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Abstract of the Dissertation

Bayesian Modeling of Interactions in

Structured Heterogeneous Data

(Towards Applications in Integrative Biology)

by

Masanao Yajima

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2013

Professor Jan de Leeuw, Co-chair

Professor Donatello Telesca, Co-chair

We propose Bayesian models tailored to infer complex patterns of dependence

among heterogeneous sets of data. We consider highly structured information

and illustrate modeling of flexible multivariate distributions using the formalism

of graphical models. Motivating applications guiding our methodological devel-

opments come from the field of integrative biology. In particular, we tackle two

fundamental problems: the detection of causal SNPs in pharmacogenetics stud-

ies and the assessment of differential patterns of interactions characterizing the

activity of biomolecular pathways. We discuss inference based on Markov Chain

Monte Carlo simulation and apply our methods to several synthetic data sets, as

well as case study data from cancer genomics. In these settings, we show how

the flexibility of the Bayesian framework is especially attractive, since it allows

for the integration of scientific information by means of prior distributions, while
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also soundly characterizing the problem of multiple comparisons as a decision

problem.
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CHAPTER 1

INTRODUCTION

The ever-growing ability to measure and quantify key quantities related to the

manifestation of complex biological phenomena allows for the rigorous investiga-

tion of finely detailed scientific hypotheses. However, the dynamic development of

data generation technologies has not been paralleled by a corresponding develop-

ment of sound statistical methodology. In this dissertation, we propose statistical

models to infer interactions among structured heterogeneous data sources. Mo-

tivating applications come from the field of integrative biology, where the imme-

diate scientific challenge is in combining information across many data sources.

This includes several specific sub-disciplines like: genomics, proteomics, tran-

scriptomics, metabonomics, etc.

To illustrate the intricacy characterizing some of these studies, we consider a

chemotherapy dose determination study. Figure 1.1 shows the systematic mech-

anism of absorption, distribution, metabolization, and elimination (ADME) of

a chemotherapeutic agent irinotecan; each box represents a different state of the

metabolized substance, some of which are measured as in figure 1.2. The data

is multivariate, temporally correlated, and the joint sampling distribution is rea-

sonably expected to obey a structured dependence pattern. The fundamental

substantive question is to assess how the ADME process of a drug is affected by

genetics (Rosner et al., 2008). The time course metabolite study is therefore com-

pleted with the measurement of single nucleotide polymorphisms (SNPs), whose

1



Figure 1.1: Pharmacokinetic model with enterohepatic recirculation (EHRT)
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joint distribution of genetic mutation is to be related to the drug pharmacokinet-

ics.

A second example relates to the inference of association structures that are

expectedly heterogeneous across different subclasses of subjects. This type of

problem arises in studies aimed to assess differences in the molecular association

between subgroups in targeted disease populations, such as diabetes (Valcárcel

et al., 2011) or lung cancer (Danaher et al., 2011). We analyze a specific data set
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Figure 1.2: Observed concentration values for irinotecan, SN-38, SN-38G (glu-
curonide), and APC. Each solid (blue) line represents observed concentration for
a patient plotted over time.
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involving protein expression in Acute Myeloid Leukemia (AML) patients. Figure

1.3 provides a sample correlation of protein expression for refractory vs. relapsed

patients. The two correlation matrices are mostly similar, however, a closer

examination will reveal local differences in parts of the empirical correlation.

The scientific concern in this case is that of identifying the differential association

structure that distinguishes the end result of therapy for subgroups of patients.
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Figure 1.3: Sample correlations for two sub-groups of patients with Acute Myeloid
Leukemia.

Although we focus on issues involving molecular biology, the demand for

models that can identify interaction structures in complex heterogeneous data

is flourishing across scientific disciplines. This includes fields as diverse as mar-

keting (Steenburgh et al., 2003; Albuquerque and Bronnenberg, 2012; Srinivasan

et al., 2010), atmospheric science (Saatchi et al., 2011), crime modeling (Mohler

and Short, 2012; Hegemann et al., 2011), computer science (Thiesson et al., 1997;

Guo et al., 2011), etc. Biomedical research, nevertheless, poses some of the most

interesting, yet challenging questions. Often, while the number of samples is lim-
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ited, the number of different biological and phenotypical dimensions that can be

quantified each patient is increasing rapidly. At the same time, the accumulation

of scientific studies has given rise to numerous collaborative databases that are

publicly available to the research community. This balance of data scarcity and

large amount of information available a priori makes the employment of Bayesian

methods attractive since they allow us to fold more information into our infer-

ences and decisions (Gelman, 2014).

We propose Bayesian hierarchical modeling frameworks to address some of

the issues concerning structural inference that combine multiple sources of infor-

mation. We make use of the graphical models to assess the conditional indepen-

dence structure embedded in the data under the assumption of sparsity At the

same time, we address the multiple comparisons issues inherent in these analyses

through decision theoretic arguments.

The thesis will be structured as follows. In the following sections we cover

some of the basic building blocks that will be used in the remainder of the the-

sis. In chapter 2 we address the problem of structural association in Bayesian

pharmacogenetics. In chapter 3 we further consider the issue of structural com-

parisons by modeling the differential association structure of protein expression

networks. Finally we end with conclusions and future directions in chapter 4.

1.1 Marginal Independence and Conditional Independence

1.1.1 Marginal independence

Independence between two distinct stochastic entities in statistics refers to a

relationship where knowledge of one event does not inform us of the probability of

another event. If we use P (·)to denote a probability measure, then independence
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of two random quantities Z and Y implies

P (Y ∈ Y | Z ∈ Z) = P (Y ∈ Y).

This also translates to

P (Z ∈ Z ∪ Y ∈ Y) = P (Z ∈ Z)P (Y ∈ Y).

For any continuous random variable Y and Z, with PDF pY (y) and pZ(z) respec-

tively, then Y and Z are independent if and only if

pY Z(y, z) = pY (y)pZ(z), (1.1)

and we denote this relationship as Y ⊥⊥ Z.

1.1.2 Conditional independence

The conditional independence relationship of random variables Y , Z, and X is;

pY Z(y, z | x) = pY (y | x)pZ(z | x). (1.2)

We say Y and Z are independent given X and we denote this relationship as

Y ⊥⊥ Z | X.

Conditional independence has following properties (Lauritzen, 1996) for ran-

dom variables W,X, Y, Z

(C1) If X ⊥⊥ Y | Z then Y ⊥⊥ X | Z;

(C2) If X ⊥⊥ Y | Z and U = h(Y ), then X ⊥⊥ U | Z;
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(C3) If X ⊥⊥ Y | Z and U = h(Y ), then X ⊥⊥ Y | (Z,U);

(C4) If X ⊥⊥ Y | Z and X ⊥⊥ W | (Y, Z), then X ⊥⊥ (Y,W ) | Z;

(C5) If X ⊥⊥ Y | Z and X ⊥⊥ Z | Y then X ⊥⊥ (Y, Z) given that joint density

p(w, x, y, z) w.r.t product measure is positive and continuous.

1.2 Representing Dependence Through Graphical Models

In this section we briefly review essential graphical modeling notation and con-

cepts. For a comprehensive review we refer to Lauritzen (1996).

A graphical model is a mathematical model used to express conditional in-

dependence of a set of random variables. A graph is characterized by an al-

gebraic structure G = {V , E}, composed of a set of vertices V , and a set of

edges E ⊆ {(vi, vj), vi ∈ V}. Vertices vi and vj are adjacent or are neighbors if

(vi, vj) ∈ E and this relationship is denoted as vi ∼ vj. An adjacency matrix Ad

is a matrix where element in ith row jth column is 1 if vi ∼ vj and 0 otherwise.

Graphs are either undirected (vi, vj) = (vj, vi), directed (vi, vj) 6= (vj, vi), or a

combination of the two. For clarity, we also denote a directed edge from vi to vj

as vi → vj.

A path is defined as a set of vertices {v1, · · · , vk} such that vi ∼ vi+1 for each

i = 1, · · · , k−1. A directed path is a same set of vertices but it requires vi → vi+1

for each i = 1, · · · , k−1. If v1 = vk for a directed path, then it is called a directed

cycle.

A graph is complete if all vertices are joined by an arrow or a line so that

(vi, vj) ∈ E ,∀vi, vj ∈ V and otherwise it is called incomplete . A complete subset

induces subgraph that is complete. A complete subset that is maximal is called
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a clique . A set S is called a separator of (A,B) if every path from A to B goes

through S.

For a directed graph, if vi → vj then vi is called a parent and vj is called a

child . The set of parents of vi is denoted as pa(vi) and the set of children as

ch(vi). If there exists a directed path from vi to vk then vi is an ancestor of vk

and vk is a descendant of vi. The set of ancestors of vk is denoted as an(vk) and

the set of descendants of vi will be denoted as de(vi). All the vertices that are not

descendants of vi are called non-descendant and will be denoted as nd(vi). An

ancestral matrix A is a matrix where element in ith row jth column is 1 if vi → vj

and 0 otherwise. A boundary of a vertex denoted as bd(vi) is a set of vertices

in V \ vi that are either parent or neighbor of vi. Using ne(A) to denote the

neighboring set of vi, bd(vi) = pa(vi) ∪ ne(vi). We will also define the closure of

vi to be denoted as cl(vi) = vi∪bd(vi). We should also note that for subset A ⊆ V

we expand the notation of pa(A) to be short hand for pa(A) = ∪a∈Apa(a) \ A

and similarity for relational sets such as ch(A) and bd(A) etc.

A decomposition of graph G(E ,V) is defined by partitioning G into non-

overlapping sets A and B with separator S such that V = A∪B and S = A∩B is

complete. The decomposition is proper if neither A nor B is empty. A sequence

of subgraphs that cannot be decomposed further are called the prime compo-

nents of a graph. When every prime component is complete the graph is called

a decomposable graph.

For a directed graph G = {V , E}, an undirected graph GM that satisfy the

following conditions will be called a moral graph G.

1. G and GM share all the vertices.

2. All the vertices that have an edge in G will have edges in GM .
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3. There is an edge between any pair of vertices that share a common child.

If ch(vi) ∩ ch(vk) 6= ∅ ⇒ (vi, vk) ∈ E

1.2.1 Markov properties

The conditional independence statements encoded in a graphical model are often

defined as Markov properties. Depending on the scope of the implied conditional

independence, Markov properties are subdivided into global, local, and pairwise

Markov properties in the order of implication. For more details on the Markov

properties, we refer the readers to Lauritzen (1996).

We will consider a situation where we have a collection of random variables

{Yv}v∈V taking values in probability space {Yv}v∈V . We use the set subscript

V ⊆ V to denote a subspace of Y so that YV = ×v∈VYv and similarly for YV .

Also following the convention we use A ⊥⊥ B | C in place of YA ⊥⊥ YB | YC for

notational clarity.

1.2.2 Undirected Graphs

For an undirected graph G = (E ,V) and a set of random variables {Yv}v∈V , a

probability measure P on Y is said to obey

(P) the pairwise Markov property if

vi ⊥⊥ vj | V \ {vi, vj} for vi, vj ∈ V and vi � vj

(L) the local Markov property if

v ⊥⊥ V \ cl(v) | bd(v), for v ∈ V
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(G) the global Markov property if, for disjoint subsets of V , (A,B, S), S sepa-

rates A and B then

A ⊥⊥ B | S

For any undirected graph, it is shown that (G)⇒(L)⇒(P).

1.2.3 Directed Acyclic Graphs

A Directed Acyclic Graph (DAGs), is a directed graph without any directed cycle.

Given a DAG, the implied Markov properties characterizing a set of random

variables {Yv}v∈V follows similar rules as the undirected case

(DP) the directed pairwise Markov property if

v ⊥⊥ u | nd(v) \ {u} for v, u ∈ V and v � u, u ∈ nd(v)

(DL) the directed local Markov property if

v ⊥⊥ nd(v) | pa(v) for v ∈ V

(DG) the directed global Markov property if, for disjoint subsets of V , (A,B, S),

S separates A and B in (Gan(A∪B∪S))
m, the moral graph of the smallest an-

cestral set containing A ∪B ∪ S then.

A ⊥⊥ B | S

The order of implication follows the similar ruled as the undirected graph;

(DG)⇒ (DL)⇒ (DP).
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The (DG) has an equivalent definition under the name of d-separation criterion

Pearl (1985, 2000).

Definition Let A, B, and S be disjoint subsets of a directed, acyclic graph G.

Then S d-separates A from B if and only if S separates A from B in GMan(A∪B∪S).

Lauritzen (1996)

An equivalent definition using the idea of collider, where a collider C is defined

as a set of vertices where two directed edges meet, is defined as

Definition If G is a directed graph in which A, B and S are disjoint sets of

vertices, then A and B are d-connected by S in G if and only if there exists an

undirected path U between some vertex in A and some vertex in B such that for

every collider C on U , either C or a descendent of C is in S, and no non-collider

on U is in S. A and B are d-separated by S in G if and only if they are not

d-connected by S in G.

DAGs are appealing from the modeling perspective since the joint distribution

of the vertices is simply expressed as the product of conditional densities of each

of the vertices conditioned on their parents. This makes for great flexibility of

modeling (Edwards, 2000). The acyclicity restriction could represent a drawback

in some applications. However, when dealing with a network where association

is usually sparse, this restriction is often not critical.

1.2.4 Chain Graphs

Chain graphs also have a Markov properties similar to that of undirected and

directed graphs defined as

(PB) the pairwise block-recursive Markov property if for a concurrent set
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C(t) = V (1) ∪ · · · ∪ V (t) where V (t) is a partition of V such that each

of the sets V (t) has lines between vertices, and arrows point from vertices

in sets with a lower number to those with a higher number, then

v ⊥⊥ u | C(t∗) \ {v, u}

where t∗ is the smallest t such that v, u ∈ C(t).

(PC) the pairwise chain Markov property if

v ⊥⊥ u | nd(v) \ {vu} for v, u ∈ V and v � u, u ∈ nd(v)

(LC) the local chain Markov property if

v ⊥⊥ nd(v) | pa(v) for v ∈ V

(GC) the global chain Markov property if, for disjoint subsets of V , (A,B, S),

S separates A and B in (Gan(A∪B∪S))
m then

A ⊥⊥ B | S

The direction of implication is the same as the other graphs except that (PB) is

also implied by (PC). Therefore the implication relationship is ordered as:

(GC)⇒ (LC)⇒ (PC)⇒ (PB).
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1.3 Gaussian Graphical Models

Gaussian Graphical Models (GGMs), also known as Covariance Selection Models

(Dempster, 1972) or Gaussian concentration graph models (Cox and Wermuth,

1996), are a class of multivariate Gaussian models that obey the pairwise Markov

property defined by a graph G(E ,V). For an n–sample of p–variate observations Y

and a given setA, we use the set subscriptA to denote YA = {Yj}j∈A. When Y has

a full covariance matrix Σ = [σi,j], partition of covariance matrix corresponding

to a subset YA will be denoted by ΣAA = [σi,j]i∈A,j∈A.

Let M(G) denote the symmetric matrices A with AAB = 0 if and only if

(A,B) /∈ E . We use M+(G) to denote the positive definite subset of M(G). Then

the GGM is described as

Y = {Yv, v ∈ V} | G(E ,V) ∼ NG(µ,Σ), Σ−1 = Ω ∈M+(G)

where Σ is a positive semidefinite covariance matrix and Ω is the inverse covari-

ance matrix or a precision matrix Lauritzen (1996).

In other words, when Y follows a GGM with respect to G(E ,V), if we define

the concentration matrix of the conditional distribution of (YA, YB) given YV\{A,B}

to be

Ω{A,B} =

 ΩAA ΩAB

ΩBA ΩBB

 ,

then ΩAB = 0⇔ (A,B) /∈ E .

GGMs are popular from both an estimation and inferential perspective. They

allow for efficient estimation of the covariance matrix by exploiting the zeros in

the off diagonal of the inverse covariance matrix. At the same time the esti-
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mated graphical model is a useful tool in making inference about the dependence

structure amongst the variables.

Decomposable GGMs Conditionally on a decomposable graph G, the likeli-

hood of the GGM model factorizes as

p(Y |Σ,G) =

∏
P∈P p(YP |ΣP )∏
S∈S p(YS|ΣS)

(1.3)

where P and S denote the set of prime components and separators. The density

p(YP |ΣP ) corresponds to clique-marginal models s.t.

p(YP |ΣP ) = (2π)−
n|P |

2 det(ΣP )−
n
2 etr

[
−1

2
{RP (ΣP )−1}

]

where RP = Y T
P YP and similarly for separators p(yS|ΣS).

For a decomposable graph, each of P ∈ P is complete thus it is a clique.

Since every separator S ∈ S is a subset of some clique P ∈ P, based on the

conditional independence relation defined by G, collection of the clique-marginal

covariances {∪P∈PΣP} fully determines Σ.

Non-decomposable GGMs Non-decomposable GGMs factors out in similar

fashion as (1.3), yet the prime components are not necessarily complete and

additional constraints need to be considered.

1.3.1 Bayesian conjugate analysis

Bayesian Analyses of the GGM are for the large part based on the exploitation of

the conjugacy principle. Bjerg and Nielsen (1993) showed that the D-Y conjugate

prior distribution for decomposable GGM is the hyper inverse wishart (HIW)
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prior (Dawid and Lauritzen, 1993). When Σ follows a HIW distribution with

parameters b and Φ,

p(Σ | b,Φ,G) =d

∏
P∈P Inv-WishartP (ΣP |b,ΦP )∏
S∈S Inv-WishartS (ΣS|b,ΦS)

where Inv-Wishart(Σ|b,Φ) is an inverse Wishart Density. Ergo, the HIW dis-

tribution is just a way to define the standard Inverse Wishart distribution prior

on each of the decomposed components in a clever manner. By the definition of

conjugacy, the resulting posterior distribution is again HIW (b+n,Φ+H(Y TY )),

where H(Y TY ) is the hyper-Markov sum-of-squares matrix corresponding to the

cliques and separators of G.

For more general classes of graphs including those that are not decomposable

Roverato (2002) showed the existence of D-Y conjugate G-Wishart prior (Atay-

Kayis and Massam, 2005) denoted as

p(Ω | G) = CG(b,Φ)−1|Ω|(b−2)/2etr

{
1

2
ΦΩ

}
1{Ω∈M+(G)}

where b > 2 is the degree of freedom parameter, D is a symmetric positive definite

matrix. The term CG(b,D) is a normalizing constant

CG(b,Φ) =

∫
M+(G)

|Ω|(b−2)/2etr

{
1

2
ΦΩ

}
1{Ω∈M+(G)}dΩ

M+(G) is the cone of symmetric positive definite matrices defined by the graph G

such that Ωij = 0, {i, j; (i, j) /∈ E}. This formulation incorporates the decompos-

able case where it reduces to the HIW distribution and the complete case where

it is simply an inverse Wishart distribution (Atay-Kayis and Massam, 2005).
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1.3.2 Graphical Lasso

Alternatively, rather than trying to estimate the entire posterior distribution of

zeros in the inverse covariance matrix, one can reduce the problem to point esti-

mation using a regularized maximum likelihood estimator (MLE). The sparsity

constraint can be introduced by use of the penalized likelihood (Meinshausen and

Büllmann, 2006; Peng et al., 2009) or the penalized log likelihood (Yuan and Lin,

2007; Friedman et al., 2008; Rothman et al., 2008) that takes a form

max
Θ
{log det Θ− trace(SΘ)− λ‖Θ‖}, (1.4)

where S is the empirical covariance matrix and Θ is the estimator for the inverse

covariance matrix. The function (1.4) is maximized wrt Θ. When ‖Θ‖ is L1 norm,

the penalty is called the lasso (Tibshirani, 1996) and λ is the tuning parameter

that controls the level of shrinkage that is usually chosen based on cross validation.

Because the problem is reduced to a single optimization, it scales to large size

problems, making them popular in the data heavy applications.

1.3.3 Computation

Computation of GGMs is an active area of research that has many challenges. A

comprehensive survey of the techniques can be found in (Wang and Li, 2012).

1.3.4 Other priors for transformations of a covariance matrix

Beyond the conjugate Inverse Wishart prior and Jeffery’s prior p(Σ) ∝ 1/ |Σ|(J+1)/2

there are herds of priors proposed for decompositions of covariance matrices in

the literature. The spectral decomposition method used to be popular for the

dimension reduction and computational ease it provided. Examples of spectral
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decomposition priors are the following.

• The reference prior (Yang and Berger, 1994),

p(Σ) ∝ 1/

{
|Σ|
∏
i<j

(di − dj)

}

where di is eigenvalue of covariance matrix Σ

• The log matrix prior (Leonard and Hsu, 1992; Chiu et al., 1996) logarithmic

transformation of the eigenvalue/eigenvector decomposition of Σ and allows

for hierarchical shrinkage to be done with the eigenvalues.

• (Daniels and Kass, 1999) proposes the following couple of separate schemes

for hierarchical prior.

– hierarchical extension of the inverse-Wishart prior

– normal prior for Fisher’s z transform of the correlation coefficients

– eigenvalue/eigenvector parameterization,orthogonal eigenvector matrix

parameterised in terms of the Givens angles

despite their convenience, parametrization based on spectral decomposition were

usually criticized for the lack of interpretability and difficulty in the incorporation

of the prior information.

Cholesky decomposition is another popular type of decomposition that has a

regression interpretation. Examples are as follows.

• Rue-Held-2005-GaussianCholesky decomposition of precision (Smith and

Kohn, 2002)

Σ−1 = HDHT
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discrete mixture prior on elements of lower triangular matrix H for sparsity.

• Cholesky decomposition of precision (Cai and Dunson, 2006)

Σ−1 = diag(∆)ΓΓTdiag(∆)T

discrete mixture prior on elements of diagonal matrix ∆ as well as lower

triangular matrix Γ

Parameterizations based on a correlation matrix or partial correlation matrix

have become popular in recent years due to the interpretability of the param-

eters and ease of incorporating the prior information. The examples of such

parametrization are following.

• Defining separate priors on correlation and standard deviation (Barnard

et al., 2000),

Σ = diag(S) R diag(S)

Independent priors on S and for the correlation matrix R;

– marginally uniform prior: independent beta distribution on each off

diagonal Rij, i 6= j

– jointly uniform prior: R uniformly distributed over all possible corre-

lation matrices

• Defining priors for clustered correlation (Liechty et al., 2004). The proposed

parametrization is similar to (Barnard et al., 2000) such that,

Σ = diag(S) R diag(S)
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where R is correlation matrix and S is the diagonal standard deviation.

They define mixture prior on R so that the correlation can be grouped into

common correlation values or by variables.

• Defining priors on the partial correlation matrix (Wong et al., 2003)

Ω = Σ−1 = diag(T ) C diag(T )

where T is a diagonal precision matrix and C is the negative of partial

correlation matrix. They define a gamma distribution for the diagonal

entry of Ω by defining Ti| ∝ T 2α−1
i exp(−βT 2

i ). The off diagonals of Ω is

defined as a mixture distribution on C. The main difficulty in this method

is computational, since there is no direct way to simulate from the desired

distribution. The problem is evaded through normal approximations.

