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Abstract

Motivated by a longitudinal study on factors affecting the frequency of clinic visits of older adults,
an exploratory time varying lagged regression analysis is proposed to relate a longitudinal
response to multiple cross-sectional and longitudinal predictors from time varying lags.
Regression relations are allowed to vary with time through smooth varying coefficient functions.
The main goal of the proposal is to detect deviations from a concurrent varying coefficient model
potentially in a subset of the longitudinal predictors with nonzero estimated lags. The proposed
methodology is geared towards irregular and infrequent data where different longitudinal variables
may be observed at different frequencies, possibly at unsynchronized time points and
contaminated with additive measurement error. Furthermore, to cope with the curse of
dimensionality which limits related current modeling approaches, a sequential model building
procedure is proposed to explore and select the time varying lags of the longitudinal predictors.
The estimation procedure is based on estimation of the moments of the predictor and response
trajectories by pooling information from all subjects. The finite sample properties of the proposed
estimation algorithm are studied under various lag structures and correlation levels among the
predictor processes in simulation studies. Application to the clinic visits data show the effect of
cognitive and functional impairment scores from varying lags on the frequency of the clinic visits
throughout the study.
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1. Introduction

Consider the standard varying coefficient model (VCM; Cleveland et al., 1991; Hastie and
Tibshirani, 1993),

E{Y(t) = py ()}=PL(O{X () —px (O} @)

where the regression function B4(t) is allowed to vary with time. The VCMs have been
widely used in longitudinal data analysis in the past decade (e.g., see Fan and Zhang, 2000;
2008; Huang et al., 2002; Hoover et al., 1998; Wu and Chiang, 2000). When the time index
is set to the duration of the longitudinal study, the regression function displays the varying
relation between the longitudinal response and the predictor throughout the study. Note that
in (1) the regression relation is modeled between only the concurrent/ contemporaneous
times of the response and the predictor. However, in some applications it is of interest to
predict or associate the response at the current time with lagged times of the predictor; e.g., a
subset of previous predictor values. For example, Senturk and Mueller (2008) and Koru-
Sengul et al. (2007) discovered lagged relations between acute phase protein levels and
between a child’s growth index and maternal cigarette smoking and alcohol use,
respectively.

We propose a time varying lagged regression model to assess the association between
predictors, including cognitive and functional impairment scores, with the frequency of the
clinic visits of older adults aged 65 to 93. The approach focuses on exploratory modeling of
lagged association between previous cognitive and functional impairment statuses with
current clinic visits, by sequential conditional modeling where lags are chosen to optimize a
normalized covariation between the response and the predictor processes. Such a modeling
approach provides important information potentially useful for individual prognosis
assessment as well as formulation of managed care strategies. Informative lagged predictors
(e.g., based on routine visit assessments of cognitive and functional impairment) can be used
as markers to monitor future activities, such as intervention adherence or health care
services utilization, for instance. The data which motivates our model development consists
of measurements taken annually on multiple health scores (cognitive and functional
impairment scores) as well as the total number of clinic visits every three months for four
years on 703 older adults. Challenges with the motivating data requires several modeling
innovations; although useful in other contexts, existing methods are not directly applicable.
The observations are from infrequent time points, where the response and predictors are not
necessarily observed at concurrent times. Existing useful models such as the lagged VCM
(Koru-Sengul et al., 2007; Senturk and Mueller, 2008) requires equidistant time grid for
estimation. Also, although the recent approach of Mueller and Yang (2010) based on
transfer functions, can handle irregular and infrequent data, it is not practical as the number
of predictors increase. Therefore, several significant modeling challenges are addressed in
the current work, including data sparsity, non-synchronicity of measurement times and the
curse of dimensionality.

We first briefly review the aforementioned existing models that explore lagged effects. To
study lagged predictor effects, Senturk and Mueller (2008) and Koru-Sengul et al. (2007)
proposed lagged varying coefficient models

E{Y (t) = py (1)}=D 8- (DX (¢ —7) — pyc (t = 7)),

r=1
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where a separate varying coefficient function explains the time dependent effect of the
predictor from each lag t — r. In this model, an equidistant grid is assumed for the
observation times, where r denotes size of the lag on this equidistant grid. Koru-Sengul et al.
(2007) also proposed an imputation algorithm to fill occasional missing values in the
equidistant grid, although this would be impossible for irregular data where subjects are
observed at subject specific observation times. Mueller and Yang (2010) proposed the
transfer functions

E{Y () = py (D)X ()} =8(t, s){X (s) — px(s)},

for jointly Gaussian processes where the transfer function p(t, s) reflects the effect of a lag (s
< t) of the predictor process on the value of the response at the current time t. Unlike the
prior proposals of lagged varying coefficient models, this general model can be estimated
from irregular and infrequent data which may not be observed concurrently. However the
dimension of the transfer function will increase with the number of predictors considered,
hence the model is only feasible for a single predictor process in many applications.

In this work, we propose an exploratory time varying lagged (EVarlag) regression model
that addresses these challenges to analyze the aforementioned data. The main goal of the
proposed model is to embed the classical VCM in a larger class of models to detect
deviations from the concurrent nature of the classical VCM via estimated time varying lags.
The EVarlag model (for a single predictor) is

E{Y(t) = py (O}=B1(0{X (= Ay) = px (t = A1)} (3)

which relates the response process to time varying lags t — A, 0 < A; < t, of the predictor
process. Lagged associations are explored in (3) via estimation of the time dependent lag t -
At by maximizing the absolute value of a normalized covariance criterion between lags of
the predictor process and the response from time t. For homoskedastic predictor processes,
the lag search corresponds to finding the lag of the predictor with the highest absolute
correlation with the response. This also corresponds to choosing the path in the two-
dimensional transfer function B(t, s) with the highest absolute value as will be shown in
Section 2.1. The classical VCM is a special case of (3) with concurrent relations, i.e. A; = 0.
If a nonzero lagged relation is determined from the EVarlag model, this is informative for
further investigation of the nature of the lag detected, including whether it is from a specific
slice in time or a lagged time interval. Thus, follow-up analysis, such as functional linear
models can be used to model the effects of longitudinal predictors from lagged intervals of
time on the response (Senturk and Mueller, 2010; Malfait and Ramsay, 2003; Mueller and
Zhang, 2005).

