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ABSTRACT OF THE DISSERTATION

Towards Low-complexity Relay Selection and Scheduling in Wireless Networks

by

Yahya Hussain Ezzeldin M. A. Essa

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Christina Fragouli, Chair

Next-generation wireless networks are expected to usher in a revolution of communication

systems in terms of the network capabilities, technologies used, and serviced applications.

A key aim in these networks is to expand available bandwidth and enable multi-gigabit

emerging applications that range from ultra-high-definition video to autonomous vehicle

platoons and Industry 4.0 low latency communication. The focus of this dissertation is to

study two technologies that are envisioned to drive the physical layer in the next generation

of networks - multi-hop relay selection and mmWave transmission - in terms of fundamental

theoretical guarantees on performance and the efficiency of operation and scheduling.

We study the problem of relay selection for routing in a wireless full-duplex relay network.

We derive fundamental worst-case guarantees on the performance of routing in wireless relay

networks operating in full-duplex with arbitrary topology. This extends the state of the art

in terms of these fundamental guarantees which were previously only studied for the diamond

network topology. These worst-case guarantees provide guidance for heuristic and optimal

routing approaches in full-duplex wireless networks.

Second, we study the problem of efficiently selecting a subset of relays in a diamond net-
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work operating in half-duplex and the fundamental guarantees that follow from the selection

of the best relay subset. We prove fundamental guarantees on the retained capacity when

a subset of N − 1 relays are retained out of N relays in a diamond topology, For selecting

k < N − 1 relays, we develop efficient selecting algorithms with theoretical guarantees.

Next, we show that selecting the simple route with the highest approximate capacity

with a half-duplex network with arbitrary topology is in general an NP-hard problem (unlike

its full-duplex counterpart). Additionally, we provide sufficient properties on the network

topology that ensure that finding the best route can be done in polynomial-time in the

number of nodes in the network. These results are enabled by a closed-form expression that

we derive for the approximate capacity of a half-duplex network that enabled the study of

its NP-hardness as well as deriving an efficient routing algorithm.

Finally, we study the impact of directional communication which is envisioned in mmWave

communication networks. To tackle this, we propose a new information-theoretic model for

multi-hop wireless networks referred to as “1-2-1 network”. In a 1-2-1 network, at any time

instance, two nodes can communicate only if they point beams (which need to be scheduled)

at each other, while if they do not point beams at each other, no signal can be exchanged. We

used this model to approximate the Shannon capacity for mmWave networks with arbitrary

topology operating with full-duplex or half-duplex mmWave nodes. Additionally, we develop

a provably optimal polynomial-time algorithm to compute the approximate capacity and an

optimal beam-orientation schedule in full-duplex and half-duplex mmWave networks.
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CHAPTER 1

Introduction

Wireless communication systems have become extremely prevalent in our everyday lives over

the last two decades. Over the same period, these systems have experienced a huge evolution

and growth, going from a few kilobits of data rate in earlier generation networks to multiple

gigabits of information in currently deployed 4G systems. These growing wireless systems

have supported a simultaneous revolution of wireless mobile data over the past years, where

high data rates are no longer expected only in home/office environments but also on the

move in a user’s hand and pocket. However, this wireless data revolution is expected to

bring about an increasing demand for extremely high data rates in the future as a staggering

number of devices come online in the upcoming years for a myriad of different applications,

such as Internet of Things, vehicular communication, virtual reality, etc.

To support this foreseen explosion in connected devices requiring ubiquitous high data

rates, there is a consensus that shifting towards the mmWave spectrum is a key enabling fac-

tor in 5G in order to support the extremely high data rates requirements for next-generation

applications. This transition towards the higher frequency mmWave spectrum brings along a

new bag of challenges and opportunities compared to communication networks (particularly

cellular) that have been designed, used and operated in the “beachfront spectrum” - the

rather slim range of microwave frequencies from several hundred MHz to a few GHz - in the

past two decades.

Communication over the mmWave spectrum suffers from extreme propagation properties

including high path loss, atmospheric absorption, low penetration through objects and lim-
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ited diffraction ability around obstacles, which in contrast are more manageable in the lower

microwave frequencies ranges. These properties make it extremely prohibitive to use wireless

communication only as the last stage of communication as in modern cellular communica-

tions networks (from base stations to users) and local area networks (from access points

to users). In particular, a wireless service provider can no longer rely solely on the pow-

erful wired high-capacity links as the infrastructure of the network. To tackle propagation

challenges in mmWave communication, two key cornerstone solutions are proposed: wireless

multi-hop relaying and high-gain directional antennas, which can be used to get around ob-

stacles and combat path loss, respectively. The aim of the present dissertation is to conduct

a theoretic study on these two network solutions for next-generation networks and contribute

to the understanding of their fundamental operational limits in terms of performance and

computational efficiency in wireless networks.

Multi-hop networking is by no means a unique premise for wireless systems; it is after all

the driving force for our shared Internet infrastructure. However, the broadcast nature of the

wireless medium allows for unique cooperation opportunities between wireless nodes. By al-

lowing such cooperation, the performance of wireless systems can be significantly enhanced.

Cooperation comes at the expense of more sophisticated transmission schemes needed to

optimally operate the network. It is as a consequence then that in large coverage wireless

networks operating with low frequencies, such as current cellular networks, multi-hop com-

munication was reserved to the wired backhaul and wireless can be used for the last hop

due to penetrative power of a wireless signal at such frequencies. In mmWave communi-

cation, wireless multi-hop becomes a necessity either due to propagation considerations or

due to new application scenarios such as in vehicular networks. Small cells can expand ca-

pacity and improve coverage, whereas wired backhaul deployment might be expensive and

complicated. This can be alleviated by using wireless relaying to provide a backhaul to inter-

connect small cells dynamically, for example like the highly ambitious Terragraph Facebook

project [Nor19]. In this case, it becomes of critical importance to smartly and efficiently
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select which nodes should cooperate in order to transfer information across the network.

For instance, we would like to have low-complexity selection algorithms which allow us to

select a subset of the nodes in the network to relay communication between a source and a

destination while guaranteeing a target rate. Therefore, we need to understand: what per-

formance guarantees we should expect when a subset of nodes (relays) cooperate for wireless

communication in a multi-hop network?

The use of highly directional antennas in communication networks can also be dated

back to terrestrial microwave links used for low rate backhaul connections. These directional

antennas required line of sight alignment and were fixated in place on communication towers.

In contrast in 5G networks, directional antennas are envisioned to be steerable either to be

able to direct transmission towards a moving end user or to schedule the flow of information

towards different regions in the wireless backhaul. This new steering and scheduling func-

tionality naturally raises the question of computational efficiency. In particular, given that

we want to maximize the throughput for a stream of data in the network: how often does

the beam configuration in the network need to change to operate the network optimally? how

computationally expensive is it to find an optimal beam schedule?

In this dissertation, we develop fundamental guarantees on the performance of a subset

of nodes in a wireless relay network in the context of the network simplification framework,

which provides worst-case guarantees on the fraction of the network capacity that can be

retained using a subset of the network. Additionally, we study the complexity of selecting

the subset of nodes within a wireless relay network that achieve these guarantees, where we

provide efficient polynomial time algorithms for their selection or prove their equivalence to

NP-hard selection problems.

To study mmWave communication and its operational properties derived from directional

communication, we propose an information-theoretic network model, namely the Gaussian

1-2-1 network that captures the inherent directivity and scheduling of mmWave networks

due to beam steering. Using this model, we establish an understanding of the complexity of
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scheduling beam orientations as well as inherent network simplification properties of networks

constructed using highly directional communication.

In the following, we give a background review of the state of the literature on multi-hop

mmWave networks before discussing the key contributions of this dissertation.

1.1 Background

Studies of mmWave communication have focused on profiling the distribution of Signal-to-

Interference-plus-Noise Ratio (SINR) in random environments both in cellular and ad-hoc

network settings [DFP17, BAH14, TBH16]. mmWave communication in a cellular setting

was studied in [DFP17, BAH14] using stochastic geometry to characterize the performance

through SINR distributions in a random environment. A similar characterization for an ad-

hoc connection between a pair of nodes has also been studied in [TBH16]. These previous

works consider communication over a single-hop either between ad-hoc nodes or in a cellular

system between a base station and a user equipment. The effectiveness of multi-hop relaying

for routing in mmWave networks in random environments has been studied in [LA15,DTF17]

where it was shown that multi-hop relaying through line-of-sight connections can improve the

network connectivity. In [YPK03], scaling laws for networks with directional antennas were

studied using the setting introduced in [GK00] for omnidirectional communication. These

results look at order arguments for multiple unicast sessions through routing and do not

explore fundamental bounds such as the information theoretical capacity.

Shannon capacity characterization for the classical Gaussian relay network with isotropic

transmissions is a long standing open problem, both in FD and HD modes of operation.

Several schemes [ADT11], [OD13], [LKE11], [LKK14] have been shown to achieve a rate that

is a constant gap (i.e., a value that only depends on the number of nodes and is independent

of the channel parameters and operating SNR) away from the Shannon capacity. This is

accomplished by showing that the achieved rate is a constant gap away from the well-known
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cut-set upper bound [CE79] on the Shannon capacity. For general network topologies, the

constant gap is fundamentally linear in the number of nodes N in the network [CO15,WO15],

although for some specific FD network topologies, the constant gap can be shown to be

sublinear [SWF12,CO12].

For classical Gaussian networks with N relays operating in HD, the approximate capacity

characterization is challenging as it requires an additional optimization to schedule the relays

over 2N listen/transmit configuration states. Thus, although the approximate capacity can

be computed in polynomial time in the network size for the FD mode [PE14], in HD such a

result is known to hold only for a few specific classes of layered networks [EPS14], [JEC19].

Furthermore, although there have been several works that characterize the complexity of the

structure of the optimal schedule for Gaussian HD wireless relay networks [BFO16], [CTK14],

the problem of efficiently (i.e., in polynomial time in the number of nodes) efficiently finding

the schedule optimal for the approximate capacity for any general number of relays N has

been very elusive.

In networks with non-isotropic transmissions, a scheduling component naturally arises in

optimizing the achieved rates. In [Ari84], it has been shown that the multi-access problem

in ad-hoc wireless networks is NP-hard. In [JX06], scheduling in wireless networks under

interference constraints has been studied and an approach for scheduling was proposed that

is guaranteed to converge to the optimal point. Unfortunately the proposed approach runs

in exponential time in the number of links in the network. For spread spectrum networks,

it has been proved in [HS88] that link-based transmissions where the restriction is relaxed

to disallowing a node to converse with more than one node, can be scheduled in polynomial

time in the number of nodes. In [THM12, CCH07], scheduling of network coded flows was

studied by modeling broadcast instances as hyperedges in a hypergraph model of the wireless

network. Optimal scheduling in the previous model was shown to be possible in polynomial

time for a class of networks having claw-free conflict graphs [KM17]. Computing a schedule

for broadcast transmissions has also been studied for crossbar switches [SMK07] and was
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shown to reduce to the fractional weighted graph coloring problem, which is NP-hard in

general.

Different from the aforementioned thread of research, where the main objective is to

provide an operating schedule for a network when all the N nodes/relays are active, another

consideration in wireless networks is understanding what fraction can be guaranteed when

only a subset of k ≤ N relays out of N is utilized. This line of work, as aforementioned, is

referred to as network simplification and it was first studied in [NOF14] for classical Gaussian

FD diamond networks. Specifically, [NOF14] showed that in any N -relay classical Gaussian

FD diamond network, there always exists a subnetwork of k relays that retains at least k
k+1

of the unicast approximate capacity of the full network. This guarantee was shown to be

tight, i.e., there exist N -relay Gaussian FD diamond networks for which the best k-relay

subnetwork (i.e., the one with the largest approximate capacity) achieves this fraction of

the full network approximate FD capacity. Although showing exciting guarantees for the

diamond network, there has not been any work that provides similar guarantees for networks

of general topology until the onset of the research in this dissertation.

1.2 Summary of Contributions

The focus of this dissertation is to study the problem of efficient relay selection and schedul-

ing in multi-hop relay networks both in the absence and presence of high-gain directional

antennas. This work differs from other information-theoretic studies in that we are focused

on low-complexity algorithm for scheduling and relay selection and in proving fundamental

bounds on these algorithms. Our key contributions in this dissertation can be summarized

as follows:

1. We prove fundamental worst-case guarantees on the retained capacity by the best

route in a Gaussian full-duplex relay network with arbitrary topology. This extends and

generalizes previously known results in the literature for selecting a subset in relays that
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was only limited to the diamond network topology. Additionally, this complements the

body of work on efficient route selection algorithms in wireless networks by providing

fundamental bounds for their performance.

2. We study the capacity of Gaussian half-duplex wireless networks and show that for half-

duplex network routes: (a) The capacity can be approximated to within a constant gap

by a closed-form expression that can be efficiently computed in linear time similar to

its full-duplex counterpart; (b) The schedule that achieves this approximate capacity

requires only a linear number of active network states. We also show the surprising

result that, even with the similarities between the expression for capacity in full-duplex

and half-duplex, routing in half-duplex is inherently an NP-hard problem in general.

For a subclass of networks, with some topological constraints, we develop a polynomial

time algorithm for selecting the best route in the network.

3. To model the inherent directivity property of mmWave networks and the need to

schedule beam orientations, we propose a new information-theoretic model for multi-

hop wireless networks referred to as “1-2-1 network”. At any time instance in a 1-2-1

network, two nodes can communicate only if they point beams (which need to be

scheduled) at each other, while if they do not point beams at each other, no signal can

be exchanged or interference can be generated. We use this model to: (a) Characterize

the Shannon unicast and multicast capacities, up to a constant gap, for mmWave

networks with arbitrary topology operating with full-duplex or half-duplex mmWave

nodes; (b) Develop a provably optimal polynomial time algorithm to compute the

approximate capacity and an optimal beam-orientation schedule in full-duplex and

half-duplex mmWave networks; (c) Characterize fundamental guarantees on operating

a subset of relays in a mmWave network as a fraction of the capability of the full

mmWave network.
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1.3 Outline of Dissertation

The results in this dissertation are organized in what follows into two parts as we study relay

selection and scheduling in multi-hop relay networks both in the absence and in presence

of high-gain directional antennas, respectively. In Part I (Chapter 2-4), we study multi-

hop relaying in wireless networks operating with omnidirectional antennas, while Part II

(Chapter 5-8) focuses on modeling the abstract effects of highly directional antennas on

the overall multi-hop network capacity as well as on relay selection guarantees and network

scheduling. We detail the results and problems studied in each chapter below.

1.3.1 Part I : Physical Layer Cooperation

In Chapters 2 and 3, we establish fundamental worst-case guarantees for selecting a subset of

relays in a Gaussian full-duplex and half-duplex relay network, respectively. In particular, in

Chapter 2, we show that selecting a single route within a full-duplex network with arbitrary

topology can in the worst-case achieve a fraction of the approximate network capacity that

is inversely proportional with the number of nodes in the network. This is in contrast with

preliminary results on the problem for the diamond network topology [NOF14] which showed

a substantial guaranteed fraction of 1/2 independent of the number of nodes in the network.

In Chapter 3, we study the problem of selecting relays in a Gaussian half-duplex diamond

network and provide fundamental worst-case guarantees on the achieved rates as a fraction

of the approximate network capacity.

Chapter 4 studies the efficient scheduling of transmissions in half-duplex line networks

(routes), where we establish both a linear-time scheduling algorithm (matching a funda-

mental existential result for scheduling in half-duplex networks [CTK14]) as well as simple

expression for the approximate capacity of the half-duplex line network that mirrors its full-

duplex counterpart. By efficient scheduling, we refer to scheduling that can be performed in

polynomial time in the network size. In the same chapter, we also show that although both
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capacity expressions for full-duplex and half-duplex routes are closely related, finding the

best half-duplex route in a network is a fundamentally NP-hard problem. This is in striking

contrast with the finding the best full-duplex route can be done efficiently in polynomial

time by an array of dynamic programming algorithms such as Dijkstra’s algorithm [Dij59].

1.3.2 Part II: Modeling mmWave Transmission

In Part II, we present and study a class of networks that we term 1-2-1 networks that offer

a simple yet informative model for mmWave networks that capture the use of high-gain

directional antennas and multi-hop communication. To establish a communication link,

both the mmWave transmitter and receiver employ antenna arrays that they electronically

steer to direct their beams towards each other - we term this a 1-2-1 link, as both nodes need

to focus their beams to face each other for the link to be active. Thus, in 1-2-1 networks,

instead of broadcasting or interference, we have coordinated steering of transmit and receive

beams to activate different links at each time.

Chapter 5 presents the Gaussian 1-2-1 network model and establishes its approximate

network capacity both for unicast and multicast traffic in full-duplex and half-duplex modes

of operation. In Chapter 6, we analyze the derived approximate capacity expression for

the full-duplex mode of operation and show that, although it has an exponential number

of variables, it can be computed in polynomial time in the number of nodes. Furthermore,

we design a polynomial time algorithm to compute a schedule for beam steering that is

optimal for the approximate multicast capacity. Chapter 7 extends the previous study

to the Gaussian half-duplex 1-2-1 network and establishes similar results in terms of effi-

cient scheduling and computation. As a result of the different nature of beam orientation

in full-duplex and half-duplex, these two modes of operation require a different machinery

to develop the result. For instance, in full-duplex, we leverage equivalence between linear

programs and the decomposition of stochastic matrices to design the polynomial time al-

gorithm for scheduling. In the half-duplex case, the core technical component consists of
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showing that a polynomial time separation oracle exists for our approximate capacity rep-

resentation, by using algorithm tools such as perfect matching polytopes, Gomory-Hu trees

and an algorithmic implementation of Caratheodory’s theorem.

In Chapter 8, we discuss the limit of abstraction of the 1-2-1 model by relaxing the ideal

high-gain directional antenna patterns to imperfect antennas patterns that exhibit side-lobe

leakage. We characterize the gap between the approximate capacities of the imperfect and

ideal 1-2-1 models for the same channel coefficients and transmit power. We show that, under

some conditions, this gap only depends on the number of nodes, i.e., under these conditions,

the ideal 1-2-1 network model presented in Chapter 5 provides a very good approximation

for the network properties seen in networks with imperfect antenna patterns.

Parts of this dissertation are published in [ESF16, ECF18, ECF19b, ECF20b, ECF20a,

ESF20].
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Physical Layer Cooperation

11



CHAPTER 2

Network Simplification in Full-Duplex Networks: The

Performance of Routing

In this chapter, we explore the network simplification problem for Gaussian full-duplex re-

lay networks with arbitrary topology. Particularly, given an N -relay Gaussian full-duplex

network, the network simplification problem seeks to find fundamental guarantees on the

capacity of the best subnetwork, among a particular class of subnetworks, as a fraction of

the full-network capacity. The focus of this work is the case when the selected subnetwork

class is a route from the source to the destination. The results in this paper show that

routing can, in the worst case, result in an unbounded gap from the network capacity - or

reversely, physical layer cooperation can offer unbounded gains over routing.

2.1 Introduction

In this chapter, we consider a wireless network where a source wishes to communicate with a

destination using the help of a large number of wireless full-duplex relay nodes. The wireless

network simplification problem asks the following: what fraction of the capacity of the full

network is guaranteed to be retained, when operating only a subset of network relays?

This problem was first studied by the authors in [NOF14] in the context of Gaussian

full-duplex diamond networks1. The importance of this problem stems from the several

1An N -relay diamond network is a two-hop network where the source communicates with the destination
through N non-interfering relays.
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benefits achieved by operating a subset of network relays. For example, operating all the

available relays in the network (in order to achieve rates close to the Shannon capacity)

requires complex communication schemes, and might incur a significant cost in terms of

consumed power. In contrast, operating a simpler subnetwork (for instance a route) can

provide potential solutions in term of these limitations. As a result, it is of interest to

understand how the capacity of the selected subnetwork relates to the full network capacity.

In this chapter, we find the solution to the network simplification problem for N -relay

Gaussian full-duplex networks with arbitrary topology when the selected subset of relays form

a path from the source to the destination. Our focus on this case is motivated by the prevalent

use of routing as a key enabler to the deployment of wireless sensor networks [ZLZ14,KAH17],

and as a key component in next-generation networks such as device-to-device networks and

ultra dense cellular networks [GTM16].

Studying the network simplification problem for full-duplex networks with arbitrary

topologies is more challenging as compared to the diamond network [NOF14]. This is due

to the more complex algebraic representation of cuts in networks with arbitrary topologies

as compared to a simple (nearly fixed) structure when the problem is specialized to only

diamond networks. We elaborate more on these differences when we present our result in

Section 2.3.

In this chapter, we seek to understand how much of the approximate capacity of an N -

relay full-duplex network can be achieved by selecting the best route from the source to the

destination (the route that has the largest capacity). In particular, our aim is to develop a

worst-case performance guarantee in terms of the fraction achievable by the best route. We

seek a universal guarantee that holds independently of the channel coefficients and/or the

operating SNR. Our main contributions in this chapter can be summarized as follows:

1. We prove that selecting the best route in the network can in the worst-case achieve

a fraction of the approximate capacity of the network that is inversely proportional
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with the number of nodes in the network - or reversely, physical layer cooperation can

offer gains over routing that grow linearly with the number of nodes in the network.

Particularly, we show that in any N -relay Gaussian full-duplex network, there always

exists a route that achieves at least a fraction 1
bN/2c+1

of the approximate capacity of

the network. Furthermore, we prove that that this fractional guarantee is tight, i.e.,

there exist networks in which the achievable fraction is exactly equal to the capacity

of the best route.

2. At the heart of our proof of the aforementioned result, we deal with the problem of

analyzing how the capacities of subsets (in terms of antennas) of a MIMO channel be-

have with respect to the capacity of the full MIMO channel. We derive a simplification

result for the Gaussian MIMO channel In particular, we show that for any nt × nr

Gaussian MIMO channels, the best kt× kr subchannel approximately achieves at least

a fraction min{kt,kr}
min{nt,nr} of the full MIMO channel capacity, independently of the channel

coefficients and/or operating SNR. Moreover, this fractional guarantee is fundamental,

i.e., it is the largest fraction of the MIMO channel capacity that can be guaranteed

universally across all channel configurations. To the best of our knowledge, this is the

first result that provides a fundamental worst-case guarantee on antenna selection for

MIMO channels. Beyond its utilization in the proofs of our main results, this property

might be of independent interest to characterize the performance of antenna selection

algorithms in MIMO channels [JV09,GGP03,MWC05].

Chapter Organization. Section 2.2 describes the N -relay Gaussian full-duplex network

and its approximate capacity expression. Section 2.3 discusses the main result in the chapter

which gives a universal guarantee on the achievable rate by the best route in a Gaussian full-

duplex relay network with arbitrary topology. Section 2.4 derives our main result. Section 2.5

proves a simplification result for MIMO channels with i.i.d inputs which is used as a main

ingredient in the proof in Section 2.4. Section 2.6 concludes the discussion in the chapter.

Some of the proofs are delegated to the appendices.

14



2.2 System Model and Preliminaries

Throughout the chapter, we denote with [a : b] the set of integers from a to b, where b ≥ a.

We consider a Gaussian relay network where the Source (S) wants to communicate with the

Destination (D) through the help of N relays operating in full-duplex. The set of all nodes

in the network is denoted by V . Nodes in V are indexed with the integers [0 :N + 1] where

the Source and Destination are indexed by 0 and N + 1, respectively.

At any time t, the received signal Yj[t] at node j is a function of the transmitted signals

from all other nodes in the network (except D), i.e.,

Yj[t] =
N∑

i=0,
i 6=j

hjiXi[t] +Wj[t], ∀j ∈ [1 : N + 1], (2.1)

where: (i) Xi[t] is the transmitted signal from the i-th node at time t; (ii) the additive white

Gaussian noise Wj[t] ∼ CN (0, 1) at j-th node is independent of the inputs, as well as of

the noise terms at the other nodes; (iii) the channel gain between nodes i and j is denoted

by hji ∈ C and is assumed to be constant for the whole transmission duration and hence

known to all nodes. Transmitted signals from each network node satisfy an average power

constraint E[|Xi|2] ≤ 1 ∀i ∈ [0 : N ].

The exact Shannon capacity C of the network described in (2.1) is not known in general.

However, in [ADT11] the authors showed that it is within a constant gap G = O(N) from

the cut-set upper bound evaluated with i.i.d Gaussian input distributions. This evaluation

of the cut-set bound is given by

C , min
Ω∈2V ,

0∈Ω,N+1∈Ωc

C(Ω,V), (2.2)

where

C(Ω,V) , log det
(
I + HΩHΩ

†) . (2.3)

The matrix HΩ represents a MIMO channel matrix from transmitting nodes in Ω to receiving

nodes in Ωc = V\Ω. We refer to Ω ⊆ V as a “cut” in the network. In the rest of the chapter,
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we work with the approximate capacity C in place of the network capacity to prove our

results.

In an N -relay Gaussian network, we denote the capacity of the point-to-point channel

between node i and node j as Ri→j , log (1 + |hji|2) , ∀i, j ∈ [0 : N + 1]. A path (route) P
in an N -relay Gaussian full-duplex network is defined by a sequence of |P|+1 non-repeating

nodes {v0, v1, . . . , v|P|}, where v0 = 0, v|P| = N + 1 and vi ∈ [1 : N ],∀i ∈ [1 : |P| − 1]. The

path P , therefore, defines a line network from S to D induced by the links connecting nodes

vi−1 and vi for i ∈ [1 : |P|]. The capacity of the path P is denoted by CP and is known to

be equal to

CP = min
0≤i≤|P|−1

Rvi→vi+1
, (2.4)

and can be achieved through the Decode-And-Forward scheme [EK11].

2.3 Main Results

The main result of this chapter is a universal guarantee on the retained capacity when

selecting the best route in a Gaussian full-duplex network with arbitrary topology. The

result is stated below in Theorem 2.3.1.

Theorem 2.3.1. In any N -relay Gaussian full-duplex network with approximate capacity

C, there exists a path P (line network) with capacity CP that satisfies

CP ≥
1

bN/2c+ 1︸ ︷︷ ︸
α(N)

C− 2 log

(
N + 2

2

)
. (2.5)

Moreover, there exists a class of networks with N relays such that for all paths P ,

CP ≤
1

bN/2c+ 1
C. (2.6)
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Proof Sketch: We formally prove Theorem 2.3.1 in Section 2.4. The tightness of the

results is proved by providing network constructions where the bound in (2.6) is satisfied.

The lower bound in (2.5) is proved by contradiction. At its core, the proof of the lower

bound in Theorem 2.3.1 relies on the fact that the approximate capacity C in (2.2) is given

by the minimum capacity among 2N MIMO channels with i.i.d inputs, which are defined by

the 2N network cuts. We will develop a set of upper bounds on the approximate capacity C

by upper bounding the capacity of each of these MIMO channels in terms of its best SISO

subchannel. Afterwards, we show that if the result in Theorem 2.3.1 is false, then at least

one of the aforementioned upper bounds is violated. Towards developing such upper bounds

on the approximate capacity, we make use of the second main result of the chapter which

gives a universal upper bound bound on the capacity of an nt×nr MIMO channel with i.i.d

inputs using its best kt × kr subchannel. The result is stated in the following theorem.

Theorem 2.3.2. For any nt × nr Gaussian MIMO channel with i.i.d inputs and capacity

Cnt,nr , the best kt × kr subchannel has a capacity C?kt,kr such that

C?kt,kr ≥
min(kt, kr)

min(nt, nr)
Cnt,nr − log

((
nt
kt

)(
nr
kr

))
. (2.7)

Moreover, this bound is tight up to a constant gap, i.e., there exist nt×nr channels for which

C?kt,kr ≤
min(kt, kr)

min(nt, nr)
Cnt,nr .

Before delving into the proofs of Theorem 2.3.1 and Theorem 2.3.2 in the following

sections, we remark on the results in the two theorems and how they relate to results in the

literature.

Remark 2.3.1. While the result in Theorem 2.3.1 is true in general for arbitrary topologies,

we can get tighter characterizations for the ratio α(N) if we are interested in specific classes of

network topologies. For instance, the result in [NOF14, Theorem 1] proves that, in diamond

networks, we have α(N) = 1
2
. In particular, using the same machinery that is employed in
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this chapter to prove Theorem 2.3.1, we can prove that, for layered networks with L layers

and NL ≥ 2 relays, the ratio α(N) in Theorem 2.3.1 is replaced with α(L,NL) below [ESF16]

α(L,NL) =





2

(L− 1)NL + 4
, number of layers L is odd

2

LNL + 2
, number of layers L is even,

(2.8)

which subsumes the aforementioned result proved in [NOF14] for diamond networks.

DS

MISO
Channel

SIMO
Channel

Figure 2.1: Example of a cut in a diamond full-duplex diamond network.

Remark 2.3.2. Theorem 2.3.1 and the ratio in (2.8) highlight that, the independence of the

ratio from the number of nodes in the network is a unique property of diamond networks.

This is due to the fact that, in a diamond network, a cut can be represented as the sum of a

SIMO and a MISO orthogonal channels (which each have a minimum channel dimension of 1)

as seen in Fig. 2.1. In contrast, in an arbitrary topology network, a cut can be represented

by MIMO channels of different minimum dimensions, and thus the approximate capacity

using physical layer cooperation can be potentially much higher as compared to a single

route in the network. Our result in Theorem 2.3.1 gives a universal characterization of the

ratio between these two values in the worst case.

Remark 2.3.3. Note that for arbitrary topology networks, the smallest relevant subnetwork

to consider is a route from source to destination. If the problem is presented instead as

selecting k relays in N -relay similar to [NOF14], then the worst-case guarantee given by the
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simplification problem is trivially zero for all k < N . To illustrate this, consider an N -relay

line network that has capacity unity. In this example, by selecting any subset of k < N

relays, the capacity we have for the subnetwork is zero as the source and destination are now

disconnected. On another note, if we expand our interest to multiple routes, then through

the same example, we would arrive at the same worst-case guarantees since there is only one

available route in the network.

Remark 2.3.4. Although the lower bound in Theorem 2.3.2 is stated for MIMO channels

with i.i.d inputs, the result also holds (with a different constant gap) for Gaussian MIMO

channels without the i.i.d inputs restriction. This directly follows by noting that, for an

nt×nr MIMO channel, the gap between rates achieved by the optimal (waterfilling) solution

and the i.i.d equal power allocation solution is at most nt(1 + 1
e
), independently of the

channel coefficients and/or SNR. This gap between the two solutions was proved in [ADT11,

Appendix F]. To the best of our knowledge, this is the first tight lower bound on the capacity

of a kt× kr MIMO subchannel in terms of the full nt× nr MIMO channel capacity that can

be applied to any MIMO subchannel dimensions.

2.4 Proof of Theorem 2.3.1

We start by showing that the guarantee stated in Theorem 2.3.1 is fundamental. To show

this, we present constructions for N -relay Gaussian networks in which the guarantee is tight

up to a constant gap. Afterwards, we prove the lower bound stated in the theorem.

2.4.1 Tightness of the Bound in Theorem 2.3.1

Consider the two network constructions shown in Fig. 2.2. Note that in both constructions,

all the non-highlighted links (in black color) have point-to-point link capacities equal to N2A

for A > 0. Thus, any cut that includes a non-highlighted link will have a value of at least

N2A. It is not difficult to see that Fig. 2.2 shows the only cut that does contain a non-
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1

3

2
S D

(a) N odd.

1

3

2
S D

(b) N even.

Figure 2.2: N -relay network constructions where the capacity that every route achieves is

upper bounded by 1
1+N/2

of the approximate capacity of the full network. Edge labels indicate

the capacity of the corresponding links. Red links and node colors highlight the minimum

cut in each network construction.

highlighted link for both odd and even number of relays N , and that the value of the shown

cut is (bN/2c+ 1)A in both cases. Therefore, the illustrated cut is the minimum cut in the

network, and we have that C = (bN/2c+ 1)A. Additionally, any path from the source to

the destination contains a link with a point-to-point capacity equal to A. As a result, for all

paths P , we have that CP ≤ A = 1
bN/2c+1

C, which proves (2.6) in Theorem 2.3.1.

2.4.2 Proof of the Lower Bound in Theorem 2.3.1

From Section 2.2, the approximate capacity of an N -relay Gaussian network is given by

C , min
Ω∈2V ,

0∈Ω,N+1∈Ωc

C(Ω,V), (2.9)

where V is the set of all nodes in the network, and

C(Ω,V) , log det
(
I + HΩHΩ

†) . (2.10)

C(Ω,V) is equal to the capacity of the Gaussian MIMO channel between nodes in Ω and Ωc,

using i.i.d inputs.

Our proof of the lower bound in Theorem 2.3.1 can be summarized in two steps. First,
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we derive an upper bound on C by bounding each of the expressions C(Ω,V) in (2.9) using

Theorem 2.3.2. Afterwards, we show that if the lower bound in Theorem 2.3.1 is assumed

to be false, then there is a contradiction in the upper bound derived in the first step.

Upper bound: By applying Theorem 2.3.2 with kt = kr = 1, we can upper bound C as

follows

C ≤ C(Ω,V), ∀Ω⊆V , 0∈Ω, N+1∈Ωc

(a)

≤ min(|Ω|, |Ωc|) max
i∈Ω,j∈Ωc

Ri→j + min(|Ω|, |Ωc|) log (|Ω||Ωc|) , ∀Ω⊆V , 0∈Ω, N+1∈Ωc

(b)

≤
(⌊

N

2

⌋
+1

)
max

i∈Ω,j∈Ωc
Ri→j + 2

(⌊
N

2

⌋
+ 1

)
log

(
N+2

2

)
, ∀Ω⊆V , 0∈Ω, N+1∈Ωc,

(2.11)

where: (a) follows from Theorem 2.3.2 and the fact that C(Ω,V) represents a MIMO channel

with i.i.d inputs; (b) follows since max
Ω

min(|Ω|, |Ωc|) = bN/2c + 1 and max
Ω

log(|Ω||Ωc|) ≤
2log((N+2)/2).

Contradiction: We can now prove Theorem 2.3.1 by contradiction using the bound in (2.11).

Assume that the lower bound stated in Theorem 2.3.1 is false. Thus, for all paths P in the

network, we have

CP <
1

bN/2c+ 1
C− 2 log

(
N + 2

2

)
. (2.12)

Now, let B be the set of links that have a capacity strictly less than the RHS of (2.12). The

inequality in (2.12) implies that every path P contains at least one link that belongs to B
(recall that the capacity of a path is equal to its minimum link capacity). Therefore, removal

of the links in B disconnects the source and destination. As a result, we can construct a cut

ΩB that is compromised completely of links from B, and we would have that

max
i∈ΩB,j∈Ωc

B

Ri→j <
1

bN/2c+ 1
C− 2 log

(
N + 2

2

)
. (2.13)

Given the upper bound in (2.13), we would get a contradiction by applying (2.11) for ΩB as

follows

C ≤
(⌊

N

2

⌋
+ 1

)
max

i∈ΩB,j∈Ωc
B

Ri→j + 2

(⌊
N

2

⌋
+ 1

)
log

(
N + 2

2

)
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<

(⌊
N

2

⌋
+ 1

)[
1

bN/2c+ 1
C− 2 log

(
N + 2

2

)]
+ 2

(⌊
N

2

⌋
+ 1

)
log

(
N + 2

2

)
= C.

Therefore, the lower bound in Theorem 2.3.1 cannot be false, which concludes our proof.

2.5 Proof of Theorem 2.3.2 : A Simplification Result for MIMO

Channels

2.5.1 Tightness of the Bound

To prove that the bound in Theorem 2.3.2 is tight (to within a constant gap), it suffices

to provide a MIMO channel for which the best kt × kr subchannel has a capacity that is

exactly the fraction in Theorem 2.3.2. Towards this end, consider the n× n parallel MIMO

channel with the parallel point-to-point link capacities equal to A > 0. The capacity Cn,n

of this MIMO channel is nA. For any kt, kr ≤ n, it is not difficult to see that a kt × kr

MIMO subchannel can at most capture min(kt, kr) parallel links. Therefore, we have that

C?kt,kr = min(kt, kr)A, which proves that

C?kt,kr ≤
min(kt, kr)

min(nt, nr)
Cnt,nr ,

for some network constructions. This proves the tightness statement in Theorem 2.3.2.

2.5.2 Proof of the Lower Bound in Theorem 2.3.2

In this subsection, we derive the lower bound in Theorem 2.3.2. Towards this end, we first

state three special cases of the intended bound, and then show how these bounds can be

combined to prove the lower bound in Theorem 2.3.2. The aforementioned three bounds are

stated in Lemma 2.5.1 and are proved in Appendix 2.8.1.

Lemma 2.5.1. For any nt×nr Gaussian MIMO channel with i.i.d inputs and capacity Cnt,nr

where nt ≤ nr, the best kt × kr MIMO subchannel has a capacity C?nt,kr
that satisfies the

following
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(a) For kt = nt and kr ≤ nt ≤ nr,

C?kt,kr ≥
kr
nt

Cnt,nr − log

((
nr

kr

)
(
nt

kr

)
)
. (2.14a)

(b) For kt = nt and nt < kr ≤ nr,

Cnt,nr ≥ C?nt,kr ≥ Cnt,nr − log

( (
nr

kr

)
(
nr−nt

kr−nt

)
)
. (2.14b)

(c) For kt ≤ nt and kr ≤ nr,

C?kt,kr ≥
kt · kr
nt · nr

Cnt,nr (2.14c)

Proof. The proof relies on a result that relates the determinants of the principal submatrices

of a positive semidefinite matrix to its eigenvalues. The proof is delegated to Appendix 2.8.1.

Remark 2.5.1. Although Lemma 2.5.1 is stated for the case where nt ≤ nr, it can also be

applied to the opposite case by considering the reciprocal MIMO channel or appealing to

Sylvester’s determinant identity.

Remark 2.5.2. For MIMO channels with dimensions satisfying constraints in Lemma 2.5.1,

the guarantee in Lemma 2.5.1(c) gives a looser fractional guarantee than the one in (a) and

(b). However, a key limitation of the bounds in Lemma 2.5.1(a)-(b), is that they allow

reduction only in the channel side that contains the larger number of elements; for instance,

to only decrease the number of receivers when nr ≥ nt. In contrast, Lemma 2.5.1(c) can be

applied without any constraints on the MIMO channel dimensions.

We are now ready to derive the bound on C?kt,kr in Theorem 2.3.2 for any chosen dimension

kt × kr by sequentially applying the bounds in Lemma 2.5.1. Without loss of generality, we

assume that nt ≤ nr since otherwise, we can consider the reciprocal channel. The proof

roughly goes as follows: from the nt× nr channel, we can create an nt× kr subchannel such
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that C?nt,kr
≥ min(kr,nt)

nt
Cnt,nr −G1, by keeping only the best kr receiver antennas; next, from

this nt × kr channel, we can get a kt × kr subchannel such that

C?kt,kr ≥
min(kt, kr)

min(nt, kr)
C?nt,kr −G2 ≥

min(kt, kr)

min(nt, nr)
Cnt,nr −G1 −G2.

Formally, the constants G1 and G2 and the sequence of applying the bounds (2.14) in

Lemma 2.5.1 are captured by the following three cases:

1. For kt ≤ kr ≤ nt ≤ nr:

C?kt,kr
(a)

≥ kt
kr

C?nt,kr − log

((
nt

kt

)
(
kr
kt

)
)

(b)

≥kr
nt

kt
kr
Cnt,nr −

kt
kr

log

((
nr

kr

)
(
nt

kr

)
)
− log

((
nt

kt

)
(
kr
kt

)
)

≥kt
nt

Cnt,nr − log

((
nt
kt

))
− log

((
nr
kr

))
,

where: (a) follows by applying (2.14a) on the reciprocal of the nt× kr MIMO channel;

(b) applies (2.14a) to relate C?nt,kr
to Cnt,nr .

2. For kr ≤ kt ≤ nt ≤ nr:

C?kt,kr
(c)

≥ C?nt,kr − log

( (
nt

kt

)
(
nt−kr
kt−kr

)
)

(d)

≥ kr
nt

Cnt,nr − log

( (
nt

kt

)
(
nt−kr
kt−kr

)
)
− log

((
nr

kr

)
(
nt

kr

)
)

≥kr
nt

Cnt,nr − log

((
nt
kt

))
− log

((
nr
kr

))
,

where: (c) relates Ckt,kr to Cnt,kr using the bound in (2.14b); relation (d) follows by

applying (2.14a) to the nt × nr MIMO channel.

3. For kt ≤ nt ≤ kr ≤ nr:

C?kt,kr
(e)

≥ kt
nt

C?nt,kr
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(f)

≥ kt
nt

Cnt,nr − log

( (
nr

kr

)
(
nr−nt

kr−nt

)
)

≥kt
nt

Cnt,nr − log

((
nt
kt

))
− log

((
nr
kr

))
,

where (e) follows by applying (2.14c) to select a kt × kr subchannel from the nt × kr
MIMO channel; (f) follows from (2.14b).

By combining the three aforementioned cases, we have the lower bound stated in Theorem

2.3.2. This concludes the proof of Theorem 2.3.2.

2.6 Conclusion

In the chapter, we investigated the network simplification problem in an N -relay Gaussian

full-duplex network with arbitrary topology. We proved that there always exists a route in

the network that retains at least 1
bN/2c+1

of the approximate capacity of the full network

and that this represents the best worst-case fraction guarantee for the rate achievable by

routing. This was proved by showing that if this result is false, then an upper bound to the

min-cut expression of the approximate capacity is contradictory. This upper bound on the

approximate capacity was obtained by leveraging a simplification result for MIMO channels

that was derived here and which might be of independent interest for other applications.

2.7 Related Work

For the Gaussian full-duplex relay networks, the capacity characterization is not known

in general. The tightest known universal upper bound for the capacity is the information-

theoretic cut-set upper bound [CG79]. In [ADT11], the authors first showed that the network

can achieve a rate that is a constant gap approximation of the Shannon capacity of the

network through the quantize-map-and-forward relaying strategy. In particular, [ADT11]

shows that restricting the optimization of the cut-set bound over independent channel input
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distributions approximates the Shannon capacity to within a constant additive gap, i.e.,

a gap that is independent of the channel coefficients and/or the operating SNR. Similar

following strategies [LKE11] and [LKK14] have been shown to achieve a similar result. In

this chapter, we refer to this constant gap approximation of the capacity as the approximate

capacity of the network. One class of Gaussian full-duplex relay networks for which the

capacity is explicitly characterized are the line networks, where the relays are arranged in a

cascaded manner forming a path from the source to the destination. For this path (route),

the capacity is achieved through the decode-and-forward scheme [EK11], and is equal to the

value of the bottleneck point-to-point link capacity along the path.

In the thread of work on wireless network simplification, [NOF14] studied the problem

for the Gaussian full-duplex diamond network and provided universal capacity guarantees

for selecting k-relay subnetworks. They showed that selecting k out of N relays in the

network is always guaranteed to achieve at least k
k+1

of the full network capacity, to within

a constant gap. When applied to a single route selection, [NOF14] states that a route in a

diamond relay network can always approximately achieve half of the capacity of the diamond

network. The work in [NEO11] extended the result in [NOF14] for some scenarios of the

Gaussian full-duplex diamond network with multiple antennas at the nodes. As a scheme-

specific performance guarantee (as opposed to guaranteeing capacity fractions), the work

of [AJC12] proved upper bounds on multiplicative and additive gaps for relay selection based

on the amplify-and-forward scheme, primarily for diamond full-duplex networks. In [AA16],

the authors characterized the performance of network simplification (in terms of achievable

secure capacity) for layered full-duplex relay networks operating using amplify-and-forward

in the presence of an eavesdropper.

From a system design point of view, there is a rich literature of routing protocols for

general wireless ad-hoc networks [PR99], [JM96], [CJ03], [PB94] as well as specialized routing

protocols for wireless sensor networks [KAH17, ZLZ14]. The goal of this rich literature of

routing protocols is to pick a route from the source to the destination while reducing the
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network overhead associated with discovering and maintaining this route. However, to the

best of our knowledge, there has not been any work that compares the rate achieved by a

route, contrast to physical layer cooperation between relay nodes, in the worst-case prior to

the first work on wireless network simplification [NOF14]. The notion of studying worst-

case capacity results has been considered in wireless sensor networks, in the context of

finding sensor topologies that result in the worst many-to-one rate [Mos07]. In this setting,

physical layer cooperation is not employed, and communication needs to be scheduled based

on either protocol-level constraints or physical-level constraints. In contrast, the focus in

the network simplification problem is on the worst-case ratio between the unicast capacity

of the best subnetwork and the unicast capacity of the full network (that uses physical layer

cooperation).

To prove our main result in this chapter, we first set out to prove a universal guarantee on

antenna selection in MIMO channels with i.i.d inputs, i.e., channel inputs that are indepen-

dent and identically distributed. A number of efficient algorithms have been proposed in the

literature for antenna selection in a MIMO channel [GGP03,MWC05,SN04]. Some antenna

selection algorithms [JV09] have been proved to be optimal in the diversity-multiplexing

tradeoff sense. In contrast to these results, our result does not provide an algorithm for an-

tenna selection but instead, provides a tight worst-case performance for any optimal antenna

selection algorithm independently of the SNR and channel coefficients.

2.8 Appendices

2.8.1 Proof of Lemma 2.5.1

Let H ∈ Cnr×nt be the channel matrix for the nt×nr MIMO channel with nt ≤ nr. Without

loss of generality, we assume that each transmitter uses unity power, i.e., P = 1. Otherwise,

we can rewrite Cnt,nr = log det(I + PHH†) as log det(I + H̃H̃†) where H̃ =
√
PH. Define

F , I + HH† and denote the eigenvalues of F with λ1 ≥ λ2 ≥ · · · ≥ λnr ≥ 1.
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By selecting a MIMO subchannel of size nt×kr as in Lemma 2.5.1(a)-(b), we are selecting

a principal submatrix of F by only keeping the rows and columns indexed by the kr selected

receiver indices. Therefore, our bounds in Lemma 2.5.1 will be proved by relating the

maximum determinant of a kr×kr submatrix of the Hermitian matrix F with the determinant

of the full nr × nr matrix F. To do this, we employ the following result that relates the

determinants of all principal submatrices of a positive semidefinite matrix to the eigenvalues

of the full matrix.

Lemma 2.8.1. Let A ∈ Cnr×nr be a positive semidefinite matrix with eigenvalues {βi}nr
i=1.

For a subset Λ ⊆ [1 : nr], define AΛ to be a principal submatrix of A that is constructed by

only keeping the rows and columns of A indexed by Λ. Then, for all kr ∈ [1 : nr], we have

that
∑

Λ⊆[1:nr],
|Λ|=kr

det(AΛ) =
∑

Λ⊆[1:nr],
|Λ|=kr

∏

j∈Λ

βj. (2.15)

Proof. The proof of Lemma 2.8.1 is delegated to Appendix B.

In the following subsections, we show how to prove each of the bounds in Lemma 2.5.1

using (2.15).

