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Observability of Plant Metabolic Networks Is
Reflected in the Correlation of Metabolic Profiles1

Kevin Schwahn, Anika Küken, Daniel J. Kliebenstein, Alisdair R. Fernie, and Zoran Nikoloski*

Systems Biology and Mathematical Modeling Group (K.S., A.K., Z.N.) and Central Metabolism Group (K.S.,
A.R.F.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Department of
Plant Sciences, University of California, Davis, Davis, California 95616 (D.J.K.); and DynaMo Center of
Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)

ORCID IDs: 0000-0003-1367-0719 (A.K.); 0000-0001-5759-3175 (D.J.K.); 0000-0003-2671-6763 (Z.N.).

Understanding whether the functionality of a biological system can be characterized by measuring few selected components is
key to targeted phenotyping techniques in systems biology. Methods from observability theory have proven useful in
identifying sensor components that have to be measured to obtain information about the entire system. Yet, the extent to which
the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the
sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state-of-the-art genome-scale metabolic
networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability,
we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern
was confirmed with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism.
Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the
vast majority of relevant information about plant metabolic systems.

Systems biology aims at developing models that
allow for a complete characterization of how the inputs
and outputs of a biological system are interconnected
and jointly relate to the molecular phenotypes. The ex-
perimental systems biology studies attempt to obtain
a substantial coverage of the (molecular) components of
a biological system using various technological plat-
forms, such as transcriptomics (Weber et al., 2007)
and metabolomics (Fiehn, 2002), and, more recently,
phenomics (Araus and Cairns, 2014). The aim of these re-
search efforts is to utilize the read-outs about the compo-
nents for estimating how the biological system functions.

However, while these efforts are rapidly becoming
faster and cheaper, they still encounter both financial

and logistical problems when attempting to scale up to
measure large populations or the vast space of con-
ceivable physiological environments. These problems
quickly become irresolvable for any studies attempting
to combine genetic and environmental variation in the
same system. Thus, until the technical problems are
removed, alternative solutions are in demand that can
allow as much of the system to be measured (i.e. ob-
served) as possible. Therefore, we are faced with the
question: Is it possible to identify a subset of transcripts
or metabolites that can provide complete information
about an investigated system?

Oneway to identify these subsets is based on networks
structures generated by systems biology approaches.
This line of research aims at finding a small number of
molecular components (with respect to what can be
measured) whose measurement can characterize the in-
ternal state of a biological system. Given the myriad of
output components from any biological system (e.g.
generated within a plant leaf cell and exported to any
other tissue type), it is of great interest to determine the
number and the identity of these output components that
may provide insights into the state of the system. How-
ever, components deemed as outputs of a modeled bio-
logical system are usually not external to the system, but
rather, actively participate in shaping the levels of its
underlining components. For instance, amino acids are
used to build proteins that, in turn, drive the entirety of
metabolism, including amino acid and sugarmetabolism
that provide the energy and building blocks to create
the plant cell wall (Cosgrove, 2005; Singh and Ghosh,
2006). Therefore, the connectivity of components due to
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regulatory, signaling, andmetabolic interactionsmust be
considered when determining the sensor components.
Metabolic networks are among the best described

networks in systems biology to test our ability to identify
metabolites that can serve as sensors to describe me-
tabolism.Wewould like to emphasize that the concept of
sensor metabolites does not correspond to the in vivo
notion of sensing and signalingmetabolites. Sensing and
signaling metabolites are involved in coregulating and
integrating the metabolic status with other cellular
events (Templeton andMoorhead, 2004). Our concept of
sensor metabolites is that the metabolites would need to
be measured by the researcher to acquire the majority of
information present in the sample.
Ametabolic network of a given cellular system consists

of the entirety of biochemical reactions interconverting
nutrients obtained from the environment, into basic and
more complex building blocks used to create the cell and
allow it to defend itself. The components of a metabolic
network are, therefore, the metabolites and the accom-
panying conversion reactions. These components are
fully specified by the levels of all the metabolites and
the rates/fluxes of all reactions. While the levels of
many metabolites can be determined with modern
metabolomics technologies (Goodacre et al., 2004), the
reaction rates cannot be measured but are estimated
from the combination of labeling andmodeling (Kauffman
et al., 2003; Nöh et al., 2007). Recent advances in mod-
eling of plants have resulted in genome-scale metabolic
networks for a variety of species, from Arabidopsis
(Arabidopsis thaliana), as a plant model, tomaize and rice,
as important agronomic crops (de Oliveira Dal’Molin
et al., 2010a, 2010b; Saha et al., 2011; Seaver et al., 2014).
Well-established methods from control theory utilize

