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Abstract

The study of radiative transfer within participating gaseous and particulate media has become

increasingly important in the prediction of the combustion process of hydrocarbons for various sci-

entific and industrial applications. The radiative transfer equation (RTE) is an integro-differential

equation in five independent variables describing the physical process of radiative transfer. The

angular dependency of the RTE makes it exceedingly difficult to solve by deterministic meth-

ods. Several approximate deterministic methods for the RTE have been developed over time. Two

most promising candidates, the discrete ordinates method (DOM) and the spherical harmonics (PN)

method, are often used to solve the RTE even though both of them have their limitations. The DOM

discretizes the entire solid angle by a finite number of ordinate directions and integrals over direc-

tion are replaced by numerical quadrature. DOM is relatively simple to implement but suffers from

ray effects and false scattering and requires an iterative solution for scattering media or reflecting

surfaces. On the other hand, the spherical harmonics PN method is a spectral method that solves

the RTE by approximating the angular distribution of the intensity by a truncated series of spherical

harmonics. Despite the popularity of the lowest order of the PN method, i.e., the P1 method, the

potential of high-order PN methods has never been fully explored. This is partly due to cumber-

some mathematics, and to lack of research in this area compared with the effort and progress made

in its most popular counterpart, the DOM. Increasing of the order of PN is expected to overcome

the difficulty of optically thin and optically intermediate conditions or domains with optically thin

and optically intermediate regions, which is the motivation for this research. The Photon Monte

Carlo (PMC) method is so far the most accurate method; unlike the DOM/FVM and PN methods,

the stochastic PMC method gives an exact solution to the RTE. However, the PMC method can

be computationally expensive since a large number of rays must be traced, which prevents it from

wider applications in evaluating radiative transfer within combustion simulations.
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This study focuses on a recently-developed general PN formulation consisting of N(N + 1)/2

second-order elliptic PDEs and their Marshak’s boundary conditions for arbitrary 3-D geometries.

The number of equations and unknowns can be further reduced to (N + 1)2/4 for two-dimensional

geometries by taking advantage of the geometric characteristics of spherical harmonics. Special

boundary conditions, including symmetry/specular reflection boundaries, walls with specified ra-

diative flux, cyclic boundaries and mixed diffuse-specular surfaces have also been developed for

high-order PN methods. The high-order PN methods (up to the order of 7) have been implemented

within the finite volume-based OpenFOAM R© open-source libraries. The performance of high-order

PN methods is demonstrated by solving a number of examples covering a wide range of different

geometries and varying radiative properties including coupled simulations of a turbulent jet flame

and a frozen snapshot study of a high-temperature oxy-natural gas burner. The goal of these exam-

ples is to test the performances of the high-order PN methods with respect to all kinds of factors,

e.g., order of PN , overall optical thickness, geometry, homogeneity of radiative properties, etc., as

well as to verify the finite volume implementations of the high-order PN method on OpenFOAM R©.
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Chapter 1

Introduction

1.1 Background

The combustion of fossil fuels is the primary source of energy for society, the source of thrust

for propulsion systems and at the same time the major cause of pollution. Understanding of the

combustion process is essential to improve fossil energy utilization and reduce the pollutant emis-

sions. Due to the complexity of combustion process, the design of combustion chambers used to

be largely based on rules summarized from limited experimental data under limited thermodynamic

conditions. Nowadays, successful design of the next generation of high-efficiency low-emission

combustors, e.g., industrial burners, gas turbine combustors, internal combustion engines, pulver-

ized coal combustors, etc., relies more and more on the capability of modeling the combustion

process. Analysis based on effective modeling of the combustion process is much more efficient

and insightful for carrying out parametric research and design optimizations, which can signifi-

cantly reduce frequencies of costly experimental studies and prototype buildings [1]. Enormous

computers equipped with Computational Fluid Dynamics (CFD) software are assisting scientists

and engineers to simulate, diagnose, optimize and even control the combustion processes to meet

the energy and environmental challenges of this century. Behind these powerful CFD tools, com-
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prehensive modeling of combustion is still a developing research frontier with lots of unknowns

and unsolved problems. Combustion is a process that involves interactions between fluid dynamics,

chemical reactions and heat transfer in different temporal and spatial scales. Significant progress

has been made over time [2–6], but the submodels, i.e., turbulent flow, chemical kinetics, thermal

radiation, multi-phase flow and their interactions (e.g., turbulence-chemistry interaction: TCI and

turbulence-radiation interaction: TRI, etc.), are still among the most challenging fundamental and

practical problems of computational science and engineering.

Figure 1.1 is a general schematic illustrating the physical and chemical processes involved in

the combustion inside of an industrial diesel engine chamber to show the complexity of combustion

modeling in real applications. The fuel spray is injected from the nozzles at the center with high

velocities and then evaporates and mixes with the high-pressure air while the piston is compress-

ing the mixture. After ignition, the flow conditions turn highly turbulent, which can be observed

visually, and at the same time hundreds of chemical reactions are taking place involving hundreds

of species. The heat of combustion is transfered to the gases, soot and cylinder walls through both

radiation and convection, and all these processes take place in a very short time scale.

To capture the complex characteristics of such flames and the generation of pollutants, such

as NOx and soot, which are very sensitive to the temperature fields, the simulation must be able

to include physical and chemical processes as accurate as possible. On the other hand, due to con-

straints of computational power, different levels of simplifications of the corresponding physical and

chemical models are necessary for most industrial applications. The selection of the approximate

sub-models is critical to the validity of the overall simulation results, thus careful scrutiny is re-

quired before leaving out important physical processes or applying over-simplified approximations

without knowing their effects.

The radiation emitted from the combustion products is proportional to differences in the

fourth power of temperature, which indicates the importance of it in high-temperature applications.

There are two major sources of radiation in hydrocarbon flames: (1) from the participating product

4



Figure 1.1: Combustion processes in an industrial diesel engine chamber [7].

gases; and (2) from in-flame soot and solid/liquid fuels. The combustion of hydrocarbons produces

significant amounts of heat and radiating products such as CO2, H2O and soot. The gaseous prod-

ucts of a hydrocarbon flame mostly radiate and absorb across certain bands in the infrared spectrum,

while soot if present usually dominates over gas radiation. However, radiative heat transfer, its in-

teractions with turbulence, chemistry and soot formulation had been ignored or treated too simply

for a long time in spite of the fact that it is the dominant mode of heat transfer for most combustors

at industrial scales [6, 8–10]. This is partly due to the relatively small scale of laboratory flames so

that scalars predicted from simple radiative models are sometimes close enough to the experimental

measurements. Simplistic treatment of radiation is also a consequence of the fact that adding more

realistic radiation models on top of the simulation of flames, which usually are extremely time-

consuming already, is rarely practical. Therefore, simpler approximate models, such as optically

thin or gray models, are common practice in most combustion simulations [11, 12].

A widely used indicator to quantify the importance of radiation for a flame that reaches

steady-state is the radiant fraction χR [13] which is the ratio of net radiative heat loss Qrad and

5



the heat of combustion released from chemical reactions ṁF∆hC . It is usually determined from

experimental data and can be very convenient once tabulated or fitted into correlations for different

fuels, sizes of combustors and flow conditions. For example, Turns and Myher [14] relate the radi-

ant fraction to a global residence time, which is the function of flame characteristics (flame density,

flame volume, mass fraction of the fuel and inlet velocity etc.) for different fuels, flow conditions

and burner sizes, and found that the correlation is capable of predicting the overall release of NOx

when scaling flames. But its analysis and other similar empirical studies [14–20] are based on the

optically thin and gray approximations, which consequently affect the applicability of these cor-

relations to other conditions. Theoretically, a small radiant fraction of a high temperature flame

alone can either mean little emission or a large fraction of self-absorption and, therefore, the radiant

fraction cannot be directly used to determine whether high-level radiation simulation is required.

The gray model uses a single mean absorption coefficient, usually the Planck-mean absorp-

tion coefficient κP, for radiation calculations, where κP is calculated by weighing the spectral ab-

sorption coefficient κη with the Planck function [21], which conserves total emission. The optically

thin approximation, which neglects self-absorption, is valid when the optical thickness (τP), again

evaluated in terms of κP, is very small (τP � 1) [21]. The concept of optical thickness is just a rough

estimation of the level of self-absorption and there is no clear border-line between optically thin and

optically thick conditions. It is common to have totally different radiation regimes where the highly

emitting-absorbing-scattering region at the center of a flame is surrounded by regions with almost

no radiation in a real combustion chamber. The optically thin and gray models can be good tools to

estimate the range of difference that adding radiation models could bring to the specific combustion

problem, especially when the combustion simulation is still at the preliminary stage. But they tend

to lead to substantial errors if the participating media are optically thick or nongray, as has been

shown by both numerical and experimental studies [22–30]. A gray model is never appropriate

unless the volume fraction of the in-flame soot exceeds about 0.1 ppm [31]. It has been shown in

a methane flame that neglecting radiation in combustion systems under atmospheric pressure may
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lead to over-prediction of temperature of up to 200◦C, while employing optically thin or gray mod-

els can lead to under-prediction of temperatures about 100◦C [32–34]. Keramida et al. [29] studied

the effect of radiation of a typical industrial natural gas-fired furnace. The results have shown that

accounting for radiation and applying the gray gas model in the combustion simulation significantly

reduced the mean temperature in the furnace which gave a better agreement towards experimental

data and the combustion gases leave the furnace with about 60% lower temperature than that of

the model without radiation. Stefanidis et al. [30] simulated an industrial steam cracker (length:

12 m, width: 3 m and height: 8 m) with gray and nongray radiation models. As illustrated in

Fig. 1.2, the temperature distributions calculated from gray and nongray models are significantly

different, where the temperature differences at certain areas of the furnace exceed 150 K. Radiation

also significantly affects the propagation speed and extinction characteristics of laminar premixed

flames [35, 36]. The laminar burning velocity was increased up to 150% when large amounts of

nongray gases, i.e, CO2 and H2O, are present [36] . Also, the nongray effects of participating gases

have been carefully measured in laboratory-scale nonluminous turbulent methane jet flames. The

comparative study showed that optically thin assumption may over-predict the radiative heat loss by

more than a factor of two [37].

Most industrial flames are turbulent, thus the interactions between radiation and turbulence,

or turbulence–radiation interaction (TRI), also plays an important role in real combustion processes.

The nonlinear interaction can significantly change the global and local flame characteristics. Tur-

bulence influences radiation through fluctuations in temperature T , pressure p and species concen-

trations X, and therefore affect both the emission and absorption through the Planck function (a

function of temperature) and spectral absorption coefficients (determined by temperature, pressure

and gas composition). Experiments on laboratory-scale flames [38–40] have shown that radiative

emission can be as much as 50% to 300% higher than that expected based on mean values of tem-

peratures and absorption coefficients. Modeling of nonluminous flames [33,41,42] also predicted a

30% to 50% increase in radiative emission and reduction in peak temperature of about 100 K when
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Figure 1.2: Temperature contour plots in a vertical cross section in the middle of the simulation of
an industrial furnace [30]; (a) Gray radiation model; (b) Nongray radiation model.

comparing simulations with and without TRI. Mehta et al. [31] investigated TRI in luminous tur-

bulent jet flames and the results show that TRI increased the emission from the flames by 30–60%

and the net heat loss from the flame increased by 45–90%. Different models and implementations

to treat TRI have been reviewed in [43]. And the systematic isolation study by Mehta et al. [31]

showed that emission TRI is more important than absorption TRI and the latter can be safely ignored

for laboratory-scale flames.

More uncertainty is involved, if particulate media in combustion, such as soot, coal and fly-

ash particles, fuel sprays, etc., are also present. Soot is the product resulting from incomplete

combustion of hydrocarbons in fuel-rich parts of flames. Experiments have shown that soot emission

in most cases is much stronger than gas emission. Although the radiative properties of soot materials

are also functions of wavelength [44], usually the gray approximation for soot is fairly good for most

combustion conditions. Adams and Smith [45] showed that the radiation contributions of the soot

particles are of the same order of magnitude as that of the gases, while self-absorption by the soot
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is lower than that of gases for a turbulent methane flame. Wang et al. [46] studied the interactions

between soot formulation and radiation in an oxygen-enriched turbulent propane flame. The results

show that soot radiation lowered the average flame temperature, especially in the flame-tip region.

Metha et al. [31] studied the radiation effects of soot in six turbulent jet flames and found that soot

emission can contribute as much as 70% to the total emission from the flames and more than 90%

of the soot emission escaped the domain, which is due to the much narrower absorption band of

gases than that of soot.

Radiation in pulverized coal combustions is the principal mode of heat transfer and critical

to furnace efficiency. It also plays an important role in the preheating of the coal particles and their

ignition [47]. Compared with soot, coal and fly-ash particles are spread throughout the combustion

chamber and scattering of coal cannot be ignored. Recent experimental and numerical studies of a

100 kW burner of pulverized coal under oxy-fuel conditions from the research groups of Chalmers

and DTU [48] showed that modeling results, which applied the Lorenz–Mie theory for coal particles,

are in accordance with experiment results, and the gray approximation is reasonable for both coal

and fly-ash, which is consistent with the study of Clements [49] of a scaled 250 kW burner, but

is contrary to the conclusions of Edge et al. [50] drawn from the simulation of a 0.5 MW scale

burner. Significant progress on the modeling side has been made by Modest’s group at University

of California, Merced. Cai et al. [51–53] and Marquez et al. [54] have developed relevant multi-

phase models, energy splitting schemes and nongray treatment of the radiative properties of coals

for different applications, and they obtained promising results when comparing with experimental

measurements and references.

The radiative effects of hydrocarbon fuel sprays in practical combustion systems have been

rarely studied even though the flame dynamics are very sensitive to spray evolution [55]. The

burning rate of fuel sprays is determined by the heat gain from the flame and hot walls via convection

and radiation and the heat loss by evaporation, which is an important parameter for combustion

analysis [13]. Tseng and Viskanta [56] examined the effects of radiation on the evaporation of single
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isolated n-heptane droplets with different diameters and surrounding temperatures and found that

radiation contributes as much as 15% of the convective heating with the surrounding temperature

at 1000 K for the n-heptane droplets with a diameter of 100 µm. The radiation contribution was

found to be in equal convection scale for the larger n-heptane droplets (1000 µm). The size of the

fuel droplets in real applications, such as diesel engines, tends to be smaller (1–100 µm), which

may have lesser radiation effects. Pioneering numerical simulations [57, 58] of diesel engines have

shown limited radiation effects on spray evaporation, overall flow fields and ignition. However, a

rough theoretical estimation of Roy et al. [57] predicts that radiative and convective heat transfer

may be comparable under some conditions, which will require more experimental and modeling

studies.

