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COVARIATE DECOMPOSITION METHODS FOR LONGITUDINAL 
MISSING-AT-RANDOM DATA AND PREDICTORS ASSOCIATED 
WITH SUBJECT-SPECIFIC EFFECTS

John M. Neuhaus* and Charles E. McCulloch
University of California, San Francisco

Summary

Investigators often gather longitudinal data to assess changes in responses over time within 

subjects and to relate these changes to within-subject changes in predictors. Missing data are 

common in such studies and predictors can be correlated with subject-specific effects. Maximum 

likelihood methods for generalized linear mixed models provide consistent estimates when the 

data are `missing at random' (MAR) but can produce inconsistent estimates in settings where the 

random effects are correlated with one of the predictors. On the other hand, conditional maximum 

likelihood methods (and closely related maximum likelihood methods that partition covariates into 

between- and within-cluster components) provide consistent estimation when random effects are 

correlated with predictors but can produce inconsistent covariate effect estimates when data are 

MAR. Using theory, simulation studies, and fits to example data this paper shows that 

decomposition methods using complete covariate information produce consistent estimates. In 

some practical cases these methods, that ostensibly require complete covariate information, 

actually only involve the observed covariates. These results offer an easy-to-use approach to 

simultaneously protect against bias from both cluster-level confounding and MAR missingness in 

assessments of change.
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bias; conditional likelihood; confounding; consistent estimation

1. Introduction

1.1. Change as the scientific objective

Investigators gather longitudinal and clustered data to assess changes in responses over time 

or within clusters and to relate these changes to within-subject or -cluster changes in 

predictors. For example, in the late 1990s, Haan et al. (2003) assembled a cohort of 1735 

community-dwelling Mexican-Americans who were 60–98 years old and lived in the 

Sacramento, California, area. The study, known as the Sacramento Area Latino Study on 

Aging (SALSA), assessed the subjects' physical and cognitive functioning every 12–15 
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months for up to seven study visits. The objective of the longitudinal study was to evaluate 

the effects of metabolic and cardiovascular risk factors on changes in cognitive functioning 

and the incidence of dementia. The study evaluated several measures of cognitive 

functioning but this paper will focus on a measure of global cognitive ability known as the 

Modified Mini-Mental State Examination (3MSE). The 3MSE evaluates memory, 

orientation, attention and language on a scale of 0 to 100. Investigators also use a binary 

version which cuts the 3MSE score at the 20th percentile or 80. The investigators were 

interested in assessing rates of change in cognitive functioning and relating these changes to 

changes in metabolic and cardiovascular risk factors. One particular question of interest is to 

assess whether maintenance of physical functioning protects against cognitive decline.

Figure 1 displays subject-specific trajectories of 3MSE as a function of age for 12 subjects 

selected to illustrate the wide variety of patterns. Figure 1 identifies several features that 

statistical models need to address. First, the subjects display variability in initial and average 

levels of 3MSE, as well as differences in changes with age. Second, not all the subjects 

provided data at all the seven study visits. Examination of data availability patterns in 

SALSA shows that many subjects dropped out before the end of the study. As Figure 2 

indicates, 1735 subjects provided data at the first visit but only 766 subjects were measured 

at visit seven. Subject-specific variability in the levels of the outcome and rates of change 

over time, as well as drop-out are standard features of longitudinal studies.

A typical approach to assessing the association of within-subject changes in physical 

functioning with changes in cognitive functioning would be to fit a generalized linear mixed 

model (McCulloch, Searle & Neuhaus 2008) which accommodates dependence of responses 

within subjects by including random effects. In particular, one might fit a mixed-effects 

logistic model to the binary repeated measures of poor cognitive functioning (3MSE < 80) 

using the time varying values of a physical functioning measure of interest in SALSA 

known as Activities of Daily Living (ADL) as the predictor of interest. The ADL scale is a 

count of the number of activities such as ability to feed, bathe, dress, and groom oneself that 

the subject could not perform and the SALSA study assessed this measure for each subject 

at every visit. Denoting the jth ADL measurement of the ith subject by ADLij, a standard 

mixed-effects logistic model would include ADLij and at least subject-specific intercepts to 

allow subject-specific variability in the probability of poor cognitive functioning. Rather 

than integrating the subject-specific intercepts out of the likelihood, as mixed-effects models 

do, analysts often prefer to use a conditional likelihood approach (McCulloch et al. 2008) 

which removes the intercepts from the analysis using the likelihood conditional on the 

sufficient statistics for the intercepts. A conditional likelihood approach depends on ADLij 

only through the deviations of each measurement from the subject-specific mean, 

 (Neuhaus & McCulloch 2006), where  is the mean for the ith subject. 