2.8.1.1 Proof of Lemma 2.5.1(a)

The assumption for Lemma 2.5.1(a) is that kr ≤ nt ≤ nr. Recall that, F = I + HH† is a

positive definite matrix. Thus, we can apply Lemma 2.8.1 to the matrix F. Furthermore,

the expression in (2.15) can be lower bounded when kr ≤ nt to be

∑

Λ⊆[1:nr],
|Λ|=kr

det(FΛ) =
∑

Λ⊆[1:nr],
|Λ|=kr

∏

j∈Λ

λj

(a)

≥
(
nt
kr

) ∑

Λ⊆[1:nt],
|Λ|=kr

1(
nt

kr

)
∏

j∈Λ

λj
(b)

≥
(
nt
kr

) ∏

Λ⊆[1:nt],
|Λ|=kr

(∏

j∈Λ

λj

)(nt
kr

)
−1
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=

(
nt
kr

)( nt∏

i=1

λi

)(nt−1
kr−1)(

nt
kr

)
−1

(c)
=

(
nt
kr

)( nr∏

i=1

λi

) kr
nt

, (2.16)

where: (a) follows by considering only kr-tuples of the eigenvalues {λi}nt
i=1; (b) follows from

the AM-GM inequality; (c) follows by the simplification of the exponent and the fact that

λi = 1 for i ∈ {nt + 1, . . . nr}. By averaging the LHS of (2.16), we have that

1(
nr

kr

)
∑

Λ⊆[1:nr],
|Λ|=kr

det(FΛ) ≥
(
nt

kr

)
(
nr

kr

)
(

nr∏

i=1

λi

) kr
nt

,

This implies that there exists a selection Λs of kr receivers such that, the matrix FΛs =

I + HΛsHΛs

† satisfies

log det(FΛs) ≥ log



(
nt

kr

)
(
nr

kr

)
(

nr∏

i=1

λi

) kr
nt


 =

kr
nt

log det(F)− log

((
nr

kr

)
(
nt

kr

)
)
.

Since Cnt,nr = log det(F) and the capacity of the best nt×kr subchannel C?nt,kr
≥ log det(FΛs),

then we arrive at the bound given in Lemma 2.5.1(a).

2.8.1.2 Proof of Lemma 2.5.1(b)

The assumption for this part of Lemma 2.5.1 is that nt ≤ kr ≤ nr. Since kr ≥ nt, then there

exists at least one set Λ with cardinality kr such that [1 : nt] ⊆ Λ ⊆ [1 : nr]. Therefore, we

can get a lower bound from applying (2.15) in Lemma 2.8.1 as follows

1(
nr

kr

)
∑

Λ⊆[1:nr],
|Λ|=kr

det(FΛ) =
1(
nr

kr

)
∑

Λ⊆[1:nr],
|Λ|=kr

∏

j∈Λ

λj

≥ 1(
nr

kr

)
∑

[1:nt]⊆Λ⊆[1:nr],
|Λ|=kr

∏

j∈Λ

λj
(a)

≥ 1(
nr

kr

)
∑

[1:nt]⊆Λ⊆[1:nr],
|Λ|=kr

nt∏

j=1

λj

(b)
=

(
nr−nt

kr−nt

)
(
nr

kr

)
(

nt∏

j=1

λj

)
(c)
=

(
nr−nt

kr−nt

)
(
nr

kr

)
(

nr∏

j=1

λj

)
, (2.17)
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where: (a) follows since λi ≥ 1, ∀i ∈ [1 : nr]; (b) follows since there are
(
nr−nt

kr−nt

)
Λ sets such

that, |Λ| = kr and [1 : nt] ⊆ Λ ⊆ [1 : nr]; (c) follows since λi = 1,∀i ∈ [nt + 1 : nr].

Similar to the conclusion in proof of Lemma 2.5.1(a) in Appendix 2.8.1.1, the average

relation in (2.17) implies the lower bound in Lemma 2.5.1(b). Additionally, by the interlacing

property of eigenvalues [Tho68], we know that C?nt,kr
≤ Cnt,nr . This concludes the proof of

Lemma 2.5.1(b).

2.8.1.3 Proof of Lemma 2.5.1(c)

To prove Lemma 2.5.1(c), it suffices to prove the statement for the following two simple

cases:

1) For kt = nt, kr = nr − 1,C?nt,nr−1 ≥
nr − 1

nr
Cnt,nr , (2.18)

2) For kt = nt − 1, kr = nr,C
?
nt−1,nr

≥ nt − 1

nt
Cnt,nr . (2.19)

Using the two statements in (2.18) and (2.19), we can reduce an nt × nr system to a kt × kr
system by systematically removing one receiver or one transmitter at a time from a system

to get that

Cnt,nr ≤
nt

nt − 1
C?nt−1,nr

≤ nt
nt − 1

nt − 1

nt − 2
C?nt−2,nr

=
nt

nt − 2
C?nt−2,nr

≤ · · · ≤ nt
kt
C?kt,nr

≤ nt
kt

nr
nr − 1

C?kt,nr−1 ≤
nt
kt

nr
kr

C?kt,kr .

To conclude the proof of Lemma 2.5.1(c), we will now prove the statement in (2.18). The

proof of (2.19) would directly follow by applying (2.18) on the reciprocal MIMO channel.

By substituting kr = nr − 1 in (2.15), we have that

1

nr

∑

Λ⊆[1:nr],
|Λ|=nr−1

det(FΛ) =
1

nr

∑

Λ⊆[1:nr],
|Λ|=nr−1

∏

j∈Λ

λj
(a)

≥
∏

Λ⊆[1:nr],
|Λ|=nr−1

(∏

j∈Λ

λj

) 1
nr

=

(
nr∏

i=1

λ

)nr−1
nr

, (2.20)

where, (a) follows from the AM-GM inequality. Note that, the averaging in (2.20) implies

that there exists a submatrix FΛs given by subchannel matrix HΛs ∈ Cnt×(nr−1) with a deter-
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minant that is lower bounded by the RHS in (2.20). Taking the logarithm of det(FΛs) and the

RHS of (2.20) proves the statement in (2.18). This concludes the proof of Lemma 2.5.1(c).

2.8.2 Proof of Lemma 2.8.1

The proof of Lemma 2.8.1 is a consequence of the following property [Tho68] that relates

characteristic polynomials of the principal submatrices of a Hermitian matrix to the charac-

teristic polynomial of the full matrix.

Property 2.8.1. [Tho68] Let A be an nr×nr Hermitian matrix. For a subset Λ ⊆ [1 : nr],

define AΛ to be a principal submatrix of A, constructed by only keeping the rows and

columns of A indexed by Λ. Denote with ρ(λ) and ρΛ(λ) the characteristic polynomials of

A and AΛ, respectively. Then the following property holds for all kr ∈ [1 : nr]

(nr − kr)!
∑

Λ⊆[1:nr],
|Λ|=kr

ρΛ(λ) = ρ(nr−kr)(λ), (2.21)

where ρ(j)(λ) is the j-th derivative of ρ(λ) with respect to λ.

Let [xm]g(x) be the coefficient of xm in the polynomial g(x). Then by inspecting the

coefficient of λ0 in both sides of (2.21), we get that the following sequence of implications

[λ0]


(nr − kr)!

∑

Λ⊆[1:nr],
|Λ|=kr

ρΛ(λ)


 = [λ0]ρ(nr−kr)(λ)

=⇒ (nr − kr)!
∑

Λ⊆[1:nr],
|Λ|=kr

[λ0]ρΛ(λ) = [λ0]ρ(nr−kr)(λ)

=⇒ (nr − kr)!
∑

Λ⊆[1:nr],
|Λ|=kr

[λ0]ρΛ(λ) = (nr − kr)![λnr−kr ]ρ(λ)

(a)
=⇒

∑

Λ⊆[1:nr],
|Λ|=kr

(−1)kr
∣∣[λ0]ρΛ(λ)

∣∣ = (−1)kr
∑

Λ⊆[1:nr],
|Λ|=kr

∏

j∈Λ

λj
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=⇒
∑

Λ⊆[1:nr],
|Λ|=kr

|det(AΛ)| =
∑

Λ⊆[1:nr],
|Λ|=kr

∏

j∈Λ

λj, (2.22)

where in (a) the RHS follows from the fact that ρ(λ) =
∏nr

i=1(λ − λi), with {λi}nr
i=1 being

the eigenvalues of A. The statement in (2.22) is almost our goal statement in (2.15) if we

remove the modulus in the LHS. To do this, we make use of the fact that, in Lemma 2.15,

the matrix A is positive semidefinite, i.e., its minimum eigenvalue is non-negative. Thus,

by the interlacing property of eigenvalues [Tho68], the minimum eigenvalue of each of the

submatrices AΛ (and by consequence its determinant) is also non-negative. This concludes

the proof of Lemma 2.8.1.
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CHAPTER 3

Network Simplification in Half-Duplex Networks

In this chapter, we shift our study of the network simplification problem to half-duplex

networks. In particular, we focus on the half-duplex diamond networks with N relays and

develop efficient approaches to select a subset of k relays within the network. Additionally, we

provide fundamental bounds on the worst-case fraction guarantee when selecting k = N − 1

relays out of N relays.

3.1 Introduction

In this chapter, we extend the study our study on network simplification in full-duplex

network (Chapter 2) to Gaussian Half-Duplex (HD)diamond networks with N relays. Our

study in HD networks is motivated by the fact that currently employed relays operate in

HD, unless sufficient isolation between the antennas can be guaranteed or different bands are

used for transmission and reception. Additionally, as recently announced in 3GPP Rel-13,

HD is also expected to be employed in next generation Internet of Things networks to enable

low-cost communication modules for short-distance and infrequent data transmissions.

Studying the network simplification problem is more challenging when networks oper-

ate in HD compared to full-duplex. This is due to the intrinsic combinatorial nature of

approximate capacity characterization in HD relay networks.

Similar to Gaussian full-duplex networks, the capacity characterization of the additive

white Gaussian noise relay network is a long-standing open problem. The tightest upper
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bound on the capacity is the well-known cut-set bound [CE79]. A number of schemes have

been proposed [LKE11], [ADT11], [OD13], [LKK14] that achieve a rate approximating the

Shannon capacity of the Gaussian HD network within a constant gap. The tightest refine-

ment of the approximate capacity constant gap for Gaussian HD networks is 1.96(N + 2)

bits/sec [CTK14]1.

In general, the evaluation of the approximate capacity of Gaussian HD relay networks is

more challenging than the full-duplex counterpart since it requires an optimization over the

2N listen/transmit states. We refer to the states that suffice to characterize the approximate

capacity by active states. In [CTK15] the authors proved a surprising result, which was

first conjectured in [BOF12]: for a class of HD relay networks, which includes Gaussian

networks, the simplest optimal schedule, i.e., the schedule that uses the least number of

active states, operates with at most N + 1 states out of 2N . This result generalizes those

in [BMK14], [BF14b] and [BFO16], valid only for Gaussian HD diamond networks with

limited network sizes. However, even though we understand that a schedule with at most

N + 1 active states exists, it is not yet known if we can find these states efficiently for

relay networks with arbitrary topology. A similar thread of research [BSF14] has focused on

deriving approximate capacity guarantees when each relay operates with its optimal schedule

- computed as if the other relays were not there - and is allowed to switch multiple times

between listen and transmit modes of operation. For approximate capacity evaluation, the

authors in [EPS14] proposed an approach that, for certain network topologies – such as the

line network and a specific class of layered networks – outputs the approximate capacity in

polynomial time in the number of relays. This result is quite promising, but it relies on the

simplified topology of certain classes of relay networks.

Different from the aforementioned lines of research, where the main objective is to provide

1The constant gap in [CTK14] was derived by using the approach first proposed in [Kra04]. The work
in [Kra04] showed that HD relay networks can be studied within the framework of their full-duplex counter-
parts, by expressing the channel inputs and outputs as functions of the states of the relays. In particular,
it was observed that information can be conveyed by randomly switching the relay between transmit and
receive modes. However, this only improves the capacity by a constant, at most 1 bit per relay.
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a low-complexity characterization of the network approximate capacity, in this chapter, we

seek to understand what fraction of the network approximate capacity can be guaranteed

when only a subset of k ∈ [1 : N ] relays is operated. From the result in [NOF14], it directly

follows that in Gaussian HD diamond networks, by selecting k relays, one can always retain

at least a fraction k
2(k+1)

of the approximate HD capacity of the whole network. This is

accomplished by operating the k relays (selected as in full-duplex) in only 2 states of equal

duration: in the first phase, all the k relays listen and in the second phase, all the k relays

transmit. Although providing a performance guarantee, this result might be too conservative.

This is indeed confirmed by the result in [BF14a] where it was proved that, in any Gaussian

HD diamond network, there always exists a subnetwork of k = 2 relays that retains at least

half of the approximate capacity of the full network. The selected two relays are restricted to

operate in complementary fashion, i.e., when one relay transmits, the other listens and vice

versa. In this chapter, we do not restrict the selected k relays to operate only in certain states

as in [BF14a], which leads to better performance guarantees in terms of retained fraction of

the approximate capacity.

Contributions. In this chapter we seek to understand how much of the approximate HD

capacity one can retain by smartly selecting a subset of k relays in a Gaussian HD diamond

network with a fixed number of relays N . In particular, our goal is to provide a worst-case

performance guarantee in terms of retained fraction that holds universally, i.e., independently

of the values of the channel parameters. Our main contributions can be summarized as

follows:

1. We first derive properties of Gaussian diamond networks and submodular functions,

which provide a combinatorial handle on the network simplification problem in Gaus-

sian HD diamond networks. For instance, we prove a result that we refer to as the par-

tition lemma, which states that if we partition the network into multiple subnetworks

such that each relay belongs to only one of such subnetworks, then the approximate

capacity of the full network is upper bounded by the sum of the approximate capacities
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of the subnetworks. Beyond their utilization in the proofs of our main results, these

properties might be of independent interest.

2. We analyze a straightforward algorithm to select a subnetwork of k = N − 1 relays,

which operates all the relays except the worst one. We say that, among the N relays,

the i-th relay is the worst if it has the smallest single-relay approximate capacity, i.e.,

if the maximum HD flow that can be routed through it is less than or equal to the

other N − 1 flows through each of the remaining N − 1 relays. We prove that the

algorithm outputs, in O(N) time, a subnetwork whose approximate HD capacity is at

least half of the approximate HD capacity of the whole network. We also show that

this fraction guarantee is tight if we know only the single-relay approximate capacities,

i.e., there exists a class of Gaussian HD diamond networks with N relays where, by

removing the worst relay, the remaining (N − 1)-relay subnetwork has an approximate

capacity that is half of the approximate capacity of the full network. This guarantee

might be too conservative and indeed a smarter choice leads to a better performance,

as described in the next point. However, an appealing feature of this algorithm is that

it only requires the knowledge of the N single-relay approximate capacities.

3. We prove that, in any N -relay Gaussian HD diamond network, there always exists a

subnetwork of k = N −1 relays that retains at least a fraction N−1
N

of the approximate

capacity of the full network. We also show that this fraction of N−1
N

is tight. This result

significantly improves over the fraction of half guaranteed by the algorithm described

in the previous point. Moreover, this guarantee is fundamental, i.e., it is the largest

fraction that can be ensured when N − 1 relays are selected. In addition, we show

a surprising result: any optimal schedule for the approximate capacity of the full

network provides a deterministic construction for a schedule for each of the (N − 1)-

relay subnetworks, such that at least one of these subnetworks retains a rate that is

greater than or equal to the worst performance guarantee of N−1
N

of the approximate

capacity of the full network. This leads to a complexity reduction in the scheduling
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problem; in fact, it implies that, in order to select an (N − 1)-relay subnetwork that

retains a fraction N−1
N

of the approximate capacity of the full network, there is no need

to compute the optimal schedule for each of the N subnetworks. It suffices to compute

an optimal schedule of the full network.

4. We generalize the results described in the previous two points to generic values of

k ∈ [1 : N ]. In particular, we show that: (i) the straightforward algorithm that removes

the N − k worst relays and runs in O(N log(N)), ensures that the selected k-relay

subnetwork has an approximate capacity that is at least 2−(N−k) of the approximate

capacity of the original network with N relays; (ii) a fraction k
N

of the approximate

capacity of the full network can always be retained by selecting k relays and operating

them with an optimal schedule of the full network. However, this last worst-case

fraction guarantee does not appear to be tight. This result suggests that, when k <

N − 1, forcing the k-relay subnetworks to operate with the optimal schedule of the full

network may be suboptimal.

5. We find significant differences between the wireless simplification problem for HD and

full-duplex networks. For instance: (i) in HD, when k ∈ {1, 2} relays are selected,

the fraction of the retained approximate capacity depends on N and decreases as N

increases; (ii) the worst-case networks in HD and full-duplex are not necessarily the

same; (iii) the best k-relay subnetworks in HD and full-duplex might be different.

These results show that full-duplex and HD relay networks have a different nature.

This might be due to the fact that in HD the schedule plays a crucial role and hence

removing some of the relays can change the schedule at which the selected subnetwork

should be optimally operated.

Chapter Organization. Section 3.2 describes the N -relay Gaussian HD diamond net-

work and summarizes known capacity results. Section 3.3 derives properties of submodular

functions and diamond networks. Section 3.4 studies the performance (in terms of retained
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fraction) of a simple algorithm that selects k ∈ [1 : N ] relays out of the N possible ones, by

removing the worst N−k relays. In particular, Section 3.4 first considers the case k = N−1

and then generalizes the result to any k ∈ [1 : N ]. Section 3.5 provides a fundamental guar-

antee (in terms of retained fraction) when N − 1 relays are selected out of the N possible

ones. Section 3.5 also generalizes the lower bound on the fraction guarantee for k = N−1 to

general k ∈ [1 : N ]. Finally, Section 3.6 discusses some implications of the presented results,

highlights differences between the selection performances in HD and full-duplex networks

and concludes the chapter. Some of the proofs can be found in the Appendix.

Notation. In the rest of the chapter, we use the following notation convention. We denote

with [a : b] the set of integers from a to b ≥ a. Y j is a vector of length j with components

(Y1, . . . , Yj), |z| is the component-wise absolute value of the vector z and zT is the transpose

of the vector z. For two sets A1,A2, A1 ⊆ A2 indicates that A1 is a subset of A2, A1 ∪ A2

represents the union of A1 and A2, A1 ∩ A2 represents the intersection of A1 and A2 and

A1\A2 is the set of elements that belong to A1 but not to A2. With |A| we indicate the

cardinality of A, ∅ is the empty set and E[·] indicates the expected value. For all x ∈ R, the

ceiling and floor functions are denoted by dxe and bxc, respectively. The L1-norm of a vector

λ is represented by ‖λ‖1. Table 3.1 summarizes and defines quantities that are frequently

used throughout the chapter.

3.2 System Model and Known Results

We consider the Gaussian HD diamond network N[1:N ] in Fig. 3.1 where a source node

(node 0) wishes to communicate with a destination (node N + 1) through N non-interfering

relays operating in HD. The channel gains are assumed to be constant for the whole trans-

mission duration and hence known to all nodes. Let Xi,t ∈ C denote the signal transmitted

by node i, ∀i ∈ [0 : N ], at time instant t. Similarly, let Yi,t ∈ C denote the observation

received by node i, ∀i ∈ [1 : N + 1], at time instant t. For each channel use, the source has
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Table 3.1: Quantities of interest used throughout Chapter 3.

Quantity Definition

NK Network which contains only the relays in K ⊆ [1 : N ]

N̄i N[1:N ]\{i}

CNK Half-duplex Shannon capacity of NK
CNK Cut-set bound for NK in HD

C̃NK Approximate HD capacity of NK
RλNK Half-duplex approximate rate of NK when operated with the schedule λ

CFD
NK Full-duplex capacity of NK

C̃FD
NK approximate full-duplex capacity of NK

a message W uniformly distributed over
[
1 : 2KR

]
for the destination, where K ∈ N denotes

the codeword length and R ∈ R+ is the transmission rate in bits per channel use. At time

t ∈ [1 : K]: (i) the source maps the message W into a channel input through a codebook

mapping X0,t (W ) : [1 : 2RK ] → C; (ii) the i-th relay, with i ∈ [1 : N ], if in transmission

mode of operation, maps its past channel observations Y t−1
i ∈ Ct−1 into a channel input

symbol Xi,t

(
Y t−1
i

)
∈ C, where Y t−1

i = (Yi,1, Yi,2, · · · , Yi,t−1). At time K, the destination

outputs an estimate Ŵ of the message based on all its channel observations Y K
N+1. A rate R

is said to be ε-achievable if there exists a sequence of codes indexed by the block length K

such that P
[
W 6= Ŵ

]
≤ ε for any ε > 0. The capacity is the largest nonnegative rate that

is ε-achievable for ε ∈ (0, 1).

The single-antenna static Gaussian HD diamond network N[1:N ], shown in Fig. 3.1, is

defined by the input/output relationship

Yi,t = (1− Si,t) [hsiX0,t + Zi,t] , ∀i ∈ [1 : N ], (3.1a)

YN+1,t =
N∑

i=1

Si,thidXi,t + ZN+1,t, (3.1b)

where: (i) Si,t is the binary random variable that represents the state of the i-th relay at
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Figure 3.1: Gaussian diamond network with N relays.

time t, i.e., when Si,t = 0 the i-th relay is receiving while when Si,t = 1 the i-th relay is

transmitting; (ii) the channel inputs are subject to a unitary average power constraint, i.e.,

E [|Xk,t|2] ≤ 1, ∀k ∈ [0 : N ]; (iii) (hsi, hid) ∈ C2 represent the channel coefficients from the

source to the i-th relay and from the i-th relay to the destination, respectively. Without

loss of generality, SNR is assumed to be incorporated in the channel coefficients; (iv) Zi,t,

i ∈ [1 : N + 1], indicates the additive white Gaussian noise at the i-th node; noises are

assumed to be independent and identically distributed as CN (0, 1). In the remainder of the

chapter, we drop the dependence on the time t since the channel is discrete memoryless. We

denote with `i and ri the individual link capacities, namely

`i := log
(
1 + |hsi|2

)
, ∀i ∈ [1 : N ], (3.2a)

ri := log
(
1 + |hid|2

)
, ∀i ∈ [1 : N ]. (3.2b)

The capacity of the Gaussian HD relay network is not known in general. The best known

upper-bound is the cut-set bound [CE79], formulated as

CN[1:N ]
= max

P{Xi,Si}(·)
min
A⊆[1:N ]

I(XA, SA;YAc |XAc , SAc), (3.3)

where P{Xi,Si}(·) is the joint distribution on all channel inputs Xi and scheduling states Si in

the network. The distribution that maximizes the cut-set expression in (3.3) is not known in

general. For the particular case of a two-hop HD line network, where a source communicates
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to a destination by hopping information through one relay, it has been shown in [ZJS15] that

the optimal input distribution is a mixture between continuous and discrete distributions.

The notion of approximate capacity in Gaussian relay networks provides an expression

that is guaranteed to be at most an additive constant gap away from the Shannon capacity.

In particular, let CN[1:N ]
(h) be the Shannon capacity of the network N[1:N ] with channel coef-

ficients h = (hs1, hd1, hs2, hd2, · · · , hsN , hNd). Formally, we say that an expression C̃N[1:N ]
(h)

is a constant gap approximation of the Shannon capacity CN[1:N ]
(h), if there exists a value

(additive gap) aN , that does not depend on the channel coefficients - and by our assumption

on the SNR - such that ∣∣∣C̃N[1:N ]
(h)− CN[1:N ]

(h)
∣∣∣ ≤ aN . (3.4)

The best known gap is aN = 1.96(N + 2) by [CTK14]. For brevity, in the remainder of the

chapter, we drop the channel coefficients arguments to the values CN[1:N ]
, CN[1:N ]

and C̃N[1:N ]
.

In this chapter, we focus on an approximation of C[1:N ] proved in [LKE11], [ADT11],

[OD13], [LKK14] which uses fixed schedules, as well as, independent and identically dis-

tributed Gaussians with zero mean and unit variance as channel inputs {Xi}Ni=0. This ap-

proximate capacity, which we term the approximate capacity, for Gaussian HD diamond

networks is defined as

C̃N[1:N ]
= max

λ∈Λ
min
A⊆[1:N ]

∑

s∈[0:1]N

λs

(
max
i∈Ls∩A

`i + max
i∈Ts∩Ac

ri

)
, (3.5)

where: (i) a state s is expanded as s = (s1, s2, s3, ..., sN), with Si = si representing the binary

state of node i. Therefore, s in (3.5) ranges over all possible 2N states of the network; (ii) λ

denotes a schedule of the network which defines, for all s ∈ [0 : 1]N , a fraction of time λs for

which the network operates with the state s; (iii) Λ = {λ : λ ∈ R2N

+ , ‖λ‖1 = 1} is the set of

all possible listen/transmit schedules λ; (iv) Ls (respectively, Ts) represents the set of indices

of relays listening (respectively, transmitting) in the state s ∈ [0 : 1]N . Note that among

the relays ‘on the side of the destination’, indexed by A, only those in receive mode matter.

Similarly, among the relays ‘on the side of the source’ (in (3.5) indexed by Ac = [1 : N ]\A)
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only those in transmit mode matter. For illustration, Fig. 3.2 depicts two different cuts in a

2-relay network and shows the ‘source-side’ and ‘destination-side’ in both cases.

Tx

RN1

Rx

RN2

`1

`2

r1

r2

A = {1}

(a)

Tx

RN1

Rx

RN2

`1

`2

r1

r2

A = {1, 2}

(b)

Figure 3.2: Two cuts in a 2-relay diamond network.

For the particular case of N = 1, the approximate capacity in (3.5) becomes

C̃N{1} =
`1r1

`1 + r1

(3.6)

and when N = 2 the authors in [BMK14] derived C̃N[1:2]
in (3.5) in closed form.

Remark 3.2.1. The additive constant gap aN = O(N) between the Shannon capacity and

the approximate capacity in (3.5) is universal and independent of the channel coefficients h

and hence of the link capacities `i, ri. Therefore, it is possible to construct networks where

the approximate capacity grows exponentially with N , while the gap remains linear in N . For

example, consider an N -relay diamond network with all point-to-point link capacities equal

to b. For this particular network, the approximate capacity – obtained by applying (3.5) – is

b. If we let b→∞ (by increasing the SNR or by having larger channel coefficients), then the

approximate capacity grows unbounded while the gap is still O(N). This conclusion is true

for any approximate capacity (not necessarily the used in this chapter), since from (3.4) it

is not difficult to see that any two constant approximations of CN[1:N ]
are at most a constant

gap away from each other.

In what follows we say that the subnetwork NK with K ⊆ [1 : N ] operates with a ‘natural’

schedule derived from the schedule λ of N[1:N ] if the schedule of NK is constructed directly

from λ, as better explained through the following example.
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Example. Consider a Gaussian HD diamond network N[1:N ] with N = 3. Let

λ = [λ000 , λ001 , λ010 , λ011 , λ100 , λ101 , λ110 , λ111]T

be a schedule for N[1:3]. Denote with λ(N{2,3}) (respectively, λ(N{2})) the schedule that is

derived naturally from λ for the subnetwork N{2,3} (respectively, N{2}). With this, we have

λ(N{2,3}) = [λ000 + λ100 , λ001 + λ101 , λ010 + λ110 , λ011 + λ111]T

and similarly we get

λ(N{2}) = [λ000 + λ001 + λ100 + λ101 , λ010 + λ011 + λ110 + λ111]T .

Thus, from the expression in (3.5), the approximate rate RλNK of a subnetwork (for example

N{2,3}) when operating with the ‘natural’ schedule derived from λ is

RλN{2,3} = min
A⊆{2,3}

∑

s∈[0:1]2

λ
(N{2,3})
s

(
max
i∈A

`′i,s + max
i∈{2,3}\A

r′i,s

)

= min
A⊆{2,3}

[
λ

(N{2,3})
00

(
max
i∈A

`′i,00+ max
i∈{2,3}\A

r′i,00

)
+ λ

(N{2,3})
01

(
max
i∈A

`′i,01+ max
i∈{2,3}\A

r′i,01

)

+λ
(N{2,3})
10

(
max
i∈A

`′i,10+ max
i∈{2,3}\A

r′i,10

)
+ λ

(N{2,3})
11

(
max
i∈A

`′i,11+ max
i∈{2,3}\A

r′i,11

)]

(a)
= min
A⊆{2,3}

[
(λ000+λ100)

(
max
i∈A

`′i,00+ max
i∈{2,3}\A

r′i,00

)

+(λ001+λ101)

(
max
i∈A

`′i,01+ max
i∈{2,3}\A

r′i,01

)

+(λ010 + λ110)

(
max
i∈A

`′i,10 + max
i∈{2,3}\A

r′i,10

)

+(λ011+λ111)

(
max
i∈A

`′i,11+ max
i∈{2,3}\A

r′i,11

)]

= min
A⊆{2,3}

∑

s∈[0:1]3

λs

(
max
i∈A

`′i,s + max
i∈{2,3}\A

r′i,s

)
, (3.7)

where

`′i,s =





`i if i ∈ Ls

0 otherwise
, r′i,s =





ri if i ∈ Ts

0 otherwise
, (3.8)

and where the equality in (a) follows by using the construction of λ(N{2,3}).
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3.3 Diamond Networks and Submodularity Properties

In this section we derive and discuss some properties of diamond networks and submodular

functions, which represent the main ingredient in the proof of our main results. It is worth

noting that, beyond their utilization in the proofs, these properties might be of independent

interest.

3.3.1 A Partition Lemma for Diamond Networks

The first result that we derive provides an upper bound on the approximate HD rate that

can be achieved by the full network. This upper bound is stated in the following lemma –

which we refer to as the partition lemma – whose proof can be found in Appendix 3.7.1.

Lemma 3.3.1 (Partition lemma). Let λ be a schedule for the N -relay Gaussian HD

diamond network N[1:N ]. Then, for any K ⊆ [1 : N ], we have

RλN[1:N ]
≤ RλNK + RλN[1:N ]\K

, (3.9)

where for a subnetworkNK ofN[1:N ], R
λ
NK represents the HD approximate rate when operated

with the deterministic schedule constructed from λ.

The partition lemma result has the following two consequences:

1. Let λ? be an optimal schedule for the approximate capacity of the full network N[1:N ],

i.e., Rλ
?

N[1:N ]
= C̃N[1:N ]

. Since the ‘natural’ schedule constructed from λ? might not be

the optimal one for the approximate capacity of the subnetworks NK and N[1:N ]\K,

then Rλ
?

NK ≤ C̃NK and similarly Rλ
?

N[1:N ]\K
≤ C̃N[1:N ]\K . Hence, the partition lemma

straightforwardly implies that

C̃N[1:N ]
≤ C̃NK + C̃N[1:N ]\K . (3.10)

By applying the partition lemma, we obtain different bounds on the approximate

capacity of the network. For example, consider N[1:N ] with N = 3, then the result
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implied by the partition lemma gives the following four bounds on the approximate

capacity

C̃N[1:3]
≤ C̃N{1,2} + C̃N{3} , C̃N[1:3]

≤ C̃N{1,3} + C̃N{2} ,

C̃N[1:3]
≤ C̃N{2,3} + C̃N{1} , C̃N[1:3]

≤
3∑

i=1

C̃N{i} .

2. The partition lemma relates to the following question studied in [HEJ10,JEH11]: Can

removing a single edge of capacity δ, reduce the capacity region of a network along

each dimension, by more than δ? The answer to this question is known only in a few

specific cases. The partition lemma implies a negative answer to this question for the

approximate capacity of Gaussian HD diamond networks. In particular, without loss

of generality, let δ = `i, for some i ∈ [1 : N ]. Then, from (3.10), we have

C̃N[1:N ]
≤ C̃N̄i

+ C̃N{i} =⇒ C̃N̄i
≥ C̃N[1:N ]

− C̃N{i}
(a)

≥ C̃N[1:N ]
−min {δ, ri} ≥ C̃N[1:N ]

− δ,

where N̄i = N[1:N ]\{i} and the inequality in (a) follows since C̃N{i} ≤ CFD
N{i} = min {δ, ri}.

Here, CFD
N{i} denotes the full-duplex capacity of the relay subnetwork that uses only

relay i.

3.3.2 Submodular Functions and Cut Properties

We now derive a property of submodular functions, which we next leverage to prove a

property on cuts in diamond networks.

Definition 3.3.1. For a finite set Ω, let f : 2Ω → R be a set function defined on Ω. The set

function f is submodular if

∀A,B ⊆ Ω, f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). (3.11)

Building on the definition in (3.11), we now prove a property for a general submodular

function.
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Lemma 3.3.2. Let f be a submodular set function defined on Ω. Then, for any group of n

sets Ai ⊆ Ω, i ∈ [1 : n],

n∑

i=1

f (Ai) ≥
n∑

j=1

f
(
E (n)
j

)
,

where E (n)
j is the set of elements that appear in at least j sets Ai, i ∈ [1 : n].

Proof. The proof relies on the definition of submodular functions and on some set-theoretic

properties. The detailed proof can be found in Appendix 3.7.2.

To better understand what Lemma 3.3.2 implies, consider the following example.

Example. Let Ω = [1 : 7] and consider the subsets A1 = {1, 2, 5, 7}, A2 = {4, 5}, A3 =

{2, 4, 5, 6}. Lemma 3.3.2 proves that, for a submodular set function f defined over Ω, we get

f(

A1︷ ︸︸ ︷
{1, 2, 5, 7}) + f(

A2︷ ︸︸ ︷
{4, 5}) + f(

A3︷ ︸︸ ︷
{2, 4, 5, 6}) ≥ f({1, 2, 4, 5, 6, 7}︸ ︷︷ ︸

E(3)
1

) + f({2, 4, 5}︸ ︷︷ ︸
E(3)

2

) + f( {5}︸︷︷︸
E(3)

3

).

(3.12)

Now, as an example, consider f(A) = max
i∈A
{i} for A ⊆ Ω, which is a submodular set function.

By evaluating both sides of (3.12) for our example function, we get

3∑

i=1

f(Ai) = 7 + 5 + 6 = 18,
3∑

i=1

f
(
E (3)
j

)
= 7 + 5 + 5 =17

=⇒
3∑

i=1

f(Ai) ≥
3∑

i=1

f
(
E (3)
j

)
.

Next, we use the result on submodular functions in Lemma 3.3.2 to prove the following result

for Gaussian diamond networks.

Lemma 3.3.3. Consider an N -relay Gaussian diamond network N[1:N ]. Then, for any

collection of sets Ai ⊆ [1 : N ]\{i}, there exists a collection of (N − 1) sets AFj
⊆ [1 : N ],

with j ∈ [1 : N − 1] such that

N∑

j=1

(
max
i∈Aj

`i + max
i∈([1:N ]\{j})\Aj

ri

)
≥

N−1∑

j=1

(
max
i∈AFj

`i + max
i∈[1:N ]\AFj

ri

)
. (3.13)

46



Particularly, AFj
is the set of elements that appear in at least j sets Ai, i ∈ [1 : N ] and

therefore, it does not depend on the values of (`i, ri).

Proof. The proof, which is based on the result in Lemma 3.3.2 and on simple counting

arguments, can be found in Appendix 3.7.3.

We next provide a simple example that better explains the implication of Lemma 3.3.3.

Example. Consider a 3-relay Gaussian diamond network N[1:3]. With this, we have N̄1 =

N{2,3}, N̄2 = N{1,3} and N̄3 = N{1,2}. Now for the subnetwork N̄i consider the following

possible cut Ai: (i) A1 = ∅ (i.e., in N̄1 relays 2 and 3 are ‘on the side of the source’); (ii)

A2 = {3} (i.e., in N̄2 relay 1 is ‘on the side of the source’ and relay 3 is ‘on the side of

the destination’); (iii) (i) A3 = {1, 2} (i.e., in N̄3 relays 1 and 2 are ‘on the side of the

destination’). With this, by evaluating the left-hand side of (3.13), we obtain

3∑

j=1

(
max
i∈Aj

`i + max
i∈([1:3]\{j})\Aj

ri

)
= max

i∈{2,3}
ri + `3 + r1 + max

i∈{1,2}
`i

≥ max
i∈[1:3]

`i + max
i∈[1:3]

ri

=
2∑

j=1

(
max
i∈AFj

`i + max
i∈[1:3]\AFj

ri

)
,

where we let AF1 = [1 : 3] and AF2 = ∅. In this example, we considered a specific choice of

Ai, i ∈ [1 : 3] in N̄i. By repeating the same reasoning, it is possible to show that, for any of

the 2N(N−1) = 43 possible combinations of cuts Ai, there always exist two cuts AFj
, j ∈ [1 : 2]

in the full network N[1:3] – whose construction is provided in Lemma 3.3.3 – such that (3.13)

holds.

Before concluding this section and going into the technical details of how to use these

results to prove our main results, we state a couple of remarks.

Remark 3.3.1. By considering the specific values of the link capacities (`i, ri) in a given

network, we could prove the inequality in Lemma 3.3.3 with a different construction than the
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one provided in the lemma. For illustration, consider the following example with N = 3. Let

(`1, `2, `3) = (3, 4, 11) and (r1, r2, r3) = (6, 8, 6). Additionally, let A1 = {2}, A2 = {1} and

A3 = {1, 2}. For the given network, it is not difficult to verify that for A′F1
= A′F2

= {1, 2, 3},
we have

3∑

j=1

(
max
i∈Aj

`i + max
i∈[1:3]\{j}\Aj

ri

)
= (4 + 6) + (3 + 6) + 4 = 23

≥
(

max
i∈A′F1

`i + max
i∈[1:3]\A′F1

ri

)
+

(
max
i∈A′F2

`i + max
i∈[1:3]\A′F2

ri

)
= 11 + 11 = 22.

However, if we change the value of r3 to 4, then the same construction of A′F1
,A′F2

violates

the inequality since we would get 19 6≥ 22. In contrast, the construction in Lemma 3 does

not depend on the values of `i, ri. In fact, for the given example we would have AF1 = {1, 2}
and AF2 = {1, 2}, which would satisfy the inequality (3.13) for any possible configurations

of `i, ri.

The key property of the construction presented in Lemma 3.3.3 is that it is independent of

(`i, ri). This is of critical importance when we consider HD cuts, as we will see in Section 3.5

when we prove Theorem 3.5.1.

Remark 3.3.2. If the network and its subnetworks operate in full-duplex, then Lemma 3.3.3

directly relates cuts of the subnetworks N̄i to cuts of the full network N[1:N ] (see also the

example above). Furthermore, by choosing Ai to be the minimum full-duplex cut of the

subnetwork N̄i, we get

N max
i∈[1:N ]

C̃FD
N̄i
≥

N∑

i=1

C̃FD
N̄i
≥

N−1∑

j=1

(
max
i∈AFj

`i + max
i∈[1:N ]\AFj

ri

)
≥ (N − 1)C̃FD

N[1:N ]
.

This is a different way of proving the result in [NOF14, Theorem 1] for k = N − 1.

3.4 A Simple Selection Algorithm

In this section, we investigate the performance of a simple algorithm that selects a subnet-

work of k = N − 1 relays, in terms of the retained fraction of the approximate capacity
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of the full network. In particular, the algorithm computes the N single-relay approximate

capacities and removes the worst relay, i.e., the one with the smallest single-relay approxi-

mate capacity. Since computing the single-relay approximate capacities in a Gaussian HD

diamond network with N relays requires O(N) operations, this algorithm runs in linear time

in the number of relays and outputs an (N−1)-relay subnetwork that retains at least half of

the approximate capacity of the full network. Moreover, if only the single-relay approximate

capacities C̃N{i} , ∀i ∈ [1 : N ] are known, i.e., the individual point-to-point link capacities are

not available, then the guarantee aforementioned is tight. The main result of this section is

summarized in the following theorem.

Theorem 3.4.1. Consider a Gaussian HD diamond network N[1:N ]. Then, there always

exists i ∈ [1 : N ] such that we can guarantee at least C̃N̄i
≥ 1

2
C̃N[1:N ]

, where N̄i = N[1:N ]\{i}.

Moreover, if only the single-relay approximate capacities are known, then this bound is tight.

Proof. We argue the lower bound in Theorem 3.4.1 by contradiction. Without loss of gener-

ality, let C̃N{N} ≤ mini∈[1:N ] C̃N{i} , i.e., the N -th relay is the worst. Assume that C̃N[1:N−1]
<

1
2
C̃N[1:N ]

. From the implication of the partition lemma in (3.10), we have C̃N[1:N−1]
+ C̃N{N} ≥

C̃N[1:N ]
. This property, together with the assumption that C̃N[1:N−1]

< 1
2
C̃N[1:N ]

, implies that

C̃N{N} ≥ 1
2
C̃N[1:N ]

. However, since the relay number N has the lowest approximate capacity,

then ∀j ∈ [1 : N − 1], C̃N{j} ≥ 1
2
C̃N[1:N ]

. Therefore, we finally have the following contradic-

tion

∀j ∈ [1 : N − 1],
1

2
C̃N[1:N ]

≤ C̃N{j} ≤ C̃N[1:N−1]
<

1

2
C̃N[1:N ]

.

This concludes the proof of the lower bound in Theorem 3.4.1.

To prove that the bound in Theorem 3.4.1 is indeed tight it suffices to provide a network

construction where having the knowledge of only the single-relay approximate capacities

does not guarantee that a subnetwork NK of N − 1 relays, with C̃NK strictly greater than

1
2
C̃N[1:N ]

, can be chosen deterministically. For N ≥ 2, let

`i =
1

2
, ri = b, ∀i ∈ [1 : N − 1], (3.14a)
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`N = b, rN =
1

2
, (3.14b)

where b → ∞. Note that for the network construction in (3.14) we have: (i) ∀i ∈ [1 :

N ], C̃N{i} = 1
2

and (ii) the approximate HD capacity of the full network is C̃N[1:N ]
= 1. We now

want to remove the worst relay based only on the knowledge of the single-relay approximate

capacities. Since these are all equal, then one can choose to remove one relay uniformly

at random. If the N -th relay is removed, then the remaining network has an approximate

capacity of C̃N[1:N−1]
= 1

2
, which shows that the lower bound in Theorem 3.4.1 is indeed

tight if the choice of which relay to remove is based only on the single-relay approximate

capacities.

The tightness argument in Theorem 3.4.1 implies that, for an algorithm that removes the

worst relay - by only computing the single-relay approximate capacities - no higher worst-

case guarantee can be provided. However, this result is pretty conservative. In fact, with

reference to the specific network construction in (3.14), if we are allowed to select N−1 relays

based on the approximate capacities of the 2-relay subnetworks, then we would never remove

the N -th relay. This is because any 2-relay subnetwork which involves the N -th relay has an

approximate capacity of C̃N{N,i} = 1 = C̃N[1:N ]
,∀i ∈ [1 : N −1]. This simple example suggests

that a smarter choice (compared to the one based on removing the worst relay) of which

N − 1 relays to select might lead to a higher worst-case retained fraction, compared to the 1
2

in Theorem 3.4.1. In the next section, we will formally prove that this observation is indeed

true. Before concluding this section, we next generalize the lower bound in Theorem 3.4.1

to generic values of k ∈ [1 : N ].

3.4.1 The General Case k ∈ [1 : N ]

We now generalize the lower bound in Theorem 3.4.1 when k ∈ [1 : N ]. Towards this end, we

consider an algorithm that removes the worst N −k relays, i.e., those with the lowest single-

relay approximate capacities, from the network of N relays. The algorithm first computes
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the single-relay approximate capacities – which requires O(N) operations. It then orders

the relays in descending order based on their single-relay approximate capacities, i.e., in

this new ordering the first relay is the one for which C̃N{1} ≥ maxi∈[2:N ] C̃N{i} , the second

relay is the one for which C̃N{2} ≥ maxi∈[3:N ] C̃N{i} and so on till the N -th relay for which

C̃N{N} = mini∈[1:N ] C̃N{i} ; this step requires O(N log(N)) operations. Finally, the algorithm

discards the last N−k relays. In other words, the algorithm runs in O(N log(N)) and outputs

a k-relay subnetwork whose performance guarantee is provided in the following lemma.

Lemma 3.4.1. Consider a Gaussian HD diamond network N[1:N ] where the relays are or-

dered in descending order based on their single-relay approximate capacities. By operating

only the relays in N[1:k], we can always guarantee at least C̃N[1:k]
≥ 2−(N−k)C̃N[1:N ]

.

Proof. Clearly, for the case k = N − 1 the lower bound in Lemma 3.4.1 is equivalent to

the one in Theorem 3.4.1. We now argue the lower bound in Lemma 3.4.1 by contradic-

tion. Without loss of generality, assume that instead of removing the last N − k relays all

together (recall that relays are ordered in descending order based on their single-relay ap-

proximate capacities), we remove them in N −k steps, i.e., at step i ∈ [1 : N −k] we remove

the relay number N − i + 1. Assume that at step i we have that C̃N[1:N−i]
< 1

2
C̃N[1:N−i+1]

.

From (3.10), we have C̃N[1:N−i]
+ C̃N{N−i+1} ≥ C̃N[1:N−i+1]

. This property, together with the

assumption that C̃N[1:N−i]
< 1

2
C̃N[1:N−i+1]

, implies that C̃N{N−i+1} ≥ 1
2
C̃N[1:N−i+1]

. However,

since the relay number N − i + 1 has the lowest approximate HD capacity at step i, then

∀j ∈ [1 : N − i], C̃N{j} ≥ 1
2
C̃N[1:N−i+1]

. Therefore, we finally have the following contradiction

∀j ∈ [1 : N − i], 1

2
C̃N[1:N−i+1]

≤ C̃N{j} ≤ C̃N[1:N−i]
<

1

2
C̃N[1:N−i+1]

.

Thus, ∀i ∈ [1 : N − k], we have that C̃N[1:N−i]
≥ 1

2
C̃N[1:N−i+1]

. By recursively applying this

expression (N − k) times we are left with a k-relay subnetwork that retains an approximate

capacity C̃N[1:k]
≥ 2−(N−k)C̃N[1:N ]

. This concludes the proof.
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3.5 A Fundamental Guarantee for Selecting N − 1 Relays

In this section we derive a fundamental guarantee (in terms of retained fraction) when N−1

relays are selected out of the N possible ones. We assert that this guarantee is fundamental

because it represents the highest worst-case fraction that can be guaranteed when N−1 relays

are selected, independently of the actual values of the channel parameters. In particular,

our main result is stated in the following theorem.

Theorem 3.5.1. For any N -relay Gaussian HD diamond network N[1:N ], there always exists

a subnetwork NK, with |K| = N − 1, that retains at least C̃NK ≥ N−1
N

C̃N[1:N ]
. Moreover, this

bound is tight.

Proof. In order to derive the lower bound in Theorem 3.5.1, we first state the following

lemma, whose proof is based on Lemma 3.3.3 and is delegated to Appendix 3.7.4.

Lemma 3.5.1. Consider an arbitrary N -relay Gaussian HD diamond network N[1:N ] oper-

ated with the schedule λ and let N̄i = N[1:N ]\{i} be the subnetwork of N−1 relays constructed

by removing relay i. Then,

N∑

i=1

RλN̄i
≥ (N − 1)RλN[1:N ]

, (3.15)

where ∀K ⊆ [1 : N ] and RλNK is the HD rate for the network NK when operated with the

deterministic schedule constructed from λ.

The lower bound in Theorem 3.5.1 is a direct consequence of Lemma 3.5.1 as explained

in what follows. Let λ? be an optimal schedule for the full network N[1:N ], i.e., Rλ
?

N[1:N ]
=

C̃N[1:N ]
. Since the ‘natural’ schedule constructed from λ? might not be the optimal one for

the subnetwork N̄i, then clearly we have Rλ
?

N̄i
≤ C̃N̄i

,∀i ∈ [1 : N ]. Using the result in

Lemma 3.5.1 with λ?, we get

(N − 1)C̃N[1:N ]
≤

N∑

i=1

Rλ
?

N̄i
≤

N∑

i=1

C̃N̄i
≤ N max

i∈[1:N ]
C̃N̄i

.
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Let i? = arg max
{
C̃N̄i

}
. Then, by setting K = [1 : N ]\{i?}, we have that

C̃NK ≥
N − 1

N
C̃N[1:N ]

.

This completes the proof of the lower bound in Theorem 3.5.1.

To prove that the ratio in Theorem 3.5.1 is tight, it suffices to provide an example of

an N -relay network where the best (i.e., the one with the largest approximate capacity)

subnetwork of N − 1 relays retains an approximate capacity, which is exactly the fraction

of the full network approximate capacity in Theorem 3.5.1. Towards this end, consider the

following structure:

`i = `bN2 c+i =
2i

N
, i ∈

[
1 :

⌊
N

2

⌋]
, (3.16a)

ri = rbN2 c+i =
N − 2i+ 2

N
, i ∈

[
1 :

⌊
N

2

⌋]
, (3.16b)

if N is odd: `N = b, rN =
1

N
, (3.16c)

where b → ∞. Fig. 3.3 gives a representation of max
K⊆[1:N ]

C̃NK

C̃N[1:N ]

for N ∈ [2 : 10] with

|K| = N − 1. From Fig. 3.3 we observe that max
K⊆[1:N ]

C̃NK

C̃N[1:N ]

=
N − 1

N
. This completes the

proof.