1.2 The Radiative Transfer Equation

Radiative heat transfer in an absorbing, emitting and scattering medium can be formulated by

considering conservation of radiative energy, known as the radiative transfer equation (RTE), which

is an integro-differential equation with spatial and directional dependency [21]:

ŝ · ∇τIη + Iη = (1 − ωη)Ibη +
ωη

4π

∫
4π

Iη(ŝ′)Φη(ŝ · ŝ′)dΩ′ (1.1)

where Iη(τ, ŝ) is the spectral radiative intensity, which is defined as the spectral radiative energy flow

per unit solid angle and unit area normal to the photon rays. τ =
∫
βηdr is an optical coordinate

and βη is the spectral extinction coefficient, which is the sum of spectral absorption coefficients κη

and scattering coefficients σsη; Ibη is the blackbody intensity or Planck function; ωη = σsη/βη is the

spectral scattering albedo; and Φη(ŝ · ŝ′) is the scattering phase function. The RTE mathematically

describes augmentation and extinction of spectral intensity along a path in the direction of ŝ.

The net energy balance at any location in the medium is obtained by integrating the spec-

tral intensity over all directions and all wavenumbers. The net radiative heat source S rad, is the
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difference between local absorption S abs and emission S emi:

S rad = −∇ · qrad = −(S emi − S abs) = −4κPσT 4 +

∫ ∞

0
κηGηdη, Gη =

∫
4π

Iη(τ, ŝ)dΩ (1.2)

where the spectral incident radiation Gη is defined as the directional integral of spectral radiative

intensity. The radiative heat flux crossing any surface, with surface normal vector n̂, is evaluated by

qrad · n̂ =

∫ ∞

0
qrad,η · n̂dη =

∫ ∞

0

∫
4π

Iη(τ, ŝ)n̂ · ŝdΩdη (1.3)

Solution methods for the RTE can be divided into two categories: deterministic methods and

the stochastic methods. A deterministic solution of the RTE usually requires further approximation

of the angular dependency, since analytical solutions of the RTE by direct integration with respect

to location and solid angle are rarely practical except for a small number of problems [21].

1.2.1 Photon Monte Carlo Method

In stochastic methods, or Photon Monte Carlo (PMC) methods, physically meaningful pho-

tons are statistically traced from their points of emission to their points of absorption. With enough

photon bundles being traced, the resulting radiative distribution in the solution domain is statisti-

cally determined. The Monte Carlo method was first applied to radiative heat transfer problems

by Howell and Perlmutter [59–61]. Modest and Poon [62] and Modest [63] improved the basic

ray-tracing scheme by applying the concept of energy partitioning to alleviate efficiency problems

for optically thin and optically thick media or when the walls are highly reflective. The PMC has

been successfully applied to radiative transfer in participating media [34,64–67] and stochastic me-

dia generated by probability density function (PDF) methods [68, 69]. Recently, it was extended

to flames with Lagrangian coal particles [54] and fuel sprays [57]. The PMC provides an exact

solution if sufficient photon bundles are traced, and its solution is commonly used to verify other

approximate methods.
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An advantage of the PMC method is its ability to accommodate arbitrary multidimensional

geometries and spectral variations. PMC codes used to be very time-consuming, but with the recent

development of computer parallelizations and graphic processing units (GPU) , it can be reasonably

fast if photons and computational domains are assigned properly among processors [70, 71]. The

only drawback is the inherent statistical errors which might be incompatible with other deterministic

sub-models when they are strongly coupled [72].

1.2.2 Approximate Methods

Several approximate deterministic methods for the five-dimensional RTE, Eq (1.1), have been

developed over time, such as spherical harmonics (PN) methods, the zonal method, the discrete

transfer method and discrete ordinates method (DOM or S N). The zonal method is a semi-analytical

method developed by Hottel and Cohen [73], which is able to give accurate results but is limited

to simple geometries, and large computational resources are required to invert a full matrix of ex-

change factors. The discrete transfer method [74–76] is very similar to DOM but also incorporates

some features from PMC, which tends to combine the disadvantages of both methods [21]. The

most widely used approximate methods today are the discrete ordinates method or its finite vol-

ume version 1 [77–81] and the lowest-order spherical harmonics (P1) method [21]. The DOM

discretizes the entire solid angle by a finite number of ordinate directions and integrals over di-

rection are replaced by numerical quadrature. DOM is relatively simple to implement and thus

is widely regarded as a standard solver for radiative heat transfer in modern CFD software pack-

ages [82–84]. Preliminary comparisons of P3 and S 4 results have shown the superiority of DOM

for non-scattering media [85]. But an iterative solution is required for scattering media or reflecting

surfaces, and computational cost is high for optically thick media. The method also suffers from

ray effects and false scattering due to the angular discretization [86–88]. Despite the popularity of

the lowest order of the PN method, i.e., the P1 method, the potential of high-order PN methods has

1To not be confused with the finite volume numerical method which shares the same name, the alias FVM is not
used.
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never been fully explored. This is partly due to the cumbersome mathematics, and also due to lack

of research in this area compared with the effort and progress made in its most popular counterpart,

the DOM. The PN approximation is a spectral method that assumes the unknown radiative intensity

I can be approximated by a truncated series of spherical harmonics that decouples the directional

and spatial variations of the intensity field. It is potentially more accurate than DOM at comparable

computational cost while preserving the rotational invariance [89] of the RTE. The lowest order of

the PN family, the P1 approximation, has been extensively applied to radiative transfer problems.

However, it loses accuracy when intensity is directionally very anisotropic [21], as is often the case

in optically thin media. Increasing of the order of PN is expected to overcome this difficulty.

Many modifications of the P1 method have been proposed to improve the accuracy signifi-

cantly, including the modified differential approximation (MDA) [90, 91] and the advanced differ-

ential approximation (ADA) [92]. The principle is to split the intensity into two components, i.e.,

a ballistic part and a diffusive part. The ballistic component is easily solved by direct integration,

while the diffusive component is suitable to be solved by the P1 method. However, their applica-

tions are limited to specific simple geometries where the numerical integration can be carried out

easily. These modifications can also be applied to any order of PN approximation as well whenever

it improves the results for P1.

1.2.3 High-Order Spherical Harmonics (PN) Method

The spherical harmonics method, or (PN) method, is perhaps the oldest way among the ap-

proximate methods to solve the transport equations. It was first formulated by astrophysicists to

describe radiative transfer in stars [93,94], and was then further studied and developed for neutron-

transport theory [95–98]. Davidson [96] found that approximations of odd orders P2n−1 are more

accurate than even ones of next highest order P2n, so that only approximations of odd orders should

be employed. One of the difficulties in the spherical harmonics method is the formulation of the

boundary conditions. Mark [99, 100] and Marshak [101] developed two different approximations
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of the boundary conditions of the PN method for neutron transport problems. Gelbard [102] com-

pared the results of an absorption-free Milne problem [103] applying the PN methods with Mark’s

and Marshak’s boundary conditions, and found that (1) Marshak’s boundary condition provides

better results; (2) though the accuracy improvement from P3 approximation to that of P1 is great,

the PN methods converge rather slowly with increase of N due to the vacuum condition at the

boundary. Attempts to develop the boundary conditions through variational methods have been

proposed by Pomraning and Clark [104, 105]. However, the variational approach is more involved

and Davis [106] showed that actually with proper choice of the functional, the boundary conditions

derived from variational principle are identical to that of the Marshak’s. One modification of the PN

method, called double-PN method, was proposed by Yvon [107], who noticed the difficulty of PN

method when a function of the directional cosine µ (cosine of the polar angle) has a discontinuity at

interfaces or walls. The idea of the double-PN method is to have two expansions, instead of one, of

the function for each angular range of µ > 0 and µ < 0, which allows accounting for discontinuities

of the angular distributions. Gelbard [108] compared the double-P1 method with DOM methods

of 12 ordinates (as reference) and solutions of P1 and P3 for a number of 1-D cases, the results

showed that the double-P1 method is more accurate than that of P3. Schmidt and Gelbard [109]

and Wang [110] further developed the double-PN method for cylindrical and spherical geometries,

and the double-P1 method still outperformed the P3 results. However, the double-PN method is

considerably more complicated even for a 1-D formulation and more approximations are required

in the derivation, which prevented it from further developments.

Cheng [111,112] applied the PN methods to analyze radiative transfer in a 1-D compressible

flow of a nonscattering radiating gray gas. Although the governing equations were obtained for

arbitrary order of N, only the lowest order, P1, is applied to the solution of the RTE. Arpaci and

Gozum [113] applied the P3 and P5 methods to the Bénard problem (natural convection studies

between horizontal parallel plates) and found that the results of P3 and P5 are increasingly more

accurate than P1, although the accuracy improvement of P5 is unexpectedly small. Canosa and Pe-
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nafiel [114] and Dave and Canosa [115] used the PN method with the consideration of anisotropic

scattering for atmospheric problems, which showed the potential of PN methods to solve realistic

scattering problems efficiently. Bayazitoglu and Higenyi [116] tested the P3 method on 1-D prob-

lems in Cartesian, cylindrical and spherical coordinates. The P3 solvers proved to give much better

results than those of P1 for all coordinates systems. Higenyi [117] extended the formulation of the

PN method to the order of P5 and applied it to 1-D problems in cylindrical coordinates and found

great improvements for the P3 approximation over the P1 approximation and less improvements for

P5. In addition, the PN approximations in cylindrical and spherical coordinates were shown to be

less accurate than in Cartesian coordinates. Tong and Swathi [118] reported the results from P2 to

P11 methods for a 1-D hollow sphere confining emitting-absorbing-scattering gases. The results of

the examples without scattering were compared with other accurate methods. And examples with

linear anisotropic scattering were compared to analytical solutions of lower-order PN methods (P1,

P2 and P3) and numerical solutions of higher-order ones (P7 and P11). It was found that lower-order

PN solutions converge faster at the outer wall than near the inner wall and only when the optical

thickness is close to 10 did the lower order solutions converge closer to higher-order solutions. Their

conclusion was confirmed by the recent study of Ymeli and Kamdem [119], who applied the PN

methods, up to the order of P105, to a similar 1-D hollow sphere with different optical thicknesses

and aspect ratios.

The PN methods have also been developed to solve multidimensional problems, which result

in more coupled governing equations. Detailed derivations of the general 3-D formulation in Carte-

sian coordinates have been given by Davison [96] and by Cheng [111,112]. The formulation in gen-

eral coordinate systems has been given by Ou and Liou [120]. Another general three-dimensional

derivation was given by Condiff [121] by expanding the intensity in terms of polyadic Legendre

polynomials [122], whose arguments are tensors rather than scalars. However, the number of equa-

tions and unknowns as well as the mathematical complexity of the method increases rapidly with

the order in multidimensional problems, so that the order of approximation has mostly been limited
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to P3 ( [123–127] in radiative transfer and [128–132] in neutron transport). Fletcher [133–136] de-

veloped the first general computer program for arbitrary order of PN in 2-D and 3-D geometries for

neutron transport problems. The program was successfully applied to various classic neutron trans-

port problems, but limited by the magnitude of the scattering cross section. Further studies based

on Fletcher’s implementation for more general neutron transport applications were conducted by

Kobayashi [137,138], Inanc [139,140] and Khouaja et al. [141]. Brunner [142,143] and Eaton [144]

applied the PN method to time-dependent simulations of neutron transport processes, and Mark’s

boundary conditions are applied which can be implemented relatively easier within the framework

of the Riemann solver. The development of higher-order PN method for radiative heat transfer had

been very limited, until recently. Modest and Yang [145, 146] and Modest [147] have developed,

so far, the most general three-dimensional PN formulation consisting of N(N + 1)/2 second-order

elliptic PDEs and their Marshak’s boundary conditions for arbitrary 3-D geometries. The formula-

tion is relatively easy to apply to arbitrary geometries, which is ready for implementation in modern

software packages. The new formulation ignites a resurgence of research interests in high-order PN

methods [148–154] for solving radiative transfer problems.

Another currently popular concept is to apply filters [89, 155] to give different weights for

different orders of spherical harmonics to avoid the oscillations of PN method for problems with

void regions next to a strongly emitting–absorbing region, which is popular in meteorology studies

and summarized by Boyd [156]. The Filtered-PN method has also been applied to determine the

effect of radiation on the propagation of coal dust flames [157] and reasonable results were obtained.

So far, it is still a developing research topic and careful tuning of filter parameters for different

problems is required due to the lack of generality.

1.3 Radiative Properties

The spectral variation of the radiative properties adds another layer of difficulty to radiation

simulations. The treatment of spectral variations of radiative properties determines how many times
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and in what manner the RTE needs to be evaluated for realistic simulations of practical combustion

systems. The overall accuracy of the radiation simulation cannot be expected to be better than the

accuracy of the models employed to obtain the radiative properties of radiating gases, particles or

sprays.

1.3.1 Radiative Properties of Participating Gases

The absorption coefficient of the gaseous products (CO2,H2O,CO etc.) from the combustion

of hydrocarbons varies dramatically across the entire spectrum [21]. An example of the pressure-

based absorption coefficients for the most important wavenumber range of these participating gases

is shown in Fig. 1.3. The strong spectral variations of the absorption coefficient, which are non-

linearly related to temperature and pressure, make them very difficult to deal with. The most ac-

curate method is to solve the RTE with line-by-line (LBL) [158, 159] calculations based on ab-

sorption coefficients calculated from high-resolution databases, such as HITRAN, HITEMP and

CDSD [160–162]. LBL calculations require roughly one million spectral solutions of the RTE,

which is impractical for industrial applications. Therefore, mostly they are used as references to

validate other spectral models.