network structure to determine the sensors that must be
measured to observe the internal state of a system, bio-
logical or otherwise (Liu et al., 2011, 2013; Jha and van
Schuppen, 2001; Rios et al., 2013). These methods are not
concerned with calculating the internal states from the
sensors, but determining if the system is observablewith
particular components. For nonlinear biological systems,
such as metabolism, obtaining the internal state from
the sensors is still a challenging problem (Chaves and
Sontag, 2002). The issue of determining the set of me-
tabolites that needs to be measured in a labeling exper-
iment to characterize a unique flux distribution of a given
systemhas been tackled in the framework of constrained-
based modeling (Chang et al., 2008).
Here, we address the observability problem from a

data-driven perspective: To begin, we apply the graph-
ical approach of Liu et al. (2013) to large-scale plant
metabolic networks. We then investigate if, and to what
extent, the data profiles about metabolites predicted as
sensors relate to the rest of the metabolites in the net-
work. In this way, we aim to bridge the gap between the
existing powerful control-theoretic methods and the
plethora of accumulated data frommetabolomics studies.
To inspect the model-based effects in the identification
of sensor metabolites, we tested the robustness of the
findings with two different models that guarantee good

coverage with the metabolomics data. In addition, we
used a medium-scale kinetic model for central carbon
metabolism to further strengthen our findings from the
large-scale models. The findings are further discussed
with respect to the role of sensor metabolites as dead-
end metabolites in the respective metabolic networks
(with and without consideration of biomass reactions,
used in the simulating growth). The small number of
identified sensor metabolites in relation to the size of the
entire metabolic network suggests that targeted metabo-
lite analyses could provide the vast majority of relevant
information about plant metabolic systems and could
prove effective in strategies for crop improvement (Gu
et al., 2010, 2012; Lu et al., 2011; Fernie and Schauer, 2009).

RESULTS AND DISCUSSION

Number and Position of Sensor Metabolites in Models of
Plant Primary Metabolism

By applying the graphical approach to identify root
strongly connected components (SCCs) in theArabidopsis
core model (AraCORE; Arnold and Nikoloski, 2014), we
found 23 sensor metabolites listed in Supplemental
Table S1. Aside from two sugars, trehalose and cellu-
lose, and nucleoside triphosphates, the remaining sen-
sor metabolites were amino acids. The metabolomics data
set of Caldana et al. (2011) contained themetabolic profiles
of 11 of the identified sensormetabolites. Overall, 30 of the
91 measured metabolites could be mapped to AraCORE,
as indicated in Supplemental Table S5 that includes the
metabolites used as sensors and nonsensors for the in-
vestigation of this model. Consideration of biomass and
sink reactions in themodel led to the identification of only
15 sensor metabolites, consisting of the amino acids and
cellulose (see Supplemental Table S2—“AraCORE Sen-
sors with Biomass Function”). The finding that the sen-
sors identified upon consideration of biomass also act as
sensors when biomass is excluded was in line with the
observation that the biomass reaction includes all amino
acids, alongside cellulose and nucleotides.

Additionally, we also considered the Arabidopsis
model downloaded from PlantSEED (AraSEED; Seaver
et al., 2014). We identified 198 sensor metabolites, given
in Supplemental Table S3, of which 10 could bemapped
to the metabolomics data. Overall, we were able to
map 47 metabolites to the measured data. The list of
all metabolites identified as sensor and nonsensor in
the investigation of the AraSEED model is provided in
Supplemental Table S6. In agreement with the AraCORE
model, the sensors again included amino acids and
sugars, in addition to a variety of complexes with
Coenzyme A and Plastoquinone. In brief, the findings
from the two models were similar in that all models
have root SCCs that largely overlap sugar and amino acid
metabolism. However, the small number of mapped
metabolites in comparison to the size of the models
employed is a challenge, largely due to the limitations
of current metabolomics technologies. For instance, a
quarter of the detected analytes could not be annotated to
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known metabolites; moreover, secondary metabolites
could not be mapped in all models, because some of the
models used in this study include pathways of central
metabolism.