1.4 Gaussian DAG Models

1.4.1 Likelihood

The Gaussian DAG (GDAG) models proposed by Fronk and Giudici (2004) are

defined as the product of conditional regression models for each variable given

their parents. Let pa(i) be parent index for node i for DAG G, the likelihood for

the Yi given all it’s parents Ypa(i) is defined as

Yi|Ypa(i), βi|pa(i), σ
2
i|pa(i),G ∼ N

βi0 +
∑

yl∈pa(i)

βilyl, σ
2
i|pa(i)


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for i = 1, . . . , n, βi|pa(i) = βi,j; j ∈ pa(i) and σ2
i|pa(i) = σ2

ii − Σi,pa(i)Σ
−1
pa(i)Σpa(i),i.

Then the joint likelihood is defined as the product over all the p variables

p(Y |β, σ2,G) =

p∏
i=1

p(yi, |ypa(i), βi|pa(i), σ
2
i|pa(i),G).

1.4.2 Conjugate inference

As with regular regression models, conjugate analysis is attractive for its tractabil-

ity. The conjugate prior distribution for (βi|pa(i), σ
2
i|pa(i)) is the Normal Inverse

Gamma prior defined as

βi|pa(i)|σ2
i|pa(i),G ∼ N|pa(i)|+1

(
bi|pa(i),

1

α
σ2
i|pa(i)I

)
σ2
i|pa(i)|G ∼ Inv-Ga(δi|pa(i), λi|pa(i))

The joint distribution is then

p(Y, β, σ2, d) = p(Y |β, σ2, d)p(β|σ2, d)p(σ2|d)p(d)

=

p∏
i=1

p(yi, |ypa(i), βi|pa(i), σ
2
i|pa(i), d)

p∏
i=1

p(βi|pa(i)|σ2
i|pa(i), d)

p∏
i=1

p(σ2
i|pa(i)|d)p(d)

1.5 Chain Graph Models

Large classes of models fit under the general framework of chain graphs, including:

factor analysis models, latent class model, path regression model, linear structural

equation model, regression model, etc. A overview and classification of these

models can be found in Wermuth and Lauritzen (1990). The most popular form of
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the model is the multivariate regression model, where the partitioning between the

dependent variable and covariates, and consequently directionality between them,

is a product of model specification and not a conclusion to be drawn (Whittaker,

1990). Edwards (2000) proposes CG-regression model where assumption is made

on the covariates to have fully connected graph. More detailed treatment of chain

graph regression models can be found in Whittaker (1990).

1.6 Prior Distribution on Graphs

1.6.1 Non-informative prior on graphs

Prior distributions on the space of graphs are necessary in order to conduct

posterior inference on the graph structures. Uniform distribution over set of

all possible graphs is an intuitive and popular choice (Giudici and Green, 1999;

Fronk and Giudici, 2004).

p(G) ∝ 1

|D|
,

where |D| represents number of possible graphs. Although this choice seems

desirable for it’s objectivity, it is shown that these priors tend to favor ”medium”

sized graphs and suggested to be inappropriate for large graphs (Jones et al.,

2005) .

Another popular choice in the literature is a prior on graph that models edge

inclusion as exchangeable Bernoulli trials (Dobra et al., 2004; Jones et al., 2005).

Let |Ek| be the number of edges in graph Gk, then

p(Gk | ψk) = ψ
|Ek|
k (1− ψk)M−|Ek|. (1.5)

When the inclusion probabilities ψk is modeled hierarchically using a beta
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distribution Beta(v1, v2), this class of stochastic schemes is know to provide au-

tomatic multiplicity correction in the posterior p(Gk | Y ) (Scott and Berger, 2010;

Carvalho and Scott, 2009).

The marginal prior distribution for Gk is available in closed form as

p(Gk) ∝ B(v1 + |Ek|, v2 +M − |Ek|)

=
Γ((v1 + |Ek|)Γ(v2 +M − |Ek|)

Γ(v1 + v2 +M)
,

which simplifies to p(Gk) = 1
(M+1)

(
M
|Ek|

)
, if ψk ∼ U(0, 1).

These priors are often categorized as non-informative or objective and are

popular mostly for their convenience, since not much consideration needs to be

given in setting up the model. When prior information on interaction structures is

available, informative priors have been suggested by Mukherjee and Speed (2008);

Telesca et al. (2012b).

1.6.2 Informative prior on graphs

A general form of informative log linear prior distribution over graph is proposed

by Mukherjee and Speed (2008) as,

p(G|Gp, ψ) ∝ exp

{
λ
∑
t

wtft(G)

}
. (1.6)

The concordance function ft(G) measures the degree of concordance with the

prior knowledge for feature t. Hyper parameters wt define the weighting amongst

the features (w1 = 1) and λ controls the strength of belief. They provide several

types of concordance functions based on the
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• concordance of individual edge

ft(G) = |E(G) ∩ E+| − |E(G) ∩ E−|

Where E+ denotes a set of edges expected to be present (”positive edge-set”)

and E− denotes a set of edges expected to be absent (”negative edge-set”).

• edges between classes of vertices.

Similar functional form as the individual edge however the negative edge

set is defined as

E− = {e = (vlvm) : C(vl) = Ci, C(vm) = Cj}

C(v) denotes the class to which vertex v ∈ V belongs.

They also give examples of a formulation to impose network sparsity, capture the

concordance of higher-level network features, and degree distributions.

Moon et al. (2013) suggests a similar model

p(G|Gp, ψ) = exp

{
−
∑
t

wtft(G)

}
/Z(w). (1.7)

They defin ft to be a distance measure between the prior information matrix

Bt and the adjacency matrix A for each of multiple prior information source t

and puts a independent exponential prior on wt. They provide a practical recipe

to elicit B from scientific databases for transcription factor and DNA binding,

protein-protein interaction and gene ontology annotations.
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Telesca et al. (2012b) defines the prior on the graph structure to be exponen-

tially decaying function centered around the prior information

p(G) ∝ ψd(G,G?), (ψ ∈ [0, 1])

where distance function is defined as d(G,G?) = |Ec ∩ E?| + δ|E ∩ E?c|, δ ≥ 1.

In the framework of Mukherjee and Speed (2008), this is a two feature model

for a missing edge and an extra edge where the extra edge is penalized more by

weight δ and λ = log(ψ). A hierarchical prior on ψ is defined by Scott and Berger

(2006) to control for the multiplicity. By defining the prior distribution of ψ to be

a beta distribution with shape parameters s1 and s2 that has mean at s1/(s1 +s2)

and variance of (s1s2)/[(s1 + s2)2(s1 + s2 + 1)], ψ can be integrated out to get a

marginal prior distribution for G.

p(G) ∝ beta(s1 + d(Gp,G), s2)

beta(s1, s2)
=

Γ(s1 + d(Gp,G))Γ(s1 + s2)

Γ(s1)Γ(s1 + s2 + d(Gp,G))

where beta(., .) stands for the Beta function. For a special case when s1 = 1 and

s2 = 1 this becomes

p(G) ∝ 1

(d(Gp,G) + 1)

1.7 Multiple Comparisons

In statistics, the problem of multiplicity has roots in both modeling and deci-

sion/inference settings. In frequentist literature, the burden is often addressed

inferentially considering controlling family wise errors (FWE) or more recently

the false discovery rates (FDR). For a Bayesian, part of this problem can be dealt

with by the use of prior distributions. When dealing with a continuous model
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space, regularization imposed by the prior distribution adjusts for multiplicity in

the model by shrinking the estimates closer to their mean (Gelman et al., 2012),

hence adjustment for multiplicity in the decision is simplified. This is not the case

for discrete model spaces, where part of decision is encoded into the specification

of the prior distribution, and a formulation that does not account for the number

of comparisons has shown to have detrimental results (Scott and Berger, 2010).

A prior distributions as such, however, do not completely relieve the practitioner

of decision that still needs to account for the multiplicity.

When there agreeable domain specific standards for the level of ”significance”

such as 0.05 in social science or 10−4 in microbiology, Bayesians for the most

part do not have to worry about multiplicity in practice (Gelman et al., 2012).

However, when this is not the case one need to decide on how much loss one is

willing to incur, which gives a rise to a loss function or utility function leading

to the idea of optimal decision making. The use of decision theory to correct

for multiplicity is traced back to Duncan (1965). A great review of the matter

is summarized in Berry and Hochberg (1999). Connections between these loss

functions to the results obtained from the classical perspective have been recently

explored. These include p-value (Rice, 2010), confidence intervals (Thulin, 2012),

and FDR (Efron and Tibshirani, 2006; Genovese and Wasserman, 2003). In terms

of multiple comparison, Müller et al. (2006) lay out a foundation for methods to

explicitly controls for the Bayesian posterior expected FDR and proposes options

for several loss functions.

1.7.1 False discovery rates

The idea of controlling for false discovery rates (FDR) was introduced by Ben-

jamini and Hochberg (1995) to address the problem of massively multiple compar-
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isons. For m exchangeable hypotheses, let the underlying truth indicator ri = 1,

(i = 1, . . . ,m) when effect is present and ri = 0 otherwise. Corresponding to

each hypothesis, we also define a decision indicator di, so that di = 1 when effect

i is decided to be present and 0 otherwise. Then FDR is defined as

FDR =

∑
di(1− ri)∑

di
.

Because r is unknown, in classical setting, one proceeds by taking the expectation

over repeated samples. Although controlling for FDR is most commonly done,

we can also control for other error rates such as the false negative rates (FNR)

defined in similar fashion as

FNR =

∑
(1− di)ri
m−

∑
di

.

In the Bayesian setting, posterior expectation equivalent are defined as

FDR =

∫
FDR(d, r)dp(r|y) =

∑
di(1− vi)∑

di

FNR =

∫
FNR(d, r)dp(r|y) =

∑
(1− di)vi
m−

∑
di

where vi = P (ri = 1 | Y ).
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CHAPTER 2

BAYESIAN MODELING OF POPULATION

PHARMACOGENETICS

2.1 Introduction

It is estimated that about a quarter of all FDA approved drugs get later relabeled

for dose reduction due to safety concerns (Wacheck, 2010). Drug metabolism is

thought to vary by person, according to characteristics that potentially escape

standard covariate information (age, weight, gender, etc.) and are often related

to more subtle variations involving the individual’s genetic makeup (Ring and

Kroetz, 2002). In fact, a considerable body of evidence suggests that single

nucleotide polymorphisms (SNPs) in genes encoding drug transporters, drug-

metabolizing enzymes, enzymes involved in DNA biosynthesis and repair might

determine drug efficacy and toxicity (Shastry, 2005).

In this context, we propose a Bayesian modeling framework to assess interac-

tions between inherited genetic traits, measured by SNPs, and drug metaboliza-

tion dynamics. This concept of using hereditary genetic information to improve

our understanding of pharmacokinetics is referred to as pharmacogenetics.

A typical pharmacogenetics study provides data in the form of: absorption

dynamic data Y , including measurement of one or multiple metabolites over time;

genotype information Z̃, usually in the form of SNPs; and standard baseline pa-
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tients characteristics X. Our motivating case study (Innocenti et al., 2004b; Iyer

et al., 2002), for example, includes concentration trajectories for four metabo-

lites of the drug irinotecan (Fig. 2.3), about 40 target SNPs and several baseline

patient characteristics (Section 2.5).

The biomedical understanding of drug absorption dynamics is often repre-

sented as a compartment model. This representation of a biological process is in

itself of great scientific interest. However, the pharmacokinetics literature is too

vast to review here and we maintain our focus on its statistical aspects in popu-

lation pharmacokinetics (PopPK). Given an expert elicited compartment model,

PopPK deals with the task of producing statistical inference for the variation of

PK parameters across a population. In the PopPK literature, hierarchical nonlin-

ear models (Davidian and Giltinan, 2003) have been a popular choice (Sheiner and

Steimer, 2000), as they allow for natural modeling of individual- and population-

level variability. Bayesian approaches to PopPK inference are developed in Wake-

field (1996) and Gelman et al. (1996). Other influential works includes modeling

of pharmacokinetic and pharmacodynamic (PK/PD) data (Wakefield et al., 1999)

and extensions to nonparametric inference Rosner and Müller (1997).

The idea of incorporating genetic information in the analysis of PopPK mod-

els was already introduced by Wakefield et al. (1999). The field has since then

considered approaches focusing on a candidate gene (Ring and Kroetz, 2002),

with a promise of direct clinical application, and larger exploratory genome-wide

association studies (GWAS) (Klein et al., 2005). Whereas the former approach

can be criticized for excessive reductionism, the latter point of view meets enor-

mous challenges, both from a sample size perspective (Wu and Lin, 2010; Uher

et al., 2010) and from a computational/inferential prospective (He and Lin, 2011).

More recently, a compromise between these two strategies has focused on
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subsets of genes, selected a priori as candidate pathways that potentially explain

differential drug metabolism (Johnson et al., 2013). Although the selection it-

self is a difficult scientific challenge, there is evidence supporting the validity of

such procedures (Yang et al., 2005). For successful examples of pharmacogenet-

ics research see Yiannakopoulou (2013), Rosner et al. (2008) and Bertrand and

Balding (2013).

In this paper we aim to provide a solid methodological foundation to the sta-

tistical analysis of pharmacogenetics data. In particular, we extend the PopPK

model of Wakefield (1996) to include dependence on hereditary genetic infor-

mation in the form of SNPs. We utilize the idea of sparsity as in Bertrand

and Balding (2013) in order to select meaningful gene-PK parameter interac-

tions. However, rather than including SNPs as fixed covariates, we model gene

set ordinal probit scores in a multivariate fashion, explicitly accounting for the

dependence structure between SNPs. Without doing so, the sparsity induced

by the model may understate the association of correlated SNPs to relevant PK

parameters. Also, this feature allows for natural adaption of missing data and

measurement error under the Bayesian framework.

We show that the joint distribution of PK trajectories and SNPs variation

can be modeled according to the Markov laws of a chain graph (Lauritzen, 1996).

Under this general and intuitive framework, we discuss posterior inference and the

basis of a Bayesian decision-theoretic approach to control for the false discovery

rate (FDR).

The remainder of this chapter is organized as follows. In the following sec-

tion we briefly summarize the background material necessary to understand the

contents in this section. In section 2.3 we introduce a joint Bayesian pharmacoge-

netics model, followed by a description of estimation and inference in section 2.4.
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In section 2.5 we illustrate the use of the proposed method through a case study

involving the pharmacogenetics of the anti-cancer drug irinotecan. We conclude

with a brief discussion 2.6.

2.2 Background

2.2.1 Brief summary of biological terms

The heredity information from our parents is stored in the nucleus of our cells as

chromosomes. Chromosomes are comprised of deoxyribonucleic acid (DNA) and

proteins. Each DNA molecule codes the heredity information as a sequence of

nucleotide or basepair (bp). Specific positions on DNA are called loci (singular

locus) and a variant on a specific locus is called allele. A genotype at a particular

locus is defined by two alleles at the locus on two strands of DNA. When the

two alleles are the same on both of the DNA strands, genotype is referred to as a

homozygous, whereas if they are different, it is referred to as heterozygous. Muta-

tion is a permanent alternation of loci/locus on DNA sequence(s) that happens

by substitution, insertion, deletion, duplication, or some combinations of these

alterations of the basepairs on DNA. Mutations that occur in more than 1% of

the population are referred to as polymorphisms.

2.2.2 Single nucleotide polymorphisms

A specific polymorphism that is characterized by alteration on a locus of DNA is

referred to as a single nucleotide polymorphism (SNP). In the strict definition, mi-

nor allele frequency (MAF), which is the rarer allele, must be prevalent in at least

1% of the population. SNPs occur frequently throughout the genome and tend

to be relatively stable genetically, making them particularly suitable as indicators

29



for a person’s genetical variability. One thing to keep in mind is that, although

SNPs are indicator of a person’s genetic disposition that signifies person’s hered-

itary factors, they are not necessarily the cause of phenotypic differences. There

are ongoing projects to identify and catalog SNPs and this information is becom-

ing available through public databases (Phillips, 2007), including dbSNP from

NCBI (Sherry et al., 2001).

2.2.3 Problems with dosage determination regimen

Under the current clinical trials protocol, dosage is determined using the “max-

imum tolerated dose” (MTD) concept. “Maximum tolerated dose” (MTD) is

defined as the maximum dose at which subjects do not exhibit “dose limiting

toxicities” (DLT) as outlined in the study protocol in the “first in men” phase

I clinical trial. Then this MTD is used as the “recommended phase two dose”

(RPTD) for subsequent phase II clinical trials where the dose-response study is

conducted.

This paradigm originates from the field of oncology, where it is believed that

toxicities acts as proxies for the activity of a drug. MTD is optimal protocol

only when there is a strong linear correlation between the toxicity and the effect.

When the relationship is non-linear and complex, it is easy to be in a situation

where the MTD is suboptimal choice, as shown in the hypothetical figure 2.1. Es-

pecially in the modern pharmacology, where a molecular therapeutics is designed

for specific biological target in mind with side effects not necessary correlated

with the targeted, not only plausibility but also the ethical validity of such crude

method is questionable. (Wacheck, 2010).

Another problem surrounding dosage determination in clinical trials is popu-

lation discrepancy between the phases. In a typical trial, the dosage is determined
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Figure 2.1: Hypothetical dose-effect relationship scenarios that maximum toler-
ance dose (MTD) regime is suboptimal choice, adopted from (Wacheck, 2010).
The two figures on the right shows cases where the maximum therapeutic effect is
achieved much faster than the toxicity limit. The central figure is the worst-case
scenario for MTD where the therapeutic effect vanishes close to the toxicity limit.
The right figure is a case where the trial should be canceled because the toxicity
is consistently larger then the therapeutic effect.

in the phase I stage of the trial using healthy young subjects who for the most

part do not resemble the actual patients that the drug is intend for. Some mea-

surable information such as age or the body characteristics are used to adjust for

the differences but validity of such procedure is unknown.

2.2.4 Pharmacokinetics and Pharmacodynamics

The pharmacological process of drug metabolization is often modeled using the

two partitioned processes of pharmacokinetics and pharmacodynamics. The phar-

macokinetics models (PK) are used to model processes involving drug absorption,

distribution and elimination of a drug after its introduction to the body. On the

other hand, pharmacodynamics models (PD) are used to model the relationship

between drug concentrations and surrogate biological responses and possibly this

response’s effect on the clinical outcomes.
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The division of PK and PD allows separation in factors that influence the

inter-individual variability in pharmacokinetics from those that influence phar-

macodynamics (Wakefield et al., 1999), under the implicit assumption that these

processes are unlikely to be causally interrelated. Furthermore, the fact that

in clinical trials, dose-concentration study is separate from and usually precedes

large-scale efficacy studies, gives practical motives in the choice.

Pharmacokinetics is usually simplified into a set of compartment model where

compartments are defined by grouping together parts of the body that share sim-

ilar kinetics for a particular drug. The flow of drug between the compartments

is often assumed to be proportional to the drugs in the donor compartment,

leading to a system of first-order differential equations (Wakefield, 1996). Linear

equations are popular in the literature since it is straightforward to obtain ex-

pressions for the amounts of drug in the different compartments as a function of

time (Wakefield et al., 1999).

For an overview of PK/PD modeling following literature are well known:

Wakefield et al. (1999) summarizes hierarchical PK/PD model with relation to

the clinical trial process; Davidian and Giltinan (2003) reviews various PK models

embedded in the nonlinear models.

2.2.5 Pharmacokinetics (PK) Model

Let gik(t,θi ·, Di), be the expected concentration associated with a compound

of interest in compartment k, (k = 1, ..., K), at time t ∈ [t0, tn], for the ith

individual, (i = 1, ..., N). In the forgoing formulation gi(·) = (gi1(·), · · · , giK(·))′

represents a functional, usually arising as a particular solution to a K-dimensional

system of differential equations, given a history of doses Di, a set of parameters

θi · = (θi1, ..., θiv, ..., θiV )′, and initial values gi(t0,θi ·, Di) = gi(t0, Di).
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The observed concentration yik(t) for subject i, compartment k at time t is

modeled as regression with constant coefficient of variation as:

yik(t) = gik(t,θi ·, Di) + εik(t), (2.1)

where εik(t) ∼ N (0, gik(t,θi ·, Di)
rσ2
εik

), for r ≥ 0.

Equivalently, it is popular to model the relation ships as a log-log linear for-

mulation as:

log{yik(t)} = log{gik(t,θi ·, Di)}+ εik(t), (2.2)

where εik(t) ∼ N (0, σ2
εik

).

2.2.6 Pharmacodynamics (PD) Model

The specification of PD model is similar to PK model. Let zih(t) be measured

response for subject i, response h, at time t. For a response h, (h = 1, ...,H), at

time t ∈ [t0, tn], for the ith individual, (i = 1, ..., N), expected effect is denoted

as fih(t,φi,θi), given U dimensional PD parameters φi · = (φi1, ..., φiv, ..., φiV )′

and V dimensional PK parameters θi · = (θi1, ..., θiv, ..., θiU)′. If we use fi(·) =

(fi1(·), · · · , fiH(·))′ to denote the H dimensional function, the PD model is defined

as.

zi(t) = fi(t,φi,θi) + ϕih(t), (2.3)

where ϕih(t) ∼ N (0, σ2
ϕih

).

2.2.7 Population PK model

Suppose that for each individual we observe a set of Pθ covariate measurements

(Xi1, ..., XiPθ). A popular covariate model (Wakefield 1996, Gelman et al. 1996)
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assumes a log-linear relationship between individual Pk parameter and covariates

log(θiν) = X iβν + δiν ; (2.4)

where X i = (1, Xi1, ..., XiPθ)
′, βν = (βν 0, βν 1, ..., βν Pθ)

′ and δiν is a subject

specific random error.

2.2.8 Pharmacogenetics or Pharmacogenomics?

Pharmacogenetics (PKGx) and Pharmacogenomics (PKGm) both refer to the

field of study on how variant in genetic polymorphism makes a difference in a

response to drugs. Two terms tend to be used interchangeably, although some

discipline use them to differentiate between germ line and somatic mutation types

(Roses, 2000) or size and complexity of the genes involved (Roden et al., 2006)

there is no overarching consensus definition prior to this thesis.

Since we have no interest in further complicating the issue by proposing a new

definition, nor do we believe we can sort out the discrepancies, we take the same

approach as Senn (2008):

In this chapter I shall take the Humpty Dumpty line on linguistics:

words mean what I say they mean. That is, whatever the difference

between pharmacogenetics and pharmacogenomics may or may not

be, this chapter is about differences (presumed or real) in the effect

of treatment due to genetic variation between patients, how to detect

such differences and what to do with them. From now on I shall use

the term pharmacogenetics to describe this field.

Henceforth we will use the word Pharmacogenetics to indicate the study of how

genetic differences influence the variability in patients’ responses to drugs (Roses,
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2000).We hope the reader will accept this crude definition at least for the extent

of this thesis.

2.3 Model Formulation

We consider pharmacokinetics in the form of a data array denoted as Y , hered-

itary genetic information in the form of SNPs coded as ordinal trinary vectors

Z̃, and baseline clinical information denoted by X and U , possibly overlapping.