Closer inspection of the spectral distribution of gaseous absorption coefficients reveals that

the oscillatory absorption coefficient has the same value at many different wavenumbers. This fact

can be taken advantage of by applying the concept of reordering the reoccurring absorption co-

efficients at different wavenumbers (k-distribution method) [164], which is much more efficient

to store and compute. Several models have been developed over time, including the spectral-line-

based weighted-sum-of-gray-gases (SLW) method [165], the absorption distribution function (ADF)

method [166] and the full-spectrum k-distribution (FSK) method [167]. While the former two meth-

ods are approximate schemes, the FSK is an exact method for homogeneous media and the assump-

tion of a correlated absorption coefficient is made for nonhomogeneous media (FSCK) [168]. The

FSK can reduce the number of evaluations of the RTE from 1 million times to as low as eight
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Figure 1.3: Spectral absorption coefficients for combustion gases: (a) CO2 (b) H2O and (c)
CO [163].

times with high accuracy. Wang and Modest [169] and Cai and Modest [170] generated a narrow-

band database for individual species, from which FSKs can be assembled with appropriate mixing

models [171] on the fly. Such narrow-band database is very compact and seems ideal; however,

the mixing calculations are still computationally prohibitive when large numbers of FSKs are calcu-
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lated per time step [172]. Recent development of Wang et al. [173] solved this problem by tabulating

precalculated k-distributions of gas mixtures into a full spectrum k-distribution (FSK) look-up ta-

ble, which reduces computational cost significantly without sacrificing accuracy. Such table can

be easily customized for different applications and specific thermodynamic ranges. Applications of

FSK look-up tables for gas-soot mixtures can be found in [174] and further development based on

quadrature transformation is described in [175].

1.3.2 Radiative Properties of Particulate Media

The absorption and scattering coefficients of particulate media depend on a variety of factors,

including their temperatures, complex indices of refraction, diameters, shapes and spatial locations,

etc.. Usually, radiative properties of particulate media are relatively more benign as compared

to those of participating gases resulting in less error if approximated as gray. While absorption

coefficients of gases can be precisely calculated from quantum mechanics, the radiative properties

of particles and sprays more or less depend on semi-empirical correlations with more assumptions

involved, such as assuming the shape of particles to be spherical and homogeneous.

The range of soot diameters tends to be between 5–80 nm and volume fractions ( fv) are

between 10−8–10−5 [176–179]. Soot particles are observed to have the same temperature as the gas

phase [180] and are usually treated as a dilute continuum. Early experiments [181] have confirmed

that scattering of soot may be neglected, as predicted by Rayleigh’s theory for small particles, and

it leads to an absorption coefficient of

κλ = C
fv
λa (1.4)

where C and a (dispersion exponent) are empirical constants. The value of a directly reflects the

spectral dependence of the complex index of refraction, ranging from 0.7 to 2.4 [182–185]. Earlier

theories explained that the different values of dispersion exponent are due to particle sizes, because

the fact that the values of dispersion exponent are different from different soot particles is incompati-

ble with Rayleigh’s theory. Later experiments [182–184] have shown that the differences are mainly
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because of different complex indices of refraction. The complex index of refraction of soot is found

to be mainly related to chemical composition and the porosity, while it is insensitive to temperature.

The most widely accepted correlation is the polynomial fitting from Chang and Charalampopou-

los [44] for propane soot. Studies [186, 187] also found agglomeration of soot may increase the

sizes up to where Rayleigh’s theory no longer holds. A brief introduction of special treatments of

such soot is offered in [21].

Pulverized coal particles have sizes of 5–400 µm [47] and therefore the Lorenz–Mie the-

ory [21] is usually applied to calculate absorption and scattering coefficients. Reviews of radiative

properties of coal particles can be found in [8, 188, 189]. Buckius and Hwang [190] carried out a

large number of calculations based on Lorenz–Mie theory and found that the absorption and scatter-

ing coefficients of coal particles are almost independent of the particle size distributions and types

of coals but solely dependent on the mean particle diameter. Their conclusion was confirmed by the

calculations of Foster and Howarth [191] and Viskanta et al. [192] with the exception of mid-sized

particles. In most applications, the correlation parameters developed by Buckius and Hwang [190]

are sufficient for the prediction of radiative properties of coals.

Compared to soot and coal, the radiative properties of liquid fuel sprays have not yet been

systematically studied. The current status of research in this field has been summarized in the text

book of Dombrovsky and Baillis [193]. In terms of practical applications, the absorption coefficient

of Diesel sprays in an engine combustion environment has been evaluated by Roy et al. [57]. Three

optical approximations, i.e., the normal incidence approximation [21], Dunkle’s model [194] and

a size-based correlation for semi-transparent droplets [195] are employed, while the complex in-

dices of refraction are determined by the correlations of Dombrovsky et al. [196] , a LBL table by

Dombrovsky and Baillis [193] and a gray model, respectively. The results show that the absorption

coefficients of sprays from different spectral models are quite different, and further experimental

investigations are required to draw any conclusion.

Coal particles and fuel sprays are sometimes treated as Lagrangian phases in combustion sim-
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ulations [6,197,198]. Except for the PMC method of Wang et al. [68], which is able to treat discrete

Lagrangian particles naturally [68], deterministic expressions of RTE all require the framework of

a Eulerian coordinate system, where all radiative properties are treated in the sense of cell-averaged

values, or bulk values. The bulk absorption and scattering coefficients from the dispersed phase

can be calculated as the sum of the absorption and scattering coefficients of individual particles in

that cell divided by the cell volume. Theoretically, such treatment is valid only when the volume

fraction of the fuel spray is small, for which the assumption of independent scattering holds. Roy

et al. [57] verified the validity of semi-Lagrangian calculations by comparing them with true La-

grangian formulations, and the results were almost identical while the true Lagrangian formulation

takes considerably more CPU time. Similar semi-Lagrangian treatment for coal particles has been

carried out in [51–53], which showed the potential of high-fidelity simulations of coal properties.

1.4 Reacting Flow Simulation

The starting point of reacting flow simulation is to solve the Navier-Stokes equations [6,199,

200]. These equations describe how velocity, pressure, temperature and density of the fluid are

related while supplemented by the equations of thermodynamic state and properties of the fluid.

Submodels, such as turbulence, chemical reaction and radiation, also reside in the Navier-Stokes

equations through additional terms and by changing fluid properties. Using Cartesian tensor nota-

tion, the set of conservation equations for turbulent reacting flows in the convertional RANS-based

(Reynolds-Averaged Navier-Stokes) formulation can be presented as follows:
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∂xi
−
∂〈Jαi 〉
∂xi

+ 〈S α,chem〉 (α = 1, 2, ...,NS ) (1.5c)

∂〈ρ〉h̃
∂t

+
∂〈ρ〉h̃ũi
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xi
〉 + 〈S rad〉 (1.5d)

where a Roman index denotes a component of coordinates and a Greek index denotes a chemical

species; u is the velocity, Y is the mass fractions of the NS chemical species, h is the specific

enthalpy, ρ is the mixture mass density, p is the pressure, g is the body force per unit mass; τ, Jα

and Jh are the viscous stress tensor, the molecular flux of species and enthalpy, respectively. The

angle brackets 〈〉 and the tilde ∼ operators denote the Reynolds averaging and Favre averaging,

respectively. To fully define the physical system, the state equations, p = p(Y,T, ρ) and T =

T (Y, h, p), are also required and sometimes in the form of databases.

The fourth equation, Eq. (1.5d), is regarded as the energy equation. The effect of radiation

is represented by adding a radiative heat source term S rad (ignoring the averaging operators since

TRI is not the focus of this thesis), i.e., the negative divergence of radiative heat flux −∇ · qrad,

as a source term to the energy equation. In turn, the scalar fields (Y, T and p) obtained from the

Navier-Stokes equations are then used to determine the radiative properties, such as the blackbody

radiative intensity Ib and absorption coefficient κ.

The chemical production rate for species α, 〈S α,chem〉 in the species transport equation, Eq. (1.5c),

is in principle a known function of local thermal properties (Y, T and p). However, a detailed re-

action mechanism sometimes involves a lot of species and reactions for hydrocarbon fuels, which

is still not trivial even with advanced computational capacity. For instance, a very detailed methane

reaction would involve 325 reactions and 53 species as given by GRI–Mech 3.0 [201] and a de-
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tailed reaction mechanism for n-heptane would include 654 species and 5935 reactions [202].

Each reaction will give one first-order ODE and the size of the stoichiometric coefficient matrix

of such chemistry kinematics would be the size of number of species times the number of re-

actions [13]. The source term 〈Schem〉 needs to be evaluated for each time step and therefore a

very large and stiff system of ODEs are to be solved at each time step for every computational

cell where there are reactions. Reduced mechanism is often employed to reduce the computa-

tional costs in practice. Another level of complexity is added to the combustion model by consid-

ering the turbulence-chemistry interaction (TCI), which is based on the reality that for turbulent

flames 〈Schem(Y,T, p)〉 , Schem(〈Y〉, 〈T 〉, 〈p〉). That is because the closure problems from averag-

ing the highly nonlinear chemical source terms. Different methods, such as Eddy Break-Up model

(EBU) [203], laminar flamelet model [204], Partially Stired Reactor (PaSR) [205], Eddy-Dissipation

Concept (EDC) [206] and Probability Density Function (PDF) [207], have been developed over time

to address the TCI. Among these, the PDF approach is the most capable of reproducing the finite-

rate chemistry effects and the occurrence of localized extinction and re-ignition for turbulent flames.

The discussion of TCI can be found in the textbooks on combustion modeling [208, 209].

1.5 Objectives

This thesis focuses on the solutions of the radiative transfer equation (RTE) with high-order

spherical harmonics (PN) approximations for the angular dependency and finite volume method for

the spatial discretization and their applications in modeling radiative heat transfer in realistic com-

bustion simulations. The aim of this study is to develop and implement the high-order spherical

harmonics PN method up to P7, which has never been comprehensively explored and applied to real

multidimensional combustion conditions. Accurate evaluation of radiative transfer in real combus-

tion processes involves full-spectrum calculations including both optically thin and optically thick

regions. The high-order PN methods are expected to improve the accuracy of the P1 method under

these conditions. The new elliptic PN formulation of Modest and Yang [145,146] and Modest [147]
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will be implemented (up to P7) within the finite volume-based OpenFOAM R© open-source libraries.

Since 2-D geometries are often encountered in practical combustion simulations, a 2-D Cartesian

version and a 2-D axisymmetric version of the elliptic formulation will be reviewed and also imple-

mented in OpenFOAM R©, which can reduce the computational cost for special geometries. In addition,

special boundary conditions, including symmetry/specular reflection boundaries, walls with spec-

ified radiative flux, cyclic boundaries and mixed diffuse-specular surfaces will be developed for

arbitrary geometries by applying the geometrical properties of spherical harmonics. The high-order

PN methods will be demonstrated by solving a number of examples covering a wide range of dif-

ferent geometries and varying radiative properties including a 2-D axisymmetric turbulent jet flame

and a 2-D axisymmetric high-temperature oxy-fuel flame. The solutions obtained are then to be

compared with exact solutions and other standard methods.

1.6 Outline of the Chapters to Follow

Chapter 2 provides a review of the theory of the general elliptic formulation of high-order

spherical harmonics (PN) methods for arbitrary geometries. Chapter 3 starts with the review and

documentation of the derivations of a 2-D Cartesian version and a 2-D axisymmetric version of the

elliptic formulation of the high-order PN methods and their Marshak’s boundary conditions. Then,

the development of special boundary conditions, including symmetry/specular reflection bound-

aries, walls with specified radiative flux, cyclic boundaries and mixed diffuse-specular surfaces will

also be described. The implementation of these formulations in finite volume-based open-source

OpenFOAM R© is discussed in detail in Chapter 4. Chapter 5 shows the verification of the code and the

performance of the high-order PN methods for a wide range of conditions presenting the strengths

and drawbacks of PN methods, which is followed by applications to real combustion simulations in

Chapter 6. Finally in Chapter 7, conclusions will be drawn and future work will be briefly proposed.
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Chapter 2

Elliptic Formulation of the High-Order

Spherical Harmonics (PN) Method

Spherical harmonics PN approximation is a spectral method that assumes distribution of the

unknown radiative intensity I can be approximated by a finite series of spherical harmonics that

decouples the directional and spatial dependencies of the intensity fields. The original RTE is con-

verted into a system of coupled PDEs solving for the spatial-dependent coefficients of the spherical

harmonics series. In this chapter, the development of the second-order elliptic formulation of ar-

bitrary order of spherical harmonics PN methods will be reviewed with the original developments

found in [145–147]. Critical steps of the derivation of the second-order elliptic formulation will be

discussed, and the resulting N(N + 1)/2 governing equations and Marshak’s boundary conditions

will be presented. In order to show the derivations with clarity, only isotropic scattering is consid-

ered 1. The spectral dependence of the intensity and the RTE is ignored for now since the extension

to the nongray forms are straightforward.

1The inclusion of anisotropic scattering is presented in [145, 146], but it will not be discussed in this thesis.
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2.1 Second-Order Elliptic Formulation

The spherical harmonics, or PN , methods are based on expanding the radiative intensity field

I(r, ŝ) into an orthogonal series of spherical harmonics Ym
n (ŝ), whereby the spatial and the directional

dependencies are decoupled. While the full infinite series is an exact representation, a truncated

series of order N is used in practice:

I(τ, ŝ) =

N∑
n=0

n∑
m=−n

Im
n (τ)Ym

n (ŝ) (2.1)

where Im
n (τ) are the intensity coefficients and are functions of space only and Ym

n (ŝ) are the spher-

ical harmonics, which are functions of direction only. A few low-order intensity coefficients have

physical interpretations; I0
0 has the physical meaning of the incident radiation per solid angle, while

I1
1 , I
−1
1 , and I0

1 are components of the radiative heat flux; Im
2 are related to the radiation pressure after

division by the speed of light. Intensity coefficients with higher orders (n > 2) do not have clear

physical significance.