Data Profiles of Sensor Metabolites Show Stronger
Correlations Than Nonsensor Metabolites

The underlying approach states that information
from all root-SCC allows the reconstruction of the state

of the system. Aminimum set of sensor metabolites can
then be used to specify the metabolic profiles of the
sensors and the rest of the network. It is important to
emphasize that the metabolites from the root SCCs,
containing the sensors, can be connected to different
nonroot SCCs. Therefore, one may expect that there is a
relation within sensors based on whether they are
connected to the same nonroot SCCs (see Supplemental
Fig. S1 for illustration). If all nodes in a nonroot SCC
have directed path to sensors in two SCCs, a single

Figure 1. Schematic overview of the imple-
mented algorithm, adapted from Liu et al.
(2013). A, Example of a metabolic network
with nine irreversible reactions. B, System of
differential equations for the change in con-
centration for each metabolite (A–D) in the
network shown in A assuming mass action ki-
netic. C, Inference graph for the metabolic
network and system of differential equations in
A and B. Node u is connected by directed edge
to node v if metabolite v occurs in the differ-
ential equation for metabolite u from B. The
green circles represent nonroot SCC, whereas
the red circles indicate root SCC. Each node in
a root SCC can act as a sensor node.

Figure 2. Statistical comparison of sensors and nonsensors in the AraCORE model. The x axis represents the investigated time
interval, from 1 to 16. The y axis represents values for the three statistics, respectively: A, SD; B, CV; and C, Pearson correlation of
sensors and nonsensors. The red line corresponds to the values for the statistics between sensor metabolites, while the green line
corresponds to values between nonsensor metabolites. The blue line in C is used for the correlation between sensors and non-
sensors. A dot on the line indicates a significant difference at level a = 0.05 between sensor and nonsensors.
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sensor may suffice to reconstruct the state of the non-
root SCCs; in this case, the other sensor will be needed
to describe its own profile. For the investigated net-
works, the majority of the identified sensor metabolites
were connected, via a directed path, to the same non-
root SCC. Therefore, sensors in different root SCCs
detect the same network and each could be employed to
reconstruct the state of the nonroot SCC. Therefore, if
the data profiles of a sensor metabolite can be used to
reconstruct the profiles of the nonsensor metabolites, it
may be expected that sensor metabolites are more cor-
related to each other than to the rest of the metabolites;
by corollary, for nonsensor metabolites, it may be ex-
pected that they are less correlated to each other than to
the sensor metabolites. Within the AraCORE model all
sensors are connected to the same nonroot SCC,
whereas in the AraSEED model 35 of the 198 sensors
were not connected to the largest nonroot SCC. Out of
the 35 sensors, only Glc and Fru were mapped to the
data. We did not observe a different behavior with re-
spect to the findings from the previous analysis for two
types of sensor groups (see Supplemental Fig. S4).

To empirically test these sensor hypotheses and their
biological utility, we used time-series metabolomics
data fromArabidopsis Col-0 exposed to seven different
environments. To this end, we determined the correla-
tion for each pair of measured metabolites over all
conditions; we then divided the resulting correlation
values in three categories: (1) between two sensors, (2)
two nonsensors, and (3) between a sensor and a non-
sensor metabolite. Because the available time-series
data captured the response to the applied perturba-
tions caused by the different light and temperature
conditions across different time scales, we determined
the correlation between the time series with consider-
ation of different time points (i.e. intervals). More spe-
cifically, we determined the correlations by using k
(with 5 # k # 20) consecutive time points from the ex-
perimental measurements, starting with the first time
point (Fig. 2). This results in 16 time intervals, so that
the first interval consists of the first five measured time
points and the last of all 20 time points. In addition, we
investigated the correlation obtained by jointly con-
sidering the data from all time points and conditions.