This form of predictor dependence suggests a third analytic approach where the analyst 

decomposes ADLij into a within-subject component, , as well as a between-

subject component,  and includes both components in a mixed-effects logistic model 

with separate regression coefficients βW and βB attached to the two components (Neuhaus & 

Kalbfleisch 1998; Neuhaus & McCulloch 2006). Rather than decompose covariates based 

on a subject-specific mean, an analyst may prefer to decompose covariates based on the 
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initial or baseline measurement, ADLi1 and thus focus on ADLij − ADLi1. This fourth 

approach assesses the association of subject-specific changes from baseline in ADL with 

poor cognitive functioning. In addition to ADL, each of the above four fitting approaches 

also included age as a predictor, using the same decompositions into between- and within-

subject components as we used with ADL.

Table 1 presents the estimated covariate effects and associated standard errors (as 

subscripts) for each of these four approaches, where the superscript o indicates deviations 

compared to the observed mean. We will discuss these results in more detail in Section 4 but 

note here that the four approaches provide very different estimates of the associations of 

ADL and age with poor cognitive functioning. First, estimates of the between- and within-

subject associations,  and , respectively, are very different for both ADL and age 

suggesting associations between the covariates and the subject-specific effects. Estimates 

based on the two covariate decomposition methods are also different for both ADL and age. 

In addition, the estimated within-subject associations from the conditional likelihood and the 

two covariate decomposition approaches differ substantially from the estimates based on a 

standard mixed-effects logistic model. Finally, the conditional likelihood estimates and the 

estimates from the covariate decomposition approach based on the observed subject-specific 

means,  and , are nearly identical, as suggested above. One objective of this 

paper is to explain why the different approaches produce different estimates of the 

associations of within-subject changes in predictors with changes in response in longitudinal 

and clustered data studies.

1.2. Generalized linear mixed models

The class of generalized linear mixed models (GLMM), which extend the class of 

generalized linear models by adding random effects to the linear predictor, accommodates 

dependence of responses within subjects, subject-specific trajectories and varying numbers 

of responses for each subject that can be unequally spaced in time. To construct this class, 

we assume that the data of interest consist of longitudinal responses Yij along with p-

dimensional covariates xij, where i indexes subjects (i=1,…,m) and j indexes units within 

subjects (j=1,…,ni), and that we want to assess the association of changes in x with a known 

function of E(Y). Generalized linear mixed models specify that, given a vector bi of 

parameters specific to the ith subject, for the jth unit, the conditional density of Yij is of the 

form

(1)

where c and d are functions of known form, ϕ is a scale parameter and θij depends on the 

covariates xij, as well as the random effects bi. In addition, one assumes that

(2)

where  and  are the known covariate row vectors relating the fixed and random effects, 

respectively, to the conditional mean of the observations, g is a link function and μij is a 

function of θij. The function  is known as the linear predictor. Given 
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bi, we assume that the responses Yi1, …, Yini are independent. We complete model 

construction by specifying that the random effects bi vary over subjects according to a 

multivariate distribution G, often Gaussian, with parameters Σ. Consistent with Figure 1, 

analysts are often interested in fitting models to describe subject-specific underlying level 

and changes over time which generalized linear mixed models accommodate by including 

random intercepts and slopes, respectively. In this case, bi is a two dimensional vector, as is 

.

We construct the likelihood for (β, Σ) by integrating the conditional density (1) of the 

responses Y over the distribution of the random effects b. The likelihood for generalized 

linear mixed models fitted to m independent subjects, with the ith subject containing ni units, 

is

(3)

where Yij|b follows a generalized linear model of form (1)–(2). One can obtain estimates of 

the model parameters by maximizing (3). One can also obtain model-based standard error 

estimates of estimated model parameters from the information matrix of the fitted 

likelihood.

