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ProLuCID: an improved SEQUEST-like algorithm with enhanced 
sensitivity and specificity

T. Xu1,2, S. K. Park1, J. D. Venable1, J.A. Wohlschlegel1, J. K. Diedrich1, D. Cociorva1, B. 
Lu1, L. Liao1, J. Hewel1, X. Han1, CCL. Wong1, B. Fonslow1, C. Delahunty1, Y. Gao, H. Shah, 
and J. R. Yates 3rd1

1 Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines 
Road, SR11, La Jolla, California 92037, USA.

2 Dow AgroSciences LLC, Indianapolis, IN 46268, USA

Abstract

ProLuCID, a new algorithm for peptide identification using tandem mass spectrometry and protein 

sequence databases has been developed. This algorithm uses a three tier scoring scheme. First, a 

binomial probability is used as a preliminary scoring scheme to select candidate peptides. The 

binomial probability scores generated by ProLuCID minimize molecular weight bias and are 

independent of database size. A modified cross-correlation score is calculated for each candidate 

peptide identified by the binomial probability. This cross-correlation scoring function models the 

isotopic distributions of fragment ions of candidate peptides which ultimately results in higher 

sensitivity and specificity than that obtained with the SEQUEST XCorr. Finally, ProLuCID uses 

the distribution of XCorr values for all of the selected candidate peptides to compute a Z score for 

the peptide hit with the highest XCorr. The ProLuCID Z score combines the discriminative power 

of XCorr and DeltaCN, the standard parameters for assessing the quality of the peptide 

identification using SEQUEST, and displays significant improvement in specificity over 

ProLuCID XCorr alone. ProLuCID is also able to take advantage of high resolution MS/MS 

spectra leading to further improvements in specificity when compared to low resolution tandem 

MS data. A comparison of filtered data searched with SEQUEST and ProLuCID using the same 

false discovery rate as estimated by a target-decoy database strategy, shows that ProLuCID was 

able to identify as many as 25% more proteins than SEQUEST. ProLuCID is implemented in Java 

and can be easily installed on a single computer or a computer cluster.
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Introduction

In recent years, shotgun proteomics1,2 has emerged as a robust and sensitive method for 

identifying and quantifying proteins in a complex biological sample and is now a preferred 

method for large-scale proteomic analyses .3,4 The strategy is based on proteolytic digestion 

of complex protein mixtures into peptides followed by identification of the peptides using 

tandem mass spectrometry (MS/MS). Peptide identifications can be used to identify their 

corresponding proteins using an automated database search. Recent improvements in MS 

technologies allow the acquisition of hundreds of thousands of MS/MS spectra over the 

course of one LC/MS/MS analysis5-7, and a large-scale shotgun proteomics project typically 

generates hundreds of millions of MS/MS spectra. Each of these spectra has to be correlated 

with the amino acid sequence of a peptide and corresponding protein. The sensitivity and 

efficiency of the database search program used is of critical importance in any high-

throughput protein identification experiment.

There are five basic types of algorithms used to assign tandem mass spectra to peptide 

sequences: (1) cross-correlation methods that correlate experimental spectra with theoretical 

spectra.8-10 (2) methods using unambiguous “peptide sequence tags” derived from spectra 

that are used to search known sequences.11-15 (3) peptide de novo sequencing16-24 (4) 

probability-based matching that calculates a score based on the statistical significance of a 

match between an observed peptide fragment and those calculated from a sequence 

library25-32 and (5) blind or unrestricted modification search and spectra alignment-based 

algorithms.21,33-37 Cross-correlation approaches and probability-based matching approaches 

are the two most commonly used database searching strategies in large scale shotgun 

proteomics experiments. Among these algorithms, SEQUEST8 and Mascot25 are the two 

most widely used database search engines. Studies have shown that cross-correlation-based 

intensity-modeling methods have higher sensitivity while probability-based methods have 

higher specificity.32,38

The advent and commercialization of the high-performance mass spectrometer enables 

routine, wide-spread high resolution high mass accuracy measurements of peptides in 

proteomics 39. Early studies using this hybrid instrument have demonstrated a number of 

advantages including high mass accuracy, high resolution, large space charge capacity, and 

high dynamic range 5,40. Venable et al., evaluated the use of the LTQ-Orbitrap for the 

quantification of stable isotope-labeled peptides and showed a 4-5 fold improvement in the 
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number and quality of the peptide ratio measurements compared with similar analyses done 

on the LTQ41. In addition, the high mass accuracy generated by the LTQ-Orbitrap hybrid 

mass spectrometer can be used to improve the confidence of peptide identification and 

database search speed. One strategy for doing this is to obtain high mass resolution data for 

all precursor ions during the full MS scan in the Orbitrap mass analyzer and then collect low 

resolution MS/MS spectra on those precursor peptides in the linear ion trap. An alternative 

approach that takes advantage of the LTQ-Orbitrap is to collect both high resolution MS and 

MS/MS spectra in the Orbitrap mass analyzer for peptide identification.

Some database search programs utilize a two-step scoring scheme. The first step is a 

preliminary scoring (Sp) step that is used to select a fixed number of candidate peptides 

which are then analyzed using a more sophisticated second step of scoring. This Sp step is 

important for the speed of the identification process since the final scoring algorithms are 

usually slower, making them impractical for scoring every candidate sequence. One 

common method for Sp scoring is to use the number of shared peaks to select the final 

candidates. This is done by multiple algorithms, including the hypergeometric probability 

based PEP_PROBE 29, OMSSA 31 and the central limit theorem based PEP_PROBE 32. 