Let g(θ), be a functional of a compartment models’s parameters and Z be latent

ordinal probit scores for the trinary mutation vector Z̃, we define the following

probability model:

p(Y ,Z,θ |X,U ) = p(Y | g(θ))︸ ︷︷ ︸
PK

p(Z | U )︸ ︷︷ ︸
Gx

p(θ | Z,X)︸ ︷︷ ︸
PopPKGx

. (2.5)

Equation (2.5) implies a model p(Y ,Z,θ | X,U) for the observed SNPs after

integrating w.r.t. the latent probit scores over the relevant subintervals (see

later). In (2.5) we assume that drug absorption dynamics Y are conditionally

independent of genetic information Z̃, given PK parameters θ.

2.3.1 A population pharmacokinetics model

Let gik(t,θi, Di), be the expected concentration associated with a metabolite k,

(k = 1, ..., K), at time t ∈ [t0, tn], for the ith individual, (i = 1, ..., N). We

also let gi(·) = (gi1(·), · · · , giK(·))′ represent a functional, usually arising as a

particular solution to a K-dimensional system of differential equations, given a

history of doses Di, a set of parameters θi = (θi1, ..., θiv, ..., θiV )′, and initial values

gi(t0,θi, Di) = gi(t0, Di).
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The observed concentration Yik(t) for subject i, metabolite k at time t is

modeled as:

log{Yik(t)} = log{gik(t,θi, Di)}+ εik(t), (2.6)

where εik(t) ∼ N (0, σ2
εik

). An example of compartmental model defining gik(t,θi, Di)

for the pharmacokinetics of the drug Irinotecan is reported in Appendix 5.2.1.

Suppose that for each individual we observe a set of pX covariates (Xi1, ..., XipX ).

A popular model (Wakefield, 1996; Gelman et al., 1996) assumes a log-linear re-

lationship between individual PK parameter and covariates

log(θiν) = X ′iβν + δiν ; (2.7)

where X i = (1, Xi1, ..., XipX )′, βν = (βν 0, βν 1, ..., βν pX )′ and δiν is a subject-

specific effect and v = 1, . . . , V indexes the PK parameters. In section 2.3.3 we

will introduce a model for δiν that explains subject-specific effects as a regression

on SNPs. This is where the genetics enters the pharmacogenetics.

2.3.2 Modeling single nucleotide polymorphism (SNP) array

Let Z̃iq be a trinary polymorphism indicator, for gene q (q = 1, ..., Q) and subject

i (i = 1, ..., N); taking values Z̃iq = 1 if gene q has a polymorphism on one

of the chromosomes Z̃iq = 2 if gene q has polymorphism on both chromosomes

and Z̃iq = 0 otherwise. We model the observed polymorphism Z̃iq as an ordinal

trinomial random variable with probabilities p
(1)
iq = P (Z̃iq = 1), p

(2)
iq = P (Z̃iq = 2)

and p
(0)
iq = P (Z̃iq = 0) = 1− (p

(1)
iq + p

(2)
iq ).

These ordinal probit scores can be related to a set of covariatesU i = (1, Ui1, ..., UipU )′,

which may or may not coincide with the covariate set in equation (2.7), through

a probit link as in Albert and Chib (1993). Using the notation of Chen and Dey
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(2000), we assume there exists a continuous random quantity Zi ∼ NQ(U ′iγ,ΣZ),

where γ = (γ1, ...,γQ) is a (pU + 1) × Q-dimensional matrix of unknown pa-

rameters and the matrix ΣZ maps the dependence structure between genes via

polychoric correlations (Ronning and Kukuk 1996). Then without loss of gener-

ality, we observe

Z̃iq =


0 if Ziq < 0

1 if 0 ≤ Ziq < 1

2 if 1 ≤ Ziq

; (2.8)

for all q = 1, . . . , Q and i = 1, . . . , N . The implied ordinal scale on Z is justified by

the assumption that risk conferred by a heterozygous SNP (having one risk allele)

lies somewhere between baseline risk and a homozygous SNP (having two risk

alleles) that is, between the risk of a recessive and dominant traits (Wittkowski

et al., 2013). In summary, Z are latent ordinal probit scores for the trinary SNPs

Z̃. The scores Z are essentially a continuous version of Z̃. In the following we

will refer to Z simply as SNPs, keeping in mind that the mapping (2.8) links Z

to the actually observed trinary SNP.

Let Z = (Z ′1, . . . ,Z
′
N)′ be the (N × Q) matrix of ordinal probit scores and

let m be an (N × Q) mean matrix, with entries miq = U ′iγq. The multivariate

characterization of the scheme in (2.8) is completed with a prior p(Z|U ,γ) having

matrix normal distribution as

(Z −m) ∼MN (IN ,ΣZ), (2.9)

where IN is an (N × N) identity matrix (Chib and Greenberg 1998; Chen and

Dey 2000).

For each subject (i = 1, . . . , N), let Z̃i = (Z̃i1, ..., Z̃iq) denote a collection of

polymorphism trinary indicators on all Q genes. For subject i, the candidate
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gene set mutation score P (Z̃i) can be expressed in terms of the latent scores Zi

as

P (Z̃i) =

∫
AiQ
· · ·
∫
Ai1

(2π)Q/2|ΣZ |1/2 exp{−1/2(Zi −mi)
′Σ−1

Z (Zi −mi)} dZi,

(2.10)

where the event Aiq is the interval (−∞, 0) if Z̃iq = 0, the interval [0, 1) if Z̃iq = 1

and the interval [1,∞) if Z̃iq = 2.

2.3.3 A Bayesian pharmacogenetics (PKGx) model

In (2.6) and (2.8-2.9) we defined a sampling model for SNPs and drug concen-

trations. We now complete the model by relating the PK parameters θ with the

SNP ordinal probit scores Z by way of modeling δiν in (2.7) as a regression on

Z.

Let θ denote an (N × V ) matrix of subject-level PK parameters, where the

matrix entry θiv, (i = 1, ..., N ; v = 1, ..., V ) denotes the vth PK parameter char-

acterizing a certain aspect of the concentration curves observed for subject i. We

elaborate the prior model (2.7)

log(θ) = Xβ + Zρ+ η; (2.11)

where X is an (N × (pX + 1)) matrix of baseline covariates and β is a ((pX +

1)× V ) matrix of unknown regression coefficients. The dependence between PK

parameters and SNP genotypes are modeled as a linear regression on Z with a

(Q× V ) matrix of unknown regression parameters ρ.

The conditional distribution of log(θ) is specified through η as a matrix nor-
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mal distributions.

p(η) =dMNNV (IN ,Σθ). (2.12)

When extra variability is present in the data, one can account for it by expand-

ing η to be a scale mixture of multivariate Normal distributions (West 1984).

More precisely, let τ = (τ1, . . . , τN)′ be a vector of random variance inflation

parameters, the joint distribution

p(η, τ ) =dMNNV (Dτ ,Σθ)p(τ | υ), Dτ = diag(τ ), (2.13)

admits the marginal p(η | Σ) =dMT NV (υ, IN , Σθ), whenever τi ∼iid G(υ/2, υ/2);

a matrix T with degrees of freedom υ and column covariance Σθ.

The formulation in (2.11), together with (2.6) and (2.8),defines a joint model

for the SNPs Z̃ and the concentrationtrajectories Y as:

p(Z,Y ,θ) ∝ p(Y | θ) p(θ | Z) p(Z), (2.14)

suppressing dependence on the fixed covariates X and U in the notation. De-

pendence between Y and Z̃ is introduced hierarchically by defining the joint

distribution p(θ,Z) ∝ p(θ | Z) p(Z) and the deterministic mapping Z̃ ∼ f(Z)

in (2.8). The matrix ρ introduces stochastic dependence between the genetic

ordinal probit scores p(Z) and the PK parameters θ. The between-column co-

variance matrix of θ. Σθ, on the other hand, defines the dependence structure

within PK parameters, given ρ.

In the following section, we show how structural restrictions on Σθ, ΣZ and

ρ correspond to specific assumptions about the Markov structure of the pharma-

cogenetics distribution p(Y , Z̃). However, we will use the notion of a graphical

model only to highlight and summarize the proposed model structure. In other
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Figure 2.2: Chain graph representation for the PKGx Markov structure.

words, the graph G will only be a summary G(Σθ,ΣZ ,ρ) of the already defined

other parameters. The prior model p(Σθ,ΣZ ,ρ) will implicitly define a prior p(G)

on the graph, and there is no separate definition of p(G).

2.3.4 PKGx Markov structure and chain graphs

The Markov structure of the model proposed in (2.11) can be represented as a

graphical model (Lauritzen 1996). A graph is a pair G = {V , E}, composed of a

set of nodes V and a set of edges E = {(i, j) ∈ V × V}. When the set of nodes V

represents a collection of random quantities, the edges E can be used to identify
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the full set of conditional independence relations between the components of V

via, what is often called, the global Markov property associated with G (Lauritzen

1996).

The conditional dependence fabric relating the random quantities modeled in

(2.11) is best characterized in terms of a chain graph (Lauritzen and Wermuth

1989). A chain graph is a graph with both directed and undirected edges, but

no partially directed cycles. See Lauritzen and Richardson (2002) for a technical

discussion of chain graph models.

In our model, undirected edges describe conditional dependence within the

PK parameters θ and within the latent mutation scores Z, while directed edges

describe a potential causal pathway between PK parameters and mutations. Fig-

ure 2.2 illustrates the structure of our model for a hypothetical configuration of

G.

The graphical topology, arising from a representation of (2.11) as a chain

graph, has an appealing causal interpretation of genetic mutation on the PK

dynamic of a compound of interest. Meanwhile, the dependence structure of Z

defines implicit clustering of the SNPs that should be taken into account when

considering this regression.

Under the normal distributions in (2.9) and (2.11) different configurations of G

are defined by the appropriate placement of 0’s in the concentration matrices Ωθ =

Σ−1
θ and ΩZ = Σ−1

Z and in the coefficient matrix ρ. In particular, setting Ω(i,j) = 0

in one of the foregoing concentration matrices corresponds to the absence of

the undirected edge between “θi θj”, or similarly to the vanishing of the edge

(“Zi Zj”). On the other hand, setting the entry ρ(q,k) = 0 corresponds to the

vanishing of the directed edge (“Zq −→ θk”).
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2.3.5 Model determination and prior distributions

Let Θ be the full set of parameters defining the probabilistic scheme introduced in

§ 2.3.4. We seek inference for Θ,G) given Y and Z̃ and consider lasso-type regu-

larization (Tibshirani, 1996) for the estimation of the graphical models (Friedman

et al., 2008) by placing a sparcity inducing prior (Park and Casella, 2008; Hans,

2009; Wang, 2012) on Θ to infer the association structure G in the posterior

distribution of Θ.

We note that this type of prior is absolutely continuous with respect to the

Lebesque measure. Therefore, the posterior probability of any edge of G not ex-

isting is exactly zero. This feature can be criticized for not facilitating automatic

model selection. We discuss the issue in more detail in §2.4.2, where we propose a

decision-theoretic procedure aimed at controlling expected posterior error rates.

2.3.5.1 Prior distributions on concentration matrices

We follow the approach of Wang (2012) and place independent graphical lasso pri-

ors on Ωθ and ΩZ . Specifically, a concentration matrix Ω is distributed according

to a graphical lasso distribution if:

p(Ω | {λij}i≤j) ∝ C{λij}i≤j
∏

i<j

{
λij
2

exp(−λij|ωij|)
}∏p

i=1

{
λii
2

exp
(
−λii

2
ωii
)}

1Ω∈M+ ,

and

p({λij}i<j | {λii}pi=1) ∝ C{λij}i≤j
∏

i<j λ
r−1
ij exp(−sλij).

Here, M+ is the cone of positive definite matrices in Rp×p. The prior assumes

a double exponential distribution for the off-diagonal elements and an exponen-

tial distribution distribution for the diagonal entries. The hyperparameters for

λij are given independent gamma distributions. Finally, the term C{λij}i≤j is an
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intractable normalizing constant. Fortunately, C{λij}i≤j cancels out in the accep-

tance probabilities for the Metropolis-Hastings acceptance probabilities.

2.3.5.2 Prior distribution on ρ

The regression coefficients ρ represent the strength of association between SNP

and PK parameters in the graph GZ→θ. Brown et al. (1998) first discussed multi-

variate Bayesian variable selection assuming separability in the row and column

covariance structure. This assumption is unwarranted in our case as it would

impose too many restrictions on how SNP variability affects drug absorption.

Instead we extend the adaptive lasso penalization introduced in the concen-

tration matrix prior to a prior for ρ (Sun et al., 2010). Specifically, we model

each component ρqv independently as

p(ρqv | κqv) = − 1

κqv
exp

(
−|ρqv|
κqv

)
, p(κqv | δ, φ) =

φδ

Γ(δ)
κ−1−δ
qv exp

(
− φ

κqv

)
; (2.15)

where δ > 0 and φ > 0 are hyperparameters. We follow the suggestion of Sun

et al. (2010) and model (δ, φ) ∝ 1
φ
.

The prior p(Ωθ,ΩZ ,ρ) implies an approximate prior on G by defining the prior

probability for the coefficients ωij and ρij being small and practically equivalent

to structural zeros. We will still discuss a formal criterion for judging what is

“small”.
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2.4 Estimation and Iinference

2.4.1 Markov Chain Monte Carlo estimation

Whenever possible, we exploit conjugacy so that posterior simulation for most

parameters can be based on Gibbs sampling. We briefly describe the algorithm

in this section, (See table 2.4.1 for a schematic outline). Detailed calculations are

reported in the appendix.

Parameter Algorithm Section

θ Metropolis Hasting 2.4.1.1

ΩZ , Ωθ Block Gibbs Sampling 2.4.1.2

ρ Gibbs Sampling 2.4.1.3

Z Gibbs Sampling 2.4.1.4

β, γ, σ2, τ Gibbs Sampling Appendix

2.4.1.1 Updating of PK parameters θ

The conditional posterior distribution of θ is usually unavailable in closed form,

as it depends on the compartmental model structure and its solution g(·). It

is, however, straightforward, in principle, to simulate from such distribution via

Metropolis-Hastings. In practice, the evaluation of g(·) may be costly. We there-

fore use a joint proposal of θi, (i = 1, . . . , N) with a V -variate proposal.Our

implementation is based on adaptive Metropolis, (Haario et al., 2001; Roberts

and Rosenthal, 2009). Specifically, we generate a proposal from a V -variate nor-

mal distribution centered at the current θi, using the empirical covariance matrix

for the scaling parameter. Detailed calculations appear in the appendix.
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2.4.1.2 Updating Ωθ, ΩZ

To sample from conditional distribution of the inverse covariance matrix given

the adaptive graphical lasso prior, we follow the algorithm of Wang (2012) and

use the data-augmented block Gibbs sampler. The algorithm sequentially up-

dates each column of Ω while maintaining the positive definiteness. For ΩZ and

Ωθ respectively, conditional posterior distributions depend on the data through

summary statistics

SZ = [Z −Uγ]T [Z −Uγ] , and

Sθ = [log(θ)− (Xβ +Zρ)]T Dτ [log(θ)− (Xβ +Zρ)] + [β − b0]T B0 [β − b0] .

Block Gibbs sampler (Wang, 2012) The idea is based on the fact that

each column (equivalently row) of the inverse covariance matrix conditioned on

all other parameters have a standard distribution. In this section we sketch the

algorithm, for more detailed derivation see Wang (2012).

The joint posterior distribution p(Ω,κ, λ | Y ) for a graphical lasso model

specified as in section 2.3.5.1 is

p(Ω,κ, λ | Y ) ∝ |Ω|n/2 exp

{
−tr

(
1

2
SΩ

)}
∏
i<j

{
κ−1/2
ij exp

(
−
ω2
ij

2κij

)
exp

(
λ2
ij

2
κij
)}

p∏
i=1

{
exp

(
−λij

2
ωii

)}
1Ω∈M+∏

i<j

λr1−1
ij exp{−r2λij}
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It is straight forward to show that

λij | Ω ∼ Ga(1 + r1, |ωij|+ r2)

and
1

κij
| Ω, λ ∼ Inv-N

(√
(λij/ωij), λ

2

)
where Inv-N stands for inverse Gaussian density.

To derive the full conditional distribution of p × p inverse covariance matrix

Ω, we first define Υ to be symmetric matrix with diagonal element set to 0 and

off diagonal element to be κij. Given sum of squares matrix S and Υ the full

conditional density is defined iteratively for each column j,j = 1, . . . , p. For each

j let index set I to be defined as I = {1, . . . , p} \ j. Given a partition for Ω, S

and Υ s.t.

Ω =

 ΩII ωIj

ωjI ωjj

 , S =

 SII sIj

sjI sjj

 , and Υ =

 ΥII κIj

κjI 0


The full conditional distribution for a column j of Ω is defined as

p(ωIj, ωjj | ΩII ,Υ,Y , λ) ∝ (ωjj − ωTIjΩ−1
II ωIj)

n/2

exp

[
−1

2

{
ωTIjD

−1
τIj
ωIj + 2sTIjωIj + (sjj + λjj)ωjj

}]

where DτIj = diag(τIj).

By change of variable as

(ωIj, ωjj)→
(
β = ωIj, γ = ωjj − ωTIjΩ−1

II ωIj
)
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equation (2.16) can be rewritten as

p(β, γ | ΩII ,Υ,Y , λjj) ∝ γn/2 exp

(
−sjj + λjj

2
γ

)
exp

(
−1

2

[
βT
{
D−1
τIj

+ (sjj + λjj)Ω
−1
II

}
β + 2sTIjβ

])
.

Which shows we can sample from independent Gamma and Gaussian distribu-

tions

(β, γ) | (ΩII ,Υ,Y , λ) ∼ Ga(n/2 + 1, (sjj + λjj)/2)N(−CsjI , C)

where C = {D−1
τIj

+ (sjj + λjj)Ω
−1
II }−1.

2.4.1.3 Updating Pharmacogenetics parameter ρ

PKGx parameters ρ, along with the hyperparameters in (2.15), can be sampled

using the Gibbs sampler described in Sun et al. (2010). Part of the algorithm is

based on adaptive rejection sampling (Gilks, 1992). Details are discussed by Sun

et al. (2010).

2.4.1.4 Updating Probit Scores Z

The full conditional distribution of Zi is N(m̃zi , S̃
−1
zi

)
∏Q

q=1 I{ziq ∈ Aiq} (Chen

and Dey, 2000), where

m̃zi = S̃−1
zi

[
ΩZγU i + τiρ

TΩθ (log(θi)− βX i)
]
, S̃zi =

(
ΩZ + τiρ

TΩθρ
)
,
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and

Aiq =


(−∞, 0) if z̃iq = 0

[0, 1) if z̃iq = 1

[1,∞) if z̃iq = 2

.

Sampling from a multivariate truncated Gaussian distribution difficult. Instead

we generate each Zq conditional on Z−q. See Appendix 5.2.3 for details.

2.4.2 Posterior inference from Monte Carlo samples

The posterior distribution p
(

Ωθ,ΩZ ,ρ | Y , Z̃
)

jointly encompasses all informa-

tion concerning interactions between the SNP and the pharmacokinetic param-

eters. Nevertheless, in order to make sense of all the interactions, noteworthy

effects need to be screened.

We are testing multiple statistical hypotheses simultaneously. A popular

screening strategy is based on controlling error rates, like the false discovery rate

(FDR) (Benjamini and Hochberg, 1995). From a Bayesian perspective, Müller

et al. (2006) illustrate a decision-theoretic procedure aimed at minimizing the

posterior expected false negative rate (FNR), while controlling for the posterior

expected false discovery rate (FDR) at a level α. Some care is needed in our

model, because applying this procedure separately to each of the parameters Ωθ,

ΩZ , and ρ, may lead to inflation in the overall FDR (Cai and Sun, 2009).

Specifically, let K be the number of non-exchangeable parameter sub vectors.

We consider the sub vectors corresponding to Ωθ, ΩZ , and ρ, i.e. K = 3. Also let

mk denote the number of comparison within each parameter set and m =
∑

kmk

be the overall number of comparisons. Let I{} be an indicator function taking a

value 1 when true and otherwise 0. For each parameter set we define the follow-
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ing local indicators: local truth indicators rki = I{Genuine effect or interaction},

local posterior evidence vki = P (rki = 1 | Y ) and finally a local decision indica-

tor dki = I{Effect or interaction screened as genuine}, (i = 1, . . . ,mk). The FDR

and FNR specific to each of the parameter sub vectors, are defined as

fdrk =

∑
dki (1− rki )∑mk dki + E

, fnrk =

∑mk(1− dki )rki
mk −

∑
dki + E

;

with E ≈ 0 to avoid zero denominator. The local expected FDR and FNR are

defined as

fdrk =

∫
fdrk(d

k, rk)dp(rk|y) =

∑mk dki (1− vki )∑mk dki + E
,

fnrk =

∫
fnrk(d

k, rk)dp(rk|y) =

∑mk(1− dki )vki
mk −

∑mk dki + E
.

Let fdr(s) denote the fdr under the rule δ = I(v > s). Integrating results of Cai

and Sun (2009) into the formulation above, we find that optimal decisions must

follow the rule:

dki = I(vki > t2R), where t2R = min{s : FRD(s, y) < α}. (2.16)

Several options are available in the evaluation of vi = P (effect i is notable |

Y ). When information is available about a meaningful effect size, hard thresholds

around 0 may be appropriate (Berger, 1985). Example of hard thresholding in

conjunction with Bayesian FDR procedure can be found in Telesca et al. (2009).

Alternatively, one can use ev = 1 − ev, where ev = P (0 ∈ S|Y ) for S defined

to be highest posterior probability (HPD) credible interval that is adjacent to

0 (de Bragança Pereira and Stern, 1999; Thulin, 2012). The procedure closely

resembles that of one-sided test yet it is fully Bayesian as it is described in Pereira

et al. (2008). We use this last procedure in our the case study (§2.5).
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2.5 Case Study

2.5.1 Pharmacogenetics of irinotecan

We apply our model to explore relationships between pharmacokinetic pathways

and polymorphisms in genes associated with metabolism and transport of irinote-

can. Irinotecan is a chemotherapeutic agent that has regulatory approval in sev-

eral countries for the treatment of colorectal cancer and is also an active agent

for other various solid tumors.

Irinotecan requires activation to a potent topoisomerase I inhibitor SN-38 (7-

ethyl-10-hydroxycamptothecin) through hydrolysis by the high affinity carboxylesterase-

2 (CES-2) in order for it to take effect. Hence SN-38 formation within a tumor is

an important bio-marker for anti-tumor activity. Details of the pharmacokinetics

of irinotecan can be found in Rosner et al. (2008).

Although irinotecan is the standard treatment for colorectal cancer, it is

known to have severe adverse effect such as severe diarrhea and neutropenia (20%

to 35%) and fatal events (up to 5.3%) (Innocenti et al., 2004a). Numerous studies

link genetic variants to the unwanted side effects, with UGT1A1 being a prime

suspect since it impedes the glucuronidation of SN-38 (Innocenti et al., 2004a;

O’Dwyer and Catalano, October 1, 2006). However, a more holistic analysis of

the the complex interactions has not been fully explored.