1.3. Complications in practice

Generalized linear mixed models require that the covariates, xij, be uncorrelated with the 

random effects, bi, but in practice observations often exhibit non-zero correlations. One 

reason for this is that the random effects bi may include omitted covariates wi that are 

associated both with xij and the response Yij. For example, in the SALSA analyses of ADL 

with cognitive functioning, both ADL measurements and underlying levels of cognitive 

functioning bi may be related to a common factor such as overall level of health, resulting in 

cor(ADLij, bi) ≠0. Figure 3 provides evidence of this non-zero correlation. Based on the fit 

of a linear mixed-effects model with 3MSE as the response and ADL as the predictor, 

Figure 3 displays a plot of time 1 ADL values versus predicted random intercepts, bi, as best 

linear unbiased predictions (BLUPs), along with an added non-parametric locally weighted 

scatterplot smoothing (LOWESS) curve. Figure 3 displays a clear correlation of ADL values 

and predicted random intercepts. Neuhaus & McCulloch (2006) showed that fitting standard 

generalized linear mixed models in settings with correlations between covariates and 

random effects produces biased estimates of associations of covariates with the response.

Neuhaus & Kalbfleisch (1998) and Neuhaus & McCulloch (2006) noted that generalized 

linear mixed models that decompose covariates into between- and within-subject 

components provide two important features: (i) they protect against bias due to associations 

of covariates and subject-specific effects; and (ii) they focus attention on the associations of 

within-subject change in covariates with within-subject change in the response, the typical 

objective of scientific interest in longitudinal studies. Neuhaus & Kalbfleisch (1998) and 

Neuhaus & McCulloch (2006) also showed that covariate decomposition methods are 
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closely related to conditional likelihood approaches that remove random effects from the 

likelihood by conditioning on sufficient statistics.

Investigators find covariate decomposition methods appealing not only for their useful 

statistical properties but because they provide covariate effect estimates of scientific interest. 

For example, Enders (2013) was interested in assessing the association of student socio-

economic status with performance in mathematics using a sample of students clustered 

within a sample of schools. By decomposing the socio-economic status variable into 

between- and within-school components, the investigators were able to assess both the 

association of overall school socio-economic status using school-specific mean values and 

the association of the difference between student-specific socio-economic status and the 

school average with the mathematics performance outcome. Both of these covariate effects 

are of scientific interest.

Consistent with Figure 2, it is well-known that missing values and drop-out are ubiquitous in 

longitudinal studies. The effect of missing values on statistical analyses depends on the 

reason observations are missing. Little & Rubin (2002) provided a useful hierarchy and 

showed that statistical methods based on full maximum likelihood often provide consistent 

estimation when observations are missing at random. Although conditional likelihood 

approaches produce estimates using likelihood maximization methods, Rathouz (2004) and 

Roy et al. (2006) showed that these approaches can yield inconsistent estimation for logistic 

and Poisson models, respectively. These authors also derived modifications to standard 

conditional likelihoods that produce consistent estimation. The modified conditional 

likelihoods require specialized software and only apply to logistic and Poisson models. One 

objective of this paper is to investigate whether the inconsistent estimation result carries 

over to the closely related covariate decomposition methods. While Rathouz (2004) and Roy 

et al. (2006) show that conditional likelihood methods may provide inconsistent estimation 

when observations are missing at random, Skrondal & Rabe-Hesketh (2014) showed that 

conditional likelihood methods provide consistent estimation in settings where missingness 

depends on current outcomes, that is, a setting where observations are not missing at 

random.

The overall objective of this paper is to examine the performance of methods to assess 

change in longitudinal studies that feature the commonly occurring complications of 

observations that are missing at random and correlations of predictors with random effects. 

