
UC Davis
UC Davis Previously Published Works

Title
Sensitivity and variability of soil health indicators in a California cropping system

Permalink
https://escholarship.org/uc/item/2gf332c1

Journal
Soil Science Society of America Journal, 85(5)

ISSN
0361-5995

Authors
Lazicki, Patricia
Rodrigues, Jorge L Mazza
Geisseler, Daniel

Publication Date
2021-09-01

DOI
10.1002/saj2.20278
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2gf332c1
https://escholarship.org
http://www.cdlib.org/


Received: 22 January 2021 Accepted: 11 May 2021

DOI: 10.1002/saj2.20278

N U T R I E N T M A N A G E M E N T & S O I L & P L A N T
A N A LY S I S

Sensitivity and variability of soil health indicators in a California
cropping system
Patricia Lazicki Jorge L. Mazza Rodrigues Daniel Geisseler

Dep. of Land, Air, and Water Resources,

Univ. of California, Davis, 1 Shields Ave.,

Davis, CA 95616, USA

Correspondence
Patricia Lazicki, Dep. of Land, Air, and Water

Resources, Univ. of California, Davis, 1

Shields Ave., Davis, CA 95616, USA.

Email: palazicki@ucdavis.edu

Assigned to Associate Editor Carl Bolster.

Abstract
An indicator that is used to monitor whether a management practice is improving soil

health must be sensitive to management changes. However, it should not be overly

influenced by variations in sampling time or location, previous crop, or annual differ-

ences in weather or operations timing. In this study, we assessed the sensitivity and

variability of several soil health indicators in long-term plots under typical farming

practices in a Mediterranean climate. These plots have been conventionally or organ-

ically farmed in a corn (Zea mays L.)–processing tomato (Solanum lycopersicum L.)

rotation for 25 yr. We sampled in both crop phases prior to planting and midseason

for two consecutive years, analyzing subsamples taken from three adjacent locations

per plot. Management was the most significant factor differentiating most indicators,

particularly indicators of biological processes and C accumulation. Whereas man-

agement differences were consistent across sampling times, average indicator values

for a management system often varied significantly between dates and years. Crop

phases, conversely, were usually similar. Accounting for soil texture increased man-

agement sensitivity for aggregate stability and most C accumulation indicators. Sen-

sitive indicators such as mineral N, particulate organic matter C, and mineralizable C

had greater subsample variability than indicators measuring large, stable pools, such

as total C. Our results show that indicators relating to organic C and biological pro-

cesses most strongly differentiated the two systems, and underline the importance of

using consistent sampling dates. They also suggest that an indicator dataset including

both stable and sensitive indicators may be the most reliable to interpret.

1 INTRODUCTION

Soil health is promoted as foundational to producing high

yields of nutritious crops while protecting the environment

and fighting climate change. Accordingly, “soil health build-

ing practices” are increasingly being experimented with by

Abbreviations: CONV, conventional; EC, electrical conductivity; FDA,

fluorescein diacetate hydrolysis; ORG, organic; POM, particulate organic

matter; POXC, permanganate-oxidizable C; SOC, soil organic carbon.
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farmers and incentivized by government and private entities.

Therefore, how best to assess whether soil health is actually

improving is a topic of great practical importance and much

recent debate (Karlen et al., 2019; Norris et al., 2020; Roper

et al., 2019; Stewart et al., 2018; Wander et al., 2019).

Central to this debate are the concepts of indicator sensitiv-

ity, variability, and generalizability. A useful indicator must

be able to detect improvements in some property of inter-

est within a reasonable timeframe. However, it should not be

affected by other factors to the extent that it is difficult to
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interpret or cannot be compared with other systems or over

time (Hargreaves et al., 2019). For example, soil organic mat-

ter is an important component of soil health, but because it

may take several years for a change to be detectable it could

have limited usefulness for a farmer who wished to evalu-

ate different management practices for increasing soil health

(Hurisso et al., 2018). Conversely, plant-available N is neces-

sary for crop growth, but changes so quickly and is so strongly

affected by a variety of climactic and edaphic factors that it is

also not very useful for assessing whether a soil is improving

over time in response to management (Wander et al., 2019).

Between these two extremes lie a host of potential soil health

indicators that have been found to be more sensitive or less

variable measures to monitor factors such as C storage, fertil-

ity, or structural stability (Hurisso et al., 2018).

However, an emerging body of work suggests that the

“best” metrics, as well as the appropriate sampling protocols

and the thresholds used to interpret them, are likely to be

affected by cropping systems, climates, and edaphic proper-

ties like texture (i.e., Caudle et al., 2020; Chahal & van Eerd,

2019; Hurisso et al., 2016, 2018; Roper et al., 2017; Wade

et al., 2016; Zuber et al., 2020). This need for regional speci-

ficity stems from the conceptual definition of soil health as

“the continued capacity of a soil to function as a vital living

ecosystem that sustains plants, animals, and humans” (Nor-

ris et al., 2020, p. 3196), as the threats and limitations to

such functioning in an agricultural system depend on spe-

cific regional characteristics and crop requirements (Andrews

et al., 2004). Hence, different indicators and different sensitiv-

ity may be appropriate. For example, it will be more important

to be able to document very slight incremental changes in soil

C in a region with intrinsically low capacity for organic matter

accumulation than in a region with a high capacity.

Thus, as progress is being made toward developing stan-

dardized soil health assessment protocols (Norris et al., 2020),

there is a need for regional studies that explore indicator sen-

sitivity and variability in locally important management sys-

tems and soil types (Zuber et al., 2020). As most soil health

assessment research has been conducted in rainfed grain and

pasture systems, there is a particularly urgent need for more

data from areas with the Mediterranean climates and irri-

gated high-value cropping systems typical of California. For

example, in the “North American Project to Evaluate Soil

Health Measurements,” (https://soilhealthinstitute.org/north-

american-project-to-evaluate-soil-health-measurements/), an

exciting continent-scale project that aims to standardize soil

health assessment by analyzing indicator sensitivity at long-

term research sites, fewer than 5% of the sites are located in

California or are in vegetable production (Norris et al., 2020).

Additionally, that project’s scope does not include spatial and

temporal variability, which are likely to be important consid-

erations in California given its variable winter precipitation

and widespread use of drip irrigation. To ensure soil health

Core Ideas
∙ Sensitivity and variability of candidate indicators

were tested on long-term research plots.

∙ Organic C and biological indicators were more sen-

sitive than chemical and physical indicators.

∙ Sampling year and date were more important

sources of variability than crop phase.

∙ Uniform sampling dates should be used if monitor-

ing soil C changes over time.

assessment protocols are appropriate for the distinct climate,

management, and spatiotemporal distribution of soil water

occurring in California irrigated row crops, in-depth data on

the sensitivity and variability of popularly promoted indica-

tors are needed to complement research done across multiple

sites and cropping systems.