Before concluding this section, we highlight some results, which are direct consequences

of Lemma 3.5.1 and Theorem 3.5.1.

Remark 3.5.1. Theorem 3.5.1 provides a performance guarantee that significantly improves

over the one in Theorem 3.4.1. In fact, for high values of N , Theorem 3.5.1 ensures that we

can approach C̃N[1:N ]
by operating only N − 1 relays, which is twice the guarantee of 1

2
C̃N[1:N ]

(independent of the value of N) provided by Theorem 3.4.1.

Remark 3.5.2. The result in Theorem 3.5.1 implies that, for any N -relay Gaussian HD

diamond network, smartly removing one relay can reduce the approximate HD capacity of
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Figure 3.3: max
K⊆[1:N ]

C̃NK

C̃N[1:N ]

with |K| = N − 1 for the network in (3.16) for N ∈ [2 : 10].

the network by at most 1
N

of the full network approximate capacity. We also highlight that

the removed relay may not be the worst relay since in this case, as proved in Theorem 3.4.1,

we can guarantee only C̃N̄i
≥ 1

2
C̃N[1:N ]

, where i ∈ [1 : N ] is the index of the worst relay.

However, for the specific network in (3.16) the full network has an approximate capacity

of C̃N[1:N ]
= 1 (see Appendix 3.7.5 for the detailed computation) and all the (N − 1)-relay

subnetworks have an approximate capacity of C̃NK = N−1
N
, ∀K ⊆ [1 : N ], |K| = N − 1.

Hence, for this particular network, by removing any of the relays (i.e., the best or the

worst), we always retain N−1
N

of the approximate capacity of the full network.

Corollary 3.5.1. Let λ? be an optimal schedule for the approximate capacity of the full

network N[1:N ], then:

1. For any N -relay Gaussian HD diamond network, there exists a subnetwork NK, with

|K| = N − 1, such that, when operated with λ?, it satisfies that

Rλ
?

NK ≥
N − 1

N
C̃N[1:N ]

.
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2. There exist N -relay Gaussian HD diamond networks where λ? can be used to naturally

construct the optimal schedule for the approximate capacity of each subnetwork ofN−1

relays (see for example, the network in (3.16)).

Remark 3.5.3. Corollary 3.5.1 implies that, to select a subnetwork of N − 1 relays that

guarantees the performance in Theorem 3.5.1, it is sufficient to know an optimal schedule

λ? for the approximate capacity of the whole network N[1:N ]. In other words, by knowing

λ?, there is no need to compute the optimal schedules for the approximate capacity of each

of the N subnetworks. This implies that, if λ? can be used to construct a ‘natural’ schedule

for all NK, with |K| = N − 1, in polynomial time, then a subnetwork NK that satisfies the

guarantee in Theorem 3.5.1 can be discovered in polynomial time.

We next leverage the result in Theorem 3.5.1 to derive a lower bound for k ∈ [1 : N ].

3.5.1 The General Case k ∈ [1 : N ]

In this subsection we generalize the lower bound derived in Theorem 3.5.1 when k ∈ [1 : N ].

In particular, our result is stated in the following lemma.

Lemma 3.5.2. Consider an arbitrary N -relay Gaussian HD diamond network N[1:N ] oper-

ated with the schedule λ. There always exists a subnetwork NK with |K| = k ∈ [1 : N ] that,

when operated with the ‘natural’ schedule derived from λ, retains an approximate rate RλNK

such that RλNK ≥ k
N
RλN[1:N ]

.

Proof. We recursively apply the result in Lemma 3.5.1. We again let λ be a schedule (not

necessarily optimal) of the full N -relay network N[1:N ]. With this we obtain

∃ i1 ∈ [1 : N ] such that for S(1) = N[1:N ]\{i1} : (3.17a)

RλS(1) ≥
N − 1

N
RλN[1:N ]

, (3.17b)

∃ i2 ∈ S(1) = N[1:N ]\{i1} such that for S(2) = N[1:N ]\{i[1:2]} :
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RλS(2) ≥
N − 2

N − 1
RλS(1)

(3.17b)

≥ N − 2

N
RλN[1:N ]

, (3.17c)

∃ i3 ∈ S(2) = N[1:N ]\{i[1:2]} such that for S(3) = N[1:N ]\{i[1:3]} :

RλS(3) ≥
N − 3

N − 2
RλS(2)

(3.17c)

≥ N − 3

N
RλN[1:N ]

, (3.17d)

...

∃ iN−k ∈ S(N−k−1) such that for S(N−k) = N[1:N ]\{i[1:N−k]} :

RλS(N−k) ≥
k

k + 1
RλS(N−k−1)≥

k

N
RλN[1:N ]

, (3.17e)

which, since S(N−k) contains k relays, completes the proof.

Remark 3.5.4. Let λ? be an optimal schedule for the approximate capacity of the full

network N[1:N ], i.e., Rλ
?

N[1:N ]
= C̃N[1:N ]

. Since the ‘natural’ schedule constructed from λ? might

not be the optimal one for the approximate capacity of the subnetwork NK, i.e., Rλ
?

NK ≤ C̃NK ,

then Lemma 3.5.2 provides a different bound from the one in [BF14a] and from the k
2(k+1)

that is readily obtained from the result in [NOF14]. These bounds can be combined as

C̃NK

C̃N[1:N ]

≥





max
{

1
N
, 1

4

}
, k = 1

max
{
k
N
, 1

2

}
, N ≥ k ≥ 2

. (3.18)

From (3.18), we can see that in some cases (particularly when k > N/2), the new bound in

Lemma 3.5.2 gives a better guarantee than those available in the literature. Clearly, when

k = N − 1 the lower bound in (3.18) is equivalent to the one in Theorem 3.5.1. However,

the lower bound in Lemma 3.5.2 is not tight for general k ∈ [1 : N ]. Deriving tighter lower

bounds is an interesting open problem, which is object of current investigation. For instance,

for the case k = 1, numerically we could not find network examples for which the fraction

guarantee is less than N
4(N−1)

.

Remark 3.5.5. The proof of Lemma 3.5.2 provides the blueprint for an algorithm that

selects a subnetwork of k relays that satisfies the guarantee in the lemma. The algorithm

operates iteratively as follows. On the first iteration, given a network N (0) = N[1:N ] with
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N relays and an operating schedule λ, we find a subnetwork N (1) with N − 1 relays such

that N (1), when operated with the ‘natural’ schedule derived from λ, satisfies the bound in

Lemma 3.5.2 for k = N − 1. We can repeat the previous iteration (N − k) times where on

iteration i, we remove one relay to select a subnetwork N (i) such that

RλN (i) ≥
N − i

N − i+ 1
RλN (i−1) .

It is clear that after (N − k) iterations, we have a subnetwork N (N−k) that contains exactly

k relays and for which

RλN (N−k) ≥
k

N
RλN[1:N ]

.

In [PE14] the authors showed that the problem of computing the approximate capacity of a

Gaussian full-duplex relay network can be cast as a minimization problem of a submodular

function, which can be solved in polynomial time. Therefore, if the fixed schedule λ at

which N[1:N ] is operated can be used to construct a ‘natural’ schedule for N (1) in polynomial

time, then the algorithm described above runs in polynomial time and provides the fraction

guarantee in Lemma 3.5.2.

3.6 Discussion and Conclusions

In this section, we discuss some implications of the results derived in the previous sections

and highlight differences between the selection performances in HD and full-duplex diamond

networks. We believe that the reason for this different behavior is that in HD the schedule

plays a key role, i.e., removing some of the relays can change the optimal schedule for the

approximate capacity of the remaining network.

1) In HD the guarantee on max
K⊆[1:N ]

C̃NK

C̃N[1:N ]

for |K| = k ∈ [1 : 2] decreases as N

increases. We here show that in HD, for the case |K| = k ∈ [1 : 2], the worst-case fraction

max
K⊆[1:N ]

C̃NK

C̃N[1:N ]

depends on N and decreases as N increases. This represents a surprising
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difference with respect to full-duplex – where the worst case ratio for a fixed value of k

does not depend on N – and shows that full-duplex and HD relay networks have a different

nature. In particular, from the result in Theorem 3.5.1 for |K| = k ∈ [1 : 2] and N = k + 1,

we have
C̃NK

C̃N[1:N ]

≥ k
k+1

as in full-duplex [NOF14, Theorem 1]. However, in the regime N � 1,

these values reduce to
C̃NK

C̃N[1:N ]

≥ 1
4

for k = 1 and to
C̃NK

C̃N[1:N ]

≥ 1
2

for k = 2. Notice that these

values coincide with the lower bounds: (i) of k
2(k+1)

for k = 1, which is readily obtained from

the result in [NOF14] by letting the selected relay listen for half of the time and transmit

for the other half of the time; (ii) derived in [BF14a] for the case k = 2, where the 2 selected

relays operate in a complementary fashion. In particular, we have

Theorem 3.6.1. There exist Gaussian HD diamond networks for which, when N � 1, the

best subnetwork NK gives

C̃NK

C̃N[1:N ]

=





1
4
|K| = 1,

1
2
|K| = 2.

(3.19)

Proof. Consider the network in (3.16). The best subnetwork NK with |K| = 1 satisfies

C̃NK

C̃N[1:N ]

=
N + 2

4N
,

which for N � 1 gives
C̃NK

C̃N[1:N ]

= 1
4
, while the best subnetwork NK with |K| = 2 relays satisfies

C̃NK

C̃N[1:N ]

=
N + 2

2N
,

which for N � 1 gives
C̃NK

C̃N[1:N ]

= 1
2
. We refer the reader to Appendix 3.7.5 for a detailed

computation of these values.

Table 3.2 summarizes the results presented above for k ∈ [1 : 2]. In particular, Table 3.2

shows that in full-duplex, the worst-case fraction guarantee does not depend on N , while in

HD the worst-case guarantee decreases as N increases.
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Table 3.2: Worst-case fraction guarantees in full-duplex and HD for k ∈ [1 : 2].

Full-Duplex Half-Duplex

N = k + 1
k

k + 1

k

k + 1

N � 1
k

k + 1





1/4 k = 1,

1/2 k = 2

2) The best HD and full-duplex subnetworks are not necessarily the same. We

next provide a couple of examples where we show that the best relay in HD and in full-

duplex might not be necessarily the same. As a first example, consider the Gaussian 2-relay

diamond network depicted in Fig. 3.4(a). It is not difficult to see that if the relays operate in

full-duplex, then the first relay is the best and it achieves Shannon capacity CFD
N{1} = 1

2
, while

if the relays operate in HD then the second relay is the best giving C̃N{2} = 2/5×14/5
2/5+14/5

= 7/20

compared to C̃N{1} = 1×1/2
1+1/2

= 1/3 given by the first relay.

Tx

RN1

Rx

RN2

1
1
2

2
5

14
5

(a)

Tx

RN1

RxRN2

RN3

L!1

`

`

` `

`

(b)

Figure 3.4: Network examples where the best full-duplex and HD subnetworks are differ-

ent. Link labels represent the point-to-point link capacities and the best HD single-relay

subnetwork is marked with dashed links.

As a second example consider the Gaussian 3-relay diamond network shown in Fig. 3.4(b).

When the N = 3 relays operate in full-duplex, they all have the same single-relay Shannon

capacity given by CFD
N{i} = `,∀i ∈ [1 : 3]. This means that, by selecting any of the relays at

random, we get the same performance guarantee. Differently, when the N = 3 relays operate
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in HD, the third relay is strictly better giving C̃N{3} = ` compared to C̃N{i} = `/2, ∀i ∈ [1 : 2].

These two simple examples suggest that, when the relays operate in HD, choosing the best

subnetwork based on the full-duplex capacities might not be a smart choice. For instance,

in the second example if we select either the first or the second relay which is optimal in

full-duplex, we would incur a loss of 50% in the approximate capacity compared to selecting

the third relay.

3) Worst-case networks in HD and full-duplex are not necessarily the same.

Consider the network example in (3.16) and suppose that we want to select N − 1 relays.

We already showed (see Section 3.5) that, by selecting any (N − 1)-relay subnetwork NK
with |K| = N−1, we get C̃NK = N−1

N
C̃N[1:N ]

, i.e., the network in (3.16), when operated in HD,

represents a worst-case scenario. Now, suppose that we operate the network in (3.16) in full-

duplex. Then, it is not difficult to see that there always exists an (N − 1)-relay subnetwork

NK with |K| = N − 1, that guarantees C̃FD
NK = C̃FD

N[1:N ]
, which is greater than the worst-case

ratio of N−1
N

proved in [NOF14, Theorem 1]. This suggests that tight network examples for

HD with general values of k and N might not be the same as those in full-duplex; this adds

an extra degree of complication in the study of the network simplification problem in HD

since the approximate capacity in HD (because of the required optimization over the 2N

listen/transmit states) cannot be computed directly as in the full-duplex counterpart.

In this chapter, we investigated the network simplification problem in an N -relay Gaus-

sian HD diamond network. We proved that there always exists a subnetwork of k = N − 1

relays that retains at least a fraction N−1
N

of the approximate capacity of the full network.

This result was derived by showing that any optimal schedule for the approximate capacity

of the full network can be used by at least one of the N subnetworks of k = N − 1 relays

to satisfy the worst performance guarantee. Moreover, we provided an example of a class

of Gaussian HD diamond networks for which this fraction is tight. Then, by leveraging

the results obtained for k = N − 1, we derived lower bounds on the fraction guarantee for

general k ∈ [1 : N ], which are tighter than currently available bounds when k > N
2

. Finally,
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we showed that, when we select k = 1 or k = 2 relays, the fraction guarantee decreases as

N increases; this is a surprising difference between the network simplification problem in

HD and full-duplex. These results were obtained by leveraging properties of submodular

functions and diamond networks that were derived here and that might be of independent

interest for other applications.

3.7 Appendices

3.7.1 Proof of Lemma 3.3.1 (Partition lemma)

In order to prove the result in the partition lemma, we make use of the following lemma,

valid for Gaussian full-duplex diamond networks.

Lemma 3.7.1. For any Gaussian full-duplex diamond network N[1:N ] and K ⊆ [1 : N ], we

have that

C̃FD
N[1:N ]

≤ C̃FD
NK + C̃FD

N[1:N ]\K
, (3.20)

where

C̃FD
N[1:N ]

= min
AF⊆[1:N ]

{
max
i∈AF

`i + max
i∈N[1:N ]\AF

ri

}

C̃FD
NMj

= min
Aj⊆Mj

{
max
i∈Aj

`i + max
i∈Mj\Aj

ri

}
, ∀j ∈ [1 : 2],

with M1 = K and M2 = [1 : N ]\K.

Proof. For any two sets A1 and A2, where Ai ⊆Mi,∀i ∈ [1 : 2], we have that

max
i∈A1

`i + max
i∈A2

`i + max
i∈M1\A1

ri + max
i∈M2\A2

ri

≥ max
i∈A1∪A2

`i + max
i∈(M1\A1)∪(M2\A2)

ri

(a)
= max

i∈A1∪A2

`i + max
i∈(M1∪M2)\(A1∪A2)

ri
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A1 A2

M1 M2

[1 : N ]

bAF

Figure 3.5: Illustration of the relationship between sets in (3.22).

(b)
= max

i∈ÂF

`i + max
i∈[1:N ]\ÂF

ri

≥ min
AF⊆[1:N ]

{
max
i∈AF

`i + max
i∈[1:N ]\AF

ri

}
= C̃FD

N[1:N ]
. (3.21)

The equality in (b) follows by defining ÂF = A1 ∪ A2 and from the fact that M1 ∪M2 =

[1 : N ]. The equality in (a) appeals to the following property (recall that M1 and M2 are

disjoint and Ai ⊆Mi, i ∈ [1 : 2])

(M1\A1) ∪ (M2\A2)
(c)
= (M1\ (A1 ∪ A2)) ∪ (M2\ (A1 ∪ A2)) (3.22)

(d)
= (M1 ∪M2) \ (A1 ∪ A2) , (3.23)

where the equality in (c) follows since M1 ∩ A2 = ∅ and M2 ∩ A1 = ∅ and the equality in

(d) follows since (B\A) ∪ (C\A) = (B ∪ C) \A. An illustration of the relationship in (3.22)

is shown in Fig. 3.5. The result in (3.21) is valid ∀A1 ⊆M1 and ∀A2 ⊆M2, hence also for

the minimum cuts of the networks NM1 and NM2 , i.e.,

C̃FD
NM1

+ C̃FD
NM2

= C̃FD
NK + C̃FD

N[1:N ]\K
≥ C̃FD

N[1:N ]
.

We now show how the result in Lemma 3.7.1, valid for Gaussian full-duplex diamond

networks, extends to the HD case. For a given schedule λ of the full networkN[1:N ], from (3.7)
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we have that

RλN[1:N ]
= min
AF⊆[1:N ]

∑

s∈[0:1]N

λs

(
max
i∈AF

`′i,s + max
i∈[1:N ]\AF

r′i,s

)
,

where `′i,s and r′i,s are defined in (3.8). From the result in (3.21), ∀A1 ⊆M1 and ∀A2 ⊆M2,

with M1 = K and M2 = [1 : N ]\K, we have that

∑

s∈[0:1]N

λs

[
max
i∈A1

`′i,s + max
i∈A2

`′i,s + max
i∈M1\A1

r′i,s + max
i∈M2\A2

r′i,s

]

≥
∑

s∈[0:1]N

λs

(
max
i∈ÂF

`′i,s + max
i∈[1:N ]\ÂF

r′i,s

)
≥ RλN[1:N ]

,

where ÂF = A1 ∪ A2. This implies

RλN[1:N ]
≤ RλNM1

+ RλNM2
= RλNK + RλN[1:N ]\K

.

This concludes the proof of Lemma 3.3.1.

3.7.2 Proof of Lemma 3.3.2

Let f be a submodular set function defined on Ω (see Definition 3.3.1). We want to prove

that for any collection of n sets Ai ⊆ Ω,

n∑

i=1

f (Ai) ≥
n∑

j=1

f
(
E (n)
j

)
,

where E (n)
j is the set of elements that appear in at least j sets Ai, i ∈ [1 : n]. The proof is

by induction. For the base case (i.e., n = 1) we clearly have that f(A1) = f
(
E (1)

1

)
. For the

proof of the induction step, we prove and use the following property of submodular functions.

Property 3.7.1. Let f be a submodular function. Then, ∀n > 0 and 0 ≤ k < n,

f



⋃

I⊆[1:n]
|I|=k

(
An+1

⋂

i∈I

Ai
)

+ f




⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)



63



≥ f




⋃

I⊆[1:n+1]
|I|=k+1

(⋂

i∈I

Ai
)

+ f




⋃

I⊆[1:n]
|I|=k+1

(
An+1

⋂

i∈I

Ai
)

 . (3.24)

We now use Property 3.7.1, whose proof can be found at the end of this appendix, to

prove the induction step. Assume that for some n > 0, we have that

n∑

i=1

f (Ai) ≥
n∑

j=1

f
(
E (n)
j

)
. (3.25)

Our goal is to prove that

n+1∑

i=1

f (Ai) ≥
n+1∑

j=1

f
(
E (n+1)
j

)
.

From (3.25), by adding the positive quantity f (An+1) to both sides of the inequality, we

have that

n∑

i=1

f (Ai) + f (An+1) ≥
n∑

j=1

f
(
E (n)
j

)
+ f (An+1) ,

which can be equivalently rewritten as

n∑

i=1

f (Ai) + f (An+1) ≥ f (An+1) +
n−1∑

k=0

f




⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)



︸ ︷︷ ︸
f
(
E(n)
k+1

)

= f (An+1) + f



⋃

I⊆[1:n]
|I|=1

(⋂

i∈I

Ai
)

+

n−1∑

k=1

f




⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)

 .

The final step in the proof follows by inductively applying Property 3.7.1 on the underlined

terms with the appropriate k as shown in what follows,

f (An+1) + f



⋃

I⊆[1:n]
|I|=1

(⋂

i∈I

Ai
)

+

n−1∑

k=1

f




⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)


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(k=0)

≥ f




⋃

I⊆[1:n+1]
|I|=1

(⋂

i∈I

Ai
)

+ f



⋃

I⊆[1:n]
|I|=1

(
An+1

⋂

i∈I

Ai
)

+ f



⋃

I⊆[1:n]
|I|=2

(⋂

i∈I

Ai
)



+
n−1∑

k=2

f




⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)



(k=1)

≥
2∑

`=1

f




⋃

I⊆[1:n+1]
|I|=`

(⋂

i∈I

Ai
)

+ f



⋃

I⊆[1:n]
|I|=2

(
An+1

⋂

i∈I

Ai
)

+ f



⋃

I⊆[1:n]
|I|=3

(⋂

i∈I

Ai
)



+
n−1∑

k=3

f




⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)



...

(k=n−1)

≥
n∑

`=1

f




⋃

I⊆[1:n+1]
|I|=`

(⋂

i∈I

Ai
)

+ f



⋃

I⊆[1:n]
|I|=n

(
An+1

⋂

i∈I

Ai
)



=
n+1∑

`=1

f




⋃

I⊆[1:n+1]
|I|=`

(⋂

i∈I

Ai
)

 =

n+1∑

j=1

f
(
E (n+1)
j

)
.

This concludes the proof of Lemma 3.3.2.

3.7.2.1 Proof of Property 3.7.1

By using properties of submodular functions and set operations we have

f



⋃

I⊆[1:n]
|I|=k

(
An+1

⋂

i∈I

Ai
)

+ f




⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)


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(a)

≥f






⋃

I⊆[1:n]
|I|=k

(
An+1

⋂

i∈I

Ai
)


⋃


⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)






+ f






⋃

I⊆[1:n]
|I|=k

(
An+1

⋂

i∈I

Ai
)


⋂


⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)






(b)
=f




⋃

I⊆[1:n+1]
|I|=k+1

(⋂

i∈I

Ai
)

+ f






⋃

I⊆[1:n]
|I|=k

(
An+1

⋂

i∈I

Ai
)


⋂


⋃

I⊆[1:n]
|I|=k+1

(⋂

i∈I

Ai
)






(c)
= f




⋃

I⊆[1:n+1]
|I|=k+1

(⋂

i∈I

Ai
)



︸ ︷︷ ︸
T1

+f



An+1

⋂


⋃

J⊆[1:n]
|J |=k

⋂

j∈J

Aj



⋂


⋃

I⊆[1:n]
|I|=k+1

⋂

i∈I

Ai




︸ ︷︷ ︸
S



,

where: (i) the inequality in (a) follows from the definition of submodular function (see

Definition 3.3.1); (ii) the equality in (b) follows by combining the union in the first term

of the inequality in (a); (iii) the equality in (c) follows from the distributive property of

intersection over unions. Note that T1 is already the first term we need in the inequality. To

arrive at the second term, we shall prove that

S =
⋃

I⊆[1:n]
|I|=k+1

(
An+1

⋂

i∈I

Ai
)
. (3.26)

Towards this end, notice that the distributive property of intersection over unions gives

An+1

⋂


⋃

J⊆[1:n]
|J |=k

⋂

j∈J

Aj



⋂


⋃

I⊆[1:n]
|I|=k+1

⋂

i∈I

Ai




= An+1

⋂ ⋃

I⊆[1:n]
|I|=k+1




(⋂

i∈I

Ai
)⋂




⋃

J⊆[1:n]
|J |=k

⋂

j∈J

Aj





 . (3.27)
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Now note that ∀I ⊆ [1 : n] with |I| = k + 1, ∃ JI ⊂ I with |JI | = k. This observation

implies that, for each I, we have

(⋂

i∈JI

Ai
)⋂




⋃

J⊆[1:n]
|J |=k

⋂

j∈J

Aj


 =

(⋂

i∈JI

Ai
)⋂




(⋂

i∈JI

Ai
)⋃




⋃

L⊆[1:n]
L6=JI
|L|=k

⋂

`∈L

A`







(c)
=
⋂

i∈JI

Ai,

where the equality in (c) follows since U ∩ (U ∪ V) = U . As a consequence, for each I, we

have

(⋂

i∈I

Ai
)⋂




⋃

J⊆[1:n]
|J |=k

⋂

j∈J

Aj


 =


 ⋂

i∈I\JI

Ai


⋂

(⋂

i∈JI

Ai
)⋂




⋃

J⊆[1:n]
|J |=k

⋂

j∈J

Aj




=


 ⋂

i∈I\JI

Ai


⋂

(⋂

i∈JI

Ai
)

=

(⋂

i∈I

Ai
)
. (3.28)

Finally, by applying (3.28) for each I in (3.27), we get

S = An+1

⋂


⋃

J⊆[1:n]
|J |=k

⋂

j∈J

Aj



⋂


⋃

I⊆[1:n]
|I|=k+1

⋂

i∈I

Ai




= An+1

⋂ ⋃

I⊆[1:n]
|I|=k+1




(⋂

i∈I

Ai
)⋂




⋃

J⊆[1:n]
|J |=k

⋂

j∈J

Aj







= An+1

⋂



⋃

I⊆[1:n]
|I|=k+1

⋂

i∈I

Ai


 =

⋃

I⊆[1:n]
|I|=k+1

(
An+1

⋂

i∈I

Ai
)
,

where the last equality follows by using the distributive property of intersection over unions.

This proves (3.26) hence concluding the proof of Property 3.7.1.

3.7.3 Proof of Lemma 3.3.3

From the statement of Lemma 3.3.3, recall that Ai ⊆ [1 : N ]\{i}. Throughout the proof,

we let Bi = ([1 : N ]\{i})\Ai, ∀i ∈ [1 : N ], f (A) = maxi∈A `i and g (A) = maxi∈A ri, with
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A ⊆ [1 : N ]. It is not difficult to see that f and g are submodular functions. As a result, we

have

N∑

j=1

(
max
i∈Aj

`i + max
i∈([1:N ]\{j})\Aj

ri

)

=
N∑

j=1

[f (Aj) + g (Bj)]

(a)

≥
N∑

j=1

[
f
(
E (N)
j

)
+ g

(
F (N)
j

)]

(b)
=

N−1∑

j=1

[
f
(
E (N)
j

)
+ g

(
F (N)
j

)]

(c)
=

N−1∑

j=1

[
f
(
E (N)
j

)
+ g

(
F (N)
N−j

)]
, (3.29)

where: (i) the inequality in (a) follows from Lemma 3.3.2 with E (N)
j (respectively, F (N)

j )

being the set of elements that appear in at least j sets Ai, i ∈ [1 : N ] (respectively, Bi); (ii)

the equality in (b) follows because E (N)
N = F (N)

N = ∅ since
⋂N
i=1([1 : N ]\{i}) = ∅; (iii) the

equality in (c) follows by simply reordering the sum.

Fix an element i ∈ [1 : N ]. By definition of sets Ai, Bi, it holds that i /∈ Ai and i /∈ Bi.
Furthermore, for any j ∈ [1 : N ] with j 6= i, we have i ∈ Aj if and only if i /∈ Bj. Indeed,

if i ∈ Aj, then i /∈ Bj since Aj and Bj are by definition disjoint; if i /∈ Aj then, since i 6= j,

we have i ∈ ([1 : N ]\{j})\Aj = Bj. Thus, the element i belongs to exactly (N − 1) sets

among the 2N sets in the collection of all Aj, Bj sets for j ∈ [1 : N ]. We now claim that

[1 : N ]\E (N)
j = F (N)

N−j, j ∈ [1 : N − 1]. Consider an element x ∈ [1 : N ]; then:

1. Let x ∈ E (N)
j , i.e., x appears in at least j sets Ai. Since x appears exactly (N − 1)

times in Ai and Bi, this means that x appears in at most (N − 1) − j sets Bi, i.e.,

x /∈ F (N)
N−j. In other words, x ∈ [1 : N ]\F (N)

N−j. Since this is true ∀x ∈ E (N)
j , it implies

that E (N)
j ⊆ [1 : N ]\F (N)

N−j and as a result [1 : N ]\E (N)
j ⊇ F (N)

N−j.

2. Let x /∈ E (N)
j , i.e., x appears in at most (j− 1) sets Ai; since x in total appears exactly
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(N−1) times in Ai and Bi, this means that x appears in at least (N−1)−(j−1) sets Bi,
i.e., x ∈ F (N)

N−j. Since this is true ∀x ∈ [1 : N ]\E (N)
j , it implies that [1 : N ]\E (N)

j ⊆ F (N)
N−j.

The points in 1) and 2) imply that [1 : N ]\E (N)
j = F (N)

N−j, ∀j ∈ [1 : N − 1]. Applying this

equality into (3.29), we obtain

N∑

j=1

(
max
i∈Aj

`i + max
i∈([1:N ]\{j})\Aj

ri

)
≥

N−1∑

j=1

[
f
(
E (N)
j

)
+ g

(
F (N)
N−j

)]

=
N−1∑

j=1

[
f
(
E (N)
j

)
+ g

(
[1 : N ]\E (N)

j

)]
=

N−1∑

j=1

(
max
i∈AFj

`i + max
i∈[1:N ]\AFj

ri

)
,

where we let AFj
= E (N)

j . Since throughout the proof we made no assumptions on the values

of (`i, ri), then the sets AFj
do not depend on the values of (`i, ri). This concludes the proof

of Lemma 3.3.3.

3.7.4 Proof of Lemma 3.5.1

Let λ be a schedule (non necessarily optimal) of the full network N[1:N ] with N relays.

Denote by A?j the minimum cut of the network N̄j when operated with the ‘natural’ schedule

constructed from λ. Then, by following the same steps as in the example in Section 3.2,

from (3.7) we obtain

N∑

i=1

RλN̄i
=

∑

s∈[0:1]N

λs

[
N∑

j=1

(
max
i∈A?

j

`′i,s + max
i∈([1:N ]\{j})\A?

j

r′i,s

)]
,

where `′i,s and r′i,s are defined in (3.8). From the result in Lemma 3.3.3 we know that

∃
{
AFj

}
, j ∈ [1 : N − 1], such that for each s ∈ [0 : 1]N :

N∑

j=1

(
max
i∈A?

j

`′i,s + max
i∈([1:N ]\{j})\A?

j

r′i,s

)
≥

N−1∑

j=1

(
max
i∈AFj

`′i,s + max
i∈[1:N ]\AFj

r′i,s

)
,

where AFj
⊆ [1 : N ], ∀j ∈ [1 : N − 1]. Additionally, from Lemma 3.3.3 we have that AFj

is

independent of (`′i,s, r
′
i,s) and is therefore independent of (`i, ri) and of the state s. Hence

N∑

i=1

RλN̄i
=

∑

s∈[0:1]N

λs

[
N∑

j=1

(
max
i∈A?

j

`′i,s + max
i∈([1:N ]\{j})\A?

j

r′i,s

)]
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≥
∑

s∈[0:1]N

λs

[
N−1∑

j=1

(
max
i∈AFj

`′i,s + max
i∈[1:N ]\AFj

r′i,s

)]

=
N−1∑

j=1

∑

s∈[0:1]N

λs

(
max
i∈AFj

`′i,s + max
i∈[1:N ]\AFj

r′i,s

)

≥ (N − 1) min
A⊆[1:N ]




∑

s∈[0:1]N

λs

(
max
i∈A

`′i,s + max
i∈[1:N ]\A

r′i,s

)


= (N − 1)RλN[1:N ]
.

This completes the proof of Lemma 3.5.1.

3.7.5 Detailed Analysis for the Network in (3.16)

In this section, we analyze in details the network in (3.16). We start by deriving an upper

bound and a lower bound on the approximate capacity C̃N[1:N ]
for the network described

in (3.16) and show they are both equal to one, hence proving C̃N[1:N ]
= 1. A trivial upper

bound on C̃N[1:N ]
is given by C̃FD

N[1:N ]
, i.e., C̃N[1:N ]

≤ C̃FD
N[1:N ]

. It is not difficult to see that, for

the network in (3.16), C̃FD
N[1:N ]

= 1, which implies C̃N[1:N ]
≤ 1.

We now derive a lower bound on C̃N[1:N ]
. We start by considering even values for N . Let

the network in (3.16) operate only in 2 states with the same duration, namely,

λ00 . . . 0︸ ︷︷ ︸
N
2

11 . . . 1︸ ︷︷ ︸
N
2

= λ11 . . . 1︸ ︷︷ ︸
N
2

00 . . . 0︸ ︷︷ ︸
N
2

=
1

2
.

In other words, half of the time the first N
2

relays listen, while the remaining N
2

relays transmit

and half of the time the opposite occurs. Let RE
N[1:N ]

be the corresponding approximate

rate; clearly we have C̃N[1:N ]
≥ RE

N[1:N ]
. Let {M1,M2} be a partition of [1 : N ], where

M1 =
[
1 : N

2

]
. With this, we have

RE
N[1:N ]

= min
A⊆[1:N ]

{
1

2
max

i∈A∩M1

`i +
1

2
max

i∈Ac∩M2

ri +
1

2
max

i∈A∩M2

`i +
1

2
max

i∈Ac∩M1

ri

}

=
1

2
min
A⊆[1:N ]

{[
max

i∈A∩M1

`i + max
i∈Ac∩M1

ri

]
+

[
max

i∈A∩M2

`i + max
i∈Ac∩M2

ri

]}
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≥ 1

2

[
min
A⊆[1:N ]

{
max

i∈A∩M1

`i + max
i∈Ac∩M1

ri

}
+ min
A⊆[1:N ]

{
max

i∈A∩M2

`i + max
i∈Ac∩M2

ri

}]

=
1

2

(
C̃FD
N[1:N ]

+ C̃FD
N[1:N ]

)
= 1.

Hence, for even values of N , we have C̃N[1:N ]
≥ 1, which together with the upper bound

C̃N[1:N ]
≤ 1, implies C̃N[1:N ]

= 1. We now consider odd values for N . Let the network

in (3.16) operate only in 2 states with the same duration, namely

λ00 . . . 0︸ ︷︷ ︸
N−1

2

11 . . . 1︸ ︷︷ ︸
N−1

2

1︸︷︷︸
1

= λ11 . . . 1︸ ︷︷ ︸
N−1

2

00 . . . 0︸ ︷︷ ︸
N−1

2

1︸︷︷︸
1

=
1

2
.

In other words, the N -th relay is always transmitting, while half of the time the first N−1
2

relays listen, while the remaining N−1
2

relays transmit and half of the time the opposite

occurs. Let RO
N[1:N ]

be the corresponding approximate rate; clearly we have C̃N[1:N ]
≥ RO

N[1:N ]
.

Let M1 =
[
1 : N−1

2

]
and M2 =

[
N+1

2
: N − 1

]
. With this, we have

RO
N[1:N ]

= min
A⊆[1:N ]

{
1

2
max

i∈A∩M1

`i +
1

2
max

i∈Ac∩(M2∪{N})
ri +

1

2
max

i∈A∩M2

`i +
1

2
max

i∈Ac∩(M1∪{N})
ri

}

=
1

2
min
A⊆[1:N ]

{[
max

i∈A∩M1

`i + max
i∈Ac∩(M1∪{N})

ri

]
+

[
max

i∈A∩M2

`i + max
i∈Ac∩(M2∪{N})

ri

]}

≥ 1

2

[
min
A⊆[1:N ]

{
max

i∈A∩M1

`i + max
i∈Ac∩(M1∪{N})

ri

}
+ min
A⊆[1:N ]

{
max

i∈A∩M2

`i + max
i∈Ac∩(M2∪{N})

ri

}]

(a)
=

1

2

[
min
A⊆[1:N ]

{
max

i∈A∩(M1∪{N})
`i + max

i∈Ac∩(M1∪{N})
ri

}

+ min
A⊆[1:N ]

{
max

i∈A∩(M2∪{N})
`i + max

i∈Ac∩(M2∪{N})
ri

}]
=

1

2

(
C̃FD
N[1:N ]

+ C̃FD
N[1:N ]

)
= 1,

where the equality in (a) follows since the N -th relay is never in the minimum cut A as

otherwise the approximate capacity would be infinity (since from (3.16) we have `N →∞).

Hence, also for odd values of N we have C̃N[1:N ]
≥ 1, which together with the upper bound

C̃N[1:N ]
≤ 1, implies C̃N[1:N ]

= 1. This concludes the proof that C̃N[1:N ]
= 1 for the network

in (3.16).

Now, assume that N = 4t− 2, where t ∈ N\{0} and with this suppose we want to select

the best subnetwork NK with |K| = 1 in the network N[1:N ] in (3.16), i.e., we want to select
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the best relay. From (3.6) we obtain that the single-relay approximate capacity of the i-th

relay with i ∈
[
1 :
⌊
N
2

⌋]
is given by

C̃N{i} = C̃N{bN/2c+i} =
`iri
`i + ri

=
2i (N − 2i+ 2)

N (N + 2)
, (3.30a)

if N is odd: C̃N{N} =
1

N
. (3.30b)

It is not difficult to see that the expression of C̃N{i} in (3.30) achieves its maximum value for

i? =
N + 2

4
, (3.31)

for which

C̃N{i?} =
2N+2

4

(
N − 2N+2

4
+ 2
)

N (N + 2)
=

N+2
2

(
2N+4

4

)

N(N + 2)
=
N + 2

4N
=

t

4t− 2
, (3.32)

which for t→∞ gives

C̃N{i?}=
1

4
=⇒ C̃NK=

1

4
C̃N[1:N ]

, |K| = 1.

Now, for the same network, suppose we want to select the best subnetwork NK with |K| = 2,

i.e., we want to select the best 2-relay subnetwork. Clearly from the partition lemma, if we

select relays number i ∈ [1 : N ] and j ∈ [1 : N ] with i 6= j a trivial upper bound on the

approximate capacity C̃N{i,j} is given by

C̃N{i,j} ≤ C̃N{i} + C̃N{j} ≤ 2C̃N{i?} .

Consider relays number i? and j? = i? + N
2

, where i? is defined in (3.31). By substituting j?

into (3.16) we obtain

`i? = `j? = ri? = rj? =
2N+2

4

N
,

which implies C̃N{i?} = C̃N{j?} , where C̃N{i?} is defined in (3.32) and from [BMK14] we have

C̃N{i?,j?} = C̃N{i?} + C̃N{j?} = 2C̃N{i?} =
t

2t− 1
, (3.33)
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which for t→∞ gives

C̃N{i?,j?}=
1

2
=⇒ C̃NK=

1

2
C̃N[1:N ]

, |K| = 2.

So, the network in (3.16), for N = 4t − 2, where t ∈ N\{0}, represents an example for

the network described in the statement of Theorem 3.6.1. This concludes the proof of

Theorem 3.6.1.
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CHAPTER 4

The Approximate Capacity of Half-Duplex Line

Networks

In this chapter we focus on the capacity of Half-Duplex (HD) line networks (routes), and

the complexity of finding the route with the best capacity that connects a source and a

destination within a larger relay network. First, we show that the approximate capacity

(optimal up to a constant additive gap that only depends on the number of nodes in the

network) of an HD N -relay line network equals half the minimum of the harmonic means of

the point-to-point link capacities of each two consecutive links in the path. We then prove

that the N + 1 listen/transmit states (out of the 2N possible ones) sufficient to characterize

the approximate capacity can be found in linear time. In the second part of the chapter, we

show that the problem of finding the path that has the largest HD approximate capacity in

a network that can be represented as a graph is NP-hard. We show, however, that if the

number of cycles in the network is polynomial in the number of nodes, then a polynomial

time algorithm can indeed be designed.

4.1 Introduction

In recent years, promising advances have been made in designing Full-Duplex (FD) transceivers

[DSA14, ESZ16]. However, the proposed FD designs still require complex self-interference

cancellation techniques. Due to this, in the near future it is envisioned that nodes will

continue to operate in Half-Duplex (HD) mode in order to enable low-cost communica-
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D
N+1N

Figure 4.1: The line network R with N relays, source S and destination D.

tions – as recently announced, for example, in 3GPP Rel-13 [WLA17]. A widespread

approach to route information from a source node to a destination node in an HD net-

work is to find the path with the largest FD capacity and then operate the path in HD

mode [AHR04, DAB05, BMJ98]. This approach is used because of the simple nature of the

FD capacity expression, which is given by the minimum of the point-to-point link capacities

in the path, and thus can be distributively computed in linear time. However, selecting a

route based on its FD capacity may be suboptimal if then the nodes in the selected path are

operated in HD mode.

In this chapter we investigate the problem of routing in HD networks. We address the

three following fundamental questions: (i) Can a closed-form expression of the capacity (or

of an approximation of it) of an N -relay HD line network be derived with the same promis-

ing features of the FD counterpart? (ii) Can the linear number of active listen/transmit

configuration states sufficient to characterize the HD capacity (or an approximation of it) be

found efficiently in polynomial time? (iii) Does there exist a low-complexity algorithm that

finds the route in a network with the largest HD capacity (or an approximation of it)?

Our main contributions can be summarized as follows:

1. We derive the HD approximate capacity of the N -relay line network R (shown in

Fig. 4.1) in closed form and show it is given by half of the minimum of the harmonic

means of the point-to-point capacities of each two consecutive links in the path, that

is

CR = min
i∈[1:N ]

{
`i`i+1

`i + `i+1

}
, (4.1)
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where `i is the point-to-point capacity of the link between node i− 1 and node i. This

approximate capacity expression has the same appealing features of the FD counter-

part, i.e., it can be evaluated in linear time and distributively computed among the

nodes in the path. To the best of our knowledge, this represents the first approximate

capacity characterization in closed form for a class of HD relay networks with general

number of relays.

2. We prove that, with only the knowledge of the network topology (i.e., that the N relays

are arranged in a line), the cardinality of the smallest search space of states over which

a schedule that achieves the approximate capacity can be found is exponential in N .

In other words, to reduce the cardinality of this search space to be polynomial in the

number of relays, it is crucial to leverage the strength of the channel parameters.

3. We design an algorithm that allows to compute a simple schedule (i.e., with at most

N + 1 active states) that achieves the approximate capacity of the N -relay HD line

network with complexity O(N). This result sheds light on how to operate a class of

HD relay networks close to the capacity with the minimum number of state switches.

Moreover, to the best of our knowledge, this is the first result that provides an efficient

way to find a simple schedule optimal for approximate capacity.

4. We prove that the problem of finding the route with the largest HD approximate

capacity in a relay network is NP-hard in general. Our proof is based on a reduction

from the 3SAT problem [Kar72], which is a special case of the well-known SAT problem,

where the goal is to determine the satisfiability of a Boolean formula. The NP hardness

of HD routing represents a surprising difference from FD, for which polynomial time

algorithms exist to discover the path with the largest FD capacity, such as Dijkstra’s

algorithm [Dij59]. Intuitively, the NP-hardness in HD routing stems from the necessity

to avoid cycles in the network while discovering an HD path, which is not necessary

when finding a FD path.
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Table 4.1: Quantities of interest used throughout Chapter 4.

Quantity Definition

G Digraph representing a relay network

R Line network

LG Line digraph of the digraph G
P Path between two nodes

`i,j Point-to-point link capacity from node vi to node vj in G
`i Point-to-point link capacity from node vi−1 to node vi in R

CR (resp. CP) Approximate HD capacity of R (resp. P)

CλR Achievable HD rate for R with deterministic schedule λ

CFD
R (resp. CFD

P ) FD capacity of R (resp. P)

5. We show that, if the number of cycles in the network is polynomial in the total number

of nodes, then a polynomial time algorithm that discovers the path with the largest

HD approximate capacity can be designed. Thus, this represents a sufficient condition

for which HD routing can be efficiently solved. A relevant class of relay networks for

which this holds is the one of layered networks where the relays are arranged over L

layers of relays and a relay in a layer can only communicate to the relays in the next

layer.

Chapter Organization. Section 4.2 illustrates the setting of our problem, describes known

capacity results for HD line networks and simplifies the approximate capacity expression for

HD line networks. Section 4.3 presents our main results and discusses their implications.

Section 4.4 proves the NP-hardness of finding the route with the largest HD approximate

capacity in a relay network. Section 4.5 describes special network classes for which a polyno-

mial time algorithm for finding the route with the largest HD approximate capacity exists.

Section 4.6 concludes the chapter. Some of the proofs are delegated to the Appendix.
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4.2 Half-Duplex Network Model

Table 4.1 summarizes and defines quantities that are used throughout the chapter.

We consider an HD relay network represented by the directed graph G where V(G) and

E(G) are the set of vertices (communication nodes) and the set of edges (point-to-point links)

in G, respectively. The point-to-point links between nodes in the network are assumed to

be non-interfering discrete memoryless channels. An edge connecting vertex vi to vertex vj

where vi, vj ∈ V(G) is denoted by ei,j. For each edge ei,j ∈ E(G), we represent its point-to-

point link capacity with `i,j > 0. Over the graph G with N + 2 vertices, information flows

from a source node S ∈ V(G) (denoted by v0) to a destination node D ∈ V(G) (denoted by

vN+1) with the help of the remaining N relay nodes. Each node in G operates in HD, i.e., it

cannot transmit and receive simultaneously.

A relay network is called a line network if its vertices are arranged in a path (or a

route) forming a cascade of non-interfering discrete memoryless channels1. The input/output

relation for the line network (denoted by R) with N relays can therefore be defined through

the conditional distribution

p

(
Y1, . . . , YN+1

∣∣∣∣∣(X0, S0), (X1, S1), . . . , (XN , SN), SN+1

)
=

N∏

i=0

p

(
Yi+1

∣∣∣∣∣(Xi, Si), Si+1

)
, (4.2)

where: (i) Xi (respectively, Yi) denotes the channel input (respectively, output) at node vi;

(ii) Si is the binary random variable which represents the state of node vi, i.e., if Si = 0 then

node vi is receiving, while if Si = 1 then node vi is transmitting; notice that S0 = 1 (i.e.,

the source always transmits) and SN+1 = 0 (i.e., the destination always receives). The line

network in (4.2) is a cascade of N discrete memoryless channels and as a result is physically

degraded [Are81]. Thus, the capacity of the line networkR is given by the cut-set bound that

can be achieved by decoding transmissions from node i at node i+1 before encoding them for

1A line network consists of a cascade of noisy channels, which make it a physically degraded channel.
Therefore, a node has a “cleaner” view of information with respect to a node that is next in the line and
thus, replacing directed edges with undirected ones does not increase the capacity.
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transmission further in the network as would typically happen with routing. This is exactly

how the standard decode-and-forward relaying scheme operates over the line network. In

particular, the capacity is given by the cut-set bound as

C
(cs)
R = max

p(X0,{Xi,Si}Ni=1)
min
A⊆[1:N ]

I(YN+1, {Yi}i∈A;X0, {Xi, Si}i∈Ac |{Xi, Si}i∈A), (4.3)

where A represents the set of relays on the destination side of the cut, and Ac = [1:N ]\A.

However, it is not clear what is the optimal distribution of {(Xi, Si)}Ni=0 needed to charac-

terize the capacity of the HD line network R in (4.3). The capacity of the HD line network

R described in (4.2) can however be approximated to within a constant gap GAP = N by

using deterministic schedules. In particular, to obtain this constant gap approximation we

upper bound the cut-set bound in (4.3) as

C
(cs)
R = max

p(X0,{Xi,Si}Ni=1)
min
A⊆[1:N ]

I(YN+1, {Yi}i∈A;X0, {Xi, Si}i∈Ac|{Xi, Si}i∈A)

(a)

≤ max
p(X0,{Xi,Si}Ni=1)

min
A⊆[1:N ]

I(YN+1, {Yi}i∈A;X0, {Xi}i∈Ac |{Xi}i∈A, {Si}Ni=1) +H({Si}Ni=1)

(b)

≤ max
p({Xi}Ni=0)|{Si})p({Si}Ni=1))

min
A⊆[1:N ]

I(YN+1, {Yi}i∈A;X0, {Xi}i∈Ac |{Xi}i∈A, {Si}Ni=1)

︸ ︷︷ ︸
CR

+ N︸︷︷︸
GAP

,

(4.4)

where: (a) follows from the chain rule of the mutual information and by the fact that, for

a discrete random variable, the entropy is a non-negative quantity (the mutual information

can hence be upper bounded by the entropy); and (b) follows by upper bounding the entropy

of a discrete random variable by the logarithm of its support.