The most common closure for the PN approximation is to truncate the series at a certain odd

order of N as:

Im
n (τ) = 0 for n > N (2.2)

this truncation will preserve rotational invariance, which means different spherical harmonics series

expanded from rotations of coordinates give identical results. The spherical harmonics Ym
n (ψ, θ)

satisfy Laplace’s equation in spherical coordinates and their real forms are defined as [210],

Ym
n (ψ, θ) =


cos(mψ)Pm

n (cos θ) for m ≥ 0

sin(|m|ψ)Pm
n (cos θ) for m < 0

(2.3)

where θ and ψ are polar and azimuthal angles, respectively; Pm
n (cos θ) are associated Legendre
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polynomials [210], given by

Pm
n (µ) = (−1)m (1 − µ2)|m|/2

2nn!
dn+|m|

dµn+|m|
(µ2 − 1)n (2.4)

where µ denotes cos θ. Some examples of associated Legendre polynomials are shown in Table. 2.1.

The properties of associated Legendre polynomials can be found in handbooks of mathematics [211,

Table 2.1: Table of associated Legendre polynomials

n m=0 m=1 m=2 m=3
0 1 - - -
1 cos θ − sin θ - -
2 (3 cos2 θ − 1)/2 −3 cos θ sin θ 3 sin2 θ -
3 (5 cos3 θ − 3 cos θ)/2 −(15 cos2 sin θ − 3 sin θ)/2 15 cos θ sin2 θ −15 sin3 θ

212], and one important property is its orthogonality. The associated Legendre polynomials are

mutually orthogonal, i.e.,

∫ 1

−1
Pm

n (µ)Pm′
n′ (µ)dµ = δmm′δnn′

2(n + |m|)!
(2n + 1)(n − |m|)!

(2.5)

which leads to the orthogonality of spherical harmonics:

∫
4π

Ym
n Ym′

n′ dΩ = δmm′δnn′
2π(n + |m|)!(1 + δm,0)

(n − |m|)!(2n + 1)
(2.6)

Another important property is its function parity: associated Legendre polynomials are even func-

tions when (m+n) are even and odd functions when (m+n) are odd, which is critical for developing

special boundary conditions.

Substituting Eq. (2.1) into the RTE, Eq. (1.1), and assuming the scattering is isotropic, we

obtain:

ŝ · ∇τ
N∑

n=0

n∑
m=−n

Im
n (τ)Ym

n (ŝ) +

N∑
n=0

n∑
m=−n

Im
n (τ)Ym

n (ŝ) − ωI0
0(τ) = (1 − ω)Ib (2.7)

To develop the governing equations with respect to the intensity coefficients Im
n , Eq. (2.7) is multi-
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plied by Ym′
n′ and integrated over a solid angle of 4π. Exploiting the orthogonality of the spherical

harmonics, Eq. (2.6), one obtains a system of (N + 1)2 first-order PDEs in the unknown intensity

coefficients Im
n (τ) with respect to spatial locations only. The number of governing equations can be

further reduced by eliminating the odd order intensity coefficients (Im
n with odd n) by their relation

to the gradients of Im
n+1 and Im

n−1 [145], which transforms the governing equations of the PN method

from (N+1)2 first-order PDEs into N(N+1)/2 second-order elliptic PDEs. The intensity coefficients

Im
n of the second-order elliptic formulation are listed in Table. 2.2.

Table 2.2: Intensity coefficients employed for 3-D Cartesian formulation

n Intensity Coefficients

0 I0
0

2 I−2
2 I−1

2 I0
2 I1

2 I2
2

4 I−4
4 I−3

4 I−2
4 I−1

4 I0
4 I1

4 I2
4 I3

4 I4
4

6 I−6
6 I−5

6 I−4
6 I−3

6 I−2
6 I−1

6 I0
6 I1

6 I2
6 I3

6 I4
6 I5

6 I6
6

n I−n
n · · · · · · I−3

n I−2
n I−1

n I0
n I1

n I2
n I3

n · · · · · · In
n

To solve the N(N + 1)/2 elliptic PDEs, N(N + 1)/2 boundary conditions are required. Physi-

cally, the incoming intensity should be specified at the boundary faces, i.e., the boundary condition

is of the type:

I(rw, ŝ) = Iw(rw, ŝ), for n̂ · ŝ > 0

where Iw is the radiative intensity at the boundary wall, which represents the sum of the intensities

leaving the wall due to both emission and reflection; n̂ is the outward surface normal of the bound-

ary faces. Since the radiative intensity I is truncated at the order of N, the boundary condition can

no longer be satisfied exactly. Instead, the truncated I can either satisfy Eq. (2.8) along particular

direction ŝ (Mark [99, 100]) or in an integral sense (Marshak [101]). Mark’s boundary conditions

are to assign the value of the zeros of the Legendre polynomial of order N + 1, while Marshak’s

are based on the incoming half moments of the intensity. Davison [96] theoretically speculated
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that for low-order PN methods, Marshak’s boundary conditions would give more accurate results

while Mark’s would be better for high-order PN methods. However, Pellaud [213] and Schmidt

and Gelbard [102, 109] proved that Marshak’s boundary conditions gave superior results even for

high-order PN approximations. More recent studies of Brunner [142,143], Eaton [144] and McClar-

ren [214] for transient problems employed Mark’s boundary condition and get reasonable results,

but no comparison was made between Mark’s and Marshak’s boundary conditions in their studies.

The developments of Modest and Yang [145, 146] and Modest [147] followed Marshak’s approxi-

mation and they extended the Marshak’s boundary conditions for multidimensional problems.

The general Marshak’s boundary conditions [101] are stated as:

∫
n̂·ŝ>0

IȲm
2i−1(ŝ)dΩ =

∫
n̂·ŝ>0

IwȲm
2i−1(ŝ)dΩ, i = 1, 2, ...,

1
2

(N + 1), all relevant m (2.8)

where the Ȳm
2i−1(ŝ) are expressed in terms of local coordinates systems, in which ŝ is represented

by the local polar angle θ̄ measured from the surface normal and the local azimuthal angle ψ̄. One

well-known difficulty of applying Marshak’s boundary conditions is that it leads to more boundary

conditions than the number of governing equations. Equation (2.8) gives (N +1)(N +2)/2 boundary

conditions for all m within the range of −i ≤ m ≤ +i, while there are only N(N + 1)/2 governing

equations. Davison [96] suggests that for i ≤ (N − 1)/2, Eq. (2.8) be satisfied for all m while for

i = (N + 1)/2, as many m as possible from the smallest |m|. This is simply assuming the normal

moments are more relevant than tangential ones in local coordinates at the boundary faces. Modest

and Yang [145, 146] adopted this method with a modification, i.e., they chose all the even |m| for

i = (N + 1)/2 instead of the smallest |m| to avoid implementation difficulties. Modest [147] showed

this to be the only consistent set of boundary conditions.
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2.2 Governing Equations

The set of N(N + 1)/2 second-order elliptic PDEs of the PN method for isotropic scattering

in 3-D Cartesian coordinates as given by [147] are:

For each Ym
n : n = 0, 2, . . . ,N − 1, 0 ≤ m ≤ n :

3∑
k=1

{
(Lxx − Lyy)

[
(1 + δm2)anm

k Im−2
n+4−2k +

δm1

2
cnm

k Im
n+4−2k + enm

k Im+2
n+4−2k

]
+ (Lxz +Lzx)

[
(1 + δm1)bnm

k Im−1
n+4−2k + dnm

k Im+1
n+4−2k

]
+ (Lxy +Lyx)

[
−(1 − δm2)anm

k I−(m−2)
n+4−2k +

δm1

2
cnm

k I−m
n+4−2k + enm

k I−(m+2)
n+4−2k

]
+ (Lyz +Lzy)

[
−(1 − δm1)bnm

k I−(m−1)
n+4−2k + dnm

k I−(m+1)
n+4−2k

]
+ (Lxx +Lyy − 2Lzz)cnm

k Im
n+4−2k

}
+

[
Lzz − (1 − ωδ0n)

]
Im
n = −(1 − ω)Ibδ0n

(2.9a)

and for each Y−m
n : n = 2, . . . ,N − 1, 1 ≤ m ≤ n :

3∑
k=1

{
(Lxy +Lyx)

[
(1 + δm2)anm

k Im−2
n+4−2k +

δm1

2
cnm

k Im
n+4−2k − enm

k Im+2
n+4−2k

]
+ (Lyz +Lzy)

[
(1 + δm1)bnm

k Im−1
n+4−2k − dnm

k Im+1
n+4−2k

]
+ (Lxx − Lyy)

[
(1 − δm2)anm

k I−(m−2)
n+4−2k −

δm1

2
cnm

k I−m
n+4−2k + enm

k I−(m+2)
n+4−2k

]
+ (Lxz +Lzx)

[
(1 − δm1)bnm

k I−(m−1)
n+4−2k + dnm

k I−(m+1)
n+4−2k

]
+ (Lxx +Lyy − 2Lzz)cnm

k I−m
n+4−2k

}
+ (Lzz − 1) I−m

n = 0

(2.9b)
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where anm
k , bnm

k , cnm
k , dnm

k , and enm
k are constant coefficients tabulated in Table 2.3, and δi j is the

Kronecker delta function. The L operators are denoting the derivatives. For example,

Lxy =
1
β

∂

∂x

(
1
β

∂

∂y

)
(2.10a)

Lzz =
1
β

∂

∂z

(
1
β

∂

∂z

)
(2.10b)

Table 2.3: Elliptic PN approximation coefficients [21]

k=1 k=2 k=3

anm
k

(a) 1
4(2n + 5)(2n + 3)

−
1

2(2n + 3)(2n − 1)
1

4(2n − 1)(2n − 3)

bnm
k

(b) n + m + 1
2(2n + 5)(2n + 3)

−
2m − 1

2(2n + 3)(2n − 1)
−

n − m
2(2n − 1)(2n − 3)

cnm
k −

π2(n + m + 1)
4(2n + 5)(2n + 3)

n2 + n − 1 + m2

(2n + 3)(2n − 1)
−

π2(n − m − 1)
2(2n − 1)(2n − 3)

dnm
k −

π3(n + m + 1)
2(2n + 5)(2n + 3)

−
(2m + 1)(n + m + 1)(n − m)

2(2n + 3)(2n − 1)
π3(n − m − 2)

2(2n − 1)(2n − 3)

enm
k

π4(n + m + 1)
4(2n + 5)(2n + 3)

−
π2(n + m + 1)π2(n − m − 1)

2(2n + 3)(2n − 1)
π4(n − m − 3)

4(2n − 1)(2n − 3)

πk(n) =
∏k−1

j=0(n + j)

(a) anm
k = 0 for m ≤ 1;

(b) bnm
k = 0 for m = 0.

2.3 Boundary Conditions

N(N + 1)/2 boundary conditions are required and determined from the general Marshak’s

boundary condition, Eq. (2.8). Substitution of Eq. (2.1) in terms of local coordinates into Eq. (2.8)
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leads to

(1 + δm,0)π
N∑

n=0

pm
n,2i−1 Īm

n =

∫ 2π

0

∫ 1

0
IwȲm

2i−1dµ̄dψ̄ (2.11)

with the relevant i and m pairs of

m =


−i,−i + 1, · · · , i i = 1, 2, · · · , (N − 1)/2

−N + 1,−N + 3, · · · ,N − 1 i = (N + 1)/2
(2.12)

where each i and m pair gives one individual boundary condition. As discussed in the previous

section, for the largest value of i, only the even values of m are employed for a consistent set of

N(N+1)/2 boundary conditions. The pm
n, j in Eq. (2.11) are the half-moments of associated Legendre

polynomials, which are defined as

pm
n, j = pm

j,n =

∫ 1

0
Pm

n (µ̄)Pm
j (µ̄)dµ̄ and pm

n, j = 0 if n < |m| or j < |m| (2.13)

and tabulated in Table 2.4, which are calculated by the recursion formula [147]. Note that n and j

are always positive and the sign of m does not affect the evaluation of pm
n, j since the evaluation of

associated polynomial Pm
n (µ̄) is taking the absolute value of m, Eq. (2.4). Appendix A gives more

details of the half-moments calculation and it follows that:

pm
n, j = 0 n + j even, n , j (2.14)

If Iw is diffuse, Eq. (2.11) simplifies to

N∑
n=0

pm
n,2i−1 Īm

n = δm,0 p0
0,2i−1Iw (2.15)

In order to obtain a generic boundary condition for arbitrary geometries, the spherical harmonics
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Table 2.4: Half-moments of associated Legendre polynomials, ×10−m

m n \ j 0 1 2 3 4 5 6 7
0 0 1.00000

1 0.50000 0.33333
2 0.00000 0.12500 0.20000
3 -0.12500 0.00000 0.12500 0.14286
4 0.00000 -0.02083 0.00000 0.07031 0.11111
5 0.06250 0.00000 -0.03906 0.00000 0.07031 0.09091
6 0.00000 0.00781 0.00000 -0.01562 0.00000 0.04883 0.07692
7 -0.03906 0.00000 0.02188 0.00000 -0.02279 0.00000 0.04883 0.06667

1 1 0.06667
2 0.07500 0.12000
3 0.00000 0.07500 0.17143
4 -0.04167 0.00000 0.14062 0.22222
5 0.00000 -0.02344 0.00000 0.14062 0.27273
6 0.03281 0.00000 -0.06562 0.00000 0.20508 0.32308
7 0.00000 0.01312 0.00000 -0.04557 0.00000 0.20508 0.37333

2 2 0.04800
3 0.07500 0.17143
4 0.00000 0.14062 0.40000
5 -0.06563 0.00000 0.39375 0.76364
6 0.00000 -0.06525 0.00000 0.57422 1.29231
7 0.07088 0.00000 -0.24609 0.00000 1.10742 2.0160

3 3 0.10286
4 0.19687 0.56000
5 0.0000 0.55125 1.83273
6 -0.23625 0.00000 2.06719 4.65231
7 0.0000 -0.34453 0.00000 3.98672 10.0800

4 4 0.44800
5 0.99225 3.29891
6 0.00000 3.72094 13.9569
7 -1.51594 0.00000 17.5416 44.3520

5 5 3.29891
6 8.18606 30.7052
7 0.00000 38.5914 159.667

6 6 36.8463
7 100.338 415.135

7 7 581.189

expressed in local coordinates must be rotated back to global coordinates. This is achieved by adopt-

ing Euler’s rotation theorem [215] stating that any Cartesian coordinates with a common origin are
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Figure 2.1: Definition of Euler angles for an arbitrary rotation.

related by rotations about fixed axes. Here three Euler angles (α, β, γ) are employed following Var-

shalovich’s definition [216] 2, i.e., the first rotation of an angle α is about the global z-axis, the

second is by an angle β about the y′-axis and the third is about the z′-axis by an angle of γ, as

indicated in Fig. 2.1. The Euler angles can be obtained from the surface normal n̂ of the boundary

faces in arbitrary geometries as

α = tan−1(ny/nx)

β = cos−1(nz)

γ = π
2

(2.16)

where nx, ny, and nz are the x, y, and z components of the surface normal vector n̂, respectively.