However, the “number of shared peaks” approach may not work well for a low quality 

spectrum, especially when the fragmentation is poor. Alternatively, the preliminary score 

(Sp) of SEQUEST is an empirically derived score that restricts the number of sequences 

analyzed in the correlation analysis. Sp sums the peak intensity of fragment ions matching 

the predicted sequence ions and accounts for the continuity of an ion series and the length of 

a peptide. The original score is:

(1)

where the first term in the product is the sum of ion abundances of all matched peaks, m is 

the number of matches, β is a ‘reward’ for each consecutive match of an ion series (for 

example, 0.075), ρ is a ‘reward’ for the presence of an ammonium ion (for example 0.15) 

and L is the number of all theoretical ions of an amino acid sequence. The final scoring uses 

one of the following two methods to measure closeness of fit between spectra and peptide 

sequences: the first method uses a shared peak model to generate a quantitative measure of 

the fit, while the second method uses fragment ion frequency to generate the probability the 

sequence and spectrum are the best fit 32. Because the final scoring is usually more 

sophisticated and sensitive than the preliminary scoring, the final scoring method would 

ideally be applied to each candidate peptide rather than a limited number of them.

It is well known that the results of an unfiltered database search includes a large number of 

false positive identifications from random hits to the database. Post-database search filtering 

programs, such as DTASelect 42,43, PeptideProphet, 44 and Search Engine Processor 45 are 

essential for the optimal separation of true peptide/protein hits from random hits. For a 

peptide to be successfully identified by a database search algorithm, it has to pass the 

following three tests: (1) it must be ranked high enough in the Sp scoring to be selected for 

the final scoring, (2) it must be assigned the top rank during the final scoring, and (3) its 

score or scores have to be high enough to pass the post-search filtering criteria 46. The major 
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challenge to improvement of the overall performance of a database search algorithm is how 

to increase the sensitivity of searches while maintaining adequate discrimination between 

correct answers and false positives.

In this paper, we present ProLuCID, an MS/MS-based database search program with 

enhanced peptide identification sensitivity and specificity relative to SEQUEST. ProLuCID 

uses a three tiered scoring scheme to maximize the sensitivity of database searching. For its 

Sp scoring method, ProLuCID computes a binomial probability score for each candidate 

peptide with a calculated mass that matches a precursor mass within a user specified 

tolerance. Then, based on the binomial probability scores, it selects a user-specified number 

of candidate peptides for final scoring (default = 500) that are least likely to be random hits. 

For each candidate peptide selected for further analysis, ProLuCID calculates a modified 

cross-correlation score (XCorr) and then further generates another score (Z score) based on 

the distribution of the XCorr of all final candidate peptides for that spectra. This three-tiered 

scoring scheme gives ProLuCID significant higher sensitivity and specificity than 

SEQUEST. Here we show that for low mass accuracy MS/MS data, the cross-correlation-

based Z score outperforms the binomial probability score in making correct spectral 

assignments, while the binomial probability score performs better with high mass accuracy 

tandem mass spectra MS/MS data.

The ProLuCID software and data used in this paper can be downloaded at http://

fields.scripps.edu/downloads.php and http://fields.scripps.edu/published/ProLuCID 

respectively.

Experimental Section

Sample preparation

A variety of samples and instrument platforms were used to demonstrate the improvement in 

identification, regardless of sample complexity or instrument sensitivity. Samples of varying 

degrees of complexity were used in this study: a mixture of 17 known proteins, a human 

saliva sample, rat brain sample, human cell lysate, and a protein fractionated human cell 

lysate. The 17 protein mixture sample was used to assess the sensitivity and the specificity 

of ProLuCID and SEQUEST scores, while the other more complex samples were used to 

demonstrate the sensitivity improvement in protein identification with samples of medium to 

high complexity.

HEK 293 Cells

Standard HEK293 cell lysate was prepared from HEK cells grown in Dulbecco's modified 

Eagle's medium (D-MEM) with 10 % fetal bovine serum (FBS) supplemented with 

penicillin and streptomycin. Cells were grown (37 °C/5 % CO2) to approximately 80 % 

confluence in tissue culture flasks. Cells were washed twice with DPBS, scrapped from 

flasks, supplemented with protease inhibitor cocktail (Roche) and lysed by sonication. 

Protein concentration was determined by BCA assay. Standard samples were kept at -80 °C 

until use.
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Protein Fractionation

HEK lysate was submitted to protein based fractionation by addition of organic solvent into 

ten protein fractions, effectively reducing the sample complexity. Protein pellets were 

washed with acetone and digested with trypsin. Dried pellets were dissolved in 8 M urea/100 

mM Tris, pH 8.5. Proteins were reduced with 5 mM tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP, Sigma-Aldrich) and alkylated with 10 mM iodoacetamide (Sigma-

Aldrich). Proteins were digested overnight at 37 °C in 2 M urea/100 mM Tris, pH 8.5, 1 mM 

CaCl2 with trypsin (Promega) in a ratio of 1:100 (enzyme:protein). Digestion was stopped 

with formic acid, 5 % final concentration. Debris was removed by centrifugation.