This constant gap capacity approximation, which is derived using similar arguments as

in [ADT11, OD13, CTK14] for Gaussian HD relay networks, follows since a binary random

variable (i.e., a relay state) can only improve the capacity by at most 1 bit. Hence, since we

have N relays, the gap is at most equal to N . The first term CR in (4.4) which uses fixed

schedules (i.e., the exact values of {Si} are in the conditioning of the mutual information

term) is what we refer to as the approximate capacity. By using decode-and-forward with an
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optimal product input distribution and deterministic schedules, the approximate capacity

can be achieved and is expressed by

CR = max
λ∈Λ

min
A⊆[1:N ]

∑

s∈[0:1]N

λs
∑

i∈{N+1}∪{T c
s ∩A}

i−1∈{0}∪{Ts∩Ac}

`i, (4.5)

where: (i) the schedule λ ∈ R2N determines the fraction of time the network operates in

each of the states s ∈ [0 : 1]N , i.e., λs = Pr
(
{Si}Ni=1 = s

)
; (ii) Λ = {λ : λ ∈ R2N , λ ≥

0,
∑

s∈[0:1]N

λs = 1} is the set of all possible schedules; (iii) Ts (respectively, T cs = [1 : N ]\Ts)

represents the set of indices of relays transmitting (respectively, receiving) in the state s ∈
[0 : 1]N ; (iv) for ease of notation, we set `i = `i−1,i to denote the point-to-point capacity of

the link from vi−1 to vi. We can equivalently write the expression in (4.5) as

CR = max
λ∈Λ

min
A⊆[1:N ]

∑

s∈[0:1]N

λs
∑

i∈{N+1}∪A
i−1∈{0}∪Ac

ˆ̀(s)
i , (4.6)

where

ˆ̀(s)
i :=





`i, if i ∈ T cs ∪ {N+1} and i− 1 ∈ Ts ∪ {0}

0, otherwise.

(4.7)

Similarly, we denote with CλR, the HD rate achieved by the line network R when operated

with the deterministic schedule λ, i.e.,

CλR = min
A⊆[1:N ]

∑

s∈[0:1]N

λs
∑

i∈{N+1}∪A
i−1∈{0}∪Ac

ˆ̀(s)
i . (4.8)

Note that, for all possible schedules λ, CλR ≤ CR.

Definition 4.2.1 (Simple Schedule). We say that a schedule λ ∈ R2N is simple if the number

of active states, i.e., states s such that λs > 0 is at most N + 1. In other words, λ is simple

if ‖λ‖0 ≤ N + 1 (with ‖λ‖0 being the L0 norm of the vector λ). In [CTK16, Theorem 1],

it was shown that for any Gaussian HD relay network with arbitrary topology, there always

exists a simple schedule that is optimal for the approximate capacity.
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4.2.1 Fundamental Cuts in HD Line Networks

In this subsection, we prove that for the HD line network in (4.2), we can compute CR

in (4.6) by considering only N + 1 cuts (out of the 2N possible ones), which are the same

that one would need to consider if the network was operating in FD.

For the line network R, when all the N relays operate in FD, the FD capacity is given

by

CFD
R = min

A⊆[1:N ]

∑

i∈{N+1}∪A,
i−1∈{0}∪Ac

`i = min
i∈[1:N+1]

{`i} , (4.9)

that is, without explicit knowledge of the values of `i or their ordering, the number of cuts

over which we need to optimize (see CFD
R in (4.9)) is N + 1. We refer to these cuts as

fundamental. When states or cuts are referred to as fundamental of a certain type (e.g.,

maximum, minimum), we mean that they form the smallest set of that type that only

depends on the network topology (i.e., relays are arranged in a line) and is independent

of the actual values of the point-to-point link capacities. Let F denote the set of these

fundamental cuts (which are of the form A = [i : N ], i ∈ [1 : N ] or A = ∅). For any cut A
of the network

∑

i∈{N+1}∪F (A),
i−1∈{0}∪F (A)c

`i ≤
∑

i∈{N+1}∪A,
i−1∈{0}∪Ac

`i for some F (A) ∈ F . (4.10)

Furthermore, the function F (·) in (4.10) does not depend on the values of `i.

We next prove that the fundamental cuts in HD equal those in (4.9) for FD. Consider a

deterministic schedule λ. Then, by using (4.10) for the inner summation in (4.8), for each

s ∈ [0 : 1]N we have

∑

i∈{N+1}∪F (A),
i−1∈{0}∪F (A)c

ˆ̀(s)
i ≤

∑

i∈{N+1}∪A,
i−1∈{0}∪Ac

ˆ̀(s)
i . (4.11)
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Thus, we can simplify (4.8) as

CλR = min
A⊆[1:N ]

∑

s∈[0:1]N

λs
∑

i∈{N+1}∪A
i−1∈{0}∪Ac

ˆ̀(s)
i

= min
A∈F

∑

s∈[0:1]N

λs
∑

i∈{N+1}∪A
i−1∈{0}∪Ac

ˆ̀(s)
i = min

i∈[1:N+1]

(∑

s∈Si

λs

)
`i, (4.12)

where

Si ={s ∈ [0 : 1]N |i ∈ {N + 1} ∪ T cs , i− 1 ∈ {0} ∪ Ts}. (4.13)

The set Si ⊆ [0 : 1]N represents the collection of states that activate the i-th link. For

illustration, for a network with N = 3 we have

S1 = {000, 001, 010, 011},

S2 = {100, 101},

S3 = {010, 110},

S4 = {001, 011, 101, 111}.

Using the same arguments as in (4.12), we can similarly simplify the expression of CR in (4.6).

Thus, the result presented in this section explicitly provides the N + 1 cuts (out of the 2N

possible ones) over which it is sufficient to minimize in order to obtain CR in (4.6).

4.3 Main Results and Discussion

In this section, we present our main results and discuss their implications. Our first main

result, stated in Theorem 4.3.1 is two-fold: (i) it provides a closed-form expression for the

approximate capacity of the HD line network that can be evaluated in linear time, and (ii) it

shows the existence of a polynomial time algorithm that outputs a simple schedule optimal

for approximate capacity.

82



S DDS

Figure 4.2: Upper bound on CR for i = 2.

Theorem 4.3.1. For the N-relay HD line network R described in (4.2), a simple schedule

(i.e., with at most N + 1 active states) optimal for approximate capacity can be obtained in

O(N) time and the approximate capacity CR in (4.6) is given by (4.1).

Proof. It is not difficult to argue that the right-hand side of (4.1) is an upper bound on CR.

This can be seen by assuming that, for a given i ∈ [1 : N ], node vi−1 perfectly cooperates

with node v0 and node vi+1 perfectly cooperates with node vN+1 (see also Fig. 4.2 for an

illustrative example with i = 2 and N = 3). Clearly, the HD approximate capacity of this

new line network (equivalent to a single relay line network) is an upper bound on CR and

is given by max
0≤β≤1

min{(1− ti)`i , ti`i+1} = `i `i+1

`i+`i+1
, which is achieved by setting ti = `i

`i+`i+1
.

Since this is true for all i ∈ [1 : N ], then CR is less than or equal to the right-hand side

of (4.1).

To prove the achievability of (4.1), we assign a duration of time – denoted as TXi – for

each relay i ∈ [1 : N ] to be transmitting (and hence listening in the remaining time). The

transmit period TXi assigned to relay i is parameterized by ti and is given by the following

period assignment

TXi =





[0, ti], i is even,

[1− ti, 1], i is odd,

(4.14)

where ti =
`i

`i + `i+1

,∀i ∈ [1 : N ]. We denote the time spent by relay i listening as RXi =

[0, 1]\TXi.
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It is not difficult to see that, with this time allocation, the network changes its state in

at most N points in time given by the values ti,∀i ∈ [1 : N ]. Thus the proposed schedule

has at most N +1 states. Furthermore, the schedule can be created in O(N). What remains

to show is that the proposed schedule achieves the rate given in (4.1). Towards this end,

we need to compute the duration of time γi, i ∈ [1 : N ], for which the link of capacity `i is

active. This can be computed as follows

γi = |TXi−1 ∩ RXi|
(a)
=





`2
`1+`2

, i = 1,

min
(

`i+1

`i+`i+1
, `i−1

`i+`i−1

)
, i ∈ [2 : N ],

`N
`N+1+`N

, i = N + 1,

(4.15)

where (a) follows by: (i) computing the size of the intersection TXi−1 ∩ RXi, (ii) using

the ranges given in (4.14), and (iii) the fact that the source is always transmitting and the

destination is always listening. The rate achieved by the given schedule is hence equal to

CλR = min
i=[1:N+1]

{γi`i}, which gives the result in (4.1). This concludes the proof of Theo-

rem 4.3.1.

Remark 4.3.1. Although the described achievable scheme used for the proof of Theo-

rem 4.3.1 yields a rate equal to the approximate capacity in (4.1), it can be over-using non-

bottleneck links in the network. In particular, as described in the proof of Theorem 4.3.1, the

i-th link has an effective scheduled rate of min{ `i`i−1

`i+`i−1
, `i`i+1

`i+`i+1
}, i.e., the effective used rate

can be strictly greater than the network approximate capacity. In [ECF17], we proposed an

alternative approach for scheduling the relays which is based on edge-coloring and we proved

that it also achieves the approximate capacity in (4.1) by using the link of capacity `j with

an effective scheduled rate of minj∈[1:N ]{ `j`j+1

`j+`j+1
}. In other words, the edge-coloring algorithm

proposed in [ECF17] ensures that each link is active only for a duration of time that suf-

fices to achieve the approximate capacity. This property of edge-coloring has been recently

leveraged to develop queue-aware scheduling schemes [SC20] (assuming that the queues at

the nodes are not infinite) that achieve rates that approach the approximate capacity. �
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In what follows, we highlight some remarks to motivate the need to search for a simple

schedule for the line network and to explain why our search and schedule presented in the

proof of Theorem 4.3.1 cannot be simplified a priori.

Remark 4.3.2. [Are two active states sufficient for approximate capacity characterization?]

Consider a line network with one relay. For this network, the schedule that achieves the

approximate capacity has only two active states, which activate the links alternatively. Intu-

itively, one might think that this would extend to arbitrary number of relays. For example,

for a network with N = 3, can we achieve the approximate capacity by only considering the

listen/transmit states s1 = 010 and s2 = 101? The answer to this question is negative as we

illustrate through the following example with N = 3 and

`1 = 2r, `2 = 2r, `3 = 3r, `4 = r, (4.16)

where r > 0. By considering only the two aforementioned states, we can achieve a rate of

r 2
3
. However, by applying the expression in (4.1), we get that the HD approximate capacity

for this network is r 3
4
. �

Remark 4.3.3. [Can we a priori limit our search over a polynomial number of states?]

For the FD line network, we can a priori limit our search for the minimum cut over N + 1

cuts (instead of 2N). This reduction in the number of cuts is also possible for the HD line

network as we proved in Section 4.2.1. This fact raises the question whether we can also a

priori reduce the search space for the active states to a polynomial set (instead of 2N). This

is not possible as we state in the theorem below, which is proved in Appendix 4.8.1. This

result might be due to the fact that the capacity expression in (4.1) depends on the harmonic

mean between two consecutive links. Hence, different from FD, changing the order of the

point-to-point link capacities, might also change the value of the approximate capacity. �

Theorem 4.3.2. With only the knowledge that N relays are arranged in a line, the cardi-

nality of the smallest search space of states over which a schedule optimal for approximate

capacity can be found is Ω(2N/3).
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Remark 4.3.4. Theorem 4.3.1 has two promising consequences:

1. The HD approximate capacity of the N -relay line network can be computed in O(N)

time. This improves on the result in [EPS14], where the approximate capacity can be

found in polynomial time (but not linear in the worst case) by solving a linear program

with O(N) variables.

2. The HD approximate capacity in Theorem 4.3.1 can be computed in a distributive way

as follows. Each relay i ∈ [1 : N ] computes the quantity

mi = min

{
`i `i+1

`i + `i+1

,mi−1

}
,

where m0 =∞, and sends it to relay i+1. With this, at the end we have mN = CR. In

other words, for HD approximate capacity computation, it is only required that each

relay knows the capacity of its incoming and outgoing links. �

Remark 4.3.5. The properties discussed in Remark 4.3.4 are the same appealing properties

that advocate for the use of the FD capacity in routing protocols. Thus, it is interesting

to understand whether routing based on the FD capacities would also give the path with

the largest HD approximate capacity or instead routing using the HD approximate capacity

expression in (4.1) would yield different routes. Indeed, it turns out that the FD capacity

approach is suboptimal as shown by the example in Fig. 4.3. By applying the expression

in (4.1), we find that the best HD route (within the blue box in Fig. 4.3) has an HD

approximate capacity of 13.04, which is 30% higher than the HD approximate capacity of

the best FD route (within the red box in Fig. 4.3, with FD capacity of 20 but HD approximate

capacity of 10). With best FD (respectively, HD) route we refer to the path that has the

largest FD (respectively, HD approximate) capacity. �

The example illustrated in Fig. 4.3 shows that in general it is suboptimal to find the best

HD path by using as optimization metric the FD capacity of the path. In fact, as shown

in [ECF19b], there exist networks for which routing based on the FD capacities yields a

86



D

S

20
15

20

20

100

5

5

Best FD 
path Best HD 

path

Figure 4.3: Example where the best FD and HD paths are different. Edge labels represent

the point-to-point link capacities of the edges.

route with HD approximate capacity equal to half that of the best HD route. This observa-

tion naturally suggests the question: Does there exist an efficient (polynomial time)

algorithm that finds the route in a network with the largest HD approximate

capacity? We address this question in the following theorem.

Theorem 4.3.3. For a relay network in the class described in Section 4.2, the problem of

finding the best HD path is NP-hard.

Intuitively, we can attribute the hardness stated in Theorem 4.3.3 to the fact that we

need to keep track of whether the discovered paths contain cycles or not, unlike the FD

counterpart (a more detailed discussion regarding this aspect can be found in Section 4.4).

This observation suggests that, if the number of cycles in a network is regulated, then we can

find the simple path (i.e., a path that contains no cycles) with the largest HD approximate

capacity in polynomial time, as formalized in the lemma below.

Lemma 4.3.1. If the number of cycles in a relay network with N relays (described by the

digraph G) is at most polynomial in N (i.e., O(Nα) for some constant α), then we can find

the simple path with the largest HD approximate capacity in polynomial time, particularly in

O((Nα + 1)(|E(G)| log |E(G)| + |E(G)|d)), where d is the maximum vertex degree in G. This

87



holds even when we do not have an a priori knowledge of the location of the cycles in the

network.

As a network example for which Lemma 4.3.1 applies, we can study the layered network

where the relays are arranged as M relays per layer over L layers of relays (in total, we have

N = ML relays). Every relay can only communicate with the relays in the following layer.

It is not difficult to see that for this particular network, the number of cycles in the graph is

equal to zero, i.e., Nα = 0. In addition, the maximum degree d of a vertex is O(M) and the

number of edges in the network is Θ(LM2). By substituting these values in the expression

in Lemma 4.3.1, we get that the complexity of finding a simple path with the largest HD

approximate capacity in a layered network is given by

O((Nα + 1)(|E(G)| log |E(G)|+ |E(G)|d))

= O(LM2 logLM2 + LM2M)

= O(LM2 logL+ 2LM2 logM + LM3)

= O(LM2 logL+ LM3).

4.4 HD Routing is NP-hard

For a network represented by the directed graph G, a path P = vk1 − vk2 − . . . − vkm+1

of length m in G is a sequence of vertices vki ∈ V(G),∀i ∈ [1 : m + 1]. An S-D simple path

in G is a path for which vk1 = v0 = S and vkm+1 = vN+1 = D and all m+ 1 vertices in P are

distinct, i.e., there are no cycles in P . From Theorem 4.3.1, the HD approximate capacity

of the S-D simple path P is given by

CP = min
i∈[2:m]

{
`ki−1,ki `ki,ki+1

`ki−1,ki + `ki,ki+1

}
. (4.17)

Recall that `ki−1,ki represents the link capacity of the edge from node vki−1
∈ P to node

vki ∈ P .
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In this section, our goal is to prove Theorem 4.3.3, i.e., the problem of finding the best

HD route in a network is NP-hard. Towards this end, we start by showing that, if we want

to find the path P with the largest value of CP in (4.17), then we need to restrict our search

over simple paths.

4.4.1 Non-simple Paths are Misleading in HD

Practically, a communication route through a network is expected to be a simple path, i.e,

a path that contains no cycles. This is due to the fact that for a non-simple path, e.g.,

Pcyclic = S − v1 − v2 − · · · − vm − v2 −D, we know that – from the degraded nature of the

network – the information sent from vm to v2 is a noisy version of the information that is

already available at v2 (since v2 appeared earlier in the path). Thus, for the simple path

Psimple = S − v1 − v2 −D, we fundamentally have that

CPcyclic
≤ CPsimple

. (4.18)

This observation is true for both FD and HD paths in the network and therefore the best

path (in FD or HD) is naturally a simple path. When routing using the FD capacities

(to select the best FD route), this observation turns out to be just a technicality since the

expression for the FD capacity already exhibits the fundamental property described in (4.18).

Particularly, we have that E(Psimple) ⊆ E(Pcyclic), which directly implies that

CFD
Pcyclic

= min
ei,j∈E(Pcyclic)

{`i,j} ≤ min
ei,j∈E(Psimple)

{`i,j} = CFD
Psimple

.

Thus, an algorithm that selects a route in FD can end up with either type of paths (simple

or cyclic). If the path is cyclic, then we can prune it to get a simple path while ensuring

that pruning can only improve the computed capacity.

Differently, for HD routing, it is very important to restrict ourselves to searching over

simple paths as the HD approximate capacity expression in (4.17) only applies to simple

paths. Furthermore, applying the expression in (4.17) to a path with a cycle can actually
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increase the approximate capacity (in contradiction to the fundamental property in (4.18)).

To illustrate this, consider the network example shown in Fig. 4.4. From Fig. 4.4, we now

focus on the two paths: the simple path P1 = S − v1 − D and the non-simple path P2 =

S − v1 − v2 − v3 − v1 − D. Note that P1 is a simple path and P2 is a cyclic extension

of P1 by adding the cycle v1 − v2 − v3 − v1. If we apply the expression in (4.17) on both

paths, we get the value equal to 7.5 for P1 and for P2 we get 13.05. Thus, if an algorithm is

allowed to output non-simple paths, then it would output the path P2 even though we know

fundamentally that CP1 ≥ CP2 . This is the first major problem that arises when we allow

an algorithm to consider non-simple paths based on the expression in (4.17). The second

problem arises when we observe that P3 = S − v4 − D in Fig. 4.4 is actually the best HD

simple path from S to D. However, since applying (4.17) for P2 yields 13.05, which is larger

than what we get for P3 (i.e., 10), then the algorithm will output a non-simple path P2

which when pruned does not yield the best HD path. Thus, an algorithm designed with the

goal to find the best HD path needs to be aware of the type of paths that it processes. In

other words, we can no longer rely on pruning non-simple paths that an algorithm outputs

as these in HD can mislead the algorithm into not selecting the best HD path as illustrated

in this example.

As a consequence of the above discussion, in the rest of the section, we focus on the

problem of finding the simple (i.e., acyclic) path with the largest HD approximate capacity.

4.4.2 Finding the Best HD Simple Path is NP-hard

Our goal in this subsection is to prove that the search problem of finding the S-D simple path

with the largest HD approximate capacity in a relay network (represented by the digraph

G) is NP-hard. Towards proving this, we first show that the related decision problem “HD-

Path”, which is defined below, is NP-complete.
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Figure 4.4: A network example in which a non-simple path can appear to have a larger HD

approximate capacity than its simple subpath.

Definition 4.4.1 (HD-Path problem). Given a directed graph G and a scalar Z > 0, de-

termine whether there exists an S-D simple path in G with an HD approximate capacity

greater than or equal to Z.

Since the decision problem defined above can be reduced in polynomial time to finding

the S − D simple path with the largest HD approximate capacity, then by proving the

NP-completeness of the decision problem in Definition 4.4.1, we also prove that the search

problem is NP-hard.

The HD-Path problem is NP because, given a guess for a path, we can verify in polynomial

time whether it is simple (i.e., no repeated vertices) and whether its HD approximate capacity

is greater than or equal to Z by simply evaluating the expression in (4.17).

To prove the NP-completeness of the HD-Path problem, we now show that the classical

3SAT problem (which is NP-complete) [Kar72] can be reduced in polynomial time to the

HD-Path decision problem in Definition 4.4.1. For the 3SAT problem, we are given a boolean

expression B in 3-conjunctive normal form,

B(x1, x2, . . . , xn) =(p11 ∨ p12 ∨ p13) ∧ (p21 ∨ p22 ∨ p23)

∧ · · · ∧ (pm1 ∨ pm2 ∨ pm3), (4.19)

where: (i) B is a conjunction of m clauses {C1, C2, . . . , Cm}, each containing a disjunction of
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three literals and (ii) a literal pij is either a boolean variable xk or its negation x̄k for some

k ∈ [1 : n]. The boolean expression B is satisfiable if the variables x[1:n] can be assigned

boolean values so that B is true. The 3SAT problem answers the question: Is the given B

satisfiable? We next prove the main result of this section through the following lemma.

Lemma 4.4.1. A polynomial time reduction exists from the 3SAT problem to the HD-Path

problem.

Proof. To prove the claim, we create a sequence of graphs based on the boolean statement

B given to the 3SAT problem. In each of these graphs, we show that the existence of a

satisfying assignment for B is equivalent to a particular feature in the graph. Finally, we

construct a network where the feature equivalent to a satisfying assignment of B is the

existence of a simple path with HD approximate capacity greater than or equal to Z. In

particular, our proof follows four steps of graph constructions, which are explained in detail

in what follows.

Running example. To illustrate these four steps we use the following boolean expression

as a running example,

B = (x̄1 ∨ x2 ∨ x3) ∧ (x4 ∨ x1 ∨ x̄2) ∧ (x̄1 ∨ x3 ∨ x̄5), (4.20)

where, with the notation in (4.19), the literals are assigned as

(p11, p12, p13) = (x̄1, x2, x3), (4.21a)

(p21, p22, p23) = (x4, x1, x̄2), (4.21b)

(p31, p32, p33) = (x̄1, x3, x̄5). (4.21c)

Step 1. Assume that the boolean expression B is made of m clauses. For each clause

Ci, i ∈ [1 : m] in B, construct a gadget digraph Gi with vertices V(Gi) = {ti, vi1, vi2, vi3, ri}
and edges E(Gi) =

⋃3
j=1

{
eti,vij , evij ,ri

}
. Now we connect the gadget graphs Gi, i ∈ [1 : m], by

adding directed edges eri,ti+1
, ∀i ∈ [1 : m−1]. Finally, we introduce a source vertex S and

92



a destination vertex D and the directed edges eS,t1 and erm,D. We denote this new graph

construction by GB. Note that each vertex vij in GB represents a literal pij in the boolean

expression B. We call a pair of vertices (vij, vk`) in GB, with i < k, as forbidden if pij = pk`

in B.

Let F be the set of all such forbidden non-ordered pairs. Consider an S-D path P =

S− t1−v1`1− r1− t2−· · ·−vm`m− rm−D in the graph GB that contains at most one vertex

from any forbidden pair in F . Using the indexes characterizing the path P , if we set the

literals pi`i to be true ∀i ∈ [1 : m], then this is a valid assignment (since, by our definition,

P avoids all forbidden pairs in F). Additionally, since we set one literal to be true in each

clause, then this assignment satisfies B. Hence the existence of a path P in GB that avoids

forbidden pairs implies that B is satisfiable. Similarly, we can show that if B is satisfiable,

then we can construct a path that avoids forbidden pairs in GB using any assignment that

satisfies B.

Running example. The boolean expression in (4.20) has m = 3 clauses. Hence, we con-

struct 3 gadget digraphs that are connected to form GB as represented in Fig. 4.5. Since

each vertex vij, i ∈ [1 : m], j ∈ [1 : 3], in GB represents a literal pij in the boolean expression

in (4.20) (i.e., pij = vij) and the literals are assigned as described in (4.21), then the set of

forbidden pairs is given by

F = {(v11, v22), (v12, v23), (v22, v31)} (4.22)

as also shown in Fig. 4.5.

Step 2. Next we modify the set of forbidden pairs F and the graph GB such that each

vertex appears at most once in F . For each vertex vij that appears in at least one forbidden

pair of F , define VF(vij) = {vi′j′ ∈ V(GB)|(vij, vi′j′) ∈ F or (vi′j′ , vij) ∈ F}. Then, for each

VF(vij), we create |VF(vij)| vertices and we label them as vij,k`, ∀vk` ∈ VF(vij). We finally

replace the vertex vij in GB with a path connecting the vertices vij,k`, ∀vk` ∈ VF(vij). We

denote this new graph as G◦B. The new set of forbidden pairs F◦ is defined based on the

93



S D

Figure 4.5: Graph GB and set of forbidden pairs F for the boolean expression in (4.20).

set F as F◦ = {(vij,k`, vk`,ij)| (vij, vk`) ∈ F}. Note that, for this new set of forbidden pairs,

each vertex in G◦B appears in at most one forbidden pair. Let VF◦ be the set of vertices that

appear in F◦. Then ∀vij,kl ∈ VF◦ , we replace vij,kl with a path that consists of three vertices.

In particular, for any vertex vij,k` ∈ VF◦ , we replace it with a directed path aij,kl−vij,kl−bij,kl.
We call this new graph G?B and the forbidden pair set F? = F◦. The introduced vertices

aij,k` and bij,k` are called a-type and b-type vertices, respectively.

Similar to our earlier argument for GB, note that a path in G?B that avoids forbidden

pairs in F? gives a valid satisfying assignment for the boolean argument B. In the reverse

direction, if we have an assignment that satisfies B, then by taking one true literal from each

clause Ci, i ∈ [1 : m], we can choose ti − ri paths that avoid forbidden pairs. By connecting

these paths together, we get an S-D path in G?B that avoids forbidden pairs.

Running example. For our running example, given the set of forbidden pairs F in (4.22),

we have

VF(v11) = {v22} =⇒ v11 ← v11,22, VF(v22) = {v11, v31} =⇒ v22 ← v22,11 − v22,31,

VF(v12) = {v23} =⇒ v12 ← v12,23, VF(v23) = {v12} =⇒ v23 ← v23,12,

VF(v31) = {v22} =⇒ v31 ← v31,22,

where y ← Y indicates that in G◦B the vertex y is replaced by the path Y . The set of

forbidden pairs F◦ is then given by

F◦ = {(v11,22, v22,11), (v22,31, v31,22), (v12,23, v23,12)} (4.23)
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S D

Figure 4.6: G?B and set of forbidden pairs F?. The graph G?B is constructed from GB.

and hence VF◦ = {v11,22, v22,11, v22,31, v31,22, v12,23, v23,12}. Given this, we can now construct

the graph G?B by replacing any vertex inside VF◦ as follows

v11,22 ← a11,22 − v11,22 − b11,22, v22,11 ← a22,11 − v22,11 − b22,11,

v22,31 ← a22,31 − v22,31 − b22,31, v31,22 ← a31,22 − v31,22 − b31,22,

v12,23 ← a12,23 − v12,23 − b12,23, v23,12 ← a23,12 − v23,12 − b23,12,

as shown in Fig. 4.6 (in order to better visualize the ‘evolution’ from GB to G?B, in Fig. 4.6

we also report again GB of Fig. 4.5). Furthermore, we have F◦ = F?, where F◦ is defined

in (4.23).

Step 3. Our next step is to modify G?B to incorporate F? directly into the structure of the

graph. For each (vij,k`, vk`,ij) ∈ F? introduce a new vertex fij,k` to replace vij,k` and vk`,ij.

All edges that were incident from (to) vij,k` and vk`,ij are now incident from (to) fij,k`. We

call these newly introduced vertices as f-type vertices and denote this new graph as G•B. Note

that in G•B, we now have incident edges from aij,k` and ak`,ij to fij,k` and edges incident from

fij,k` to vertices bij,k` and bk`,ij. A path in G?B that avoids forbidden pairs in F? gives a path

in G•B that follows the following rules:

1. Rule 1: If any f-type vertex is visited, then it is visited at most once;

2. Rule 2: If an f-type vertex is visited then the preceding a-type vertex and the following

b-type vertex both share the same index (i.e., we do not have aij,k` − fij,k` − bk`,ij or
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ak`,ij − fij,k` − bij,k` as a subpath of our path in G•B).

It is not difficult to see that an S −D path in G•B that abides to the two aforementioned

rules represents a feasible path that avoids forbidden pairs F? in G?B. Specifically, this can be

seen by treating the subpath (aij,k`− fij,k`− bij,k`) in G•B as the subpath (aij,k`− vij,k`− bij,k`)
in G?B and similarly (ak`,ij − fij,k` − bk`,ij) for (ak`,ij − vk`,ij − bk`,ij). In other words, the

problem of finding a path in G?B that avoids forbidden pairs in F? is equivalent to finding a

path in G•B that satisfies Rule 1 and Rule 2.

Running example. For our running example, the graph G•B is shown in Fig. 4.7. In

particular, G•B is constructed from G?B in Fig. 4.6, where each vij,k` ∈ V(G?B) and vk`,ij ∈ V(G?B)

such that (vij,k`, vk`,ij) ∈ F?, with F? being defined in (4.23), is now replaced by fij,k` in G•B,

which is connected to the other nodes as explained above. In order to better visualize the

‘evolution’ from GB to G•B, we also report again GB of Fig. 4.5 and G?B of Fig. 4.6.

Step 4. Our next step is to modify G•B by introducing edge capacities. For any edge e ∈
E(G•B) that is not incident from or to an f-type vertex, we set the capacity of that edge to

be 3Z. For an f-type vertex fij,k`, let g1 and h1 be the link capacities of the edges incident

to it from aij,k` and incident from it to bij,k`, respectively. Similarly, let g2 and h2 be the

link capacities of the edges incident from ak`,ij and to bk`,ij, respectively. Then, we set these

capacities as

g1 = h2 = 1.5Z, g2 = h1 = 3Z.

We now need to show that finding a path satisfying Rules 1 and 2 is equivalent to finding

a simple path in G•B with HD approximate capacity greater than or equal to Z. It is not

difficult to see that a path that follows Rules 1 and 2 is simple and has an HD approximate

capacity greater than or equal to Z (by avoiding subpaths aij,k` − fij,k` − bk`,ij). This is

due to the following fact. Consider a path that satisfies Rules 1 and 2. Then, for any two

consecutive links in the considered path, at most one of the two links has a capacity of 1.5Z

96



S D

Figure 4.7: G•B and the associated edge capacities. The graph G•B is constructed from G?B.

(shown in red in Fig. 4.7), i.e., at least one link has a capacity of 3Z. Thus, a lower bound

on the approximate capacity of the considered path is given by (3Z× 1.5Z)/(3Z+ 1.5Z) = Z.

To finally prove the equivalence, we now need to show that a simple path with capacity

greater than or equal to Z satisfies Rules 1 and 2. Note that Rule 1 is inherently satisfied

since the path is simple (i.e., it visits any vertex at most once). For Rule 2, we next argue

that both subpaths are avoided by contradiction.

Assume that the simple path selected contains a subpath of the form aij,k`−fij,k`− bk`,ij.
By our construction of the edge capacities, both the edges eaij,k`,fij,k` and efij,k`,bk`,ij have a

capacity equal to 1.5Z. This gives us a contradiction since half of the harmonic mean between

the capacities of these two consecutive edges is equal to 0.75Z. Since the HD approximate

capacity of a path is the minimum of half of the harmonic means of its consecutive edges,

then the selected path cannot have an HD approximate capacity greater than or equal to Z,

which leads to a contraction. Thus, a subpath aij,k` − fij,k` − bk`,ij is always avoided. We

now need to prove that also the path ak`,ij − fij,k` − bij,k` is always avoided. Towards this

end, assume that the simple path selected with HD approximate capacity greater than or

equal to Z contains (for some i′, j′, k′ and `′) a subpath of the form ak′`′,i′j′−fi′j′,k′`′−bi′j′,k′`′ .
Note that, as per our construction in the graph G•B, we have that i′ < k′. Let i? be the

smallest index i′ for which such a subpath exists in our selected path. Since for the subpath

in question we have that i? < k′, then to reach ak′`′,i?j′ from S, we have already visited ri?
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earlier in the path. However, to move from bi?j′,k′`′ to D (after the subpath in question),

we need to pass through ri? once more. Clearly, since the path is simple, this leads to a

contradiction. Thus, a subpath ak`,ij − fij,k` − bij,k` is also always avoided.

This completes the proof that a simple path with capacity greater than or equal to Z

satisfies Rule 2. Therefore, finding a path satisfying Rules 1 and 2 is equivalent to finding

a simple path in G•B with HD approximate capacity greater than or equal to Z. The second

statement is an instance of the HD-Path problem in Definition 4.4.1.

Note that in each of the four graph constructions described earlier, we construct one graph

from the other using a polynomial number of operations. Thus, this proves by construction

that there exists a polynomial reduction from the 3SAT problem to the HD-Path problem.

This concludes the proof of Lemma 4.4.1 and hence the proof of Theorem 4.3.3.

Running example. For our running example, the assignment of the edge capacities is

shown in G•B in Fig. 4.7, where black and blue edges have a capacity of 3Z and red edges

have 1.5Z. Fig. 4.7 also shows the evolution of GB up to G•B.

4.5 Some Instances with a Polynomial-time Solution

In this section, we discuss a special class of networks for which a polynomial time algorithm

exists to find a simple path with the largest HD approximate capacity. In particular, we

focus on networks where the number of cycles is polynomial, i.e., the number of cycles is at

most Nα for some constant α > 0, where N + 2 is the total number of nodes in the network.

Our approach is based on relating paths in a network (described by the digraph G) to paths

in the line digraph of G denoted as LG. We describe the relation in the next subsection and

then present an algorithm that finds the best HD simple path in polynomial time for the

aforementioned class of networks.
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4.5.1 The Line Digraph Perspective to the Best HD Path Problem

The line digraph of a digraph G is defined as follows.

Definition 4.5.1 (Line digraph LG). For a given digraph G, its line digraph LG is a digraph

defined by the set of vertices V(LG) and the set of directed edges E(LG). The set V(LG) is

defined as V(LG) = {vij|ei,j ∈ E(G)} where ei,j is the directed edge from vertex vi to vertex

vj. The set of edges E(LG) is defined as E(LG) = {eij,k`|k = j, vij, vk` ∈ V(LG)}.

An illustration of a digraph and its associated line digraph is shown in Fig. 4.8. We can

make the following two observations on how simple HD paths are represented in the line

digraph.

1) HD paths in G are equivalent to FD paths in LG. Note that a path P in a

network G can be equivalently defined as the sequence of its adjacent edges (instead of

vertices), i.e., we can equivalently write the path P = vk1 − vk2 − · · · − vkm in G as P =

ek1,k2 − ek2,k3 − · · · − ekm−1,km . Given this and from the definition of the line digraph LG, the

path P in G is equivalent to the path PL = vk1k2 − vk2k3 · · · − vkm−1km in LG. For each edge

eij,jk ∈ E(LG), we define the capacity for the edge eij,jk as

cL(eij,jk) =
`i,j `j,k
`i,j + `j,k

, (4.24)

where `i,j is the point-to-point link capacity of the edge (link) ei,j in G. Thus, we have that

the FD capacity of the path PL in LG is given by

CFD
PL = min

eij,jk∈E(PL)
{cL(eij,jk)}

= min
eij,jk∈E(PL)

{
`i,j `j,k
`i,j + `j,k

}
= CP , (4.25)

where CP is defined in (4.17). From (4.25) and our previous discussion, we can conclude

that, to find the path with the largest HD approximate capacity in the network described

by the digraph G, we can first find the path in LG that has the largest FD capacity (where
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Figure 4.8: An example of a digraph G with its corresponding line digraph LG. For ease of

notation, indexes ij instead of vij are used and the edge capacities are only shown on LG.

the link capacities in LG are defined as in (4.24)) and then map this path in LG into its

equivalent in G.

2) Simple paths in G are equivalent to simple chordless paths in LG. We start by

defining chordal and chordless paths in digraphs.

Definition 4.5.2 (Chordal and chordless paths). A path in the digraph G ′ is chordal if there

exists an edge e ∈ E(G ′) such that its endpoints are two non-consecutive vertices in the path.

A path that is not chordal is called chordless.

For example, with reference to Fig. 4.8, the path S ′−S− v4− v2− v1− v6− v3−D−D′

is a chordal path in G since e3,2 ∈ E(G) and the vertices v3 and v2 belong to the path but are

non-consecutive. Thus, e3,2 is a chord for this path in G. A similar reasoning holds for eS,1.

Consider a cyclic path Pcycle in G. This implies that some vertex vk ∈ Pcycle appears at

least twice in the path. Denote with vq1 the node following vk in its first appearance in Pcycle

and with vq2 the node preceding vk in its second appearance in the path Pcycle. Then, if we
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write the line digraph equivalence of Pcycle, we have

PLcycle
= · · · − vkq1 − · · · − vq2k − . . . .

From the construction of E(LG) in Definition 4.5.1, we see that the edge eq2k,kq1 ∈ E(LG),
which implies that PLcycle

is chordal. Differently, for a simple path Psimple, any vertex vk ∈
Psimple appears only once. Thus, in the line digraph equivalent path PLsimple

, the index k

appears only in two consecutive vertices, which implies that PLsimple
is chordless. This shows

the equivalence described in our observation between simple paths in G and simple chordless

paths in LG.

Given the two observations above, we can now equivalently describe our HD routing

problem on the line digraph as follows: Can we find the chordless simple path in LG that has

the largest FD capacity?

4.5.2 An Algorithm on the Line Digraph LG

The goal of the algorithm described in this section is to find the chordless simple path in

LG that has the largest FD capacity. The algorithm described here is a modification of the

result proposed in [AL09] for selecting shortest paths while avoiding forbidden subpaths in

undirected graphs. The result in [AL09] needs to apply special care when fixing forbidden

subpaths in a graph, due to the general unstructured nature of the forbidden set. In contrast,

in our setting we will leverage the structured nature of our forbidden subpaths (chordal paths)

and our line digraph LG to reduce the number of steps when breaking down a discovered

chordal path (presented later in Step 3 of the algorithm). In particular, we make use of the

fact that the first chord (corresponding to a chordal subpath) encountered within a selected

path in the line digraph represents the smallest cycle encountered along the selected path

in the original graph G. Thus, by eliminating this subpath, we are sure that the number of

remaining chordal paths (present on other paths or larger chordal paths on the same path)

has not increased.
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To start, we first modify our given network (described by G) so that the source S and the

destination D have at most degree one. In particular, we modify the digraph G by adding

two new nodes (namely, S ′ and D′) that are connected only to S and D with edges eS′,S and

eD,D′ (similar to Fig. 4.8). These two added edges have point-to-point capacities equal to

X →∞. Denote this new digraph by G ′ and create the line digraph associated with G ′ and

denote it by L(0)
G . In L(0)

G , we now consider the node vS′S as our source and the node vDD′

as our intended destination.

The algorithm is based on incrementally applying Dijkstra’s algorithm [Dij59]. We first

try to find the best FD path from vS′S to vDD′ in L(i)
G by running Dijkstra’s algorithm. Note

that Dijkstra’s algorithm returns a spanning tree rooted at vS′S that describes the best FD

path from vS′S to each vertex v′ in L(i)
G . We denote the tree from our initial run as T0.

From this point, the algorithm iterates (until termination) over four main steps described as

follows (starting with i = 0).

Step 1. Given the line digraph L(i)
G and an existing best FD path spanning tree Ti, check

whether the path P(i)
L from vS′S to vDD′ defined by Ti is chordless. If it is chordless, terminate

the algorithm since we have found the chordless path from vS′S to vDD′ with the largest FD

capacity. Otherwise, if it is not chordless, then proceed to Step 2.

Running example. We use the line digraph from Fig. 4.8 as our L(0)
G . Then, for i = 0, we

have the spanning tree T0 (from Dijkstra’s algorithm) and the selected path P(0)
L as shown

in Fig. 4.9. The path P(0)
L is chordal since e32,21 ∈ L(0)

G and e42,25 ∈ L(0)
G .

Step 2. Let C(i)
P be the set of edges in L(i)

G that are chords for the path P(i)
L from vS′S

to vDD′ discussed in the earlier step. Let C(i)
P,first ∈ C

(i)
P be the first chord that appears

along the path P(i)
L . We denote the endpoints of C(i)

P,first as vk1k2 and vkmkm+1 , where vk1k2

is the vertex that among the two appears earlier in the path P(i)
L and where m is the

length of the subpath P(i)
to−fix of P(i)

L connecting the two endpoints, i.e., we now have a path

P(i)
to−fix = vk1k2 − vk2k3 − · · · − vkmkm+1 . Notice that, with this, we have km+1 = k1.
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Figure 4.9: Tree T0 for L(0)
G = LG in Fig. 4.8 (indexes ij instead of vij are used for ease of

notation). Boldface numbers represent the FD capacity with which a node can be reached

from SS ′ using T0. The highlighted path is the route selected from this tree T0 from S ′S to

DD′.

Running example. For our running example and i = 0, we can see from Fig. 4.8 and

Fig. 4.9 that the set of chords for P(0)
L is C(0)

P = {e32,21, e42,25}. The selected chord C(0)
P,first is

e32,21 because its effect on the path concludes earlier than e42,25. Hence, we have P(0)
to−fix =

v21 − v16 − v63 − v32, which is of length m = 4.

Step 3. We now introduce new vertices to the graph L(i)
G by replicating every intermediate

vertex in P(i)
to−fix. In particular, we introduce a replica vertex vk′ik′i+1

for vkiki+1
where i ∈ [2 :

m−1]. We connect these replicas of vertices to each other in the same way their corresponding

originals are connected in P(i)
to−fix, i.e., we include the edge ek′ik′i+1,k

′
i+1k

′
i+2
∀i ∈ [2 : m−1] with

the same edge capacity as ekiki+1,ki+1ki+2
.

Then, for every vi′j′ ∈ V(L(i)
G )\V(P(i)

to−fix) such that ei′j′,kiki+1
∈ E(L(i)

G ), we add an edge

that connects vi′j′ to the replica vertex of vkiki+1
, i.e., we add the edge ei′j′,k′ik′i+1

(with the

same edge capacity as ei′j′,kiki+1
). In other words, every vertex in L(i)

G that is not in P(i)
to−fix

and has an edge incident on an intermediate vertex vkiki+1
, i ∈ [2 : m− 1], of P(i)

to−fix now has

a similar (replicated) edge incident on the replica vk′ik′i+1
of vkiki+1

. Note that at this point:
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Figure 4.10: L(0)
G from Fig. 4.8 and the corresponding L̂(1)

G and L(1)
G . The replica vertices and

the added edges are shown in red while the deleted edges are dashed.

(i) the original vertices in P(i)
to−fix still form a chordal path in L(i)

G and (ii) the replica vertices

have every possible incident connection their original vertices had except connections to the

two endpoint vertices of P(i)
to−fix. We denote the digraph at this point as L̂(i+1)

G .

Now, our last change is to modify how the two endpoints of the path P(i)
to−fix in L̂(i+1)

G

connect to the intermediate vertices of the path and their replicas. We do this by adding the

edge ek′m−1k
′
m,kmkm+1

that connects the last replicated vertex vk′m−1k
′
m

to the endpoint vkmkm+1of

P(i)
to−fix and by removing the edge ekm−1km,kmkm+1 that connected the original last intermediate

vertex to the endpoint. In particular, the new edge ek′m−1k
′
m,kmkm+1

has the same capacity as
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ekm−1km,kmkm+1 that was removed. Denote this new digraph as L(i+1)
G . Note that in this new

digraph L(i+1)
G , the path P(i)

to−fix does not exist anymore, while all the other chordless paths

have stayed the same. This is due to the fact that we consider the first encountered chord

and therefore vertex replication applied in this step either leaves larger chordal subpaths

unaffected or eliminates them. This structure is the key step that allowed us to perform

a simpler form of vertex replication as compared to [AL09]. Thus, we have successfully

eliminated a cycle (chordal path) that appeared in the digraph before by replicating vertices

and deleting edges.

Running example. For our running example and iteration i = 0, recall that the chordal

path that we would like to fix is given by P(0)
to−fix = v21− v16− v63− v32 (see Fig. 4.10), where

there is a chord due to v21 and v32. Only the intermediate vertices of P(0)
to−fix, v16 and v63 are

replicated, while the endpoints v21 and v32 are unchanged. To generate L(1)
G , we first create

L̂(1)
G by replicating the intermediate nodes v16 and v63 (denoted as v1′6′ and v6′3′) and all

incident edges on them that are not part of P(0)
to−fix. This is shown in Fig. 4.10. In this case,

the only such edge is eS1,16 which is replicated by introducing edge eS1,1′6′ with the same

capacity. To arrive at L(1)
G , we finally remove the last edge in P(0)

to−fix that connects v63 to v32

and replace it with an edge connecting v6′3′ to v32. In this case, the chordal path P(0)
to−fix is

eliminated (by removing e63,32), while all other paths of the type · · · − v21 − v16 − v63 − · · ·
are still available from the remaining part of P(0)

to−fix. Additionally any path that would have

used v16−v63−v32 (for example vS1−v16−v63−v32) is now served by a replica path through

the sequence of vertices vS1 − v1′6′ − v6′3′ − v32. Thus, we have removed the chordal path

P(0)
to−fix and kept all the other possible paths unchanged or replaced them with a replica. The

new generated digraphs L̂(1)
G and L(1)

G are shown in Fig. 4.10.

Step 4. In the fourth step, our goal is to create the spanning tree Ti+1 of the best FD paths

associated with the digraph L(i+1)
G . To ensure termination of the algorithm, a condition for

this construction is that Ti+1 should be made as similar as possible to Ti [AL09]. To do so, we

run Dijkstra’s algorithm to find Ti+1 but we start at an intermediate stage in the algorithm,
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since we already know part of the spanning tree from Ti. In particular, we do the following

procedure. Recall our definition of P(i)
to−fix and its endpoint vkmkm+1 in Step 2. Define V(i+1)

redo

to be the set of vertices for which we need to find a new best FD path. In particular, define

V(i+1)
redo as the union of: (i) the set of all replica vertices introduced in L(i+1)

G , (ii) the set of

descendant vertices of vkmkm+1 in Ti, and (iii) the vertex vkmkm+1 . For any vertex v 6∈ V(i+1)
redo ,

the path connecting vSS′ to v in Ti does not pass through P(i)
to−fix. As a result, we can copy

this part of Ti to Ti+1 without loss of generality. Clearly, replica vertices never existed before

L(i+1)
G so there is no known path for them in Ti. Similarly, the path from vS′S to vkmkm+1

(and its descendants) passes through P(i)
to−fix, thus, we need to find a new route for them now

that the chordal path has been removed from the graph. Also it is not difficult to see that

any v′ 6∈ V(i+1)
redo will not be a descendant of v, ∀v ∈ V(i+1)

redo as this would contradict the need

to find a new path for some vertex in V(i+1)
redo .