Our goal in this study was to assess the sensitivity and vari-

ability of a wide range of soil health indicators in the Russell

Ranch Century Experiment in the Central Valley of Califor-

nia, a long-term experiment in which plots in a corn (Zea mays
L.) and processing tomato (Solanum lycopersicum L.) rota-

tion have been under conventional (CONV) or organic (ORG)

management since 1993. Long-term research trials provide

stable, controlled systems that can be used to evaluate the ben-

efits of a management practice and to help select and inter-

pret appropriate soil health indicators (i.e., Diederich et al.,

2019; Hurisso et al., 2016; Morrow et al., 2016). The uniform

conditions allow for the systematic examination of indicators’

relative susceptibility to other factors like weather. By sam-

pling both systems in all crop phases prior to planting and

during crop growth across 2 yr, we aimed to document how

soil health indicators vary with crop phase, sampling timing

and year, and how those differences compare in magnitude

to those caused by management. In addition, the relatively

wide textural gradient that occurs across the Century Experi-

ment allows us to observe the effect of soil texture differences

on indicator sensitivity and variability with factors other than

management.

We hypothesize that in the Century Experiment: (a) long-

term organic management will have resulted in significant dif-

ferences in all indicators, particularly increasing those relat-

ing to soil organic C (SOC) storage and biological function;

(b) indicators such as enzyme activity and C mineralization,

which measure biological processes, will be more affected by

other sources of variability (crop phase, sampling time and

year) than indicators that measure large, stable pools, such as

total C; (c) indicators with the greatest sensitivity to manage-

ment will also have the greatest variability with factors other

than management; and (d) that adding a textural covariate will
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T A B L E 1 Summary of crop management operations and soil and plant sampling in 2018 and 2019

Management dates
Soil and plant
sampling dates

Operation 2018 2019 Operation 2018 2019
Bed disking and listing Oct. (2017) Oct. (2018) Preplant sampling (all) 4 Apr. 12 Apr.

Cover crop seeding Nov. (2017) Nov. (2018) Tomato midseason soil and plant

sampling

13 June 13 June

Cover crop mow/disk/list 23 Feb. 23 Feb. CONV corn midseason soil and

plant sampling

27 June 5 July

Compost spreading 20 Apr. 24 Oct. (2018) ORG corn midseason soil and

plant sampling

20 July 30 July

Compost incorporation (2018

only), cultivation, bed rolling

21–26 Apr. 23–25 Apr. Tomato bulk density sampling 14 Aug. 30 July

CONV corn seeding, starter NPK 21 Apr. 4 May Corn bulk density sampling 5 Oct. 30 July

CONV tomato starter NPK 26 Apr. 25 Apr. Tomato fruit hand-harvest 14 Aug. 23 Aug.

Tomato transplanting 1 May 29 Apr. Corn grain hand-harvest 5 Oct. 3 Oct.

ORG corn seeding 25 May 3 June

Tomato harvest 30 Aug. 4 Sept.

Corn harvest (all) 5 Oct. 11–14 Oct.

Note. CONV, conventional; ORG, organic.

increase the significance of the management effect for most

indicators.

2 MATERIALS AND METHODS

2.1 Site description

The experiment was conducted in plots with a corn–

tomato rotation at the Century Experiment at the Russell

Ranch Sustainable Agriculture Facility in northern California

(38˚32′24″ N, 121˚52′12″ W). In this experiment, a conven-

tional management system utilizing synthetic fertilizer and

winter fallow is contrasted with a certified organic system

with yearly application of composted poultry manure and a

winter legume cover crop. Pest control in each system is con-

ducted according to local grower practice. Detailed site and

management information can be found in Tautges et al. (2019)

and Schmidt et al. (2018). Briefly, the experiment was laid out

in 1993 as a randomized complete block design with three

blocks. Two blocks are placed on Rincon silty clay loam soil

(fine, smectitic, thermic Mollic Haploxeralfs) and the third on

Yolo silt loam (fine-silty, mixed, superactive, nonacid, ther-

mic Mollic Xerofluvents). The rotation and management were

designed to reflect typical local grower practice. Each crop

phase (corn or tomato) of each management system is repre-

sented in each block in each year on 0.4-ha replicate plots,

each consisting of 48 152.4-cm-wide beds. This scale allows

plots to be large enough to be managed with commercial scale

farm equipment but small enough to be relatively uniform

(Denison et al., 2004). In both systems, beds are cultivated

and rolled prior to planting. Following harvest, residues are

disked in to a depth of 15 cm, using four passes for corn and

two passes for tomato. Tomato also receives inseason cultiva-

tion. In the ORG systems, additional operations included disk-

ing in the cover crop (two passes), bed listing in early spring,

and compost incorporation (detailed below). In 2015, a single

subsurface drip line was installed at a depth of 25 cm down

the center of each bed. Prior to 2015, all plots were furrow

irrigated. Tillage operations do not exceed 25 cm in depth.

2.2 Management during the 2018 and 2019
growing seasons

Timing of management operations for the 2018 and 2019

growing seasons is summarized in Table 1. In the ORG plots,

a cover crop consisting of hairy vetch (Vicia villosa Roth),

faba bean (Vicia faba L.), and cereal oat (Avena sativa L.) was

seeded in November, terminated by mowing in late February,

and then incorporated by disking. For the 2018 crops, com-

posted poultry manure was broadcast applied in late April at

the rate of 4 t ha−1 and incorporated by disking to 15 cm.

For the 2019 crop, composted poultry manure at the same rate

was broadcast over the top of the corn and tomato residues in

fall 2018, which were then chopped and disked to incorpo-

rate. In both years, beds were rolled to prepare the seedbeds

in late April. In the ORG and CONV systems, tomatoes were

transplanted down the center of the bed in early May. Corn

was seeded in double rows in late April, early May in the
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F I G U R E 1 Monthly precipitation and average air temperature for

Davis, CA, from October 2017 through October 2019

CONV system, and in late May 2018 and early June 2019 in

the ORG system. The later seeding date for ORG corn was

chosen because insect pressures resulted in a poor stand in

2018, requiring replanting. In the CONV system, both corn

and tomato received an application of 56 kg N ha−1 as 8–

24–6 banded at planting. No other sources of P and K were

added. In addition, urea ammonium nitrate (32%) was water-

run through the drip lines several times during the growing

season, for an annual total of 235 kg N ha−1 in corn and 200 kg

N ha−1 in tomato. In both systems, tomatoes were mechani-

cally harvested in late August and corn in late October.

Total winter (October through March) rainfall prior to

the 2018 and 2019 growing seasons was 240 and 650 mm,

respectively (California Irrigation Management Information

System, Davis, CA station). Average air temperature during

both growing seasons (April through September) was 20 ˚C

(Figure 1).

2.3 Soil and plant sampling

For each crop in each year, soil samples were taken prior to

planting and in the early reproductive phase (early green fruit

in tomato and tasseling in corn; Table 1). At each sampling

date, samples were taken from 4.5-m long microplots located

46 m from the southern edge of the plot and at least 7 m

from any field edge. Different microplots were sampled in

each year. Microplots were sampled rather than the whole plot

to avoid sampling from other experiments on the same plots.