2.5.2 The data

We analyze data from a study that enrolled 86 patients with advanced solid

tumors treated at the University of Chicago Innocenti et al. (2004b); Iyer et al.

(2002). The patients received single-agent irinotecan at doses of 300 mg/m2

(20 patients) or 350 mg/m2 (66 patients) infused over 90 minutes every three
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Figure 2.3: Observed concentration values for irinotecan, SN-38, SN-38G (glu-
curonide), and APC. Each solid line represents observed concentration for a pa-
tient plotted over time. A overlaid dashed line is a Lowess curve to show the
overall trend amongst the curves.

weeks. Detailed description of the patient population can be found in Innocenti

et al. (2004b); Iyer et al. (2002). Sampling of venous blood (7 ml) into sodium

heparinized evacuated tubes for pharmacokinetic analysis occurred after the first

irinotecan administration (at cycle 1). Sampling times were day 1 of cycle 1

(prior to irinotecan infusion) and at 0.5, 1.0, 1.5, 1.67, 1.83, 2.0, 2.25, 2.5, 3.0,

3.5, 5.5, 7.5, 13.5, 25.5 hours after the start of the infusion. For our analysis we

included only patients without missing observations, leaving n = 83 patients out

of 86 total patients.

Observed concentration-time curve for irinotecan, SN-38, SN-38G (glucuronide),

and APC are plotted in figure 2.3. Each solid line corresponds to a patient and a

dashed line showing the overall trend. In all 4 panels we see an overall decaying

trend within the first 10 hours. However, there are signs of individuals with rela-

tively slower elimination time, which is problematic for SN-38 since it may result

in diarrhea and/or neutropenia.
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2.5.3 Compartment model

We follow the work of Rosner et al. (2008) and fit a seven-compartment pharma-

cokinetic model with enterohepatic recirculation to concentrations of irinotecan

and its metabolites SN-38, SN-38G (glucuronide), and APC. The model is ex-

pressed as a 15 parameters differential equation model (5.11) in the appendix.

See Appendix 5.2.1 for the detail specification of the compartment model.

The enterohepatic recirculation time (EHRT) was treated separately and given

an informative prior based on previous studies. (Rosner et al., 2008). Other

hyperparameters were specified to define vague priors.

2.5.4 Data analysis

Inference for the proposed model is implemented in the R package “bppkgx”.

Using the R-package “bppkgx”, we fit the PopPKGx model to the irinotecan

data. We ran the simulation for 2 million iterations saving every 200 samples.

Figure 2.4 displays a posterior concentration-time curve in irinotecan, SN-38, SN-

38G (glucuronide), and APC for a sample patient with observed concentration

value superimposed on top as a solid thick line (blue). The dotted line (red)

corresponds to the posterior median and the dashed line (orange) is the 95%

credible interval for the particular patient. Figure 2.5 is an estimate of the chain

graph. The estimated is determined using the rule (2.16), with FDR control at

α = 0.001. The figure only shows PK parameters and SNPs that are included in

at least one edge of the estimated graph.

Much of the result is consistent with prior research (Rosner et al., 2008). As

expected from previous studies, UGT1A1 3156 mutation is linked to K35 along

with the mutation in HNF1α not often discussed in the literatures.
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Figure 2.4: Posterior samples of concentration-time curve for irinotecan, SN-38,
SN-38G (glucuronide), and APC for a particular patient plotted over time. A
solid line represents observed concentration. A dotted line is a mean trajectory,
the dashed lines are ±95% credible interval, and the remaining trajectories are
colored in descending intensity based on the distance from the mean trajectory.

Figure 2.6 shows the posterior log concentration-time curve (mean±95% cred-

ible interval) for patients with increasing level of UGT1A1 3156 mutation, that is

Z̃ = 0, 1 or 2, shown as dotted, dashed, and solid lines respectively. The following

interpretations are speculative interpretations of the reported inference, short of

formally validated hypotheses. Higher level of mutation in UGT1A1 3156 seem

to be associated with slower decay in the level of SN-38. This is further explored

in figure 2.7, K35. This parameter governs the rate of the glucuronidation of SN-

38, is incrementally lower for patients with higher level of mutation in UGT1A1

3156. At the same time K30, a parameter that govern the rate of elimination of

SN-38, is not affected by the mutation, which explains the slower decay of SN-38

concentration. Also note that patients with high mutation in UGT1A1 3156 are

estimated to have low level of K3B, which is important in delivering the SN-38

to the tumor. In summary, patients with high level of UGT1A1 3156 mutation

may not be getting as much expected chemotherapeutic effect of irinotecan, while

perhaps being more likely to experience high-dose side effects.

A more comprehensive picture is obtained if we consider interactions amongst

the genes. Figure 2.8 displays the same posterior log concentration trajectory
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Figure 2.5: Representative chain graph for irinotecan pharmacogenetics chosen
as described in section 2.5.4. The thicker edge is chosen at the expected FDR
of 0.001 and thinner line is chosen at 0.0025. Only vertices with any association
are shown. By simultaneously clustering the genes, it is possible to see latent
associations that otherwise will be harder to see.
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Figure 2.6: Posterior log concentration-time curve (median ±95% credible inter-
val ) for irinotecan, SN-38, SN-38G (glucuronide), and APC with level of poly-
morphism in UGT1A1 3156 represented in incremental order as dotted, dashed,
and solid lines respectively. SN-38 elimination is slower for patients with higher
level of mutation on UGT1A1 3156.

Ke Kcp Kpc Ksn K30 K35 K50 Kapc K70 K3B KBG KBG1 KG3 V
0.00289

0.49940

 0.0338

13.0373

0.0851

4.5912

0.0987

0.4131

0.00177

1.24969

 1.87

22.52

0.659

3.403

0.0172

0.2739

0.196

0.655

 4.04

44.32

0.0299

0.6513

0.0396

6.5103

0.183

4.901

10.6

89.2

Ke Kcp Kpc Ksn K30 K35 K50 Kapc K70 K3B KBG KBG1 KG3 V
0.00289

0.49940

 0.0338

13.0373

0.0851

4.5912

0.0987

0.4131

0.00177

1.24969

 1.87

22.52

0.659

3.403

0.0172

0.2739

0.196

0.655

 4.04

44.32

0.0299

0.6513

0.0396

6.5103

0.183

4.901

10.6

89.2

Figure 2.7: Posterior median ±95% credible interval for log PK parameters plot-
ted as a parallel coordinate plot. Each line corresponds to a line in figure 2.6
representing the level of polymorphism in UGT1A1 3156. Increased level of
UGT1A1 3156 mutation seems to reduce the level of K35, which governs the
glucuronidation of SN-38 to SN-38G.
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stratified over the mutation in HNF1α. Each row corresponds to each line in

figure 2.7 depicting incremental level of mutation in UGT1A1 3156. Within each

figure each line correspond to level of mutation in HNF1α with color intensity

displaying the increase in mutation level. What is notable from this figure is that

higher level of HNF1α seem to lower the level of SN-38 for the high UGT1A1 3156

group (row 3). Figure 2.9 shows the effect of UGT1A1 3156 on K35 is consistent

as before but mutation in HNF1α for high UGT1A1 3156 mutation group seems

to increase the level of K3B, leading to lower concentration of SN-38 in the plasma

and perhaps getting more of the expected chemotherapeutic effect.

These results are speculative and need confirmation through further research.

The example shown above displays the possible importance of considering inter-

actions among genes when considering effects of multiple genes on the pharma-

cokinetics of a substance. When the pharmacokinetics dynamics become highly

interwind, small changes in a parameter could make a substantial difference in

the expected outcome. This can be achieved, for example, using the approach

proposed proposed in this paper.

2.6 Discussion

We proposed a Bayesian pharmacogenetics model to jointly model the interaction

between population pharmacokinetic and SNP by use of chain graphs to formalize

the dependence structure. One distinct feature of the model is the fact that we

modeled the random association in the SNP as a graphical Gaussian model in-

stead of a fixed covariate. We believe this is important when coupled with variable

selection procedure for SNPs because sparsity induced by the prior distribution

may understate the clustering amongst the SNPs that should be considered simul-

taneously. It also allows for natural Bayesian treatment of measurement-error or
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Figure 2.8: Posterior log concentration-time curve ( median ±95% credible in-
terval ) for irinotecan, SN-38, SN-38G (glucuronide), and APC. Each row of the
plot represents level of polymorphism in UGT1A1 3156 in incremental order from
top to bottom, and each line with in a plot represents level of polymorphism in
HNF1α represented in incremental order as dotted, dashed, and solid lines re-
spectively. Effect of UGT1A1 3156 on SN-38 elimination is mitigated for patients
higher level of mutation on HNF1α showing a sign of interaction effect between
the two genes.
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Figure 2.9: Posterior median ±95% credible interval for log PK parameters plot-
ted as a parallel coordinate plot. Each row of the plot corresponds to the level
of polymorphism in HNF1α, and the color scheme for the lines are same as the
figure 2.8. The level of UGT1A1 3156 mutation seems to reduce the level of
K35 across mutations in HNF1α, yet for high level of mutation on UGT1A1 3156
mutation on HNF1α seems to have a reversal effect on K3B compared with figure
2.7.
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Figure 2.10: Expected posterior FDR by number of differential selected effects.
The solid line corresponds to choice made using Lindley’s procedure using one
sided 1 − α% CI, the dashed line corresponds to choice made using Bayesian
FDR control but without pooling across the parameters, and the dotted line
corresponds to choice made using simultaneous Bayesian FDR across the param-
eters. FDR procedure allows for a more aggressive decision and by pooling across
the parameters, more claims are made on the ρ and Ωθ by sacrificing Ωz for lower
level of posterior expected FDR.

missing data prevalent in pharmacogenetics studies, without adding extra layers

of ad-hoc adjustments.

The choice of Laplacian shrinkage priors, does not directly allow for the def-

inition of a posterior distribution over the model space p(G | Y , Z̃). A common

alternative is based on placing mixture priors over model selection parameters,

such as the G-Wishart prior (Dawid and Lauritzen, 1993; Roverato, 2002). Even

though this last approach is theoretically appealing, we acknowledge a growing

number of criticisms to point mass mixture priors, both from a theoretical (Rice,

2010; Thulin, 2012) and a practical perspective (Jones et al., 2005). Our choice

of shrinkage priors, is indeed motivated by pragmatism. When the analysis ob-

jective is exploratory, as long as proper levels of shrinkage are achieved, one may

in fact argue if the gain associated with the use of explicit model selection priors

outweighs the immense computational cost.
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There are possible extensions to this model that we have not explored such

as allowing the association structure to vary amongst subset of the patients.

Parametric approaches such as covariance regression (Hoff and Niu, 2012) or

nonparametric approaches such as Rodriguez et al. (2011) may be used to de-

termine the difference in the structure of associations for some known subset of

patients or to determine potential heterogeneity in the patients that differ in the

pharmacogenetics mechanism.

Extending beyond Gaussian assumptions to allow for higher-order interaction

is a possibly important next step. However, to allow for elaborate extensions,

improvement in the way we address differential equations within a MCMC must

be dealt with. We believe active research in MCMC computation will allow for

such extensions to bring us closer to the science of the problem in the near future.

The analysis in this manuscript was carried out using an R-package “bppkgx”,

which is a general purpose R package we created to implement the model proposed

in this paper. The package is available on CRAN and is free for public use. It is

designed so that a user can specify the functional form of the pharmacokinetics

model in the same way a user would specify them if they were using the standard

differential equation solver package deSolve in R (Soetaert K, 2010).
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CHAPTER 3

DETECTING DIFFERENTIAL PATTERNS

OF INTERACTION IN MOLECULAR

PATHWAYS

3.1 Introduction

We propose a methodological framework to assess heterogeneous patterns of as-

sociation amongst components of a random vector. Figure 3.1 (left) is a toy

example illustrating what happens when one tries to determine the association

between two variables, without accounting for heterogeneity subsumed in the

data. The issue becomes obvious as the information on known sample subsets

is revealed as in figure 3.1 (center); two conflicting effects as shown in figure 3.1

(right) cancel out when integrating over the subsets. Despite the simplicity of

the scenario, it highlights the danger of failing to account for subset labels, which

is often available in most comparative studies. One such example is the case of

estimating molecular interactions from large scale genomic or proteomic studies,

where there is substantive interest in understanding whether disease progression

in patient subgroups exhibits differential regulatory patterns. This chapter is

indeed partially motivated by a study on Acute Myeloid Leukemia (AML) pa-

tients (section 3.6), where interest centers on comparing refractory vs. relapsed

patients. Figure 3.2 shows the targeted protein expression level for AML patients,
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Figure 3.1: Illustrative example of the differential effects. Without taking into
account of the subgrouping figure on the left shows no strong association between
Y1 and Y2. But if we knew the data comes from two different source as shown
in central figure, we could use that information and see that there is actually 2
strong effects in the opposite direction as shown in the right figure.

measured using a high-throughput proteomic technology called reverse phase pro-

tein array (RPPA) (Tibes et al., 2006), along with the sample partial correlation

matrix of the expression levels for both refectory and relapsed patients in the up-

per and lower triangle respectively. The two sample partial correlation mostly

agree with each other, yet there are clear discrepancies that may signify differing

interactions mechanism. The proposed methodology is designed to account for

subset-specific heterogeneity, while uncovering the hidden differential association

structure in a multivariate setting.

Inference and estimation algorithms for structured inverse covariance matri-

ces in the multivariate Gaussian framework have been described by Dempster

(1972). More recently, focus has shifted to using graphical models to represent

the conditional dependence structure of a multivariate vector. Several authors

have contributed to the development of graphical model classes as instruments of

statistical inference: decomposable graphs (Giudici and Green, 1999; Jones et al.,

2005; Wang and West, 2009), non-decomposable graphs (Roverato, 2002; Atay-
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Figure 3.2: The observed expression levels of targeted proteins for AML patients
quantified using RPPA (left) and a image plot of the sample partial correlation
coefficients for refractory patients in the upper triangle and relapsed patients in
the lower triangle (right).
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Kayis and Massam, 2005), Directed Acyclic Graphs (Madigan et al., 1995; Dobra

et al., 2004; Fronk, 2002; Fronk and Giudici, 2004), and the computation associ-

ated with such models (Scott and Carvalho, 2007; Barker et al., 2010). To our

knowledge, however, limited attention has been given to cases where the Markov

structure describing the multivariate distribution of interest depends on known

subgroup indicators. In the computer science literature early work by Thiesson

et al. (1997) had a similar concept under the name of mixtures of DAGs models,

though the implementation was limited to very small graphs and inference was

based on heuristic arguments.

In statistical literature, Guo (2002) proposed a method that makes use of

penalized likelihood to estimate jointly several graphical models. The proposed

procedure was shown to be scalable to large graphs, with estimators that enjoy

asymptotic consistency. A recent applied paper by Valcárcel et al. (2011) consid-

ered a closely related problem, regarding inference on differential networks. The

Authors discuss inference about differences in the molecular association between

normal and the prediabetic patients, using permutation arguments.

Both methods are of great practical relevance, since they scale to large net-

works and may prove to be an important tool in data exploration. At the

same time, both procedures are based on several ad-hoc corrections and heuristic

choices, which raise methodological and theoretical questions regarding multiplic-

ity correction and final inference validity.

In the Bayesian nonparametric literatures models that aims to use multiple

graphical structure for clustering purpose has been proposed by Ickstadt et al.

(2010) for differential edges and Rodriguez et al. (2011) for differential association

structures. These nonparametric models are exploratory in nature that does not

provide means to do cluster specific statistical inference.
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We contrast these approaches proposing a probability model that provides a

coherent framework for estimation as well as inference for differential patterns

of association, described as multiple graphical models. We show how, from a

Bayesian perspective, principled inference can be carried out using sound decision

theoretic principles, without the need to resort to ad-hoc arguments.

To facilitate exposition and notation we consider the case of two known subsets

in the sample. We will call one group the baseline group and the other one the

differential group. In a symmetric fashion, we will define a baseline network/graph

and a differential network/graph. Extensions to k subsets are straightforward.

We propose a full Bayesian model which follows the original development of Fronk

and Giudici (2004), with the additional consideration of structural constraints

defined by the differential network. We will jointly estimate the baseline graph

and the differential graph as well as the strength of association by the use of

stochastic simulation technique called Reversible Jump Markov Chain Monte

Carlo (Green, 1995). Then turn to decision theoretic framework proposed by

Müller et al. (2006) to decide on the meaningful association.

The modeling approach proposed in this manuscript highlights several novel

contributions. We describe a coherent probability model of differential associa-

tion. We provide a computational framework for the simultaneous estimation of

several graphical structures and associated parametric forms of structured mul-

tivariate Gaussian vectors. Finally, we propose a decision theoretic framework

aimed at the definition of posterior estimates, which account for considerations

of multiplicity.

This chapter is structured as follows. In section 3.3 we propose a Gaussian

Differential DAG model followed by computational detail in section 3.4. We

illustrate the method further with a simulated example and an application to the
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Reverse Phase Protein Array (Tibes et al., 2006) data on Acute Myeloid Leukemia

patients. We conclude the manuscript with a critical discussion in section 3.7.

3.2 Representing Dependence Through Graphical Models

For the rest of the chapter, we focus on Directed Acyclic Graphs (DAGs). A DAG

is directed graph with no directed cycles. The acyclicity restriction could rep-

resent a drawback in some applications. However, when dealing with a network

where association is usually sparse, this restriction is often not critical. Further-

more, we find that structural computational advantages of DAG-based models far

outweigh small gains in flexibility, obtained dropping the acyclicity restriction.

Finally, we should be clear that our use of DAGs is not intended to code

any causal relationship (Pearl, 2000), but is strictly based on theoretical and

computational convenience.

3.3 A Model for Differential Interactions

We consider data in the form of an n× p matrix Y = [yij], such that E[yij] = 0,

for all i = 1, ..., n, j = 1, ..., p. Without loss of generality, we consider the case of

two known subgroups and assume that the rows of Y are labelled by a subgroup

indicator si = I{differential group}. The sampling model for Y depends on

a graph Gs, describing the dependence structure between columns of Y . The

strength of this dependence is indexed by two parameter vectors β and γ. The

key feature of the proposed model is that the the graph Gs is indexed by subgroups

indicators s = (s1, ..., sn)′. Let G = {Gs, s = 0, 1} denote the set of graphs. In
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summary the joint probability model is defined as:

p(Y,β,γ,G | x) = p(Y | β,γ,G; s)︸ ︷︷ ︸
3.3.1

p(β,γ | G; s)︸ ︷︷ ︸
3.3.2

p(G | s)︸ ︷︷ ︸
3.3.3

.

The model includes two separate graphs, G0 = {V , E0} for the baseline samples

(si = 0) and G1 = {V , E1} for the differential sample (si = 1). Our inference will

focus on identifying a set of differential interactions partially indexed by the set

{(E (0))c∩E (1)}∪{E (0)∩(E (1))c}. For clarity of notation, the foregoing formulation

in (3.3) integrates over nuisance parameters completing the coherent definition of

sampling and prior models. In the following sections we discuss each component

of the model in more detail. Under-braced section numbers in (3.3) indicate

where each submodel is discussed. Nuisance parameters are described in section

3.3.4.

3.3.1 Sampling model:

We have data in the form of a n × p matrix Y . We assume that Y can be

subdivided into two groups as Y (0) and Y (1) each of size n0 and n1, where n0+n1 =

n. We will refer to the former as the baseline group and latter as the differential

group. Throughout this chapter we will assume the baseline is stacked on top of

the differential group for notational convenience, i.e., Y = (Y0, Y1).

The Gaussian Differential DAG model for Y is defined as the product of con-

ditional Gaussian DAG models for Y (0) and Y (1), given the graphical structures

G0 and G1. Let pak(j) denote the parent nodes of vertex j, induced by graph Gk.

Let Yj = (y1j, . . . , ynj)
T , j = 1, . . . , p, the joint likelihood is defined as

p(Y | ·) =
1∏

k=0

p∏
j

p(Y
(k)
j | Y (k)

pak(j),Gk, ·),
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where p(Y
(k)
j | Y (k)

pak(j),Gk, ·) =
∏nk

i=1 p(y
(k)
ij | Y

(k)
pak(j),Gk, ·). In the multivariate

Gaussian framework, we can express each of p(y
(k)
ij | Y

(k)
pak(j),Gk, ·) as a conditional

regression of the form

y
(k)
ij | Y

(k)
pak(j)

, αj ,βj ,γj , σ
2
j ,Gk ∼ N

αj +
∑

l∈pak(j)

y
(k)
il (βlj + γlj I{si = 1}) , σ2

j

 , (3.1)

for i = 1, . . . , n, j = 1, . . . , p, and k = 0, 1. Here αj is a nuisance pa-

rameter for the mean value and σ2
j is a variance parameter. In (3.1) we let

βj = (β1j, . . . , β(j−1)j, 0, β(j+1)j, . . . , βpj)
T and define γj in a similar fashion (we

include the 0 for the j−th element to simplify later expressions). We also use β

and γ to denote p× p matrices [βlj] and [γlj], and define α = (α1, . . . , αp)
T .

In vector form, we define Y−j as the n×p matrix comprising all data, repalcing

the j-th column with all 0’s. The conditional distribution of the random vector

Yj, given its parents can be written as

Yj | Y−j ,γj , αj ,βj , σ2
j ,G0,G1 ∼ N

(
X̃jBj , σ

2
j In

)
for j = 1, . . . , p (3.2)

where

Bj = (αj ,β
T
j ,γ

T
j )T , and X̃j =

 1n0 Y
(0)
−j 0n0×(p−1)

1n1 Y
(1)
−j Y

(1)
−j

 .

In the previous formula 1nk is a column vector of 1s with length nk and 0nk×p is

a nk × p matrix of 0s. Furthermore, restrictions to structural zeros in βj and γj

assure that yj is regressed only on the set of parent nodes pa(j), as indexed by

G0 and G1.

For any random vector yi = (yi1, . . . , yip)
′ in the baseline or differential group,

constructions (3.1) or (3.2) define the joint sampling distribution in closed form
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as

y
(0)
i ∼ N

(
(Λ−1

0 )Tα, (Λ−1
0 )TΩΛ−1

0

)
and y

(1)
i ∼ N

(
(Λ−1

1 )Tα, (Λ−1
1 )TΩΛ−1

1

)
,

where Ω = diag(σ2
1, · · · , σ2

p) and

[Λ0]lj =


1 (l = j)

−βlj (l→ j ∈ E0)

0 (o.w.)

, [Λ1]lj =


1 (l = j)

−(βlj + γlj) (l→ j ∈ E1)

0 (o.w.)

.

In the foregoing formulation, βlj indexes the strength of association between

y
(0)
il and y

(0)
ij , with the convention βlj = 0 when l → j /∈ E0. The strength of

association between y
(1)
il and y

(1)
ij is defined by βlj + γlj, with (βlj + γlj) = 0

whenever l → j /∈ E1. In this setting, the parameter γlj becomes the main

quantity of interest as it directly informs the differences in association between

subgroup random quantities. Details about how γ is used to index the differences

between E0 and E1 and final inference about differential interactions are discussed

in section 3.3.2.

