inclusion of the random slopes increased model fit
(DDIC o1), and actually impaired model convergence, therefore, we did not retain
these terms in our final model (see SI data, Table 1). Additionally, there was no
evidence for an interaction between treatment and body size, or treatment and
observation (data not shown).

For all analyses, we used Markov chain Monte Carlo estimation, assuming a
Gaussian error distribution with the MCMCglmm package in R v3.1.3 (ref. 57). We
used parameter-expanded proper priors and preliminary analyses indicated that
our results were not sensitive to changes in prior specification. To ensure model
convergence, we ran five chains for each model with 500,000 iterations, 1,000 burn-
in and thinning every 100 iterations. We visually checked the posterior density
plots to ensure proper model mixing and convergence.

Data availability. All data are accessible via dryad respository58.
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9. Gärtner, K. A third component causing random variability beside environment
and genotype. A reason for the limited success of a 30 year long effort to
standardize laboratory animals? Int. J. Epidemiol. 41, 335–341 (2012).

10. Vogt, G. et al. Production of different phenotypes from the same genotype
in the same environment by developmental variation. J. Exp. Biol. 211, 510
(2008).

11. Vogt, G. Stochastic developmental variation, an epigenetic source of
phenotypic diversity with far-reaching biological consequences. J. Biosci. 40, 159–
204 (2015).

12. Wong, A. H., Gottesman & Petronis, A. Phenotypic differences in genetically
identical organisms: the epigenetic perspective. Hum. Mol. Genet. 14, R11–R18
(2005).

13. Schneider, E. et al. Spatial, temporal and interindividual epigenetic variation of
functionally important DNA methylation patterns. Nucleic Acids Res. 38,
3880–3890 (2010).

14. Leung, C., Breton, S. & Angers, B. Facing environmental predictability with
different sources of epigenetic variation. Ecol. Evol. 6, 5234–5245 (2016).

15. Edenbrow, M. & Croft, D. P. Behavioural types and life history strategies during
ontogeny in the mangrove killifish. Anim. Behav. 82, 731–741 (2011).

16. Edenbrow, M. & Croft, D. P. Environmental and genetic effects shape the
development of personality traits in the mangrove killifish Kryptolebias
marmoratus. Oikos 122, 667–681 (2013).

17. Schuett, W. et al. Personality variation in a clonal insect: the pea aphid,
Acyrthosiphon pisum. Dev. Psychobiol. 53, 631–640 (2011).

18. Archer, G. S., Friend, T. H., Piedrahita, J., Nevill, C. H. & Walker, S. Behavioral
variation among cloned pigs. Appl. Anim. Behav. Sci. 81, 321–331 (2003).

19. Freund, J. et al. Emergence of individuality in genetically identical mice. Science
340, 756–759 (2013).

20. Lewejohann, L., Zipser, B. & Sachser, N. ‘Personality’ in laboratory mice used
for biomedical research: a way of understanding variability? Dev. Psychobiol.
53, 624–630 (2011).

21. Wolf, M. & Weissing, F. J. An explanatory framework for adaptive personality
differences. Philos. Trans. R. Soc. B 365, 3959–3968 (2010).

22. Buss, D. M. & Greiling, H. Adaptive individual differences. J. Pers. 67, 209–243
(1999).

23. Bergmüller, R. & Taborsky, M. Animal personality due to social niche
specialisation. Trends Ecol. Evol. 25, 504–511 (2010).

24. Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality
differences: a review. Philos. Trans. R. Soc. B 365, 3947–3958 (2010).
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