Samples were taken at three locations within each microplot,

spaced 1.8 m apart within a single bed. At each location, sev-

eral cores were taken 20 cm from the center drip line to a depth

of 25 cm, within 0.3 m of a central point, and composited such

that three separate subsamples were taken per plot for further

analysis. The top 10 cm were discarded, as this portion is not

consistently within the wetting zone of these subsurface-drip

irrigated beds. Sensitivity and variability estimates reported

are, therefore, of microplots rather than whole plots, and are

more susceptible to localized random variability. In 2019, the

soil was wetter at sampling and a 4.5-cm diameter Edelman

combination auger was used to avoid compaction. At least

800 g of soil was obtained from each location, mixed thor-

oughly, immediately placed on ice, and kept at 4 ˚C until anal-

ysis.

Preplant samples were taken on 4 Apr. 2018 and 12 Apr.

2019. Due to the difference in operations timing between

years, this was prior to manure application in 2018, but several

months subsequent in 2019 (Table 1). Midseason samplings

were timed according to crop phenologic stage for each year,

crop, and management. Bulk density samples were taken from

the top 0–15 cm once per season, just before tomato or corn

harvest in 2018, and on July 30th in 2019. Samples were taken

20 cm from the center drip line using a soil corer fitted with a

4.5-cm diameter plastic sleeve.

2.4 Soil analyses

Field-moist soils were sieved to 4.75 mm. Gravimetric mois-

ture content was determined by drying a 20-g subsample of

homogenized soil at 105 ˚C for 24 h. Within 1 wk of sam-

pling, two duplicate samples of 6-g moist soil were weighed

into glass 40-ml vials. One set was extracted for 1 h with 30 ml

0.5 M potassium sulfate (Mulvaney, 1996), filtered through

medium retention filter paper, and analyzed for ammonium

(NH4–N) and nitrate (NO3–N) using colorimetry based on the

Berthelot reaction (Forster, 1995; Verdouw et al., 1978) and

a single reagent method (Doane & Horwath, 2003), respec-

tively. The sum of these was used to calculate the total min-

eral N. The duplicate sample was fumigated with chloroform

for 24 h, and then extracted in the same manner. Organic C

was measured in the extracts of fumigated and unfumigated

soils, and microbial biomass C was calculated as the differ-

ence between C concentrations in fumigated and unfumigated

extracts, divided by an adjustment factor ke of 0.35 (Horwath

& Paul, 1996). The remainder of the soil was air-dried and

ground to pass through a 2-mm sieve for analyses of addi-

tional indicators relating to soil chemistry, organic C pools,

biological processes, and physical structure.

Chemical analyses were electrical conductivity (EC) and

pH, measured in a 2:1 water/soil slurry (Thomas, 1996),

bicarbonate-extractable P analyzed colorimetrically (Olsen

P; Watanabe & Olsen, 1965), and base cations Ca, Mg, K,

and Na, extracted with ammonium acetate at pH 7 (Helmke

& Sparks, 1996; Suarez, 1996). For indicators relating to

organic matter pools, total C and N were measured by dry

combustion on soils ground to a fine powder (Nelson &

Sommers, 1996). Effervescence tests with HCl suggested no

appreciable carbonates were present. The particulate organic

matter (POM) C and N were assessed using size fractionation
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to 53 μm followed by dry combustion as described by

Cambardella and Elliott (1992). Permanganate-oxidizable C

(POXC) was assessed on duplicate 2.5-g samples using the

protocol described by Weil et al. (2003), with modifications

described by Culman et al. (2012).

Two different indicators of biological processes were

measured. Mineralizable C was measured as the CO2–C

mineralized over 72 h from two duplicate centrifuge tubes

each containing 6 g of dried soil rewet to 60% water holding

capacity, where water-holding capacity was defined as the

water concentration of a saturated soil sample after 1 h free

draining in a filter-paper lined funnel (Wade et al., 2016).

Water adjustments were made from the top, using a pipet

(Wade et al., 2018) and both samples were placed in a single

sealed jar fitted with a rubber septum for gas sampling and

incubated in the dark at 25 ˚C for 72 h. Headspace CO2–C

was measured on an infrared gas analyzer (IRGA; Qubit

Systems). As an index of heterotrophic enzyme activity, flu-

orescein diacetate hydrolysis (FDA) was measured using the

method described by Green et al. (2006), with modifications

proposed by Prosser et al. (2011). Briefly, three replicate 1-g

samples were weighed into 50-ml centrifuge tubes and 30 ml

of tris(hydroxymethyl)aminomethane buffer (pH 7.6) was

added. A volume of 0.30 ml of FDA solution were added to

two of the replicates, and an equivalent amount of acetone

was added to the third as a control. Samples were shaken

for 3 h on a reciprocal shaker at room temperature. After

shaking, the reaction was paused by the addition of 1.2 ml of

acetone and briefly vortexing. Samples were allowed to settle

for 10 min, after which 1.5 ml was pipetted into 1.5-ml cen-

trifuge tubes and centrifuged at 8,800 g for 5 min. One ml of

supernatant was pipetted into cuvettes and measured against

a fluorescein standard curve at a wavelength of 490 nm.

Water-stable aggregates and bulk density represented the

physical indicators. We determined aggregate stability using

a method slightly modified from that of Kemper & Roseneau

(1986). This method was chosen as preliminary tests in our

lab showed it to be the least affected by differences in mois-

ture content at sampling and differences in sampling equip-

ment. About 30 g of air-dried soil sieved to 2 mm was placed

on top of a 1-mm sieve, and gently shaken to remove the frac-

tion <1 mm. Then, 4 g of 1-to 2-mm aggregates were poured

in a thin layer on the surface of a 250-μm sieve with a diame-

ter of 6 cm and placed in a clean, dry, 10-cm-diameter soil tin.

The soil was gradually wet by capillarity by adding deionized

water down the side of the tin until the water level reached the

level of the sieve. The sample was allowed to equilibrate for

15 min, after which the water level was brought up and the

sample was raised and lowered by hand to a height of 1.3 cm

for 3 min at a rate of 35 oscillations per minute, ensuring that

the sieve mesh did not rise above the surface of the water. The

can was placed in a 105 ˚C oven for 24 h to determine the

weight of the unstable fraction. The sieve containing the sta-

ble fraction was transferred to another can containing a solu-

tion of 2% sodium hexametaphosphate, in which the remain-

ing aggregates were completely dispersed. The residual sand

particles remaining on the sieve were washed with deionized

water and transferred to aluminum weigh boats and dried for

24 h at 105 ˚C. The stable aggregate fraction was calculated

by subtracting the weight of the unstable and coarse fractions

from the initial 4-g sample. To determine bulk density, the

height of each 4.5-cm diameter core was measured and the

soil within the core was weighed after drying at 105 ˚C for

24 h.