The proposed estimation algorithm is designed for irregular and infrequent data and does not
require a common grid, similar to estimation procedure for the transfer functions. Also, it
can accommodate the response and predictor processes that may not be measured at the
same frequency, hence at concurrent times, as encountered in the clinic visits data that will
be analyzed in Section 3. Unlike the transfer function approach which is only feasible for a
single longitudinal predictor process, or the lagged varying coefficient models which need to
select multiple lags for each predictor, the proposed EVarlag model can be feasibly
generalized to multiple longitudinal and cross-sectional predictors, as detailed in Section
2.1, where we describe a practical sequential modeling procedure.

For the remainder of the paper, we present the more general EVarlag model with multiple
predictors and propose an estimation algorithm in Section 2. Analysis of the clinic visits data
and simulations are given in sections 3 and 4, followed by concluding remarks in Section 5.
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2. Conditional Model Formulation and Estimation

The model components, namely the time lags and the varying coefficient functions, are
estimated based on the moments of the observed predictor and response processes. For ease
of exposition, we first consider the EVarlag model with a single longitudinal predictor in
detail and then extend it to multiple predictors, including cross-sectional ones.

2.1. Model with a single longitudinal predictor
The EVarlag model introduced earlier with a single longitudinal predictor is

E{Y(t) = py (O}=B1(0O{X(t — Ar) =y (E = A0} @)

For the proposed lag search algorithm, we assume that var{X(t)} > cov{X(t), X(s)} for all t #
s, which we will refer to as the decaying covariance assumption. This assumption
accommodates typical covariance structures in longitudinal data where measurements
further apart in time are less correlated. This includes common longitudinal correlation
structures such as autoregressive and exponential-type structures (e.g., see Fitzmaurice et al.
(2004), chap. 7). The lag t — A; is chosen by maximizing the absolute value of the estimator
of the two dimensional transfer function B(t, s) of Mueller and Yang (2010) which is equal
to the covariance between the response Y(t) and the predictor X(s) processes, normalized by
the variance of X(s):

cov{Y (t), X(s)}
var{X(s)} ®)

with respect to s< t. In applications with homoskedastic predictor processes, this can be
interpreted as selecting the lag from the predictor’s past trajectory with the highest absolute
correlation with the response. Under the EVarlag model (4) with decaying covariance
assumption, the quantity in (5) is equal to B1(t)cov{X(s), X(t — A} var{X(s)}, and the
maximizer of its absolute value exists and is unique at lag s=t — A; with cov{X(s), X(t -
A)Hvar{X(9)} = 1. Hence the proposed search criterion targets the correct lag under the
proposed model.

The goal of the proposed EVarlag model is to embed the classical concurrent VCM in a
larger class of models where the proposed exploratory search algorithm is valuable in
detecting deviations from a concurrent varying coefficient model, i.e. concurrent relations
between the response and the predictors, which is a special case of EVarlag models with A;
= 0. Note that independent of the underlying EVarlag model, the lag search algorithm
proposed is simply selecting the lag from the predictor’s past trajectory with the highest
absolute correlation (or conditional correlation in higher dimensions) with the response for
homoskedastic predictor processes. We envision the proposed model and estimation
algorithms as exploratory tools and acknowledge that more complex models may be sought
describing lags from time intervals via functional linear models after detection of potential
lagged relations via the use of the EVarlag procedures.

Once the lag A; is estimated, the varying coefficient function B1(t) is estimated based on the
following covariance equality

_cov{Y (1), X(t — Ay)}
1(6)= var{X(t — Ay} ©

Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 01.
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Estimation of the moments of the predictor and response processes, leading to an estimator
of P1(t) via (6), will be described in Section 2.2.

2.2. Model generalization and estimation

The more general EVarlag model with p longitudinal (Xy, ..., Xp) and g cross-sectional
predictors (Zy, ..., Zg) is given as

B{Y () = py (1)} = B (X (t=Are) = pry, (¢~ Art)}+zaq(t)(zq —Hz,):

r=1

In order to estimate the time varying lags without increasing the dimension of the estimation
procedure, we consider a sequential approach, where the predictors are added into the model
one at a time. Appropriate lags are chosen without an increase in the dimension by
maximizing a normalized covariance objective criterion that is conditional on the predictors
that are already in the model. For models that include cross-sectional predictors, the
maximizations for the lags are conditional on the cross-sectional predictors as well. Thus,
under this framework, exploration of the lagged association and the (conditional) time
varying effects, through the estimated varying coefficient functions, are feasible in higher
dimensions. For estimation in higher dimensions, we still assume decaying covariance for
the longitudinal predictors, and the existence and uniqueness of the estimated lags in
targeting the underlying ones follow similarly to arguments given in Section 2.1 in the
univariate case for uncorrelated predictors, where the conditional maximization criteria
given in (10) below reduce to their unconditional counterparts. The properties of the
proposed algorithm under small to moderate correlations between predictors are studied in
the Monte Carlo simulations of Section 4. Note that the algorithm is not guaranteed to target
the underlying lags under high multicollinearity between predictors.

The cross-sectional predictors Zg; observed for i =1, ..., nsubjects are assumed to have
finite second moments. The underlying longitudinal variables X;j and Y; forr=1, ..., pandi
=1, ..., nare square integrable random realizations of smooth random processes X, and Y,
all defined on finite and closed domains. Random processes X; and Y have smooth mean
functions jux, (t) = EX;(t) and py(t) = EY(t) and auto-covariance functions cov{X(s), X(t)}
and cov{Y(s), Y(t)}, respectively. The observed longitudinal data are noise contaminated
versions of the random processes X;; and ; observed at possibly different time points

Y;;]‘:Y(tij)—}—&‘ij,jzl, . ,niandXMj:Xr(trij)—i—erij,j:l, s Mgy (7)

where &jj and &,j; denote the mean zero finite variance i.i.d additive measurement errors.
Note that in formulation (7), longitudinal variables need not be measured at concurrent times
and have subject-specific total number of measurements n; and my;. Hence, some variables
may be measured more frequently than others. For example for the data analyzed in Section
3, total number of clinic visits were measured every three months while the impairment
scores were observed yearly. The proposed estimation procedure below utilizes every
observation on the longitudinal variables and does not require concurrent measurements. In
addition, the proposed estimation procedure, more specifically the estimators of the
moments of the random processes proposed in Step 1 below, are consistent even under
sparse designs with irregular and infrequent subject specific observation times. Here
irregularity means that the longitudinal measurements on each subject do not need to be
taken on a common grid and infrequency means that the total repeated measurements on
subjects can get low (as low as a single measurement per subject). The moments estimators
from Step 1 below, even under these extreme conditions, can be shown to be consistent.

Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 01.
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Because the proof follows our previous works (Senturk and Nguyen, 2011) closely, it will
not be repeated here.

The estimation procedure involves three main steps, which begins with estimation of the
moments of the underlying random processes. In the second step, after estimation of the
needed moments, the proposed estimation algorithm chooses the lags of every longitudinal
predictor as they enter the model sequentially based on minimization of an expected squared
error (ESE) criterion. Once all lags are chosen, the final varying coefficient functions are
estimated in the last/third step. We formulate the proposed estimation procedure through the
following steps.

Step 1 — Estimation of the moments of the response/predictor processes. We first estimate
the mean functions for the longitudinal predictors and response via local polynomial
smoothing of the aggregated data {(tsjj, Xyip), i =1, ..., n,j =1, ..., my} and {(t;j, Yjj), 1 = 1,
o N =1, ..., m}yielding px, (trij) and py(tij), respectively. Raw cross- and auto-
covariance estimators obtained from observations on the same subject fori =1, ..., nare

given as GZqIZqZ,i ={Zq1,i = ZgyHZgp,i = Zp}

Gyy, i) ={Yyj — By (ti)) HZgi — Zg}, =1, ...,

G, 2y (trig) =Xy — i, trig)HZai = Zg}, =1, - .y,

Gyx,  (tijstrin) ={Yij— iy (ti) ) H X v =By, (Erin) J, J=1, oy niy k=1, my,
(traigs troin) ={ X155 — By, (br1ij) H{ X ik — By, (brain) }

Xrl X’r‘g-,z

forj=1,...,myi; k=1, ..., my;r,randro=1,...p;q,qg,andgp =1 ..., gand Zy =
(Zi=1 Zgi)/n. Next, bivariate smoothing of the raw covariances GYXr,i,(tiJ” trik) and
GXrlxrg,i(trlii' tr,ik) lead to the final smooth covariance surface estimates cov{Y'(t), X, (s)}
and cov{X,, (t), X, (s)}, respectively. To guarantee positive definiteness of the final auto-
covariance estimator, we carry out a functional principle component analysis step on the
smooth auto-covariance estimator and exclude the negative estimates of the eigenvalues and
the corresponding eigenfunctions. The final auto-covariance estimator is constructed with
only a truncated number of positive eigenvalue estimates and their corresponding
eigenfunctions. We refer the readers to Senturk and Nguyen (2011) for further details. A one
dimensional local polynomial smoothing of the raw estimates Gyzq,i(tij) and erzq’i(t,ij)

lead to the final smooth estimates cov{Y (t), Z, } and cov{ X,.(t), Z, }, respectively. The

variance estimator cov(Z,, , Zq, ) is equal to (O _._, G, z,. .)/™. In the above smoothing
steps we utilize generalized cross-validation (Liu and Mueller, 2008) in choosing the
appropriate bandwidths.

Step 2 — Sequential estimation of lags. Lags are estimated by fitting sequentially a series of
EVarlag models where a longitudinal predictor (with the corresponding lag) or a cross-
sectional predictor is chosen sequentially based on the smallest estimated expected squared
error (ESE); details of moments-based estimates of ESE are provided in the Appendix. We
provide in more detail below the procedure for estimating the lags corresponding to each
potentially chosen longitudinal predictor in steps 2.1, 2.2. and 2.(p + g).

Sep 2.1 — Selection of thefirst predictor and its potential lag. Fit p + g univariate models
for each cross-sectional and longitudinal predictors with corresponding lags for longitudinal
predictors. The first selected predictor is the one with the smallest ESE estimate.

Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 01.
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a. Sdecting lagsfor univariate models with longitudinal predictors. For selecting the

lag for the longitudinal predictor XM (.), r =1, ..., p, we maximize the absolute
value of

cov{Y (1), X (s)}
var{ X (s)}

®

with respect to s< t as described in Section 2.1. Denote the estimated lag by ES).
In (8) and throughout the description of the algorithm, the superscript (k), k=1, ...,
p + g, will denote quantities from step 2.k of the proposed algorithm.

b. Estimating varying coefficient functions from univariate models. The estimator of
the varying coefficient function for the univariate model with longitudinal predictor

xM @ — AWy is given as

B (t)=cov{V (t), XV (t — AD)}var{x D (t — A1 Varying coefficient
function estimator from the univariate model with cross-sectional predictor Zél), q
=1, ..., gis given by &'V (t)=cov{Y (), Z{V} jvar { Z{V}.

Comparing univariate model fits. To simplify notations, let W(fl)(t), £=1, ..., ptg,
denote a generic predictor that can be longitudinal or cross-sectional, i.e.,

‘)[’,(1)@)_ X,(-l)(t—ﬁg)), for longitudinal predictor
¢ Zél), for cross—sectional predictor

~ (1
with mean #‘(4172 () =D (t — AY) or #&%Z(t):#(z? corresponding to a longitudinal

or cross-sectional predictor, respectively. We compare univariate model fits based
on the expected squared error criterion

ESES) (0)=E[{Y (1) — 1, ()} — 1P {0 (0) — D)) o)

for each of the p + g univariate models, where yél) (t) = M (¢t) for longitudinal

predictors and 'ylgl)(t) = aél)(t) for cross-sectional ones. The predictor which

T — (1)
minimizes Y ___ ESE; " (t.) (for a grid of time points ty, ..., t7), denoted by W7 (¢)
with corresponding mean function #fﬁ (t), is the first selected predictor and its
respective lag is denoted by ﬁ’l‘t if it is longitudinal.

Sep 2.2 — Selection of the second predictor and its potential 1ag. Next, a series of bivariate

models are fitted and compared, where each fitted model includes the selected first

predictor, W75 (¢), from step 2.1 above; the second predictor in the model is any one of the p
+ g - 1 remaining longitudinal and cross-sectional predictors. For comparing model fits, we
begin by selecting lags for the longitudinal predictors entering the model as the second
covariate.

a. Sdecting lags for bivariate models with longitudinal predictors. Let p@ = por p -
1 be the number of longitudinal predictors after step 2.1. To select the lag for the

Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 01.
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longitudinal predictor X?)(-), r = 1, ..., p@, entering the model, we maximize the
absolute value of
GO { (1), X1 ()| (1)}
var{ X, ()| W (1)}
=[xz (5)Z2(5)]y (10)
w{wr)}y vy, X7 ()}, ]1 { K } }
2

_{[ (Wi, xP(s)}  var{x? 1)} cov{Y (), X, (s)}

with respect to s<t. In (10), we used [v]x to denote the kth element of the vector v.
: ~(2
Denote the estimated lag by Ait).
b. Estimating varying coefficient functions from bivariate models. Denote a generic

covariate by If’[f’f)(t), ¢=1,...,p+qg- 1, which can be equal to one of the
remaining longitudinal or cross-sectional predictors, i.e.