As per our discussion above, we find the rest of Ti+1 by initializing an intermediate point

in the Dijkstra’s algorithm and continue the execution of the algorithm from there. In

particular, we start from the point where ∀v 6∈ V(i+1)
redo have been expanded (and thus appear

in Ti+1 with the same path as in Ti). We denote the intermediate version of Ti+1 at this

point as T ′i+1, which is a pruned version of the tree Ti. Note that, at any iteration of the

classical Dijkstra’s algorithm, a yet to be expanded vertex v has a best so-far path from

vS′S of FD capacity c′(v). This achievable FD capacity at an unexpanded vertex v is based

on the maximum capacity achieved by each of the neighbor vertices that have already been

expanded and added to the spanning tree T ′i+1 as well as the capacities of incident edges

from those neighbor vertices to the vertex v. We denote the capacity of a neighbor vertex

v′ that was already expanded as ĉ
Ti+1

L (v′). We now note that the point from which we are

going to start Dijkstra’s algorithm is when the set of unexpanded vertices is V(i+1)
redo and the

vertices in T ′i+1 form the complement set V(i+1)
redo

c
. Thus, for the vertices still unexpanded (i.e.,

those in V(i+1)
redo ), the capacities currently achievable at them at this stage of the algorithm
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Figure 4.11: Spanning trees T ′1 and T1 for L(1)
G in Fig. 4.10. Boldface numbers represent the

FD capacity with which a node can be reached from SS ′ using each tree.

are initialized as

ĉL(v) = max
v′ 6∈V(i+1)

redo

min
{
cTiL (v), cL(ev′,v)

}
.

Now that we have the initialization of Dijkstra’s algorithm to the state that we want, we run

the standard routine of the algorithm to continue expanding the vertices in V(i+1)
redo . When all

the vertices have been expanded, we get the final tree Ti+1.

Running example. For our running example and i = 0, the tree T ′1 (which is a subset of

T0) and the new generated tree T1 for L(1)
G are shown in Fig. 4.11. It is worth noting that the

spanning tree T1 in Fig. 4.11 has the path P(1)
L = vSS′−vS4−v42−v21−v16−v63−v3D−vDD′

of capacity CFD

P(1)
L

= 7 that is chordless. Hence the algorithm returns this path and terminates

(see Step 1).

It is important to note that, from the replication procedure we do in Step 3, we add a

number of replica vertices equal to the length of P(i)
to−fix minus two (since we do not replicate

the endpoints). Moreover, in addition to the replica vertices, only one endpoint of P(i)
to−fix is
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a member of V(i+1)
redo (i.e., the vertex vkmkm+1). As a result

∣∣∣V(i)
redo

∣∣∣ ≤ |V(LG)| ,∀i. Thus, the

size of the network that Dijkstra’s algorithm processes in Step 4 does not increase from one

iteration to the next. This implies that Step 4 of the algorithm has a complexity that is at

most O(VLG log VLG + ELG), where VLG = |V(LG)| and ELG = |E(LG)|. The time complexity

of Steps 1, 2 and 3 is linear in VLG and ELG . Let KG be the number of cycles in G. From

the observation in Section 4.5.1, this is equal to the number of chordal paths in LG. Since

in each iteration over the four steps, we eliminate one chordal path, then for a line graph

with KG chordal paths, we make at most KG iterations. As a result, the complexity of the

described algorithm for finding the simple chordless path with the largest FD capacity in LG
is O

(
(KG + 1)(VLG log VLG + ELG)

)
.

Note that the number of vertices in LG is equal to the number of edges in G and

the number of edges in LG is upper bounded by the number of edges in G multiplied

by the maximum vertex degree d. Additionally, the complexity of constructing a line di-

graph LG from a digraph G is of order O(|E(G)|d). Thus, the problem of finding the

simple path in G with the largest HD approximate capacity is equivalent to creating the

line digraph LG with FD capacities and then finding the chordless path with the largest

FD capacity in that line digraph LG. The computational complexity of this procedure is

O
(
|E(G)|d+ (KG + 1)(VLG log VLG + ELG)

)
=O ((KG + 1)(|E(G)| log |E(G)|+ |E(G)|d)). Now

if we let KG = O(Nα), we get the expression in Lemma 4.3.1 which concludes the proof.

4.6 Conclusion

In this chapter, we studied the problem of characterizing the HD approximate capacity of

the N -relay HD line network and investigated the HD routing problem in networks. Towards

this end, our first main result was the closed-form characterization of the HD approximate

capacity for an N -relay line network (i.e., a path) as a function of the link capacities. We

then developed a polynomial time algorithm for finding a simple schedule (one with at most
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N+1 active states out of the 2N possible ones) that achieves the HD approximate capacity of

the N -relay line network. To the best of our knowledge, this is the first work which provides

a closed-form expression for the approximate capacity of an HD relay network with general

number of relays and designs an efficient algorithm to find a simple schedule which achieves

it.

By leveraging the derived closed-form expression for the HD approximate capacity, we

then proved that finding the path from the source to the destination with the largest HD

approximate capacity is NP-hard in general. This represents a surprising result and it is

fundamentally different from the FD counterpart, since the path with the largest FD capacity

can always be discovered in polynomial time. Finally, we showed that, if the number of cycles

inside the network is polynomial in the number of nodes, then a polynomial time algorithm

exists to find the path with the largest HD approximate capacity.

4.7 Related Work

A route/path connecting a source node to a destination node through N relays is an N -relay

line network. Since the line network is a physically degraded relay channel, its capacity is

known to be given by the cut-set upper bound [Are81] and achieved by decode-and-forward.

While for the FD case the capacity can be expressed in an elegant and simple form as

the minimum among the point-to-point link capacities in the line network, a similar result

for the HD case is not yet available, to the best of our knowledge. The main reason for

this is due to the fact that in HD the channel input at each relay is also characterized

by the state (either listen or transmit) of that particular relay [Kra04]. This allows to

transmit further information from the source to the destination by switching among the 2N

possible listen/transmit states that can occur inside the network. Given this, it is not clear

what is the optimal input distribution that maximizes the cut-set upper bound. Results

in [ADT11, OD13, CTK14] generalized an observation in [Kra04], by showing that the HD
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capacity of a Gaussian relay network can be approximated to within an additive constant

gap (i.e., which is independent on the channel parameters and only depends on the number of

relays N) by the cut-set upper bound evaluated with a deterministic schedule independent of

the transmitted and received signals and with independent inputs. Throughout the chapter,

we refer to this as the approximate capacity.

For the class of relay networks defined in [CTK16, Theorem 1] (which includes the prac-

tically relevant Gaussian noise case), the evaluation of the approximate capacity of an HD

relay network can be cast as an optimization problem over 2N cuts of the network (as in FD)

each of which is a function of 2N listen/transmit configuration states. As N increases, this

evaluation, as well as determining an optimal schedule, become computationally expensive.

In [CTK16] the authors proved the conjecture posed in [BFO16] in the context of Gaussian

diamond networks2, which states that at most N + 1 states are sufficient for approximate

capacity characterization for a class of HD N -relay networks, which includes the Gaussian

noise case. A schedule with at most N + 1 active states is referred to as simple. This

result is promising since it implies that the network can be operated close to its capacity

with a limited number of state switches. However, to the best of our knowledge, it is not

clear yet if such simple schedules can be found with low-complexity algorithms. The au-

thors in [OMJ12] designed an iterative algorithm to determine a schedule optimal for the

approximate capacity when the relays employ decode-and-forward. In [EPS14], the authors

proposed a node-grouping technique that provides polynomial time algorithms to compute

the approximate capacity of certain classes of Gaussian HD relay networks that include the

line network as special case. While the results in [OMJ12, EPS14] show that the approxi-

mate capacity can be obtained efficiently in polynomial time for special network topologies

by solving a linear program (LP), it is not clear how to efficiently construct the schedule

that achieves this approximate capacity. In contrast, in this work we derive the approximate

2An N -relay diamond network is a relay network topology where the source can communicate with the
destination only through N non-interfering relays.
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capacity of a general memoryless HD line network in closed form and we design an efficient

algorithm, which outputs in O(N) time a simple schedule that achieves it.

In [LHK12], the exact capacity region is derived for a line network where the source

node, and possibly multiple relays along the way, have messages intended to the destination.

The capacity in [LHK12] is given as a maximization over the augmented alphabet used for

the channel inputs (the alphabet used in the transmitted signal plus an additional random

variable denoting that a node is listening). Additionally, the optimization in [LHK12] does

not explicitly give the distribution for the channel inputs and does not provide an explicit

schedule for the network. In particular, given this formulation, it is possible to use the

schedule to send additional information; this follows since the schedule can now be considered

part of the distribution of the channel input [Kra04]. In contrast, in our work, we consider a

noisy line network model, where the point-to-point link capacities can be different from one

link to the next (implying that different alphabets are used for transmission over each link).

Furthermore, we upper bound the amount of information that can be transfered through the

schedule by a quantity that only depends on N , and we look at the approximate capacity,

where a fixed schedule is selected based on the network parameters but is not part of the

codebook. This allows us to develop a closed-form expression for the approximate capacity.

Given the derived closed-form expression for the approximate capacity of an HD line

network, we then analyze the problem of HD routing, which consists of efficiently discovering

the path with the largest HD approximate capacity in a relay network. As a result of

its widespread use in currently deployed wireless networks, routing has been extensively

studied in the literature. For instance, a line of work [PR99,CJ03,JM96] focused on finding

a route between the source and the destination by assuming that the point-to-point link

capacities can only take values of 0 or 1. Under this assumption, the route selection based

on the FD point-to-point link capacities is optimal. Finding the route with the largest FD

capacity is equivalent to the problem of finding the widest-path between a pair of vertices

in a graph [Pol60]. This can be efficiently solved by adapting any algorithm that finds the
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shortest path between a pair of vertices in a graph (e.g., Dijkstra’s algorithm [Dij59]). For

routing with multi-rate link capacities, several heuristic metrics were proposed to enhance

the selection of routes in ad-hoc wireless networks [AHR04,DAB05]. In contrast with this set

of works, we are interested in selecting the route with the largest HD approximate capacity,

by also trying to address the fundamental complexity of finding such a route.

4.8 Appendices

4.8.1 Proof of Theorem 4.3.2

We here prove Theorem 4.3.2 by proving the following relations.

1. We first prove that the set of fundamental states in an HD line network is equivalent

to the set of fundamental maximum cuts in a FD line network.

2. We next show that the problem of finding the set of fundamental maximum cuts for

an N -relay FD line network is equivalent to the problem of finding subsets of non-

consecutive integers in [1 : N ].

3. Finally, we prove that the number of subsets of non-consecutive integers in [1 : N ] is

at least exponential in N .

4.8.1.1 Set of Fundamental Maximum Cuts

In Section 4.2.1 we proved that we can compute the approximate capacity CR in (4.6) by

considering only N + 1 cuts, which are the same that one would need to consider if the

network was operating in FD. These N + 1 cuts are “fundamental”, i.e., they do not depend

on the values of the point-to-point link capacities. This implies that we can write (4.6) as
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the LP

CR = maximize x

subject to 1N+1x ≤ Aλ

and 1T2Nλ = 1, λ ≥ 02N , x ≥ 0,

(4.26a)

where A ∈ R(N+1)×2N has non-negative entries

[A]i,j = ˆ̀(j)
i , (4.26b)

where: (i) i ∈ [1 : N + 1], j ∈ [1 : 2N ]; (ii) ˆ̀(j)
i is defined in (4.7). Clearly, the LP in (4.26)

is feasible. The dual of the LP in (4.26) is given by

CR = minimize y

subject to 12Ny ≥ ATv

and 1TN+1v ≥ 1, v ≥ 0N+1,

(4.27)

where A is defined in (4.26b). Since the LP in (4.27) is a minimization and the entries of

A are non-negative, then it is not difficult to see that, for all optimal solutions of (4.27), we

have 1TN+1v = 1. As a result, an optimal solution of (4.27) is a solution of

CR = minimize y

subject to 12Ny ≥ ATv

and 1TN+1v = 1, v ≥ 0N+1.

(4.28)

Since in the LP in (4.27) we are seeking to minimize the objective function, this implies

that at least one of the constraints of the type 12Ny ≥ ATv (i.e., the maximum) is satisfied

with equality. We can interpret (4.28) as the problem of finding the least maximum FD

cut among a class of line networks RV derived from the original network R, where V =

{v ∈ RN+1| v ≥ 0,
∑

i∈[1:N+1]vi

= 1},where vi is the i-th element of v. For each v ∈ V, we

define a line network Rv ∈ RV, where the point-to-point link capacities are modified by v

as `
(v)
i = `ivi.
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Let FM be the set of fundamental maximum cuts in a FD line network, i.e., the smallest

set of cuts over which we need to search for the maximum cut in FD without explicit

knowledge of the values of the link capacities or their ordering. Since FM is the set of

fundamental maximum cuts, then it contains a maximum cut for any FD line network. As

a result, it also contains the least maximum FD cut among the class of line networks RV.

With this, the rows of AT (constraints in (4.28)) not corresponding to FM are redundant

and can be ignored when trying to find an optimal solution in (4.28). As a consequence of

strong duality, the dual multipliers (the states λs in (4.26)) corresponding to the fundamental

maximum cuts in FM are sufficient to find a schedule optimal for approximate capacity. We

now prove that, without any knowledge of the link capacities, we need to consider the

network states associated to every element of FM, i.e., considering only the network states

corresponding to a subset of FM is not sufficient to achieve the approximate capacity. To

prove that, it suffices to provide a network example, where for each A ∈ FM the state

sAc = 1Ac is the unique optimal schedule, i.e., λsAc = 1. For an arbitrary A ∈ FM, define

the line network with the link capacities

`i =





1 if i ∈MA

X →∞ otherwise
,

where

MA =

{
i ∈ [1:N+1]

∣∣∣∣∣ i ∈ A ∪ {N+1}, i− 1 ∈ Ac ∪ {0}
}
.

From the previous network construction, it is not difficult to see that the unique optimal

schedule (one for which CR=CFD
R ) is sAc =1Ac , i.e., λsAc=1. Thus, for this particular network

construction, the state sAc is necessary and hence we cannot further reduce the sufficient

set to a subset of FM, i.e., we need to consider the network states corresponding to every

element of FM.

This result implies that, to find the smallest set of states over which we should search for

an optimal schedule for approximate capacity, we should find the set of maximum cuts in FD
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and then consider their dual multipliers in (4.26). In what follows, we focus on estimating

the cardinality of the set of fundamental maximum cuts FM in a FD line network, which,

as shown above, gives the cardinality of the smallest search space for an optimal schedule.

4.8.1.2 Finding the Set of Possible Maximum Cuts through an Equivalent Prob-

lem

We start by introducing some definitions, which will be used in the rest of this section.

Definition 4.8.1. For a set of consecutive integers [a:b], we call H a “punctured” subset of

[a:b] if ∀i, j ∈ H with i 6= j, we have |i−j|>1, i.e., H contains non-consecutive integers of

[a:b].

Definition 4.8.2. We call H a “primitive punctured” subset of [a:b] if H is punctured in

[a:b] and ∀i ∈ [a:b]\H, H ∪ {i} is not a punctured set, i.e., H is not a subset of any other

punctured subset of [a:b]. We denote by P(a, b) the collection of all primitive punctured

subsets of [a:b].

We now use the two above definitions to state the following lemma, which is proved in

the rest of this section.

Lemma 4.8.1. The problem of finding the set of possible maximum cuts for a FD line

network is equivalent to the problem of finding P(1, N + 1), i.e., the collection of primitive

punctured subsets of [1 : N + 1].

Proof. We start by defining two problems, namely P1 and P2, which are important for the

rest of the proof:

P1 : max
A⊆[1:N ]

g1(A) =
∑

i∈A∪{N+1}
i−1∈Ac∪{0}

`i, (4.29a)

P2 : max
B⊆[1:N+1]
B is punctured

g2(B) =
∑

i∈B

`i. (4.29b)
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Note that P1 is the problem of finding the maximum FD cut in an N -relay line network. To

relate the solutions of P1 and P2, we make use of the following definition.

Definition 4.8.3. Given a problem P, we denote with suf(P) the smallest set of feasible

solutions among which an optimal solution can be found for any instance of the problem P.

The proof is organized as follows:

1. Step 1: We prove that P1 and P2 are equivalent; as a consequence, there exists a

function f such that suf (P1) = f (suf (P2)).

2. Step 2: Next we prove that suf (P2) ⊆ P(1, N + 1), which implies that

suf (P1) ⊆ f (P(1, N + 1)) .

3. Step 3: The previous step implies that the set M of possible maximum cuts is a

subset of f (P(1, N + 1)). We finally prove that M = f (P(1, N + 1)).

Once proved, these steps imply that we can map the problem of finding the set of possible

maximum cuts for a FD line network to the problem of finding P(1, N + 1). We prove these

three steps in Appendix 4.8.2.

Example. Consider the FD line network with N = 7. To find the set of possible maximum

cuts, according to Lemma 4.8.1, we need to find P(1, 8), which is given by

P(1, 8) =

{
{1, 4, 7}, {2, 4, 7}, {2, 5, 7}, {2, 5, 8}, {1, 3, 5, 7},

{1, 3, 6, 8}, {1, 4, 6, 8}, {2, 4, 6, 8}, {1, 3, 5, 8}
}
.

It turns out that we can retrieve the candidate maximum cuts Ai from P(1, 8) as follows:

Ai = Hi\{8}, Hi ∈ P(1, 8), ∀i ∈ [1 : |P(1, 8)|] .

To conclude the proof of Theorem 4.3.2, we need to understand how the size of P(1, N+1)

grows with N , which is the goal of the following subsection.
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4.8.1.3 The Size of the Collection of Primitive Punctured Subsets

Here, we prove that the size of the collection of primitive punctured subsets of [1 : N + 1]

grows exponentially in N . In particular, we prove the following lemma.

Lemma 4.8.2. Let T (N) be the number of primitive punctured subsets of [1 : N ]. Then, for

all N ≥ 4, we have the following relation,

T (N) = T (N − 2) + T (N − 3).

The proof of the above lemma can be found in Appendix 4.8.3.

Remark 4.8.1. The result in Lemma 4.8.2 suggests that T (N) grows exponentially fast.

This can be proved by observing the following lower bound on T (N):

T (N) = T (N − 2) + T (N − 3) ≥ 2T (N − 3), (4.30)

where the inequality is a consequence of the fact that T (N − 2) ≥ T (N − 3). By recursive

application of the bound in (4.30), we have that

T (N) ≥ 2T (N − 3) ≥ 2 (2T (N − 6))

= 4T (N − 6) ≥ 4 (2T (N − 9))

= · · · .

Thus, we have that T (N) ≥ 2kT (N − 3k), ∀k ∈ [1 : bN/3c]. By choosing k = bN/3c − 1,

then for all N ≥ 4, we have that

T (N) ≥ 2b
N
3
c−1T (N − 3bN/3c+ 3)

≥ 2
N
3
−2T (N − 3bN/3c+ 3)

≥ 2
N
3
−2T (3) =

T (3)

4
2N/3 ≥ T (1)

4
2N/3,

where the last two inequalities follow from the fact that T (·) is a non-decreasing function.

The bound proved above implies that T (N) = Ω(2N/3). �
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Since the number of candidate active states is equal to the number of candidate maximum

cuts in FD (see the discussion in Appendix 4.8.1.1) and this is equal to the number of

primitive punctured subsets of [1 : N + 1] (see Lemma 4.8.1), then the number of candidate

active states grows as Ω(2N/3). This concludes the proof of Theorem 4.3.2.

Remark 4.8.2. Using the recurrence relation in Lemma 4.8.2, it is not difficult to prove

that T (N) = Θ(βN) where β is the unique real root of the polynomial x3 − x− 1 = 0, i.e.,

x = 1.325. �

4.8.2 Proof of Lemma 4.8.1

We here prove each of the three steps highlighted in the proof of Lemma 4.8.1.

Step 1. We first start by proving that any feasible solution for P1 in (4.29a) can be trans-

formed into a feasible solution for P2 in (4.29b) with the same value for the objective function,

i.e., ∀A ⊆ [1 : N ],

∃ punctured BA ∈ [1 : N + 1], s.t. g1(A) = g2(BA).

To show this, for A ⊆ [1 : N ], we simply define BA as

BA =

{
i ∈ [1:N+1]

∣∣∣∣∣i ∈ A ∪ {N+1}, i−1 ∈ Ac ∪ {0}
}
. (4.31)

It is clear that BA is a punctured set as ∀i ∈ BA, i − 1 /∈ BA. Additionally, (4.31) directly

gives us the desired relation as

g1(A) =
∑

i∈A∪{N+1}
i−1∈Ac∪{0}

`i =
∑

i∈BA

`i = g2(BA). (4.32)

What remains to prove now is that any feasible solution B for P2 gives a feasible solution

AB for P1 and g1(AB) = g2(B). For a punctured subset B of [1 : N + 1], let

AB = fAB(B) =

{
i ∈ [1 : N ]

∣∣∣∣∣ i > sup(B)

}

︸ ︷︷ ︸
Atail

∪B\{N + 1}︸ ︷︷ ︸
Amain

. (4.33)
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It is not difficult to see that, by applying the transformation in (4.31) on AB, we get back B,

i.e., BAB = B. This is due to the fact that applying (4.31) removes Atail which is composed

of a consecutive number of integers while keeping Amain which, since B is punctured, is also

punctured. Given this, we can directly see from (4.32) that g1(AB) = g2(BAB) = g2(B). This

concludes the proof of Step 1.

Step 2. We prove this step by showing that, if there exists an optimal solution B? for P2 that

is not primitive, then there also exists a primitive punctured set B′ such that g2(B?) = g2(B′).
Since B? is not a primitive punctured set, then there exists another punctured set B′ such

that B? ⊂ B′ and

g2(B?) =
∑

i∈B?
`i ≤

∑

i∈B′
`i = g2(B′).

If we take the largest such B′, we end up with a primitive punctured set. However, by

definition (i.e., since B? is an optimal solution) we have that ∀B punctured, g2(B) ≤ g2(B?).
This shows that g2(B?) = g2(B′) and therefore, suf (P2) ⊆ P(1, N + 1). This concludes the

proof of Step 2.

Step 3. In the first two steps, we proved that P1 and P2 are equivalent and that suf (P2) ⊆
P(1, N+1). This implies that suf (P1) ⊆ fAB (P(1, N + 1)), where fAB(·) is defined in (4.33).

We here prove that suf (P1) = fAB (P(1, N + 1)). Consider an arbitrary setA ∈ fAB (P(1, N + 1)).

To prove that A ∈ suf (P1), it suffices to provide a network (an instance of P1) for which

A is the unique maximizer of P1. Towards this end, for the selected A, we define BA as

in (4.31). We know that BA is a primitive punctured set and g1(A) = g2(BA). Now consider

the network with link capacities

`i =





1 if i ∈ BA

0 otherwise
.

For this network, it is not difficult to see that g2(B) = |B ∩ BA|, for any punctured set B.

We now want to show that ∀A′ ∈ fAB (P(1, N + 1)) \A, we have g1(A′) < g1(A). Let BA′
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be defined as in (4.31). Again, from the proof of the previous steps the set BA′ is primitive

punctured and g1(A′) = g2(BA′). Moreover, since BA′ and BA are both primitive we have

that BA′ ∩ BA ⊂ BA. Thus, we obtain

g2(BA′) =|BA′ ∩ BA| < |BA| = g2(BA)

=⇒ g1(A′) < g1(A).

Since this is true for any arbitraryA ∈ fAB (P(1, N + 1)), then it is true ∀A ∈ fAB (P(1, N + 1)).

This implies that each element in fAB (P(1, N + 1)) is a unique maximum cut for some

network construction. Therefore, without any information about the link capacities `i,

we cannot further reduce the set of possible maximum cuts and thus we have suf (P1) =

fAB (P(1, N + 1)). This concludes the proof of Step 3 and hence the proof of Lemma 4.8.1.

4.8.3 Proof of Lemma 4.8.2

To compute the size of P(a, b), it is helpful to first prove some properties of P(a, b) and

primitive punctured subsets that will help throughout the proof.

Property 4.8.1. Let H be a primitive punctured subset of [a : b], then min{H} ≤ a+ 1.

Proof. We prove this result by contradiction. Assume that for some primitive punctured set

H, we have min{H} ≥ a+ 2. This implies that H ⊂ [a+ 2 : b]. Let Ĥ = H ∪ {a}. Since H
is a punctured set, then Ĥ is also a punctured set because ∀i ∈ H, |a − i| > 1. But since

H ⊂ Ĥ, then H is not a primitive punctured set, which is a contradiction.

Property 4.8.1 implies that, for a primitive punctured subset of [a : b], the minimum

element is either a or a+ 1. Therefore, we can write P(a, b) as

P(a, b) = P1(a, b) ] P2(a, b),

where P1(a, b) (respectively, P2(a, b)) is the collection of primitive punctured sets with min-

imum element a (respectively, a + 1). Clearly, P1 and P2 are disjoint (we use ] to indicate

that the union is over disjoint sets). Next, we prove some properties of P1(a, b) and P2(a, b).
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Property 4.8.2. P2(a, b) = P1(a+ 1, b).

Proof. Let H be a primitive punctured subset of [a+1 : b] that contains the element a+1. H
is also a primitive punctured subset of [a : b]. This follows since we cannot add {a} toH to get

a larger set of non-consecutive elements. Therefore, H ∈ P1(a+1, b) =⇒ H ∈ P2(a, b). The

reverse implication is straightforward since, by definition, P2(a, b) is a primitive punctured

subset which contains the element a+ 1.

For the next property, we need to define a new operation on the collection of sets. For a

collection of sets Q, let {i} tQ = {{i} ∪ H | H ∈ Q}. We then have the following property.

Property 4.8.3. P1(a, b) = {a} t P(a+ 2, b).

Proof. Let H be a primitive punctured subset of [a + 2 : b] and define Ĥ = {a} ∪ H. Since

H is a primitive punctured subset of [a+ 2 : b], this means that @i ∈ [a+ 2 : b]\H such that

{i}∪H is a punctured sequence of [a+2 : b]. This implies that @i ∈ [a : b]\[H∪{i}] such that

{i} ∪ Ĥ is a punctured sequence of [a : b]. Therefore Ĥ is a primitive punctured sequence

of [a : b], i.e., Ĥ ∈ P1(a, b). To prove the reverse, consider H̃ ∈ P1(a, b). We need to prove

that Ĥ = H̃\{a} is a primitive punctured subset of [a + 2 : b]. Note that the definition of

primitive subset of [a : b] implies that ∀i ∈ [a + 2 : b]\H̃, H̃ ∪ {i} is not a punctured set.

Since a 6∈ [a + 2 : b], this implies that ∀i ∈ [a + 2 : b]\Ĥ, H̃ ∪ {i} is not a punctured set.

Now note that since H̃ ∈ P1(a, b) then a + 1 6∈ H̃. Therefore, ∀i ∈ [a + 2 : b] removing

the element a from H̃ ∪ {i} does not make it a punctured set. We therefore conclude that,

∀i ∈ [a+ 2 : b]\Ĥ, Ĥ ∪ {i} is not a punctured set and as a result Ĥ = H̃\{a} is a primitive

punctured subset of [a+ 2 : b].

We now have all the necessary tools to prove Lemma 4.8.2. We obtain

P(1, N) = P1(1, N) ] P2(1, N)

(a)
= P1(1, N) ] P1(2, N)
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(b)
=
[
{1} t P(3, N)

]
]
[
{2} t P(4, N)

]
,

where the equality in (a) follows from Property 4.8.2 and the equality in (b) follows from

Property 4.8.3. Now note that

∣∣∣ [{i} t P(a,N)]
∣∣∣ =

∣∣∣P(a,N)
∣∣∣ =

∣∣∣P(1, N − a+ 1)
∣∣∣

= T (N − a+ 1),

since the number of sets in each collection remains the same. Therefore, we have

T (N) = |P(1, N)|

=
∣∣∣ [{1} t P(3, N)] ] [{2} t P(4, N)]

∣∣∣

=
∣∣∣ [{1} t P(3, N)]

∣∣∣+
∣∣∣ [{2} t P(4, N)]

∣∣∣

= T (N − 2) + T (N − 3).

This concludes the proof of Lemma 4.8.2.
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Part II

Modeling mmWave Transmission
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CHAPTER 5

The Gaussian 1-2-1 Network Model

In this chapter, we propose a new model for wireless relay networks referred to as “1-2-1

network”, where two nodes can communicate only if they point “beams” at each other, oth-

erwise no signal can be exchanged or interference can be generated. This model is motivated

by millimeter wave communications where, due to the high path loss, a link between two

nodes can exist only if beamforming gain at both sides is established, while in the absence

of beamforming gain the signal is received well below the thermal noise floor. In this chap-

ter, we present the 1-2-1 model and develop a constant gap approximation for its multicast

capacity, i.e., a characterization of the network multicast capacity to within an additive gap,

which only depends on the number of nodes and is independent of the channel coefficients

and operating SNR. Afterwards, the relation between the approximate multicast capacity

and minimum unicast capacity is explored in full-duplex 1-2-1 networks and shown to be de-

pendent on the network structure and the number of destinations, unlike in classical wireless

(i.e., without 1-2-1 constraints) full-duplex networks.

5.1 Introduction

Millimeter Wave (mmWave) communications are expected to play a vital role in 5G mobile

communications and beyond, expanding the available spectrum and enabling multi-gigabit

services such as next generation business solutions, virtual and augmented reality applica-

tions, and autonomous vehicle and drone communication [Pap16,Hea16,Bro,CVG16,MSK16,

RRE14]. Although for single-hop mmWave networks several works have examined channel
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modeling, performance bounds and algorithms, as far as we know, for multi-hop mmWave

networks, fundamental performance bounds such as the information theoretical capacity

have not been well explored.

In this chapter, we present a class of networks that we term 1-2-1 networks that offer a

simple yet informative model for mmWave networks. The inherent characteristic of mmWave

communications that our model captures is directivity: mmWave requires beamforming with

narrow beams to compensate for high path loss incurred by isotropic transmission. To

establish a communication link, both the mmWave transmitter and receiver employ antenna

arrays that they electronically steer to direct their beams towards each other - we term this

a 1-2-1 link, as both nodes need to focus their beams to face each other for the link to be

active. Thus, in 1-2-1 networks, instead of broadcasting or interference, we have coordinated

steering of transmit and receive beams to activate different links at each time. An example

of a relay network with N = 5 relays is shown in Fig. 5.1, where two different states for the

configuration of the transmit/receive beams are depicted and the resulting activated links

are highlighted. Note that in this figure, the transmit and receive beams at each relay can be

simultaneously active, and hence the relays operate in Full-Duplex (FD) mode. Differently,

if at any point on time, either the transmit beam or the receive beam can be active, then

the relays operate in Half-Duplex (HD). The existence of multiple operating states in FD

and HD gives rise to a scheduling aspect: the network needs to dictate how the nodes should

align their beams and for what fraction of time they should keep this alignment.

We present unicast and multicast capacity approximation results, as well as scheduling

algorithms for the proposed FD and HD 1-2-1 network class1. The capacity characterization

of a relay network with scheduling aspects is challenging due to the added complexity of

optimizing the schedule over an exponential number of network states.

It is indeed not clear if such an optimal schedule can be found efficiently (i.e., in poly-

1Unicast can be treated as a special case of multicast when the number of destinations is one.
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Figure 5.1: 1-2-1 network with N = 5 relays and two states.

nomial time in the network size) even for capacity approximation. Studying the complexity

of scheduling 1-2-1 networks will be the topic of the next two chapters. In this chapter, we

seek to develop an understanding for the operational properties for mmWave networks by

studying an abstract information-theoretic model that captures key characteristics of their

operation. Our main contributions towards this understanding are summarized as follows:

1. We propose an information-theoretic network model, namely the Gaussian 1-2-1 net-

work that captures the inherent directivity and scheduling of mmWave networks due

to beam steering. The proposed model considers both FD and HD modes of operation

at the network nodes.

2. For the proposed network model, we derive a constant gap approximation of the multi-

cast capacity when a single source node aims to communicate the same message to an

arbitrary set of destination nodes. In particular, the derived expression encompasses

the scheduling required to optimally operate the network by optimizing the fraction of

time a beam orientation configuration state should be active. We show that the approx-

imate multicast capacity, both for FD and HD, can be expressed as a linear program

(LP), which has a polynomial number (in the number of nodes) of constraints, but an

exponential number of variables.
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3. We show that the derived expression for the approximate multicast capacity highlights

key properties of Gaussian 1-2-1 networks that distinguish them from classical Gaussian

wireless relay networks. In particular, we study the relation between the approximate

multicast capacity and the minimum approximate unicast capacity in a Gaussian FD

1-2-1 network. Unlike in classical networks, where the ratio between the two quantities

is universally equal to one, we show that for the FD 1-2-1 network, the ratio depends

on the number of destinations as well as graph-theoretic properties of the network.

Chapter Organization. Section 5.2 describes the Gaussian 1-2-1 network model and

Section 5.3 derives a constant gap approximation of its multicast capacity for FD and HD

modes of operation. Section 5.4 shows that finding an optimal schedule for a Gaussian FD 1-

2-1 network can be done in polynomial time. Section 5.5 derives the worst case ratio between

multicast and unicast approximate capacities in Gaussian FD 1-2-1 networks. Section 5.6

concludes the chapter.

5.2 System Model

With [n1 : n2] we denote the set of integers from n1 to n2 ≥ n1; ∅ is the empty set; 1P is

the indicator function; 0N is the all-zero vector of length N ; |A| is the absolute value of A

when A is a scalar, and the cardinality when A is a set. For a matrix A, the notation AR,C

indicates the submatrix of A where only the rows indexed by the set R and the columns

indexed by the set C are retained.

We consider a Gaussian 1-2-1 network with N + 1 nodes and multicast traffic. Node 0

is the source node and it wishes to communicate a common message to a set of destinations

indexed by the set D ⊆ [1 : N ]. The remaining nodes [1 : N ]\D are relays that assist

the communication between the source and the set of destinations. We assume that nodes

that belong to D can act as relays for each other, i.e., if i ∈ D, then node i can also be

transmitting.
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In a 1-2-1 network, at any particular time, a node can only direct (beamform) its trans-

missions towards at most another node. Similarly, a node can only receive transmissions

from at most another node (to which its receive beam points towards). Thus, each node

i ∈ [0 : N ] in the network is characterized by two states, namely Si,t and Si,r that represent

the node towards which node i is beamforming its transmissions and the node towards which

node i is pointing its receive beam, respectively. In particular, ∀i ∈ [0 : N ], we have that

Si,t ⊆ [1 : N ]\{i}, |Si,t| ≤ 1,

Si,r ⊆ [0 : N ]\{i}, |Si,r| ≤ 1,
(5.1a)

where S0,r = ∅ since the source node only transmits. We consider two modes of operation at

the nodes, namely FD and HD. In FD, node i ∈ [1 : N ] can be simultaneously receiving and

transmitting, i.e., we can have both Si,t 6= ∅ and Si,r 6= ∅. In HD, node i ∈ [1 : N ] can either

receive or transmit, i.e., if Si,t 6= ∅, then Si,r = ∅ and vice versa. In particular, ∀i ∈ [1 : N ],

we have that

|Si,t|+|Si,r|≤





2 if nodes operate in FD

1 if nodes operate in HD
. (5.1b)

We can now write the memoryless channel model for this Gaussian 1-2-1 network. We have

that ∀j ∈ [1 : N ]

Yj = Zj +
∑

i∈[0:N ]\{j}

hji1{i∈Sj,r, j∈Si,t}Xi, (5.2)

where: (i) Si,t and Si,r are defined in (5.1); (ii) Xi (respectively, Yi) denotes the channel

input (respectively, output) at node i; (iii) hji ∈ C represents the complex channel coefficient

from node i to node j; the channel coefficients are assumed to be constant for the whole

transmission duration and known by the network; (iv) the channel inputs are subject to an

individual power constraint, i.e., E[|Xk|2] ≤ P, k ∈ [0 : N ]; (v) Zj, j ∈ [1 : N ] indicates the

additive white Gaussian noise at the j-th node; noises across the network are assumed to be

independent and identically distributed as CN (0, 1).
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Remark 5.2.1. Although we believe that 1-2-1 networks capture the essence of mmWave

communications and enable to build useful insights on near-optimal information flow al-

gorithms, we recognize that this model makes a number of simplifying assumptions that

include: 1) we assume no interference among communication links (a reasonable assumption

for relays spaced further apart than the beam width), and 2) we do not take into account

the overhead of channel knowledge, and of beam-steering.

5.3 Multicast Approximate Capacity

In this section, we prove an approximation of the multicast capacity for the Gaussian 1-2-1

network model in (5.2). The multicast capacity2 Cmulti of the network defined in (5.2) is not

known in general. However, a constant gap approximation of the multicast capacity can be

developed as we show in this section.

The notion of a capacity approximation for a Gaussian network provides an expression

that is guaranteed to be at most an additive constant gap away from the multicast capacity.

In particular, let Cmulti(h) be the multicast capacity of the N -node Gaussian 1-2-1 network

with channel coefficients h = {hji|i ∈ [0 : N ], j ∈ [1 : N ]\{i}}. Then, an expression C̃multi(h)

is said to be a constant gap approximation of the multicast capacity Cmulti(h), if there exists

a value (additive gap) GAP(N), that only depends on N and is independent of the channel

coefficients or SNR such that

∣∣∣C̃multi(h)− Cmulti(h)
∣∣∣ ≤ GAP(N). (5.3)

For brevity, in the remainder of the chapter, we drop the explicit dependence of Cmulti on

the channel coefficients h.

In order to develop such an expression, we first need to rewrite an equivalent expression for

the channel model in (5.2) such that the switching parameters can be naturally incorporated

2We use standard definitions for codes, achievable rates and capacity [CT12].
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into the channel input-output relation. Using an approach inspired by a similar analysis

in [Kra04], the channel model in (5.2) can be modified to incorporate the state variables in

the channel inputs. In particular, let the vector X̂i = (Si, X i) be the input to the channel

at node i ∈ [0 : N ], where: (i) Si = (Si,t, Si,r) with Si,t and Si,r being defined in (5.1), and

(ii) X i ∈ CN , with elements X i(k) defined as

X i(k) = Xi1{k∈Si,t}. (5.4)

In other words, X i as a vector is a function of Si,t and the original input of the channel Xi.

When node i is not transmitting, i.e., Si,t = ∅, then X i = 0N . It is not hard to see that the

power constraint on Xi extends to X i since at most one single index appears in the vector

(recall that |Si,t| ≤ 1). Using this new channel input X̂i, we can now equivalently rewrite

the channel model in (5.2) as

Yj =





hjSj,r
XSj,r

(j) + Zj if |Sj,r| = 1

0 otherwise

. (5.5)

Using this equivalent modified representation, we can now show that the multicast capacity

Cmulti of the network defined in (5.4) and (5.5) can be approximated to within a constant-gap

as stated in Theorem 5.3.1 below.

Theorem 5.3.1. The multicast capacity Cmulti of the network defined in (5.4) and (5.5) can

be lower and upper bounded as

Cmulti
cs,iid ≤ Cmulti ≤ Cmulti

cs,iid + GAP(N), (5.6a)

Cmulti
cs,iid = max

λs:λs≥0∑
s λs=1

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

∑

(i,j):i∈Ω,
j∈Ωc



∑

s:
j∈si,t,
i∈sj,r

λs


 `j,i

︸ ︷︷ ︸
Ccs,iid(d,λ)

, (5.6b)

`j,i = log
(
1 + P |hji|2

)
, (5.6c)
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GAP(N) = G1(N) + G2(N) + G3(N)

= (N + 1) log e+log(N+1)+N log(κ), (5.6d)

where: (i) according to the definition (5.3), Cmulti
cs,iid is a constant gap approximation of Cmulti;

(ii) Ωc = [0 : N ]\Ω; (iii) λs = P(S[0:N ] = s) is the joint distribution of the states, where s

enumerates the possible network states S[0:N ]; (iv) Ccs,iid(d, λ) is the achievable rate towards

destination d ∈ D using λ = {λs|s ∈ S} where S is the set of all possible feasible network

states; (v) κ is the number of different values that the state of a single relay/destination node

can take, and is defined as

κ =





N(N + 1) if nodes operate in FD

2N if nodes operate in HD
. (5.6e)

Proof. The proof relies on upper bounding the cut-set bound of the input-output relations

in (5.4) and (5.5) by using independent inputs to the channel (hence the iid subscript).

Moreover, the expression in (5.6b) is achieved through deterministic schedules, which do

not depend on the transmitted message. The proof details and machinery are delegated to

Appendix 5.8.

Remark 5.3.1. The approximate capacity in (5.6b) seeks to maximize the minimum source-

destination information flow. This can be computed as the minimum approximate capacity

across all network cuts from the source to destination d, as captured by the minimization

over the cuts Ω in (5.6b). Moreover, the nodes receive/transmit beams can be steered so

as to maximize the information flow, and this is the role of the maximization over the λs

variables in (5.6b). Note that in (5.6b) each link capacity is multiplied by the sum of the

time fractions for which that link is active: since a link can be activated by more than one

network state, we need to consider the total time duration a link is active.

Remark 5.3.2. The variable λs can be interpreted as the fraction of time for which the state

configuration s is active. The collection of λs, ∀s forms a joint probability distribution over
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the state variables, i.e.,
∑

s λs = 1. We refer to a particular feasible collection λ = {λs|s ∈ S}
as a schedule. Note that sometimes, we drop the enumeration of s ∈ S and for brevity, we

use λ = {λs}.

Remark 5.3.3. The variable GAP in (5.6d) only depends on the number of nodes N and

represents the maximum loss incurred by using independent inputs and deterministic sched-

ules at the nodes. In particular, G1 represents the beamforming loss due to the use of

independent inputs, while G2 (respectively, G3) accounts for the loss incurred by using a

fixed schedule at the source (respectively, at the relays/destinations), as we explain next.

Note that from (5.4), the input at the i-th node is also characterized by the state random

variable Si,t (which indicates to which node – if any – node i is transmitting). Therefore,

information can be conveyed from the source to the destinations by randomly switching be-

tween these states. However, as first highlighted in [Kra04] in the context of the HD relay

channel, this random switch can only improve the capacity by a constant, whose maximum

value equals the logarithm of the cardinality of the support of the state random variable. It

therefore follows that the capacity can be approximated to within this constant by using a

fixed/deterministic schedule at the nodes. In particular, for the source the cardinality of the

support of its state random variable equals N + 1 (since the source can only be transmitting

to at most one node). Differently, the cardinality of the support of the state random variable

at the remaining nodes depends on the mode of operation (either FD or HD) and is given

by (5.6e).

In other words, Cmulti
cs,iid in (5.6) – which can be achieved using quantize-map-and-forward

as in [OD13] or noisy network coding as in [LKE11] – is a constant additive gap away from

the multicast capacity Cmulti of the network defined in (5.4) and (5.5). Thus, in the rest of

the chapter we analyze Cmulti
cs,iid , which we refer to as the approximate multicast capacity for

the Gaussian 1-2-1 network.

Note that the inner minimization in (5.6b) is the min-cut over a graph with source node
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0, destination node d and edge capacities `
(s)
j,i , where

`
(s)
j,i =




∑

s:
j∈si,t, i∈sj,r

λs


 `j,i. (5.7)

Thus, for a fixed d ∈ D and a fixed schedule λ = {λs}, we can replace Ccs,iid(d, λ) in (5.6b)

with its equivalent max-flow formulation, and we obtain

P0 : Cmulti
cs,iid = max

λs:λs≥0∑
s λs=1

min
d∈D

max
{F (d)

d,j }

∑

j∈[0:N ]\d

F
(d)
d,j

0 ≤ F
(d)
j,i ≤ `

(s)
j,i ∀(i, j) ∈ [0 : N ]× [1 : N ], d∈D (5.8)

∑

j∈[1:N ]\{i}

F
(d)
j,i =

∑

k∈[0:N ]\{i}

F
(d)
i,k ∀i∈[1 : N ]\{d}, d∈D,

where F
(d)
j,i is the information flow from node i to node j when the destination is node d.

We can reorganize the max-min-max optimization in P0 to be a max-min optimization

as we can see in the following lemma.

Lemma 5.3.1. The LP P0 defined in (5.8) is equivalent to the following LP

P1 : Cmulti
cs,iid = max

λs,F
min
d∈D





∑

j∈[0:N ]\d

F
(d)
d,j





(P1a) 0 ≤ F
(d)
j,i ≤ `

(s)
j,i ∀(i, j) ∈ [0 : N ]× [1 : N ], d ∈ D

(P1b)
∑

j∈[1:N ]\{i}

F
(d)
j,i =

∑

k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1:N ]\{d}, d ∈ D (5.9)

(P1c)
∑

s

λs = 1,

(P1d) λs ≥ 0 ∀s,

where F =
⋃
d∈D {F

(d)
d,j }.

Proof. Note that, if we can exchange the inner min-max with max-min in the optimization

problem P0 in (5.8), then we have proved its equivalence to P1. We start by noting that, by
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the max-min inequality, we have

min
d∈D

max
F

∑

j∈[0:N ]\d

F
(d)
d,j ≥ max

F
min
d∈D

∑

j∈[0:N ]\d

F
(d)
d,j . (5.10)

Thus, to prove equality between the two sides of (5.10) (and consequentially the equivalence

between P0 and P1), we need to prove that

min
d∈D

max
F

∑

j∈[0:N ]\d

F
(d)
d,j ≤ max

F
min
d∈D

∑

j∈[0:N ]\d

F
(d)
d,j . (5.11)

This comes as a direct consequence of the result in the following Lemma 5.3.2 by considering

I = D, x = F, xi = {F (i)
i,j } and fi(x) =

∑
j∈[0:N ]\i F

(i)
i,j . This proves Lemma 5.3.1.

Lemma 5.3.2. Let I be a discrete set, {Xi}i∈I be a collection of closed sets indexed by I
and X =

∏
i∈I Xi. Consider the set of bounded functions {fi(·)}i∈I, fi : X → R such that

fi(·) depends only on Xi. Then, we have

min
i∈I

max
x∈X

fi(x) ≤ max
x∈X

min
i∈I

fi(x). (5.12)

Proof. For any x ∈ X , we can write it as x=[x1, x2, · · · , x|I|], such that xi ∈ Xi. Since the

value of fi(·) depends only on xi, then we can define x?i as the value of xi that maximizes fi.

Thus, for x? = [x?1, x
?
2, · · · , x?|I|]∈X , we have that

max
x∈X

fi(x) = fi(x
?).

Furthermore, we have that

max
x∈X

min
i∈I

fi(x)
(a)

≥ min
i∈I

fi(x
?) = min

i∈I
max
x∈X

fi(x), (5.13)

where the inequality in (a) follows from the fact that we are considering a particular x ∈ X .

This proves Lemma 5.3.2.

Remark 5.3.4. Note that from (5.6b) and (5.9), the approximate multicast capacity has the

same general expression both for Gaussian FD and HD 1-2-1 networks. The main difference
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lies in the admissible network states in FD and HD. In FD, admissible states allow for two

adjacent links (i.e., links with a common node) to be simultaneously active as long as a node

is not playing the same role in both links (e.g., cannot be the transmitter in both links). In

contrast, HD admissible states do not allow any adjacent links to be simultaneously active.

The expression of the approximate multicast capacity as the linear program P1 in (5.9)

has a number of constraints that is polynomial in the number of nodes N . However, the

number of variables (particularly, the number of network states) is exponential, which makes

P1 computationally expensive to be solved directly. In what follows, we show how - in the

FD mode of operation - this linear program can be solved in polynomial time to compute

the approximate multicast capacity and a schedule λ that is optimal for the approximate

capacity. Tackling the same problem in the HD mode of operation is more involved than the

FD case, and as a result will be studied in the next chapter.

5.4 Scheduling of Gaussian FD 1-2-1 Networks

In this section, we investigate the problem of finding the approximate multicast capacity

and an optimal schedule for the Gaussian FD 1-2-1 network. Towards this end, we develop

an approach to solving the linear program P1 in (5.9) in polynomial time in the number of

nodes for the FD mode of operation. In particular, our main result is given by the following

theorem.