For the saliva and the rat brain samples, about 200 micrograms of proteins were solublized 

with 8 M urea/Invitrosol (Invitrogen, Calsbad, CA), reduced with 10 mM dithiothreitol, 

alkylated with 10 mM iodoacetomide, diluted with 4 volumes of 100 mM Tris-HCl, and 

then digested with trypsin overnight. After digestion, the pH was adjusted to ~ 2.5 using 

90% formic acid. Sixty micrograms of protein digest from each sample was analyzed by 

MudPIT.

Multidimensional Protein Identification Technology

Digested proteins were pressure-loaded onto a fused silica capillary column packed with 3 

cm of 5-μm Partisphere strong cation exchanger (SCX, Whatman, Clifton, NJ) and 3 cm of 

5-μm Aqua C18 material (RP, Phenomenex, Ventura, CA) with a 2 μm filtered union 

(UpChurch Scientific, Oak Harbor, WA) attached to the SCX end. The column was washed 

with buffer containing 95% water, 5% acetonitrile, and 0.1% formic acid. After desalting, a 

100-μm i.d. capillary with a 5-μm pulled tip packed with 10 cm 3-μm Aqua C18 material 

was attached to the filter union, and the entire split-column was placed inline with an 

Agilent 1100 quaternary HPLC (Agilent, Palo Alto, CA) and analyzed using a modified 12-

step separation procedure described previously 2. Three buffer solution were used: 5% 

acetonitrile/0.1% formic acid (buffer A); 80% acetonitrile/0.1% formic acid (buffer B), and 

500 mM ammonium acetate/5% acetonitrile/0.1% formic acid (buffer C). The first step 

consisted of a 100 min gradient from 0 to 100% buffer B, Steps 2-11 had the following 

profile: 3 min of 100% buffer A, 5 min of X% buffer C, a 100 min gradient from 15 to 45% 

buffer B. The 5 min buffer C percentage (X) were 5, 10, 15, 20, 25, 30, 35, 40, 55, and 75%, 

respectively, for steps 2-11. In the final step, the gradient contained 3 min of 100% buffer a, 

20 min of 100% buffer C, a 10 min gradient from 0 to 15% buffer B, and a 107 min gradient 

from 15 to 100% buffer B. As peptides were eluted from the microcapillary column, they 

were electrosprayed directly into an LTQ or LTQ-Orbitrap mass spectrometer (Thermo-

Fisher, Palo Alto, CA) with the application of a distal 2.4-kV spray voltage. A cycle of one 

full scan mass spectrum (400-1400 m/z) followed by 8 data dependent MS/MS spectra at a 

35% normalized collision energy was repeated continuously throughout each step of the 

multidimensional separation.

Database Search

The data for the17 protein mix, the human saliva sample and the rat brain sample were 

searched against a database with sequences of the 17 proteins added to a S. pombe protein 

FASTA database (http://www.sanger.ac.uk/Projects/S_pombe/protein_download.shtml, 
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release date of March 3, 2005), the IPI human protein FASTA database (version 3.06 release 

date of May 10, 2005), and the IPI rat protein FASTA database (version 3.08 release date of 

July 12, 2005), respectively. Each protein database was concatenated with reversed 

sequences of all the proteins to estimate false positive rate. ProLuCID database searches 

were performed with precursor ion mass tolerance of 3 amu for low accuracy data or 

between 5 and 50 ppm for FTMS data, while fragment ion mass tolerances were 0.4 amu for 

low-resolution data and 30 ppm for calculation of the high resolution probability score 

calculated for FT-MS/MS data. All searches considered a static modification of 57.0215 on 

cysteine due to carboxyamidomethylation. The database search was not restricted by 

enzymatic specificity. Each dataset was searched twice, once with SEQUEST and once with 

ProLuCID, and the search results were directly compared. Similar database searches 

(precursor ion mass tolerance 3 amu and no enzyme restriction) were done with SEQUEST, 

MASCOT, XTANDEM, OMSSA on the 17 protein mix dataset for sensitivity and 

specificity comparison. The raw and processed datasets are available at http://

fields.scripps.edu/published/ProLuCID/.

Theory

ProLuCID utilizes a three tiered scoring scheme. It first selects candidate peptides (500 by 

default) for final scoring based on a binomial probability score. This binomial probability 

score is computed for each peptide in the protein database that has a calculated mass within 

the precursor mass ± user-defined mass tolerance. It then computes an XCorr and a Z score 

for each candidate peptide that is selected for final scoring. Previous studies have shown that 

the distribution of matching fragment ions between a set of candidate peptides and an 

experimental spectrum can be approximated by a Poisson distribution 20,29,31. As shown in 

figure 1, the number of fragment ions that match an experimental spectrum also fits a 

binomial distribution very well. The binomial distribution is the discrete probability 

distribution of the number of successes in a sequence of n independent yes/no experiments, 

each of which yields success with probability (p). Such a success/failure experiment is also 

called a Bernoulli experiment or Bernoulli trial. We consider the testing of each theoretical 

peak as a Bernoulli trial and compute the probability of a peptide with at least m random 

matches with the formula (1):

(1)

where n is the number of theoretical peaks of the candidate peptide tested, which is 

determined by the peptide length together with the miminum and maximum m/z in the 

spectrum; m is the number of theoretical peaks that match to a peak in the exprimental 

spectrum and is guaranteed not greater than n; p is the probability that any fragment ion 

matches a peak in the spectrum, as determined by the mass tolerance for a fragment ion 

match and the density and distribution of peaks in the experimental spectrum. The binomial 

probability score P(x>=m) is the probability of getting m or more matches when n 

theoretical peaks are tested. By design, the binomial probability score computed by 

ProLuCID is database independent and is solely dependent on characteristics of the 

spectrum and the peptide sequence.
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The second ProLuCID score is referred to as XCorr and is very similar to the SEQUEST 

XCorr. It is a cross-correlation of the experimental and theoretical spectra.