W’(z)(t): XT(Q)(t~Ag)), for longitudinal predictor
¢ Zq2, for cross—sectional predictor

with mean #fﬁj(t):#g (t =A%) or #52(75):#(2? respectively. The estimators of
the varying coefficient functions are given by

(@) e IR L0 v (Wi, wPmy ] [ @y, wim}
2@ | T T @i @)y a2 V(Y (), W)} |

c. Comparing bivariate model fits. Similarly, we compare the series of bivariate
model fits by estimating the expected squared error

ESE ()=E[{Y (t) — t, ()} — 12 OLW7 (1) — 41, (0} = 42O WP (1) — D (1))

T (2
for =1, ..., p+g- 1. The predictor which minimizes >, ESE; " (t.), denoted
by W3 (¢) with mean function £, (%), is the second selected predictor and its
respective lag is denoted by ﬁ;t if it is longitudinal.

Sep 2.k — Sdecting the kth predictor and its potential lag. The selected predictors after step

2.(k—-1)are Wi (t),...,W;_;(¢). Inthis step, we fit and compare the series of models with
k total predictors; k — 1 predictors selected in the previous steps and the kth predictor is any
one of the p+ g — k+ 1 remaining longitudinal and cross-sectional predictors. As in the
previous steps, we begin by selecting lags for the longitudinal predictors entering the model
as the kth covariate.

a. Sdecting lags for k dimensional models with longitudinal predictors. To select the

lag for a remaining longitudinal predictor x(*)(.), we maximize the absolute value
of

Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 01.
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v {Y (), XX () W7 (1), ... Wi ()}
var{ XM (s) W (2),... W g_l(t)}

[ El(S)Ek(S)h

with respect to s<t, where
Ek(s)=[@ {Y (1), WY ()} ... . @v{Y (£). W7, (O} v (Y (1), XP(s)}]

y " O} e @i,
Xk(s)= Xk ! 5 er ) | Xe(s)= : : ’
dale) FHX) | o - e |

and x. 12 (s)=[Gov {7 (£), XF)(s)}, ..., cov{W}_4(£), X¥) (5)}]". Denote this
lag by A%,
b. Estimating varying coefficient functions from models with k predictors. Let

WZ(’“) (t),€=1,...,p+q-k+ 1, be ageneric covariate, which can be equal to one
of the remaining longitudinal or cross-sectional predictors, i.e.,

ﬂ’(k)(t): X'r('k) (t—ﬁg)), for longitudinal predictor
Zék), for cross—sectional predictor

k)
with mean #n D ()y=pl¥)(t — AD) or HW) (t)= #Zq, respectively. The estimators of
the varying coefﬂuent functlons are given by

" A(k B (1) -‘ o
’ =Xr (S)Ek(s)’
500 |

where Z,(s)=[Gov{Y (£), W (O)}, ..., v (Y (£), Wi_y ()}, & (¥ (1), WH (6))]
and

Xk,ll(s) 921«,12(5)

%u(5)= { T als) (o}

o e (e ) rx OPRE
With X, 12(s)=[cov {7 (), W, ()}, ..., cov {1 (1), W, ()}]
c. Comparing k dimensional mode! fits. We compare the fitted models by

ESEL ()=E [{Y () — py ()} — Zwu OV -, (O} — 1 OV (1) -

Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 01.
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T =g (k)
for ¢=1, ..., p+tg — k+ 1. The predictor which minimizes szlESEz (tv),
denoted by T (¢), is the selected kth predictor and its respective lag is denoted by
A%, if it is longitudinal.
Step 3 — Estimation of the varying coefficient functions. Once all the lags of the
longitudinal variables are chosen from steps 2.1 to 2.(p + @), we estimate the final varying

coefficient functions for the model with all p+q covariates with the p selected lags. Without
loss of generality, let {X;(t - Alt) o Xp(t=App} and (Zy, .. Zg) be the reordered

longitudinal and cross-sectional predlctors among {W7(t), ..., W, (t)} with selected lags
(A%, A;t)_

The final varying coefficient function estimators are given as

where

E=[v{Y (1), X1(t — Aup)}, ..., G Y (), Xp(t — M)}, &0 {Y (£), Z1 ). . &ov{Y (1), Z,}]

[ vary - c/onLpl
o X1 Xaz _ .
X X1T2 Xzz]’xu LA - E J,
Covp1 -+ valp
(cov{xl(t_ﬁu),zl} &)V{Xl(t—ﬁlt),Zg}-‘
X12= { : J )
Cov{X,(t — Apt), Z1} -+ Cov{Xp(t — Apr), Zg}

p
€OV, rp=COV{X,, (t A 1) Xy (T— Arzt)},var,l—var{Xn(t A71f)}andX22 cov(Z).

Remarks: Properties of the Proposed Estimation Algorithm and | mplementation. For the
lag choices in step 2, a sequence of regression models is considered that is increasing in the
number of predictors. The proposed exploratory conditional regression model starts with one

predictor (1777") in step 2.1 and the final model consists of all predictors (77, ..., W, /) in
step 2.(p + g) The sequential approach allows for exploration of complex lags assomated
with multiple predictors via optimizations using conditional models to avoid the curse of
dimensionality.

Note that while the proposed step-wise algorithm may be similar in spirit to step-wise
variable selection procedures, it is not proposed for variable selection in this manuscript. It
is only used for dimension reduction in the proposed lag exploration process. We illustrate
in Section 4 that when the correlation between the predictors is low to moderate, the lags
chosen for the longitudinal variables in the conditional models will be close to the lag
choices in the underlying full model and the consistency of the varying coefficient function
estimators will follow from consistency of the moments estimators proposed in step 1.
Consistency of the proposed moments estimators has been established in Senturk and
Mueller (2010) and Senturk and Nguyen (2011).

Estimation of the moments of the predictor and response processes in step 1, including the
bivariate smoothing and the choice of bandwidths, are carried out with the software package
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PACE (http://anson.ucdavis.edu/~ntyang/PACE; Yao et al., 2003; Yao et al., 2005).
Computations in steps 2 and 3 involve straight forward matrix evaluations.