Theorem 5.4.1. For the N-relay Gaussian FD 1-2-1 network, we have:

1. The approximate multicast capacity Cmulti
cs,iid can be found in polynomial time in N ;

2. An optimal schedule for the approximate capacity Cmulti
cs,iid can be found in polynomial

time in N .

The main approach to prove Theorem 5.4.1 consists of developing an equivalent formu-

lation for the LP P1 in (5.9) for Gaussian FD 1-2-1 networks. In particular, the equivalent
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formulation is given by the following theorem.

Theorem 5.4.2. For any N-relay Gaussian FD 1-2-1 network, we have that P1 in (5.9) is

equivalent to the LP below

P2FD : Cmulti
cs,iid = max

α,F
min
d∈D





∑

j∈[0:N ]\d

F
(d)
d,j





(P2a) 0 ≤ F
(d)
j,i ≤ αji`j,i ∀(i, j) ∈ [0 : N ]× [1 : N ], d ∈ D,

(P2b)
∑

j∈[1:N ]\{i}

F
(d)
j,i =

∑

k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1:N ]\{d}, d ∈ D

(P2c)
∑

j∈[1:N ]\{i}

αji ≤ 1 ∀i ∈ [0 : N ], (5.14)

(P2d)
∑

i∈[0:N ]\{j}

αji ≤ 1 ∀j ∈ [1 : N ],

(P2e) αji ≥ 0 ∀(i, j)∈[0 : N ]×[1 : N ],

where F
(d)
j,i represents the data flow through the link of capacity `j,i intended for destination

d, αji represents the fraction of time for which the link is active and α = {αji| ∀i ∈ [0 :

N ], j ∈ [1 : N ] and i 6= j}.

Remark 5.4.1. Before delving into the proof of Theorem 5.4.2, we highlight interesting

consequences of the LP P2FD.

(a) Since P2FD has a polynomial number of variables and constraints in N , then Theo-

rem 5.4.1 Part (a) is a direct consequence of the structure of P2FD.

(b) If the mapping from an optimal point in P2FD to an optimal point in P1 can be done in

polynomial time, then we have a polynomial time algorithm to find the optimal schedule

for the approximate multicast capacity in the Gaussian FD 1-2-1 network. This can be

done by first solving P2FD in polynomial time and then mapping its optimal solution in

polynomial time to an optimal schedule in P1. This would prove Theorem 5.4.1 Part

(b). In what follows, we indeed show that such a mapping from an optimal point in

P2FD to P1 can be done by a construction that is polynomial in N .
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We next prove Theorem 5.4.2 by showing that the LPs P1 and P2FD are indeed equivalent

for Gaussian FD 1-2-1 networks. Moreover, we also show that the mapping from an optimal

point in P2FD to P1 can be performed in polynomial time, hence proving Theorem 5.4.1 Part

(b). Note that in P1 and P2FD, the variables F
(d)
j,i are the same, and hence we only need to

find the mapping between {λs} and {αji}.

P1→ P2FD. Given a feasible point in P1 we define

αji =
∑

s:
j∈si,t, i∈sj,r

λs.

Using this definition, we have that

(P1a) : ∀(i, j) F
(d)
j,i ≤




∑

s:
j∈si,t, i∈sj,r

λs


 `j,i = αji`j,i =⇒ (P2a)

(P1c) : ∀i ∈ [0 : N ]
∑

j∈[1:N ]\{i}

αji =
∑

j∈[1:N ]\{i}

∑

s:
j∈si,t, i∈sj,r

λs ≤
∑

s

λs=1 =⇒ (P2c)

(P1c) : ∀j ∈ [1 : N ]
∑

i∈[0:N ]\{j}

αji =
∑

i∈[0:N ]\{j}

∑

s:
j∈si,t, i∈sj,r

λs ≤
∑

s

λs=1 =⇒ (P2d).

In addition, since the variables F
(d)
j,i are not changed in the mapping then the new mapped

point in P2FD has the same objective value as the original point in P1.

P2FD → P1. Given a feasible point in P2FD we would like to construct a set of λs that

represent the state activation times in the Gaussian FD 1-2-1 network, such that, they

collectively activate each link (i, j) for at least the fraction dictated by αji. If this is satisfied,

then the same flow variables F
(d)
j,i from P2FD can be used in P1 and thus achieve the same

objective function value in P1.

To map P2FD to P1, we introduce a visualization for P2FD in terms of bipartite graphs.

In particular, we divide each node i ∈ [0 : N ] in the network into two vertices (iT and

iR) representing the transmitting and receiving functions of the node; note that 0R = ∅
since the source (node 0) is always transmitting. This gives us the complete bipartite graph
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(a) Example Gaussian FD 1-2-1 net-

work with link activation times λji.

(b) Constructed bipartite graph GB .

Figure 5.2: An example of the construction of a bipartite graph based on the link activations.

GB = (TG, RG, EG), where the vertices TG (respectively, RG) are the transmitting modules

of our nodes (respectively, RG collects our receiving modules), and we have a weighted edge

(iT , jR) ∈ EG with weight αji, ∀(i, j) ∈ [0 : N ] × [0 : N ]. Note that we assume α0i = 0,

∀i ∈ [0 : N ]. Fig. 5.2(b) shows the construction of GB for the network example in Fig. 5.2(a).

With such a representation, we can now write a feasible point in P2FD as a weighted adjacency

matrix L of the graph GB. For instance, the weighted adjacency matrix L of the graph GB

in Fig. 5.2(b) is given by

L =




0 0 0 0

0.4 0 0.1 0

0.6 0.2 0 0

0 0.7 0.3 0



.

From the constraints (P2c)-(P2e), the matrix L inherites the following properties

∀(i, j) ∈ [1 : N + 1]2, [L]ji ≥ 0,

∀i ∈ [1 : N + 1],
∑

j∈[1:N+1]

[L]ji ≤ 1,

∀j ∈ [1 : N + 1],
∑

i∈[1:N+1]

[L]ji ≤ 1, (5.15)
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∑

i∈[1:N+1]

[L]ii = 0, (node i cannot transmit to itself),

∑

i∈[1:N+1]

[L]1i = 0, (source does not receive).

It is not difficult to see that a valid state s in P1 corresponds to some matching3 Ms ⊆ EG

in the bipartite graph GB. On the other hand, a matching Ms in GB corresponds to a state

s in P1 if Ms ∩ U = ∅, where the set of rejected edges U is defined as

U = {(i, j)|i = j or i = 1}. (5.16)

In particular, the first condition defining U in (5.16) requires that edges connecting iT to iR

are rejected, and the second condition requires that edges connecting to 0R (the receiver of

the source) are rejected. We refer to a matching Ms in GB, such that Ms ∩U = ∅ as a valid

state matching.

We now divert our attention to the set of perfect matchings4 in GB, which is represented

by the set of permutation matrices of size (N + 1)× (N + 1). For a perfect matching M̂p, we

define Ms(p) to be the largest size valid state matching such that Ms(p) ⊆Mp. We note that

s(p) is unique and can be obtained by systematically removing the edges in Mp ∩ U .

Remark 5.4.2. Note that, for all edges (i, j) ∈ U defined in (5.16), we have that [L]j+1,i+1 =

0 as defined in (5.15).

Without loss generality, we can represent a matching Ms by an (N + 1)× (N + 1) matrix

As, such that [As]ji = 1 if (i, j) ∈ Ms and zero otherwise. Thus, the mapping that we need

from an optimal point in P2FD to P1 can be performed by efficiently finding a set of K valid

state matchings {Msk}Kk=1 such that

L ≤
∑

k∈[1:K]

λskAsk ,
∑

k∈[1:K]

λsk = 1, λsk ≥ 0. (5.17)

3A matching is a set of graph edges such that each vertex (node) in the graph has at most one edge from
the set connected to it [BM11].

4A perfect matching is a matching such that all vertices in the graph are connected to one edge in the
matching set [BM11].
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Instead of doing the decomposition above, we aim at finding a set of K permutation matrices

{Πp}Kp=1, each representing a perfect matching in GB, that satisfy

L ≤
∑

p∈[1:K]

ϕpΠp,
∑

p∈[1:K]

ϕp = 1, ϕp ≥ 0. (5.18)

Note that (5.18) directly implies (5.17) by using sk = s(p) as the index of Ask and λs(p) = ϕp,

∀p ∈ [1 : K]. This is due to the fact that As(p) and Πp only differ in the positions indexed

by the edges in U (see (5.16)), but using Remark 5.4.2, all such positions in the matrix L

are zero. The non-negativity of As(p) and λs(p) in addition to the aforementioned observation

implies (5.17). Now, the explicit problem to solve is the existence of an efficient approach

to perform the decomposition in (5.18), i.e., can we efficiently find a set of K permutation

matrices {Πp}Kp=1, each representing a perfect matching, that satisfy (5.18)? In particular, in

order to construct an optimal schedule for Gaussian FD 1-2-1 networks in polynomial time,

we are interested in a polynomial time approach to find these Πp matrices.

To answer the question above, we observe that the first three properties of L in (5.15)

are the definition of a doubly-substochastic matrix. The existence of a convex decomposition

for a doubly stochastic matrix (summation inequalities in (5.15) satisfied with equality) into

permutation matrices is a classic result in mathematics by Birkhoff [Bir46] and a polynomial

time algorithm in the matrix size exists to find this decomposition [Dul55]. The result

in [CCH99] extends the algorithm in [Dul55] to doubly substochastic matrices. Thus, for our

L ∈ RN+1×N+1
+ , a set of permutation matrices satisfying (5.18) can be found in polynomial

time in N . The algorithm runs in O(N4.5) and outputs N2 + 1 permutation matrices. This

proves the existence of a mapping from P2FD to P1 that can be done in polynomial time,

thus concluding the proof of Theorem 5.4.2 and Theorem 5.4.1 Part (b) for Gaussian FD

1-2-1 networks.
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5.5 Multicast vs Minimum Unicast Approximate Capacity in Gaus-

sian FD 1-2-1 Networks

In this section, we explore the relation between the approximate multicast and unicast

capacities of Gaussian FD 1-2-1 networks. Towards this end, we focus on characterizing the

ratio between the approximate multicast capacity and the minimum approximate unicast

capacity of Gaussian FD 1-2-1 networks. We define the approximate unicast capacity for

destination d ∈ D as the FD approximate multicast capacity when d is the only destination

in the network. Thus, from P2FD in Theorem 5.4.2, the approximate unicast capacity Cdcs,iid

for destination d ∈ D is

P4d : Cdcs,iid = max
F, λ





∑

j∈[0:N ]\d

F
(d)
d,j





0 ≤ F
(d)
j,i ≤ α

(d)
ji `j,i ∀(i, j) ∈ [0 : N ]× [1 : N ]

∑

j∈[1:N ]\{i}

F
(d)
j,i =

∑

k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1 : N ]

∑

j∈[1:N ]\{i}

α
(d)
ji ≤ 1, ∀i ∈ [0 : N ] (5.19)

∑

k∈[0:N ]\{i}

α
(d)
ik ≤ 1, ∀i ∈ [1 : N ]

α
(d)
ji ≥ 0 ∀(i, j) ∈ [0 : N ]× [1 : N ].

Note that the superscript (d) is fixed throughout the LP and is included to specialize the

variables used in computing Cdcs,iid.

We now define the following parameters for our network:

• Cmu: minimum unicast approximate capacity from the source to the destinations, i.e.,

Cmu = min
d∈D

Cdcs,iid; (5.20)

• ∆+: maximum number of incoming links (with non-zero capacity) to a node in the

1-2-1 network;
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• ∆−: maximum number of outgoing links (with non-zero capacity) from a node in the

1-2-1 network.

With these definitions, we can now state the following theorem that relates Cmu and Cmulti
cs,iid

for Gaussian FD 1-2-1 networks.

Theorem 5.5.1. For a Gaussian FD 1-2-1 network with destination set D, we have that

Cmulti
cs,iid ≥

1

min {|D|, max{∆+,∆−}}Cmu, (5.21)

where Cmu is defined in (5.20). Furthermore, there exists a class of networks for which this

ratio is tight.

Proof. Without loss of generality, the destination nodes are indexed by {1, 2, · · · , D}, with

D = |D|. The key intuition behind the worst-case ratio in Theorem 5.5.1 is that, when

the destinations are spread out in different places in the network (e.g., in Fig. 5.3(a) and

Fig. 5.3(b)), the network scheduling needs to balance the amount of traffic to be delivered

to each destination. Thus, because of this, the approximate multicast capacity decreases.

In what follows, we formalize this notion by considering two different cases, namely |D| ≤
max{∆+,∆−} and |D| > max{∆+,∆−}, respectively. In each of the two cases, we show that

there exists a feasible schedule (in terms of link activation times) in (5.14) that achieves the

bound in (5.21). Moreover, we also present network examples for which the ratio guarantee

in (5.21) is indeed tight.

Case 1: |D| ≤ max{∆+,∆−}. In this particular case, ∀d ∈ D, let {α(d)?

ji } be an optimal

schedule in P4d for the approximate unicast capacity from the source to destination d. We

can define a feasible schedule for the LP P2FD in (5.14) as

α′ji =
1

|D|
∑

d∈D

α
(d)?

ji ∀(i, j) ∈ [0 : N ]× [1 : N ].

In other words, for multicast traffic, we timeshare the network with the optimal schedule

for each of the destinations d ∈ D. Let {F ′(d)
j,i } be the optimal flow variables that maximize
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(a) |D| ≤ max{∆+,∆−}.
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(b) |D| > max{∆+,∆−}.

Figure 5.3: Networks with tight ratio in Theorem 5.21. The D = |D| destinations are shown

with bold border.

the objective function for the fixed schedule {α′ji} in P2FD. By the timesharing argument,

it is not difficult to see that for all destinations, we have that the evaluation of the objective

function in P2FD using this timesharing schedule gives that

∑

j∈[0:N ]\d

F
′(d)
d,j ≥

1

|D|
∑

j∈[0:N ]\d

F
(d)?

d,j =
1

|D|C
d
cs,iid ∀d ∈ D,

where {F (d)?

d,j } are optimal for P4d. Since the computed {F ′(d)
j,i } and {α′ji} are feasible in the

LP P2FD, then we have the desired ratio, i.e.,

Cmulti
cs,iid ≥ min

d∈D

∑

j∈[0:N ]\d

F
′(d)
d,j ≥ min

d∈D

1

|D|C
d
cs,iid =

1

|D|Cmu.

To show that the bound is tight, consider the network topology illustrated in Fig. 5.3(a). It is

not difficult to see that, for this particular network, Cmu = R. For the multicast approximate

capacity Cmulti
cs,iid , the source has to timeshare between the |D| destinations to achieve a rate

of R/|D|. Thus,

Cmulti
cs,iid =

1

|D|Cmu.

This concludes the proof for the first case.

Case 2: |D| > max{∆+,∆−}. In this particular case, we define the multicast schedule as

α′ji =
1

max{∆+,∆−}1{`j,i>0} ∀(i, j) ∈ [0 : N ]× [1 : N ].
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To show that this schedule is feasible in the LP P2FD, we note that for every node i in the

network, we have that

∑

k∈[0:N ]\{i}

α′ik =
∑

k∈[0:N ]\{i}

1

max{∆+,∆−}1{`i,k>0}

=
1

max{∆+,∆−}
∑

k∈[0:N ]\{i}

1{`i,k>0}

=
1

max{∆+,∆−}
∑

k∈N+(i)

1 =
|N+(i)|

max{∆+,∆−}
(a)

≤1, (5.22)

where: (i) N+(i) = {k ∈ [0 : N ]|`ik > 0} is the set of neighboring nodes to i that have

incoming edges into i with non-zero point-to-point link capacity; (ii) the inequality in (a)

follows from the definition of ∆+ that ensures that |N+(i)| ≤ ∆+, ∀i ∈ [1 : N ]. Using similar

arguments, we can also show that

∑

j∈[1:N ]\{i}

α′ji ≤ 1.

The analysis above proves that the constructed schedule α′ji is feasible, i.e., it satisfies the

constraints in (2c)−(2e) in the LP P2FD. By fixing and substituting {α′ji} in P2FD, we can

now compute the objective value for the proposed schedule through this LP

R′multicast = max
F

min
d∈D





∑

j∈[0:N ]\d

F
(d)
d,j





0≤F (d)
j,i ≤

1

max{∆+,∆−}`j,i ∀(i, j) ∈ [0:N ]×[1:N ], d∈D
∑

j∈[1:N ]\{i}

F
(d)
j,i =

∑

k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1:N ], d∈D. (5.23)

Note that the only variables in the LP in (5.23) are the flow variables {F (d)
j,i }. Thus, in (5.23)

we are effectively computing the multicast capacity in a wired network with link capacities

`′j,i =
1

max{∆+,∆−}`j,i, (5.24)

and hence

R′multicast =
1

max{∆+,∆−} min
d∈D

{
C

(wired)
d

}
, (5.25)
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where C
(wired)
d is the unicast capacity to destination d when we consider a wired network with

the link capacities as in (5.24). In other words, the network has orthogonal links that can

be activated for 100% of the time. Thus, it is not difficult to see that Cd ≤ C
(wired)
d , ∀d ∈ D

and we have that

Cmulti
cs,iid ≥ R′multicast =

1

max{∆+,∆−} min
d∈D

{
C

(wired)
d

}

≥ 1

max{∆+,∆−} min
d∈D
{Cd}=

1

max{∆+,∆−}Cmu,

which proves the lower bound in the second case. To show that the bound is indeed tight

in this case, consider the network shown in Figure 5.3(b). For this particular case, it is

not difficult to see that the unicast approximate capacity to each of the destinations is R.

Furthermore, in multicast, the source needs to switch (equally) between the ∆− different

paths connected to it to serve the different destinations. Thus, we have

Cmulti
cs,iid =

1

max{∆+,∆−}Cmu.

This concludes the proof of Theorem 5.5.1.

Remark 5.5.1. The result in Theorem 5.5.1 highlights a fundamental difference of Gaussian

FD 1-2-1 networks from classical Gaussian FD wireless relay networks. In particular, in

classical wireless relay networks, the ratio between the approximate multicast capacity and

the minimum approximate unicast capacity is universally equal to one. Differently, when

1-2-1 constraints are included, Theorem 5.5.1 shows that the ratio depends on the number

of destinations as well as graph-theoretic properties of the network.

5.6 Conclusion

In this chapter, we introduced the Gaussian 1-2-1 network, an abstract information-theoretic

model that captures the high directivity aspect of mmWave communication. For both FD

and HD modes of operation, we showed that a constant additive gap approximation exists
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for the multicast capacity. Based on the derived approximate capacity, we showed that

operating a Gaussian FD 1-2-1 network in multicast can be potentially more costly compared

to classical wireless relay networks as the ratio between the approximate multicast capacity

and the minimum unicast capacity is not unity and can be affected by the network structure

and the number of destinations.

5.7 Related Work

Studies of mmWave communication have focused on profiling the distribution of Signal-to-

Interference-plus-Noise Ratio (SINR) in random environments both in cellular and ad-hoc

network settings [DFP17, BAH14, TBH16]. mmWave communication in a cellular setting

was studied in [DFP17, BAH14] using stochastic geometry to characterize the performance

through SINR distributions in a random environment. A similar characterization for an ad-

hoc connection between a pair of nodes has also been studied in [TBH16]. These previous

works consider communication over a single-hop either between ad-hoc nodes or in a cellular

system between a base station and a user equipment. The effectiveness of multi-hop relaying

for routing in mmWave networks in random environments has been studied in [LA15,DTF17]

where it was shown that multi-hop relaying through line-of-sight connections can improve the

network connectivity. In [YPK03], scaling laws for networks with directional antennas were

studied using the setting introduced in [GK00] for omnidirectional communication. These

results look at order arguments for multiple unicast sessions through routing and do not

explore fundamental bounds such as the information theoretical capacity.

Shannon capacity characterization for the classical5 Gaussian relay network with isotropic

transmissions is a long standing open problem, both in FD and HD modes of operation.

Several schemes [ADT11], [OD13], [LKE11], [LKK14] have been shown to achieve a rate that

5The term “classical” is used throughout the chapter to describe wireless relay networks with isotropic
antennas and transmissions. This term is adopted to differentiate such scenarios from the one analyzed in
this chapter, where we have 1-2-1 constraints.
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is a constant gap (i.e., a value that only depends on the number of nodes and is independent

of the channel parameters and operating SNR) away from the Shannon capacity. This is

accomplished by showing that the achieved rate is a constant gap away from the well-known

cut-set upper bound [CE79] on the Shannon capacity. For general network topologies, the

constant gap is fundamentally linear in the number of nodes N in the network [CO15,WO15],

although for some specific FD network topologies, the constant gap can be shown to be

sublinear [SWF12,CO12].

For classical Gaussian networks with N relays operating in HD, the approximate capacity

characterization is challenging as it requires an additional optimization to schedule the relays

over 2N listen/transmit configuration states. Thus, although the approximate capacity can

be computed in polynomial time in the network size for the FD mode [PE14], in HD such a

result is known to hold only for a few special cases such as line networks [ECF17] and specific

classes of layered networks [EPS14], [JEC19]. Furthermore, although there have been several

works that characterize the complexity of the structure of the optimal schedule for Gaussian

HD wireless relay networks [BFO16], [CTK14], the problem of efficiently (i.e., in polynomial

time in the number of nodes) finding the schedule optimal for the approximate capacity for

any general number of relays N has only been solved for Gaussian line networks [ECF17].

In networks with non-isotropic transmissions, a scheduling component naturally arises in

optimizing the achieved rates. In [Ari84], it has been shown that the multi-access problem

in ad-hoc wireless networks is NP-hard. In [JX06], scheduling in wireless networks under

interference constraints has been studied and an approach for scheduling was proposed that

is guaranteed to converge to the optimal point. Unfortunately the proposed approach runs

in exponential time in the number of links in the network. For spread spectrum networks,

it has been proved in [HS88] that link-based transmissions where the restriction is relaxed

to disallowing a node to converse with more than one node, can be scheduled in polynomial

time in the number of nodes. In [THM12, CCH07], scheduling of network coded flows was

studied by modeling broadcast instances as hyperedges in a hypergraph model of the wireless
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network. Optimal scheduling in the previous model was shown to be possible in polynomial

time for a class of networks having claw-free conflict graphs [KM17]. Computing a schedule

for broadcast transmissions has also been studied for crossbar switches [SMK07] and was

shown to reduce to the fractional weighted graph coloring problem, which is NP-hard in

general.

Different from the aforementioned thread of research, where the main objective is to

provide an operating schedule for a network when all the N nodes/relays are active, another

consideration in wireless networks is understanding what fraction can be guaranteed when

only a subset of k ≤ N relays out of N is utilized. This line of work is usually referred

to as network simplification and it was first studied in [NOF14] for classical Gaussian FD

diamond networks6. Specifically, [NOF14] showed that in any N -relay classical Gaussian FD

diamond network, there always exists a subnetwork of k relays that retains at least k
k+1

of the

unicast approximate capacity of the full network. This guarantee was shown to be tight, i.e.,

there exist N -relay Gaussian FD diamond networks for which the best k-relay subnetwork

(i.e., the one with the largest approximate capacity) achieves this fraction of the full network

approximate FD capacity. In [ESF16], the authors explored a more general topology, namely

the classical Gaussian FD layered network and proved a worst-case fraction guarantee for

selecting the best path in the network. The problem was also studied for classical Gaussian

HD diamond networks in [CEF19] where it was shown that operating k relays that are

carefully picked can always retain k
N

of the unicast approximate capacity. Tightness was

shown for this guarantee for the case k = N − 1.

6An N -relay diamond network is a relay network topology where the source can communicate with a
destination only through N non-interfering relays.
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5.8 Appendix: Constant Gap Multicast Capacity Approximation

for the Gaussian 1-2-1 Network

The memoryless model of the channel allows to upper bound the channel multicast capacity

Cmulti using the cut-set upper bound Cmulti
cs as

Cmulti
cs = max

P{Xi,Si}
(·)

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

I(X̂Ω;YΩc |X̂Ωc)

= max
P{Xi,Si}

(·)
min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

I(SΩ, XΩ;YΩc|SΩc , XΩc)

= max
P{Xi,Si}

(·)
min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

I(XΩ;YΩc |SΩ, SΩc , XΩc) + I(SΩ;YΩc|SΩc , XΩc)

≤ max
P{Xi,Si}

(·)
min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

I(XΩ;YΩc|S[0:N ], XΩc) +H(SΩ)

(a)

≤ max
P{Xi,Si}

(·)
min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

I(XΩ;YΩc|S[0:N ], XΩc) + log(N + 1) +N log(κ)

(b)
= max

P{Si}(·)
max

P{Xi}|{Si}
(·)

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

∑

s

λs I(XΩ;YΩc |S[0:N ]=s,XΩc)

+ log(N + 1)+N log(κ)

(c)

≤ max
P{Si}(·)

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

max
P{Xi}|{Si}

(·)

∑

s

λs I(XΩ;YΩc |S[0:N ]=s,XΩc)

+ log(N + 1)+N log(κ), (5.26)

where: (i) Ωc = [0 : N ]\Ω; (ii) P{Xi,Si}(·) is the probability distribution of the channel input

{(Si, X i)}Ni=0; (iii) SΩ = {Si|i ∈ Ω}; (iv) the inequality in (a) is due to the fact that the state

variable at the source takes N+1 values (the source can only be transmitting to at most one

node), while at each relay/destination, the state variable can take κ values, where κ depends

on the mode of operation at the relays, namely

κ =





N(N + 1) if relays operate in FD

2N if relays operate in HD
;
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(v) we use s in the equality (b) to enumerate the possible network states S[0:N ] and we denote

with λs =P(S[0:N ] = s) the joint distribution of the states; (vi) the inequality in (c) follows

from the max-min inequality.

For a network state s, we define the channel matrix Ĥs, where the element [Ĥs]i,j is

defined as

[Ĥs]i,j =





hij if i ∈ sj,t and j ∈ si,r

0 otherwise,

(5.27)

where hij is the channel coefficient of the link from node j to node i. It is not difficult

to see that every row (and column) of Ĥs has at most one non-zero element and thus

there exists a permutation matrix Π such that ΠĤs is a diagonal matrix. Also, let s+ =

{i|si,t 6= ∅, ∀i ∈ [0 : N ]} and s− = {i|si,r 6= ∅,∀i ∈ [1 : N ]}.

With this, we can further simplify the mutual information expression in (5.26) as follows

max
P{Xi}|{Si}

(·)

∑

s

λs I(XΩ;YΩc |S[0:N ]=s,XΩc)

(a)
= max

P{Xi}|{Si}
(·)

∑

s

λs I(Xs+,Ω;Ys−,Ωc |S[0:N ]=s,XΩc)

(b)
=
∑

s

λs log det
(
I + Ĥs,Ω Ks,Ω ĤH

s,Ω

)

=
∑

s

λs log det
(
I + ĤH

s,ΩĤs,Ω Ks,Ω

)
, (5.28)

where: (i) we define Xs+,Ω as Xs+,Ω =
{
X i(si,t)

∣∣ i ∈ Ω ∩ s+
}

and Y s−,Ωc as Y s−,Ωc =
{
Y i

∣∣ i ∈ Ωc ∩ s−
}

; (ii) the equality in (a) follows since, given the state s, all variables X i(j),

with j 6= si,t, as well as all Yi with si,r = ∅ are deterministic; (iii) the equality in (b) follows

due to the maximization of the mutual information by the Gaussian distribution; (iv) Ĥs,Ω

is a submatrix of Ĥs (defined in (5.27)) and is defined as Ĥs,Ω = [Ĥs]Ωc,Ω and Ks,Ω is the

submatrix of the covariance matrix of the random vector
[
X0(s0,t) X1(s1,t) . . . XN(sN,t)

]T
,

where the rows and columns are indexed by Ω.
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We now further upper bound the Right-Hand Side (RHS) of (5.28) using [LKE11, Lemma

1]. In particular, using [LKE11, Lemma 1], we have that for any γ ≥ e − 1, the following

holds

log det
(
I + ĤH

s,ΩĤs,Ω Ks,Ω

)
≤ log det

(
I + γ−1PĤH

s,ΩĤs,Ω

)
+ |Ω| logα(Ω, s, γ)

(a)

≤ log det
(
I + PĤs,ΩĤ

H
s,Ω

)
+ |Ω| logα(Ω, s, γ), (5.29)

where the inequality (a) follows since γ > 1 and by applying Sylvester’s determinant identity

and α(Ω, s, γ) is defined based on [LKE11, Lemma 1] as

α(Ω, s, γ) =





eγ/e if γ ≤ e
rank(Hs,Ω)

trace(Ks,Ω/P )
= e

rank(Hs,Ω)

|s+∩Ω|

(
γ |s+∩Ω|

rank(Hs,Ω)

) rank(Hs,Ω)

|s+∩Ω|
otherwise.

(5.30)

If we select γ = e, then we have that

α(Ω, s, e) =

(
e
|s+ ∩ Ω|

rank(Hs,Ω)

) rank(Hs,Ω)

|s+∩Ω|
≤ max

x≥0
(ex)

1
x = e. (5.31)

Now, if we substitute (5.28), (5.29) and (5.31) in (5.26), we get that

Cmulti
cs ≤ max

P{Si}(·)
min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

[∑

s

λs log det
(
I+PĤs,ΩĤ

H
s,Ω

)
+|Ω| log e

]
+ log(N+1)+N log(κ)

≤ max
λs:λs≥0∑

s λs=1

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

∑

s

λs log det
(
I+PĤs,ΩĤ

H
s,Ω

)

︸ ︷︷ ︸
Cmulti

cs,iid

+ (N + 1) log e+log(N+1)+N log(κ)︸ ︷︷ ︸
GAP(N)

. (5.32)

The main observation in (5.32) is that an i.i.d Gaussian distribution on the inputs and

a fixed schedule are within a constant additive gap from the information-theoretic cut-set

upper bound on the capacity of the Gaussian 1-2-1 network. With this, we can argue that

Cmulti
cs,iid is within a constant additive gap of the capacity. This is due to the fact that Cmulti

cs,iid

can be achieved using quantize-map-and-forward as in [OD13] or noisy network coding as

in [CTK14].
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Due to the special structure of the Gaussian 1-2-1 network we can further simplify Cmulti
cs,iid

by making use of the structure of Ĥs,Ω in (5.32). In particular, recall that, since every row

(and column) in Ĥs,Ω has at most one non-zero element, then there exists a permutation

matrix Πs,Ω such that Πs,ΩĤs,Ω is a diagonal matrix (not necessarily square). Thus, we have

log det
(
I + PĤs,ΩĤ

H
s,Ω

)
(a)
= log det

(
I + PΠs,ΩĤs,ΩĤ

H
s,ΩΠT

s,Ω

)

(b)
=

∑

i∈[1:min{|Ω|,|Ωc|}]

log

(
1 + P

∣∣∣[Πs,ΩĤs,Ω]i,i

∣∣∣
2
)
, (5.33)

where: (i) the equality in (a) follows since permutation matrices are orthogonal matrices and

thus multiplying by them only permutes the singular values of a matrix; (ii) the equality

in (b) follows since the permuted channel matrix Πs,ΩĤs,Ω can be represented as a parallel

MIMO channel with min{|Ω|, |Ωc|} active links. We can rewrite the expression in (5.33) as

log det
(
I + PĤs,ΩĤ

T
s,Ω

)
=

∑

(i,j):
i∈s+∩Ω, j∈s−∩Ωc,

j∈si,t, i∈sj,r

log

(
1 + P

∣∣∣[Ĥ]j,i

∣∣∣
2
)

=
∑

(i,j):
i∈s+∩Ω, j∈s−∩Ωc,

j∈si,t, i∈sj,r

log
(
1 + P |hji|2

)
. (5.34)

Thus, by letting `j,i = log
(
1 + P |hji|2

)
, we arrive at the following expression for Cmulti

cs,iid

Cmulti
cs,iid = max

λ:‖λ‖1=1
λ≥0

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

∑

s

λs
∑

(i,j):
i∈s+∩Ω, j∈s−∩Ωc,

j∈si,t, i∈sj,r

`j,i

= max
λ:‖λ‖1=1
λ≥0

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

∑

s

λs
∑

(i,j)∈[0:N ]2

1{j∈si,t, i∈sj,r}1{i∈Ω, j∈Ωc}`j,i

= max
λ:‖λ‖1=1
λ≥0

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

∑

(i,j)∈[0:N ]2

1{i∈Ω, j∈Ωc}
∑

s

λs1{j∈si,t, i∈sj,r}`j,i

= max
λ:‖λ‖1=1
λ≥0

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

∑

(i,j):i∈Ω,
j∈Ωc



∑

s:
j∈si,t,
i∈sj,r

λs


 `j,i
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= max
λ:‖λ‖1=1
λ≥0

min
d∈D

min
Ω⊆[0:N ]:0∈Ω,

d∈Ωc

∑

(i,j):i∈Ω,
j∈Ωc

`
(s)
j,i , (5.35)

where `
(s)
j,i is defined as

`
(s)
j,i =



∑

s:
j∈si,t,
i∈sj,r

λs


 `j,i.

This concludes the proof that the multicast capacity Cmulti of the Gaussian 1-2-1 network

described in (5.4) and in (5.5) can be characterized to within a constant additive gap as

expressed in (5.6).
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CHAPTER 6

Efficient Scheduling in Gaussian Half-Duplex 1-2-1

Networks

In this chapter, we continue our study of Gaussian 1-2-1 networks. The main result of this

chapter is the design of two polynomial time algorithms that: (i) compute the approximate

multicast capacity of the 1-2-1 HD network and, (ii) find the network schedule optimal for the

approximate multicast capacity. The chapter starts by expressing the approximate multicast

capacity as a linear program with an exponential number of constraints. A core technical

component consists of building a polynomial time separation oracle for this linear program,

by using algorithmic tools such as perfect matching polytopes and Gomory-Hu trees.

6.1 Introduction

In Chapter 5, we introduced the 1-2-1 network model and proved an max-min expression

for its approximate multicast capacity (both in FD and HD) modes of operation. The

efficient polynomial time scheduling of the network in the case of the FD mode of operation

turns out to be a direct consequence of casting the approximate capacity as an equivalent

linear program. In the HD case, however, showing a similar result requires some additional

machinery. In what follows we state our key result of this chapter that shows that polynomial

time scheduling can be performed even in the HD mode of operation before delving into

proving the result and exploring the proof machinery.

Theorem 6.1.1. For the N-relay Gaussian HD 1-2-1 network, we have:
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(a) The approximate multicast capacity Cmulti
cs,iid can be found in polynomial time in N ;

(b) An optimal schedule for the approximate capacity Cmulti
cs,iid can be found in polynomial time

in N .

To the best of our knowledge, Gaussian HD 1-2-1 networks represent the first class of HD

relay networks for which the approximate capacity and schedule can be computed efficiently

independently of the network topology.

6.2 Scheduling in Gaussian HD 1-2-1 Networks

Theorem 6.1.1 Part (a). The proof of the first part of Theorem 6.1.1 is a direct conse-

quence of two results that we present and discuss in what follows. Our first result shows

that calculating Cmulti
cs,iid for Gaussian HD 1-2-1 networks is equivalent to solving an LP, where

the state activation times are replaced by the link activation times. In particular, we have

the following theorem for which the proof is delegated to Section 6.3.

Theorem 6.2.1. For any N-relay Gaussian HD 1-2-1 network, we have that P1 in (5.9) is

equivalent to the LP below

P3HD : Cmulti
cs,iid = max

α,F
min
d∈D





∑

j∈[0:N ]\d

F
(d)
d,j





(P3a) 0 ≤ F
(d)
j,i ≤ αji`j,i ∀(i, j) ∈ [0 : N ]× [1 : N ], d ∈ D,

(P3b)
∑

j∈[1:N ]\{i}

F
(d)
j,i =

∑

k∈[0:N ]\{i}

F
(d)
i,k ∀i ∈ [1:N ]\{d}, d ∈ D

(P3c) α̂ij = αij + αji, i ∈ [0:N ], j ∈ [i+1:N ],

(P3d) αij ≥ 0 (i, j) ∈ [0:N ]× [1:N ],

(P3e)
∑

(i,j):i=v or j=v,
i<j

α̂ij ≤ 1, ∀v ∈ [0 : N ],
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(P3f)
∑

i∈S,j∈S,
i<j

α̂ij≤
|S| − 1

2
, ∀S⊆ [0 : N ], |S| odd,

(P3g) α̂ij ≥ 0 i ∈ [0:N ], j ∈ [i+1:N ],

where F
(d)
j,i represents the data flow through the link of capacity `j,i intended for destination

d and αji represents the fraction of time for which the link is active and α = {αji}, ∀i ∈ [0 :

N ], j ∈ [1 : N ] and i 6= j.

Similar to the development used in Section 5.4 for the FD case, the LP P3HD is very

similar to the LP representation of the max-flow problem where the edge capacities are

given by αji`j,i. The key difference with FD is that αji is now a variable that is subject to

the feasibility constraints in (P3c)− (P3f), which stem from the nature of the scheduling in

HD 1-2-1 networks.

Remark 6.2.1. There exists a fundamental difference in HD with respect to FD, which is

captured by the constraints in (P3f) that are not needed in FD. To illustrate the need of the

constraints in (P3f) in P3HD, consider the network in Fig. 6.1(a) with a single destination

node. Assume that each of the three links in the network is active for a fraction of time equal

to 1/2 (as shown in Fig. 6.1(a)). Clearly, these link activation times satisfy the constraints

in (P3c)−(P3e) with α̂01=α̂02=α̂12 = 1
2
. However, we note that these link activation times

do not satisfy the constraints in (P3f) since, by considering S = {0,1,2}, we have

∑

i∈S,j∈S, i<j

α̂ij = α̂01 + α̂02 + α̂12 =
3

2
>
|S| − 1

2
= 1.

Thus, if the constraints in (P3f) were not there, then one would conclude that the link

activation times illustrated in Fig. 6.1(a) are feasible. However, we now show that this is

not the case, which highlights the need of the constraints in (P3f). For the Gaussian 1-2-1

network in Fig. 6.1(a), when the relay operates in HD, there are three possible useful states

of the network, in each of which exactly one link is active. These three states are depicted

with different line styles (i.e., solid, dashed, dotted) in Fig. 6.1(b). Note that the links
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(a) link activations in 1-2-1 network.
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1
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(b) Network states in HD.

0

1

2

(c) Network states in FD.

Figure 6.1: Gaussian 1-2-1 network examples and network states in HD and FD.

0→1 and 1→2 cannot be active simultaneously because of the HD constraint at the relay.

Additionally, the links 0→1 and 0→2 cannot be activated simultaneously since the source

has only a single transmit beam. A similar argument also holds for the links 1→2 and 0→2.

Thus, for this network we have a one-to-one mapping between λs in (5.9) and αji in P3HD,

with λs = αji if state s activates the link of capacity `j,i. Hence, if we use the values from

Fig. 6.1(a), we would obtain
∑

s λs = 3/2 > 1 which clearly does not satisfy the constraint

in P1 in (5.9). We therefore conclude that the link activation times illustrated in Fig. 6.1(a),

which are feasible if the relay operates in FD (see Fig 6.1(c)), are not feasible when the relay

operates in HD. This simple example shows why the constraints in (P3f) in P3HD are needed

for Gaussian HD 1-2-1 networks.

We note that the LP P3HD has a number of variables that is polynomial in N (two per

each edge in the network) compared to the number of variables in the LP P1, which instead is

exponential in N (one per each state in the network). However, we also note that P3HD now

has an exponential number of constraints of the type (P3f). Thus, it follows that algorithms

such as the simplex method and the standard interior point method cannot solve P3HD in

polynomial time in N . However, as we show next, the ellipsoid method [GLS81] can indeed

be adapted to solve P3HD in polynomial time in N . The key step of the ellipsoid method,
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that incorporates the constraints of an LP, relies on the existence of an oracle which, given

the problem and a point in space, can decide whether the point is feasible or not and, if

not, it returns one constraint of the linear program that is violated by that point. If such

a decision can be taken in polynomial time, then this is referred to as a polynomial time

separation oracle and the LP can be solved in polynomial time. Our next result focuses on

showing that a polynomial time separation oracle for P3HD exists such that, given the graph

representing the N -relay Gaussian HD 1-2-1 network and an assignment of {Fi,j, αij, α̂ij}, it

can verify in polynomial time in N if {Fi,j, αij, α̂ij} is feasible in P3HD and, if not feasible,

it returns one of the constraints that is violated. In other words, if one of the constraints is

violated, then the oracle returns a hyperplane that separates the given point (assignment of

{Fi,j, αij, α̂ij}) from the feasible polytope in P3HD. This result is formalized in the theorem

below for which the proof is given in Section 6.4.

Theorem 6.2.2. A polynomial time separation oracle exists that, provided with a network of

N+1 nodes and an assignment {Fi,j, αij, α̂ij} for its link activations, can verify in polynomial

time in N if {Fi,j, αij, α̂ij} is feasible with respect to the constraints in P3HD, and if not

feasible it returns one of the constraints in P3HD that is violated.

Theorem 6.2.1, Theorem 6.2.2 and the existence of the ellipsoid method [GLS81] directly

imply the result in Part (a) of Theorem 6.1.1.

Theorem 6.1.1 Part (b). The proof of the second part of Theorem 6.1.1 makes use

of Theorem 6.2.2 and an algorithmic version of Caratheodory’s theorem to find a feasible

schedule {λs} for the approximate capacity in (5.9), such that each link is activated for the

amount given by the solution of P3HD. Theorem 6.1.1 Part (b) is proved in Appendix 6.5.

Remark 6.2.2. Through Theorem 6.2.1, the 1-2-1 network model in HD is equivalent to

link scheduling in CDMA networks as it was considered in [HS88], where a similar algorithm

was independently developed to perform scheduling in polynomial time in the number of

nodes.
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6.3 Proof of Theorem 6.2.1

Note that all variables, except λs and αij, are the same in the two LPs P1 and P3HD. Thus,

to make P1 and P3HD equivalent, we want to find a bijective mapping between λs’s and αij’s.

If we observe a state s in a Gaussian HD 1-2-1 network and hence in P1, we see that a

state does not activate two adjacent links, i.e., a state represents a matching in the graph

representing the network topology. Furthermore, the constraints in (P1a), (P1c) and (P1d)

in P1 suggest that the link activation times should be in the convex hull of the 0-1 activations

representing a matching. To state this more formally, let F (d) be a matrix that is populated

by the flow variables F
(d)
j,i , ∀d ∈ D in P1, and let L be a matrix populated by the link

capacities `j,i in P1. For each state s, let Ms be a binary matrix such that its (j, i)-th

component is 1 if the link from node i to node j is activated by state s, and 0 otherwise.

Then, we can write the constraint in (1a) in (P1a) as

(P1a) F (d) ≤
(∑

s

λsMs

)
� L, ∀d ∈ D, (6.1)

where the operator � denotes the element-wise multiplication (Hadamard product). Now,

if we consider P3HD, then the constraint in (P3a) can be written as

(P3a) F (d) ≤ Λ� L, ∀d ∈ D, (6.2)

where Λ is populated by the variables αji.

From (6.1) and (6.2), we can see that the constraint needed in P3HD is to have Λ in the

convex hull of {Ms}, i.e., we want the link activations (or weights) that are in the convex hull

of points representing matchings in a graphs. A result [Edm65] by Edmonds for undirected

graphs characterizes the constraints that represent the Matching polytope (M-polytope).

The M-polytope of an undirected graph G is the polytope that has all matchings as its

extreme points. By massaging this result to apply to the directed graph in our problem, we

define α̂ij = αij + αji for all i < j and we apply Edmonds’s constraints on α̂ij. With this,

we precisely get the linear program in P1. In particular, the M-polytope characterized by
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Edmonds defines the constraints in (P3e) and (P3f) on α̂ij. The mapping from α̂ to αij is

defined by the constraint in (P3c) in P3HD. This concludes the proof of Theorem 6.2.1.

6.4 Proof of Theorem 6.2.2

In this section, we prove Theorem 6.2.2, namely we show the existence of a polynomial time

separation oracle that, provided with a weighted graph with N + 1 nodes – representing our

Gaussian HD 1-2-1 network – and a point y=(Fi,j, αij, α̂ij) in the space of P3HD, can verify

in polynomial time in N if y is feasible in P3HD and if not, it returns a hyperplane that

separates y from the feasible region (i.e., an inequality satisfied for the feasible region but

not for y).

Our oracle can be divided into two parts: (i) a simple oracle that checks the constraints in

(P3a)-(P3e), and (ii) a more involved oracle for checking the constraint in (P3f). Note that

since the number of variables and constraints in (P3a)-(P3e) is polynomial in N , then we can

directly check these constraints for y in polynomial time in N . If one constraint is violated,

then we return that constraint as the hyperplane that separates y from the feasible set. In

what follows, we prove that the constraint in (P3f) can also be checked in polynomial time

in N . Towards this end, in Section 6.4.1 we first overview some results from [Edm65], and

define the M-polytope and the Perfect Matching polytope (PM-polytope) of an undirected

graph, and show a useful relationship between them. Note that (similar to the definition of

the M-polytope), the PM-polytope of an undirected graph G is the polytope that has all

perfect-matchings as its extreme points. Then, in Section 6.4.2 we show how a set S that

violates the constraint in (P3f) can be found by first constructing a Gomory-Hu tree [GH61]

of the weighted graph representing our network, and then checking cuts with a particular

structure in it. Finally, in Section 6.4.3, we show how these results can be leveraged to build

our polynomial time separation oracle.
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Table 6.1: Quantities of interest used throughout Section 6.4.

Quantity Definition

xG(e) Weight corresponding to edge e = (i, j) between nodes i ∈ VG and j ∈ VG
δG(S) Set of edges in G that have only one endpoint in the set of vertices S ⊆ VG

EG(A,B) Set of edges with one endpoint in A and the other endpoint in B with A,B ⊆ VG
EG(A) Set of edges with both endpoints in the set of vertices A

xG(F ) Sum of the weights of the edges that belong to F , i.e., xG(F ) =
∑

e∈F
xG(e)

6.4.1 M-polytope and PM-polytope

We here overview some results from [Edm65], and show a useful relationship between the M-

polytope and the PM-polytope of an undirected graph, which we next define. In particular,

we will use the following graph theory notation. For an undirected graph G = (VG, EG, xG),

with set of vertices VG, set of edges EG and edge weight function xG : EG → R+, we use the

convention e = (i, j) with i < j. Furthermore, in the remainder of this section, we use the

definitions in Table 6.1.

As an example of the used notation, with reference to the weighted graph G in Fig. 6.2,

we have

δG({1, 3, 4, 5}) = {(0, 1), (1, 2), (2, 3), (2, 4), (2, 5)},

EG({1, 3, 4, 5}, {2}) = {(1, 2), (2, 3), (2, 4), (2, 5)},

EG({1, 3, 4, 5}) = {(1, 3), (1, 4), (3, 4), (3, 5), (4, 5)},

xG({(0, 2), (1, 3), (2, 5)}) = 8 + 4 + 2 = 14.

We let G = (VG, EG, α̂) define the weighted undirected graph that describes our Gaussian

HD 1-2-1 network, where the weight of edge e equals α̂(e) = α̂e as in the constraint in (P3c)

in P3HD. Then, we note that the constraints in (P3d)− (P3f) in P3HD are those introduced

by Edmonds [Edm65] to define the M-polytope for the graph G. By using the notation
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Figure 6.2: Example of a weighted graph G.

introduced above, we can rewrite the constraints in (P3d)− (P3f) in P3HD, as follows

M− polytope :

α̂(e) ≥ 0, ∀e ∈ EG,

α̂(δG(v)) ≤ 1, ∀v ∈ VG,

α̂(EG(S)) ≤ |S| − 1

2
, ∀S ⊆ VG, |S| odd.