As texture varies substantially across the site, particle size

distribution values for the top 30 cm of each plot were

obtained from the Russell Ranch records (Kate Scow and Jes-

sica Chiartas, Davis, CA).

2.5 Statistical analyses

Descriptive statistics for each indicator were generated using

PROC UNIVARIATE in SAS (SAS corporation). The mean,

median, SD, skewness, and coefficients of variation (CVs)

were assessed for each indicator for the full dataset, and

in each management system across all subsample locations,

replicate blocks, crops, dates, and years. As many of the vari-

ables showed moderate to extreme skewness, we reported the

medians and the CVs calculated based on the medians rather

than the means (Wade et al., 2018). In most cases the dif-

ference between mean- and median-based values was mini-

mal. Outliers were not removed unless values were physically

impossible (such as negative numbers), or there was docu-

mented evidence of error during the analysis. Overall CV val-

ues of 10% or less were categorized as low, 11–30% as inter-

mediate, and above 30% as high.

Locations within plots were combined to calculate means

and CVs for each plot × block × crop × management × date ×
year combination (n = 48; three blocks × two crops × two mgt

× two dates × 2 yr). The plot mean values were used to assess

the main and interactive effects of management, crop, date

and year using ANOVA in PROC GLIMMIX in SAS. The

experiment was analyzed as a crossover design with repeated

measures, as detailed in Tao et al. (2015). “Plot” was consid-

ered to be the subject, and the two crop sequences (tomato–

corn, corn–tomato) considered as sequences of treatments

administered over two periods (2018 and 2019), and “date”

was treated as a repeated measure. This approach accounts

for the fact that a single subject (plot) received two crop

phases. In each phase, two measurements were taken in close

enough proximity as to be dependent (Tao et al., 2015). The

crossover design’s assumption that carryover effect of crop

phase between the two periods is minimal was supported

by preliminary exploratory analysis using spaghetti plots for

individual plots across dates and years. A compound sym-

metry autocorrelation structure was used, as it is often more

appropriate for small sample sizes than more complex designs
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(Schaalje et al., 2002), and preliminary exploration showed

it generally gave similar or lower Akaike Information Crite-

rion values than more complex designs for most indicators,

and was more likely to converge. Management, crop phase,

sampling date, and year were regarded as fixed. “Year” was

treated as a fixed effect, because in the context of this experi-

ment, the inference space is the combination of weather, oper-

ations timing, sampling equipment, and technician variabil-

ity which contributed to the difference between the 2018 and

2019 growing seasons rather than among all growing seasons.

Three random terms were used. In the first, date was specified

as a repeated measure with compound symmetry autocorre-

lation structure, and the subject defined as “plot*crop” (Tao

et al., 2015). The second term was “plot within sequence,”

which specifies that the same subject is sampled in two dif-

ferent periods (years). The third term, “block,” allows it to be

analyzed as a randomized complete block design. Denomi-

nator degrees of freedom were adjusted using the Kenward–

Roger method that considers small sample sizes and the poten-

tial for unbalanced data due to missing samples (Shaalje

et al., 2002). The method is considered to be conservative in

comparison to other approaches. Mean separation was per-

formed using Tukey’s HSD test with the LINES option in

PROC GLIMMIX. The relative strength of a fixed effect was

assessed using the adjusted p values and F statistics. The

assumptions of homogeneity of variance and normally dis-

tributed residuals around a mean of zero were checked using

Levene’s test and visual assessment of residual plots. Indi-

cators were log-transformed as needed to meet assumptions.

As the blocking does not entirely account for texture vari-

ation across the site, we also performed the same test with

sand or clay concentration as a covariate. Standard errors

were back-transformed using the delta transformation where

necessary.

To assess whether variability among samples taken in close

proximity differed between management systems, crop phase,

dates, or years, the same procedure was carried out on the

CVs of the three locations within each sampled plot. Descrip-

tive statistics were generated for the in-plot CVs using PROC

UNIVARIATE. These CVs (hereafter “subsample variabil-

ity”) represent the combined variability introduced by short-

range spatial variation as well as routine differences in sam-

pling, processing, and analytical technique.

3 RESULTS

3.1 Mean differences and variability
associated with organic and conventional
management

Averaged across locations, plots, crops, dates, and years, val-

ues for ORG plots were greater than those for CONV plots in

most indicators. Exceptions were pH, extractable Mg, and soil

C/N ratio, where CONV exceeded ORG plots, and the POM

C/N ratio, where they did not differ (Tables 2 and 3). The indi-

cator with the largest proportional difference between CONV

and ORG systems was mineral N, which was almost four times

greater in the ORG than CONV plots (Table 2). The rate of

FDA hydrolysis, MBC, and EC were all more than twice as

high in the ORG than CONV plots. The aggregate stability

index was only about 20% greater in the ORG than CONV

plots, but this difference was still significant (Tables 2 and 3).

Bulk density did not differ between the two systems.

The SD for most indicators was generally larger for ORG

than CONV plots (Table 2). However, as median values were

also greater in the organic systems, the CVs did not consis-

tently differ between the two systems.

Among the chemical indicators, the variability within both

ORG and CONV management systems across dates, crops,

and years was lowest for extractable Ca and Mg, intermedi-

ate for K and Na, and very high for mineral N and Olsen P

(Table 2). Among the different indicators of organic matter

pools, POXC and SOC, total N, and C/N ratio varied the least.

Microbial biomass C and POM C, N, and C/N ratio had inter-

mediate CVs. The CVs for both biological process indicators

were relatively high for both management systems. For the

physical indicators, variability was lowest for bulk density and

highest for the aggregate stability index.

3.2 Other sources of variability and their
interactions with management

As assessed by the size of the F value, for most indicators, the

main effect of management was much larger than the effects

of the other sources of variability (Table 3). Exceptions were

extractable K and total C (which had stronger main effects for

sampling date than for management) and mineral N, Olsen

P, and aggregate stability (which all had stronger main effects

for year than for management). POM C/N, which did not differ

between management systems, had larger effects for all three

other sources of variability than for management (Table 3).

In every instance where a significant interaction with man-

agement occurred, differences between management systems

remained significant across both levels of the other factors

(crops, dates, years) (Table 3; Supplemental Table S1).