Figure 3. Distribution of correla-
tion values of the AraCORE model.
Box plots of the distribution of cor-
relation values between sensors,
between sensors and nonsensors,
and between nonsensors are col-
ored in red, blue, and green, re-
spectively. The mean value is given
above the square symbol, while the
median is given by the solid line.
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This analysis provided the distributions of correla-
tion values across the three classes ofmetabolite pairs in
a given time interval over all considered conditions.We
then tested the null hypothesis that the means of the
distributions do not statistically differ between the
classes of metabolite pairs, by applying a two-sided
t test. In accordance with the observation that the ma-
jority of the identified sensor metabolites were con-
nected to the same (nonroot) SCCs, for the AraCORE
model, we found that the mean of correlations between
sensor metabolites was greater than the mean of cor-
relations between nonsensor metabolites in 9 of the
16 investigated intervals. The statistical significance in
the later time points is due to the larger power of the test
due to the larger number of data points available
(Schönbrodt and Perugini, 2013). We also observed that
the mean of the correlations between sensor and non-
sensor metabolites was greater than the correlations
between nonsensor metabolites, but smaller than the
correlations between sensor metabolites only. These
results were reproducible if all time points and condi-
tions were jointly used (Fig. 3).

However, another possible source of this result is that
the metabolic profiles of the sensor metabolites have
lower variability than nonsensors, and, thus, show higher
correlations. To test this hypothesis, we first determined
the distributions of SD and coefficient of variation (CV) or
the sensor and nonsensor metabolites equivalent to the
setup for investigating the correlation values. We then
tested if the means of each measure of variability differed
between the classes of metabolites. The means of the CV
and the SD were not statistically different between the
nonsensors and sensors; thus, differences in the variation
of sensors and nonsensors were likely not causing the
difference in the correlation structure. Therefore, we

concluded that the observed difference in correlation was
a result of the position of the sensor nodes in the network
and not due to smaller variability.

For a comparison of genome-scale models, we in-
vestigated the relationship of sensors and nonsensors in
the AraSEED model. The mean correlations of the
sensors were significantly different and larger than
those of the nonsensors in 13 of 16 time intervals (see
Fig. 4), thus conforming to our previous findings. This
was additionally confirmed through the investigation
of all time points and conditions (Fig. 5). The correla-
tions in sensors were significantly higher than in non-
sensors. However, the results of the SD and the CVwere
in contrast to our previous results: In the majority of
time intervals, we found significantly higher values in
the sensors than for the nonsensors. This is likely due to
the difference in the number of sensors and nonsensors
mapped from themetabolomics data in the twomodels.

Altogether, we demonstrated that, with the used data
set, sensors show larger correlation than between non-
sensors and sensors, and that that the latter is greater
than the correlation within nonsensors. We also showed
that these findings remained largely unaltered when
models of different size and structure are explored. The
evidence indicates that in the case of AraCORE, these
findings are likely not related to the variability in the
metabolic profiles. In addition, we investigated correla-
tion of themetabolic traits gathered in a study by Sulpice
et al. (2013). The data were obtained under three differ-
ent growth conditions with respect to nitrogen (N) and
carbon availability, and included the levels of 45 me-
tabolites from 97 Arabidopsis accessions. Because the
models largely encompass the reactions from central
carbon metabolism, we expect that the structure of the
metabolic network remains unaltered between accessions;

Figure 4. Statistical comparison of sensors and nonsensors in the AraSEED model. The x axis represents the investigated time
interval, from 1 to 16. The y axis represents values for the three statistics, respectively: A, SD; B, CV; and C, Pearson correlation of
sensors and nonsensors. The red line corresponds to the values for the statistics between sensor metabolites, while the green line
corresponds to values between nonsensor metabolites. The blue line in C is used for the correlation between sensors and non-
sensors. A dot on the line indicates a significant difference at level a = 0.05 between sensor and nonsensors.
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under this assumption, the data profiles can be regarded
as realizations of the same network. Therefore, we se-
lected the sensors and nonsensors from the two models
and repeated the correlation analysis.
In theAraCOREmodel, we couldmap 12 sensors and

20 nonsensors, while data were available for 10 sensors
and 25 nonsensors in the AraSEED model. The correla-
tion between sensors was significantly higher compared
to nonsensors in AraCORE and the AraSEED model
(Supplemental Fig. S2). This analysis demonstrated that,
under simplifying assumptions about robustness of
central carbon metabolism in plants, similar patterns
between sensors and nonsensors as in the analysis of
single genotypes can also be found by using data from
genetically variable populations.