(6.3)

The PM-polytope is represented similarly to the M-polytope, where now the second con-

straint in (6.3) is forced to be satisfied with equality, namely

PM− polytope :

α̂(e) ≥ 0, ∀e ∈ EG,

α̂(δG(v)) = 1, ∀v ∈ VG,

α̂(EG(S)) ≤ |S| − 1

2
, ∀S ⊆ VG, |S| odd.

(6.4)

By using the second constraint in (6.4), we can manipulate the third constraint, and rewrite

the PM-polytope as

PM− polytope :

α̂(e) ≥ 0, ∀e ∈ EG,

α̂(δG(v)) = 1, ∀v ∈ VG,

α̂(δG(S)) ≥ 1, ∀S ⊆ VG, |S| odd.

(6.5)
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We now show that, for any graph G = (VG, EG, α̂) with |VG| vertices, there is an injection

from the M-polytope of G to the PM-polytope of a constructed graph G̃ with double the

number of vertices. Towards this end, we first create a copy G′ = (VG′ , EG′ , α̂
′) of the original

graph G; note that with this construction we have α̂′ = α̂. We then let G̃ = (VG̃, EG̃, α̃) be a

graph with: (i) VG̃ = VG∪VG′ , (ii) EG̃ = EG∪EG′∪{(v, v′)|v ∈ VG, v′ is the copy of v in G′},
and (iii) α̃(e) defined as

α̃(e) =





α̂(e) if e ∈ EG,

α̂′(e) if e ∈ EG′ ,

1− α̂(δG(v)) if e = (v, v′).

(6.6)

It turns out that if α̂ is in the M-polytope of G, then α̃ is in the PM-polytope of G̃

(check [ECF19a] for a detailed proof of this standard claim). This result implies that we can

check whether α̂(e) is in the M-polytope of G by checking whether α̃(e), with the construction

in (6.6), is in the PM-polytope of G̃.

6.4.2 PM-polytope and Gomory-Hu Tree

In the previous subsection, we have defined the PM-polytope for the weighted undirected

graph G̃ as in (6.5). In particular, in (6.5) we can check in polynomial time if the first

two sets of constraints are satisfied. Therefore, our main concern lies in the third group

of constraints, since there is an exponential number of them. We here show that a set S

that violates the third constraint in (6.5) can be found by first constructing a Gomori-Hu

tree [GH61] of G̃ (defined below), and then checking cuts with a particular structure in it.

We start by noting that the third group of constraints in (6.5) can be written in a compact

way as

min
S⊆V

G̃
,

|S| odd

α̂(δG̃(S)) ≥ 1. (6.7)
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In words, what this says is that the minimum odd cut in G̃ has a value greater than or equal

to 1. An odd cut is a vertex partition of VG̃ into S and Sc such that either S and/or Sc has

an odd cardinality (Sc is the complement of S).

In [PR82], Padberg and Rao provided an efficient algorithm to find the minimum odd

cut and its value for any graph G. An appealing feature of the algorithm designed in [PR82]

is that it runs in polynomial time in |VG|. In particular, the method introduced, which we

summarize below, consists of using Gomory-Hu trees.

Definition 6.4.1 (Gomory-Hu Tree). Let G = (VG, EG, xG) be a capacitated (weighted)

undirected graph with capacity function xG : EG → R+. A Gomory-Hu tree (for G and xG)

is a capacitated tree T = (VG, F, βT ) with capacity βT , such that for each edge e = (s, t) ∈ F ,

the two components of T\e give a a minimum capacity s− t cut in G. The capacity of the

cut in G is equal to βT (s, t).

Note that, for any capacitated undirected graph with |VG| vertices, a Gomory-Hu tree

always exists and can be constructed by the algorithm in [GH61] using |VG| − 1 runs of the

max-flow problem. Given the triangle inequality of min-cuts in a graph, Definition 6.4.1

implies the following property of Gomory-Hu trees.

Property 6.4.1. LetG = (VG, EG, xG) be a capacitated undirected graph and T = (VG, F, βT )

be a Gomory-Hu tree of G. Consider any two vertices u, v ∈ VG, let Puv be the path con-

necting u and v in T and let (s, t) be the edge with the minimum capacity βT (s, t) along the

path Puv. Then, we have the two following properties:

1. The two components T\(s, t) give a minimum capacity u− v cut in G;

2. The value of the minimum capacity u− v cut is given by βT (s, t).

As an example of a Gomory-Hu tree, consider Fig. 6.3, which represents a Gomory-Hu

tree T of the graph G in Fig. 6.2. From Property 6.4.1, it follows that if for G in Fig. 6.2,
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Figure 6.3: A Gomory-Hu tree T of the graph G in Fig. 6.2.

we would like to know the minimum cut between vertices 1 and 5, then all we need to do is

to look at the unique path connecting 1 and 5 in T in Fig. 6.3. The edge with the minimum

capacity is (2, 4) and hence the min-cut between 1 and 5 equals 13. A cut that has this value

in G is the partition U = {0, 1, 2} and U c = {3, 4, 5}.

We now state a simplified version of the result proved in [PR82] that shows how a Gomory-

Hu tree of a graph can be leveraged to verify if the minimum odd cut of a graph satisfies (6.7).

Theorem 6.4.1 ( [PR82]). Let G̃ = (VG̃, EG̃, α̃) be an undirected capacitated graph with

|VG̃| even, and let T = (VG̃, F, βT ) be a Gomory-Hu tree for G̃. Then, one of the cuts

determined by T\e, ∀e ∈ F , is a minimum capacity odd cut in G̃.

We can use the result in Theorem 6.4.1 to verify whether the minimum odd cut has a

weight greater than or equal to one, by following the procedure illustrated in Algorithm 1.

We note that, even though we need only one among |Wf | and |W c
f | to be odd, in a graph

with even number of vertices, if one is odd, then also the other is odd.

In summary, we have here shown that we can find a set S (if any) that violates the third

constraint of the PM-polytope of G̃ = (VG̃, EG̃, α̃) defined in (6.5) by first constructing a

Gomory-Hu tree T = (VG̃, F, βT ) and then checking odd cuts in it. Since the number of cuts

in T is |VG̃|−1 = 2N+1, then by using this procedure we only need to perform O(N) checks

(and not an exponential number of them).
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Algorithm 1 Check if minimum odd cut in G̃ satisfies (6.7)

1: function CheckMinimumOddCut(G̃)

2: Build a Gomory-Hu tree T = (VG̃, F, βT ) of G̃

3: for each f ∈ F do

4: Let Wf and W c
f be the two components of T\f

5: if |Wf | is odd then

6: if βT (f) < 1 then

7: return Wf as the set that violates (6.7)
return Wf = ∅

6.4.3 Polynomial time Separation Oracle

We here show how the results that we discussed and stated in the previous two subsections

can be combined and leveraged to build our polynomial time separation oracle. This oracle

either returns that the point y = (Fi,j, αij, α̂ij) is feasible or it returns one of the constraints in

(P3a)-(P3f) that is violated. In this latter case, if the returned violated inequality constraint

is evaluated with equality, then it defines the hyperplane that separates y from the feasible

polytope. In particular, Algorithm 2 provides the pseudocode of our separation oracle. It is

worth noting that each step in Algorithm 2 can be performed in polynomial time in N and

hence our oracle runs in polynomial time in N . In particular, the complexity is dominated

by the step where a Gomory-Hu tree is constructed for G̃. This construction algorithm, in

fact, involves performing the max-flow problem 2N + 1 times and hence the complexity of

this step – and consequentially of our oracle – is O(N4) in the worst-case. This concludes

the proof of Theorem 6.2.2.
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Algorithm 2 Polynomial time separation oracle for P3HD

Input: Network NET, point y = (Fi,j, αij, α̂ij) to test for feasibility

Output: Feasible flag, violated constraint in P3HD

1: Check if all constraints in (P3a)-(P3e) in P3HD are satisfied

2: if one constraint in (P3a)-(P3e) is violated then

3: return Feasible = False, constraint violated

4: Construct undirected simple graph G = (VG, EG, α̂) with the same set of nodes in NET,

edges representing links in NET (but only one direction) and α̂ given by y

5: Construct undirected graph G̃ from G that has double number of vertices as described

in Section 6.4.1

6: Wf = CheckMinimumOddCut(G̃)

7: if Wf = ∅ then

8: return Feasible = True

9: else

10: Feasible = False

11: Let Wf,a = Wf ∩ VG and W ′
f,b = Wf ∩ VG′

12: Let W ′
f,a be a copy of Wf,a in VG′

13: Let Wf,b be a copy of W ′
f,b in VG

14: if |Wf,a\Wf,b| odd then

15: Z = Wf,a\Wf,b

16: else

17: Z = W ′
f,b\W ′

f,a

18: return Feasible = False, constraint Z in (P3f) violated

167



6.5 Appendix: Proof of Theorem 6.1.1(b): Constructing an Opti-

mal Schedule in Polynomial Time

To prove part (b) of Theorem 6.1.1, recall that for a Gaussian HD 1-2-1 network, a state

s in (5.9) does not activate two adjacent links. Thus, a state is a matching of directed

edges in a directed graph representing the network topology. Now, assume that we are given

a feasible point in the LP P3HD (obtained by solving P3HD). The main objective of this

section is to efficiently (i.e., in polynomial time in the number of nodes) construct a set of

matchings (representing states in the network) and find their corresponding activation times

(representing λs in (5.9)), such that the fraction of time a link i→j is active is equal to αji in

P3HD. For any pair of nodes i < j, we refer to α̂ji in P3HD as the connection activation time,

i.e., α̂ji represents the duration of time nodes i and j are connected, without considering

the direction of communication between them. Thus, from a connection activation time

perspective, the network is represented by an undirected graph where an edge (i, j) is active

for a fraction α̂ji of time. We first discuss how we can decompose the connection activation

times into undirected matchings, and then show how these can be leveraged to construct

our set of directed matchings (states). The goal is to show that both these tasks can be

performed in polynomial time in the number of nodes.

6.5.1 Decomposition into Undirected Matchings

We define the undirected graph G = (VG, EG, α̂), where: (i) the graph vertices in VG represent

the nodes in our Gaussian HD 1-2-1 network, (ii) EG = {(i, j)|i > j, α̂ij > 0} is the set

of edges, and (iii) the edge weights are equal to the values of α̂ij from the feasible point in

P3HD. Note that, without loss of generality, in the definition of EG we do not include any

edge e for which α̂e = 0.

Let α̂ ∈ R|EG|
+ be the vector comprised of α̂e, ∀e ∈ EG. As highlighted in Section 6.4,

the constraints on {α̂e} in (P3e) − (P3g) describe the M-polytope of the undirected graph
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G [Edm65]. Our goal here is to efficiently find a set of K matchings Mk ∈ {0, 1}|EG|, k ∈ [1 :

K] (vertices of the M-polytope) such that

α̂ =
∑

k∈[1:K]

ϕkMk,
∑

k∈[1:K]

ϕk = 1, ϕk ≥ 0, ∀k ∈ [1:K]. (6.8)

By Caratheodory’s theorem [Bar82], we know that for some K≤|EG|+1, such a decomposi-

tion of α̂ exists. However, the key challenge is to discover this decomposition in polynomial

time in N . Towards this end, we appeal to a result in combinatorial optimization [GLS12,

Theorem 6.5.11]. This theorem states that, if we can optimize an objective function over

the M-polytope using a separation oracle that runs in polynomial time, then an algorithmic

implementation of Caratheodory’s theorem can be performed in polynomial time in the num-

ber of variables. Our result in Theorem 6.2.2 proves that such a polynomial time separation

oracle exists, and hence [GLS12, Theorem 6.5.11] ensures that the decomposition in (6.8)

can be performed in polynomial time.

The remainder of this subsection is devoted to describing the decomposition algorithm [GLS12,

Theorem 6.5.11] and explaining why we can apply it to our M-polytope. For this, we need

to explicitly mention some properties of polyhedra.

Definition 6.5.1. The dimension of a polyhedron P ⊆ Rn, dim(P ) is the maximum number

of affinely independent points in P minus 1. If dim(P ) = n, we say that P is fully-

dimensional. A polyhedron P is said to be bounded if there exists a ball B in Rn centered

around the origin with radius r <∞ such that P ⊆ B.

Definition 6.5.2. A polyhedron P ⊆ Rn is called rational if all its vertices and at least

one point in its interior belong to Qn. A polyhedron P is called well-described, if a finite

number of bits is needed to encode a single constraint of the polyhedron.

Definition 6.5.3. The subset F is called a face of polyhedron P ⊆ Rn, if there exists an

inequality such that aTx ≤ a0, ∀x ∈ P and F = {x ∈ P |aTx = a0}. We say that the

inequality aTx ≤ a0 defines the face F .
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Definition 6.5.4. A face F of the polyhedron P ⊆ Rn, is called a facet of P if dim(F ) =

dim(P ) − 1. If the polyhedron P is fully-dimensional, then each non-redundant inequality

constraint of P defines a facet of P .

It is not difficult to see that the M-polytope is rational, well-described and fully-dimensional.

To observe full-dimensionality, note that the set of matchings (vertices) such that each se-

lects only one edge in the graph, together with the all-zero matching, form a set of affinely

independent points with |EG|+ 1 elements. As a result (by Definition 6.5.4) each constraint

in (P3e)− (P3g) defines a facet of the M-polytope.

To describe the decomposition algorithm for our polytope, we need to shorthand two

abstract oracles that we will use with their shorthand (SEP and OPT), extensively.

1. SEP (P, y) denotes the separation oracle that takes a polyhedron P and a point y.

This oracle determines if y ∈ P or else returns a constraint of P that is violated

by y. If P is fully-dimensional, then this returned constraint defines a facet of P as

aforementioned above. Note that P might not be explicitly defined to the oracle with a

set of constraints, but rather as an object (e.g., a graph) and a condition on the object

(e.g., minimum odd cut is greater than some value). An example of such an oracle is

the result in Theorem 6.2.2.

2. OPT (P, c) denotes the optimization oracle that given a polyhedron P and an affine

objective function parameterized with c, maximizes cTx over x ∈ P . If P is bounded

then for any c, the oracle returns a vertex of P at which cTx is maximized.

We are now ready to describe the algorithm used for the decomposition in (6.8) over the

M-polytope. The exact details are described in Algorithm 3. The skeleton of Algorithm 3 is

the following:

1. We start with our desired point to decompose y0 = λ̂ and find any vertex M1 of the

M-polytope (using OPT).
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Figure 6.4: An example of the decomposition of y0 into M1 and y1. The red color represents

the facet F1 that y1 belongs to.

2. We maximize along the line connecting y0 and M1 in the M-polytope in the direction

y0 − M1. The maximizer, denoted as y1, is the intersection of the line and some

boundary of the M-polytope. A simple illustration of y0, y1 and M1 is shown in

Fig. 6.4.

3. Since y0 is in between M1 and y1 on a line, then we can write y0 = θ1M1 + (1− θ1)y1

for 0 ≤ θ ≤ 1.

4. Next, we find a facet F1 (defined as aT1 x = b1) of the M-polytope containing y1 by

finding the constraint separating y1 + ε(y0 −M1) from the M-polytope for some ε > 0

(using SEP).

5. We now want to find a vertex of this facet F1, so we maximize the objective function

c1 = a1 (using OPT) to get a vertex M2 in the F1.

6. Since both y1 and M2 belong to F1 then the line projected along them to get y2 (similar

to how in Step 2, we got y1 from y0 and M1) also belongs to F1.

7. We repeat Steps 2) to 6) for i > 1 until we hit a vertex in the end. Note that in
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Step 5) to get Mi+1 that belongs to the intersection of all facets F1, F2, · · · , Fi, we use

ci =
∑i

j=1 ai to ensure that the vertex satisfies aTj x = bj, ∀j ∈ [1 : i].

8. At the end, we have that for each i ∈ [1 : |EG|+ 1],

yi−1 = θiyi + (1− θi)Mi, 0 ≤ θi ≤ 1.

Thus, by applying recursion, we can express our desired point y0 as

y0 =
∑

i∈[1:|EG|+1]

ϕiMi,

with

ϕi = θi
∏

j∈[1:i−1]

(1− θj).

Note that Algorithm 3 iterates over the oracle for a polynomial number of times equal to

|EG| + 1, since at each time, we are restricting our search with a new equation (aTj x = bj),

i.e., at every iteration we decrease the dimension of the currently considered polytope by 1.

Therefore, if the oracles SEP and OPT can run in polynomial time, then the algorithm is

polynomial in time. Fortunately, the M-polytope has a polynomial time separation oracle

(by Theorem 6.2.2) and a polynomial time optimization oracle (by Theorem 6.1.1). Thus,

by consequence Algorithm 3 runs in polynomial time in the number of nodes.

6.5.2 Post-processing for Directional Matchings

We now need to utilize the matchings {Mk}, k ∈ [1 : K] and their activation times {ϕk}
output by the algorithm discussed in the previous subsection to construct network states and

find their activation times such that each link i→j is activated for a duration αji (output by

P3HD). We can perform this decomposition in polynomial time by iterating over the edges of

the undirected graph G constructed in the previous subsection. For notational ease, we can

rewrite each of the matchings Mk discovered in the previous subsection as a lower triangular
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matrix M̃k ∈ {0, 1}(N+1)×(N+1), where

M̃k(j, i) =





Mk(j, i) (i− 1, j − 1) ∈ EG, i < j

0 otherwise,

where i − 1 and j − 1 are used since the matrix entries are matched with positive num-

Algorithm 3 Decomposition into Caratheodory points
Input: Graph G = (VG, EG, α̂)

Output: {ϕi}, {Mi}
1: y0 = α̂

2: P = M-polytope of G

3: c0 = 1|EG|×1 // Set first objective function to any value (all ones here)

4: for each i ∈ [1 : |EG|+ 1] do

5: Mi = OPT (P, ci−1) // Get vertex maximizing ci−1

6: // Maximize in the direction of yi−1 −Mi to get the point yi on the boundary of P

7: yi = OPT (P ∩ line(yi−1,Mi), yi−1 −Mi)

8: // Convex combination of Mi and yi gets yi−1

9: θi = Mi−yi

yi−1−yi
// Solve for 0 ≤ θi ≤ 1 : θiMi + (1− θi)yi = yi−1

10: // Get the facet containing yi. Perturb yi by a small amount in the direction of yi−1 −Mi to get a

point outside of the polyhedron, and then apply the separation oracle

11: aTi , bi = SEP (P, yi + ε yi−1−Mi

|yi−1−Mi| ) // aTi x = bi defines a facet containing yi

12: //We want the new vertex in the next iteration to be in the intersection of all facets Fj visited before.

This is done by adding all the inequalities defining these facets

13: ci =
∑i

j=1 aj

14: for each i ∈ [1 : |EG|+ 1] do

15: ϕi = θi
∏i−1

j=1(1− θj)

bers while our nodes are indexed from 0. The rows of M̃k represent the receiving modules

of the nodes, while the column indexes represent the transmitting modules of the nodes.

As an illustrative example, consider a Gaussian HD 1-2-1 network with N = 3 (2 in-

termediate relays and 1 destination node), where the undirected graph G has edge set

EG = {(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)}. For the matching Mk shown below, we have the
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corresponding M̃k

Mk =




1

0

0

0

1




=⇒ M̃k =




0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0



.

With this notation, we can design an algorithm that generates the optimal {λs} for (5.9)

such that they collectively activate each link i → j for the duration αji in the LP P3HD.

The formal procedure of the algorithm is described in Algorithm 4. The main idea behind

Algorithm 4 is the following. From (6.8), the definition of M̃k and the LP P3HD, we know

that ∀(i, j) ∈ [0 : N ], such that i < j, we have

∑

k∈[1:|EG|+1]

ϕk M̃k(j, i) = α̂ij
(P3HD)

= αji + αij.

Thus, for each connection (i, j) in the network, we just need to break the matchings {M̃k}
into two sets contributing to the activation of the links i→ j and j → i. Before processing a

connection (i, j), the default direction is i→ j. The algorithm iterates over each connection

(i, j), and adds up the activation times for the matchings one by one until the sum exceeds

αji. For the remaining matchings, we change the assigned direction to j → i. The matching

M̃k(j, i) that caused the sum to exceed αji is split into two copies, one where the direction

is i→ j and the other with j → i.

Note that, in each iteration over the elements in EG, we split at most one matching

(state). Thus, starting with |EG|+1 matchings, we end up with at most 2|EG|+1 matchings.

Moreover, the inner loop iterates over at most 2|EG| + 1 matchings. Thus, the algorithm

runs in O(|EG|2) time which in the worst case is O(N4) for a network with N + 1 nodes.
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Algorithm 4 Constructing digraph matchings from undirected graph matchings

Input: Graph G = (VG, EG, α̂), {M̃k}|EG|+1
k=1 , {ϕ}|EG|+1

k=1

Output: {ϕ′k}, {M̃ ′k}
1: K = |EG|+ 1

2: M̃ ′k = M̃k, ϕ′k = ϕk, ∀k ∈ [1 : |EG|+ 1]

3: for each (i, j) ∈ EG do

4: ω = 0

5: for each k ∈ [1 : K] do

6: if M̃ ′k(j, i) == 1 then

7: if ω+ϕ′k < αji then // All matchings that contain (i, j) connection so far are less than αji

8: ω = ω + ϕ′k

9: else if ω+ϕ′k = αji then // All matchings that contain (i, j) connection so far are exactly

αji

10: // For all remaining matchings containing (i, j) assign to j → i

11: for each ` ∈ [k + 1 : K] s.t. M̃ ′`(j, i) == 1 do

12: M̃ ′`(j, i) = 0, M̃ ′`(i, j) = 1

13: Break

14: else

15: // Make another copy (K + 1) of the current state, and assign j → i instead of i→ j

16: M̃ ′K+1 = M̃ ′k // Make a new copy at the end of the list

17: ϕ′K+1 = ω + ϕ′k − αji, ϕ′k = αji − ω
18: M̃ ′K+1(j, i) = 0, M̃ ′K+1(i, j) = 1

19: // For all remaining matchings in [k + 1 : K]containing (i, j) assign to j → i

20: for each ` ∈ [k + 1 : K] s.t. M̃ ′`(j, i) == 1 do

21: M̃ ′`(j, i) = 0, M̃ ′`(i, j) = 1

22: K = K + 1 // Increase the number of states by one due to the copy created in line 16

23: Break
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CHAPTER 7

Network Simplification Results in Gaussian 1-2-1

Networks

In this chapter, we build on the 1-2-1 model introduced in Chapter 5 and Chapter 6 to prove

interesting operational properties of 1-2-1 models in terms of the number of routes that need

to be used in the network to achieve its approximate unicast capacity as well as provide

guarantees on routing in mmWave networks through their 1-2-1 network model.

7.1 Introduction

After deriving the approximate multicast capacity for Gaussian 1-2-1 networks and proving

that they can be efficiently scheduled (in polynomial time), we now focus on network simpli-

fication results that can be derived from its approximate unicast capacity in 1-2-1 networks.

Recall that unicast is a special case of multicast where the destination set D contains a single

element. As a result, without loss of generality, we consider a network with N + 2 nodes

where the source is represented by node 0, the destination is represented by node N + 1 and

we have N intermediate relay nodes. For brevity, the approximate unicast capacity in this

case is denoted by Ccs,iid by dropping the superscript in (5.6b). This gives us the unicast

approximate capacity expression below

Ccs,iid = max
λs:λs≥0∑

s λs=1

min
Ω⊆[0:N+1]:0∈Ω,

N+1∈Ωc

∑

(i,j):i∈Ω,
j∈Ωc



∑

s:
j∈si,t,
i∈sj,r

λs


 `j,i (7.1)
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We first explore how the approximate unicast capacity of Gaussian FD 1-2-1 networks can

be computed as the sum of fractions of the FD Shannon capacity of the paths in the network

from the source to the destination. We then study the implications of such a formulation

from a network simplification perspective, i.e., how the performance of the network changes

by operating only a subset of its nodes.

7.2 A Path Formulation for the Approximate Unicast Capacity

The key result of this section is summarized by the following theorem which casts the unicast

approximate capacity of a Gaussian FD 1-2-1 network as an LP in terms of path activations.

The proof of the theorem is delegated to Appendix 7.5.1.

Theorem 7.2.1. For any N-relay Gaussian FD 1-2-1 network, the approximate unicast

capacity is equivalent to

P5 : Ccs,iid = max
∑

p∈P

xpCp

(P5a) xp ≥ 0 ∀p∈P ,

(P5b)
∑

p∈Pi

xpf
p
p.nx(i),i≤1 ∀i∈ [0 :N ],

(P5c)
∑

p∈Pi

xpf
p
i,p.pr(i)≤1 ∀i∈ [1 :N+1],

(7.2)

where: (i) P is the collection of all paths from the source node 0 to the destination node

N + 1; (ii) Pi ⊆ P is the collection of paths that pass through node i ∈ [0 : N + 1] (clearly,

P0 = PN+1 = P since all paths pass through the source and the destination); (iii) Cp is the

FD capacity of the path p ∈ P, i.e., Cp = min(i,j)∈p `j,i; (iv) p.nx(i) (respectively, p.pr(i))

with i ∈ [0 : N + 1] is the node following (respectively, preceding) node i ∈ [0 : N + 1] in path

p ∈ P (clearly, p.pr(0) = p.nx(N + 1) = ∅); (v) fpj,i is the optimal activation time for the

link of capacity `j,i when the path p ∈ P, such that (i, j) ∈ p, is operated, i.e.,

fpj,i =
Cp
`j,i

. (7.3)
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Remark 7.2.1. In the LP P5, the variable xp represents the fraction1 of time the path

p ∈ P is utilized in the network. Moreover, each of the constraints in (P5b) (respectively,

(P5c)) ensures that a node i ∈ [0 : N + 1] - even though it can appear in multiple paths in

the network - does not transmit (respectively, receive) for more than 100% of the time.

7.3 Simplification Results for General Topology FD 1-2-1 Net-

works

Building on the LP P5 in Theorem 7.2.1 presented in the previous section, we can now

present the key result for network simplification in this chapter that applies to networks

with arbitrary topology. This is given by Lemma 7.3.1 below, which states that although

the number of paths |P| in general is exponential in the number of relays N , we need to use

at most a linear number of paths to characterize the approximate capacity Ccs,iid; this can

also be translated to a guarantee on the rate that can be achieved using only the best path.

Lemma 7.3.1. For any N-relay Gaussian FD 1-2-1 relay network with source node 0 and

destination node N + 1, we have the following guarantees:

(L1) For a network with arbitrary topology, the approximate capacity Ccs,iid can always be

achieved by activating at most 2N + 2 paths in the network.

(L2) For a network with arbitrary topology, the best path has an FD capacity C1 such that

C1 ≥ 1
2N+2

Ccs,iid.

(L3) For an N-relay layered network with two layers of relays2 and M = N/2 relays per

layer, the approximate capacity Ccs,iid can be achieved by activating at most 2M + 1

1Note that xp in P5 implicitly satisfies that xp ≤ 1, ∀p ∈ P. This is due to the fact that for any path
p ∈ P, the definition of fpj,i in (7.3) implies that at least one constraint in (P5b) and (P5c) has fpj,i = 1.

2A layered network with T layers of relays consists of an initial layer with the source, a final layer with
the destination and T layers of relays in between. A node in a layer can only receive from nodes in the
preceding layer and transmit only to nodes in the following layer.
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paths in the network.

(L4) For an N-relay layered network with two layers of relays and M = N/2 relays per

layer, the best path has an FD capacity C1 such that C1 ≥ 1
2M+1

Ccs,iid. .

Proof. Proof of (L1): The LP P5 in (7.2) is bounded and hence there always exists an

optimal corner point. In particular, at any corner point in P5, we have at least |P| constraints

satisfied with equality among (P5a), (P5b) and (P5c). Therefore, we have at least |P| −
2N − 2 in (P5a) satisfied with equality (since (P5b) and (P5c) combined represent 2N + 2

constraints). Thus, at least |P|−2N−2 paths are not operated, which proves the statement

(L1).

Proof of (L3): Similar to the proof above for (L1), a corner point in the LP P5 has at

most 2N + 2 constraints among (P5b) and (P5c) satisfied with equality. To prove (L3), we

need to show that in the case of a 2-layered network when we have 2N+2 equality satisfying

constraints, then at least one of these equations is redundant. Note that for a 2-layer relay

network, any path p in the network from the source to the destination has four nodes and is

written as 0− p(1)− p(2)−N + 1 where p(1) and p(2) represent the node in the path from

layer 1 and layer 2, respectively. We assume that the relays in the first layer are indexed

with [1 : N/2] and the second layer relays are indexed with [N/2 + 1 : N ]. Thus, for any

path, p(1) ∈ [1 : N/2] and p(2) ∈ [N/2 + 1 : N ]. Now assume that all the constraints (P5b)

and (P5c) are satisfied with equality. Then, by adding all (P5b) constraints for i ∈ [1 : N/2]

and subtracting from them all the constraints from (P5c) for j ∈ [N/2 + 1 : N ], we get

LHS :
∑

i∈[1:N/2]

(P5b)i −
∑

j∈[N/2+1:N ]

(P5c)j =
∑

i∈[1:N/2]

∑

p∈Pi

xpf
p
p.nx(i),i −

∑

j∈[N/2+1:N ]

∑

p∈Pj

xpf
p
j,p.pr(j)

=
∑

p∈P

xpf
p
p(2),p(1) −

∑

p∈P

xpf
p
p(2),p(1) = 0

RHS :
∑

i∈[1:N/2]

(P5b)i −
∑

j∈[N/2+1:N ]

(P5c)j =
∑

i∈[1:N/2]

1−
∑

j∈[N/2+1:N ]

1 = 0.
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Thus, when all constraints (P5b) and (P5c) are satisfied with equality, at least one of them

is redundant, which proves the statement (L3).

Proof of (L2) and (L4): The proof of (L2) follows directly from (L1) by considering only

the 2N + 2 paths needed to achieve Ccs,iid and picking the path that has the largest FD

capacity among them. In particular, the guarantee in (L2) is true for the selected path due

to the fact that for any feasible point in P5, xp ≤ 1, ∀p ∈ P . The proof of (L4) from (L3)

follows by the same argument used to prove (L2) from (L1).

7.4 Simplification Results for Diamond Topology 1-2-1 Networks

The result in Lemma 7.3.1 (L3) proved in the previous section suggests that for Gaus-

sian 1-2-1 networks with particular structures, we can further reduce the number of active

paths needed to achieve the approximate unicast capacity Ccs,iid. In what follows, we ex-

plore this observation in the context of Gaussian 1-2-1 diamond networks operating in FD

and HD, through the following two lemmas proved in Appendix 7.5.2, Appendix 7.5.3 and

Appendix 7.5.4.

Lemma 7.4.1. For the N-relay Gaussian 1-2-1 diamond network (a layered network with

1 layer of relays) with source node 0 and destination node N + 1, we can calculate the

approximate unicast capacity Ccs,iid in FD and HD as

P6(dia) : Ccs,iid = max
∑

p∈[1:N ]

xpCp

(P6a) 0 ≤ xp ≤ 1 ∀p ∈ [1:N ],

(P6b)
∑

p∈[1:N ] xp
Cp

`p,0
≤1,

(P6c)
∑

p∈[1:N ] xp
Cp

`N+1,p
≤1,

(7.4)

where Cp is the capacity (approximate capacity in HD) of the path 0 → p → N + 1 and its
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value depends on whether the network is operating in FD or HD, namely

Cp =





min{`p,0, `N+1,p} if relays operate in FD

`p,0 `N+1,p

`p,0+`N+1,p
if relays operate in HD

.

Lemma 7.4.2. For an N-relay Gaussian 1-2-1 diamond relay network, we have the following

guarantees:

(L1) If the network is operating in FD, then the approximate unicast capacity Ccs,iid can

always be achieved by activating at most 2 relays in the network, independently of N .

(L2) If the network is operating in HD, then the approximate unicast capacity Ccs,iid can

always be achieved by activating at most 3 relays in the network, independently of N .

(L3) In both FD and HD networks, the best path has an approximate unicast capacity C1 such

that C1 ≥ 1
2
Ccs,iid; furthermore, this guarantee is tight for both the FD and HD cases,

i.e., there exists a class of Gaussian 1-2-1 diamond networks such that C1 ≤ 1
2
Ccs,iid

both for the FD and HD cases (see Remark 7.4.1).

Remark 7.4.1. The results in Lemma 7.4.2 (L1) and (L2) are surprising as they state that,

independently of the total number of relays in the network, there always exists a subnetwork

of 2 (in FD) and 3 (in HD) relays that achieves the full network approximate capacity.

Moreover, the guarantee provided by (L3) is tight. To see this, consider N = 2 and

`1,0 = `3,2 = 1, (7.5)

`3,1 = `2,0 = X →∞.

For this network, it is not difficult to see by applying the LP P6(dia) that the approximate

unicast capacity is Ccs,iid = `1,0 + `3,2 = 2, while the capacity of each path (both in FD and

HD) is C1 = min {1, X} = 1, hence C1/Ccs,iid = 1/2.

Remark 7.4.2. For FD mode of operation, the result in Lemma 7.4.1 (L3) mirrors the

first result in network simplification for classical Gaussian wireless networks [NOF14]. In
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this case, it was also shown that by selecting k = 1 relay that has the largest capacity

path in a diamond network, at least 1/2 of the approximate capacity is retained. However,

different from the classical FD network case, where selecting k > 2 relays only guarantees

k
k+1

of the approximate capacity, in 1-2-1 networks by selecting k = 2, the full value of

the approximate capacity is retained. When the relays operate in HD, Lemma 7.4.1 (L3)

highlights a fundamental difference with respect to the classical wireless network [CEF19].

In particular, in [CEF19] the authors proved that when k = 1, then 1/2 of the full network

approximate capacity can always be retained when N = 2; however, this ratio decreases as

N grows, e.g., when N � 1 the ratio is equal to 1/4. Differently, Lemma 7.4.1 (L3) shows

that with 1-2-1 constraints selecting k = 1 relay always ensures that 1/2 of the full network

approximate capacity can be retained, independently of N .

7.5 Appendices

7.5.1 Proof of Theorem 7.2.1

The proof of Theorem 7.2.1 follows a sequence of LP equivalence relations starting with the

LP P2FD in Theorem 5.4.2 and ending with P5 in Theorem 7.2.1. Recall that for a network

with source node 0 and single destination node N + 1, the LP P2FD in Theorem 5.4.2 to

compute the approximate unicast capacity can be simplified to be

P7 : Ccs,iid = max
∑

j∈[1:N+1]

Fj,0

(P7a) 0 ≤ Fj,i ≤ αji`j,i ∀(i, j)∈[0 :N ]×[1 :N+1],

(P7b)
∑

j∈[1:N+1]\{i}

αji ≤ 1 ∀i ∈ [0 : N ],

(P7c)
∑

i∈[0:N ]\{j}

αji ≤ 1 ∀j ∈ [1 : N + 1],

(P7d) αji ≥ 0 ∀(i, j)∈[0 :N ]×[1 :N+1].

(7.6)
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Note that for fixed link activation times αji, the remaining constraints define a max-flow

problem with link capacities αji`j,i. The max-flow problem can be equivalently written as

an LP with path flows instead of link flows, and hence (7.6) can be written as P7′ described

next by using the path flows representation of the max-flow problem. A variable Fp is used

for the flow through the path p ∈ P , where P is the set of all paths from the source to the

destination. With this, we obtain

P7′ : Ccs,iid = max
∑

p∈P

Fp

(P7′a) Fp ≥ 0 ∀p ∈ P ,

(P7′b)
∑

p∈P,
(i,j)∈p,
j=p.nx(i)

Fp ≤ αji`j,i ∀(i, j)∈[0 :N ]×[1 :N+1],

(P7′c)
∑

j∈[1:N+1]\{i}

αji ≤ 1 ∀i ∈ [0 : N ],

(P7′d)
∑

i∈[0:N ]\{j}

αji ≤ 1 ∀j ∈ [1 : N + 1],

(P7′e) αji ≥ 0 ∀(i, j)∈[0 :N ]×[1 :N+1].

(7.7)

The next equivalence relation is to show that P7′ is equivalent to the LP P8 below

P8 : Ccs,iid = max
∑

p∈P

Fp

(P8a) Fp ≥ 0 ∀p ∈ P ,

(P8b) Fp = αpp.nx(i),i`p.nx(i),i ∀i ∈ p\{N + 1},∀p ∈ P ,

(P8c) Fp = αpi,p.pr(i)`i,p.pr(i) ∀i ∈ p\{0},∀p ∈ P ,

(P8d)
∑

p∈Pi
αpp.nx(i),i ≤ 1 ∀i ∈ [0 : N ],

(P8e)
∑

p∈Pi
αpi,p.pr(i) ≤ 1 ∀i ∈ [1 : N + 1],

(7.8)

where remember that, for any path p ∈ P , we have that αpi,j is the activation time of

the link of capacity `i,j. Moreover, p.nx(i) (respectively, p.pr(i)) with i ∈ [0 : N + 1] is

the node following (respectively, preceding) node i ∈ [0 : N + 1] in path p ∈ P (clearly,

p.pr(0) = p.nx(N + 1) = ∅).
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Finally, we show that P8 is equivalent to P5 in Theorem 7.2.1.

P7′ → P8 . For (i, j) ∈ p such that j = p.nx(i), define the variable αpj,i to be

αpj,i =
Fp
`j,i

. (7.9)

Note that, the definition above automatically satisfies the constraints (P8a), (P8b) and

(P8c) in P8. Then, by always using the definition in (7.9), we can equivalently rewrite the

constraint (P7′b) as

(P7′b) :
∑

p∈P,
(i,j)∈p,
j=p.nx(i)

αpj,i ≤ αji, ∀(j, i) ∈ [1 : N + 1]× [0 : N ].

Now, if we fix î ∈ [0 : N ] and add the left-hand side and right-hand side of (P7′b) for

(j, i) ∈ [1 : N + 1]× {̂i}, then we get

∀î ∈ [0 : N ],
∑

j∈[1:N+1]

∑

p∈P,
(̂i,j)∈p,
j=p.nx(̂i)

αp
j,̂i
≤

∑

j∈[1:N+1]\{̂i}

αj,̂i

=⇒
∑

p∈Pî

αp
p.nx(̂i),̂i

≤
∑

j∈[1:N+1]\{̂i}

αj,̂i
(P7′c)

≤ 1 =⇒ (P8d).

Similarly, by adding the constraints in (P7′b) for a fixed ĵ ∈ [1 : N + 1], one can show that,

under the transformation in (7.9), the constraint in (P8e) is satisfied. Thus, for any feasible

point in P7′, we can get a feasible point in P8 using the transformation in (7.9). Regarding

the objective function, note that we did not perform any transformation on the variables Fp

from P7′ to P8. Therefore, it follows that the objective function value achieved in P7′ is the

same as the one achieved in P8.

P8 → P7′. Given a feasible point in P8, we define the following variables for each link in the

network

αji =
∑

p∈P,
(i,j)∈p,
j=p.nx(i)

αpj,i.
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Based on this transformation, we automatically have that (P7′e) is satisfied. Moreover, we

have that

(P8a) : ∀p ∈ P , 0 ≤ Fp =⇒ (P7′a)

(P8d) : ∀i, 1 ≥
∑

p∈Pi

αpp.nx(i),i =
∑

p∈P,
(i,j)∈p

αji =
∑

j∈[1:N+1]\{i}

αji =⇒ (P7′c)

(P8e) : ∀i, 1 ≥
∑

p∈Pi

αpi,p.pr(i) =
∑

p∈P,
(j,i)∈p

αij =
∑

j∈[0:N ]\{i}

αij =⇒ (P7′d)

(P8b) & (P8c) :
∑

p∈P,
(i,j)∈p,
j=p.nx(i)

Fp
`j,i

=
∑

p∈P,
(i,j)∈p,
j=p.nx(i)

αpj,i = αji =⇒ (P7′b).

Thus, the problems P7, P7′ and P8 are equivalent. We now show that P8 is equivalent

to P5 in Theorem 7.2.1.

P8 → P5. Define xp to be

xp =
Fp
Cp
, ∀p ∈ P . (7.10)

Using this transformation, we get that the constraints in P8 imply the following

(P8a) : ∀p ∈ P , 0 ≤ Fp = xpCp =⇒ (P5a)

(P8d) : ∀i ∈ [0 : N ], 1 ≥
∑

p∈Pi

αpp.nx(i),i

(P8b)
=
∑

p∈Pi

Fp
`p.nx(i),i

=
∑

p∈Pi

xpCp
`p.nx(i),i

(7.3)
=
∑

p∈Pi

xpf
p
p.nx(i),i =⇒ (P5b)

(P8e) : ∀i ∈ [1 : N+1], 1 ≥
∑

p∈Pi

αpi,p.pr(i)

(P8c)
=
∑

p∈Pi

Fp
`i,p.pr(i)

=
∑

p∈Pi

xpCp
`i,p.pr(i)

(7.3)
=
∑

p∈Pi

xpf
p
i,p.pr(i) =⇒ (P5c).

Moreover, we have that

(P8 objective function) :
∑

p∈P

Fp =
∑

p∈P

xpCp = (P5 objective function).
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Thus, for any feasible point in P8, we get a feasible point in P5 using the transformation

in (7.10) that has the objective function with the same value as the original point in P8.

P5 → P8. Define Fp, α
p
p.nx(i),i and αpi,p.pr(i) as

Fp = xpCp, αpp.nx(i),i =
xpCp
`p.nx(i),i

∀i ∈ p\{N + 1}, αpi,p.pr(i) =
xpCp
`i,p.pr(i)

∀i ∈ p\{0} (7.11)

for all p ∈ P . Note that the transformation above directly implies conditions (P8b) and

(P8c) in P8. Now, we are going to show that the constraints in P5 when applied to (7.11)

imply the rest of the constraints in P8 as follows

(P5a) : ∀p ∈ P , 0 ≤ xp =
Fp
Cp

=⇒ (P8a)

(P5b) : ∀i ∈ [0 : N ] 1 ≥
∑

p∈Pi

xpf
p
p.nx(i),i

(7.3)
=
∑

p∈Pi

xpCp
`p.nx(i),i

=
∑

p∈Pi

αpp.nx(i),i =⇒ (P8d)

(P5c) : ∀i ∈ [1 : N + 1] 1 ≥
∑

p∈Pi

xpf
p
i,p.pr(i)

(7.3)
=
∑

p∈Pi

xpCp
`i,p.pr(i)

=
∑

p∈Pi

αpi,p.pr(i) =⇒ (P8e)

Moreover, we have that

(P5 objective function) :
∑

p∈P

xpCp =
∑

p∈P

Fp = (P8 objective function).

Thus, for any feasible point in P5, we get a feasible point in P8 using the transformation

in (7.11) that has the objective function with the same value as the original point in P5.

Thus, the two problems P5 and P8 are equivalent. In conclusion, the problems P5, P7, P7′

and P8 are equivalent. This concludes the proof of Theorem 7.2.1.

7.5.2 Proof of Lemma 7.4.1 for a Gaussian FD 1-2-1 Diamond Network

In this section, we prove Lemma 7.4.1 for the Gaussian FD 1-2-1 network with a diamond

topology. In this network the source communicates with the destination by hopping through

one layer of N non-interfering relays. For this network the LP P5 in (7.2) can be further

simplified by leveraging the four following implications of the sparse diamond topology:
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1. In a Gaussian 1-2-1 diamond network, we have N disjoint paths from the source to

the destination, each passing through a different relay. We enumerate these paths with

the index i ∈ [1 : N ] depending on which relay is in the path. Moreover, each path

i ∈ [1 : N ] has a FD capacity equal to Ci = min {`i,0, `N+1,i}.

2. In the Gaussian 1-2-1 diamond network, each relay i ∈ [1 : N ] appears in only one

path from the source to the destination. Thus, when considering constraints (P5b) and

(P5c) in (7.2) for i ∈ [1 : N ] gives us that

xi
Ci
`i,0
≤ 1 & xi

Ci
`N+1,i

≤ 1. (7.12)

3. Note that for the Gaussian FD 1-2-1 diamond network, Ci = min{`i,0, `N+1,i}, ∀i ∈ [1 :

N ]. Therefore, one of the coefficients Ci/`i,0 or Ci/`N+1,i in (7.12) is equal to 1. This

implies that for the Gaussian FD 1-2-1 diamond network, a feasible point of P5 has

xi ≤ 1. Therefore, the constraints xi ≤ 1, ∀i ∈ [1 : N ], albeit redundant, can be added

to the LP without reducing the feasible region.

4. In the Gaussian FD 1-2-1 diamond network, the constraints due to the source and

destination nodes, namely (P5b) for i = 0 and (P5c) for i = N + 1 in (7.2) give us that

∑

i∈[1:N ]

xi
Ci
`i,0
≤ 1,

∑

i∈[1:N ]

xi
Ci

`N+1,i

≤ 1. (7.13)

Note that the constraints in (7.13) make the constraints in (7.12) redundant.

By considering the two implications above, we can readily simplify P5 in (7.2) for Gaussian

FD 1-2-1 networks with a diamond topology as follows

P6(dia) : Ccs,iid = max
∑

i∈[1:N ]

xiCi

(P6a) 0 ≤ xi ≤ 1 ∀i ∈ [1 : N ],

(P6b)
∑

i∈[1:N ]

xi
Ci
`i,0
≤ 1,

(P6c)
∑

i∈[1:N ]

xi
Ci

`N+1,i

≤ 1,

(7.14)
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which is the LP we have in Lemma 7.4.1.

7.5.3 Proof of Lemma 7.4.1 for a Gaussian HD 1-2-1 Diamond Network

Throughout this section, we slightly abuse notation by defining `i = `i,0 and ri = `N+1,i.

Similarly, we also use α`i = αi,0 and αri = αN+1,i. Based on this definition, we can rewrite

the approximate unicast capacity expression by leveraging the two following observations:

1. For the diamond topology network with a single destination node N+1, the constraint

(P3f) is redundant. This is due to the fact that any subset S of nodes with odd

cardinality can only fall in one of the following three cases:

• S contains the source but not the destination (or vice versa): In this case all links

with endpoint in S have one of their endpoints as the source. Recall that the re-

lays do not communicate with one another in a diamond topology. Thus, the

constraint (P3e) for the source node 0 makes the constraint for S in (P3f) redun-

dant.

• S contains neither the source nor the destination: In this case the constraint (P3f)

is trivial as there are no links connecting nodes in S since the relay nodes (com-

prising S) do not communicate among themselves.

• S contains both the source and destination nodes: In this case, all the links with

endpoint in S have either the source node 0 or the destination node N + 1 as one

of their endpoints. Thus, it follows from the constraints in (P3e) for nodes 0 and

N + 1, that the constraint (P3f) is redundant for all |S| ≥ 5 with |S| odd. In the

remaining situation where |S| = 3, the constraint in (P3e) for the only relay node

in S makes (P3f) redundant.

2. All the links in the diamond network are unidirectional (either going from the source

to the different relays or from a relay node to the destination). Thus, the use of the
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notation α̂ji in P3HD is redundant.

Based on the above observations, we can write a simplified version of P3HD in Theorem 6.2.1

for the approximate unicast capacity of the Gaussian HD 1-2-1 diamond network as

P3
(dia)
HD : Ccs,iid = max

∑

j∈[1:N ]

FN+1,j

(P3a) 0 ≤ FN+1,i ≤ αriri ∀i ∈ [1 : N ],

(P3a′) 0 ≤ Fi,0 ≤ α`i`i ∀i ∈ [1 : N ],

(P3b) FN+1,i = Fi,0 ∀i ∈ [1 : N ],

(P3d) α`i , αri ≥ 0 ∀i ∈ [1 : N ], (7.15)

(P3e) α`i + αri ≤ 1 ∀i ∈ [1 : N ],

(P3e′)
∑

i∈[1:N ]

α`i ≤ 1 ,

(P3e′′)
∑

i∈[1:N ]

αri ≤ 1 .