3.3.2 Priors on interaction parameters

The strength of association between random quantities in the baseline group is

parametrized through βlj coefficients. Conditioned on the baseline graph G0, we

define a conjugate Gaussian distribution for βlj similar to Fronk and Giudici

(2004), so that

βlj | σ2
j ,G0 ∼

 δ0 if l /∈ pa0(j)

N
(
blj,

1
ωj
σ2
j

)
if l ∈ pa0(j)

. (3.3)
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Here δ0 denotes a Dirac mass at 0. Hyperparameters blj are usually set to 0 unless

we have information otherwise. Integrating over the model space G0, this prior

is marginally equivalent to defining mixture of a conjugate Gaussian distribution

and a point mass at zero, in a fashion that is similar to standard Bayesian vari-

able selection strategies (Kuo and Mallick, 1998; Brown et al., 1999; George and

McCulloch, 1993).

Differential parameters γlj distinguish the strength of association between the

baseline and differential groups. Intuitively, when γlj is close to 0, partial correla-

tions in the baseline and differential groups are about the same size. We are inter-

ested in answering two main questions. First, are there differences in patterns of

conditional dependence between baseline and differential groups? This question

relates to the identification of the set {(E (0))c∩E (1)}∪{E (0)∩(E (1))c}.Second, when

considering edges that are shared between both baseline and differential groups,

are there significant differences in the way these edges are defining conditional

dependence patters? Here we consider the set (E0 ∩ E1), but we are specifically

interested in the size of γlj.

These inferential goals are coded directly into the prior distribution for γlj,

which is defined conditionally on the baseline association strength βlj as well as

conditionally on the graphs G0 and G1. We define

γlj | G0,G1, βlj , σ2
j ∼



N
(
νlj ,

1
ωj
σ2
j

)
if (l /∈ pa0(j), l ∈ pa1(j))

πljδ0 + (1− πlj)N
(
νlj ,

1
ωj
σ2
j

)
if (l ∈ pa0(j), l ∈ pa1(j))

δ−βlj if (l ∈ pa0(j), l /∈ pa1(j))

δ0 if (l /∈ pa0(j), l /∈ pa1(j))

(3.4)

where δd is a Dirac mass at d, νlj and ωj are known hyper parameters, and

πlj are unknown mixing proportions. The last two lines of (3.4) formalize the
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convention γlj = 0 for an excluded edge. In this formulation, the full set of differ-

ential interactions is identified by γij being sampled from δ−βij or N
(
νlj,

1
wj
σ2
j

)
.

Equivalently, identical interactions between baseline and differential groups are

indexed by a Dirac mass at 0 for γlj.

In the later discussion it will be convenient to introduce latent indicators

z = [zlj], zlj ∈ {0, 1, 2} that allow us to replace (3.4) by a hierarchical model

p(z | . . .) · p(γ | z, . . .). Specifically

zlj | G0,G1, βij =



0 if (l /∈ pa0(j), l /∈ pa1(j))

πljδ0 + (1− πlj)δ2 if (l ∈ pa0(j), l ∈ pa1(j))

1 if (l ∈ pa0(j), l /∈ pa1(j))

2 if (l /∈ pa0(j), l ∈ pa1(j))

and

γlj | zlj, βlj, σ2 ∼


δ0 if zlj = 0

δ−βlj if zlj = 1

N
(
νlj,

1
ωj
σ2
j

)
if zlj = 2

.

Given this parametrization, posterior inference over differential patterns of inter-

action focuses directly on p(γlj | Y ), informing about the size of differences in

partial correlation, and p(zlj 6= 0 | Y ), informing about the significance of such

differences.
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3.3.3 Model space priors

Our inference depends on obtaining posterior draws from the model space spanned

by DAGs G0 and G1. For simplicity, we will model G0 and G1 independently, so

that p(G0,G1) = p(G0)p(G1).

As for the priors on each graph Gk, (k = 0, 1), we model edge inclusion

probabilities as exchangeable Bernoulli trials (Giudici and Green, 1999; Fronk

and Giudici, 2004). Let |Ek| be the number of edges in graph Gk, then p(Gk |

ψk) = ψ
|Ek|
k (1− ψk)M−|Ek|.

For a class ofBeta prior distribution on inclusion probabilities ψk ∼ Beta(v1, v2),

this class of stochastic schemes is know to provide automatic multiplicity correc-

tion in the posterior p(Gk | Y ) (Scott and Berger, 2006; Carvalho and Scott,

2009). The marginal prior distribution for Gk is available in closed form as

p(Gk) ∝ B(v1 + |Ek|, v2 +M − |Ek|)

=
Γ((v1 + |Ek|)Γ(v2 +M − |Ek|)

Γ(v1 + v2 +M)
,

which simplifies to p(Gk) = 1
(M+1)

(
M
|Ek|

)
, if ψk ∼ U(0, 1).

When prior information on interaction structures is available, informative

priors may be defined following the approaches of Mukherjee and Speed (2008);

Telesca et al. (2012b). Finally, the model space prior is completed specifying

mixture probabilities πlj for the case (l ∈ pa0(j), l ∈ pa1(j), γlj 6= βlj). We

exploit conditional conjugacy and assume πlj = π ∼ Beta(v1, v2).
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3.3.4 Priors on nuisance parameters αj and σ2
j

For dispersion parameters σ2
j we model each of the σ2

j , j = {0, . . . , p} as a con-

jugate Inverse Gamma prior with hyper parameters
δj
2

and
τj
2

, so that σ2
j | G ∼

Inv-Ga
(
δj
2
,
τj
2

)
. In a similar fashion, we exploit conditional conjugacy and place

a Gaussian prior on the intercept terms αj, so that αj | σ2
j ∼ N

(
a, 1

ω
σ2
j

)
.

3.4 Posterior Inference

To obtain draws from the posterior distribution p(α,β,γ, σ2,G1,G0 | Y ), we use

reversible jumps Markov Chain Monte Carlo (RJMCMC) (Green, 1995). More

precisely, we extend the approach of Fronk and Giudici (2004) to differential

Gaussian DAGs. Fronk and Giudici’s algorithm moves through the model space

spanned by a DAG G by proposing the addition, deletion, or switch in direction

for one individual edge at the time. Acyclicity is assessed online and, for a given

graph G, remaining variables in the model are updated component wise via Gibbs

sampling.

The addition of a differential graphical structure and differential parameters

is, in principle, easily treated with a small modification to the simulation scheme

proposed by Fronk and Giudici (2004). The only change is in the consideration

of an additional structure G1, together with the baseline G0.

We note that, in our formulation, G1 is fully determined by G0 and latent

components zlj. It follows that, systematic or random scans through the following

transition sequence define an ergodic Markov chain, we can use to sample from
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posterior quantities of interest. We consider the following transition sequence

G0 | α,β,γ, z, σ2 (3.4.1)

z | G0,α,β,γ, σ
2 (3.4.2)

α,β,γ | G0, z, σ
2 (3.4.3)

σ2 | G0,α,β,γ, z (3.4.4)

Details about each transition are explained in the corresponding sections.

3.4.1 Updating the baseline DAG G0

To update G0, we select an edge (l → j) at random, i.e., using a uniform dis-

tribution over all possible edges l → j. If (l → j) /∈ E0 we propose its addition

to E0 (birth); if (l → j) ∈ E0 we propose removal (death); if (l ← j) ∈ E0 but

(l → j) /∈ E0 then propose to remove (l ← j) and add (l → j) (switch). This is

the algorithm proposed by Fronk and Giudici (2004), with the added caveat that

changes in G0 may also affects G1.

3.4.1.1 Birth move

Adding the edge (l → j) in E0 results in augmenting the parameter space with

one extra coefficient β′lj, which will also define changes in E1. To maintain local

moves and protect E1 from being affected, we also propose a state transition

for γlj and zlj. A birth move then consists of the following proposal (G0, βlj =

0, zlj, γlj)⇒ (G ′0, β′lj, z′lj, γ′lj), where β′lj ∼ qb(βlj) and (z′lj, γ
′
lj) ∼ qg(z

′
lj, γ

′
lj; zlj).

Let θ = (G0, βlj = 0, zlj, γlj) and let θ′ = (G ′0, β′lj 6= 0, z′lj, γ
′
lj) denote the

current state vector and the joint proposal. In particular:
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• If zlj = 0, propose z′lj = 1 and γ′lj ∼ δ−β′lj . The reversible jump ratio is

RB0(θ,θ′) =
p
(
Yj | X̃j ,β

′
j ,γ
′
j , σ

2
j

)
p
(
β′lj | σ2

j ,G′0
)
p (G′0)

p
(
Yj | X̃j ,βj ,γj , σ2

j

)
p (G0) q

(
β′lj

) ,

• If zlj = 2, propose one of the following moves with equal probability 1
2
:

– propose z′lj = 0 and γ′lj ∼ δ0, with reversible jump ratio

RB1(θ,θ′) =
p
(
Yj | X̃j ,β

′
j ,γ
′
j , σ

2
j

)
p
(
β′lj | σ2

j ,G′0
)
p (G′0) qg (γlj)πj

p
(
Yj | X̃j ,βj ,γj , σ2

j

)
p
(
γlj | zlj , βlj , σ2

j ,G0

)
p (G0) qb

(
β′lj

) (
1
2

) ,

– or propose z′lj = 2 and γ′lj = γlj, with reversible jump ratio

RB2(θ,θ′) =
p
(
Yj | X̃j ,β

′
j ,γ
′
j , σ

2
j

)
p
(
β′lj | σ2

j ,G′0
)
p (G′0) (1− πj)

p
(
Yj | X̃j ,βj ,γj , σ2

j

)
p (G0) qb

(
β′lj

) (
1
2

) .

In the calculations above, β′j refers to βj with the l−th element set to β′lj and γ ′j

refers to γj with the l−th element set to γ′lj. The acceptance probability for each

move is calculated as ABi = min {1, RBi}. Note that p(G ′0) = 0 if the proposed

graph G ′0 were to include directed cycles, i.e., G ′0 is not a DAG. A test of acyclicity

was proposed by Fronk and Giudici (2004).

Test of acyclicity (Fronk and Giudici, 2004): Given an ancestral matrix

A corresponding to a DAG G, a DAG G is not acyclic if

diag(Ai) = 0,∀i = {1, · · · ,min(G, |G|)} (3.5)
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Where Ai is matrix exponent, diag() is the diagonal elements of the matrix, |G|

is the number of edges in a graph G and G is the number of vertices.

This proposal transition scheme is designed to define symmetry with respect

to the reverse (death) move. Details are discussed in supplemental appendix B.

In our implementation we consider qb(β
′
lj) =d N(0, ζ2) and qg(γ

′
lj) =d N(0, ζ2).

When adding l → j to E0 defines a cycle in G ′0, we evaluate p(G ′0) = 0 and thus

RBi = 0 and the proposal is discarded.

3.4.1.2 Death move

Deletion of an edge l → j is equivalent to forcing β′lj = 0. In order to maintain

detailed balance we design these transitions as the inverse of those proposed in

the birth step. In more detail:

• If zlj = 1, propose z′lj = 0 and γ′lj ∼ δ0, with reversible jump ratio

RD0(θ,θ′) = 1/RB0(θ′,θ).

• If zlj = 0, propose z′lj = 2 and γ′lj ∼ qg(γ
′
lj), with RD1(θ,θ′) = 1/RB1(θ′,θ).

• If zlj = 2, propose z′lj = 2 and γ′lj ∼ qg(γ
′
lj), with RD2(θ,θ′) = 1/RB2(θ′,θ).

The acceptance probability for each move is then ADi = min {1, RDi}. Detailed

calculations are reported in supplemental appendix B.

3.4.1.3 Switch move

Proposing the switch of an edge implies a death move on j → l, as well as a

birth move on l → j. Hence the acceptance is determined by the combination

of reversible jump ratios noted earlier for birth and death, RB0 , RB1 , or RB2 and

RD0 , RD1 , or RD2 according to the current values of zjl and zlj respectively. The
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G0 current zlj proposed zlj move type probability move #

(i, j) /∈ E0 zlj = 0 z′lj = 2 RJ birth 1 1
zlj = 2 z′lj = 0 RJ death 1 2

zlj = 0 z′lj = 1 MH 1/2 3
z′lj = 2 RJ birth 1/2 4

(i, j) ∈ E0 zlj = 1 z′lj = 0 MH 1/2 5
z′lj = 2 RJ birth 1/2 6

zlj = 2 z′lj = 0 RJ death 1/2 7
z′lj = 1 RJ death 1/2 8

Table 3.1: Proposal transition scheme for exploration of the differential model
space to update zlj. The transition probabilities 1 through 8 include four pairs
of moves that are each other’s inverse: (1,2), (3,5), (4,7) and (6,8).

acceptance probability of a switch is calculated as ASij = min
{

1,
(
RDiRBj

)}
. As

in the birth move, if adding l→ j to E0 defines a cycle in G ′0, we set ASij = 0.

3.4.2 Updating the differential model space through latent indicators

zlj

Given the baseline graph G0 we propose to move over the differential model space

updating the latent variables zlj. Updates in the state of z = [zlj] will also define

changes in G1.

We select an edge l → j at random. Depending on the current state of G0

and zlj, we consider the proposal transitions summarized in Table 3.1.

Acceptance probabilities for the proposed transitions are detailed in the fol-

lowing sections. As before, let θ and θ′ denote the current state and the proposed

new state. Note that the probabilities of selecting one of the transition probabil-

ities, numbered 1 through 8 in Table 3.1, are exactly matched. Therefore these

probabilities do not appear in the Metropolis-Hastings acceptance probabilities

stated below.
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3.4.2.1 Birth move

When z′lj is proposed to be 2 it results in increase of dimension in γ. We follow

the principles of RJMCMC and augment the γ by proposing γ′lj from N(0, ζ2).

Then the Jacobian matrix is 1 and proposal is symmetric so they also cancel out

and we are left with the acceptance probability ABz = min (1, SB) with

SB(θ,θ′) =
p
(
Yj | X̃j ,βj ,γ

′
j , σ

2
j

)
p
(
γ′lj | νlj , σ2

j , z
′
)
p (G′1) p(z′ | G0,G′1)

q
(
γ′lj

)
p
(
Yj | X̃j ,βj ,γj , σ2

j

)
p
(
γlj | νlj , σ2

j , z
)
p (G1) p(z | G0,G1)

3.4.2.2 Death move

When the current zlj = 2 then move to 0 or 1 will result in a reduction in

dimension. Using the same argument as Giudici and Green (1999), this is nothing

more than inverse of the birth move. Hence the acceptance probability becomes

ADz = min {1, 1/SB(θ′,θ)}.

3.4.2.3 Moving zlj between 0 and 1

The transition zlj ∈ {0, 1} −→ z′lj ∈ {0, 1} does not involve changes in the

dimension of γ. The acceptance probability, in this case, is obtained via ordinary

Metropolis Hastings calculations as

ADz = min

1,
p
(
Yj | X̃j ,βj ,γ

′
j , σ

2
j

)
p (G′1) p(z′ | G0,G′1)

p
(
Yj | X̃j ,βj ,γj , σ2

j

)
p (G1) p(z | G0,G1)

 .

Priors density for γ cancel out since they are both 1.
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3.4.3 Updating other parameters

Component-wise updates of α, β, and γ are amenable to Gibbs sampling. This

strategy may however lead to poor mixing and slow convergence (Geyer, 2010b).

We will use the fact that a closed form solution for constrained MLE is available

for maximum likelihood estimation (MLE) if we define a linear equality constraint

based on G0 and z (Golub, 1965; Stirling, 1981; Neytchev, 1995) . Using this peak

in the likelihood we can jointly propose αj, βj, and γj for each j = 1, . . . , p, by

the method of over relaxation (Neal, 1995).

Overrelaxation Algorithm: We propose a new set of values for Bj =

(αj,βj,γj by the method of over-relaxation (Adler, 1981). We partition Bj

into three,

• the 0 constrained group (l /∈ pa0(j) or zlj = 0),

• the equality constrained group (zlj = 1), and

• the remaining group.

Proposal for the first 2 groups are trivial, the proposed value of the first group

is 0 and second group is −βlj. The proposal of the third group is done in two

steps, first we get the constrained MLE then using that MLE we move the center

from the current location to the other side of the MLE than propose a new set

of values from a joint distribution. For the ease of notation, for the remainder of

this section we will use Bj to denote only the set of parameters that belong in

the third group.

Constrained MLE: For a given set of constraints G0 and z, we can construct

a linear constraint matrix Lj explicitly as having a row for each of the constraint
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imposed by the combination of G0 and z so that LjBj = 0. This translates to

defining the entries of Lj as

Lj =


for each l /∈ pa0(j) : lβlj → 1

for each zlj = 0 : lγlj → 1

for each zlj = 1 : lβlj → 1 and lγlj → 1

where lβlj and lγlj are entry in Lj with position corresponding to βlj and γlj.

Then, given

yj = X̃jBj + ε, ε ∼ N(0,Σ) and LjBj = 0

the maximum likelihood estimation (MLE) for B̂j = (α̂j, β̂
T
j , γ̂

T
j )T has a closed

form solution (Golub, 1965; Stirling, 1981; Sallas, 1988; Neytchev, 1995) .

B̂j = B̆j − (X̃
T

j X̃j)
−1LTj (Lj(X̃

T

j X̃j)
−1LTj )−1LjB̆j where B̆j = (X̃

T

j X̃j)
−1X̃

T

j yj

The unconstrained posterior distribution: For all the parameters defined

in the complementary space of Lj, the proposal can be made from joint Gaussian

distribution after over relaxation move, which is a benefit of working with a jointly

Gaussian model.

Since the joint prior distribution of Bj is

Bj ∼ N(µb = (a, bTj , ν
T
j )T ,Γj) and Γj =

1

ωj
σ2
j I (3.6)

without the structural constraint, the unconstrained posterior is distributed as

N(B̃j, Σ̃j) where Σ̃j =
(
X̃

T

j Σ−1X̃j + Γ−1
j

)−1

and B̃j = Σ̃j

(
X̃

T

j Σ−1X̃jB̆j + Γ−1
j µb

)
.
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Overrelaxation Algorithm: Algorithm for updating α, β, and γ proceeds

as following

1. Start with the current value of the estimate Bj

2. We partition Bj into 3; (B
(0)
j , B

(1)
j , B

(2)
j );

• For parameters B
(0)
j corresponding to l /∈ pa0(j) and zlj = 0,

– propose B
(0)′

j = 0

• For parameters B
(2)
j corresponding to l ∈ pa0(j) or zlj = 2,

– Propose new values B
(2)′

j from N
(
B

(2)
j + 2(B̆

M

j −B
(2)
j ), 1

ϕ
Σ̃j

)
• For parameters γ

(1)′

lj ∈ B
(1)
j corresponding to zlj = 1

– propose γ
(1)′

lj = −β(2)′

lj

3. Acceptance probability is calculated as

Ao = min

1,
N(B

(2)′

j ; B̃
(2)

j , Σ̃
(2)
j )

N(B
(2)
j ; B̃

(2)

j , Σ̃
(2)
j )

 (3.7)

4. Set Bj = B′j = (B
(0)′

j , B
(1)′

j , B
(2)′

j ) if u ≤ A where u ∈ U [0, 1], otherwise set

it to Bj

3.4.4 Updating σ2

We use Gibbs sampling to update σ2. The conditional posterior distribution for

σ2
j (j = 1, . . . , p) is available in closed form as an Inverse Gamma distribution
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Inv-Ga(δ̃j, τ̃j) where

δ̃j =
1

2

(
δj + n+ 1 +

∑
l

I{Glj = 1}+
∑
l

I{zlj = 2}

)
τ̃j =

1

2
τj +

1

2

(
yj − X̃jBj

)T (
yj − X̃jBj

)
+

1

2
ωj

(
(αj − aj)2 +

∑
l

(βlj − blj)2 I{l ∈ pa0(j)}+
∑
l

(γlj − νlj)2 I{zlj = 2}

)

Detailed calculations are reported in supplemental appendix 5.3.2.

3.4.5 Other computational concerns

Although the above algorithm is straightforward to implement, the computation

of MCMC on the space of graphs requires extra considerations. Several Authors

pointed out how the model space may be characterized by many local modes

(Scott and Carvalho, 2007; Barker et al., 2010). Furthermore regions of high pos-

terior probability could get extremely peaky as the sample size increases, making

it difficult for a näıve Monte Carlo simulation scheme to effectively transition

between highly likely alternative models.

To deal with this problem Scott and Carvalho (2007) suggested using a stochas-

tic search method, which combines a local as well as a global move. Their method

is devised for decomposable undirected graphs and it is not directly applicable to

our model. Alternatively Barker et al. (2010) recently proposed the MC4 algo-

rithm on DAGs by expanding the MC3 algorithm (Madigan et al., 1995) with a

parallel tempering (Geyer, 1991) step and showed improved performance.

In this regards, to increase the efficiency of our sampler, we expanded our

sampler to perform parallel tempering (Geyer, 1991) on RJMCMC as suggested

by Jasra et al. (2007) and Barker et al. (2010).
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3.4.5.1 Parallel tempering move

Parallel tempering (Geyer, 1991) is a population Monte Carlo technique where

the target distribution is augmented with an indicator that specify a level of

smoothing applied to each of the target distribution. The new joint distribution is

the product of each of the distribution over the indicators since each of the density

is independent of each other given the indicator. Markov chains at different

temperatures are run in parallel and the neighboring states are exchanged between

the chains with a predefined rate.

For the case of RJMCMC Jasra et al. (2007) proposes on adding an additional

delayed rejection (Green and Mira, 2001) step that increases the efficiency of the

algorithm by allowing swaps between the non-neighboring temperatures.

3.4.6 Tempering move with delayed rejection for RJMCMC

Choose a set of temperatures {1, . . . , T} (Geyer and Thompson, 1995) and for

each temperature, replicate the parameters θ for T times;

θt =
{
α(t),β(t),γ(t), z(t), σ2(t),G(t)

0

}
, t ∈ {1, . . . , T}.

1. For a preset probability Pt, perform a switch temperature move.

(a) Choose two temperatures i1, i2 ∈ {1, . . . , T}

(b) Exchange θi1 with θi2 with probability

P1(θ,θ′) = min

{
1,
πi1(θi2)πi2(θi1)

πi1(θi1)πi2(θi2)

}
(3.8)

where πt(θt) is a posterior density at temperature t evaluated at θt.

(c) If rejected perform delayed rejection step by choosing neighboring tem-
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peratures i3, i4 ∈ {1, . . . , T} and exchange θi3 with θi4 with probability

P2(θ,θ′′) = min

{
1,
πi3(θi4)πi4(θi4)(1− P1(θ′′,θ∗)

πi3(θi3)πi4(θi4)(1− P1(θ,θ′))

}
(3.9)

were θ∗ is the hypothetical θ if P1(θ,θ′) was accepted.