Few indicators had a significant main effect for crop phase

(Table 3). These included a strong effect (p < .001) for EC

and mineral N, and less significant effects (p < .05) for Na,

SOC, and FDA hydrolysis. For all these variables, values for

soils sampled in the corn phase (that is, prior to corn plant-

ing and during corn growth) were greater than soils sam-

pled in the tomato phase (Supplemental Table S1). The crop

effect was constant across sampling dates and years (Sup-

plemental Table S2). In all cases, the main effect for crop
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T A B L E 2 Descriptive statistics for soil quality indicators measured in conventional (CONV) and organic (ORG) systems at Russell Ranch

Median Minimum Maximum SD CVa

Indicator CONV ORG CONV ORG CONV ORG CONV ORG CONV ORG
%

Chemical indicators
EC, μS cm−1 96 197 57 121 141 405 19 43 20 22

pH 7.7 7.3 7.3 6.9 8.1 7.8 0.19 0.23 2.5 3.1

Mineral N, mg kg-1 4.9 18 0.68 4.2 9.8 39 2.2 10 45 55

Olsen P, mg kg-1 34 50 6.7 25 131 96 28 20 83 41

Ca, mg kg-1 2,124 2,485 1,872 2,198 2,508 3,171 164 190 8 8

Mg, mg kg-1 1,911 1,744 1,559 1,485 2,287 2,270 183 160 10 9

K, mg kg-1 171 287 106 173 268 596 36 85 21 30

Na, mg kg-1 44 85 23 54 77 200 14 20 31 24

Organic matter pool indicators
Total N, % 0.10 0.15 0.08 0.12 0.11 0.22 0.01 0.02 7.4 10

Total C, % 0.93 1.3 0.73 1.0 1.1 1.6 0.09 0.12 10 8.9

Total C/N 9.5 8.5 8.2 6.8 11.1 9.1 0.45 0.31 4.7 3.6

MBC, mg kg-1 171 368 90 184 262 617 41 90 24 25

POXC, mg kg-1 309 465 223 341 391 582 37 56 12 12

POM N, mg kg-1 94 181 49 103 158 264 24 32 25 18

POM C, mg kg-1 925 1,828 468 983 1,709 2,969 237 364 26 20

POM C/N 10.3 10.1 7.1 7.9 18.9 13 1.8 0.9 17 9

Biological process indicators
FDA, mg kg-1 h−1 8.8 20.9 4.4 11 20 60 2.5 7.9 28 38

Mineralizable C, mg

kg−1

48 83 16 36 76 169 15 29 32 34

Physical indicators
Aggregate stability 0.38 0.46 0.11 0.24 0.63 0.68 0.13 0.10 34 21

Bulk density, g cm−3 1.35 1.32 1.2 1.1 1.5 1.6 0.07 0.12 5.3 8.8

Note. Values calculated for three subsamples from three replicate blocks, across corn and tomato crops, preplant and midseason sampling dates, and 2018 and 2019

growing seasons (n = 72). CV, coefficient of variation; EC, electrical conductivity; FDA, fluorescein diacetate hydrolysis rate; MBC, microbial biomass C; Mineralizable

C, CO2–C respired from rewet soil after 72 h of incubation; Mineral N, NH4–N+NO3–N ; POM, particulate organic matter (>53 μm); POXC, permanganate oxidizable

C.
aCV calculated on a median basis given the skewed distribution of many of the parameters.

phase was small compared with that for management. The

only interaction of crop with management was for Na, likely

due to a single high outlier in an organic tomato plot in spring

of 2019.

The means, medians, and variability for selected indicators

are shown in Figures 2 and 3. Because crop phase was usually

only a minor source of variability, the two crop phases are

combined for each management by date–year combination.

Most indicators differed significantly between sampling

dates (Table 3). Only Olsen P, Na, the soil C/N ratio, POM

C, POM N, and aggregate stability showed no significant

main effect for date (Table 3). For the chemical indicators, the

extractable K was always greater prior to planting than during

plant growth for both management systems and years, whereas

the date effect for the other chemical indicators tended to vary

depending on the year (Figure 2). Date did not significantly

interact with management for any of the chemical indicators

(Table 3). Mean values for most of the organic matter and bio-

logical indicators declined significantly between preplant and

midseason for both systems in both years (Figure 3). For POM

C and POM N, which did not have a significant main effect

for date but had significant date by management interactions,

values were greater in midseason than prior to planting for

CONV plots, but tended to be greater at preplant than midsea-

son for ORG plots. Soil total C and N, POXC, and the mineral-

izable C all had significant management by date interactions,

in which the differences between dates tended to be larger in

the ORG plots than in the CONV plots, and the differences

between management systems were generally larger prior to

planting than during midseason (Figure 3).
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T A B L E 3 F values and Tukey-adjusted p values for the main effects of organic or conventional management (Mgt), crop phase (corn or

tomato), sample date (preplant or midseason), period within sampling sequence (year 2018 or 2019), and for the interactions of all other effects with

management, as well as the effect of Mgt when sand concentration was included as a covariate in the model and for the sand covariate

Indicator Mgt
Crop
phase

Sample
date

Period
(year)

Mgt ×
crop

Mgt ×
date

Mgt ×
year

Mgt a (sand
covariate)

Sand
covariate

Chemical indicators
EC 339*** 47.9*** 12.7*** 18.8** 0.46 0.88 4.39 297*** 0.01

Ph 129*** 1.72 65.1*** 34.2*** 1.95 0.75 0.91 124*** 0.74

Mineral N 375*** 29.6*** 38.5*** 425*** 0.07 0.51 56.5*** 364*** 0.06

Olsen P 5.45a 0.29 0.09 35.5*** 0.05 0.09 0.54 5.14a 0.45

Ca 43.1*** 0.41 9.10** 33.9*** 0.06 2.38 2.82 165*** 20.8**

Mg 8.9* 0.20 9.35** 0.02 0.09 2.75 3.41 34.1** 16.5**

K 50.8*** 2.12 345*** 42.7** 2.25 2.47 1.62 66.5*** 3.67

Na 251*** 9.17* 3.78 0.30 14.7* 2.41 4.56 208*** 0.50

Organic matter indicators
Total N 164*** 5.27 109*** 0.0 0.03 11.3* 0.85 382*** 11.9*

Total C 70.6*** 6.51* 128*** 3.5 0.32 19.9*** 0.49 268*** 27.7**

Total C/N 127*** 1.49 3.96 13.3** 2.24 0.01 5.94* 168*** 4.07

MBC 222*** 3.68 97.7 12.5** 1.83 2.03 4.91 443*** 9.17*

POXC 193 4.90 165*** 71.6*** 0.51 22.1*** 16.5* 384*** 9.13*

POM N 111*** 1.21 0.74 8.00* 0.07 12.9* 0.10 218*** 10.5

POM C 439*** 2.78 2.09 11.2** 0.12 13.7* 0.96 434*** 0.80

POM C/N 0.02 0.12 14.6** 0.81 0.00 2.20 0.33 0.12 14.2**

Biological activity indicators
FDA 235*** 6.60* 123*** 55.3*** 2.15 2.91 0.44 319*** 1.61

Mineralizable C 268*** 0.08 38.8*** 128*** 0.03 15.5* 12.4* 263*** 0.65

Physical indicators
Bulk density 0.67 0.55 – 12.66* 0.00 – 0.03* 0.61 0.71

ASI 9.47* 1.50 2.0 63.9*** 1.99 4.49* 5.25 71.8*** 42.8***

Note. ASI, aggregate stability index; EC, electrical conductivity; FDA, fluorescein diacetate hydrolysis rate; MBC, microbial biomass C; Mineralizable C, CO2–C respired

from rewet soil after 72 h of incubation; Mineral N, NH4–N+NO3–N; POM, particulate organic matter (>53 μm); POXC, permanganate oxidizable C.
aF value and significance level for management when the percent sand was included as a covariate.