3. Data Analysis: Exploration of Lagged Effects Associated with
Longitudinal Cognitive and Functional Impairment

The motivating data for the proposed methodology is from an observational cohort study
conducted over 4 years on 745 older adults where multiple health scores and the number of
clinic visits are recorded. Various subsets of the data have been analyzed to address different
clinical hypothesis and more recently Pickett et al. (2011) performed a cross-sectional
analysis of only the baseline data to identify factors associated with healthcare utilization. A
detailed description of the data collection mechanism and related issues are provided in
Seaburn et al. (2005) and Grabovich et al. (2010). In order to model the frequency of the
clinic visits as a function of clinical factors observed over time, we analyze here a subset of
the data with 703 older adults between ages of 65 and 93 with yearly recorded cognitive
(from Mini-Mental State Exam [MMSE]) and physical Karnofsky (KPS) impairment scores
> 12 and > 40, respectively. Because our outcome variable of interest is clinic visits, the
dataset analyzed excludes individuals who were severely disabled (indicating hospitalization
or more severe, e.g., hospitalization required) or with severe cognitive impairment. The
response, total number of clinic visits, is originally intended to be recorded every three
months but due to frequent missing values even in the baseline measurements, the data is
highly irregular and unsynchronized. MMSE and KPS impairment scores and the logarithm
of the total clinic visits collected throughout the observation period of four years are
displayed in Figure 1. (We add 0.5 to the zero entries of the total number of visits before
taking logarithms.) MMSE and KPS scores measure cognitive and physical decline,
respectively, as the scores decrease. Cross-sectionally estimated mean trajectories over time
are plotted in dark solid, where the estimated mean number of visits has an increasing and
the estimated mean physical impairment score has a decreasing trend over the observation
period, as expected. On average, cognitive functioning score remains constant over the
progression of the study.

Our analysis to explore lagged relations discovers opposing trends in MMSE and KPS
scores as they relate to total clinic visits. MMSE scores from baseline and KPS scores from
concurrent times have the most pronounced effects on clinic visits throughout the study.
Since both predictor processes are close to homoskedasticity in the study period, selected
lags can be interpreted as the lags from the predictors’ past that has the highest absolute
correlation with the response, clinic visits. The results uncover deviations from concurrent
modeling of MMSE which would be informative for further investigation of the nature of
the lag detected, potentially studying the predictive power of the entire historical trajectory
of MMSE in explaining clinic visits. In addition the direction of the regression relations
estimated imply that patients with better physical functioning tend to have fewer clinic
visits, while patients with better cognitive status are more likely to attend their clinic visits.
In the analysis outlined below we include estimated univariate transfer function regressions,
univariate EVarlag models for the two predictors separately, and fits from the bivariate
EVarlag model with both predictors in the model.

We first explore the time varying lagged regression of the logarithm of the number of clinic
visits on the two impairment scores separately. The estimated two dimensional transfer
functions B(t, s) from separate regressions of the logarithm of the number of visits at time t
on MMSE and KPS score from lagged time s< 't are given in Figure 2. The plotted transfer
functions have a triangular support, where the diagonal s =t represents the regression
relation of the response and the predictor from concurrent times. The lag path that
maximizes the absolute value of the transfer function is given in thick solid black in Figure
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2. Figures 3 (a)—(b) display the estimated varying coefficient functions (solid) from the
EVarlag model of the log visits on MMSE and KPS scores, separately. Paths of maximum
absolute value of the transfer function highlighted (thick black) in Figure 2 correspond to the
chosen time dependent lags plotted in Figure 3 (d) and (e) (thick solid). Also plotted in
Figure 3 are the concurrent varying coefficient model fits (dash-dotted) relating the response
to the two predictors separately from concurrent times ignoring lag estimation. These fits
correspond to the diagonal values of the transfer functions plotted in Figure 2. +2 bootstrap
error bars for both varying coefficient function fits, from the proposed EVarlag model and
the concurrent varying coefficient model are plotted in Figure 3 (dotted). Reported bootstrap
error bars are based on 200 bootstrap samples drawn via resampling from subjects, where
EVarlag model fits are obtained from the bootstrap data at the particular lags chosen for the
original data. In order to study the variation in the lag choice, we also plot (thick dashed) in
Figures 3 (d) and (e) the median bootstrap lag choice for MMSE and KPS from the EVarlag
fits to bootstrap samples where a different time varying lag is chosen each time.

While the lagged and concurrent model fits agree perfectly (Figure 3 (b)) for the regression
of log visits on KPS scores with a chosen lag of t — A; = 1t, i.e. A; =0, the EVarlag fit shows a
more pronounced positive effect (Figure 3 (a)) of the baseline MMSE score throughout the
study. More specifically, the estimated transfer function in Figure 2 (b) and the varying
coefficient function in Figure 3 (b) suggest that there is a negative regression relation
between number of clinic visits and KPS, where the association gets more pronounced with
the progression of the study and less pronounced for KPS from further lagged times. The
estimated median bootstrap lag plotted in Figure 3 (d) suggests that the concurrent relation is
selected consistently for KPS, which corresponds to a lag choice of t — A; =t, i.e. A;=0. On
the other hand, the lagged and concurrent models suggest different fits for MMSE. While
the regression fit from concurrent times suggest a decline in the strength of the positive
regression relation between MMSE and number of clinic visits with the progression of the
study, especially after 1.5 years, the fit from baseline MMSE stays leved without a decline
in the strength of the suggested relation (Figure 3 (a)). This difference is reflected in the +2
bootstrap error bars. The estimated median bootstrap lag also suggests that the selection of
the baseline MMSE is consistent over the bootstrap draws (Figure 3 (€)). Hence, the
modeling results suggest that while the decline of the (physical) impairment score has a
concurrent effect on the frequency of clinic visits, it is cognitive impairment score from
lagged times that have more pronounced effects on clinic visits (compared to those from the
current time).