2. Perform regular RJMCMC with probability (1 − Pt) for each temperature

T .

For details of the method and other suggestions we refer you to Jasra et al. (2007)

and Barker et al. (2010).

3.4.7 Posterior summaries

Posterior probabilities p(G0 | Y ), p(z | Y ) and corresponding MCMC samples

characterize our knowledge about baseline and differential interactions in light of

the data. Based on these quantities, the main inferential goal is to select repre-

sentative baseline and differential graphs, say G∗0 and G∗1 . While posterior prob-

abilities do summarize evidence about interaction structures, selection a point

estimate in the models space requires further decision theoretic considerations.

Given a joint model on edge and parameter inclusion probabilities, in the

Bayesian framework, selection of point estimators for interaction structures G0

and G1 usually translates into the appropriate definition of a cutoff value for

posterior inclusion probabilities (Scott and Berger, 2006; Müller et al., 2006). A

cutoff threshold is often determined in order to ensure optimization of a chosen

loss function. For example, a loss function that equally weigh false positives and

the false negatives would threshold inclusion probabilities at 0.5. This choice

coincides with the median probability model proposed by Barbieri and Berger

(2004). They justify the median probability model by the optimal predictive
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Figure 3.3: The true graphs used to generate the data for the simulation.

performance (under some additional assumptions).

An alternative common strategy is to select a point estimator, on the basis

of classical multiple comparison arguments. An often used error rate is the false

discovery rate (FDR) (Benjamini and Hochberg, 1995). Rules as discussed in

Benjamini and Hochberg (1995) control the frequentist expectation of the error

rate across repeat experimention. Several authors chose instead to control the

posterior expectation of the same error rate. See, for example, Newton (2004).

The rest of this chapter is based on results obtained under median model

selection (Barbieri and Berger, 2004) and controlling explicitly the posterior ex-

pected FDR. Alternative decision theoretic arguments and possible loss functions

are discussed in Müller et al. (2006).

3.5 Simulation Study

We tested the proposed method on synthetic data, by generating observations

from graphs configured as in figure 3.3. There are 10 vertices and 9 directed edges

in the baseline graph, all with positive weights βlj on the edges. The differential

graph has 8 directed edges that is the result of 3 cancelation, 2 additional edges,
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and 2 edges with negative effect sizes γlj +βlj. We simulated 50 baseline samples

and 30 differential sample.

Figure 3.5 shows the estimated edge inclusion probabilities for the baseline

graph and for the differential graph. The barplot in row ` and column j corre-

sponds to the edge v` → vj. Edges that are present in the simulation truth are

marked with an asterix. The estimated inclusion probability is high for edges

that were included in the simulation truth, as desired. There is, however, some

uncertainty, especially in the upper portion of the graph. Figure 3.6 shows the

bar plot of the posterior estimates of mixing proportions for the differential edge:

zij = 0 as left white bar, zij = 1 as central blue bar, and zij = 2 as right red

bar. Again, edges that are present in the simulation truth are marked by a red

surrounding box and the true value is indicated by an asterisk below each plot.

The proposed method identifies differential interactions quite accurately, defining

strong control over false negatives (row 6 column 7) and false positives ( row 1

column 5 ).

Figure 3.7 shows the posterior mean and standard deviation of the effect size

for each of the edges in the baseline graph (left) and the differential graph (right).

The true value marked with asterisk below the density is covered by the posterior

samples, indicating that the model provides accurate recovery of true effects size.

We compare results over two decision criteria: varying the threshold of the

posterior inclusion probability and varying the threshold value for the q-value

in FDR procedure on the posterior inclusion probability for the baseline graph

and the differential graph. We evaluate the operative characteristics of different

decision criteria in our simulated experiment on the basis of two quantities: the

False Discovery Rate (FDR) and the Missed Detection Rate (MDR). Letting TP

indicate true positives, FP false positives, and FN is false negatives, we defing
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the FDR and MDR are defined as follows

FDR =
FP

FP + TP
, MDR =

FN

FN + TP
. (3.10)

Figure 3.4 shows a comparison of two decision criteria in relation to these

quantities.
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Figure 3.4: Comparison of the decision criteria for False Positive Rate (FPR)
and Missed Detection Rate (MDR) for the baseline and the differential group. A
dotted line on the inclusion probability plots corresponds to the choice made by
median probability model. The FDR plots have a dotted line at 0.2 corresponding
to suggestion by Efron (2007).

The dotted line on the inclusion probability corresponds to the choice made

by median probability model (Barbieri and Berger, 2004). The FDR has a dotted

line at the threshold value of 0.2 corresponding to suggestion by Efron (2007). For

this particular simulation, both median graph criteria and the criteria of Efron

(2007) are performing equally well.
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Figure 3.5: Barplot of the estimated edge inclusion probabilities for the baseline
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Figure 3.7: Marginal posterior distributions p(β`j | Y ) for the baseline coefficients
and p(γ`j + β`j | Y ) for the differential coefficients. All densities are plotted over
the same range, for easy comparison. The number above the density are the
posterior mean and standard deviation. The true value of the estimate is marked
with an asterisk below the density and the true edges have thick red surrounding
box. The posterior density covering the true estimate indicates that the model is
tracking the effect size accurately.
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3.6 Case Study

We apply our model to the data from a study of Acute Myeloid Leukemia (AML)

obtained using the reverse phase protein arrays (RPPA) (Tibes et al., 2006) .

RPPA is a high-throughput proteomic technology that provides a quantification of

the expression for specifically targeted proteins selected from molecular pathways

(figure 3.8).

Figure 3.8: Image of the actual reverse phase protein arrays (RPPA).

We use data from a large AML study based on RPPA. We consider 435 AML

patients; 332 primary refractory patients and 103 relapsed patients. We will call

the refractory patients the baseline group and the relapsed patients the differential

group. The objective of this study is to investigate the difference in interactions

of important protein markers related to AML for the refractory patients and

the relapsed patients. We selected 38 proteins in signal transduction, apoptosis,

and cell cycle regulatory pathways and studied their expression profiles in all

435 samples. An attractive feature of the AML data under study is that the

number of samples (n = 435) is much greater than the number of proteins (p

= 38), which provides an opportunity for principled inference about differential

interaction structures on the basis of a highly structured stochastic system.
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The prior distributions on the parameters were selected as vague as possible

to show that this method does not require strong prior information, which makes

it suitable for initial studies since the likelihood will dominate the posterior when

the sample size is large. Mean parameters for α, β, and γ were set to 0. The two

parameters of the dispersion parameter σ2
l where set to 0.5 and 0.5. The prior on

ψk is set to Beta(1, 1). For the temperatures of parallel tempering, we selected

them uniformly spaced between 1 to 100 on the log scale. We ran our algorithm

for 20000 iteration saving every 20th sample.

For the decision rule, since we have no reason to weigh either false discovery

nor false negative more than one another, we chose a equal weight loss function

LN = FD+FN . The corresponding decision rule for this loss function thresholds

the inclusion probability at 0.5 (Müller et al., 2004) which is the median graph

proposed by Barbieri and Berger (2004).

Figure 3.9 is a network representation of the estimated graph for the refractory

and relapsed patients. The network of the relapsed patients is sparse compared to

the refractory patients; the baseline network had 99 edges whereas the differential

network only had 83 edges. Table 3.2 lists the differential edges that differed

between the two networks.

While we maintain that our findings are purely exploratory, we have found

that selected differential interaction patterns have been confirmed in the literature

as potential indicators of more aggressive forms of AML. For example Kornblau

et al. (2011) report that signaling changes affecting the AKT-S6 pathway are as-

sociated with relapse after chemotherapy in AML patients (see our corresponding

result in Table 3.2, Cancelled Edges). On the differential activation side (Extra

edges, Table 3.2), our results agree with (Ozawa et al., 2008) who reported how

SRC family kinases regulate STAT transcription factors in AML cells, which are
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Figure 3.9: Network representation of the estimated protein network for refec-
tory patients and relapsed patients. The strength of association is shown as the
intensity of the color; the red is for positive association and blue is for negative
association, as shown in the thermometer bar on the right. The bottom three
plots classify the edges into three categories: the edges that two groups agree on,
the edges that does not exist in the differential graph, and edges that only exist
in the differential graph. The differential graph is more sparse compared with the
baseline network.
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Extra Edges Canceled Edges

SRCp527→BADp155 BADp136→ AKT
BADp112→BAK STAT5→ AKTp308
P38→BAX AKTp308→ AKTp473
BADp155→CyclinD1 GSK3p21.9→ AKTp473
BADp136→GSK3 STAT6p641→ BAD
BADp136→GSK3p21.9 BADp155→ BADp112
P70S6K→P53 BAK→ BADp112
PTEN→P53 SRC→ BADp136
PTENp→S6RP ERK2→ BAK
SRC→STAT6p641 BADp112→ CyclinD1
SRCp527→STAT6p641 ERK2p42.44→ CyclinD1

BAX→ GSK3p21.9
ERK2p42.44→ GSK3p21.9
P27→ MCL1
ERK2p42.44→ MEK
BCL2→ MTOR
CyclinD1→ MTORp2448
ERK2→ P38
SRC→ P70S6K
MEKp217p221→ PKCalpha
BADp155→ S6RP
BCL2→ SRC
P38→ SRC
MEK→ SRCp527
CyclinD1→ STAT3
GSK3→ STAT3
STAT5→ STAT3

Table 3.2: The list of differential edges.

known to play a fundamental role in growth and proliferation processes.

Figure 3.10 is the estimated posterior inclusion probability. The figures for

the estimated mixing proportion and the posterior density plot of the coefficients

can also be found in the supplementary materials. A comprehensive bio-medical

interpretation of our findings is perhaps out of the scope or this chapter, but it is

our hope that our illustration shows the potential and practical relevance of the

proposed method.

3.7 Discussion

We proposed a novel probability model for inference on differential interaction

in Gaussian DAGs. The proposed framework is likely to be particularly useful

when primary interest focuses on potential contrasts characterizing the associa-

tion structure between known subgroups of a given sample. Although we only

worked on a case where there are only two subgroups, the method is directly
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Figure 3.10: Barplot of the estimated edge inclusion probability for the refractory
patients (left) and the relapsed patients (right) for each edge.
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Figure 3.11: Stacked barplot of the posterior estimates of the mixing proportions
for zlj defined for each differential edge: zlj = 0 is white, zlj = 1 is blue, and
zlj = 2 is red.
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Figure 3.12: The density plot of the estimated posterior distribution for the
baseline coefficients plotted on same horizontal range. The edges in median graph
has thick red surrounding box.
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Figure 3.13: The density plot of the estimated posterior distribution for the
differential coefficients plotted on same horizontal range. The edges in median
graph has thick red surrounding box.
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generalizable to the case of k subgroups. We evaluated our method analyzing

data generated from a synthetic experiment and showed that our inferences have

desirable operative characteristics. The application of the proposed model to the

analysis of RPPA data in AML identified interesting differential regulation pat-

terns, distinguishing refractory from relapsed patients. While we are well aware

that our model belongs to the class of hypothesis generation tools, we remark

that the proposed methodology avoids the use of step-wise analyses and ad-hoc

penalization choices, providing a principled tool for inference on differential net-

works.

The conjugate Gaussian setting, provides several algebraic and computational

advantages. However, there are costly steps, associated with the proposal of

coefficients α, β, and γ, requiring several matrix inversions. While this is not an

issue, as long as the sampled graph is sparse; the proposed computation could be

computationally demanding, when dealing with large and dense graphs. In these

cases one may need to consider alternative proposal strategies.

The propose framework of differential network inference could be extended

beyond the multivariate Gaussian distribution. Our prior on models space and

interaction parameters could, for example be applied to the approach of Telesca

et al. (2012b), who show how to incorporate heavy tails in the observations by the

use of a mixture model. As for the case of discrete and mixed data, the copula

Gaussian graphical model framework proposed by Dobra and Lenkoski (2011)

could be easily expanded using a modeling strategy similar to the one proposed

in this chapter.

Extension beyond DAGs may be desirable in many applied settings. Fore

example, in the setting of Reciprocal Graphs Koster (1996), used in Telesca et al.

(2012a) one may allow baseline and differential models, to be defined in terms
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of undirected edges as well as the directed ones, with the possibility of including

cycles and reciprocal relations. We should also point out that the same idea

could of course be applied to undirected graphical models. While these extension

are conceptually trivial, coherent multivariate representation and computational

constraints may require extensive additional work.
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CHAPTER 4

CONCLUSION AND FUTURE DIRECTIONS

4.1 Conclusion

We have presented a Bayesian hierarchical modeling framework to address com-

plex interactions across heterogeneous structured data. Our contributions are

especially directed toward integrative biology applications. With regards to sta-

tistical modeling, our proposal can be itemized into:

• the introduction of genuine a chain graph modeling framework in the Bayesian

hierarchical nonlinear regression literature;

• an inferential model for structural comparison of Gaussian Graphical Mod-

els along with novel computational scheme;

• a simultaneous posterior expected FDR control across sets of parameters

that are not exchangeable;

• a posterior credible interval thresholding method for FDR control of con-

tinuous parameters;

• a set of visualization techniques to make sense of the complex interactions;

• a computational package for R.
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The two fundamental models we developed in this thesis by no means span the

entire possibility of complex interactions that occur in integrative biology ap-

plications, however we believe they address large classes of problems. For the

technical details we refer you to the specific chapters.

4.2 Future Directions

In the remainder of this thesis we discuss classes of models that we did not address

in this thesis along with other possible future extensions to the proposed models.

We also include preliminary work on the approximation of discrete models using

continuous models discussed in 4.2.8 in section 4.3.

4.2.1 Bayesian computation

The Bayesian hierarchical modeling framework that we have proposed provides

flexibility that allows for heterogeneous structured data to be integrated into the

model. However, there are immediate challenges in the computation associated

with our proposed modeling framework and that Bayesian statistics in general

must address in order for it to keep up with the demands of the scientific commu-

nity. The MCMC method is computationally costlier than optimization methods.

Hamiltonian Monte Carlo approaches (Neal, 2012) are showing promising direc-

tions with software becoming available (Stan Development Team, 2013; Hoffman

and Gelman, 2011). These methods have not been extended for nonlinear differ-

ential equation models, which are something that would increase the practicality

of our proposed pharmacogenetics model. The idea of integrated nested Laplace

approximations (Rue et al., 2009) is growing in its presence as an alternative to

MCMC methods for Gaussian processes. Although there are models available for
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fixed network structure, it is not fit for models with unknown graph structure at

the moment. It may be interesting to see how these ideas may be combined to

give reasonable approximations as a possible direction for future research.

4.2.2 Computation of graphical models

The computation for graphical models has seen much improvements while this

thesis was being written. The use of double metropolis hastings (Liang, 2010)

provides an appealing solution to the computation of intractable normalizing

constants in the simulation of undirected graphs (Wang and Li, 2012; Cheng and

Lenkoski, 2012). For the computation of DAGs, sampling from set of a partial

directed acyclic graphs (PDAGs) or essential graphs He et al. (2012), instead

of sampling the whole space of DAGs, seems to be a promising direction that

would make the idea of differential Gaussian DAGs more scalable. Nevertheless,

in terms of computational convenience, these methods are not even close to penal-

ized regression methods (Witten et al., 2011). In all fairness, however, frequentist

regularized estimation is not concerned at all with the estimation of uncertainty.

Considering how to assess the uncertainty in approximate but scalable compu-

tation frameworks (Jones et al., 2005; Scott and Carvalho, 2007; Murray and

Ghahramani, 2004) may be a fruitful direction in the short term to compete with

these methods.

4.2.3 Structural inference

With regards to making statistical inference on the structures of graphs, there

are still unresolved methodological questions. The nonparametric Bayesian in-

ference of Rodriguez et al. (2011) that uses Dirichlet Process mixture of GGMs

tries to address the issue of identifying the global subgroups by avoiding making
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explicit inference on the graph structures between the groups. Therefore as the

byproduct of the discretization of the Dirichlet Process, one obtains clustering

in the posterior. However, it is not possible to make cluster-specific inference.

When subpopulations are identified in a sample, the natural question to ask is

how are the associations different between subgroups. The differential graphical

model we propose, in theory can be extended to multiple graphs that would allow

for subpopulation level inference. Nevertheless it is unclear how to achieve global

inference on the graph structures between the subpopulation after posterior dis-

tribution on the edges have been collected. To achieve the middle ground between

the two approaches the work of Rodriguez et al. (2011) can be extended by using

product partition models with partitions induced by regression on covariates as

Müller and Quintana (2010), which would allow for some level of inference at the

covariate level.

4.2.4 Chain graph dependence structure

The use of chain graphs as dependence structures in the Bayesian modeling is

an idea that can be explored much further. Temporally evolving networks and

directed spatial-temporal models would naturally fall under this category. To-

gether with the idea of higher order interactions, such models may be able to

capture the time evolving characteristics of the higher order interaction.

4.2.5 Incorporating informative graphical prior based on biological

databases

Modeling the biological association structure in a multivariate Gaussian fashion

is at it’s most primitive form and is something that should be improved upon.

A rigorous approach would incorporate the information available in the scientific
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databases such as Gene Oncology (GO) database (http://www.geneontology.org/)

in a reasonable fashion. However, in graphical models in general, the likelihood

surface is likely to be highly spiky, even for a moderately sized dataset and any

vague information will be ignored in the posterior. Therefore, quantifying the

amount of information associated with current cumulative scientific knowledge,

while letting the model learn from a current experiment data is not an easy task.

4.2.6 Higher order interactions

Incorporating higher order interactions in the association structure is important

especially for biological applications since it is usually not a single gene that cre-

ates a functioning protein but multiple genes or multiple proteins that combine

to create some phenotypic reaction. The general formulation is laid out by Be-

sag (1974) however, implementation of such modeling poses computational chal-

lenges. Incorporation of scientific information, such as relative distance between

the SNPs, to confine the number of higher order interactions to be considered,

will be crucial in realistic applications.

4.2.7 Differential Gaussian DAG models

For the differential GDAG model, depending on the application, Gaussian as-

sumptions may not be viable. In those cases, the simplest amendment is to

introduce an additional layer of latent variable so that the problem is reduced to

a Gaussian. When the data is continuous but non-Gaussian, a mixture of Gaus-

sian model could be an alternative. For example to extend the Gaussian DAG
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model the likelihood will look like

Yi|Ypasi (i), β, σ
2, dsi , ρ =

∑
πkN

β(k)
i0 +

∑
yl∈pasi (i)

β
(k)
il yl, σ

2(k)
i|pasi (i)

 .

For binary case we may use the probit model (Chib and Greenberg, 1996) or

autologistic model (Besag, 1974) as in Telesca et al. (2012a)

p(yij = 1|yi,pasj(j)
, dj, ρ) =

exp(αj +
∑
βj|pasj (j)yi,pasj(j)

)

1 + exp(αj +
∑
βj|pasj (j)yi,pasj(j)

)
.

When variables are not measured on a same scale, use of copula Gaussian model

(Dobra and Lenkoski, 2011)

yij = F−1
j [Φ(zij)]

Zi | · ∼ Np(0,Σk)

for i = 1, . . . , n. Σk could be specified by mixture model of the covariance struc-

ture, is a possibility.

4.2.8 Approximation of discrete models using continuous models

One issue that came up repeatedly during the course of this thesis was the issue

involving the computational cost of discrete modeling. Without getting into the

argument on the theoretical validity of discrete modeling and given the fact that

novel algorithms are being proposed to improve the computation, the immense

size of discrete model space still poses computational challenge. Discrete mod-

eling is intended to assist the decision, however, the criteria of median graph is

confounded by the quality of the estimates of edge inclusion probabilities. For

the time being, it may make sense to turn the argument around and use an ap-
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proximate continuous model and use a better criteria to make decision in the

posterior since after all, a model is a model and it is always wrong. But we can

adjust for its short coming by making reasonable decisions. With this idea in

mind we have incomplete work we will attach in appendix 4.3. Although work is

preliminary, for many of the variable selection problems, using continuous models

with educated decision out performs the other rigorous variable selection models

or penalized regression approaches.

4.3 Model Reporting in Continuous Models

Reporting “significant” coefficients after fitting a regression model is a screening

procedure that is consistent with the Fisher’s notion of statistical testing (Rice,

2010). When a coefficient is reported as“significant”we are not claiming anything

about the alternative but simply stating that a regression coefficient has small

chance of being “insignificant”. The term “insignificant” is a subject dependent

notion. In domains such as genetics a gene having zero effect on some protein

formulation is well accepted, whereas in social science the idea of zero effect may

be refutable(Gelman and Rubin, 1995).

In general, the screening process should be conservative since reported “sig-

nificant” coefficients usually must go under the scrutiny of science, which may be

expensive depending on the domain of study. Yet often times researchers want

to maximize the probability of selecting an association that no one has found

before at the cost of flagging a few “insignificant” effects as begin significant.

These antagonistic goals have given rise to the idea of false discovery rate (FDR)

control, which has become popular in many areas of studies. Again, there is

much entanglement with the idea of FDR and the hypothesis-testing framework.

However, it can be justified from the perspective of maximizing utility under the
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Bayesian decision theoretic framework (Müller et al., 2006) without getting into

the hypothesis testing argument.

Leaving aside the theoretical issues, the practical side of the matter with

regards to variable screening is not completely resolved. Most of the argument

centers around two schools of thoughts. On one hand are people who prefer

to use point-mass prior to calculate the posterior inclusion probabilities and on

the other end are people who use continuous priors and look at the posterior

credible interval (CI) to see if the 1 − α% interval covers 0 or not. We will

not get into the argument of whether the use of point-mass prior is appropriate;

there are references that deal with this issue (Berger and Delampady, 1987). We

focus on the later case, especially limited to the case of linear regression, where

a continuous prior is used and we need a reasonable way to screen noteworthy

coefficients amongst them.

The idea is derived from Gelman et al. (2012), in which given the posterior

distribution of the coefficients, we calculate the probability that that posterior

distribution is bigger or smaller than a point mass distribution at 0. This may

sound disturbing at first, yet, it is in fact almost identical to the procedure based

on 1− α% CI. The procedure we propose has an additional merit of allowing for

explicit control of FDR under the framework of Müller et al. (2006). As we will

show through simulation that the FDR control is accurate under this procedure.

The rest of the section is structured as follows; in section 4.3.1 we show a

procedure that is equivalent to variable selection based on 1 − α% CI. We also

look at the frequentist property of FDR control under the use of this (p-value) and

show some simulation result in section 4.3.2. We end the paper with discussion.
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4.3.1 Bayesian “p-value” like statistics

The model we consider is a regression model of predictor X = [xij]n×p on the

outcome variable y = [yi]n. Without loss of generality, we further assume y and

X are standardized so that they both have mean 0 and standard deviation of 1

so that

y ∼ N(Xβ, Ip) (4.1)

where β is the standardized regression coefficient. In modern Bayesian analy-

sis, β will be given a prior and M posterior samples b are drawn using MCMC

machinery.