The correlation is processed and averaged to remove the periodic noise in the interval (-75 to 

75). Unlike the SEQUEST cross-correlation procedure which assigns an intensity of 50 to 

the monoisotopic peak of each major peak series and an intensity of 25 to a window of 1 

amu around the major peak, ProLuCID uses averagine 47 to model the isotopic distribution 

of each major ion peak based on it mass. Based on the averagine table, any isotopic peaks 

within the isotopic envelope that have at least 20% of the intensity of the base peak (i.e., the 

most intense peak) are assigned an intensity that is proportional to their theoretical intensity. 

In order to keep the ProLuCID XCorr comparable to the SEQUEST XCorr, we assign the 

intensity of the base peak in the isotopic envelope of each major fragment ion to 50 and the 

intensity of each minor peak (i.e., a ion, z ion, b loss of H2O, b loss of NH3 for CID spectra) 

to 10 as is done in SEQUEST.

In addition to the preliminary score and XCorr, ProLuCID computes a third score (Z score) 

for each final candidate peptide. For each spectrum, there should only be one correct answer 

and all the other candidate peptides are considered random hits. We have found that the 

distribution of XCorr's for the top 500 peptide hits to each spectrum is very close to a 

normal distribution with the true hit being an obvious outlier and statistically significantly 

different from the other final candidates. There are many ways to detect outliers from 

normal distributions and the Z score of Grubbs’ test 48 is the method implemented in 

ProLuCID. The Z score is calculated as the difference between the outlier and the mean 

divided by the standard deviation SD (eq. 2). A large Z score means that the XCorr of the 

top hit is significantly different from the other hits and the peptide is more likely to be a true 

hit.

(2)

X is the XCorr of the top hit, μ is the mean XCorr of all the final candidate peptides and n is 

the number of final candidate peptides.

Results and Discussion

Overview of ProLuCID

We have developed ProLuCID, a new database search algorithm for peptide identification 

that is highly flexible, efficient, and sensitive. ProLuCID is implemented in Java 1.6 and can 

be run on either a single CPU or multi-node computing cluster with 1.6 or later version Java. 

With Java multithreading technology, ProLuCID users can specify number of compute cores 

to be used to take advantage of multi-core architectures that come with most modern 

computers. It is can be used with protein FASTA databases or pre-processed databases for 

faster search speed. ProLuCID is also able to perform efficient and flexible differential 
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modification searches and is capable of taking advantage of the high mass accuracy data 

generated by the latest instrumentation. These features of ProLuCID are described in greater 

detail below.

Using binomial probability as preliminary score (Sp to improve sensitivity

The goal of a tandem mass spectral database search is to identify the best peptide sequence 

match for a spectrum. The ProLuCID algorithm uses a three-tiered scoring scheme to assess 

the quality of a match between a spectrum and a peptide amino acid sequence from a protein 

database. First, ProLuCID uses a binomial probability score (Sp)to distinguish random 

matches and select peptide candidates for final cross-correlation scoring. Although the 

cross-correlation score provides higher sensitivity than the binomial probability score, it is 

computationally expensive (i.e., slow) and thus not practical for use in the initial scoring 

scheme. Instead, we select a user-defined number (500 by default) of candidate peptides for 

final scoring based on binomial probability scores. It is worth noting that the computation of 

exact binomial probability score is also a very slow process due to the computation of the 

factorials and exponentiations (see equation 1), thus ProLuCID uses an approximation 

method to compute the scores. A lookup table is calculated when the program starts and the 

approximate probability score can be retrieved based on the number of matched peaks, the 

number of peaks tried and the fraction of the region from the minimum m/z to maximum 

m/z in the tandem mass spectrum that are considered positive (the p in equation 1). In order 

to use the lookup table, the value of p is rounded and keeps only two significant digits so we 

can map any p to an integer between 1 and 100.. This approximation also make it feasible 

for ProLuCID to use the binomial probability score as a preliminary scoring method used for 

all candidate peptides within a given mass tolerance rather than just a final list of 100- 200 

peptide candidates as is done in other database search programs. The advantage of using a 

more sophisticated scoring function as the preliminary scoring routine can be seen in figure 

2. Based on the 17 protein mix dataset, the SEQUEST Sp score gives 5338 correct spectrum 

assignments the while ProLuCID binomial probability score gives 6353 correct spectrum 

assignments. Based on this result, we can conclude that the approximate binomial 

probability score displays better sensitivity than SEQUEST Sp score.