Using the sequential estimation algorithm for fitting the EVarlag model with multiple
predictors, proposed in Section 2.2, we next regress the logarithm of the total number of
visits on both impairment scores, KPS and MMSE. The physical impairment (KPS score)
enters the model first, followed by MMSE. The estimated lags (thick solid) and varying
coefficient functions (solid) are given in Figure 4. Also presented are £2 bootstrap error bars
(dotted) and median bootstrap lag choices (thick dotted). The results suggest baseline
MMSE has a more pronounced effect in the second half of the study in contrast with the
declining positive effect of MMSE from concurrent times towards the end of the study. The
varying coefficient function for MMSE from the concurrent fit falls outside of the bootstrap
error bars towards the end of the study (Figure 4 (b)). We also explored the EVarlag model
with the reverse order of predictors and the results are fairly similar and thus omitted here.
Also, the chosen lags and overall conclusions from the multiple EVarlag model above are
similar to the models with each predictor examined separately. The consistent results across
models would be expected for this data, since the correlation between the longitudinal KPS
and MMSE measurements range between 0.04 and 0.09 (with a median of 0.05), implying
that the impairment scores are close to uncorrelated. This is expected since the two
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instruments are designed to capture two fairly distinct aspects of overall health, namely
cognitive and physical domains.

4. Simulation Studies

We examine the performance of the proposed estimation algorithm in two simulation set-ups
with different lag and correlation structures among the predictor processes. The first set-up
mimics the clinic visits data using similar predictor and response observation frequency with
two longitudinal predictors. The underlying lag structure involves baseline and concurrent
lags as observed in the real data analyzed in Section 3. In the second simulation set-up, we
study the proposed EVarlag model more generally with four longitudinal and one cross-
sectional predictor. We also study the performance of the varying coefficient function and
lag estimates under increasing correlation between predictor processes and compare the
proposed varying coefficient function estimates with the (a) benchmark (optimal) estimates
that uses the true lags and (b) fits from the concurrent VCM that completely ignores lag
effects. In estimation of the moments of the predictor and response processes, we utilize the
publicly available software package PACE (http://anson.ucdavis.edu/~ntyang/PACE; Yao et
al., 2003; Yao et al., 2005) where generalized cross-validation is used for choosing
corresponding bandwidths.

4.1 Modeling clinic visits data: Two longitudinal predictor processes

We first consider an EVarlag model with two longitudinal predictors, similar to the clinic
visits data analyzed above. The number of measurements for the predictors was randomly
chosen with equal probability from {3, 4, 5} and the response from {1, 2, 3, ..., 12} for each
of the n =700 subjects, similar to the clinic visits data. Locations for the predictors and
response measurements for the subject i were generated uniformly from [0, 1] separately.
This resulted in concurrent measurements among the predictors which were not concurrent
with the response measurements. Since the KPS and MMSE measures are nearly
uncorrelated with correlations between their longitudinal measurements ranging between
0.04 and 0.09, we generated the two longitudinal variables independently. The predictor
vectors Xi = [Xrity -+ Xrim(i]T, r =1, 2, myj = mp; = my, were generated from multivariate
normal distributions with mean vectors i, (tj) = 3 = 2tj and pux,(tj) = (1 + t;)?2 for tj = [ti1, ...,
timi]T. The my; by m; covariance matrices for the longitudinal predictors had (j, j*)th elements
equal to oy (tij, t;j") = 6737l and oja(t;j, ti’) = 4e7 4174l for Xyj and Xy, respectively.
The response trajectories is

Yi(tij) =y (ti7) =51 (tij){X1(0) 1, (0)}+Ba(tij) { X2 (tij) —py, (ti) }+Viltis), (1)

where B1(t) = cos(nt), Bo(t) = sin(2nt) and py(t) = 2 sin(m + wit) + B1(Opxq (0) + B2 (D)o (D).

In model (11), the time varying lags aret — A1t =0, i.e. Ay =tand t — Ay =t, i.e. Ay =0,
where the baseline measurements of one longitudinal predictor and the measurements from
concurrent times with the response of the other longitudinal predictor are included in the
regression model; thus, the lag structure is similar to the clinic visits data. The functional
error V; in (11) was equal to &1 (t) + Evoiwa(t) constructed from the two basis functions

¥1(t)= v/2cos(rt) and ), (t)= /2sin(wt) and subject specific random components &; and
Evoi generated independently from zero mean normal distributions with variances 1 and 0.5,
respectively. The observed longitudinal predictor and response measurements had time
independent mean zero additive measurement errors &jj, r = 1, 2 and &;jj according to (7)
where the errors were generated from normal distributions with variances 0.5.

The results from the first simulation study are summarized in Figure 5, which displays the
median (dash-dotted) and the 5th and 95th percentiles (dotted) of the varying coefficient
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function estimates (in Figure 5 (a) and 5 (b)) along with medians of the estimated lags (thick
dotted lines in Figures 5 (c) and 5 (d)) for each longitudinal predictor over 200 Monte Carlo
runs. The median of the estimated lags and varying coefficient functions trace the true
underlying quantities. We evaluate the performance of the estimators via normalized mean
integrated squared error for the varying coefficient functions (ME) and for the time varying
lags (ML),

1 [ & w)} dt f{aq(t) ay(0)dt| | [{An — Ay dt
“ptg Z JB3(t) qz‘; a2(t)dt Z 1/3

where the maximum squared error for the estimated time varying lags is f(l)t2dt:1/3, p=2
and g = 0. The estimated median, 1st quartile and 3rd quartile values from the 200 Monte
Carlo runs are (.122, .069, .362) and (.066, .034, .111) for ME and ML, respectively. These
values confirm that the proposed estimates are close to the true underlying quantities in this
simulation model similar to the clinic visits data, as illustrated in Figure 5.

4.2 Performance of EVarlag under more general simulation settings

In the second simulation set-up, we consider an EVarlag model with four longitudinal and
one cross-sectional predictor. The number of repeated measurements for the response and
the four longitudinal predictors were chosen with equal probability from 7, 8, 9, 10, for n=
700, 1000 subjects, at concurrent time points (my; = NMpj = Mg; = My; = n;). The locations of
the measurements were chosen similarly as in the first simulation study. The combined
predictor vector X; = [Xgj1, -+, Xainjs X2is «-+» X2ings X3i1s ++» X3inys Xai1s ---» Xding» Z]" was
generated from a multlvarlate normal dlstrlbutlon with mean vector [juyx (t) sz(t) Hxg(t),
(), E(Z)] = [83 -2, 2+ (t - 0. 5)2,t;, 1 - t;, 2] for tj = [ti;, ..., ti]' and covariance

matrix Z‘,»:[Z‘,»n, Eiu;ng, Var(ZZ')], where

Here Ais a nj by n; matrix of contants equal to a, %12 is a 4n; by 1 matrix of contants equal
to a, oj is a nj by nj matrix with (j, j’)th element equal to o;(tjj, tjj") = 6 exp(=3[t;; - tj;’[) and
var(Z;) = 6. We ran simulations with different correlations between the predictor variables
by varying the values of a; a= (0, 0.5, 1, 2) corresponding to correlations of (0, 1/12, 1/6,
1/3), respectively. The response were generated from the EVarlag model
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Yi(ti;)