In particular, Section 2 develops theory to show that decomposition methods using complete 

covariate information produce consistent estimates. In some practical cases these methods, 

that ostensibly require complete covariate information, actually only involve the observed 

covariates. In Section 3 simulation studies are used to further illustrate the results, while 

Section 4 presents illustrative analyses of data from the SALSA study. The paper concludes 

with a discussion in Section 5.
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2. Theory

2.1. Covariate decomposition methods

Motivated by the form of covariate dependence in conditional likelihood approaches, 

Neuhaus & Kalbfleisch (1998) and Neuhaus & McCulloch (2006) proposed expanding the 

term βxij in (2) into , where , the observed mean of 

the covariate xij in the ith subject. The parameter βW measures association of within-subject 

change in X with change in response Y , typically the scientific objective of longitudinal 

studies. Covariate decomposition methods have several advantages over conditional 

likelihood approaches. First, they apply more generally than conditional likelihood 

approaches, to non-canonical link functions and models with multiple random effects. 

Covariate decomposition methods allow separate assessment of between- and within-subject 

covariate effects and analysts can use standard GLMM routines with decomposed covariates 

to implement the approach. Neuhaus & McCulloch (2006) showed that in settings with 

associations of covariates with subject-specific effects, and in the absence of missing data, 

the within-subject estimator, , consistently estimates β in (2). On the other hand, the 

between-subject estimator,  converges to a value β* which Neuhaus & McCulloch (2006) 

showed may not equal β in (2).

2.2. Estimation with missing values

Our objective is to assess the performance of estimation methods in settings where 

observations are missing at random. We assume that the study intends to gather Ti responses 

Yi1,…, YiTi from the ith subject. We define Ti missing value indicators Ri1,…,RiTi such that 

Rij =1 if Yij is observed and Rij =0 if Yij is missing. We can partition the complete 

measurements of the ith subject into , where the superscript 

(o)=denotes observed and (m) denotes missing. Given covariates X, observations are said to 

be missing at random (MAR) if

(4)

where we drop subscripts i and j for notational convenience.

The standard argument for consistent estimation using maximum likelihood under MAR 

decomposes the observed data as follows, where  denotes the conditional density of 

 given :

(5)

where we obtain (5) under an MAR assumption (4) given X.
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Assuming that [R|Y (o), X] is free of β implies that we can obtain consistent estimation using 

just [Y (o)|X] and maximum likelihood. It is important to note that we construct models for Y 

based on X which provides [Y (o)|X] for `free'. This is because, once we have specified [Y|X], 

we can obtain [Y (o)|X] simply by restricting attention to the subset of data that are observed. 

When X consists of all the between- and within-subject components resulting from covariate 

decomposition, the general theory above shows that  and  converge to the same values 

as in the no missing response case. In particular, in settings with associations of covariates 

with subject-specific effects and with responses Y missing at random (MAR), 

consistently estimates β in (2), whereas  may not.

Now we consider settings, such as subject drop-out, where we may not observe the 

covariates corresponding to missing responses, Y. Mechanically, the same argument applies 

when we work with distributions conditional on the observed covariates X (o). In this case, 

we decompose the observed data as:

(6)

where we obtain (6) under an MAR assumption given X (o),

If we assume that [R|Y (o), X (o)] is free of β then we can consistently estimate β using just [Y
(o)|X (o)] and maximum likelihood. To do so we need to specify [Y (o) |X (o)], but this is a 

problem because we construct models for Y (and hence Y (o)) based on X.

To assess the effect of conditioning on just the observed covariates X (o), we decompose [Y
(o)|X (o)] as

(7)

Equation (7) shows that [Y (o)|X (o)] is [Y (o)|X] mixed by [X (m)|X (o)]. It is easy to construct 

examples where [Y (o)|X (o)] ≠[Y (o)|X)]. Thus, we cannot immediately use models for [Y (o)|

X] as models for [Y (o)|X (o)]. In particular, (7) shows that to model [Y (o)|X (o)] we need to 

model the missingness process to obtain [X (m)|X (o)].

2.3. Consistent estimation based on X (o) under MAR

We can obtain consistent estimates of β based only on X (o) with observations MAR in 

several settings. In particular, if the components of X (o) are exactly the same as we would 
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have calculated with no missing data then the conditioning sets in [Y (o)|X] and [Y (o)|X (o)] 

will be the same and models for [Y(o)|X] immediately apply to observed data. Therefore, we 

will obtain consistent estimation of β using  in this setting.