And γ is arbitrarily defined. With given Euler angles a coordinate rotation matrix R [217] can be

determined as

R =


− sinα − cosα cos β cosα sin β

cosα − sinα cos β sinα sin β

0 sin β cos β

 (2.17)

allowing the evaluation of tangential directional vectors as

2Although angle β shares the same greek letter with the extinction coefficients, it only appears in the coordinates
rotation and hopefully will not cause any confusion.
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t̂x = R · ı̂ t̂y = R · ̂ (2.18)

For a given rotation of Euler angles, the spherical harmonics in local coordinates can be rotated

back to global coordinates through a rotation matrix ∆
n
mm′(−γ,−β,−α) [217], which leads to a linear

combination of spherical harmonics in global coordinates:

Īm
n =

n∑
m′=−n

∆̄n
mm′ I

m′
n (2.19)

where the rotation matrix ∆̄n
mm′ is calculated from

∆̄n
m,m′(−γ,−β,−α) = sign(m′)Ψm(−γ)Ψm′(−α)

[
dn
|m|,|m′ |(−β) + (−1)m′dn

|m|,−|m′ |(−β)
]

− sign(m)Ψ−m(−γ)Ψ−m′(−α)
[
dn
|m|,|m′ |(−β) − (−1)m′dn

|m|,−|m′ |(−β)
]

(2.20)

with

sign(m) =


−1 m < 0

1 m ≥ 0
(2.21)

and the function Ψm is defined as

Ψm(θ) =


cos mθ m ≥ 0

sin |m|θ m < 0
(2.22)

dn
mm′ is the real parts of the modified Wigner-D function, i.e.,

dn
mm′(β) =

(−1)m+m′(n − |m|)!(n + |m|)!
1 + δm,0

×

min(n−m,n+m′)∑
k=max(0,m′−m)

(−1)k
(
cos β

2

)2n−2k−m+m′ (
sin β

2

)2k+m−m′

k!(n − m − k)!(n + m′ − k)(m − m′ + k)!
(2.23)

Since the elliptic formulation is based on Im
n with even n, the local Īm

n in the boundary conditions
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with odd n must be eliminated through their relations to the derivatives of Īm
n+1 and Īm

n−1 [145]. Then

the Īm
n+1 and Īm

n−1 are rotated back to the global coordinates through Eq. (2.19). The final form of the

Marshak’s boundary conditions for the second-order elliptic formulation are shown below in terms

of a local coordinate system x̄, ȳ (tangential to the surface), and z̄ (surface normal) [147].

For each Y
0
2i−1, i = 1, 2, · · · , (N + 1)/2;

Iwp0
0,2i−1 =

N−1
2∑

l=0

2l∑
m′=−2l

p0
2l,2i−1∆

2l
0,m′ I

m′
2l +

∂

∂τx

N−1
2∑

l=1

2l∑
m′=−2l

v0
l,i∆

2l
1,m′ I

m′
2l

+
∂

∂τy

N−1
2∑

l=1

2l∑
m′=−2l

v0
l,i∆

2l
−1,m′ I

m′
2l −

∂

∂τz

N−1
2∑

l=0

2l∑
m′=−2l

w0
l,i∆

2l
0,m′ I

m′
2l (2.24a)

and for each Y
±m
2i−1, i = 1, 2, · · · , (N + 1)/2:

0 =

N−1
2∑

l=0

2l∑
m′=−2l

pm
2l,2i−1∆

2l
±m,m′ I

m′
2l

−
∂

∂τx

N−1
2∑

l=l1

2l∑
m′=−2l

[
(1 ± δm,1)um

l,i∆
2l
±(m−1),m′ − v

m
l,i∆

2l
±(m+1),m′

]
Im′
2l

±
∂

∂τy

N−1
2∑

l=l2

2l∑
m′=−2l

[
(1 ∓ δm,1)um

l,i∆
2l
∓(m−1),m′ + vm

l,i∆
2l
∓(m+1),m′

]
Im′
2l

−
∂

∂τz

N−1
2∑

l=0

2l∑
m′=−2l

wm
l,i∆

2l
±m,m′ I

m′
2l (2.24b)

where l1 and l2 are defined as

l1 = 1 − l2 =


0 for Y

m
2i−1

1 for Y
−m
2i−1

(2.25)
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and the constant coefficients um
l,i, v

m
l,i, w

m
l,i are defined as

um
l,i =

pm
2l−1,2i−1 − pm

2l+1,2i−1

2(4l + 1)
(2.26a)

vm
l,i =

π2(2l + m)pm
2l−1,2i−1 − π2(2l − m)pm

2l+1,2i−1

2(4l + 1)
(2.26b)

wm
l,i =

(2l + m)pm
2l−1,2i−1 + (2l − m + 1)pm

2l+1,2i−1

4l + 1
(2.26c)

Following Eq. (2.14), um
l,i, v

m
l,i, w

m
l,i are zero when i , l and i − l , 1.

The partial derivatives in Eq. (2.24) are expressed in local optical coordinates as

∂

∂τx
=

1
β

∂

∂x
(2.27a)

∂

∂τy
=

1
β

∂

∂y
(2.27b)

∂

∂τz
=

1
β

∂

∂z
(2.27c)

Finally, the radiative intensity at the boundary wall Iw is determined from:

Iw = εIbw + (1 − ε)
H
π

(2.28)

where ε is the surface emittance, and H is the hemispherical irradiation. For black walls, ε = 1, this

leads to Iw = Ibw. For clarity, here the definition of Iw, Eq (2.28), is limited to diffusely reflecting

walls. More explanation and further development for walls with more complicated properties will

be presented in the special boundary condition section.

2.4 Solutions

In the previous sections, the RTE was converted into N(N + 1)/2 second-order elliptic PDEs

and the corresponding boundary conditions were obtained adopting Marshak’s formulation. The
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governing equations, Eq. (2.9), with their boundary conditions, Eq. (2.24), are ready to be solved

as a linear simultaneous system of PDEs if the extinction coefficients β and the blackbody radiative

intensity Ib are specified. Analytical solutions only exist for simple 1-D geometry problems [21]

and are very difficult if not impossible for multidimensional problems. Thus numerical solutions are

necessary for multidimensional applications, which was originally implemented up to P5 for 2-D

geometries in the finite-element-based PDE solver FlexPDE [145–147, 218]. A better implementa-

tion platform is required before the elliptic formulation of high-order PN method can be applied to

more complicated problems.

The solutions of the described systems of PDEs, Im
n , are rarely reconstructed back to the

radiative intensity I. Instead, only ones with physical significance are used to describe the state of

radiative heat transfer. The incident radiation G is obtained from

G(τ) =

∫
4π

I(τ, ŝ)dΩ = 4πI0
0(τ) (2.29)

and the radiative heat flux q is evaluated as

q(τ) =

∫
4π

I(τ, ŝ)ŝdΩ =
4π
3

(−I1
1 ,−I−1

1 , I0
1) (2.30)

where the Im
1 are given by

I0
1 = −

∂I0
0

∂τz
−

2
5
∂I0

2

∂τz
+

3
5
∂I1

2

∂τx
+

3
5
∂I−1

2

∂τy
(2.31a)

I1
1 = +

∂I0
0

∂τx
−

1
5
∂I0

2

∂τx
−

3
5
∂I1

2

∂τz
+

6
5
∂I2

2

∂τx
+

6
5
∂I−2

2

∂τy
(2.31b)

I−1
1 = +

∂I0
0

∂τy
−

1
5
∂I0

2

∂τy
−

3
5
∂I−1

2

∂τz
−

6
5
∂I2

2

∂τy
+

6
5
∂I−2

2

∂τx
(2.31c)

Equations (2.30) and (2.31) are valid for both the global coordinates system (x-y-z, Im
n ) as well as a

local coordinates system at the boundary face (x̄-ȳ-z̄, Īm
n ).
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Chapter 3

Further Development of the High-Order

Spherical Harmonics (PN) Method

In this chapter, the high-order spherical harmonics (PN) method for 2-D Cartesian and 2-

D axisymmetric domains will be developed from the 3-D formulation by employing geometric

relations between the spherical harmonics. The number of equations and unknowns reduces to

(N + 1)2/4 in the 2-D formulations compared with N(N + 1)/2 for the general 3-D PN formula-

tion. Also, the Marshak’s boundary conditions are extended to solve problems with nonblack and

mixed diffuse-specular surfaces. Additional boundary conditions for specified radiative wall flux,

for symmetry/specular reflection boundaries and for cyclic boundaries are also formulated.

3.1 2-D Formulations

3.1.1 Formulation for 2-D Cartesian Geometry

The formulation of the 2-D Cartesian PN is derived from the 3-D formulation by apply-

ing the parity properties of the the associated Legendre polynomials Pm
n (µ), Eq. (2.4). For two-

dimensional Cartesian geometry in the x-y plane with polar angle θ measured from the z-axis, one
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obtains I(θ, ψ) = I(π − θ, ψ) or I(µ, ψ) = I(−µ, ψ) with µ = cos θ. As seen from Eqs. (2.3) and (2.4),

the associated Legendre polynomials Pm
n (µ) are odd functions when (m + n) are odd and thus Im

n

with (m + n) being odd must vanish. Since the governing equations are formulated with even n only,

all terms in the governing equation with odd m vanish. The remaining intensity coefficients Im
n are

listed in Table. 3.1. Based on this, and eliminating all derivatives into the z-direction, the remaining

(N + 1)2/4 governing equations for order N are:

For each Ym
n : n = 0, 2, . . . ,N − 1, m = 0, 2, . . . n :

3∑
k=1

{
(Lxx − Lyy)

[
(1 + δm2)anm

k Im−2
n+4−2k + enm

k Im+2
n+4−2k

]
+ (Lxy +Lyx)

[
−(1 − δm2)anm

k I−(m−2)
n+4−2k + enm

k I−(m+2)
n+4−2k

]
+ (Lxx +Lyy)cnm

k Im
n+4−2k

}
− (1 − ωδ0n)Im

n = −(1 − ω)Ibδ0n

(3.1a)

and for each Y−m
n : n = 2, . . . ,N − 1, m = 2, . . . n :

3∑
k=1

{
(Lxy +Lyx)

[
(1 + δm2)anm

k Im−2
n+4−2k − enm

k Im+2
n+4−2k

]
+ (Lxx − Lyy)

[
(1 − δm2)anm

k I−(m−2)
n+4−2k + enm

k I−(m+2)
n+4−2k

]
+ (Lxx +Lyy)cnm

k I−m
n+4−2k

}
− I−m

n = 0

(3.1b)

The boundary conditions again are expressed in local coordinates in terms of the surface normal

and tangential vectors. The local coordinates can be set up as in Fig. 3.1, so that Īm
n is independent

of ȳ (pointing into the global z-direction). Meanwhile, the x̄ direction can be found from Euler

angles, and Fig. 3.1 shows both the arrangements of the global and local coordinates for a general

2-D Cartesian geometry in the x-y plane.
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Table 3.1: Intensity coefficients employed for 2-D Cartesian formulation in x-y plane.

n Intensity Coefficients

0 I0
0

2 I−2
2 I0

2 I2
2

4 I−4
4 I−2

4 I0
4 I2

4 I4
4

6 I−6
6 I−4

6 I−2
6 I0

6 I2
6 I4

6 I6
6

n I−n
n · · · I−2

n I0
n I2

n · · · In
n

¯

¯

¯

¯

δ

δ=0

δ=-π/2

δ=π

δ=π/2

x

z

z

x

x̄

z̄

z̄

x̄

x̄z̄

x

y

Figure 3.1: Schematic of the global coordinate system and the local coordinate system in x-y plane.

The Euler angles are calculated from [216]

α = tan−1
(
ny
nx

)
= δ +

π

2
(3.2a)

β =
π

2
(3.2b)

γ = −
π

2
(3.2c)
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resulting in

n̂ = cosαı̂ + sinα̂ = − sin δı̂ + cos δ̂ (3.3a)

t̂x̄ = sinαı̂ − cosα̂ = cos δı̂ + sin δ̂ (3.3b)

Because of the two-dimensionality, we have I(θ̄, ψ̄) = I(θ̄,−ψ̄) with the local azimuthal angle ψ̄

defined in the x̄-ȳ plane and measured from the local x̄-axis, which leads to the elimination of Īm
n

with negative m, which in turn leads to zero identities for the Ȳ−m
2i−1 boundary conditions. Together

with the elimination of the Im
n with odd m in global coordinates, the remaining (N + 1)2/4 boundary

conditions for 2-D problems become

For each Ȳ0
2i−1, i = 1, 2, · · · , (N + 1)/2:

Iwp0
0,2i−1 =

N−1
2∑

l=0

l∑
m′=−l

p0
2l,2i−1∆̄2l

0,2m′ I
2m′
2l +

∂

∂τx̄

N−1
2∑

l=1

l∑
m′=−l

v0
l,i∆̄

2l
1,2m′ I

2m′
2l

−
∂

∂τz̄

N−1
2∑

l=0

l∑
m′=−l

w0
l,i∆̄

2l
0,2m′ I

2m′
2l (3.4a)

and for each Ȳm
2i−1,

i = 1, 2, · · · , (N − 1)/2, m = 1, 2, · · · , 2i − 1; i = (N + 1)/2, m = 2, 4, · · · , 2i − 2:

0 =

N−1
2∑

l=0

l∑
m′=−l

pm
2l,2i−1∆̄2l

±m,2m′ I
2m′
2l

−
∂

∂τx̄

N−1
2∑

l=0

l∑
m′=−l

[
(1 + δm,1)um

l,i∆̄
2l
m−1,2m′ − v

m
l,i∆̄

2l
m+1,2m′

]
I2m′
2l

−
∂

∂τz̄

N−1
2∑

l=0

l∑
m′=−l

wm
l,i∆̄

2l
±m,2m′ I

2m′
2l (3.4b)
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Figure 3.2: Illustration of the invariance of intensity with respect to azimuthal angle ψ at different
locations for axisymmetric conditions.