*Significant at the .05 probability level.

**Significant at the .01 probability level.

***Significant at the .001 probability level.

The bundle of effects encompassed by the period or “year”

effect (including weather, operations timing, crop health, and

the sampling equipment and technician) was also highly sig-

nificant for most indicators (Table 3). The only factors that

did not differ significantly between years were extractable Mg

and Na, soil total C and N, and the POM C/N ratio. For the

other indicators, greater values were observed in 2019 than

in 2018, except for pH and Ca, which were greater in 2018

(Figures 2 and 3). In general, these trends were consistent

across management systems. Notable exceptions were min-

eral N and mineralizable C, in which differences between

years were much more significant for ORG than CONV plots

(Figures 2 and 3), and for POXC and POM C/N, in which 2019

values were greater than 2018 values in CONV but not ORG

systems (Figure 3).

3.3 Effect of a textural covariate on
management

To determine the extent to which accounting for the tex-

ture differences helped differentiate management systems, all

ANOVAs were also run with sand or clay as a covariate. The

two particle sizes yielded similar results. However, sand dif-

fered more widely across the site (8.6–35.5%), and adding

it as a covariate yielded greater improvements in sensitiv-

ity than clay. In addition, as the sum of sand, silt, and clay

must equal 100%, sand can also be used as a proxy for the

silt–clay fraction, which is known to be important in SOC

accumulation (Hassink, 1997). Thus, only the results with the

sand covariate are presented. Because blocking ensured that

the two management systems were represented approximately
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F I G U R E 2 Distribution of chemical and physical indicators measured in conventional (gray boxes) and organic (brown boxes) systems, at

preplant (lighter boxes) and midseason (darker boxes), in 2018 and 2019. Boxes represent three subsamples taken from two crop phases in three

replicate blocks (n = 18). Horizontal lines represent medians and X represents means

equally across the texture gradient, adding the sand covariate

improved sensitivity by decreasing within-group variability

rather than by increasing differences between means. Adding

the sand covariate had the greatest effect on aggregate sta-

bility, reducing the SE of the means by 64%, increasing the

F value sevenfold and lowering the p value from .02 to .0004

(Table 3). Adding sand also increased F values for most of the

organic matter pool indicators. The largest effect was for total

C, for which the SE was decreased by 54% and the F value

was increased fourfold. Sand was also a significant (p < .01)

covariate for extractable Ca and Mg among the chemical indi-

cators. The sand covariate was not significant for either of the

biological process indicators.

3.4 Subsample variability

As indicated by the median CVs of the three subsamples taken

within each microplot at each sampling, the indicators with

the most variability were mineral N, Olsen P, and the min-

eralizable C (Supplemental Table S3). These three indicators

had median subsample CVs of 15% or greater, and maximum

CVs reaching 40–80%. The EC, Na, aggregate stability, FDA

hydrolysis, and the organic matter fractions MBC, POM C,

and POM N also had high subsample variability, with median

CVs of 10% or greater. Total C and N were the least vari-

able organic matter pool indicators, and Ca, Mg, and pH were

the least variable chemical indicators, with median subsample

CVs of less than 5%. Analysis of variance performed on the

subsample CVs found that Olsen P and POM C/N ratio were

significantly more variable in the CONV system than in the

ORG system, and that the ORG system had significantly more

variability in extractable K (p < .05; data not shown). Other-

wise, subsample variability did not appear to differ between

management systems.

4 DISCUSSION

Developing a useful minimum data set and appropri-

ate sampling protocols for soil health assessment requires

regional data about how sensitive different indicators are to
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F I G U R E 3 Distribution of organic matter and biological process indicators measured in conventional (gray boxes) and organic (brown boxes)

systems, at preplant (lighter boxes) and midseason (darker boxes), in 2018 and 2019. Boxes represent three subsamples taken from two crop phases

in three replicate blocks (n = 18). POM C and N = C and N in particulate organic matter >0.53 μm. POXC = permanganate oxidizable C.

Mineralizable C = CO2 measured after 72-h incubation from dried soil rewet to 60% water-holding capacity. FDA = fluorescein diacetate hydrolysis

rate. Horizontal lines represent medians and X represents means

management practices and the degree to which they are

affected by spatial or temporal variability. In this study, we

assessed how strongly several soil health indicators were

affected by an organic or conventional management system,

and the strength of that signal compared with differences asso-

ciated with the crop phase within a rotation, sampling date,

and year of sampling. We also measured the intrinsic vari-

ability of each indicator by analyzing closely spaced subsam-

ples within each plot, and observing whether adding a texture

covariate improved an indicator’s ability to differentiate man-

agement systems.

4.1 Differences between conventionally and
organically managed systems

As predicted by our first hypothesis, 25 yr under differ-

ent management had resulted in pronounced differences in

soils under ORG and CONV management practices. This

is likely due to greater C inputs in the ORG system. A

recent analysis of the Russell Ranch Century Experiment

found that C inputs to the ORG system exceeded those to the

CONV system by an average of 67% between 1993 and 2012

(Tautges et al., 2019). Comparison with C stocks measured

in the 0–15-cm depth for these sites in 1993, 2003, and 2012

(Kong et al., 2005; Tautges et al., 2019) suggests that C in the

plough layer of the ORG system has steadily increased over

the 25 yr of the experiment’s duration, whereas in the CONV

system it has remained relatively stable.

Judging by the magnitude of the system differences as well

as the F value, the most sensitive indicators to management

were the chemical indicators EC, mineral N, and extractable

Na, the labile organic matter indicator POM C, and both bio-

logical process indicators. The increases in labile C pools, bio-

logical activity, and somewhat improved physical structure in

the ORG compared with the CONV plots, are all expected

changes in systems that use organic amendments and cover

crops (Jian et al., 2020; Lori et al., 2017). These variables are
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interpreted as “more is better,” and thus suggest improved soil

health in the ORG system (Andrews et al., 2004). The lim-

ited improvement in physical structure despite their long his-

tory of cover crop and compost addition may be due to their

additional tillage and to the use of subsurface drip irrigation,

which has been shown to reduce macroaggregate stability in

these soils (Schmidt et al., 2018). Although bulk density sam-

ples were taken only from the surface 0–15 cm once during the

season, the lack of difference between the ORG and CONV

systems suggests surface compaction was similar between the

two systems. Increases in EC and Na are also sometimes

observed when manure is used (Miller et al., 2005). However,

although on average EC and Na levels in the ORG system were

twice as high as in the CONV, they were an order of magni-

tude below thresholds at which either corn or tomato yields

might be reduced (Maas & Grattan, 1999), and thus do not

yet constitute threats to soil function (Andrews et al., 2004).