Matching the isotopic distribution of fragment ions

The second score generated by ProLuCID is a measure of cross-correlation between the 

experimental and theoretical spectra for a peptide and is referred to as XCorr. In SEQUEST, 

a theoretical spectrum is generated from predicted fragment ions for each peptide sequence 

(b- and y-ions for CID and c- and z-ions for ETD). In the theoretical spectrum, the main ion 

series products are assigned an abundance of 50, a window of 1 amu around the main 

fragment is assigned an intensity of 25, and water and ammonia losses are assigned an 

intensity of 10. The theoretical and normalized experimental spectra are then cross-

correlated to obtain similarities between the spectra. In contrast to SEQUEST, ProLuCID 

models the isotope distribution of each fragment ion in order to generate a more realistic 

theoretical spectrum for cross-correlation. Theoretical isotopic abundance distributions for 

proteins and peptides were created using a look-up table of 150 averagine theoretical 

isotopic distributions with monoisotopic mass values for multiples of 500 Da up to 75,000 

Da with all abundance distributions in the look-up table created by Mercury47. ProLuCID 

Xu et al. Page 8

J Proteomics. Author manuscript; available in PMC 2016 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



uses the averagine table to closely model the isotopic distribution of the fragment ions. This 

modification makes the distribution of ProLuCID XCorr of decoy hits closer to a normal 

distribution, and the score itself becomes more discriminative (Figure 3). Importantly, the 

benefits of modeling the isotope distribution are realized even for low-resolution LTQ data 

in which the charge states cannot be determined.

Since ProLuCID can be configured to output both the binomial probability score and XCorr 

for each candidate peptide, we can determine which score is more sensitive in identifying 

target peptides by comparing the number of true peptides (from the 17 protein mix) that are 

ranked as the top hit by each scoring scheme. From Figure 2, we can see that XCorr 

performs better than preliminary scoring using either the ProLuCID binomial probability 

score or the SEQUEST Sp score. The ProLuCID XCorr identifies more spectra correctly 

than the ProLuCID's binomial probability score (7299 vs 6353) while the ProLuCID 

probability score gets more correct spectral assignments than the SEQUEST Sp score (6353 

vs 5201). Based on these results, we can conclude that ProLuCID's binomial probability is a 

better score than SEQUEST's Sp score, and ProLuCID's XCorr is a better score than 

ProLuCID's binomial probability score. The combination of binomial probability 

preliminary scoring and the modeling of the isotopic distribution of fragment ions make 

ProLuCID more sensitive than SEQUEST in terms of correct spectrum assignments (7299 

vs 6974), regardless of the specificity of the scores.

Statistical Z score improves the specificity

In addition to the binomial probability and cross-correlation scores, ProLuCID outputs a Z 

score for each peptide hit. The Z score is a dimensionless score derived by subtracting the 

population mean from an individual raw score and then dividing the difference by the 

population standard deviation. It reveals how many units of the standard deviation a case is 

above or below the mean. Unlike XCorr, which is independent of database size and reflects 

the quality of the match between the experimental spectrum and the peptide sequence, the 

ProLuCID's Z score is database-dependent and reflects the quality of the match relative to 

near misses. A higher Z score indicates that the peptide hit is more likely to be a correct 

match to the spectrum.

Traditionally, filtering of database search results by DTASelect used threshold cutoffs for 

XCorr and DeltaCN, where DeltaCN is the difference between the top hit XCorr and the 

second best hit XCorr divided by the XCorr of the top hit. In the latest version of DTASelect 

(DTASelect2),43 these two measurements are combined using a discriminant function that 

dynamically sets the XCorr and DeltaCN values in order to achieve a user-specified false 

discovery rate. For either case, high confidence spectrum assignments generally have both 

high XCorr and high DeltaCN scores. Since the XCorr shows positive correlation across 

charge states (i.e. XCorr values increase for higher charge state spectra)49, different cutoffs 

are usually applied to assignments with different charge states. DeltaCN measures the 

difference between the best hit and the second best hit and has proven to be a very good 

measure for separating true hits from false . However, in some cases the sequence 

corresponding to the second highest XCorr might have very high sequence similarity to the 

top hit, making the DeltaCN value very small. Thus, even though the identification itself 
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may be reliable, it would be discarded by DTASelect due to its similarity to the 2nd best hit. 

Tang et al 34 used the distance score which is defined as the difference between the highest 

score and the seventh highest score for each MS/MS spectrum. The distance score provides 

a measure of the separation between the highest scoring peptide and the pack of wrong 

peptides. The larger the distance score, the larger the probability that the highest scoring 

peptide is indeed a legitimate answer. The distributions of distance scores for correct 

peptides and incorrect peptides were found to be approximately Poisson. ProLuCID's Z 

score provides a statistical measurement to indicate how significant the difference between 

the best match and the rest of the matches to the same spectrum are. This measure provides 

an effective way of distinguishing the true hits from the random hits using a strong statistical 

foundation.

A common method for visualizing and comparing discrimination ability is the receiver 

operating characteristic (ROC) plot,50 in which one can read the false positive level that 

must be tolerated in order to obtain any given true positive level. In our case, we consider 

any identification that matches a peptide sequence from any of the 17 proteins as a true 

positive, and any identification that matches a peptide sequence from a reversed protein as a 

false positive. The ROC curves in figure 4A-4C clearly illustrate the improvement in 

sensitivity and specificity of the ProLuCID XCorr and Z score compared with the 

SEQUEST XCorr. Figure 4A is a typical ROC curve with the area under the curve being 

0.89, 0.91 and 0.96 for the SEQUEST XCorr, ProLuCID XCorr and ProLuCID Z score, 

respectively. Based on these result, we can conclude that ProLuCID XCorr is a more 

discriminative score than SEQUEST XCorr and that the ProLuCID Z score shows 

significantly improved specificity over both SEQUEST and ProLuCID XCorr. Figure 4C is 

a modified ROC curve that plots the number of true hits against the false positive faction. 