There are several situations where X has missing values but the between/within cluster 

decomposition is the same as with complete X. First,  may be known despite missing Xij. 

Examples include cross-over studies and studies with planned visit times. Also, large 

national surveys may have known cluster-averages of quantities such as neighborhood 

socio-economic status but have missing individual values. Another important situation is 

one where we base covariate decompositions on Xi1 and Xij −Xi1, i.e., baseline and change 

over baseline. It is not unusual for longitudinal studies to require complete baseline data in 

order to enter a subject into the study.

Consider decomposing a covariate vector with no missing values (Xi1,…,XiTi) into between- 

and within-subject components based on Xi1. This yields the vector

With missing values, the between- and within-subject components based on the observed 

data are exactly the same as we would have calculated with no missing data. This is not the 

case when we decompose based on the observed mean of the covariates . With covariate 

decompositions based on observed , the components of X(o) are not the components of 

complete X. The complete covariates are

where the superscript t denotes total and , while the observed covariates 

are

It is well-known that  when X has observations MAR. This leads to 

systematic differences between  and , and thus to potentially biased estimates.

To summarize, when cor(Xij, bi) ≠0 and we have data MAR, we can obtain consistent 

estimation of β with complete covariate information, X, using between/within subject 

covariate decomposition methods. We can also obtain consistent estimation of β in cases 
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where decomposition based on observed data only coincides with that using the complete 

covariate information. In other cases, as we show by simulation in the next section, the 

between/within covariate decomposition methods using only the observed covariates behave 

like conditional maximum likelihood and can be inconsistent.

3. Simulation studies

3.1. Structure

We carried out simulation studies patterned after the SALSA study to evaluate the 

performance of mixed-effects model methods, including those with covariates decomposed 

into between- and within-subject components, in settings with observations missing at 

random and with cor(Xij, bi) ≠0. We generated data from linear mixed-effects, mixed-effects 

logistic and mixed-effects Poisson models involving the predictors age, group and age by 

group interaction to allow the estimation of covariate effects commonly of interest in 

longitudinal studies. Specifically, we generated longitudinal responses with random 

intercepts and slopes from models with linear predictor

(8)

where i=1,…, 500, j=1,…, 7, to correspond to 7 annual visits, TRTi is a binary group 

variable equal to 1 for one half of the subjects and 0 for the others, AGEi1~N(0, 1) and AGEij 

increases by 1/7 at each visit. The mixed-effects models (8) included random intercepts, b0i, 

and slopes, b1i, to produce subject-to-subject variability in the initial response (e.g. cognitive 

function) and change in the response over time, respectively. The parameter δ produces 

association between the random intercept, b0i and the covariate AGEij. Each simulation 

generated 2000 data sets and the true parameter values varied by outcome type. The true 

parameter values for linear mixed-effects models were β0=140, βAGE=−1, βTRT =5.0, βI =1.0, 

δ=−0.5, σb0 =2.0, σb1 =1.0, σ12=−1.0. The true parameter values for mixed-effects logistic 

models were β0=−3.0, βAGE =0.2, βTRT =0.3, βI =0.2, δ=1.2, σb0 =√6, σb1 =1.0, σ12=−0.5√6. 

The true parameter values for Poisson mixed-effects models were β0=−1.0, βAGE =0.2, βTRT 

=0.25, βI =0.3, δ=1.2, σb0=1.0, σb1=0.25, σ12=−0.125.

After generating a data set and for j > 1, we generated `missing value' indicators Ri2, …,Ri7 

using a logistic model

(9)

The superscript  denotes standardized variates with mean=0 and standard deviation=1. In 

the simulations, we always observed Yi1, as well as the predictors AGEi1 and TRTi. After the 

first generated Rij=0 for a subject, we set all subsequent Rik =0, k>j to generate a monotone 

drop-out process. The true values of the missingness model (9) parameters for the linear 

mixed-effects model simulations were: γ0=2.0, γY =0.5, γA=−0.5, γT =0.5, γI =−0.5. The true 
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values of the missingness model (9) parameters for the mixed-effects logistic model 

simulations were: γ0 =2.0, γY =0.5, γA=−0.5, γT =0.5, γI =−0.5. The true values of the 

missingness model (9) parameters for the mixed-effects Poisson model simulations were: 

γ0=2.0, γY =−0.7, γA=−0.7, γT =0.5, γI =0.5.