Similarly, increases in available P are also characteristic of

manure-fertilized systems (Maltais-Landry et al., 2015). The

significantly lower pH in the ORG than CONV systems, how-

ever, is unusual (Lori et al., 2017). Soil pH is often found to be

lower in conventional systems, likely because of the acidifi-

cation of ammonium fertilizers (Clark et al., 1998; Lori et al.,

2017). We do not have a plausible explanation for this small

but significant decrease in pH. However, in these slightly alka-

line soils, a change of pH toward neutral constitutes a soil

health improvement (Andrews et al., 2004).

4.2 Indicator sensitivity to crop phase

It is interesting that crop phase affected so few indicators, as

prior to planting the crop phase determines the quality and

quantity of last season’s residue additions. During the grow-

ing season, operations timing, irrigation management, and

root growth are different between the two crops. Two recent

California-wide surveys that measured a variety of soil prop-

erties as potential indicators for potential N mineralization

concluded that residues may have a strong effect on the rel-

evant pools and processes, especially in soils with a low soil

organic matter content such as those at the study site (Miller

et al., 2019; Wade et al., 2016). Corn contributes considerably

more residue C than tomato (Tautges et al., 2019), and has a

greater C/N ratio. The general similarity of most organic mat-

ter indicators between the two crop phases suggests that any

influence of residue quantity and quality was eclipsed by the

stronger effects of management history, sampling date, and

year, or that the responses were too transient to be captured

by our sampling scheme. The lower EC and mineral N in the

tomato phase could both be due to immobilization of min-

eral N by corn residues, as high NO3–N can contribute to

EC. Although tomato received a lower N rate than corn in

the CONV system, the consistent difference across manage-

ment systems suggests it was not merely a function of differ-

ences in N additions, as corn and tomato received similar fer-

tility in the ORG system. In addition, processing tomatoes are

generally poorer N scavengers than corn (Hills et al., 1983),

which may have resulted in greater residual N in the following

crop. Interestingly, most of the indicators that were affected by

crop phase (mineral N, EC, and FDA hydrolysis) were among

those which differed most in magnitude between the ORG

and CONV plots. This partially supports our hypothesis that

the most sensitive indicators will also tend to vary more with

nonmanagement sources. However, the fact that in all cases

management differences were much stronger than those of

either previous or current crop suggests that crop type does not

need to be an important consideration in indicator selection

in California systems with annual crops where residues are

incorporated in fall and soil samples are taken the following

spring.

4.3 Indicator sensitivity to sampling date

Sampling date was a more important source of variability than

crop phase. Between the preplant sampling and the midsea-

son sampling, many changes occur, including the decomposi-

tion of labile organic material and release of nutrients as the

weather warms, root growth and exudation, changes in mois-

ture content and distribution as the soil dries and irrigation

begins, and eventually depletion of nutrients in the root zone

and shading of the soil surface as the crop grows. In addition,

in 2018, composted manure was applied between the preplant

and midseason sampling. The tendency of the organic mat-

ter pool and biological process indicators to decline in both

years between preplant and midseason in spite of the compost

application timing suggests that the rapid decomposition of

labile soil organic material and root nutrient uptake were the

most important processes contributing to between-date vari-

ability. The idea of a rapid decomposition pulse is also sug-

gested by the lack of crop by date interactions, because the

midseason corn sampling occurred later than that of tomato.

The tendency for the organic matter pool indicators to decline

more sharply in the ORG system than the CONV system also

suggests they are reflecting cycles of organic matter inputs and

decomposition. Interestingly, SOC, total N, and POXC, which

are thought to represent processed, stable pools (Hurisso et al.,

2016), showed very significant date effects. Indeed, when the

effect of texture was not accounted for, the date effect was

stronger for total C and N than was management.

4.4 Indicator consistency across years

Almost all of the indicators were significantly greater in 2019

than 2018. The two factors which differed most strikingly
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between the two years were the much higher rainfall prior to

the 2019 growing season (nearly triple that prior to 2018),

and the fact that preplant sampling was done prior to com-

post application in 2018 but after compost application in 2019.

Additional factors that varied between years included a larger

cover crop biomass in 2019, the specific locations sampled

in each plot, the probe type (necessitated by the wetter soil

in 2019, and which may have influenced sampling depth),

and minor differences in operations timing. Because the year

effect was generally significant for both management sys-

tems and few indicators had significant management by year

interactions, it appears that the changes in compost applica-

tion timing and the larger cover crop biomass (which only

affected the ORG system) had unexpectedly little additional

effect on most indicators. Only mineral N and mineralizable

C increased much more strongly in the ORG system than

the CONV system between years, suggesting a more direct

response to the management changes. This finding is in line

with other studies that conclude that mineralizable C is an

indicator that quickly responds to practices that increase fertil-

ity. Thus it is often related to N mineralization potential, espe-

cially in systems receiving organic N sources (Franzluebbers,

2020b; Hurisso et al., 2016). However, it is possible that other

indicators responded more strongly to the between-year man-

agement changes at some point not captured by our sampling

scheme.

Notably, SOC and total N concentrations were among the

only indicators that did not change between the years. This is

intriguing, given the relatively strong changes that occurred

between years. It is important to note that as this data is

derived from a limited number of samples taken within a small

microplot, the results are more susceptible to random local

variability than a greater number of samples taken to represent

the whole plot. However, the uniform plot management, the

strength of the effect (p < .001 for SOC differences between

dates and p = .10 for differences between years), and the fact

that dates were significantly different in both years despite a

shift in microplot locations, suggest that the low variability

between years in comparison with dates is not a sampling arti-

fact. Together with the variability observed in SOC and total

N between dates, our results are consistent with the idea of

a large, stable pool of organic matter that, while subject to

seasonal fluctuations as material is added and decays, over-

all is likely to change only slowly (Stott, 2019; Wuest, 2014).

Similar seasonal fluctuations of SOC around a comparatively

stable mean have been observed under wheat in Eastern Ore-

gon (Wuest, 2014) and under cotton in the Texas High Plains

(Burke et al., 2019). These authors attributed their findings to

the presence of the growing plants, and to the fluctuations of

ephemeral C pools and of bulk density. Our results strongly

support the suggestion that uniform sampling dates be used

for samples taken to monitor SOC changes over time (Hurisso

et al., 2018).

4.5 Effect of texture on indicator sensitivity

We hypothesized that adding sand as a covariate would

decrease the within-group variability for most indicators and

increase the significance of the management effect, as texture

was not entirely addressed in the blocking. Adding a covari-

ate greatly improved the sensitivity of aggregate stability and

many of the organic C pool indicators to management, espe-

cially total C. This was expected, as finer textured soils are

thought to form more stable aggregates and provide more

surface area for the long-term protection and stabilization of

SOC (Six et al., 2002). However, the only chemical indicators

for which adding a texture covariate improved sensitivity to

management were extractable Ca and Mg. In this young allu-

vial landscape, extractable Ca and Mg concentrations are both

greater in older, more weathered, and finely textured soils.