Analysis of Robustness for the Observed Sensor/
Nonsensor Patterns

To determine if observed pattern of correlations
within and between sensors and nonsensors were not

artifacts of the used network and could not have
resulted by arbitrary grouping of metabolites, we
conducted two types of robustness analyses. In the
first, we randomized the partition of metabolites into
the two classes, while in the second we inspected the
effect of the reversibility of reactions considered in the
metabolic network.

In the first analysis of robustness, we determined the
probability that a random partition of metabolites into
same number of sensor and nonsensor metabolites (as
in the findings) results in the observed pattern of cor-
relations. To this end, we shuffled the assignment of
sensor and nonsensor metabolites 500 times, while
keeping their respective total numbers fixed, and deter-
mined the data properties, namely, SD and CV, as well as
correlation for the classes of metabolites and metabolite
pairs. This robustness analyses demonstrated that the
observed larger correlation of sensors in comparison to
nonsensors was statistically significant. In addition, the
correlation between sensor and nonsensors was similar
to the other two estimated correlations of sensors
to sensors and nonsensors to nonsensors. We further

Figure 5. Distribution of correla-
tion values of the AraSEED model.
Box plots of the distribution of cor-
relation values between sensors,
between sensors and nonsensors,
and between nonsensors are col-
ored in red, blue, and green, re-
spectively. The mean value is given
above the square symbol, while the
median is given by the solid line.
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supported this finding by the distributions of the three
properties in every interval over the considered condi-
tions, which could not be distinguished between the
classes of metabolites andmetabolite pairs (Supplemental
Fig. S3).

It has already been observed that the sensors pre-
dicted by the approach we used may change upon al-
terations of the reaction directionality (Liu et al., 2013).
Therefore, in the second analysis or robustness, we
tested the effect of randomizing the reversibility of
reactions considered in the model. The 500 randomi-
zations were performed while preserving the number
of reversible and irreversible reactions in the network
together with the set of metabolites they interconvert.
The original sensors in AraCORE consisted of 23
metabolites, whereas after randomization we found
between 25 and 42 sensors, of which 11–22 (i.e. at least
48%, see Fig. 6) were also present in the original set of
sensor metabolites. Moreover, each of the sensors was
identified in at least one randomization. Therefore, the
results supported the robustness of the identified
sensors and were in line with existing studies, which
have pointed out that reversibility of biochemical
reactions had a small effect on the identified sensors
(Liu et al., 2011). Similar results were obtained for the
second model; here, after randomization, we found
between 108 and 153 sensors, of which 57–90 (i.e. at
least 28.79%) were identical with the 198 sensors in the
original network. The overlap with the original sen-
sors was lower, compared to the other two models;
nevertheless, we could capture, in more than half of
the permutations, a.36% overlap. These results were
also partly in support of our claim for the robustness of
sensors.

Test on Kinetic Model of Central Carbon Metabolism

To further validate the finding that sensor metabo-
lites are more correlated with each other than non-
sensor metabolites, we repeated the analysis with a
synthetic data set generated from amedium-size kinetic
model of plant central carbon metabolism. The model
included the Calvin-Benson-Cycle, triose phosphate
transport, Suc biosynthesis and degradation, starch
biosynthesis and degradation, photorespiration, ATP
synthesis, and the photosynthetic electron transport
distributed over five compartments. It comprised 78
metabolites and 112 reactions, representing the largest
kinetic model of plant central metabolism to date
(Hahn, 1986; Singh and Ghosh, 2006). This model,
however, does not contain the TCA cycle and the vast
majority of amino acids. The reaction rates were mod-
eled according tomass action kinetics (see Supplemental
Kinetic Model for the stoichiometric matrix and reaction
parameters).

In this case, we identified six sensor metabolites
solely using the approach based on the network struc-
ture, including 2-oxoglutarate, Ser in the mitochondrion,
Suc in the cytosol, and the vacuole, as well as hydrogen
peroxide H2O2 and ammonia. Based on the simulated
data profiles (by varying the initial conditions), we again
found that the correlation within sensors was higher
than within nonsensor metabolites, for both day (d)
and night conditions (Figs. 7 and 8). The SD of the
sensors was in both cases higher than for the non-
sensors, similar to the results of the AraSEED model.
The results of the CV differed between d and night
simulations. The d simulation showed a pattern that
was comparable to AraCORE (see Fig. 7), while the
night simulations showed similarities to the AraSEED
model results (see Fig. 8). Altogether, the findings
from the simulated data profiles from a medium-size
kinetic model were in line with the data gathered from
experiments, particularly with respect to the observed
ordering of correlations within and between groups of
metabolites.