3.2. Fitting methods

We fitted five different models/approaches to each generated data set:

1. Standard maximum likelihood (ML) with linear predictor

(10)

2. Between/within using the true average for subject i, , i.e. based on all ages 

generated before the missing data process. Explicitly, we replaced (βAge +b1i)AGEij 

in ηij (10) by

and replaced βITRTi ×AGEij by

3. Between/within using AGEi1, i.e. based on baseline ages. Explicitly, we replaced 

(βAge +b1i) AGEij in ηij (10) by

and replaced βITRTi ×AGEij by

4. Between/within using the observed average for subject i, , i.e. based only on 

observed ages after missing data process. Explicitly, we replaced (βAge+b1i)AGEij 

in ηij (10) by

and replaced βITRTi ×AGEij by
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5. Standard conditional likelihood approaches (McCullagh & Nelder 1989) obtained 

by computing likelihoods conditional on sufficient statistics for random intercepts.

We fitted linear mixed-effects models using Proc Mixed in SAS (SAS Inc., Cary, NC, USA) 

and mixed-effects logistic and mixed-effects Poisson models using Proc Nlmixed in SAS, 

making the assumption that the random intercepts and slopes followed a bivariate Normal 

distribution. We fitted conditional likelihood approaches for Normal and Poisson responses 

using a fixed effects model approach (Allison 2005) that added fixed, subject-specific 

intercepts to standard linear and Poisson regression models. To implement the Poisson 

conditional likelihood approach, we also dropped subjects whose responses were all zeros 

and subjects who provided only a single (baseline) observation. We fitted the conditional 

likelihood approach for logistic models using Proc Logistic in SAS.

3.3. Results

Tables 2, 3 and 4 present means and standard deviations of parameter estimates for linear, 

logistic and Poisson mixed-effects models, respectively. As Neuhaus & McCulloch (2006) 

showed, the estimates from standard linear mixed-effects models in Table 2 of covariate 

effects, such as AGE and the AGE by TRT interaction effects, that are correlated with the 

random intercepts bi0, are biased due to the correlation between bi0 and baseline age, AGEi1. 

In line with the theory presented in Section 2, which shows consistency of the within 

parameter estimators, the within-subject components of the decomposition methods based 

on the true average for subject i,  and baseline age, AGEi1 produce essentially no bias 

in the estimates of the main and interaction effects of age. The between-subject components 

of the decomposition methods differ substantially from the true values again due to the 

correlation between the random intercepts bi0 and baseline age AGEi1. As expected from the 

theory presented in Section 2, decomposition methods based on the true covariate average 

and the baseline covariate produced nearly identical estimates and associated standard 

deviations. As suggested by the theory from Section 2, and consistent with previous work 

(Rathouz 2004; Roy et al. 2006) the within-subject estimators produced by the 

decomposition methods based on the observed average for subject i,  and the 

conditional likelihood estimators are biased for the true values because observations are 

missing at random (MAR). It is also noteworthy that the decomposition methods based on 

the observed average and the conditional likelihood approach produced nearly identical 

estimates and associated standard deviations.

The results in Tables 3 and 4 for mixed-effects logistic and Poisson models, respectively, 

follow the same pattern as those in Table 2. Standard mixed-effects models produce biased 

estimates due to the correlation between the random effects and covariates. The within-

subject components of the decomposition methods based on the true average for subject i, 

 and baseline age, AGEi1 produce essentially no bias (and are similar to one another) 

in the estimates of the main and interaction effects of age. The within-subject components of 

the decomposition methods based on the observed average for subject i, . The 

conditional likelihood estimators are biased (and are similar to one another) for the true 

values because observations are missing at random (MAR). As in Table 2, the 
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decomposition methods based on the true covariate average and the baseline covariate 

produced nearly identical estimates and associated standard deviations while decomposition 

methods based on the observed average and the conditional likelihood approach also 

produced nearly identical estimates.