However, the ORG system also receives Ca inputs through

the manure compost, whereas the CONV receives no supple-

mental Ca. Competition for cation exchange sites probably led

to preferential leaching of Mg in the ORG system, and the

observed result that ORG had greater Ca but less Mg than

CONV.

Contrary to our hypothesis, however, sand concentration

was not significantly related to most of the chemical indica-

tors, the more labile C pools, or either biological process indi-

cator. Many of these properties were likely directly affected

by inputs such as fresh organic matter, fertilizer, or irrigation

water, or by exports such as crop uptake. Therefore, the lack of

relationship to texture may be because their dynamics are gov-

erned mostly by external supply. Another possibility is that

their relationship with sand is nonlinear. For example, Fran-

zluebbers and Haney (2018), testing rewet C and N mineral-

ization across a range of soil textures, observed the highest

rates of rewet respiration in medium textured soils. Whereas

examination of our raw data shows that indicators like POM

C and FDA hydrolysis are, in fact, greatest in some of the

medium textured soils, adding a quadratic covariate did not

improve the model fit, suggesting this was not an important

mechanism.

4.6 Indicator variability among subsamples

The variability between samples taken close together within

the same plot on the same date reflects the variation of an

indicator over short distances, and how sensitive it is to dif-

ferences in sampling or analytic techniques. It is important as

it determines how many samples must be taken or analyzed

to get a representative value for an area. As predicted by our

third hypothesis, the smallest subsample variability was seen

in indicators such as total C and N and extractable Ca and Mg,

which represent large pedogenic or stable pools. It is worth

noting that bulk density was more variable than total C, and
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thus C stocks, which are calculated using both values, would

be more variable than either.

The large median CV of mineralizable C compared with

other soil tests has also been noted by several other stud-

ies (Hurisso et al., 2018; Morrow et al., 2016; Wade et al.,

2018). Different protocols are used to measure mineralizable

C and many factors contribute to its analytical variability, such

as the method of rewetting and of CO2 measurement (Wade

et al., 2018), as well as sample size and volume (Franzlueb-

bers, 2020a). The variability in our dataset may have been

lower had a larger sample size been used, as our sample size

of 12 g is smaller than is common. For example, in the stud-

ies reviewed by Wade et al. (2018), sample sizes ranged from

10 to 40 g, and work by Franzluebbers (2020a) suggests vari-

ability is minimized when sample sizes exceed 70 g. Using

75-g samples and analyzing CO2 with the base trap method,

that study observed an average CV of 8%. However, the range

of CVs for mineralizable C at Russell Ranch, 1.7–39% with a

median of 15%, is comparable to many reported in the litera-

ture for this analysis. Wade et al. (2018), using gel paddles to

measure CO2, report interlaboratory CVs ranging from 4 to

53% (median, 16%). Examining analytical variability for 10-

g samples using the IRGA method to measure CO2, Hurisso

et al. (2018) obtained CVs in the range of 13–23%. Similarly,

Franzluebbers et al. (2018) report a mean CV of 14% for 50-g

samples analyzed using the base trap method.

The relatively low variability of POXC, another emerging

soil health test that is thought to represent a more processed

portion of labile C, is also consistent with recent findings that

the POXC method is both more repeatable in the field and

is subject to less analytical error than mineralizable C (Har-

greaves et al., 2019; Hurisso et al., 2018; Wade et al., 2020).

The median in-plot CV of 5.4% is comparable to the mean CV

of 7–8% reported by Wade et al. (2020) for samples of differ-

ent soil orders analyzed in triplicate by several different labs,

and is lower than the analytical variability of 9–21% observed

by Hurisso et al. (2018).

Aggregate stability, which had a relatively high median

variability of 13%, is another indicator for which several alter-

nate protocols exist (e.g., wet-sieving, slaking, and raindrop

impact approaches). These rely on different physical princi-

ples and the sensitivity and analytical variability likely differ

based on the approach used. Important considerations include

sampling method, the use of dried or moist samples, sieving,

storage time, and method of wetting or disruption (Kemper &

Roseneau, 1986; Stott, 2019). In this study, in which we took

samples with a soil probe and air-dried them prior to anal-

ysis due to practical considerations, we found in preliminary

tests that the slaking and raindrop impact approaches were too

influenced by differences in soil moisture at sampling to be

useful. However, the small aggregate size fraction (1–2 mm)

necessitated by the wet-sieving method may have resulted in

greater analytical variability than if the sampling and process-

ing methods had allowed a different analytical approach to be

used.

The very great variability in available P is surprising, par-

ticularly in the CONV system. This contrasts with Hurisso

et al. (2018), who observed great analytical precision and spa-

tial correlation on another available P measure, Mehlich P.

Subsurface drip-irrigated systems may have greater spatial

variability than rainfed systems, as the targeted delivery of

small quantities of water and nutrients to a limited area may

result in zones of depletion in the wetting zone and high con-

centrations near the bed edges (Lazcano et al., 2015). The fact

that the variability was particularly great in the CONV system

suggests that the variability observed may also partly be due

to the fact that P is applied in a starter band. As P is rela-

tively immobile in the soil, banding may lead to zones of high

and low concentrations (Beegle, 2005), and increased sam-

pling density and specialized sampling schemes are recom-

mended in fields that receive banded (or fertigated) fertilizers

(Geisseler & Miyao, 2016; Lazcano et al., 2015).

5 CONCLUSIONS

After 25 yr of contrasting management, the ORG and CONV

managed plots in these drip-irrigated Mediterranean annual

cropping systems had developed strong differences in almost

every indicator tested, particularly in indicators relating to

organic matter pools and biological processes. Our results

have implications for minimum data set selection and proto-

col standardization in California and beyond. Given the great

variability associated with management, soil type, and year

observed, even at a single site in two consecutive years, the

results underline the necessity of calibrating robust regional

thresholds using data from many soil types and management

systems and over several years. The significant covariation of

SOC and aggregate stability with soil texture over such a rela-

tively short distance confirms the utility of always performing

a soil texture analysis at sites where these indicators are being

monitored. The highly significant variability between dates,

particularly for biology and fertility-related indicators,

confirm the call by Hurisso et al. (2018) for making an effort

to sample at the same time each year. As differences between

the systems were often greater at the preplant than midseason

sampling, preplant sampling appears to be more sensitive as

well as more convenient. The crop type at this site had very

little effect on most indicators compared with other sources of

variability, suggesting that in similar systems the previous or

current crop would not greatly influence indicator selection

or interpretation. However, further work is necessary before

applying these conclusions to other crop types or systems.

Whereas the intrinsic variability of mineralizable C and

POXC appear comparable to those observed elsewhere,

the greater variability in chemical indicators like P suggest
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that specialized sampling schemes that take into account

additional variability introduced over time by practices like

fertilizer banding and subsurface drip irrigation may be

appropriate. Finally, given the potential for tradeoffs between

sensitivity and consistency, including both stable measure-

ments like total C and sensitive measurements like mineral-

izable C in an minimum data set may be the best strategy.
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