3.1.2 Formulation for 2-D Axisymmetric Geometry

The elliptic formulation of high-order PN method for 2-D axisymmetric geometries can also

be directly derived from the general 3-D formulations. For axisymmetric problems, physical quan-

tities such as temperature, heat flux, radiative intensity, chemical species concentrations, etc., vary

only radially and axially and are, therefore, two-dimensional. As a result, for many of these ap-

plications, the transport equations are solved on a 2-D or a 3-D thin-wedge computational domain

in order to reduce the computational effort. The radiative intensity depends on position r(r, φ, z)

and direction ŝ(θ, ψ) where θ is the polar angle (measured from the z-axis), and ψ is the azimuthal

angle (measured counter-clockwise from the x-axis). If the physical system is axisymmetric, then

the radiative intensity varies with r and axially with z, but not azimuthally with φ. Figure 3.2 il-

lustrates several location-direction combinations, which have identical intensities for axisymmetric

conditions. At a fixed location r(r, φ1, z) the radiative intensity in the direction ŝ(θ, ψ + φ1) is equal

to the radiative intensity at some other location r(r, φ2, z) in the direction ŝ(θ, ψ+ φ2), which has the
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same deflection angle relative to its position vector r. One may conclude from Fig. 3.2 that

I (r, φ, z; θ, ψ + φ) = I (r, 0, z; θ, ψ) (3.5)

for any φ, as long as the problem is axisymmetric. When φ = 0, the radiative intensity is evaluated

along the x-axis. Considering the general case at some arbitrary φ and a reference case when φ = 0,

the radiative intensity as approximated by the spherical harmonic series expansion Eq. (2.1) yields,

for a given n, the equality

I0
n(r, φ, z)P0

n(θ) +

n∑
m=1

Im
n (r, φ, z)

[
cos mψ cos mφ − sin mψ sin mφ

]
Pm

n (θ)

+

n∑
m=1

I−m
n (r, φ, z)

[
sin mψ cos mφ + cos mψ sin mφ

]
Pm

n (θ)

= I0
n(r, 0, z)P0

n(θ) +

n∑
m=1

Im
n (r, 0, z) cos mψPm

n (θ) +

n∑
m=1

I−m
n (r, 0, z) sin mψPm

n (θ) (3.6)

By comparing the I0
n terms, it follows that for m = 0

I0
n(r, φ, z) = I0

n(r, 0, z) (3.7)

which implies that the intensity coefficients with m = 0 must be functions of r and z only and

are thus axisymmetric. Now comparing other like terms, cos mψPm
n (cos θ) and sin mψPm

n (cos θ) in

Eq. (3.6), yields the following relations for intensity coefficients with m > 0.

Im
n (r, 0, z) = Im

n (r, φ, z) cos mφ + I−m
n (r, φ, z) sin mφ (3.8a)

I−m
n (r, 0, z) = −Im

n (r, φ, z) sin mφ + I−m
n (r, φ, z) cos mφ (3.8b)
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Inverting these relations to express Im
n (r, φ, z) and I−m

n (r, φ, z) in terms of the Im
n (r, 0, z) and I−m

n (r, 0, z)

gives

Im
n (r, φ, z) = Im

n (r, 0, z) cos mφ − I−m
n (r, 0, z) sin mφ (3.9a)

I−m
n (r, φ, z) = Im

n (r, 0, z) sin mφ + I−m
n (r, 0, z) cos mφ (3.9b)

Also, by symmetry at φ = 0, I(r, 0, z; θ, ψ) = I(r, 0, z; θ,−ψ), or

n∑
m=1

Im
n (r, 0, z)Ym

n (ψ, θ) =

n∑
m=1

Im
n (r, 0, z)Ym

n (−ψ, θ) (3.10)

which leads to I−m
n (r, 0, z) = 0 for any m. Thus, according to Eq. (3.9), the intensity coefficients for

arbitrary φ are related to the same r and z-dependent variable Im
n (r, 0, z) as

Im
n (r, φ, z) =Im

n (r, 0, z) cos mφ, (3.11a)

I−m
n (r, φ, z) =Im

n (r, 0, z) sin mφ. (3.11b)

For axisymmetric problems, the dependence on φ of intensity coefficients with m > 0 are trigono-

metric factors (sines and cosines with periodicity equal to m) that multiply the same axisymmet-

ric variable Im
n (r, 0, z). Hereafter, this axisymmetric variable will be denoted as Îm

n (r, z). From

Eq. (3.11), it can be seen that the number of intensity coefficient variables of the PN approximation

is reduced from N(N + 1)/2 to (N + 1)2/4. The employed intensity coefficients are listed in Table

3.2.

The starting point of the 2-D axisymmetric formulation is the 3-D Cartesian formulation given

by Eq. (2.9) in Chapter 2. To obtain the transformation of the PDEs to cylindrical coordinates, the
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Table 3.2: Intensity coefficients employed for 2-D axisymmetric formulation

n Intensity Coefficients

0 Î0
0

2 Î0
2 Î1

2 Î2
2

4 Î0
4 Î1

4 Î2
4 Î3

4 Î4
4

6 Î0
6 Î1

6 Î2
6 Î3

6 Î4
6 Î5

6 Î6
6

n Î0
n Î1

n Î2
n Î3

n · · · · · · În
n

relations of the differential operators are employed,

Lx =
1
β

∂

∂x
=

cos φ
β

∂

∂r
−

sin φ
βr

∂

∂φ
(3.12a)

Ly =
1
β

∂

∂y
=

sin φ
β

∂

∂r
+

cos φ
βr

∂

∂φ
(3.12b)

Lz =
1
β

∂

∂z
(3.12c)

Together with the coordinate transformation, the (N + 1)2/4 governing equations of the 2-D, ax-

isymmetric formulation of the PN approximation can be derived from the general 3-D PN governing

equations with the axisymmetric relations of the intensity coefficients. Substituting Eq. (3.11) for

the I±m
n of the 3-D PN governing equations, Eq. (2.9), after considerable algebra (Appendix B1),

leads to a transformed set of PDEs for axisymmetric variables Îm
n as:

1Appendix B is summarized and reorganized from the personal communications with the authors of [219].
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For each Ym
n : n = 0, 2, 4, ..., (N − 1) and m = 0, 1, 2, ..., n:

3∑
k=1

{
(1 + δm2)anm

k cos mφ
[
Lrr −

2m − 3
βr

Lr +
m(m − 2)
β2r2 −

m − 2
r
Lr

(
1
β

)]
Îm−2
n+4−2k

+(1 + δm1)bnm
k cos mφ

[
Lrz +Lzr −

2(m − 1)
βr

Lz −
m − 1

r
Lz

(
1
β

)]
Îm−1
n+4−2k

+
δm1

2
cnm

k cos φ
[
Lrr +

1
βr
Lr −

1
r2β2 +

1
r
Lr

(
1
β

)]
Îm
n+4−2k

+dnm
k cos mφ

[
Lrz +Lzr +

2(m + 1)
βr

Lz +
m + 1

r
Lz

(
1
β

)]
Îm+1
n+4−2k

+enm
k cos mφ

[
Lrr +

2m + 3
βr

Lr +
m(m + 2)
β2r2 +

m + 2
r
Lr

(
1
β

)]
Îm+2
n+4−2k

+cnm
k cos mφ

(
Lrr +

1
βr
Lr −

m2

β2r2 − 2Lzz

)
Îm
n+4−2k

}
+ cos mφ

[
Lzz − (1 − ωδ0n)

]
Îm
n = −(1 − ω)Ibδ0n

(3.13)

The differential operators in cylindrical coordinates are defined as

Lr =
1
β

∂

∂r
(3.14a)

Lrr =
1
β

∂

∂r

(
1
β

∂

∂r

)
(3.14b)

Lrz =
1
β

∂

∂r

(
1
β

∂

∂z

)
(3.14c)

Lzr =
1
β

∂

∂z

(
1
β

∂

∂r

)
(3.14d)

and Lr(1/β) is a material property calculated from Eq. (3.14a) as

Lr

(
1
β

)
= −

1
β3

∂β

∂r
(3.15)

It is noted that each term contains cos mφ, which may, therefore, be canceled (including the

case of m = 0, for which cos mφ = 1). Each Y−m
n (m = 1, 2, ..., n) returns the same equation as the

corresponding Ym
n , but with sin mφ in each term instead of the cos mφ. Thus, the set of governing
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equations, like the number of unknowns Îm
n , are reduced to

For each Ym
n : n = 0, 2, ...,N + 1 and m = 0, 1, 2, ..., n :

3∑
k=1

{
(1 + δm2)anm

k

[
Lrr −

2m − 3
βr

Lr +
m(m − 2)
β2r2 −

m − 2
r
Lr

(
1
β

)]
Îm−2
n+4−2k

+(1 + δm1)bnm
k

[
Lrz +Lzr −

2(m − 1)
βr

Lz −
m − 1

r
Lz

(
1
β

)]
Îm−1
n+4−2k

+
δm1

2
cnm

k

[
Lrr +

1
βr
Lr −

1
r2β2 +

1
r
Lr

(
1
β

)]
Îm
n+4−2k

+dnm
k

[
Lrz +Lzr +

2(m + 1)
βr

Lz +
m + 1

r
Lz

(
1
β

)]
Îm+1
n+4−2k

+enm
k

[
Lrr +

2m + 3
βr

Lr +
m(m + 2)
β2r2 +

m + 2
r
Lr

(
1
β

)]
Îm+2
n+4−2k

+cnm
k

(
Lrr +

1
βr
Lr −

m2

β2r2 − 2Lzz

)
Îm
n+4−2k

}
+

[
Lzz − (1 − ωδ0n)

]
Îm
n = −(1 − ω)Ibδ0n

(3.16)

(N + 1)2/4 boundary conditions are required and are derived from the 3-D PN formulation of Mar-

shak’s boundary conditions, Eq. (2.24). As for the Cartesian formulation, the boundary conditions

are expressed in terms of local coordinates x, y (tangential to the surface) and z (along surface nor-

mal n̂), and a rotation function ∆(−γ,−β,−α), Eq. (2.20), is utilized to rotate local coordinates back

to global coordinates for the calculation of boundary conditions.

Figure 3.3 shows both the arrangements of the global and local coordinates for a general 2-D

axisymmetric geometry. β can be calculated from surface normal n̂ as

β = cos−1(nz) (3.17)

The tangential directions of the boundary surfaces are defined in such a way that one tan-

gential direction (t̂x or x) is within the r-z plane and perpendicular to the r-axis, and t̂y (or y) is

perpendicular to the r-z plane. Therefore, the Eulerian angle α is related to the azimuthal angle φ,

Fig. 3.3(a), as

α = π + φ (3.18)
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y
z̄
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¯
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z
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¯

¯

¯

¯

z

β

nz

(b)

Figure 3.3: Schematic of the global coordinate system and the local coordinate system in a general
axisymmetric geometry; (a) r-φ plane and (b) r-z plane.

In order to keep t̂y (or y) in the r-φ plane, γ = 0. With the above conditions, the relationship

between the local Cartesian coordinates and the global cylindrical coordinates are

n̂ = − sin β r̂ + cos β ẑ (3.19a)

t̂x = − cos β r̂ − sin β ẑ (3.19b)

t̂y = − φ̂ (3.19c)

from which the derivatives are found as

∂

∂z
= − sin β

∂

∂r
+ cos β

∂

∂z
(3.20a)

∂

∂x
= − cos β

∂

∂r
− sin β

∂

∂z
(3.20b)

∂

∂y
= −

1
r
∂

∂φ
(3.20c)

As an example for the most common case of a fixed-radius cylinder (or wedge), for the vertical wall
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faces the Eulerian angle β = π/2, and from Eq. (3.19),

n̂ = − r̂ (3.21a)

t̂x = − ẑ (3.21b)

t̂y = − φ̂ (3.21c)

Equation (3.19) is also consistent for the bottom and top boundaries of the wedge, where the Eule-

rian angle β equals 0 and π, respectively.

In order to derive the boundary conditions for the 2-D axisymmetric formulation from the

N(N +1)/2 boundary conditions of the 3-D formulation, Eq. (2.9), the ∆(−γ,−β,−α) = ∆(0,−β, π−

φ) in their expanded form Eq. (2.20), are substituted into the full set of Marshak’s boundary con-

ditions. In addition, Eqs. (3.7) and (3.11) are employed, and the derivatives in the ȳ-direction are

evaluated with Eq. (3.20c). After tedious derivation (Appendix B), it is found that all Y
−m
n related

boundary conditions become zero identities, which reduces the total number of equations from

N(N + 1)/2 to (N + 1)2/4. The (N + 1)2/4 remaining boundary conditions are associated with the

local spherical harmonics Y
m
2i−1, where i = (n + 1)/2, for certain combinations of m and i indices,

i.e.,

m =


0, 1, · · · , i i = 1, 2, · · · , (N − 1)/2

0, 2, · · · ,N − 1 i = (N + 1)/2
(3.22)

For example, the boundary conditions for axisymmetric P3, where (N + 1)2/4 = 4, are associated

with the local spherical harmonics Y
0
1,Y

1
1, Y

0
3 and Y

2
3.