Implications of the Findings

In this study we demonstrated that metabolites iden-
tified as sensors were more correlated than nonsensor
metabolites based on data profiles gathered from wet-
lab experiments as well as in silico simulations. Most of
the findings were independently reproduced for two
well-curated models of Arabidopsis. Furthermore, we
showed that this was not due to an artifact of the used
data by an extensive robustness analysis. By randomly
assigning the labels “sensor” and “nonsensor” to the
metabolites in the analyzed data set, we demonstrated
that the correlation of sensors and nonsensors, and be-
tween sensors and nonsensors, could no longer be ob-
served.Additionally,we tested the influence of reversible
reactions in metabolic networks. Importantly, we could
reproduce these results on a kinetic model of medium
size used for simulating a synthetic data set. Using a

Figure 6. Distribution for the size of the overlap of identified sen-
sors. The distribution is obtained after randomizing the revers-
ibility assignment in in the AraCORE model. The x axis displays the
number of sensors overlapping with the original analysis. The y
axis displays the frequencies of common sensors in 500 shuf-
flings of the reversibility assignment. Originally, 23 sensors were
detected.
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random but physiologically viable initial condition for
the simulation of d and night cycles, we found the same
relationship between sensor metabolites and nonsensor
metabolites as in the Arabidopsis large-scale models.
The identified sensors in all models were metabolites

that act as major building blocks of biomass. In the
smaller AraCORE, we found cellulose for cell wall
synthesis and most of the amino acids for the protein
biosynthesis, as well as nucleotides for DNA and RNA
replication. These were in agreement with the results of
the genome-scale Arabidopsis model, AraSEED, in
which, in addition to the mentioned metabolite classes,
we also identified Coenzyme A and related metabolites

playing important roles in the tricarboxylic acid cycle
(Fatland et al., 2002).

Our results largely depend on the quality of the
networks employed. Therefore, we critically investi-
gated the network models used and found that a large
number of sensor metabolites were in fact dead-end
metabolites, created upon removal of the biomass re-
actions. By consideration of the respective biomass re-
action, the identified metabolites were not dead-end
metabolites just in AraCORE.

In AraSEED with a biomass reaction, 4 of the 15 sen-
sors were dead-end metabolites. Investigation of the
large-scale metabolic networks used in the study of

Figure 7. Statistical comparison of the sensors and nonsensors in the kinetic d-time model of plant central carbon metabolism.
The x axis represents the investigated time interval, from 1 to 15. The y axis represents values for the three statistics, respectively:
A, SD; B, CV; and C, Pearson correlation of sensors and nonsensors. The red line corresponds to the values for the statistics between
sensor metabolites, while the green line corresponds to values between nonsensor metabolites. A dot on the line indicates a
significant difference at level a = 0.05 between sensor and nonsensors. Bars represent the range6 1 SD from the mean value, for
five simulations.

Figure 8. Statistical comparison of the sensors and nonsensors in the kinetic night-time model of plant central carbon metab-
olism. The x axis represents the investigated time interval, from 1 to 9. The y axis represents values for the three statistics, re-
spectively: A, SD; B, CV; and C, Pearson correlation of sensors and nonsensors. The red line corresponds to the values for
the statistics between sensor metabolites, while the green line corresponds to values between nonsensormetabolites. A dot on the
line indicates a significant difference at level a = 0.05 between sensor and nonsensors. Bars represent the range6 1 SD from the
mean value, for five simulations.

Plant Physiol. Vol. 172, 2016 1331

Observability of Plant Metabolic Networks

 www.plantphysiol.org on September 30, 2016 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2016 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plantphysiol.org


Liu et al. (2013) showed similar results: In the human
RECON1 model, yeast, and Escherichia coli models,
57.04%, 76.92%, and 59.81% of the sensors were dead-
end metabolites. This is in line with a claim of Liu et al.
(2013) that all pure products, i.e. metabolites that do not
act as reactants in a single reaction, can serve as sensors.
A potential explanation of these high numbers of blocked
reactions is that most models contain only an incomplete
set of catabolic reactions. Therefore, more metabolites
maybepredicted as sensors by this approach, asdegrading
reactions might be missing.