These figures clearly show that ProLuCID XCorr and Z score have better sensitivity and 

specificity than SEQUEST XCorr and that the ProLuCID Z score shows better specificity 

than ProLuCID XCorr. We implemented Z score in SEQUEST and it show significant better 

specificity than SEQUEST XCorr (Figure 4).

It is also worth noting that the ProLuCID Z score distributions for charge +2 and charge +3 

decoy hits as shown in figure 5 are very similar, indicating that the ProLuCID Z score is 

largely charge state independent. It is important for practical applications to know the true 

and false positive rates at given score thresholds. Figure 6 plots the false positive rate 

against ProLuCID Z scores. In this dataset, the spectrum assignment false positive rate is 

10% at Z score 4.42, 5% at Z score 4.67 and 1% at Z score 5.28, respectively. Although the 

distribution of ProLuCID Z scores shows relatively small variation between different 

MudPIT runs, it is still dataset dependent to some degree.

Performance test with biological samples of medium and high complexity

In order to test the performance of ProLuCID on data from more complex samples, we 

performed 12-step MudPIT experiments with a human salivary sample and a rat brain whole 

cell lysate sample. Human saliva is a biological fluid with a medium level of complexity. In 

a large scale saliva protein cataloging project that combined results from over 200 MudPIT 

experiments, we previously identified about 1500 proteins with high confidence (<= 1% 
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false positive rate). With a single 12-step MudPIT experiment using LTQ-Orbitrap, we 

identified 372 proteins with ProLuCID and 300 proteins with SEQUEST using the same 

DTASelect filtering criteria (at least two peptides per protein, each peptide has at least one 

tryptic terminus and 5% spectrum level false positive rate). From the results in table 1, we 

find that ProLuCID identifies more proteins than SEQUEST at similar false positive rate. 

On the more complex sample of rat brain whole cell lysate, we identified about 3345 

proteins with ProLuCID compared with 2991 with SEQUEST (table 2), with false positive 

rates of 1.23% and 1.44% respectively. Thus, the improvements on the scoring methods 

used in ProLuCID versus SEQUEST leads to higher confidence in protein identifications. In 

table 3, we show that ProLuCID results show higher sequence coverage, peptide counts and 

spectrum counts than SEQUEST results.

Comparison with Comet and SEQUEST on Hela sample

We compared ProLuCID with Comet and SEQUEST by searching triplicate data from a 

Hela sample. The tandem mass spectra were searched against UniProt human database 

(downloaded on November 08, 2010). To estimate peptide probabilities and FDRs 

accurately, we used a target/decoy database containing the reversed sequences. The search 

space included fully tryptic peptide candidates that fell within the mass tolerance window 

with maximum three internal miscleavage constraints. Carbamidomethylation (+57.02146 

Da) of cysteine was considered as a static modification. The validity of peptide/spectrum 

matches (PSMs) was assessed in DTASelect, using spectrum level FDR less than 1% and 

precursor delta mass threshold of 10 ppm.

Table 4 shows that ProLuCID identified more proteins than both SEQUEST and Comet 

based on all protein, peptide and spectrum average counts from triplicates. ProLuCID 

identified 12% more spectra than SEQUEST, and 5% more than Comet.

We also compared ProLuCID and Comet with half-tryptic (considering candidate peptides 

with at least one tryptic end) parameter. Comparing to fully tryptic search, the ProLuCID 

identified more spectra than Comet by even bigger difference. ProLuCID identified 20% 

more spectra and 19% more peptides than the Comet.

High Resolution MS and MS/MS database searches

The LTQ-Orbitrap hybrid mass spectrometer combines high resolution and mass accuracy 

with fast scan rates and the flexibility of two different mass analyzers which provides the 

user with the opportunity to operate the instrument in different modes. One mode uses the 

Orbitrap mass analyzer to collect all spectra for an experiment, including both high 

resolution full MS scans of precursor ions and high resolution tandem mass spectra after 

peptide fragmentation. The major advantages of this approach are the high mass accuracy of 

the precursor ion which restricts the number of candidate peptides that need to be considered 

by the database search algorithm, and the high mass accuracy of the fragment ions which 

could to lead to more confident peptide and protein identifications, as well as PTM 

localization. The disadvantage of this strategy, however, is the lower scan rate of the 

Orbitrap compared with the LTQ, which would result in the collection of fewer tandem mass 

spectra and likely fewer peptide and protein identifications. Alternatively, the LTQ-Orbitrap 

Xu et al. Page 11

J Proteomics. Author manuscript; available in PMC 2016 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can be used so that the full MS scans are collected by the Orbitrap while the LTQ is used to 

obtain low resolution MS/MS spectra. In this approach, high mass accuracy is obtained for 

precursor ions while low mass accuracy is obtained for fragment ions. The advantage of this 

mode is that the high precursor mass accuracy can be used to reduce the false positive rate 

and/or speed up database search while a large number of tandem mass spectra are collected 

by the LTQ. Importantly, ProLuCID is capable of handling all of these possibilities and can 

search spectra with either high or low mass accuracy for both precursor and fragment ions, 

including deisotoped and decharged high-resolution MS/MS spectra 51

ProLuCID allows the user to specify the precursor and fragment ion mass tolerance from 1 

ppm to 1000 ppm. When high precursor mass accuracy is specified, ProLuCID can be 

configured to use a very narrow precursor mass tolerance to reduce the number of candidate 

peptides and thus speed up the search. In this case, however, the mass spectrometer may 

select and record the non-monoisotopic peaks (i.e., peptide ions containing one or more 13C 

atoms) for MS/MS fragmentation which can prevent these spectra from being identified 

when searches are restricted to small m/z windows. To address this problem, ProLuCID 

selects candidate peptides by assuming the precursor can be either the M+0 (mono), M+1 