4. Example: poor cognitive functioning, physical functioning and age

We further illustrate our results by fitting several mixed-effects logistic model approaches to 

data from the longitudinal SALSA study. The outcome of interest is a binary indicator of 

poor cognitive functioning, 3MSE<80. The predictors of interest are activities of daily living 

(ADL), a count of the number of activities such as ability to feed, bathe, dress, and groom 

oneself that the subject could not perform, and age. As we noted in Section 1, SALSA 

measured outcomes and predictors at up to seven visits over a 10 year period and missing 

data, as well as subject drop-out, were common.

We fitted four mixed-effects logistic model approaches to these data:

1. Standard mixed-effects logistic model with predictors ADL and age;

2. Between/within covariate decomposition for each predictor using the observed 

average;

3. Between/within covariate decomposition for each predictor using the first value; 

and

4. Standard conditional likelihood.

Table 1 presents the estimated covariate effects, along with associated standard errors for 

each of the fitting approaches. A likelihood ratio test rejects the null hypothesis of common 

between- and within-subject effects of ADL and age, H0 : βADL,W =βADL,B, βADL,W =βADL,B, 

and a subsequent post-hoc test indicates that βADL,W ≠βADL,B, i.e. the within-subject increase 

in Pr(poor cognitive function) as a person becomes more disabled, differed from differences 

in Pr(poor cognitive function) between persons who started the study with different physical 

function. A post-hoc test using the decomposition of age based on the observed average 

indicates that βADL,W ≠βADL,B, while the difference between the between- and within-subject 

effects of age based on the first value are not statistically significant. Differences between 

βADL,W and βADL,B indicate that the magnitude of the within-subject rate of change over time 

in poor cognitive functioning differs from the magnitude of the difference in rates of poor 

cognitive functioning between subjects who differ in age. The observed differences between 

 and  are expected from the correlation of ADL measurements and predicted 

underlying cognitive functioning observed in Figure 3. The correlation in Figure 3 may be 

due to omitted covariates that are associated with cognitive functioning and ADL 

measurements and may be evidence of confounding. The discrepancies between  and 

, as well as those between  and , lead to differences between  and 

, as well as to differences between  and , and suggest that both  and 

 are biased. Consistent with the theory in Section 2 and simulations in Section 3, the 
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conditional maximum likelihood estimates and the within-subject estimates  and 

 based on covariate decomposition methods using observed means  and 

, respectively, were nearly identical but somewhat different from the within-subject 

estimates based on ADLi1 and AGEi1.

5. Discussion

This paper presents an easy-to-use approach to obtain consistent estimates of change, in 

settings with cluster-level confounding and observations missing at random. One can fit the 

approach using standard mixed model software and use any generalized linear model of 

interest. Essentially, our approach provides a simple approach to obtaining consistent 

conditional likelihood-like estimates for a wide variety of link functions in settings with 

observations missing at random. In contrast, the approaches of Rathouz (2004) and Roy et 

al. (2006) require specialized software and apply to only logistic or Poisson models, 

respectively. In addition to being simple to implement, decomposing covariates using 

baseline values also provides scientifically appealing covariate effect estimates; scientific 

interest often focuses on the magnitude of change in an outcome from baseline and the 

association of these changes with changes from baseline in predictors.
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Figure 1. 
Subject-specific trajectories in Modified Mini-Mental State Examination (3MSE) for the 

Sacramento Area Latino Study on Aging (SALSA) study.
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Figure 2. 
Number of subjects contributing data at each visit in the Sacramento Area Latino Study on 

Aging (SALSA).
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Figure 3. 
Association of random intercepts with Activities of Daily Living (ADL) at time 1. Solid line 

is a locally weighted scatterplot smooth (LOWESS).
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Table 1

Activities of Daily Living (ADL) and age effect estimates from four methods fitted to the Sacramento Area 

Latino Study on Aging (SALSA) data. Standard errors in parentheses.