The complete set of axisymmetric PN boundary conditions, with the i and m pairs from
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Eq. (3.22), then becomes

Iwp0
0,n =

N−1
2∑

l=0

2l∑
m′=0

pm
2l,2i−1D2l

|m||m′ |(−β)Îm′
2l

−
1
βr

N−1
2∑

l=0

2l∑
m′=0

(
δ−mum

li B2l
|m−1||m′ |(−β) + vm

li B2l
|m+1||m′ |(−β)

)
Îm′
2l

−
∂

∂τx

N−1
2∑

l=0

2l∑
m′=0

(
δ+

mum
li D2l
|m−1||m′ |(−β) − vm

li D2l
|m+1||m′ |(−β)

)
Îm′
2l

−
∂

∂τz

N−1
2∑

l=1

2l∑
m′=0

wm
li D2l
|m||m′ |(−β)Îm′

2l (3.23)

where δ±m = (1 ± δm1)(1 − δm0), and the constant coefficients um
li , vm

li , wm
li , and pm

2l,n are the same as in

the 3-D formulation, while the Dn
|m||m′ |(β) and Bn

|m||m′ |(β) are

Dn
|m||m′ |(β) =(−1)m′dn

|m|,|m′ |(β) + dn
|m|,−|m′ |(β) (3.24a)

Bn
|m||m′ |(β) =m′

[
(−1)m′dn

|m|,|m′ |(β) − dn
|m|,−|m′ |(β)

]
(3.24b)

where the d are Wigner coefficients as given by the 3-D Marshak formulation in Eq. (2.23). The

partial derivatives in these boundary conditions are expressed in local optical coordinates.

3.2 Special Boundary Conditions

3.2.1 Boundary Condition for Mixed Diffuse-Specular Surfaces

In this section, the general boundary condition for mixed diffuse-specular surfaces is derived,

which then is readily reduced to simpler cases, such as a diffuse or a specular surface.
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For a partially-diffuse and partially-specular surface, the emittance can be expressed as

ε = 1 − ρs − ρd (3.25)

where ρs and ρd are the specular and diffuse components of the reflectance, respectively. The

outgoing intensity Iw(rw, ŝ) along the direction ŝ, in terms of local polar angle θ̄ and local azimuthal

angles ψ̄, for partially-diffuse and partially-specular surfaces consists of two components: one part

is due to the intensity from diffuse emission Ibw(rw) as well as the diffuse fraction of reflected energy

H(rw)/π, while the other is the specular fraction of reflected energy I s(rw, ŝ). At the wall rw, the

outgoing intensity can be expressed by

Iw(θ̄, ψ̄) = εIbw + ρd H
π

+ ρsI s(θ̄, ψ̄) (3.26)

The hemispherical irradiation H in the PN context is evaluated by multiplying Eq. (2.1) by Ȳ0
1 (or

cos θ̄) and integrating over the hemisphere, or

H = −

∫
n̂·ŝ<0

ĪȲ0
1 dΩ = −

N∑
n=0

n∑
m=−n

∫ 2π

0

∫ π

π
2

Īm
n Ȳm

n (µ̄, ψ̄)Ȳ0
1 dµ̄dψ̄ = 2π

N∑
n=0

(−1)n p0
n,1 Ī0

n (3.27)

Substituting Eqs. (3.26) and (3.27) into the general Marshak’s boundary condition (2.11), we have

(1 + δm,0)π
N∑

n=0

pm
n,2i−1 Īm

n = 2πδm,0 p0
0,2i−1

εIbw + 2ρd
N∑

n=0

(−1)n p0
n,1 Ī0

n

 + ρs
∫ 2π

0

∫ 1

0
I sȲm

2i−1dµ̄dψ̄

(3.28)

I s can be found by the law of specular reflection, which is

I s(θ̄, ψ̄) = I(π − θ̄, ψ̄) =

N∑
n=0

n∑
m=−n

Īm
n Ȳm

n (π − θ̄, ψ̄) =

N∑
n=0

n∑
m=−n

Īm
n Ȳm

n (−µ̄, ψ̄) (3.29)

The associated Legendre polynomials, given by Eq. (2.4), are even functions when (m + n) are even
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and odd functions when (m + n) are odd, which leads to

I s(θ̄, ψ̄) =

N∑
n=0

n∑
m=−n

(−1)(m+n) Īm
n Ȳm

n (µ̄, ψ̄) (3.30)

Therefore, Eq. (3.28) becomes

N∑
n=0

{[
1−(−1)m+nρs]pm

n,2i−1︸                  ︷︷                  ︸
(a) specular reflection

− 2(−1)nδm,0ρ
d p0

0,2i−1 p0
n,1︸                        ︷︷                        ︸

(b) diffuse reflection

}
Īm
n = δm,0 p0

0,2i−1εIbw︸            ︷︷            ︸
(c) emission

(3.31)

i = 1, 2, ...,
1
2

(N + 1), all relevant m

Following Eq. (2.12), all m are employed for i = 1, 2, 3, · · · , (N−1)/2 and only even m are employed

for i = (N + 1)/2. When ε = 1, ρs = 0 and ρd = 0, Eq. (3.31) is simply the original Marshak’s

boundary conditions for black walls, Eq. (2.24), as expected; when ρd = 0 or ρs = 0, Eq. (3.31)

gives the boundary conditions for purely specular or purely diffuse surfaces, respectively; when N =

1, there is no distinction between diffuse and specular surface reflectivities for P1 approximation

(Appendix C), which is consistent with the conclusion obtained in [220].

Before Eq. (3.31) can be applied to the elliptical formulation described in this thesis, the Īm
n

with odd n need to be eliminated and the local Īm
n need to be rotated back to global Im

n . Expanding

part (b) of Eq. (3.31), we get

− 2p0
0,2i−1ρ

d
N∑

n=0

(−1)n p0
n,1 Ī0

n = −2p0
0,2i−1ρ

d
[
(p0

0,1I0
0 + p0

2,1 Ī0
2 + p0

4,1 Ī0
4 + p0

6,1 Ī0
6 + · · · ) − p0

1,1 Ī0
1

]
(3.32)

According to Eq. (2.13), pm
n, j ≡ 0 when n + j is even and n , j, therefore p0

n,1 = 0 when n is odd

and n , 1. When n = 1, Ī0
1 is calculated as Eq. (2.31a) in terms of local Īm

n :

Ī0
1 = −

∂Ī0
0

∂τz̄
−

2
5
∂Ī0

2

∂τz̄
+

3
5
∂Ī1

2

∂τx̄
+

3
5
∂Ī−1

2

∂τȳ

The local intensity coefficients Īm
n in Eq. (2.31a) are then rotated back to global Im

n through the
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rotation function, Eq. (2.19), which are

Ī0
2 = ∆̄2

0,−2I−2
2 + ∆̄2

0,−1I−1
2 + ∆̄2

0,0I0
2 + ∆̄2

0,1I1
2 + ∆̄2

0,2I2
2 (3.33a)

Ī1
2 = ∆̄2

1,−2I−2
2 + ∆̄2

1,−1I−1
2 + ∆̄2

1,0I0
2 + ∆̄2

1,1I1
2 + ∆̄2

1,2I2
2 (3.33b)

Ī−1
2 = ∆̄2

−1,−2I−2
2 + ∆̄2

−1,−1I−1
2 + ∆̄2

−1,0I0
2 + ∆̄2

−1,1I1
2 + ∆̄2

−1,2I2
2 (3.33c)

The rotation matrices ∆̄n
m,m′ are fixed values for a given boundary location and thus are not affected

by the differentiation in Eq. (2.31a). Similarly, the other Ī0
n with even n in Eq. (3.32) are also rotated

back to global Im
n through Eq. (2.19). Physically, Ī0

1 gives the normal heat flux at the wall,

q · n̂ = qw =
4π
3

Ī0
1 (3.34)

It is seen that part (b) of Eq. (3.31) only requires Ī0
n for local spherical harmonics Ȳ0

n and the heat

flux at the wall, qw, while the specular reflection, part (a) of Eq. (3.31), requires all of the Īm
n .

The specular reflection, part (a) of Eq. (3.32), adds no extra terms but changes the coefficients

of Īm
n . Comparing Eq. (3.32) with Eq. (2.15), we find it convenient to define

p̂m
n,2i−1 = [1 − (−1)m+nρs]pm

n,2i−1 − 2δm,0ρ
d p0

0,2i−1 p0
n,1 (3.35)

and the coefficients ûm
l,i, v̂

m
l,i and ŵm

l,i as

ûm
l,i = [1 + (−1)(m+l)ρs]um

l,i (3.36a)

v̂m
l,i = [1 + (−1)(m+l)ρs]vm

l,i +
2
5
δm,0δl,1ρ

d p0
0,2i−1 (3.36b)

ŵm
l,i = [1 + (−1)(m+l)ρs]wm

l,i +
2
3
δm,0(δl,0 +

2
5
δl,1)ρd p0

0,2i−1 (3.36c)

With these abbreviations and following the relations in [145, 146], i.e., to express the Īm
n with odd

n in terms of the derivatives of Īm
n with even n, and then rotating Īm

n back to global coordinates,
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Eq. (3.31) is converted into N(N + 1)/2 boundary conditions for mixed diffuse-specular surfaces:

For each Y
m
2i−1, i = 1, 2, · · · , (N + 1)/2,

m = 0:

εIbwp0
0,2i−1 =

N−1
2∑

l=0

2l∑
m′=−2l

p̂0
2l,2i−1∆̄2l

0,m′ I
m′
2l

+
∂

∂τx̄

N−1
2∑

l=1

2l∑
m′=−2l

v̂0
l,i∆̄

2l
1,m′ I

m′
2l +

∂

∂τȳ

N−1
2∑

l=1

2l∑
m′=−2l

v̂0
l,i∆̄

2l
−1,m′ I

m′
2l

−
∂

∂τz̄

N−1
2∑

l=0

2l∑
m′=−2l

ŵ0
l,i∆̄

2l
0,m′ I

m′
2l (3.37a)

m , 0:

0 =

N−1
2∑

l=0

2l∑
m′=−2l

p̂m
2l,2i−1∆̄2l

±m,m′ I
m′
2l

−
∂

∂τx

N−1
2∑

l=l′

2l∑
m′=−2l

[
(1 ± δm,1)ûm

l,i∆̄
2l
±(m−1),m′ − v̂

m
l,i∆̄

2l
±(m+1),m′

]
Im′
2l

±
∂

∂τy

N−1
2∑

l=1−l′

2l∑
m′=−2l

[
(1 ∓ δm,1)ûm

l,i∆̄
2l
∓(m−1),m′ + v̂m

l,i∆̄
2l
∓(m+1),m′

]
Im′
2l

−
∂

∂τz

N−1
2∑

l=0

2l∑
m′=−2l

ŵm
l,i∆

2l
±m,m′ I

m′
2l (3.37b)

where we define l′ as

l′ =


0 for Y

m
2i−1

1 for Y
−m
2i−1

(3.38)

and again, for i = (N +1)/2 only even m are employed Eq. (2.12). The form of Eq. (3.37) is identical

to the boundary conditions for black walls, Eq. (2.24). Thus the implementation process will stay

the same as the black wall with the newly defined coefficients p̂m
n,2i−1, ûm

l,i, v̂
m
l,i and ŵm

l,i.
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For the 2-D Cartesian formulation:

Following the 2-D Cartesian formulation in this thesis, Eq. (3.37) can also be applied to 2-D

problems by eliminating the Im
n with odd m in global coordinates and the Īm

n with negative m in the

local coordinates. This leads to

Ī0
2 = ∆̄2

0,−2I−2
2 + ∆̄2

0,0I0
2 + ∆̄2

0,2I2
2 (3.39a)

Ī1
2 = ∆̄2

1,−2I−2
2 + ∆̄2

1,0I0
2 + ∆̄2

1,2I2
2 (3.39b)

Then Eq. (3.37) reduces to

For each Y
m
2i−1, i = 1, 2, · · · , (N + 1)/2:

m = 0:

εIbwp0
0,2i−1 =

N−1
2∑

l=0

l∑
m′=−l

p̂0
2l,2i−1∆̄2l

0,2m′ I
2m′
2l +

∂

∂τx̄

N−1
2∑

l=1

l∑
m′=−l

v̂0
l,i∆̄

2l
1,2m′ I

2m′
2l

−
∂

∂τz̄

N−1
2∑

l=0

l∑
m′=−l

ŵ0
l,i∆̄

2l
0,2m′ I

2m′
2l (3.40a)

m , 0:

0 =

N−1
2∑

l=0

l∑
m′=−l

p̂m
2l,2i−1∆̄2l

±m,2m′ I
2m′
2l

−
∂

∂τx̄

N−1
2∑

l=0

l∑
m′=−l

[
(1 ± δm,1)ûm

l,i∆̄
2l
±(m−1),m′ − v̂

m
l,i∆̄

2l
±(m+1),2m′

]
I2m′
2l

−
∂

∂τz̄

N−1
2∑

l=0

l∑
m′=−l

ŵm
l,i∆̄

2l
±m,2m′ I

2m′
2l (3.40b)

the form of Eq. (3.40) is identical to the boundary conditions (2.24) for black walls except for the

new definitions of coefficients p̂m
n,2i−1, ûm

l,i, v̂
m
l,i and ŵm

l,i.
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For the 2-D axisymmetric formulation:

Since the coefficients pm
n,2i−1, um

l,i, v
m
l,i and wm

l,i stay unchanged from the general 3-D formula-

tion to the 2-D axisymmetric formulation of the Marshak’s boundary conditions for the black walls,

the boundary conditions for mixed diffuse-specular surfaces in 2-D axisymmetric formulation can

be directly obtained by replacing the coefficients pm
n,2i−1, um

l,i, v
m
l,i and wm

l,i with the newly defined

ones p̂m
n,2i−1, ûm

l,i, v̂
m
l,i and ŵm

l,i:

εIwp0
0,n =

N−1
2∑

l=0

2l∑
m′=0

p̂m
2l,2i−1D2l

|m||m′ |(−β)Îm′
2l

−
1
βr

N−1
2∑

l=0

2l∑
m′=0

(
δ−mûm

li B2l
|m−1||m′ |(−β) + v̂m

li B2l
|m+1||m′ |(−β)

)
Îm′
2l

−
∂

∂τx

N−1
2∑

l=0

2l∑
m′=0

(
δ+

mûm
li D2l
|m−1||m′ |(−β) − v̂m

li D2l
|m+1||m′ |(−β)

)
Îm′
2l

−
∂

∂τz

N−1
2∑

l=1

2l∑
m′=0

ŵm
li D2l
|m||m′ |(−β)Îm′

2l (3.41)

3.2.2 Boundary Condition for Specified Radiative Heat Flux at the Wall

The Marshak’s boundary conditions can be modified to develop the boundary conditions for

specified radiative heat flux at the wall. This is achieved through elimination of Iw by combining

the Marshak’s boundary condition Eq. (2.24) with the equations expressing the heat flux at the wall

which are Eqs. (2.30) and (2.31). It will be shown in Chapter 4 that after the Marshak’s boundary

conditions are transformed to Robin-type boundary conditions, only the boundary condition for I0
0

includes the radiative intensity Iw from the wall. Based on the relation between the radiative flux

and local intensity coefficients, Eqs. (2.30) and (2.31), the specified radiative wall flux condition is

implemented by replacing the equation for I0
0 with Eq. (2.31a), where the Ī0

1 is given by Eq. (2.31a).