(with one 13C) M+2 (with two 13C), etc., isotopic peak. The number of isotopic peaks 

considered by ProLuCID can be specified by the user in the ProLuCID search parameter 

file. This approach significantly reduces the number of candidate peptides and speeds up the 

database search without missing spectra obtained from the fragmentation of non-

monoisotopic peaks.

Additionally, ProLuCID can use a preprocessed database in which the peptides are sorted by 

mass and can improve the computational efficiency by more than 1000~2000% over 

SEQUEST if stringent precursor mass tolerance (e.g., 5 ppm) is used. The search speed 

improvement can be more dramatic for differential modification searches and largely 

depends on the database size, precursor mass tolerance, enzyme restriction, etc.

Another advantage of high resolution full MS spectra is the ability to correctly assign charge 

states to the precursor ions. For low resolution data, the charge state of the precursor ions 

cannot easily be determined for spectra with charge states higher than +1. When the charge 

state of a multiply charged precursor ion cannot be determined, the spectrum is typically 

searched against the database twice, once assuming a +2 charge state and then again 

assuming a +3 charge state. In this approach, spectra with charge states higher than +3 are 

always incorrectly assigned. With high resolution Orbitrap data, charge states can be 

assigned to over 90% of MS/MS spectra using the in-house algorithm RawXtract. This 

eliminates the need to guess the charge state of precursor ions and enables peptides with 

charge states of +4 or higher to be identified (Figure 7). ProLuCID models +1 fragment ions 

for +1 and +2 spectra, +1 and +2 fragment ions for +3 spectra, and fragment ions of charge 

state from +1 to the floor of (z + 2)/2 for spectra with precursor charge state +4 or higher, 

where z is the precursor charge state.

For high resolution MS/MS data, ProLuCID allows users to specify fragment ion mass 

tolerance in terms of parts-per-million (ppm., e.g. 20 ppm). We collected high resolution 

tandem mass spectra in a 4-step MudPIT experiment with the 17 protein mix sample. The 
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same set of tandem mass spectra were searched as high resolution data using 30 ppm 

fragment mass tolerance and low resolution data using 0.4 amu fragment mass tolerance. 

From figure 4D, we can see that the ProLuCID binomial probability score for a high 

fragment mass accuracy search shows better sensitivity and specificity than the binomial 

probability score and the Z score for a low fragment mass accuracy search. It is worth noting 

that the Z score is computed based on an XCorr with low fragment ion mass accuracy.

ProLuCID takes a similar approach as SEQUEST for differential or variable modification 

searches. Users need to specify the type of modification and the maximum number of 

modifications to be considered. However, unlike SEQUEST in which the maximum number 

of modification types is set to 3 and each modification or mass shift can only occur to a 

maximum 3 amino acid residues, ProLuCID allows users to specify as many differential 

modification types as desired and each modification type or mass shift can be applied to as 

many residues as expected to be possible. This provides users the opportunity to search for 

unexpected modifications at a relatively low computational cost. Of course, for any given 

protein database, search times will increase as more modifications are considered.

Conclusions

ProLuCID achieves enhanced sensitivity and specificity by using a binomial probability 

score as a preliminary score, an improved XCorr, and the implementation of a novel Z score. 

ProLuCID Z score shows significantly higher sensitivity and specificity than SEQUEST 

XCorr. For high resolution (Orbitrap) MS/MS data, the ProLuCID probability score 

outperforms Z score, while Z score performs better than ProLuCID probability score for low 

mass accuracy (LTQ) MS/MS data. We show for typical shotgun proteomics experiments, 

using DTASelect with the same false positive rate filter, ProLuCID usually identifies about 

10% ~ 25% more proteins than SEQUEST does. The overall confidence of the identified 

proteins is improved due to significant increases in peptide count, spectrum count and 

sequence coverage.
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Refer to Web version on PubMed Central for supplementary material.
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Significance

The manuscript describes ProLuCID, a new algorithm for peptide identification using 

tandem mass spectrometry and protein sequence databases. This algorithm uses a three 

tier scoring scheme. First, a binomial probability is used as a preliminary scoring scheme 

to select candidate peptides. The binomial probability scores generated by ProLuCID 

minimize molecular weight bias and are independent of database size. A modified cross-

correlation score is calculated for each candidate peptide identified by the binomial 

probability. This cross-correlation scoring function models the isotopic distributions of 

fragment ions of candidate peptides which ultimately results in higher sensitivity and 

specificity than that obtained with the SEQUEST XCorr. Finally, ProLuCID uses the 

distribution of XCorr values for all of the selected candidate peptides to compute a Z 

score for the peptide hit with the highest XCorr. The ProLuCID Z score combines the 

discriminative power of XCorr and DeltaCN, the standard parameters for assessing the 

quality of the peptide identification using SEQUEST, and displays significant 

improvement in specificity over ProLuCID XCorr alone. ProLuCID is also able to take 