After fitting this model, what is commonly done is to look at the posterior

CI of β and if 0 is not included in the 1 − α% posterior CI, we claim that the

probability of β being 0 is less than α. If we formally define a decision indicator

dj = 1, (j = 1, . . . , p) to indicate decision to report the coefficient βj as significant,

then decision rule take the form

dj = 1
{

0 /∈
[
b
(
M
α

2

)
, b
(
M
(

1− α

2

))]}
= 1

{
0 < b

(
M
α

2

)
or b

(
M
(

1− α

2

))
< 0
}

where b(·) is the ordered b so that b(1) ≤ b(2) ≤ · · · ≤ b(p). For the simplicity

of the argument we assume the multiplicity in the coefficients is taken care of as

in Gelman et al. (2012). The use of CI to choose coefficients can also be justified

from decision theoretic framework in Thulin (2012).

An equivalent procedure can be derived using a similar argument used in

Gelman et al. (2012) by converting the question from “is the posterior probability

that the coefficient is 0 less than α?”, to “is the posterior distribution bigger or

smaller than a point mass at 0?”. If the 1 − α% of the posterior distribution
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of regression coefficients are bigger/smaller than 0, we claim with 1 − α level

confidence that the the regression coefficient is significant. Specifically, using a

statistic of the form

pBj =
1

M

M∑
i

1bi>0

if pBj < α or pBj > 1 − α we claim the coefficient to be significantly smaller or

larger than 0 at 1− α level confidence. The decision rule take the form

dj = 1{pB < α or 1− α < pB}

= 1

{
M∑
i

1vi>0 < Mα or M(1− α) <
M∑
i

1vi>0

}
= 1 {0 < b(Mα) or b(M(1− α)) < 0}

You may identify it as the one sided equivalence of 1− α% level CI procedure in

the frequentist literatures. As with the one sided p-value, the (pvalue) has more

power at α level then the 1− α% level CI since we can use the fact that we are

only interested in the case where the posterior is larger or smaller than 0.

Choosing regression coefficient based on 1 − α level CI has good frequentist

properties for regression, especially under the situation where the predictors are

uncorrelated (illustrated on table 4.1 taken from Celeux et al. (2012)). It is also

surprisingly robust agains various anomalies in the data.

4.3.2 Explicitly controlling for FDR using continuous priors

Controlling for False Discovery Rate in the reporting process is popular in some

fields of study. The Bayesian equivalent of such procedure is discussed in Müller
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Figure 4.1: Illustration of 95% posterior credible interval.

et al. (2006) along with a couple of suggestions for possible loss function. From

a Bayesian perspective, the FDR procedure is no more than a decision problem

based on one’s utility. For m decisions to be made, let truth indicator ri = 1 when

a coefficient should be flagged and 0 otherwise (i = 1, . . . ,m). We also define an

accompanying decision indicator di to be 1 when a coefficient i is flagged and 0

otherwise . The loss functions proposed in (Müller et al., 2006) also require the

definition of probability that ri = 1 such that vi = P (ri = 1 | Y ). When using

discrete prior distribution, vi is simply the posterior inclusion probability. Under

an absolutely continuous prior, we can substitute the (pvalue) for vi to obtain an

optimal decision criteria. Figure 4.2 shows the actual FDR for loss function

L2R = (FDR,FNR)

(Müller et al., 2006) used on 4 examples from Celeux et al. (2012). The actual

FDR is controlled at the level of expected FDR.
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Table 4.1: Comparison with the example 1 from Celeux et al. (2012), simple
case of 10 uncorrected predictors with 4 true effects with sample size of 200.
The Bayesian regression method performs as well as the oracle under the prior
distribution for the regression coefficient chosen to be normal with mean 0 and
Zellner’s G prior as the covariance matrix.

HITS FP
ORACLE 4:00(0:00) 0:00(0:00)
99% CI 4:00(0:00) 0:00(0:00)
95% CI 4:00(0:00) 0:00(0:00)
90% CI 4:00(0:00) 0:00(0:00)

AIC 3:94(0:02) 2:78(0:17)
BIC 3:90(0:03) 2:29(0:17)

BRIC 3:75(0:05) 0:65(0:09)
EB-L 3:80(0:04) 0:66(0:09)
EB-G 3:78(0:04) 0:65(0:09)
ZS-N 3:78(0:04) 0:65(0:09)
ZS-F 3:90(0:03) 1:73(0:14)
OVS 3:63(0:06) 0:54(0:09)
HG-3 3:75(0:05) 0:55(0:09)
HG-4 3:65(0:05) 0:54(0:08)
HG-2 3:75(0:05) 0:59(0:09)
NIMS 3:75(0:05) 0:57(0:08)

LASSO 3:89(0:03) 2:68(0:20)
DZ 3:72(0:07) 2:41(0:15)

ENET 3:89(0:04) 2:79(0:29)
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Table 4.2: Comparison with the example 2 (sparse correlated design) from Celeux
et al. (2012),10 correlated (ρ = 0.9) predictors with 4 true effects with sample
size of 200. The Bayesian regression method performs well relative to the other
methods in terms of low false discovery. The prior distribution for the regression
coefficient was chosen to be normal with mean 0 and Zellner’s G prior as the
covariance matrix.

HITS FP
ORACLE 4.00(0.00) 0.00(0.00)
99% CI 2.48(0.72) 0.00(0.00)
95% CI 3.57(0.56) 0.00(0.00)
90% CI 3.91(0.29) 0.01(0.00)

AIC 3.12(0.08) 2.75(0.16)
BIC 2.97(0.09) 2.39(0.16)

BRIC 2.44(0.10) 0.99(0.10)
EB-L 2.43(0.10) 1.03(0.10)
EB-G 2.42(0.10) 0.95(0.10)
ZS-N 2.43(0.10) 1.03(0.10)
ZS-F 2.97(0.08) 2.18(0.10)
OVS 2.16(0.11) 1.09(0.09)
HG-3 2.32(0.11) 0.96(0.10)
HG-4 2.35(0.10) 0.86(0.09)
HG-2 2.35(0.10) 0.81(0.09)
NIMS 2.42(0.10) 0.96(0.09)

LASSO 3.35(0.09) 2.95(0.15)
DZ 2.83(0.09) 2.23(0.10)

ENET 3.70(0.07) 4.36(0.17)
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Table 4.3: Comparison with the example 3 (sparse noisy correlated design) from
Celeux et al. (2012). The prior distribution for the regression coefficient was
chosen to be normal with mean 0 and Zellner’s G prior as the covariance matrix.

HITS FP
ORACLE 3.00(0.00) 0.00(0.00)
99% CI 2.79(0.41) 0.00(0.00)
95% CI 2.97(0.17) 0.00(0.00)
90% CI 2.99(0.10) 0.04(0.20)

AIC 2.11(0.07) 2.06(0.14)
BIC 1.97(0.07) 1.68(0.14)

BRIC 1.66(0.07) 0.53(0.08)
EB-L 1.84(0.07) 0.79(0.09)
EB-G 1.88(0.07) 0.83(0.09)
ZS-N 1.81(0.07) 0.76(0.09)
ZS-F 2.10(0.07) 1.26(0.11)
OVS 1.78(0.07) 0.64(0.09)
HG-3 1.81(0.07) 0.77(0.09)
HG-4 1.84(0.07) 0.78(0.09)
HG-2 1.80(0.08) 0.73(0.10)
NIMS 1.83(0.07) 0.77(0.09)

LASSO 2.33(0.07) 1.61(0.16)
DZ 2.20(0.11) 2.06(0.16)

ENET 2.38(0.06) 2.04(0.16)
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Table 4.4: Comparison with the example 4 (saturated correlated design) from
Celeux et al. (2012). The prior distribution for the regression coefficient was
chosen to be normal with mean 0 and Zellner’s G prior as the covariance matrix.

HITS FP
ORACLE 8.00(0.00) 0.00(0.00)
99% CI 1.40(0.89) 0.00(0.00)
95% CI 3.97(1.15) 0.00(0.00)
90% CI 5.59(1.06) 0.00(0.00)

AIC 6.32(0.11) 0.00(0.00)
BIC 5.99(0.12) 0.00(0.00)

BRIC 4.35(0.11) 0.00(0.00)
EB-L 4.39(0.10) 0.00(0.00)
EB-G 4.34(0.10) 0.00(0.00)
ZS-N 4.38(0.10) 0.00(0.00)
ZS-F 5.37(0.10) 0.00(0.00)
OVS 3.82(0.10) 0.00(0.00)
HG-3 4.32(0.10) 0.00(0.00)
HG-4 4.19(0.09) 0.00(0.00)
HG-2 4.18(0.11) 0.00(0.00)
NIMS 4.39(0.10) 0.00(0.00)

LASSO 7.13(0.12) 0.00(0.00)
DZ 6.82(0.11) 0.00(0.00)

ENET 7.53(0.08) 0.00(0.00)
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Table 4.5: Comparison with the example 5 from Celeux et al. (2012). The prior
distribution for the regression coefficient was chosen to be normal with mean 0
and Zellner’s G prior as the covariance matrix.

HITS FP
ORACLE 2.00(0.00) 0.00(0.00)
99% CI 2.00(0.00) 0.00(0.00)
95% CI 2.00(0.00) 0.00(0.00)
90% CI 2.00(0.00) 0.03(0.17)

AIC 1.93(0.02) 2.88(0.19)
BIC 1.94(0.02) 2.04(0.18)

BRIC 1.93(0.02) 0.50(0.09)
EB-L 1.93(0.02) 0.58(0.10)
EB-G 1.93(0.02) 0.60(0.10)
ZS-N 1.93(0.02) 0.57(0.10)
ZS-F 1.94(0.02) 1.84(0.14)
OVS 1.89(0.03) 0.76(0.08)
HG-3 1.93(0.02) 0.53(0.09)
HG-4 1.93(0.02) 0.54(0.09)
HG-2 1.93(0.02) 0.36(0.09)
NIMS 1.93(0.02) 0.57(0.10)

LASSO 1.99(0.01) 2.93(0.21)
DZ 1.91(0.03) 2.70(0.18)

ENET 1.96(0.02) 3.25(0.20)
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Table 4.6: Comparison with the example 6 (null model) from Celeux et al. (2012).
The prior distribution for the regression coefficient was chosen to be normal with
mean 0 and Zellner’s G prior as the covariance matrix.

FP
ORACLE 0.00(0.00)

99ci 0.09(0.40)
95ci 0.30(0.61)
90ci 0.70(0.89)
AIC 3.16(0.21)
BIC 2.24(0.19)

BRIC 0.59(0.11)
EB-L 2.87(0.15)
EB-G 1.54(0.19)
ZS-N 1.02(0.17)
ZS-F 2.51(0.17)
OVS 2.10(0.17)
HG-3 2.18(0.18)
HG-4 2.54(0.17)
HG-2 2.17(0.15)
NIMS 0.99(0.13)

LASSO 1.79(0.22)
DZ 2.49(0.20)

ENET 2.23(0.23)
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Figure 4.2: The expected and actual FDR for 4 simulations from Celeux et al.
(2012) with 4 different value of expected FDR values.
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CHAPTER 5

APPENDIX

5.1 Appendix 1: Technical Supplements

5.1.1 Markov Chain Monte Carlo

We review some elaborate techniques for Markov Chain Monte Carlo simulation

used in this thesis. For an overview of the Markov Chain Monte Carlo techniques

Brooks et al. (2011) provides a great coverage of the material.

5.1.2 Reversible Jump MCMC

Reversible jumps Markov Chain Monte Carlo (RJMCMC) (Green, 1995) or Metropolis-

Hastings-Green with Jacobians (MHGJ) is a special case of Metropolis-Hastings-

Green elementary update algorithm (Geyer, 2010b) that allows moves between

parts of the state space that are Euclidean spaces of different dimension.

We assume the underlying states pace is disjoint union of Euclidian spaces Sm

for m = 1, . . .M , each with dimension dm. Let Um and Un be Euclidian spaces

such that Sm × Um is the same dimension as Sn × Un. The basic idea of the

elementary update algorithm moves between the spaces Sm×Um to Sn×Un that

have the same dimension. For a simple example, when proposing a move from y

to y′ in higher dimensional space, one would draw a vector of continuous random

variable u, independent of y so that dimension of (u, y) matches that of y′. Then
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a proposal is made by setting y′ = y′(y, u) with y′(., .) an invertible deterministic

function. The move from y to y′ is accepted with a probability

αm(y, y′) = min

{
1,
π(y′)

π(y)
× rm(y′)

rm(y)q(u)
×
∣∣∣∣ ∂y′

∂(y, u)

∣∣∣∣}

• where π(y) is the target density evaluated at y,

• rm(y) is the probability of a move of type m, evaluated at y, and

• q(u) is the density function of u.

For the specifics of the algorithm see Green (1995); Geyer (2010b).

5.1.3 Over-relaxation algorithm

Method of over-relaxation is a technique to improve the proposal of MCMC orig-

inally proposed by Adler (1981) for Gaussian case and generalized by Neal (1995)

as ordered over-relaxation method, applicable in place of Gibbs sampling. It is

particularly useful when there is a strong correlation between the parameters that

makes the Gibbs sampling inefficient. When yi follows N(µ, σ2) and if current

value of yi in the Markov Chain is y
(t)
i Adler’s method proposes y

(t+1)
i to be

y
(t+1)
i = µ+ α(y

(t)
i − µ) + (1− α2)1/2σν

where ν ∼ N(0, 1) and α ∈ [−1, 1] is a tuning parameter. When α < 0 method is

called over-relaxation and α > 0 it is called under-relaxation. Intuitive illustration

of why over-relaxation proposal is efficient is displayed in figure 5.1. When strong

correlation is present, both MH and Gibbs Sampling suffer from the locality of

proposal yet this is not a problem for over-relaxation proposal.

In ordered over-relaxation of Neal (1995), K samples from p(yi|y−i) is gen-
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y(t+1)	
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Over-relaxation	


MLE	


y(t)	


y(t+1)	


Metropolis-Hasting	
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y(t+1)	
 y(t+2)	


Figure 5.1: Illustrative example of the different MCMC strategies.

erated, which are ranked along with the current value yi. If we let the rank of

current value to be k, the proposal is chosen amongst the K + 1 samples, who’s

ranking is K − k. Note that when K = 1 this is simply the Gibbs sampler.

5.1.3.1 Parallel tempering

Parallel tempering (Geyer, 1991) is a population Monte Carlo technique where

the target distribution is augmented with an indicator that specify a level of

smoothing applied to each of the target distribution. The new joint distribution is

the product of each of the distribution over the indicators since each of the density

is independent of each other given the indicator. Markov Chains at different

temperatures are run in parallel and the neighboring states are exchanged between

the chains with a predefined rate. Given initial sets of parameters θ(0), with T

replications of θ(0) so that new parameter space is θ = {θ(0)
1 , . . . , θ

(0)
T }. Each set

of parameter θ
(s)
i is updated according to an update regime define as following

For i = 1, . . . T ,

• With probability p, update θ
(s+1)
i based on a Monte Carlo update scheme
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Figure 5.2: Illustration of parallel tempering algorithm.

f(θ
(s)
i ).

• With probability 1− p, propose swap move between temperatures i1 and i2

by setting θ
(s+1)
i1

= θ
(s)
i2

and θ
(s+1)
i2

= θ
(s)
i1

with probability

ρ(θ,θ′) = min

{
1,
πi1(θi2)πi2(θi1)

πi1(θi1)πi2(θi2)

}
(5.1)

where πt(·) defines a smooth version of the target density indexed by t.

For details about the smoothing scheme as well as other details about the

parallel tempering see Geyer (2010a).
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5.1.4 Statistical distributions

We list a few of the standard distribution in this section.

5.1.4.1 Multivariate Gaussian Distribution

When p variate random variable Y = (Y1, . . . , Yp)
T follows Gaussian distribution,

with mean µ = (µ1, . . . , µp)
T and covariance Σ = [σij]p×p, we denote it as Y ∼

Np(µ,Σ). The pdf of Y is defined as

p (Y | µ,Σ) =d (2π)−
p
2 |Σ|−

1
2 exp

{
−1

2
[Y − µ]T Σ−1 [Y − µ]

}
(5.2)

We can express the same relationship using the inverse covariance matrix or

sometimes called the precision matrix Ω = Σ−1 = [ωij]p×p

p
(
Y | µ,Ω−1

)
=d (2π)−

p
2 |Ω−1|−

1
2 exp

{
−1

2
[Y − µ]T Ω [Y − µ]

}
(5.3)

5.1.4.2 Matrix variate Gaussian distribution

n × p random matrix Y = (Y T
1 , . . . ,Y

T
n )T = [yij]n×p is said to follow matrix

variate Gaussian distribution, with mean µ = (µT1 , . . . ,µ
T
n )T , row covariance

Φ = [φij]n×n, and column covariance Σ = [σij]p×p, we denote it as Y − µ ∼
MN n×p(Φ,Σ). The pdf of Y is defined as

p (Y − µ | Φ,Σ) =d (2π)−
np
2 |Φ|−

p
2 |Σ|−n2 etr

{
−1

2
Φ−1 (Y − µ) Σ−1 (Y − µ)

T
}

(5.4)
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5.1.4.3 Inverse Gaussian distribution

A continuous random variable y > 0 following inverse Gaussian distribution with

mean µ > 0 and shape parameter λ > 0 is denoted as y ∼ Inv-N(µ, λ). The pdf

of y is defined as

p(y | µ, λ) =d

(
λ

2πy3

)1/2

exp

{
−λ(y − µ)2

2µ2y

}
. (5.5)

E(y) = µ and var(y) = µ3/λ.

5.1.4.4 Matrix Student T distribution

A random n × p matrix Y distributed according to a central Matrix Student T

distribution with parameters υ,Φ, and Σ is denoted as Y ∼ MT (υ,Φ,Σ). The

pdf of Y is defined as

p(y | Σ, υ) ∝
∣∣∣∣Φ +

1

υ
Y Σ−1Y T

∣∣∣∣−υ+p
2

. (5.6)

5.1.4.5 Wishart Distribution

When k × k matrix follow a Wishart distribution with degrees of freedom ν > 0

and symmetric positive definite k×k matrix S, we denote it as W ∼ Wishartν(S).

p (W | ν, S) =d

(
2
νk
2 π

k(k−1)
4

k∏
i=1

Γ

(
ν + 1− i

2

))−1

(5.7)

× |S|−
ν
2 |W |

(ν−k−1)
2 etr

(
−1

2
S−1W

)
(5.8)
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E(W ) = νS

5.1.4.6 Inverse Wishart Distribution

When k× k matrix follow a inverse Wishart distribution with degrees of freedom

ν > 0 and symmetric positive definite k × k matrix S, we denote it as W ∼

Inv-Wishart(ν, S).

p (W | ν, S) =d

(
2
νk
2 π

k(k−1)
4

k∏
i=1

Γ

(
ν + 1− i

2

))−1

(5.9)

× |S|
ν
2 |W |

−(ν+k+1)
2 etr

(
−1

2
SW−1

)
(5.10)

E(W ) = (ν − k − 1)−1S

5.1.4.7 Hyper Inverse Wishart Distribution Dawid and Lauritzen (1993)

When psd matrix Σ follows a Hyper Inverse Wishart Distribution with parameters

α and Φ, it is denoted as Σ ∼ HIWg(α,Φ).

p(Σ | G, α,Φ) =d

∏
C∈C Inv-WishartC (ΣC |α,Φ)∏
S∈S Inv-WishartS (ΣS|α,Φ)

Where C and S denote the set of cliques and separators and Inv-Wishart(Σ|α,Φ)

is a density function for inverse Wishart distribution.
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5.1.4.8 Exponential Distribution

A positive real variable θ > 0 with rate parameter λ > 0 following Exponential

distribution is denoted as θ ∼ Exp(λ)

p(θ | λ) =d λ exp(−λθ)

E(θ) = 1
λ

and var(θ) = 1
λ2

5.1.4.9 Gamma Distribution

A positive real variable θ > 0 with shape α > 0 and inverse scale β > 0 following

Gamma distribution is denoted as θ ∼ Ga(α, β)

p(θ | α, β) =d
βα

Γ(α)
θα−1e−βθ

E(θ) = α
β

and var(θ) = α
β2

5.1.4.10 Inverse Gamma Distribution

A positive real variable θ > 0 with shape α > 0 and scale β > 0 following Inverse

Gamma distribution is denoted as θ ∼ Inv-Ga(α, β)

p(θ | α, β) =d
βα

Γ(α)
θ−α−1e−β/θ

E(θ) = α
β

and var(θ) = α
β2
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5.1.4.11 Beta Distribution

A positive real variable θ ∈ [0, 1] with parameters α > 0 and β > 0 following

beta distribution is denoted as θ ∼ Beta(α, β)

p(θ | α, β) =d
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

E(θ) = α
α+β

and var(θ) = αβ
(α+β)2(α+β+1)

5.1.4.12 Binomial Distribution

A positive real variable θ ∈ [0, n] with sample size n ∈ N \ {0} and success

probability p ∈ [0, 1] following binomial distribution is denoted as θ ∼ Bin(n, p),

p(θ | n, p) =d

(
n

θ

)
pθ(1− p)n−θ

E(θ) = np and var(θ) = np(1− p)

5.1.4.13 Sweep operation for solution to linear regression with linear

equality constraint

Sweep operation can be used to give solution to linear regression with linear equal-
ity constraint problem. Starting with augmented sums of square cross product
matrix, we fist sweep on the upper left corner X̃T

g X̃g which gives


X̃T
g X̃g X̃T

g yg LTg

yTg X̃g yTg yg 0T

Lg 0 0

 sweep→


(X̃T

g X̃g)−1 (X̃T
g X̃g)−1X̃T

g yg (X̃T
g X̃g)−1LTg

−yTg X̃g(X̃T
g X̃g)−1 yTg yg − X̃T

g yg(X̃T
g X̃g)−1yTg X̃g −yTg X̃g(X̃T

g X̃g)−1LTg

−Lg(X̃T
g X̃g)−1 −Lg(X̃T

g X̃g)−1yTg X̃g −Lg(X̃T
g X̃g)−1LTg



We can rewrite this matrix using B̂M
g as the unconstrained MLE of Bg and RSS

as the residual sums of square. Then sweeping this matrix on bottom right corner
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−Lg(X̃T
g X̃g)

−1LTg and denoting Q = (Lg(X̃
T
g X̃g)

−1LTg )−1 which gives us


(X̃T

g X̃g)−1 B̂Mg (X̃T
g X̃g)−1LTg

B̂Mg RSS −B̂Mg LTg

−Lg(X̃T
g X̃g)−1 −LgB̂Mg −L(X̃T

g X̃g)−1LTg

 sweep→


(X̃T

g X̃g)−1 − (X̃T
g X̃g)−1LTg QLg(X̃T

g X̃g)−1 B̂Mg − (X̃T
g X̃g)−1LTg QLgB̂

M
g (X̃T

g X̃g)−1LTg Q

−B̂Mg + (X̃T
g X̃−g)−1LTg QLgB̂

M
g RSS + (B̂Mg )TLTg QLgB̂

M
g −(B̂Mg )TLTg Q

QLg(X̃T
−gX̃g)−1 −QLgB̂Mg −Q


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5.2 Appendix 2: Chapter 2 Supplements

5.2.1 Compartment model

Figure 5.3: Pharmacokinetic model with enterohepatic recirculation
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The Compartment Model follows the following system of Ordinary Differential

Equations:

x′1(t) = kpcx2 − (kcp + keapc + kesn + ke)x1 +R1,

x′2(t) = kcpx1 − kpcx2,

x′3(t) = kesnx1 + kG3x7 − (k30 + k35 + k3B)x3,

x′4(t) = k35x3 − k50x4,

x′5(t) = keapcx1 − k70x5,

x′6(t) =

 k3Bx3 − (kBG + kBG1)x6 if EHRT ≤ t ≤ (EHRT + 1)

k3Bx3 − kBGx6 o.w.

x′7(t) =

 (kBG + kBG1)x6 − kG3x7 if EHRT ≤ t ≤ (EHRT + 1)

kBGx6 − kG3x7 o.w.