— py ()
=P (tij){X1(t:5)

— By, (tij)}
+082(t:;){ X2(0)
— i, (0)}+83(ti){ X3 (ti
= Asty;) — B, (i

—Asy,;)}

+84(ti;){X4(0)

— 1k, (0)}
+a(ti;)(Z;

— py)+Vilti),

12)

where B1(t) = 3{sin(nt/2) + cos(nt)}, Po(t) = 2 sin(xt), P3(t) = 2{sin(nt) + cos(nt)}, P4(t) = 3
cos(rt), a(t) = 2 sin(0.57t) and (1) = 2 cos(r+t) By (Dhusy (0 +B2(D1xy(0)+Ba(Orxcalti =
As,tij)+B4(t)uxz(0)+a(t)uz- In model (12), the time varying lags aret — Ay =t,i.e. A;;=0,t -
Apr=0,0.e. Apr=t, t— A= (t - 17/29)1{t—17/29}20 andt— Ay =0, i.e. Ayt =t. Hence,
baseline values of two predictors, concurrent values of one and time varying lagged values
of another are included. The functional error V; in (12) and the additive measurement error
on the longitudinal predictor and response trajectories were generated as described above.

We examine the performance of the proposed estimation algorithm under mild to moderate
correlation between the predictor variables for a= (0, 0.5, 1, 2). In addition we compare the
performance of the proposed varying coefficient function estimators to two alternative
estimators: (1) the benchmark estimator using the true lag values and (2) the estimator from
the concurrent VCM ignoring lag effects. The benchmark estimator and estimator from the
concurrent model are obtained by substituting A,; and 0, respectively, in place of Ay, r =1,
..., p, in step 3 of the proposed estimation algorithm. Table 1 summarizes the estimated
median, 1st quartile and 3rd quartile values from 200 Monte Carlo runs for ML from the
proposed lag estimators and for ME from the varying coefficient function estimators from
all three models. Note that although the mean integrated squared errors for the varying
coefficient function and lag estimators are getting larger with increasing predictor
correlation, the proposed lag and varying coefficient function estimators are still performing
well under moderate correlation levels, especially compared to the benchmark and
concurrent models. The benchmark estimators are expected to perform the best since they
use the true unknown lag values; and the performance of the proposed estimators are fairly
close to the performance of the benchmark estimators. In addition, there is substantial gain
in estimating the lag relations, as observed from comparisons of the proposed estimators to
those from the concurrent model ignoring lag effects. The estimated median of the ME of
the proposed varying coefficient function estimators range roughly between 1/5 to 1/2 of the
estimated median of the ME from concurrent model estimators.

Figure 6 displays the median (dash-dotted) and the 5th and 95th percentiles (dotted) of the
varying coefficient function estimates (Figure 6 (a), (b), (c), (d) and (e)) along with medians
of the estimated lags (thick dotted) for each longitudinal predictor (Figure 6 (f), (g), (h) and
(i)) over 200 Monte Carlo runs for n =700 and a = 1. Even though there are some deviations
from the underlying lags in the estimated lags due to correlated predictors, the medians of
the estimated varying coefficient functions trace the underlying quantities closely, indicating
that the method performs well with cross-sectional as well as longitudinal predictors in the
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model. Also plotted in thick gray are the medians of the varying coefficient function
estimates from the concurrent models; median estimates from the benchmark model are very
close to those plotted from the proposed model and hence omitted in the figures. The
concurrent fit ignoring lag estimation deviates from the underlying varying coefficient
functions considerably especially for those longitudinal predictors that are not related to the
response from concurrent times (Figure 6 (b), (c) and (d)). Even for the concurrent
longitudinal predictor (Figure 6 (2)) and the cross-sectional covariate (Figure 6 (g)), the
estimated varying coefficient functions from the concurrent model visibly deviate from the
true values. This is consistent with the larger ME values from the concurrent model
estimates reported in Table 1.

5. Discussion

The works described here contain innovations in exploratory modeling of both the varying
coefficient functions and the lag effects in the context of challenging longitudinal data
conditions (e.g., possibly unsynchronized response-predictor observations, infrequency, and
irregularity). The main objective of the proposed exploratory time varying lagged regression
model is to detect deviations from the concurrent nature of VCM via the introduction of the
time varying lags associated with each longitudinal predictor. In addition to allowing the
regression relations to vary over time, the time varying lags enable relating the response to a
time varying path from the predictors past. Hence the analysis is not necessarily limited to
concurrent relations, instead potentially interesting lagged relationships are explored
between the response and predictor processes according to an objective criterion. The
flexibility of estimating separate lags for each longitudinal predictor is a strength of the
proposal, so that some predictors can be included in the model from concurrent times as the
response while others may enter the regression model from lagged times, such as in the
analysis of clinic visits data. We note that the proposal is only an exploratory tool and that
longitudinal predictors with nonzero estimated lags can be modeled from lagged time
intervals or possibly with the entire history of the predictor via functional linear models in
follow-up analysis.

A special case of the proposal that may be of interest in particular applications is time
invariant lags, i.e. t — Ay =t — ¢, for some constant ¢, for the rth longitudinal predictor. For
selecting a fixed lag c, for a given longitudinal predictor, the proposed algorithm can be
altered to maximize a combined optimization criteria over t such as [[cov{Y(t), X,(t-c,)}
var{X;(t—c,)}]dt with respect to the constant c,. This would be interpreted as maximizing the
absolute value of the integrated correlation of the response with the lagged predictor over
time for homoskedastic predictor processes.