While our empirical tests were built around time-
courses within single genotypes, we demonstrated that
similar relationships among our predicted sensors
could be found in genetic populations of Arabidopsis.
Analogs to these results have also been observed in
correlation-based network analysis of metabolic pro-
files from a tomato (Solanum lycopersicum) introgression
line-mapping population, where five amino acids (i.e.
Gly, Ile, Ser, Thr, and Val) were significantly more corre-
lated (average value of 0.84) in comparison to the average
correlation between any other measured metabolites
(Toubiana et al., 2012, 2015). Thus, our predicted sensors
may be useful to understand the correlations arising in
genetically variable populations.

CONCLUSION

In this work, we aimed to identify if there are features
of the data profiles of sensor metabolites, identified
with well-established network-based approaches, that
separate them from the rest of themetabolites in a given
large-scale plant metabolic network. Methods from
observability theory allow computationally feasible
identification of sensor metabolites; however, the
existing studies have not investigated the extent to
which the data profiles of sensors may differ from those
of nonsensor metabolites. By employing experimen-
tally and in silico generated time-series metabolomics
data together with large- and medium-scale structural
and kinetic models of Arabidopsis central metabolism
(Dall’Osto et al., 2012), we demonstrated that sensor
metabolites are, on average, more correlated than
nonsensor metabolites across employed models and
data sets. Our analyses of robustness further confirmed
that these results were due to the position of the sensor
metabolites in the network, and complement the im-
plications from other approaches. These correlations
tend to persist irrespective of the conditions as long as
the underlying functionality of the network, a result of
the set of the operational biochemical reactions, re-
mains largely unchanged, as illustrated on data from
natural variation. As a result, our study suggests that
relatively few key metabolites could be measured to
potentially characterize the entire metabolic network,
opening the possibility for applications of targeted
metabolite analyses guided by predictions from large-
scale models as a means of providing a rapid yet
accurate synopsis of the metabolic status of a plant
system.

MATERIALS AND METHODS
Our analysis is based on the graphical approach of Liu et al. (2013). The

sensor metabolites can be determined by building the inference graph obtained
from a given network of biochemical reactions under the assumption that their
rates are described bymass action kinetics. The nodes in the inference graph are
given by the metabolites. For instance, the network in Figure 1A contains seven
metabolites, denoted by A–G, transformed via nine reactions with rate con-
stants k12k9. A node (i.e. metabolite) u is connected by directed edge to node v if
metabolite v occurs in the differential equation for metabolite u. To illustrate the
building of the inference graph, we again turn to the network of biochemical
reactions in Figure 1: Because A appears on the right-hand side of the differential
equation for A (i.e. dA/dt on Fig. 1B), there is a directed edge fromA to itself (Fig.
1C), Similarly, there is a directed edge from node A to node B because A appears
in the differential equation for metabolite B, The inference graph can be
decomposed into its SCCs. An SCC is the maximal subgraph for which there are
directed paths from every node to all others. For instance, nodes B andD form an
SCC because there is an edge from B to D aswell as fromD to B. However, E and
C are not in an SCC because there is no directed path from C to E, although there
is a path from E to C (Fig. 1C). If an SCC does not have an incoming edge, it is
referred to as a “root” SCC. In our toy example, B and D as well as E and F form
two root SCCs, while A, C, and G form three nonroot SCCs.

Liu et al. (2013) showed that the sensors are located in this set of nodes in the
root SCCs. The set of nodes obtaining by selecting at least one node from each
root SCC then allows complete observability of the system. A similar frame-
work has also been applied and discussed in Rios et al. (2013). The approach can
be readily applied to any genome-scale metabolic network because the infer-
ence graph can be built only from the stoichiometric matrix, as input. To de-
termine the edges that start at a node u, it suffices to identify the substrate
metabolites of the reactions in which the metabolite u participates as a substrate
or product. The substrates of a reaction are readily given by the negative entries
of the corresponding reaction vector in the stoichiometric matrix. For instance,
node B participates in reactions with B, D, and A as a substrate, and, thus, there
are directed edges to these nodes from B.We used the R package Igraph (Csárdi
and Nepusz, 2006) to build the inference graph and to find its (root) SCCs.