Standard ML 0.13 (0.02)

Between/within, ADLi1 0.08 (0.02) 0.33 (0.04)

Between/within, observed 

0.05 (0.02) 0.29 (0.03)

Conditional likelihood 0.05 (0.02)

Standard ML 0.16 (0.01)

Between/within, AGEi1 0.17 (0.02) 0.14 (0.01)

Between/within, observed 

0.22 (0.02) 0.11 (0.02)

Conditional likelihood 0.23(0.02)
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Table 2

Observed means and standard deviations, in parentheses, of the regression coefficients of several methods for 

fitting linear mixed models with random intercepts and slopes to simulated longitudinal data with observations 

missing at random and correlation between the random intercepts and the predictor AGE at time 0.

Approach β AGE β AGEW β AGEB β TRT β I β IW β IB

True −1.0 5.0 1.0

Standard LME −5.39 (0.97) 5.09 (2.01) 1.47 (1.31)

Bet/With 

−1.00 (1.20) −11.00 (1.34) 5.07 (2.11) 1.00 (1.61) 0.95 (1.90)

Bet/With AGEi1 −1.00 (1.20) −11.00 (1.34) 5.05 (1.93) 1.00 (1.61) 0.95 (1.90)

Bet/With 

−1.73 (1.22) −10.52 (1.45) 5.50 (2.04) 1.26 (1.63) 0.51 (2.08)

Cond like −1.81 (1.21) 1.28 (1.63)

The fitting approaches were: (i) Standard linear mixed-effects models that ignored associations between random intercepts and predictors; (ii) 

Between/within using the true average for subject i, ; (iii) Between/within using AGEi1; (iv) Between/within using the observed average 

for subject i, ; (v) Conditional likelihood.
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Table 3

Observed means and standard deviations, in parentheses, of the regression coefficients of several methods for 

fitting mixed-effects logistic models with random intercepts and slopes to simulated longitudinal data with 

observations missing at random and correlation between the random intercepts and the predictor AGE at time 

0.

Approach β AGE β AGEW β AGEB β TRT β I β IW β IB

True 0.2 0.3 0.2

Std Mixed Logistic 2.57 (0.34) 0.20 (0.38) 0.19 (0.37)

Bet/With 

0.18 (0.48) 3.16 (0.37) 0.31 (0.45) 0.23 (0.61) 0.21 (0.42)

Bet/With AGEi1 0.18 (0.48) 3.17 (0.37) 0.30 (0.40) 0.23 (0.61) 0.31 (0.43)

Bet/With 

−0.27 (0.49) 3.30 (0.37) 0.20 (0.43) 0.31 (0.63) 0.31 (0.43)

Cond Like −0.51 (0.47) 0.30 (0.63)

The fitting approaches were: (i) Standard mixed-effects logistic models that ignored associations between random intercepts and predictors; (ii) 

Between/within using the true average for subject i, ; (iii) Between/within using AGEi1; (iv) Between/within using the observed average 

for subject i, ; (v) Conditional likelihood.
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Table 4

Observed means and standard deviations, in parentheses, of the regression coefficients of several methods for 

fitting mixed-effects Poisson models with random intercepts and slopes to simulated longitudinal data with 

observations missing at random and correlation between the random intercepts and the predictor AGE at time 

0.

Approach β AGE β AGEW β AGEB β TRT β I β IW β IB

True 0.2 0.25 0.3

Std Mixed Poisson 0.99 (0.10) 0.33 (0.16) 0.17 (0.15)

Bet/With 

0.20 (0.13) 1.40 (0.10) 0.23 (0.17) 0.31 (0.16) 0.33 (0.15)

Bet/With AGEi1 0.20 (0.13) 1.40 (0.10) 0.24 (0.14) 0.31 (0.16) 0.33 (0.15)

Bet/With 

0.35 (0.13) 1.32 (0.11) 0.21 (0.16) 0.26 (0.16) 0.34 (0.17)

Cond Like 0.35 (0.14) 0.26 (0.17)

The fitting approaches were: (i) Standard mixed-effects Poisson models that ignored associations between random intercepts and predictors; (ii) 

Between/within using the true average for subject i, ; (iii) Between/within using AGEi1 (iv) Between/within using the observed average for 

subject i, ; (v) Conditional likelihood.
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