(5.11)

Note that R1 is the injected dose and EHRT is the time when enterohepatic

recirculation starts.
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5.2.2 Computational details

5.2.2.1 Computation of PK parameter θ

To update θ we will use Metropolis Hastings algorithm where a candidate values

to update θ are proposed from a chosen proposal distribution and move is ac-

cepted with certain probability. One may choose any proposal strategy in theory,

however, once you factor in the computational toll associated with evaluation of

the likelihood, a V variate proposal for θi for i = 1, · · · , N is most cost efficient.

The simplest of such choice is a multivariate Gaussian proposal centered at the

current values of θi. The correlation amongst the θi that might hinder the effi-

ciency of the sampling can be dealt with using an adaptive Metropolis algorithm

propose by Haario et al. (2001) where given current value of θi at time `, denoted

as θ
(`)
i , proposal θ

(`′)
i is made from

θ
(`′)
i | θ(`)

i , · · · ,θ(0)
i ∼ NV

(
θ

(`)
i ,

2.382

V
Σ

(`+1)
i

)

where Σ
(`)
i is defined as 2.382

V
C

(`)
i + 2.382ε

V
IV where C

(`)
i is the empirical covariance

matrix of
(
θ

(0)
i , · · · ,θ(`)

i

)
s.t.

C
(`)
i =

1

`

(∑̀
j=0

θ
(j)
i

(
θ

(j)
i

)T
− (`+ 1)θ̄

(`)
i

(
θ̄

(`)
i

)T)

where θ̄
(`)
i is the empirical mean defined as θ̄

(`)
i = 1

`+1

∑`
j=0 θ

(j)
i .

For the initial `0 steps, arbitrary initial covariance matrix Σ0 should be used

until enough samples have been gathered. With each iteration Σ
(`+1)
i is updated
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as

Σ
(`+1)
i =

`− 1

`
Σ

(`)
i +

2.382

V

1

`

(
(`)θ̄

(`−1)
i

(
θ̄

(`−1)
i

)T
+ (`+ 1)θ̄

(`)
i

(
θ̄

(`)
i

)T
+ θ

(`)
i

(
θ

(`)
i

)T
+ εIV

)

Given the proposed θ
(`′)
i the move is accepted with probability min(1, At)

where the acceptance probability At is calculated as

At =
p(θ

(`′)
i | Yi, Z̃i)p(θ(`′)

i )q(θ
(`′)
i → θ

(`)
i )

p(θ
(`)
i | Yi, Z̃i)p(θ

(`)
i )q(θ

(`)
i → θ

(`′)
i )

If accepted θ
(`+1)
i is set to θ

(`′)
i otherwise it is kept as θ

(`)
i .

Algorithm

• Initialization

– θ̄(0) = θ

– Σ
(0)
i = 0V×V for i = 1, · · · , N

• For each i ∈ {1, · · · , N}

1. update θ̄(`)

θ̄
(`)
i =

`θ̄
(`−1)
i + θ

(`)
i

`+ 1

2. update Σ
(`+1)
i

Σ
(`+1)
i =

`− 1

`
Σ

(`)
i +

2.382

V

1

`

(
(`)θ̄

(`−1)
i

(
θ̄
(`−1)
i

)T
+ (` + 1)θ̄

(`)
i

(
θ̄
(`)
i

)T
+ θ

(`)
i

(
θ
(`)
i

)T
+ εIV

)
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3. propose θ
(`′)
i

θ
(`′)
i ∼ NV

(
θ

(`)
i ,

2.382

V
Σ

(`+1)
i

)

4. calculate the acceptance probability

At =
p(θ

(`′)
i | Yi, Z̃i)p(θ(`′)

i )q(θ
(`′)
i → θ

(`)
i )

p(θ
(`)
i | Yi, Z̃i)p(θ

(`)
i )q(θ

(`)
i → θ

(`′)
i )

5. decide to reject or accept Draw a random number u from uniform

(0, 1),

θ
(`+1)
i ⇐

 θ
(`′)
i if u < min(1, At)

θ
(`)
i o.w.

5.2.3 Computation of latent probit score Z

The full conditional distribution of Zi is a truncated Q-variate Gaussian density

NQ(m̃zi , S̃
−1
zi

)I{Zi ∈ Ai} where truncation Ai given Z̃i is defined as

Aiq =


(−∞, 0) Z̃iq = 0

[0, 1) Z̃iq = 1

[1,∞) Z̃iq = 2
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for each i = 1, · · · , N , and q = 1, · · · , Q. Parameters m̃zi and S̃−1
zi

are the full

conditional mean and variance defined as

S̃zi =
(
ΩZ + τiρ

TΩθρ
)

m̃zi = S̃−1
zi

[
ΩZγU i + τiρ

TΩθ (log(θi)− βX i)
]

For a general multivariate Gaussian variable Z ∼ N(m,S−1), conditional distri-

bution of Za | Zb follows normal distribution. Using the canonical parametrization

this is represented as Za | Zb ∼ Nc(Sab(Zb−mb), Saa) (Rue and Held, 2005). Hence

Zi,q | Zi,−q for q = 1, · · · , Q can be sampled recursively using the algorithm 2.5

of Rue and Held (2005) by sampling from a truncated Gaussian distribution.

5.2.3.1 Computation of σ2

For subject and PK parameter level variability parameter σ2
ik we exploit the

conjugacy and define independent inverse gamma prior over time as.

p(σ2
ik) ∼ Inv-Ga

(r1

2
,
r2

2

)
for i = 1, · · · , N and k = 1, · · · , K

If the temporal correlation that is not accounted for by Σθ becomes a problem,

one can consider expanding this to an AR type prior. Given the prior, the full

conditional for σ2
ik is again inverse gamma distributed with parameters.

p(σ2
ik | ·) ∼ Inv-Ga

(
tn + r1

2
,

1

2

(
[log(yik(t))− log (gik(t,θi., Di))]

T
[log(yik(t))− log (gik(t,θi., Di))] + r2

))
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5.2.3.2 Computation of τ

For parameter τi to account for the subject level extra variability, we define a

conjugate Gamma distribution defined as.

p(τi) ∼ Ga
(u1

2
,
u2

2

)
for i = 1, · · · , N

Then the full conditional distribution is a Gamma distribution s.t.

p(τi | ·) ∼ Ga

(
V + u1

2
,
1

2

(
u2 + [log(θi)− βX i − ρZi]

T Ωθ [log(θi)− βX i − ρZi]
))

5.2.3.3 Computation of β

We define conjugate matrix normal distribution for the PK level regression coef-

ficients β as.

β − b0 ∼MN
(
B−1

0 ,Ω−1
θ

)
The full conditional distribution is a matrix normally distributed s.t.

β − β̃ ∼ MN
(
S−1
b ,Ω−1

θ

)
Sb =

(
B0 + (XTDτX)

)
β̃ = S−1

b

(
B0b0 + (XTDτX)β̂

)
β̂ =

(
XTDτX

)−1
XTDτ (log(θ)−Zρ)

where Dτ = diag(τ).
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5.2.3.4 Computation of γ

For PG level regression coefficients we define conjugate Zellner’s G-prior

γ − γ0 ∼MN
(
IQ, c(U

TU)−1
)

where c is hyperparameter to be specified. The posterior is again matrix normal

defined as

γ − γ̃ ∼ MN

((
1

c
IQ + Ωz

)−1

,
(
UTU

)−1

)

γ̃ =

(
1

c
IQ + Ωz

)−1(
1

c
γT0 + Ωzγ̂

T

)
γ̂ =

(
UTU

)−1
UTZ

5.2.3.5 Computation of ρ

We first rewrite the conditional distribution of θi, i = 1, . . . , N as

log(θi) ∼ NV

(
βX i + ρZi, (τiΩθ)

−1 = Σθi

)
⇒ (Σθi)

−1/2log(θi)− βX i ∼ NV (ρZi, IV )

where (Σθi)
−1/2 is the Cholesky decomposition of the covariance matrix Σθi .

Defining the prior distribution for ρ as (2.15), we can follow the algorithm sug-

gested by Sun et al. (2010) to sample from the full conditional distribution of ρ

by letting yi = (Σθi)
−1/2log(θi)−βX i, xi = Zi, and σ2 = 1. We leave the details

of the sampling algorithm to Sun et al. (2010).
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5.3 Appendix 3: Chapter 3 Supplements

5.3.1 Acceptance probability for the birth and the death moves.

The RJMCMC on G0 is complicated by the fact that move on G0 may also alter

G1 as the edge (l→ j) ∈ E1 is defined in terms of βlj + γlj.

While it is possible to propose a joint move on G1 along with G0, we prefer local

moves and propose to “insulate”G1 from the move on G0 by proposing changes in

γlj and zlj in accordance with changes in βlj.

The joint move on G0 and z is interpretable as an expansion on the RJMCMC

on DAG algorithm proposed by Fronk and Giudici (2004). Birth and the death

moves on G0 are engineered to achieve

q (z ⇒ z′ | G ′0)

q (z′ ⇒ z | G0)
=
q (z′ ⇒ z | G0)

q (z ⇒ z′ | G ′0)
.

Thus the acceptance probability of the birth move on the edge (l → j) for G0 is

defined as

AB = min

1,
p
(
β′j ,γ

′
j , z
′
j | y

)
p (βj ,γj , zj | y) qb(β

′
lj)

q (z′ ⇒ z | G0)

q (z ⇒ z′ | G′0)

 , (5.12)

and the acceptance probability of the corresponding death move on the edge

(l→ j) for G0 is defined as

AD = min

1,
p
(
β′j ,γ

′
j , z
′
j | y

)
qb(βlj)

p (βj ,γj , zj | y)

q (z ⇒ z′ | G0)

q (z′ ⇒ z | G′0)

 , (5.13)
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where qb(·) is the proposal distribution for β′lj, β
′
j refers to βj with the lth element

set to β′lj. We will get to the details on γ ′j and z′j in the following section, but for

now they are the proposed values for γj and zj if there is to be any change and we

will denote the proposal distribution of γlg as qg(·). Note that the Jacobian term

does not come into play when we change γ since it is 1 similar to the proposal

for the β in Fronk and Giudici (2004).

In the following section we will consider how to define q (z ⇒ z′ | G ′0) /q (z′ ⇒ z | G0)

conditioned on G1 so that the above symmetry is preserved.

5.3.1.1 When (l→ j) /∈ E1

There are two senarios where an edge (l → j) does not exist in the differential

graph G1.

C00: (l→ j) /∈ E0 so βlj = 0 and γlj = 0 so that zlj = 0 or

C11: (l→ j) ∈ E0 so βlj 6= 0 and γlj = −βlj so that zlj = 1

Hence conditioned on (l → j) /∈ E1 a legal move will be to move between these

two conditions. If we make this move deterministic, because γlj = 0⇒ γlj = −βlj
does not alter the dimension of γ and hence q (z ⇒ z′ | G ′0) /q (z′ ⇒ z | G0) = 1.

Therefore the move C00 ⇒ C11 is accepted with probability

AB0 = min

1,
p
(
β′j ,γ

′
j , z
′
j | y

)
p (βj ,γj , zj | y) qb(β

′
lj)

q (z′ ⇒ z | G0)

q (z ⇒ z′ | G′0)

 , (5.14)

and the reverse move C11 ⇒ C00 is accepted with probability
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AD0 = min

1,
p
(
β′j ,γ

′
j , z
′
j | y

)
qb(βlj)

p (βj ,γj , zj | y)

q (z ⇒ z′ | G0)

q (z′ ⇒ z | G′0)

 . (5.15)

5.3.1.2 When (l→ j) ∈ E1

The situation is slightly complicated when (l → j) ∈ E1 do to the restriction

imposed by the conditional prior on the γlj that does not allow (l → j) /∈ E0 so

βlj = 0 and γlj = −βlj so that zlj = 1 do to the lack of identifiability with the C00

case. Therefore only allowed combination of the parameters are the following.

C02: (l→ j) /∈ E0 so βlj = 0 and γlj 6= 0 so that zlj = 2,

C10: (l→ j) ∈ E0 so βlj 6= 0 and γlj = 0 so that zlj = 0, or

C12: (l→ j) ∈ E0 so βlj 6= 0 and γlj 6= 0 so that zlj = 2

If we first consider the death move on G0 there are two possibilities C10 ⇒ C02

or C12 ⇒ C02 and both moves will not alter G1. To conserve the symmetry with

the death move, when proposing a birth move on G0 we need to allow both of

the reverse moves C02 ⇒ C10 and C02 ⇒ C12 to be possible. We can do this by

choosing either of the revers moves with equal probability. Another thing to keep

in mind is that although C10 ⇒ C02 is a death move on β, in terms of the γ it is

a birth move. Hence the proposal ratio are defined as

• for C10 ⇒ C02 is
p(C02 ⇒ C10)qb(βlj)

p(C10 ⇒ C02)qg(γ′lj)
=

(
1
2

)
qg(γ′lj)
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• and for C12 ⇒ C02 is

p(C02 ⇒ C12)qb(βlj)

p(C12 ⇒ C02)
=

(
1
2

)
1

and it is not hard to see that the proposal ratio for C02 ⇒ C10 and C02 ⇒ C12

are just their inverses.

As a result the reversible jump ratio of a death move is defined as

• For C10 ⇒ C02

RD1 =
p
(
yj | X̃j ,β

′
j ,γ
′
j , σ

2
j

)
p
(
γ ′lj | z′lj , β′lj , σ2

j ,G′0
)
p (G′0)

(
1
2

)
qb (βlj)

p
(
yj | X̃j ,βj ,γj , σ2

j

)
p
(
βlj | σ2

j ,G0

)
p (G0) qg

(
γ′lj

)
(πj)

, (5.16)

• and for C12 ⇒ C02

RD2 =
p
(
yj | X̃j ,β

′
j ,γ
′
j , σ

2
j

)
p (G′0)

(
1
2

)
qb (βlj)

p
(
yj | X̃j ,βj ,γj , σ2

j

)
p
(
βlj | σ2

j ,G0

)
p (G0) (1− πj)

, (5.17)

Similarly the reversible jump ratio for birth moves are defined as

• for C02 ⇒ C10

RB1 =
p
(
yj | X̃j ,β

′
j ,γ
′
j , σ

2
j

)
p
(
β′lj | σ2

j ,G′0
)
p (G′0) qg (γlj) (πj)

p
(
yj | X̃j ,βj ,γj , σ2

j

)
p
(
γlj | zlj , βlj , σ2

j ,G0

)
p (G0)

(
1
2

)
qb

(
β′lj

) , (5.18)

• and for C02 ⇒ C12

RB2 =
p
(
yj | X̃j ,β

′
j ,γ
′
j , σ

2
j

)
p
(
β′lj | σ2

j ,G′0
)
p (G′0) (1− πj)

p
(
yj | X̃j ,βj ,γj , σ2

j

)
p (G0)

(
1
2

)
qb

(
β′lj

) , (5.19)
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and each of the move is accepted with probability

ADi = min {1, RDi} or ABi = min {1, RBi} (5.20)

5.3.2 Conditional posterior distribution of σ2
j

The conditional posterior distribution for σ2
j is inverse gamma distribution with

p(σ
2
j | Y, α, β, γ, z,G, ψ) ∝

(
σ
2
j

)− δj
2
−1

exp

− τj

2σ2
j

(σ2
j

)−n
2

exp

− 1

2σ2
j

(
yj − X̃jBj

)T (
yj − X̃jBj

)(σ2
j

)− 1
2 exp

− ωj

2σ2
j

(
αj − aj

)2
p∏
l=1

(σ2
j

)− 1
2 exp

− ωj

2σ2
j

(
βlj − blj

)2
I{l∈pa0(j)}

p∏
l=1

(σ2
j

)− 1
2 exp

− ωj

2σ2
j

(
γlj − νlj

)2
I{zlj=2}

∝
(
σ
2
j

)− 1
2

(
δj+n+1+

∑
l I{Glj=1}+

∑
l I{zlj=2}

)
−1

exp

− 1

2σ2
j

(
τj +

(
yj − X̃jBj

)T (
yj − X̃jBj

))
exp

− 1

2σ2
j

ωj
(αj − aj)2 +

∑
l

(
βlj − blj

)2
I{l ∈ pa0(j)} +

∑
l

(
γlj − νlj

)2
I{zlj = 2}



140



List of Notations

Acronyms

ADME absorption, distribution, metabolization, and elimination

AML Acute Myeloid Leukemia

AR auto regressive

bp basepair

CES-2 carboxylesterase-2

CG chain graph

CI credible interval

CRAN Comprehensive R Archive Network

DAG directed acyclic graph

DLT dose limiting toxicities

DNA deoxyribonucleic acid

EHRT enterohepatic recirculation time

FD false discovery

FDR false discovery rates

FN false negative

FNR false negative rates

FP false positive

FWE family wise errors

GDAG Gaussian directed acyclic graph

GGM Gaussian graphical models

GO Gene Oncology

GWAS genome-wide association studies

HIW hyper inverse wishart
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HPD highest posterior probability

MAF minor allele frequency

MCMC Markov Chain Monte Carlo

MDR Missed Detection Rate

MHGJ Metropolis-Hastings-Green with Jacobians

MLE maximum likelihood estimator

MTD maximum tolerated dose

NCBI National Center for Biotechnology Information

PDAG partial directed acyclic graph

PD pharmacodynamic

PKGm Pharmacogenomics

PKGx Pharmacogenetics

PK pharmacokinetics

PopPK population pharmacokinetics

RJMCMC reversible jumps Markov Chain Monte Carlo

RPPA reverse phase protein array

RPTD recommended phase two dose

SNP single nucleotide polymorphism

SN-38 7-ethyl-10-hydroxycamptothecin

TN true negative

TP true positive

Probability Distribution

Beta(α, β) Beta distribution with parameters α > 0 and β > 0.

Bin(n, p) Binomial distribution with sample size n ∈ N \ {0} and success prob-

ability p ∈ [0, 1].

Exp(λ) Exponential distribution with rate parameter λ > 0.
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Ga(α, β) Gamma distribution with shape α > 0 and inverse scale β > 0.

Inv-Ga(α, β) Inverse-Gamma distribution with shape α > 0 and scale β > 0.

HIWg(α,Φ) Hyper inverse Wishart distribution with parameters α and Φ.

Inv-N(µ, λ) Inverse Gaussian distribution with mean µ > 0 and shape parameter

λ > 0.

MN n×p(Φ,Σ) n×pMatrix variate Gaussian distributio with mean µ = (µT1 , . . . ,µ
T
n )T ,

row covariance Φ = [φij]n×n, and column covariance Σ = [σij]p×p.

MT (υ,Φ,Σ) Central matrix Student T distribution with parameters υ,Φ, and

Σ.

Np(µ,Σ) p variate Multivariate Gaussian distribution with mean µ = (µ1, . . . , µp)
T

and covariance Σ = [σij]p×p.

Wishartν(S) Wishart distribution with degrees of freedom ν > 0 and symmetric

positive definite k × k matrix S.

Inv-Wishart(ν, S) Inverse Wishart distribution with degrees of freedom ν > 0

and symmetric positive definite k × k matrix S.

Symbols

=d Equality in distribution.

⊥⊥ Independence.

∝ Proportional Relation.

det(x) Determinant of a matrix x.

diag(x) Diagonal matrix with x as the diagonal entries.

E Expectation.

trace(x) Trace of a matrix x.

var Variance.

an(v) A set of ancestor vertices for a vertex v.

bd(v) A set of boundary vertices for a vertex v.
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ch(v) A set of child vertices for a vertex v.

cl(v) A set of closure vertices for a vertex v.

de(v) A set of decendant vertices for a vertex v.

nd(v) A set of non-decendant vertices for a vertex v.

pa(v) A set of parent vertices for a vertex v.

G Graph.

E Edge set of a graph.

GM Moralization of a graph G.

V Vertice set of a graph.

I Integer.

N Natural number.

R Real number.

p(·) Probability density function.

P (ω) Probability of an event ω.
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Index

Acute Myeloid Leukemia, 61, 91

Bayesian pharmacogenetics

model, 38

chain graph

models, 19

directed acyclic graph, see DAG

dose limiting toxicities, 30

enterohepatic recirculation time, 52,

129

false discovery rate, 23, 24, 48, 107

false negative rate, 25

family wise errors, 23

Gaussian DAG models, 18

Gaussian graphical models, 12

computation, 15

decomposable, 13

differential, 66

non-decomposable, 13

Graphical Lasso, 15

graphical models, 6

computation, 103

graphs

ancestors, 7

ancestral matrix, 7

boundary, 7

child, 7

clique, 7

closure, 7

complete, 6

complete subset, 6

decomposable graph, 7

decomposition, 7

decompostion

proper, 7

descendants, 7

directed, 6

directed cycle, 6

edges, 6

incomplete, 6

moral, 7

non-descendant, 7

parent, 7

path, 6

directed, 6

prime components, 7

prior, 20, 21

separator, 7

undirected, 6
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vertices, 6

adjacent, 6

neighbors, 6

independence

conditional, 5

marginal, 4

irinotecan, 50

compartment model, 129

Markov Chain Monte Carlo, 119

Block Gibbs sampler, 45

Metropolis Hastings, 130

over-relaxation, 120

parallel tempering, 121

Reversible Jump, 119, 136

truncated Gaussian, 132

Markov properties, 8

chain graphs, 10

directed acyclic graphs, 9

global, 8

local, 8

pairwise, 8

undirected graphs, 8

Maximum tolerated dose, 30

minor allele frequency, 29

multiple comparisons, 23

pharmacodynamics, 31

model, 33

pharmacogenetics, 34

chain graph, 40

pharmacogenomics, 34

pharmacokinetics, 31

ADME, 1

model, 32

population, 33

model, 35

probability distribution, 123

Beta, 127

Binomial, 127

Exponential, 126

Gamma, 126

Hyper Inverse Wishart, 125

Inverse Gamma, 126

Inverse Gaussian, 124

Inverse Wishart, 125

Matrix Student T, 124

Matrix-variate Gaussian, 123

multivariate Gaussian, 123

Wishart , 124

recommended phase two dose, 30

reverse phase protein array, 62, 91

single nucleotide polymorphisms, see

SNP
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SNP, 2, 26, 28, 29

model, 36

sweep operation, 127
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