A root SCC may not consists of a single metabolite, as is the case on the toy
network in Figure 1C. In this case, for the root SCC consisting of B and D, any of
the two can serve as a sensor. We applied the graphical approach to two
genome-scale metabolic networks of Arabidopsis (Arabidopsis thaliana), the
bottom-up assembled Arabidopsis core model, AraCORE (Arnold and
Nikoloski, 2014), and the Arabidopsis model from PlantSEED (Seaver et al.,
2014), referred to as AraSEED. Both networks cover pathways of plant primary
metabolism. We analyzed these models, whose characteristics appear in
Supplemental Table S7, with and without consideration of biomass and sink
reactions. The sensor metabolites were selected from the root SCCs as those that
could be mapped to the available metabolic profiles. In our study, this resulted
in a single sensor node identified per root SCC (see Supplemental Table S1 and
3 for lists of identified sensors in the two models and Supplemental Tables S5
and S6 for lists of mapped metabolites).

To relate the predicted sensors tometabolic measurements, we obtained
metabolic profile data from Caldana et al. (2011) generated by gas
chromatography-mass spectroscopy (GC-MS). This metabolic data set consists of
91 metabolites measured under the following conditions: 21°C at 75 mE m22 s21;
150mEm22 s21 light intensity anddarkness; 4°C at 85mEm22 s21 light intensity and
darkness; and 32°C at 150 mE m22 s21 and darkness. Therefore, the analyzed data
set consisted of metabolic time series covering 20 time points and gathered under
seven conditions. In addition, to augment the set of tested conditions, we used
metabolic data profiles from a study of natural variation in central carbon me-
tabolism of Arabidopsis (Sulpice et al., 2013). In this study, the data profiles of
45 metabolites were measured in 97 Arabidopsis lines in three conditions, namely
8 h of light with high N supply, 12 h of light with high N supply, and 12 h of light
with low N supply. Metabolite data were acquired using GC-MS technology. A
detailed description of the plant growth conditions and experimental design can be
found in the “Materials and Methods” of Sulpice et al. (2013). The two studies
whose data sets we used here performed their GC-MS experiments as outlined in
Lisec et al. (2006).

These data sets allow first insights, to our knowledge, into how the sensors
relate to the rest of the measured metabolome under a variety of genotypes,
environmental conditions, and over time. For the statistical analysis, we tested
for differences in the means of correlation values between the two groups of
sensor andnonsensormetabolites by two-sided t test at a significance level ofa=
0.05. A graphical representation of the complete workflow applied in this study
is visualized in Supplemental Figure S1.
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Genome-scale metabolic networks are open systems, in contrast to the closed
systems(i.e.without in-andout-fluxreactions)consideredbyLiuetal. (2013)andRios
et al. (2013). Because an open system has additional self-edges at the output me-
tabolites in the inference graph, these have no effect on the identification of root SCCs
(see Supplemental Material and Liu et al. (2013)). Figure 1 illustrates an open system
in which the root SCCs remain unaffected if the import and export reactions are
removed. To identify dead-endmetabolites given a large-scale network, we used the
COBRA toolbox function removeDeadEnds in MATLAB (Schellenberger et al., 2011).

Supplemental Materials

The following supplemental materials are available.

Supplemental Figure S1. Schematic overview of the procedure.

Supplemental Figure S2. Comparison of Pearson correlation values of sen-
sors (red), nonsensors (green), and between sensors and nonsensors (blue).

Supplemental Figure S3. Statistical comparison after randomizing the sen-
sors and nonsensors.

Supplemental Figure S4. Comparison of AraSEED sensors depending on
nonroot SCC connection.

Supplemental Table S1. Sensor metabolites in the AraCORE model.

Supplemental Table S2. Sensor metabolites in the AraCORE model with
biomass function.

Supplemental Table S3. Sensor metabolites in the AraSEED model.

Supplemental Table S4. Sensor metabolites in the kinetic model.

Supplemental Table S5. AraCORE—mapped sensors and nonsensors.

Supplemental Table S6. AraSEED—mapped sensors and nonsensors.

Supplemental Table S7. Overview of the models used.

Supplemental Material. Kinetic model.

Supplemental Material. Data for the kinetic model.
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