Our first step is to show that solving the LP P3
(dia)
HD in (7.15) is equivalent to solving the LP

P9 below

P9 : maximize
N∑

i=1

fi

subject to (P9a) fi = α′`i`i = α′riri ∀i ∈ [1 : N ],

(P9b)
N∑

i=1

α′`i ≤ 1,
N∑

i=1

α′ri ≤ 1, (7.16)

(P9c) α′`i + α′ri ≤ 1 ∀i ∈ [1 : N ],

(P9d) fi ≥ 0 ∀i ∈ [1 : N ],

where: (i) fi = α′`i`i = α′riri represents the data flow through the i-th relay; (ii) α`i (re-

spectively, αri) represents the fraction of time in which the link from the source to relay

i (respectively, from relay i to the destination) is active. Note that, since the network is
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operating in HD, the fact that a beam can be used for either reception or transmission but

not both simultaneously is captured by the constraint (P9c) above.

It is not difficult to see that the feasible set in P9 is a subset of the feasible set in P3
(dia)
HD

with appropriate renaming of the variables and setting FN+1,i = Fi,0 = fi. Thus, a feasible

point in P9 gives a feasible point in P3
(dia)
HD and the following relation is true

(P9 optimal value) ≤ (P3
(dia)
HD optimal value). (7.17)

We next show the opposite direction, i.e., a feasible point in the LP P3
(dia)
HD gives a feasible

point in the LP P9 with a higher objective value in P9 than P3
(dia)
HD . We define the following

transformation

∀i ∈ [1 : N ] : fi = min {α`i`i, αriri} ,

α′`i =
fi
`i
, α′ri =

fi
ri
. (7.18)

Using this transformation, we have that

• α′`i`i = fi = α′riri, ∀i ∈ [1 : N ] =⇒ (P9a)

•
∑

i∈[1:N ]

α′`i=
∑

i∈[1:N ]

fi
`i

=
∑

i∈[1:N ]

1

`i
min {α`i`i, αriri} ≤

1

`i
min



`i

∑

i∈[1:N ]

α`i , ri
∑

i∈[1:N ]

αri





≤ min{`i, ri}
`i

≤ 1 =⇒ (P9b)

•
∑

i∈[1:N ]

λ′ri=
∑

i∈[1:N ]

fi
ri

=
∑

i∈[1:N ]

1

ri
min {α`i`i, αriri} ≤

1

ri
min



`i

∑

i∈[1:N ]

α`i , ri
∑

i∈[1:N ]

αri





≤ min{`i, ri}
ri

≤ 1 =⇒ (P9b)

• α′`i+α′ri=
[

1

`i
+

1

ri

]
min {α`i`i, αriri} = min

{
α`i , αri

ri
`i

}
+min

{
α`i

`i
ri
, αri

}

≤ α`i + αri ≤ 1 =⇒ (P9c).

Additionally, the constraints (P3d) directly imply the constraints (P9d). Thus, a feasible

point in P3
(dia)
HD implies a feasible point in the LP P9 in (7.16). Furthermore, by substitut-
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ing (7.18) in P3
(dia)
HD , we get that

(P9 optimal value) :
∑

i∈[1:N ]

fi =
∑

i∈[1:N ]

min{α`i`i, αriri}

≥ max
∑

i∈[1:N ]

FN+1,i = (P3
(dia)
HD optimal value) (7.19)

Thus from (7.17) and (7.19), solving the LP P3
(dia)
HD is equivalent to solving the LP P9.

We are now going to relate the LP P9 discussed above to the LP P6(dia) in Lemma 7.4.1.

Recall that for a two-hop path with link capacities `i and ri, the approximate HD capacity

is given by

Ci =
`iri
`i + ri

.

Thus, we can write the LP P6(dia) as

P6(dia) : maximize
∑

i∈[1:N ]

xi
`iri
`i + ri

subject to (P6a) 0 ≤ xi ≤ 1 ∀i ∈ [1 : N ],

(P6b)
∑

i∈[1:N ]

xi
`i

`i + ri
≤ 1, (7.20)

(P6c)
∑

i∈[1:N ]

xi
ri

`i + ri
≤ 1.

We are now going to show that the LP P6(dia) is equivalent to the LP P9 and, as a conse-

quence, it is equivalent to P3
(dia)
HD in (7.15). To do this, we are going to show how a feasible

point in P9 can be transformed into a feasible point in P6(dia) and vice versa.

1. P9 → P6(dia). Define xi to be

xi = α′`i
`i + ri
ri

, ∀i ∈ [1 : N ]. (7.21)

Using this transformation, we get that the constraints in P4 imply the following

(P9b) : 1 ≥
∑

i∈[1:N ]

α′`i =
∑

i∈[1:N ]

xi
ri

`i + ri
=⇒ (P6c)
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(P9b) : 1 ≥
∑

i∈[1:N ]

α′ri
(P9a)
=

∑

i∈[1:N ]

α′`i
`i
ri

=
∑

i∈[1:N ]

xi
`i

`i + ri
=⇒ (P6b)

(P9c) : ∀i ∈ [1 : N ], 1 ≥ α′`i + α′ri
(P9a)
= α′`i

(
1 +

`i
ri

)

= xi
ri

`i + ri

(
1 +

`i
ri

)
= xi =⇒ (P6a)

(P9d) : ∀i ∈ [1 : N ], 0 ≤ fi
`i

`i + ri
ri

= α′`i
`i + ri
ri

= xi =⇒ (P6a)

and

(P9 objective function) :
∑

i∈[1:N ]

α′`i`i =
∑

i∈[1:N ]

xi
ri

`i + ri
`i = (P6(dia) objective function).

Thus, for any feasible point in P9, we get a feasible point in P6(dia) using the trans-

formation in (7.21) that has the same objective function with the same value as the

original point in P9.

2. P6(dia) → P9. Define α`i and αri to be

α′`i = xi
ri

`i + ri
, α′ri = xi

`i
`i + ri

, ∀i ∈ [1 : N ]. (7.22)

Note that the transformation above directly implies the constraint (P9a) in P9. Now,

we are going to show that the constraints in P6(dia) when applied to (7.22) imply the

rest of the constraints in P9 as follows

(P6a) : 1 ≥ xi = xi

(
ri

`i + ri
+

`i
`i + ri

)
= α′`i + α′ri =⇒ (P9c)

(P6a) : 0 ≤ xi
ri

ri + `i
= α′`i =

fi
`i

=⇒ (P9d)

(P6b) : 1 ≥
∑

i∈[1:N ]

xi
`i

`i + ri
=
∑

i∈[1:N ]

α′ri =⇒ (P9b)

(P6c) : 1 ≥
∑

i∈[1:N ]

xi
ri

`i + ri
=
∑

i∈[1:N ]

α′`i =⇒ (P9b)

(P6(dia) objective function) :
∑

i∈[1:N ]

xi
ri

`i + ri
`i =

∑

i∈[1:N ]

α′`i`i = (P9 objective function).
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Thus, for any feasible point in P6(dia), we get a feasible point in P9 using the trans-

formation in (7.22) that has the same objective function with the same value as the

original point in P6(dia).

Thus, the two problems P6(dia) and P9 are equivalent. This concludes the proof of Lemma 7.4.1

for the HD case.

7.5.4 Proof of Lemma 7.4.2

7.5.4.1 Proof of Lemma 7.4.2 (L1) for a Gaussian FD 1-2-1 Diamond Network

To prove Lemma 7.4.2 (L1), we observe that for a bounded LP, there always exists an

optimal corner point. Furthermore, at any corner point in the LP P6(dia), we have at least

N constraints satisfied with equality among (P6a)), (P6b) and (P6c). Therefore, we have

at least N − 2 constraints in (P6a) satisfied with equality that form linearly independent

equations (since (P6b) and (P6c) combined represent only two constraints). Moreover, recall

that, as mentioned earlier, all constraints xi ≤ 1 are redundant. Thus, at least N − 2

relays are turned off (i.e., xi = 0), i.e., at most two relays are sufficient to characterize the

approximate capacity of any N -relay Gaussian FD 1-2-1 network with a diamond topology,

as stated in Lemma 7.4.2 (L1).

7.5.4.2 Proof of Lemma 7.4.2 (L2) for a Gaussian HD 1-2-1 Diamond Network

We first prove the following property of the optimal corner points in the LP P6(dia) in (7.20)

for the HD case.

Property 7.5.1. If we have a Gaussian HD 1-2-1 diamond network, then for any optimal

corner point solution of P6(dia), at least one of the constraints in (P6b) and (P6c) is satisfied

with equality.

Proof. We are going to prove Property 2 by contradiction. Note that, since the LP P6(dia) has
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N variables, then any corner point in P6(dia) has at least N constraints satisfied with equality.

Now, assume that we have an optimal point (x?1, x
?
2, . . . , x

?
N) such that neither (P6b) nor (P6c)

is satisfied with equality. This implies that the constraints satisfied with equality are only of

the type (P6a). Thus, from the constraints in (P6a), we have that x?i ∈ {0, 1},∀i ∈ [1 : N ].

Additionally, (P6b) and (P6c) being strict inequalities implies that
∑N

i=1 x
?
i < 2. Thus, there

exists at most one i′, such that x?i′ = 1, while x?j = 0,∀j ∈ [1 : N ]\{i′}.

Now, if we pick some k 6= i′ and set x?k = ε > 0 such that both (P6b) and (P6c) are still

satisfied, then we increase the objective function by ε `krk
`k+rk

, which contradicts the fact that

(x?1, x
?
2, . . . , x

?
N) is an optimal solution.

Now using Property 7.5.1, we are going to prove Lemma 7.4.2 (L2) by considering the

following two cases: (i) there exists an optimal corner point for which only one of the

constraints in (P6b) and (P6c) is satisfied with equality, and (ii) all optimal corner points

have both (P6b) and (P6c) satisfied with equality.

1. An optimal corner point exists with only one among (P6b) and (P6c) satisfied

with equality. We denote this optimal corner point as (x?1, x
?
2, . . . , x

?
N). Since only one

among (P6b) and (P6c) is satisfied with equality, then at least N −1 constraints of the

type (P6a) are satisfied with equality. Also note that, since only one among (P6b) and

(P6c) is satisfied with equality, then this implies that
∑N

i=1 xi < 2. This implies that,

although we have at least N − 1 constraints in (P6a) satisfied with equality, we have

at most one i′ such that x?i′ = 1. As a result, at least N − 2 of the constraints satisfied

with equality from (P6a) are of the form xi = 0. This proves that at least N − 2 relays

are not utilized at this optimal corner point, which proves Lemma 7.4.2(L2) in this

case.

2. All optimal corner points have (P6b) and (P6c) satisfied with equality. Pick

an optimal corner point and denote it as (x?1, x
?
2, . . . , x

?
N). Define F?x = {i|0 < x?i < 1}

and I?x = {i|x?i = 1}, i.e., the sets of indices of the variables with non-integer and
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unitary values, respectively. The fact that both (P6b) and (P6c) are satisfied with

equality implies that
∑N

i=1 x
?
i = 2, which implies that |I?x| ≤ 2. Additionally, since

we are considering a corner point, then we have that at least N − 2 constraints of

the type (P6a) are satisfied with equality. This implies that |F?x | ≤ 2. Note that, if

|F?x |+ |I?x| ≤ 3 for all optimal corner points, then we have proved Lemma 7.4.2 (L2) for

this case. Thus, we now show that the events {|F?x | = 2} and {|I?x| = 2} are mutually

exclusive (i.e., disprove the possibility that |F?x |+ |I?x| = 4). This follows by observing

the following relation

2 =
∑

i∈[1:N ]

x?i =
∑

i∈[1:N ]\I?x

x?i +
∑

i∈I?x

x?i =
∑

i∈[1:N ]\I?x

x?i + |I?x|.

Thus

|I?x| = 2 =⇒
∑

i∈[1:N ]\I?x

x?i = 0 =⇒ |F?x | = 0,

which proves that the two events are mutually exclusive. This concludes the proof of

Lemma 7.4.2 (L2).

7.5.4.3 Proof of Lemma 7.4.2 (L3)

The proof of Lemma 7.4.2 (L3) for the FD case follows directly from Lemma 7.4.2 (L1) by

considering only the two paths (relays) needed to achieve Ccs,iid. Without loss generality, we

assume that relays 1 and 2 are the relays in question. Then, using the optimal fractions x?1

and x?2 we have that

Ccs,iid = x?1C1 + x?2C2

(P6a)

≤ C1 + C2,

which proves that at least one among C1 or C2 is always greater than or equal half Ccs,iid.

To prove Lemma 7.4.2 (L3) for the HD case, note that for an HD network Ci in P6(dia)

is given by

Ci =
`i,0 `N+1,i

`i,0 + `N+1,i

.
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Thus, by adding the constraints (P6b) and (P6c), we have the following implication for any

feasible point in P6(dia)

2 ≥
∑

i∈[1:N ]

xi
Ci
`i,0

+
∑

i∈[1:N ]

xi
Ci

`N+1,i

=
∑

i∈[1:N ]

xi
`N+1,i

`i,0 + `N+1,i

+
∑

i∈[1:N ]

xi
`i,0

`i,0 + `N+1,i

=
∑

i∈[1:N ]

xi. (7.23)

Now, assume without loss of generality that the path through relay 1 has the largest HD

approximate capacity. Then, for any optimal point x?i that solves P6(dia) in the HD case, we

have

Ccs,iid =
∑

i∈[1:N ]

x?iCi ≤


 ∑

i∈[1:N ]

x?i


C1 ≤ 2C1.

This proves that the approximate capacity of the best path in the network is at least half

the of Ccs,iid and concludes the proof of Lemma 7.4.2 (L3).
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CHAPTER 8

Gaussian 1-2-1 Networks with Imperfect Beamforming

In this chapter, we study bounds on the capacity of Full-Duplex (FD) Gaussian 1-2-1 net-

works with imperfect beamforming. In particular, different from the ideal 1-2-1 network

model introduced in Chapter 5, in this model beamforming patterns result in side-lobe leak-

age that cannot be perfectly suppressed. We characterize the gap between the approximate

capacities of the imperfect and ideal 1-2-1 models for the same channel coefficients and trans-

mit power. We show that, under some conditions, this gap only depends on the number of

nodes. Moreover, we evaluate the achievable rate of schemes that treat the resulting side-lobe

leakage as noise, and show that they offer suitable solutions for implementation.

8.1 Introduction

Our study of networks with mmWave nodes equipped with directional beams in Chapters 5,

6 and 7 focused on modeling the high-directional nature of communication. Towards this

end, our model in the previous chapters considered mmWave nodes equipped with perfect

directional beams. In this chapter, we expand our study in order to understand how the

capacity approximation is affected when the beamforming is not ideal.

In particular our focus is on Gaussian 1-2-1 FD networks where instead of perfect

beams, the nodes are equipped with imperfect beams that have side-lobe leakage (a scenario

that is closer to practice). In this new imperfect 1-2-1 network model, it is still possible

to approximate the capacity using collaborative schemes such as Quantize-Map-Forward
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(QMF) [ADT11,OD13] and Noisy Network Coding (NNC) [LKE11] to make use of the mul-

tiple access and broadcast channels present in the network. However, our previous study

for the ideal 1-2-1 model with perfect main-lobe beamforming beams naturally suggests the

following two questions: (i) When is the ideal 1-2-1 model a good approximation for the im-

perfect 1-2-1 model? (ii) Under what conditions can simple schemes involving point-to-point

decoding approximate the performance of QMF and NNC in imperfect 1-2-1 networks?

Our first main result in this chapter is to characterize the gap between the approximate

capacity of imperfect and ideal 1-2-1 networks (introduced in Chapter 5) for the same chan-

nel coefficients and transmit power. We give sufficient conditions on the parameters of the

beamforming pattern for the gap to be constant. Surprisingly, these conditions are inde-

pendent of the transmit power used by the nodes in the network and only depend on the

channel coefficients through a ratio between their values. Under such conditions, the ideal

1-2-1 network model offers a good approximation for the imperfect model; we can thus utilize

tools developed for the ideal model, such as high-efficiency scheduling algorithms, without

incurring significant losses over the imperfect model.

Our second result explores the gap between the approximate capacity of the ideal 1-2-1

model and the rate achieved by a simple scheme that consists of decoding point-to-point

transmissions while treating side-lobe leakage as noise. We show that we can characterize

this gap which, different from our first result, depends on the transmitted power in the

network and on the individual channel coefficient values.

8.2 System Model and Capacity Formulation

We consider an N -relay Gaussian 1-2-1 network as studied in Chapter 7 where N relays assist

the communication between a source node (node 0) and a destination node (node N + 1).

We assume FD mode of operation for the relays, where each relay i ∈ [1 : N ] can be
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Aligned beams Misaligned beamsBeamforming pattern

Figure 8.1: Imperfect Beamforming model.

simultaneously receiving and transmitting. Similar to the vanilla model studied in Chapter 5,

each node i ∈ [0 : N + 1] in the network is characterized by two states, namely si,t and

si,r, that represent the node towards which node i is beamforming its transmissions and

the node towards which node i is pointing its receiving beam, respectively. In particular,

∀i ∈ [0 : N + 1], we have that

si,t ⊆ [1 : N + 1]\{i}, |si,t| ≤ 1,

si,r ⊆ [0 : N ]\{i}, |si,r| ≤ 1,
(8.1)

where s0,r = sN+1,t = ∅ since the source node always transmits and the destination node

always receives. Next, we highlight the difference between the two models that we compare

in this chapter

Vanilla 1-2-1 network (Chapter 5): At any particular time, a node can only direct

(beamform) its transmission towards at most one other node through a perfect main-lobe

beamforming beam with no side-lobes. Similarly, a node can only receive transmissions

from at most another node (to which its receiving main-lobe beam points towards). Node j

receives transmission from node i only if node i points its transmitting beam towards node j,

and simultaneously, node j points its receiving beam towards node i. The channel coefficient

between nodes i and j is enhanced by a gain α > 0.

Imperfect 1-2-1 network: We here introduce the imperfect 1-2-1 network model,
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where transmissions are still achieved by aligning main-lobes, but in addition, transmis-

sions/receptions through side-lobes also occur and are not suppressed as in the ideal model.

In particular, we assume that at any point in time, the channel coefficient hji from node i

to node j is enhanced by a gain α ≥ 1 when the main-lobes are aligned, and is attenuated

by a factor β ≤ 1 otherwise, as shown in Fig. 8.1. Thus, we have the following memoryless

channel model

Yj = Zj +
∑

i∈[0:N ]\{j}

ĥjiXi, ∀j ∈ [1 : N + 1] (8.2a)

ĥji =





αhji if si,t = {j}, sj,r = {i},

βhji otherwise,

(8.2b)

where: (i) si,t and si,r are defined in (8.1); (ii) Xi (respectively, Yi) denotes the channel input

(respectively, output) at node i; (iii) hji ∈ C is the complex channel coefficient from node i to

node j without beamforming (i.e., using omnidirectional antennas); the channel coefficients

are assumed to be time-invariant; (iv) the channel inputs are subject to an individual power

constraint, i.e., E[|Xk|2] ≤ P, k ∈ [0 : N ]; (v) Zj, j ∈ [1 : N + 1] indicates the additive

white Gaussian noise at the j-th node; noises across the network are assumed to be i.i.d.

as CN (0, 1). We use a matrix H to record all the channel coefficients hji between any two

network nodes, where the rows are indexed by [1 :N+1] and columns by [0 :N ].

Let s be a variable that enumerates all the possible network states of the 1-2-1 network in

FD, where each network state corresponds to specific values for the variables in (8.1) for each

network node. For an active state s, the effective channel is given by Hs = Bs �H, where

Bs is the beamforming matrix that defines which links are multiplied by the main-lobes gain

α and which links are attenuated by β in state s.

Remark 8.2.1. Note that the ideal 1-2-1 network studied in Chapter 5 can be recovered

from the imperfect model by setting β = 0. For β > 0, the beamforming model, see Fig. 8.1,

abstracts the sectored antenna model used to approximate antenna patterns in mmWave

ad-hoc networks [TBH16,BAH14].
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The Shannon capacity C of the imperfect 1-2-1 network in (8.2) is not known. However,

using similar arguments as we used in Chapter 5 to approximate the capacity of the ideal

model, we can show that Ccs,iid, namely the cut-set upper bound evaluated with i.i.d. channel

inputs and a fixed schedule (i.e., independent of the transmitted message) offers a constant

gap approximation for C. In particular, C can be bounded as

Ccs,iid ≤ C ≤ Ccs,iid +O(N logN), (8.3a)

Ccs,iid = max
λs:λs≥0∑

s λs=1

min
Ω⊆[0:N ],

0∈Ω

∑

s

λslogdet
(
I+PHs,ΩH

†
s,Ω

)
, (8.3b)

where: (i) Ω enumerates all possible cuts in the graph representing the network, such that the

source belongs to a set of vertices Ω and the destination belongs to Ωc; (ii) Ωc = [0 : N+1]\Ω;

(iii) s enumerates all possible network states of the 1-2-1 network in FD, where each network

state corresponds to specific values for the variables in (8.1) for each network node; (iv) Hs,Ω

is the submatrix of the matrix Hs = Bs �H, which is obtained by retaining only the rows

indexed by Ωc and the columns indexed by Ω and reorganizing the rows and columns such

that the links that are multiplied by α are along the diagonal; (v) λs, i.e., the optimization

variable, is the fraction of time for which state s is active; a collection of λs’s for all feasible

states, such that they sum up to at most one, is referred to as network schedule.

8.3 From Imperfect to Ideal 1-2-1 networks

In this section, we derive an upper bound on the difference between two approximate capac-

ities: (i) the approximate capacity of the ideal Gaussian 1-2-1 networks (i.e., with β = 0)

which we denote by Cideal in this chapter to avoid conflict of notation; (ii) the approximate

capacity Ccs,iid of imperfect Gaussian 1-2-1 networks given by (8.3b). Note that, from (7.1),

Cideal is given by

Cideal = max
λs:λs≥0∑

s λs=1

min
Ω⊆[0:N+1]:0∈Ω,

N+1∈Ωc

∑

(i,j):i∈Ω,
j∈Ωc




∑

s:
j∈si,t, i∈sj,r

λs


 `ji, (8.4a)
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`ji = log
(
1 + Pα2 |hji|2

)
, (8.4b)

where si,t and si,r denote the transmitting and receiving states for node i in the network

state s as defined in (8.1).

The expression Cideal in (8.4a) is appealing as it evaluates the approximate capacity in

terms of the point-to-point link capacities `ji. This, in turn, leads to interesting properties on

how the network should be optimally operated and how to efficiently find an optimal schedule

{λs} in polynomial time in N as discussed in the previous chapters. Thus, we would like

to understand when the ideal 1-2-1 network model is a good proxy for the imperfect 1-2-1

network. We explore this by characterizing the gap between the approximate capacities of

the two models.

We characterize the gap between the approximate capacities of the two models under the

following two assumptions that are reasonable for beamforming applications:

• (Main-lobe is always stronger): We assume that ∀i 6= j 6= k such that hji, hjk 6= 0, we

have that α|hji| ≥ β|hjk|.
• (Each cut is diagonally dominant): We assume that ∀s,Ω, the matrixAs,Ω =I+PHs,ΩH

†
s,Ω

is diagonally dominant, i.e.,

ρs,Ω(H) = max
i∈[1:|Ω|c]





∑

j∈[1:|Ω|]\{i}

|[As,Ω]ij|
|[As,Ω]ii|



 ≤ 1. (8.5)

Remark 8.3.1. Note that in the ideal 1-2-1 network model, the matrix Hs,Ω (and hence,

by design also As,Ω) is diagonal with ρs,Ω(H) = 0, for all cuts Ω. The condition in (8.5) is

a relaxation of the diagonal requirement on Hs,Ω to cases where side-lobes contribution is

allowed but not overwhelming.

Our main results are provided by the following two theorems, which are proved in Ap-

pendices 8.5.1 and 8.5.2, respectively.

Theorem 8.3.1. Consider an N-relay Gaussian 1-2-1 network with channel matrix H.

Assuming that (α, β) are selected such that the two assumptions above are satisfied, then the
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gap between Cideal and Ccs,iid is upper bounded by

|Ccs,iid − Cideal| ≤ N max {logN, f(H,α, β)} , (8.6)

where f(H,α, β) = maxs,Ω |log (1− ρs,Ω(H))|, with ρs,Ω(H) defined in (8.5).

The gap expressed in Theorem 8.3.1 depends on the beamforming parameters (α, β)

and the channel coefficients through the expression of ρs,Ω(H). In order for the ideal 1-2-

1 network model to be a valid approximation for the imperfect 1-2-1 network model (i.e.,

to ensure that the two approximate capacities are a constant gap away), we would like to

operate in the range of parameters (α, β) such that the gap in Theorem 8.3.1 is bounded by

N log(N). Our second theorem provides sufficient conditions on (α, β), as a function of the

channel coefficients, such that |Ccs,iid − Cideal| ≤ N log(N).

Theorem 8.3.2. Consider an N-relay Gaussian 1-2-1 network with channel matrix H,

and let ∆ be the maximum degree of the graph representing the network topology. If the

beamforming parameters (α, β) satisfy that

α

β
≥ ∆2 N

N − 1
max

(i,j,m,n):|hji|>0,
i 6=j 6=m6=n

|hmn|2
|hji|2

, (8.7)

then we have that |Ccs,iid − Cideal| ≤ N log(N).

Remark 8.3.2. Note that the condition in (8.7) above is independent of the operating power

P , i.e., it is valid for any operational transmit power used in the network. Furthermore, the

condition does not depend on the single channel coefficients, but rather is related to the

maximum ratio between the magnitudes of any two non-zero channel coefficients in the

network. Thus, for any given network with finite channel coefficient magnitudes, there exists

an (α?, β?) pair such that the approximate capacity of the imperfect 1-2-1 network model

is at most a constant gap away from the approximate capacity of the ideal 1-2-1 network

model that uses (α?, 0) as described in Remark 8.2.1.
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Remark 8.3.3. The coupling of the approximate capacity of the imperfect 1-2-1 network

to the approximate capacity of its ideal 1-2-1 counterpart, allows to translate results already

proven for the ideal 1-2-1 network model to the imperfect 1-2-1 network. In particular, in

Chapter 5, we proved that we can find an optimal schedule for the ideal 1-2-1 network model

(i.e., a schedule that achieves Cideal) in polynomial time in the number of nodes. The proof of

Theorem 8.3.1 and the result in Theorem 8.3.2 imply that, by applying a schedule developed

for the ideal model to an imperfect model that satisfies the condition in Theorem 8.3.2, we

can achieve a rate that is at most a constant gap away from the rate achieved in the ideal

model.

8.4 Treating Side-lobe Transmissions as Noise

The approximate capacity Ccs,iid for imperfect 1-2-1 networks in (8.3) can be achieved using

schemes such as QMF [ADT11] and NNC [LKE11]. However, given the relation that we

have established between the imperfect and ideal approximate capacities in Theorem 8.3.2,

it is worth exploring how far the rate achieved by simple schemes that rely on point-to-point

decoding is from the approximate capacity.

In this section, we focus on characterizing the gap between the approximate capacity

in (8.4) of the ideal 1-2-1 network model and the rate achieved when side-lobe transmissions

are treated as noise and only the aligned main-lobes transmissions are decoded at their

intended receiver node. Our main result of this section is summarized by the following

theorem.

Theorem 8.4.1. Consider an N-relay Gaussian 1-2-1 network with channel matrix H, and

let ∆ be the maximum degree of the graph representing the network topology. Let RTSN be

the rate achieved by Treating Side-lobes as Noise. Then, we have

|Cideal − RTSN| ≤ N log(∆) +N max
i,j

˜̀
ji, (8.8)
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where ˜̀ji = log

(
1 + max

m:m 6=i
β2P |hjm|2

)
.

Before delving into the proof of Theorem 8.4.1, we would like to highlight the following

remarks on how the values in Theorem 8.4.1 reflect in practice.

Remark 8.4.1. Note that, for RTSN to be a constant gap away from Cideal, β should be

selected such that for all channel coefficients in the network we have that ˜̀ji = O(1).

Remark 8.4.2. The conditions imposed by (8.8) and Theorem 8.3.2 on the beamforming

parameters are realistic for several envisioned applications of mmWave communications.

For example, in a typical vehicle platooning scenario [ZSS19], the inter-platoon distance is

around 10 meters. Thus, with an operating frequency of 60 GHz and bandwidth of 1 GHz,

the largest channel coefficient magnitude maxij |hij|2 = O(10−4). Assuming the line-of-sight

path loss model and a transmit signal-to-noise ratio of 100, we would have P |hij|2 = O(10−2).

As a result, even with β = 1, the gap in (8.13) would be upper bounded by N [log(∆) + 1].

8.4.1 Proof of Theorem 8.4.1

For a given network state s, node i can communicate to node j, treating side-lobes as noise,

at a rate ̂̀ji given by

̂̀
ji=





log
(

1+
α2P |hji|2

1+
∑

m:m 6=i β
2P |hjm|2

)
if j∈si,t, i∈sj,r

0 otherwise
. (8.9)

In other words, the rate ̂̀ji is either a positive value if the beams are aligned and zero

otherwise. Thus, it is not difficult to see that the maximum rate achieved by this scheme

can be computed by considering a ideal 1-2-1 network where the point to point link capacities

`ji are replaced by ̂̀ji in (8.9). It therefore follows that the achievable rate RTSN is given by

RTSN = max
λs:λs≥0∑

s λs=1

min
Ω:Ω⊆[0:N ],

0∈Ω

∑

(i,j):i∈Ω,
j∈Ωc




∑

s:
j∈si,t, i∈sj,r

λs


 ̂̀ji. (8.10)
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We now focus on characterizing the gap |Cideal − RTSN|. If the aforementioned gap is upper

bounded by a quantity that only depends on N for some conditions on the beamforming

parameters (α, β), then by invoking the result in Theorem 8.3.2 together with the triangle

inequality, we can show that |Ccs,iid − RTSN| is also upper bounded by a constant gap.

It is not difficult to see that RTSN ≤ Cideal, since for all i, j, we have ̂̀ji ≤ `ji. For a lower

bound on RTSN, we can use the following lower bound on ̂̀ji

̂̀
ji = log

(
1 + α2P |hji|2 +

∑

m:m 6=i

β2P |hjm|2
)

− log

(
1 +

∑

m:m6=i

β2P |hjm|2
)

≥ log
(
1 + α2P |hji|2

)

− log

(
1 + max

m:m 6=i
β2P |hjm|2

)

︸ ︷︷ ︸˜̀
ji

− log(∆)

≥ `ji −max
i,j

˜̀
ji − log(∆), (8.11)

where ∆ is the maximum degree of the graph representing the network topology. We can

then lower bound RTSN as follows

RTSN = max
λs:λs≥0∑

s λs=1

min
Ω:Ω⊆[0:N ],

0∈Ω

∑

(i,j):i∈Ω,
j∈Ωc




∑

s:
j∈si,t, i∈sj,r

λs


 ̂̀ji

≥ max
λs:λs≥0∑

s λs=1

min
Ω:Ω⊆[0:N ],

0∈Ω

∑

(i,j):i∈Ω,
j∈Ωc




∑

s:
j∈si,t, i∈sj,r

λs


 `ji

−N log(∆)−N max
i,j

˜̀
ji. (8.12)

As a result, we have

|Cideal − RTSN| ≤ N log(∆) +N max
i,j

˜̀
ji. (8.13)
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8.5 Appendices

8.5.1 Proof of Theorem 8.3.1

To prove Theorem 8.3.1, we focus on C(s,Ω) below for all valid states s and cuts Ω

C(s,Ω) = log det
(
I + PHs,ΩH

†
s,Ω

)
. (8.14)

We seek to understand how this term relates to its counterpart in the expression of Cideal

in (8.4).

Without loss of generality, we assume that for the given s and Ω, the considered Hs,Ω ma-

trix is wide, otherwise, we can consider the expression in (8.14) with the conjugate transpose

matrix. We can get an upper bound on C(s,Ω) in (8.14) as follows

C(s,Ω) = log det
(
I + PHs,ΩH

†
s,Ω

)

(a)

≤
|Ωc|∑

j=1

log

(
1+P max

i∈[1:|Ω|]

∣∣∣[Hs,Ω]ji

∣∣∣
2
)

+ |Ωc| log(|Ω|), (8.15)

where (a) follows from the Hadamard-Fischer inequality [RWH17] that upper bounds the

determinant of a positive semidefinite matrix with the product of its diagonal elements.

By using our “main-lobe is always stronger” assumption, i.e., α and β are such that the

side-lobe transmissions are weaker than those on the main-lobe, we can simplify (8.15) as

C(s,Ω) ≤
|Ωc|∑

j=1

log

(
1+P

∣∣∣[Hs,Ω]jj

∣∣∣
2
)

+ |Ωc| log(|Ω|). (8.16)

Recall that each entry [Hs,Ω]jj in the matrix Hs,Ω corresponds to the enhanced channel

coefficient between two nodes that have their main-lobe beams aligned. Thus, we have the

following upper bound on the approximate capacity Ccs,iid in (8.3b)

Ccs,iid = max
λs:λs≥0∑

s λs=1

min
Ω⊆[0:N ],

0∈Ω

C(s,Ω)
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≤ N log(N)+ max
λs:λs≥0∑

s λs=1

min
Ω⊆[0:N ],

0∈Ω

∑

s

λs
∑

(i,j)∈Ω×Ωc:
j∈si,t, i∈sj,r

`ji

= N log(N) + Cideal. (8.17)

We now want to find a lower bound for Ccs,iid in terms of Cideal. To do this, we will again

focus on each of the terms C(s,Ω) in (8.14). Recall that, by our “each cut is diagonally dom-

inant” assumption, we have that for all (s,Ω) pairs, the matrix I + PHs,ΩH
†
s,Ω is diagonally

dominant.

For a diagonally dominant n×n matrix A, we can use the result in [Ost52] to derive the

following lower bound on the determinant of A

det(A)
[Ost52]

≥
n∏

i=1


[A]ii −

∑

j∈[1:n]\{i}

|[A]ij|




≥
n∏

i=1

([A]ii − ρA[A]ii) = (1− ρA)n
n∏

i=1

Aii, (8.18)

where ρA is given by

ρA = max
i∈[1:n]





∑

j∈[1:n]\{i}

|[A]ij|
|[A]ii|



 . (8.19)

Now, by employing (8.18) on the matrix I + PHs,ΩH
†
s,Ω in (8.14), we have that

C(s,Ω) = log det
(
I + PHs,ΩH

†
s,Ω

)

≥
|Ωc|∑

j=1

log

(
1 + P

∥∥∥[Hs,Ω]j

∥∥∥
2
)

+ log
(
(1− ρs,Ω(H))|Ω

c|)

≥
|Ωc|∑

j=1

log

(
1 + P

∣∣∣[Hs,Ω]jj

∣∣∣
2
)
− |Ωc| |log(1− ρs,Ω(H))|

≥
|Ωc|∑

j=1

log

(
1+P

∣∣∣[Hs,Ω]jj

∣∣∣
2
)
−N |log(1−ρs,Ω(H))|︸ ︷︷ ︸

f(ρ,s,Ω)

. (8.20)
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Thus, we have a lower bound on the approximate capacity as follows

Ccs,iid = max
λs:λs≥0∑

s λs=1

min
Ω⊆[0:N ],

0∈Ω

C(s,Ω)

≥ max
λs:λs≥0∑

s λs=1

min
Ω⊆[0:N ],

0∈Ω

∑

s

λs




∑

(i,j)∈Ω×Ωc:
j∈si,t, i∈sj,r

`ji −Nf(ρ, s,Ω)




≥ Cideal −N max
s,Ω

f(ρ, s,Ω)

= Cideal −N max
s,Ω
|log(1− ρs,Ω(H))| . (8.21)

By taking the maximum among the gaps in the bounds in (8.15) and (8.21), we get the result

in Theorem 8.3.1.

8.5.2 Proof of Theorem 8.3.2

To prove Theorem 8.3.2, we would like to derive bounds on the pair (α, β) such that f(H,α, β)

in (8.6) is upper bounded by log(N). By simple arithmetic manipulation, it is not difficult

to see the following equivalence

f(H,α, β) = max
s,Ω
|log (1− ρs,Ω(H))| ≤ log(N)

⇐⇒ max
s,Ω

ρs,Ω(H) ≤ N − 1

N
. (8.22)

We now find an upper bound on ρs,Ω(H) and then derive the sufficient condition in Theo-

rem 8.3.2 by enforcing that the upper bound on ρs,Ω(H) is less than or equal to (N − 1)/N ,

∀s,Ω.

From the definition of ρs,Ω(H) in (8.5), we can show that

ρs,Ω(H) = max
i∈[1:|Ωc|]





∑

j∈[1:|Ω|]\{i}

∣∣∣P [Hs,Ω]i [Hs,Ω]†j

∣∣∣
1 + P [Hs,Ω]i [Hs,Ω]†i





≤ max
i∈[1:|Ωc|]





∑

j∈[1:|Ω|]\{i}

∣∣∣P [Hs,Ω]i [Hs,Ω]†j

∣∣∣
Pα2

∣∣[Hs,Ω]ii
∣∣2




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= max
i∈[1:|Ωc|]





∑

j∈[1:|Ω|]\{i}

∣∣∣[Hs,Ω]i [Hs,Ω]†j

∣∣∣
α2
∣∣[Hs,Ω]ii

∣∣2



 . (8.23)

Now, note that

∣∣∣[Hs,Ω]i [Hs,Ω]†j

∣∣∣ (a)
=

∣∣∣∣∣αβ(ĥiiĥ
∗
ji+ĥijĥ

∗
jj)+β

2
∑

k 6=i,j

ĥikĥ
∗
jk

∣∣∣∣∣
(b)

≤
[
2αβ + (∆− 2)β2

]
max
i,j
|hij|2, (8.24)

where: (a) uses ĥij = [Hs,Ω]ij as in (8.2) for space limitation; (b) follows from the triangle

inequality and the fact that, in the dot product [Hs,Ω]i [Hs,Ω]†j, there are at most ∆ non-zero

terms since ∆ is the maximum degree of the graph representing the network topology.

By substituting (8.24) in (8.23), we have that

ρs,Ω(H)≤ max
i∈[1:|Ωc|]





∑

j∈[1:|Ω|]\{i}

∣∣∣[Hs,Ω]i [Hs,Ω]†j

∣∣∣
α2
∣∣[Hs,Ω]ii

∣∣2





≤ max
i∈[1:|Ωc|]





∑

j∈[1:|Ω|]\{i}

[2αβ + (∆− 2)β2] max
m,n
|hmn|2

α2
∣∣[Hs,Ω]ii

∣∣2





≤ [2αβ+(∆−2)β2] (∆−1)

α2
max

(i,j,m,n):|hji|>0,
i 6=j 6=m 6=n

|hmn|2
|hij|2

. (8.25)

Given the upper bound on ρs,Ω(H) in (8.25) that is independent of (Ω, s), we can now

use (8.22) and get the sufficient condition

[2αβ+(∆−2)β2] (∆−1)

α2
max

(i,j,m,n):|hji|>0,
i 6=j 6=m6=n

|hmn|2
|hij|2

≤ N − 1

N

=⇒ α

β
≥ ∆2 N

N − 1
max

(i,j,m,n):|hji|>0,
i 6=j 6=m6=n

|hmn|2
|hij|2

.

This concludes the proof of Theorem 8.3.2.
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CHAPTER 9

Conclusion and Open Questions

In this dissertation, we discussed two enabling aspects for communication next-generation

wireless networks: multi-hopping and mmWave transmission. Our key focus throughout

the dissertation was on providing fundamental guarantees for operating a subset of these

multi-hop networks (through the network simplification framework) and developing efficient

approaches for selecting and scheduling these networks/subnetworks.

9.1 Network Simplification in Full-Duplex Networks

For the problem of network simplification in full-duplex networks, we considered arbitrary

topology relay networks: N relays arranged arbitrarily to assist communication between a

source and a destination node. We prove fundamental worst-case guarantees on selecting the

best route in the network and show that the fraction guaranteed is inversely proportional

with the number of nodes in the network. This presents the first such result on network

simplification that extends beyond the diamond network topology. Towards proving these

results, we proved an auxiliary fundamental guarantee for selecting a kt × kr MIMO sub-

channel from an existing nt×nr MIMO channel, which can be of independent interest given

the increasing deployment of multiple-antenna systems in next-generation networks.

In this line of work, there is a number of interesting open questions. First, the exten-

sion of the network simplification result to arbitrary topology was possible for the single

route case but choosing larger subnetworks (for instance choosing k relays per layer in a
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layered network topology) is still an open question. Selecting larger subnetworks would al-

low the information-flow to make use of physical layer cooperation schemes developed in

the information theory community with a reduced level complexity that is associated with

their implementation across nodes in then network. Another open question is how do these

fundamental bounds behave on average. Given a predefined distribution for independently

sampled network channel coefficients, what guarantees can be provided in expectation on the

retained approximate capacity from selecting a subnetwork from an N -relay network. These

expectation bounds would retain dependence on the underlying network topology, but may

not be limited by corner low-probability instances.

9.2 Network Simplification in Half-Duplex Networks

Next, we discussed the network simplification problem in half-duplex diamond networks. We

provided fundamental worst-case guarantees on selecting the best subnetwork of N − 1 out

of N relays. The proof of this fundamental bound involved exploring and deriving equivalent

definition of submodular functions in terms of N sets, which can be independent interest

beyond the scope of this dissertation. Next, we presented efficient algorithms for selecting

a subnetwork of 1 < k < N relays with theoretical guarantees on the retained approximate

capacity.

Several open questions remain in this line of work. First, our fundamental worst-case

bounds for the diamond topology are proved to be tight only for the case where we are

selecting k = N − 1 relays out of N . In fact, we believe that the derived guarantees can be

tightened for almost all k < N − 1. In fact, most recently the authors in [JMC20] derived

a tight fundamental worst-case bound for the case of selecting k = 1 relays in the diamond

network, which include sinusoidal values in terms of the number of relays N . Bounds for the

case of 2 ≤ k ≤ N − 2 remain an open problem in this line of work. Beyond the diamond

network, it is also interesting to understand how these bounds extend even for simple values
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of k relays to arbitrary topology half-duplex networks. For all aforementioned cases, it

still remains an open direction to understand whether efficient selection algorithms can be

coupled with these fundamental bounds. Such selection algorithms for the case of k = 1 and

k = N − 1 are straightforward, however for different values of k and in different topologies,

such algorithms may not be as direct. In fact, based on our work on half-duplex routing,

selecting the best single route in an arbitrary topology network is NP-hard and selecting

different types of subnetworks may prove to be as difficult. This is an open problem for

future investigation.

9.3 Information-theoretic Modeling of mmWave Networks

The second part of this dissertation focused on the modeling of information flow in mmWave

networks and how this network model can be operated efficiently. A key characteristic of

mmWave networks used in 5G mobile networks is the highly-directive short-range transmis-

sion used to counter path loss. This feature is not explicitly captured in current information-

theoretic models for multi-hop wireless networks. Instead, broadcast communication is as-

sumed from a node to all neighboring devices in range as well as interference due to signals

superposition at a receiving node. To inherently model the directivity property of mmWave

networks and the need to schedule beam orientations, we proposed a new information-

theoretic model for multi-hop wireless networks referred to as “1-2-1 network”. We first used

this model to characterize the Shannon unicast and multicast capacities, up to a constant

gap, for mmWave networks with arbitrary topology operating with full-duplex or half-duplex

mmWave nodes. Next, we developed a provably optimal polynomial time algorithm to com-

pute the approximate capacity and an optimal beam-orientation schedule in full-duplex and

half-duplex mmWave network. Finally, we studied the impact of relaxing the perfect beam-

forming modeled in the full-duplex 1-2-1 network model to the case where signal leakage can

occur from side-lobes and showed that within some operational range of the beamforming
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parameters, the ideal 1-2-1 network is still a viable constant gap approximation of imperfect

case.

Several open research questions remain. For the ideal 1-2-1 network model, the scheduling

solutions are centralized in nature: a linear program is solved using knowledge of the differ-

ent link capacities in the network. This inherently imposes an overhead of collecting these

link capacities and can potentially limit the application of these solutions to fixed backhaul

mmWave deployments. An ambitious goal is to develop distributed solutions that are guar-

anteed to achieve (or approximately achieve) the same rates by the centralized scheduling

approaches. Another open direction to explore in the context of scheduling 1-2-1 networks

is the resilience of the scheduling solution to time-varying link capacities in the network.

A more attractive scheduling approach will require fewer edits or updates to achieve the

maximum communication rate of the network after a few link capacities in the network have

changed. In imperfect 1-2-1 network, the same set of questions naturally follow. In addi-

tion, although we show that the ideal model can approximate the imperfect model under

some sufficient conditions, this only extends as far as projecting the scheduling solution and

operational properties of the network from the ideal model onto the imperfect 1-2-1 model.

To operate the network, to the best of our knowledge, we still need to employ complicated

schemes from network information theory such as [ADT11, LKE11]. It remains an open

problem to understand whether simpler solutions can be used to achieve the approximate

capacity under the regime of beamforming parameters that couple the imperfect and ideal

models.

9.4 Other Explored Research Problems

The focus of our discussion in this dissertation was on operating next-generation wireless

networks in terms of scheduling and simplification of multi-hop communication. Another

intriguing aspect of next-generation networks is the evolving nature of applications that are
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envisioned on top of their deployments to include computationally heavy machine learning

applications that are distributed over the network or in general distributed computation

solutions that makes use of the wireless medium and its flexible network deployment cost.

In this section, we discuss three such applications over next-generation networks that were

studied during the course of this doctoral degree but that deviate from the central theme of

this dissertation.

Distributed MapReduce over broadcast medium. Distributed computation across a

set of wireless networked servers is well motivated for several practical constraints: we may

want to speed up computation time so as to finish a computation faster; we may have par-

tial view of the files needed for computation across servers; we may have limited memory

in each server; or we may be motivated by energy constraints. In this work, we consid-

ered the distributed computing framework over a broadcast medium studied that follows the

architecture of MapReduce [DG08]. We introduced a communication-computation-storage

tradeoff in this system that expands the considered system parameters studied in [LMA16]

(communication-computation). We proposed a scheme for minimizing computation given

communication and storage constraints. This was later proved to be optimal by [YYW18].

Distributed quantization for classification tasks. In this line of work, we considered

the problem of distributed feature quantization, where the goal is to enable a pretrained

classifier at a central node to carry out its classification on features that are gathered from

distributed nodes through communication constrained channels. This is motivated by ap-

plications in wireless cyberphysical systems, immersive environments and supported health.

We proposed the design of distributed quantization schemes specifically tailored to the classi-

fication task: unlike quantization schemes that help the central node reconstruct the original

signal as accurately as possible, our focus is not reconstruction accuracy, but instead correct

classification. Our designs leveraged discrete neural representations and training data, and

could be designed in polynomial time for any number of features, any number of classes,
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and arbitrary division of features across the distributed nodes. We found that tailoring the

quantizers to the classification task can offer significant savings: as compared to alterna-

tives, we could achieve more than a factor of two reduction in terms of the number of bits

communicated, for the same classification accuracy.

Security in mmWave Networks. In next-generation networks, a large portion of the

enormous data to be exchanged is sensitive in nature, such as banking, health, personal,

and IoT control packets. Therefore, we need to securely exchange this sensitive information

against eavesdropping adversaries who have interests in gaining access to this information.

We consider the problem of information-theoretic security in arbitrary 1-2-1 networks that

model mmWave networks, and derive lower and upper bounds on the secure capacity. Since

we need to use beamforming and align beams to activate links, we cannot use all the un-

derlying links of the network simultaneously. However, the degree of freedom in choosing

the links to activate can be leveraged for secure communication against an eavesdropper.

We show that we can achieve a secure capacity that in some cases, can be very close to the

unsecure capacity.
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