The proposed estimation procedure addresses new challenges in longitudinal data,
specifically data resulting from irregular, infrequent, unsynchronized, and error-prone
longitudinal designs. Hence, time varying lags are explored without requiring a common
time grid for observations among subjects. The proposed estimation procedure utilizes
nonparametric estimation techniques to target the moments of the longitudinal predictor and
response processes, which allow for pooling information across subjects. The curse of
dimensionality is addressed by taking a conditional modeling approach, which allows for
inclusion of multiple longitudinal and cross-sectional predictors. The variance of the
proposed estimators are conveyed via bootstrap error bars in Section 3; development of valid
inference procedures for the EVarlag model requires further research.
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We provide here the moments-based estimates of ESE used in step 2 of the estimation
procedure. We estimate (8) in step 2.1 by

ESE” (t)=var{y (1)} —230 eevly (), W 3+ GO ) varw M 0}, 09

where 7Y (£)=3 (¢) for longitudinal predictors and ;" (£)=a." (t) for cross-sectional
ones.
Similar to (13), ESEf)(t) in step 2.2 is estimated by
ESE,” (¢)
=var{Y (t)}
— 29 (D&Y (1), W7 (1)}
— 233 (D5 {Y (), W () }+ 2957 (0753 ({7 (6), WP (1)}
2__
+AE (0} @y (o)}
2/—\
+A2 (1)} var{w® (1)}

At step 2.k, ESEE’“) (t) is estimated by

ESE,” (1
=var{Y (¢)}

k—1
- 22%’3 (6)cov{Y (t), Wi (t)}

23 (tyeov{Y (), W (¢) }+2Z%§) A% (yeov {7 (1), v (1)}

u=1

+Z{wu (1)) VA1)

+{m)(t)} var (WM (1)}
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Figure 1.
Observed individual trajectories (dashed) and the smoothed estimate of the cross-sectional

mean functions (thick solid) for the (a) cognitive impairment score MMSE, (b) physical
impairment score KPS and (c) logarithm of the number of clinic visits.
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Figure2.

Estimated two dimensional transfer functions from the separate regressions of the logarithm
of the number of clinic visits at time t (a) on MMSE and (b) on KPS scores from the lagged
times s< t. Plotted in thick solid in black is the path that maximizes the transfer function for
each t, corresponding to the estimated lags in the proposed exploratory time varying lagged
regression.
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Figure 3.

Two separate (univariate) EVarlag regression models. Given are the estimated varying
coefficient functions from the proposed EVarlag regression (solid) and from the varying
coefficient regression (dash-dotted) of the logarithm of number of visits (a) on the cognitive
impairment score MMSE and (b) on the physical impairment score KPS. £2 bootstrap error
bars from the EVarlag fits (dotted) are given in (a) and (b) and from the varying coefficient
model fit (dash-dotted) are given in (c). Also plotted are the estimated lags t vs. t — A; (thick
solid) from the two regressions with MMSE and KPS given in (e) and (d), respectively.
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Gray line in (e) denotes the no lag case, i.e. A; = 0 for reference, where thick dotted lines in
(d) and (e) are the estimated median bootstrap lag choices.
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Figure4.
EVarlag model with multiple predictors (predictor sequence: KPS and MMSE). Plotted are
estimated varying coefficient functions from the proposed EVarlag regression (solid) and
from the varying coefficient regression (dash-dotted) of the logarithm of number of visits on
two predictors, (a) the physical impairment score KPS and (b) the cognitive impairment
score MMSE. Also provided are £2 bootstrap error bars (dotted) for the EVarlag fits.
Estimated lags t versus t — A; (thick solid) for KPS and MMSE are given in (c) and (d),
respectively. The gray line in (d) denotes the no lag case, i.e. A = 0 for reference, where
thick dotted lines in (c) and (d) are the estimated median bootstrap lag choices.
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Results from the first simulation study with data set-up similar to the clinic visits data. The
median (dash-dotted) and the 5th and 95th percentiles (dotted) of the varying coefficient
function estimates of (a) p1(t) and (b) po(t) (solid) are plotted based on 200 Monte Carlo
runs. Given in (c) and (d) are the medians (thick dotted) of the estimated lags t versus t — A¢
(solid) for each longitudinal predictor. The gray line in (c) represents the no lag case, i.e. A
= 0 for reference.
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) (e)

Results from the second simulation study. The median (dash-dotted) and the 5th and 95th
percentiles (dotted) of the varying coefficient function estimates ((a), (b), (c), (d) and (e)) are
plotted based on 200 Monte Carlo runs (true values in solid). Plotted in thick gray are the
medians of the varying coefficient functions estimates from the concurrent model. Also
given ((f), (9), (h) and (i)) are the medians (thick dotted) of the estimated lags t versus t — A;
(solid) for longitudinal predictors. Gray lines represent the no lag case for reference.

Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 01.



Page 26

Sentiirk et al.

SYT €55 00§  ves Tee  §90°  vOT 1€ G680  9ST 4 000T
SIT ¢ee g6 eI T 980" 9S0° G¢T°  €E0° 950 T 000T
SoT 6/¢° 18¢° S9C 780" GE0"  ¥SO° 980" €€0"  GSO° 6’0 000T
180° €L 9ve  8SCT €00 80 EVO T.00 9200 EvO 0 000T
9T 195 019  €E9 G68¢"  €80° 99T 608 €11 9.C 4 002
8cT 6€E"  <¢0E  6IE 09T° 850" ¥80 96T /SO° 860 T 00L
90T ¢6c IS¢ ELT 160" 9v0"  190° A4 o (VN 40 S0 00L
otT 8¢ Sv¢  19¢ €0T"  ¢v0° €90 0T Ov0" 690 0 002

UBIPBIN  %S. %S¢ UeIPIN 9%GL %G UeIPPIN %S, %S¢ UeIpPIN
TN 1US 1INJUoO-J N ewyousg-3 A\ EL e u

‘KlaAnoadsal ‘(€/1 '9/1 '2T/T

‘0) Jo suone|a4109 01 spuodsallod (Z ‘T ‘G0 ‘0) = ®© :S9|gelieA J0121pald ay) usamiag UoIR|a1109 JO saalbap Bullaplip 01 Jajal sanfeA e Bulkie s1es elep/suni
0]JeD 8JUOIA| 00Z UO paseq pajuasaid aJe SaINseaw UoIeIASP a8yl JO Soj1luadiad 946/ pue 945z pue uelpalA “wyiliobje pasodoid ayy wois () Siorewnnss
Be| 10} J04le pajeibajul patenbs ueaw pazifewlou uripaw ay) aJe papodal 0S|y “uolrewnss Be| Burioubi SI01eWINSS 1US1INJUOI 3Y1 pue sanjeA Be| umoudun
anJ) Buisn s10jewISa Mrewyauaq ‘siojewnsa pasodoid ayy wod) (FIA) suonauny 1Ua10114909 BulAien ayi 1oy Joaia parelfiaul parenbs ueswl pazijewioN

T alqel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 01.