advantage of high resolution MS/MS spectra leading to further improvements in 

specificity when compared to low resolution tandem MS data. A comparison of filtered 

data searched with SEQUEST and ProLuCID using the same false discovery rate as 

estimated by a target-decoy database strategy, shows that ProLuCID was able to identify 

as many as 25% more proteins than SEQUEST.
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Figure 1. 
Distribution of number of fragment ion matched to a tandem mass spectrum of all candidate 

peptides (blue line) a protein database. The protein FASTA database contains amino acid 

sequences of the 17 proteins, all Pombe proteins and the reverse copy of each protein (10006 

entries in total). The fit curve (pink line) is a binomial distribution B (22, 0.1391).
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Figure 2. 
Number of correct spectrum assignments by ProLuCID and SEQUEST XCorr and Sp 

scores. BC for both XCorr rank and Sp rank are correct; XC for XCorr rank is correct and 

Sp rank is incorrect; SPC for Sp rank is correct and XCorr rank is incorrect; FP for top hits 

on the reverse sequences of the 17 proteins. These results are based on a 6-step MudPIT 

with 75866 spectra. The ProLuCID XCorr outperforms SEQUEST XCorr in terms of 

number of correct spectrum assignments (7299 vs 6974); The ProLuCID Sp scores 

(binomial probability score) work better than SEQUEST Sp scores (6353 vs 5338); and 

ProLuCID XCorr gives more true hits the top rank than ProLuCID Sp (7299 vs 6353).
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Figure 3. 
Histogram of SEQUEST and ProLuCID XCorr scores, separated into true hitss and reverse 

hits, showing that the XCorr score generated by ProLuCID are more discriminative than 

those generated by SEQUEST, because ProLuCID closely models fragment ion isotopic 

distributions.
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Figure 4. 
ROC curves of ProLuCID and SEQUEST scores. A. Typical ROC curves of SEQUEST 

XCorr, ProLuCID XCorr and ProLuCID Z score. B. Modified ROC curves, showing true 

positive fraction as a function of false positive rate. C. Plots of number of true hits against 

false positive fraction of SEQUEST XCorr, ProLuCID XCorr and ProLuCID Z score. D. 

Plots of number of true hits against false positive fraction of ProLuCID high mass accuracy 

probability score, low mass accuracy probability score and Z score.

Xu et al. Page 21

J Proteomics. Author manuscript; available in PMC 2016 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Histograms of ProLuCID Z scores of the true hits and decoy hits, showing good separation 

between the true hits and decoy hits, and that the distributions of the Z scores of the decoy 

hits of charge +2 and charge + 3 spectra are very similar.
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Figure 6. 
Plot of ProLuCID Z score as a function of false positive rate on the 17 protein mixture 

dataset.
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Figure 7. 
An example high precursor charge (+4) peptide spectrum identified by ProLuCID.
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Table 1

Number of protein identified in the saliva sample with SEQUEST and ProLuCID after DTASelect filtering

Search Program Forward Hits Decoy Hits False Positive Rate

SEQUEST 300 7 2.33%

ProLuCID 372 7 1.89%
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Table 2

Number of proteins identified in the rat brain sample with SEQUEST and ProLuCID after DTASelect filtering

Search Program and filter options Forward Hits Decoy Hits False Positive Rate

SEQUEST_XD 2991 43 1.44%

ProLuCID_XD 3330 51 1.53%

ProLuCID_Z 3345 41 1.23%

A twelve step MudPIT dataset with 139277 spectra was searched with SEQUEST and ProLuCID respectively and DTASelect2 was used to get the 
final protein lists. SEQUEST_XD for SEQUEST search and XCorr and DeltaCN for DTASelect filtering; ProLuCID_XD for ProLuCID search 
with XCorr and DeltaCN for DTASelect2 filtering; ProLuCID_Z for ProLuCID search and Z score only for DTASelect filtering (with additional –
noxc –nodcn –sp options). DTASelect2 options –p 2 –y 1 –fp 0.05 were used for all three, and additional options (–noxc –nodcn –sp) for 
ProLuCID_Z to use Z score only for filtering. A protein was considered identified if it has at least two peptides pass the 5% PSM (peptide-
spectrum-match) false positive rate filter and each peptide has at least one tryptical terminus.
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Table 3

Average number of peptide count, spectrum count and sequence coverage of 1000 proteins with highest 

sequence coverage identified in the rat brain sample with SEQUEST and ProLuCID after DTASelect2 

filtering

Algorithm Peptide count Spectrum count Sequence Coverage

SEQUEST 7.53 29.95 22.79%

ProLuCID 8.50 39.67 24.65%
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Table 4

Search result comparison of ProLuCID, SEQUEST, and Comet. Triplicates of Hela sample were searched 

against the same protein database. Search results were filtered with the same DTASelect parameters. The 

results were averaged from triplicates.

Algorithm Protein count Peptide count Spectrum count

SEQUEST 3798 28075 48217

Comet 3921 29810 51202

ProLuCID 3973 31165 53797
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Table 5

Search result comparison of ProLuCID and Comet with half tryptic parameter. Triplicates of Hela sample 

were searched against the same protein database. Search results were filtered with same DTASelect 

parameters. The results were averaged from triplicates.

Algorithm Protein count Peptide count Spectrum count

Comet 3940 28400 48008

ProLuCID 4124 33710 57569
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