For a given qw, this leads to a boundary condition of the Neumann type,
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Figure 3.4: Schematic of a wall that specularly reflects incident radiation.

∂I0
0

∂τz̄
=
∂Ī0

0

∂τz̄
= −

2
5
∂Ī0

2

∂τz̄
+

3
5
∂Ī1

2

∂τx̄
+

3
5
∂Ī−1

2

∂τȳ
−

3
4π

qw (3.42)

if qw = 0 (insulated boundary),

∂Ī0

∂τz̄
= −

2
5
∂Ī0

2

∂τz̄
+

3
5
∂Ī1

2

∂τx̄
+

3
5
∂Ī−1

2

∂τȳ
(3.43)

Again, the local intensity coefficients Īm
n in Eq. (3.43) are rotated back to global Im

n through

the rotation function (2.19), which expands to Eq. (3.33) for the 3-D formulation and Eq. (3.39) for

the 2-D formulation.

3.2.3 Symmetry/Specular Boundaries

Specular reflection is one common type of reflection of light, in which the angle of incidence

is equal to the angle of reflection with respect to the surface normal, as has been shown in Fig. 3.4.

At such symmetry/specular reflection boundary, the local polar angle θ̄ is measured from the local

z̄-axis, and, therefore,
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Ī(θ̄, ψ̄) = Ī(π − θ̄, ψ̄) (3.44)

Equation (2.4) shows the odd-power dependence on cos θ̄ when n + m is odd, thus all Īm
n = 0

when n + m is odd, which provides the required N(N + 1)/2 boundary conditions. For example, for

P3 approximation, the corresponding boundary conditions are Ī0
1 = 0, Ī±1

2 = 0, Ī0
3 = 0 and Ī±2

3 = 0.

Since only Im
n with even n are solved for, Īm

n with odd n must be expressed in terms of Īm
n+1 and Īm

n−1.

Applying the relationship between Īm
n , Īm

n+1 and Īm
n−1 [145], while connecting the global Im

n with the

local Īm
n through the rotation function Eq. (2.19), the N(N + 1)/2 boundary conditions are found as:

For all even n (n = 0, 2, · · · ,N − 1),

when m is even:

∂Īm
n

∂τz̄
=

∂

∂τz̄

n∑
m′=−n

∆̄n
m,m′ I

m′
n = 0 (3.45a)

when m is odd:

Īm
n =

n∑
m′=−n

∆̄n
m,m′ I

m′
n = 0 (3.45b)

It is worth mentioning that the above derivation is not based on Marshak’s boundary condition,

while it gives the same boundary conditions as Eq. (3.37) for perfectly specular surfaces (ρs = 1),

as it must (Appendix C).

For the case of m=0, Ī0
0 = I0

0 , and Eq. (3.45a) is a boundary condition of the second type,

which can be applied directly. For the remainder of the boundary conditions, the variables Im
n and

their surface normal derivatives, ∂Im
n /∂τz̄, are coupled through the summation terms in Eq. (3.45),

and its implementation will be discussed in the Chapter 4 in detail.
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Figure 3.5: Schematic of two cyclic walls of a wedge geometry.

3.2.4 Cyclic Boundaries

Cyclic boundary conditions are frequently employed to reduce the computational cost for

large-scale simulations where the physical fields vary in a periodic pattern. One might be temped

to just let each intensity coefficients at one cyclic boundary face equal to their values at the other

half of the cyclic boundary face. That happens to be correct only if there are no angular differences

between the two cyclic faces. When being cyclic in the sense of rotating around an axis (Fig. 3.5),

Eq. (3.7) when m = 0 and Eq. (3.9) when m , 0 must be applied as the boundary conditions,

which involves the coupling of Im
n and I−m

n when m , 0. While the implementation of Eq. (3.7) is

straightforward, implementation of Eq. (3.9) requires special treatment, which will be discussed in

detail in the next chapter.

3.2.5 Axisymmetric Boundary Condition at Centerline (r = 0)

In finite volume-based grid systems, a wedge-shape grid with one node in the azimuthal

direction is often used for axisymmetric applications. The tip of the wedge needs to be cut off

to avoid a (1/r)-type singularity at the center where r = 0. At the centerline surface, boundary

conditions for all intensity coefficients Îm
n need to be defined. The radiative intensity I is independent

of the azimuthal angle ψ at the center of a cylinder and ∂I/∂r = 0 at r = 0 for axisymmetric

simulations. Therefore, the intensity coefficients at the centerline surface follow the relationship of
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∂Îm
n

∂r

∣∣∣∣∣∣
r=0

= 0, m=0 (3.46a)

Îm
n

∣∣∣
r=0 = 0, m ,0 (3.46b)

which was applied in neutron transport problems in axisymmetric geometry [141].
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Chapter 4

Implementation

This chapter describes the implementation of the high-order PN methods. Solutions for the

intensity coefficients of high-order PN methods are obtained by numerical methods for the system

of coupled elliptic PDEs and boundary conditions. Implementation consists of two parts: numerical

discretization and solution. Discussion of the numerical method, primarily within the framework

of the finite volume method (FVM) and, the segregated solution method on the OpenFOAM R© plat-

form will be presented in the following sections. The finite volume method [2, 221–224] is a major

numerical method that transforms the partial differential equations into algebraic equations by rep-

resenting conservation laws over cell-based control volumes. These resulting algebraic equations

are then solved through matrix operations. Generally, the solution methods to solve the system of

block matrices, resulting from the coupled PDEs can be roughly divided into two categories: one

is to solve the system in a segregated manner [225, 226] in which each individual elliptic PDE can

be efficiently solved by standard PDE solvers in many popular CFD softwares such as OpenFOAM R©;

the other is to solve the entire block-coupled matrix. The former requires outer iterations due to

coupling between PDEs, while the latter is more experimental and requires more computational

resources for practical applications.

OpenFOAM R© (Open Field Operation and Manipulation), developed at Imperial College [84,
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227], is a finite volume-based C++ software package that can add user-defined modules. It has been

gradually gaining popularity among academic organizations and is widely used for fluid dynamics

and heat transfer simulations. The main advantage of OpenFOAM R© is its professional objective-

oriented interface for coupling different modules, which is very convenient for multi-physics sim-

ulations, e.g., adding a radiative transfer module to the combustion simulations. The OpenFOAM R©

platform also provides support for parallelization at a fundamental level, so that user-defined mod-

ules can be parallelized almost effortlessly. The high-order PN solver (up to the order of 7) is a part

of a nongray radiative transfer module from Modest’s group, which is currently being integrated

into OpenFOAM R© 2.2.x and 2.3.x. The module offers a variety of RTE solvers and spectral models,

which are ready to be coupled with single-phase and multiphase combustion problems. The radia-

tion module obtains its inputs (temperature, pressure, gas species, particles, etc.) from other existing

OpenFOAM R© libraries, and then returns the radiative heat source back to the energy equation within

the Navier-Stokes module.

At the end of this chapter, a finite difference (FDM) implementation of high-order PN meth-

ods in GNU Octave R©1 [228], limited to 1-D axisymmetric geometry will also be briefly introduced,

which is used both for verification purposes and as an experiment of direct block-coupled solutions.

4.1 Implementation of High-Order PN Methods in OpenFOAM R©

4.1.1 Implementation of Governing Equations

The FVM implementation of the high-order PN methods for three-dimensional geometries

is presented first. The governing equations of their 3-D PN formulation, Eq. (2.9), are comprised

of N2 = N(N + 1)/2 second-order coupled elliptic PDEs. It is convenient to denote each govern-

ing equation characterized by spherical harmonic Ym
n as Yi, and the spatial field of each intensity

coefficient Im
n (r) as Φi(r) and each symbol Im

n as φi (Table. 4.1).

1a free high-level programming language which is similar to MATLABR©

63



Table 4.1: Denotations and indices of unknowns and governing equations.

i φi Im
n Ym

n i φi Im
n Ym

n

1 φ1 I0
0 Y0

0 15 φ15 I4
4 Y4

4

2 φ2 I−2
2 Y−2

2 16 φ16 I−6
6 Y−6

6

3 φ3 I−1
2 Y−1

2 17 φ17 I−5
6 Y−5

6

4 φ4 I0
2 Y0

2 18 φ18 I−4
6 Y−4

6

5 φ5 I1
2 Y1

2 19 φ19 I−3
6 Y−3

6

6 φ6 I2
2 Y2

2 20 φ20 I−2
6 Y−2

6

7 φ7 I−4
4 Y−4

4 21 φ21 I−1
6 Y−1

6

8 φ8 I−3
4 Y−3

4 22 φ22 I0
6 Y0

6

9 φ9 I−2
4 Y−2

4 23 φ23 I1
6 Y1

6

10 φ10 I−1
4 Y−1

4 24 φ24 I2
6 Y2

6

11 φ11 I0
4 Y0

4 25 φ25 I3
6 Y3

6

12 φ12 I1
4 Y1

4 26 φ26 I4
6 Y4

6

13 φ13 I2
4 Y2

4 27 φ27 I5
6 Y5

6

14 φ14 I3
4 Y3

4 28 φ28 I6
6 Y6

6

The φi terms in each governing PDE Yi are collected as

(Lxx +Lyy − 2Lzz)cnm
2 φi +Lzzφi − (1 − ωδ1i)φi

= cnm
2 ∇

2
τφi + (1 − 3cnm

2 )Lzzφi − (1 − ωδ1i)φi

(4.1)

In the FVM, the domain is discretized into small finite volumes or computational cells (denoted as

C), and each cell is bounded by a set of flat faces (denoted as f ) and each face is shared with only

one neighboring cell (denoted as F). Integrating over the computational cell, the governing equation

Yi becomes ∫
VC

cnm
2

β
∇ ·

(
1
β
∇φi

)
dV − (1 − ωδ1i)

∫
VC

φidV =

∫
VC

EidV (4.2)

where Ei includes all the explicit terms including the constant source term −(1 − ω)δ1iIb, the re-
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maining (1 − 3cnm
2 )Lzzφi term and all the double derivatives and cross derivatives of φ j in the Yi

equation (Lxxφ j, Lxzφ j, etc.), i.e.,

Ei = −(1 − ω)δ1iIb − (1 − 3cnm
2 )Lzzφi +

N2∑
j=1, j,i

f j(Lφ j) (4.3)

Following Gauss’s divergence theorem,

∫
V

∇ · JdV =

∮
S

J · n̂dS (4.4)

Equation (4.1) becomes

cnm
2

∑
f

(
1
β
∇φi

)
f
· S f − (1 − ωδ1i)βCφiCVC = βCEiCVC (4.5)

where S f is the surface area vector which points outward and has the magnitude of the area of the

face, VC is the volume of the computational cell. For clarity, only orthogonal meshes are discussed

in this section. The gradient/flux at the cell faces are discretized as

(
1
β
∇φ

)
f
· S f =

(
1
β

)
f

S f

dFC
(φF − φC) (4.6)

where dFC is the distance of the center of the owner cell C, and that of the neighboring cell F.

Applying the discretization as Eq. (4.6) to Eq. (4.5), Equation (4.5) is readily rearranged in the

algebraic form to construct the coefficient matrix:

aCφC +
∑

F

aFφF = bC (4.7)
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with the coefficients representing the internal cell found as:

aC = −cnm
2

∑
f

(
1
β

)
f

S f

dFC
− (1 − ωδ1i)βCVC (4.8a)

aF = cnm
2

(
1
β

)
f

S f

dFC
(4.8b)

bC = βCEiCVC (4.8c)

where EiC , Eq. (4.3), requires the calculation of double derivatives and cross derivatives, which can

be obtained by calculating the gradients twice through the Gauss’s gradient theorem, i.e.,

∫
V

∇JdV =

∮
S

JdS (4.9)

therefore,

∇φC =
1

VC

∑
f

φ f Sf (4.10)

where φ f is obtained by interpolating the surrounding values φC and φF .

φ f = w fφF + (1 − w f )φC (4.11)

where w f is the face weighting factor. If linear interpolation is employed, for an orthogonal grid:

φ f =
dF f

dFC
(φC − φF) + φF (4.12)

where dF f is the distance between the neighboring cell center F and the center of the sharing face

f .
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4.1.2 Implementation of Marshak’s Boundary Condition

Since the segregated solution method is employed, the boundary conditions expressed in

Eq. (2.24) cannot be directly implemented efficiently. A matrix transformation is required so that

individual Robin boundary conditions can be explicitly associated with each governing equation Yi

as

φi + Zi,i
∂φi

∂τz
= δ1iIw + fi

(
∂φ j

∂τx
,
∂φ j

∂τy
,
∂φ j

∂τz

)
(4.13)

at the boundary, where Zi,i is a constant scalar and fi is a function of partial derivatives of other inten-

sity coefficients φ j, including the tangential derivatives of φ j. Such a formulation can be efficiently

obtained by first expressing the system of N(N + 1)/2 boundary conditions in matrix form, and then

transforming the matrices to generate one Robin-type boundary condition for each corresponding

governing equation.

We will here take the Marshak’s boundary conditions of the P3 approximation as a demon-

stration to show the construction of coefficient matrices. The associated local spherical harmonics

for Marshak’s boundary condition for P3 are Y
0
1,Y

−1
1 ,Y

1
1,Y

0
3,Y

−2
3 and Y

2
3. The coefficients in front of

Im
n and their derivatives for each boundary condition are determined from m and n pairs of the local

spherical harmonics. Note that the rows of the coefficient matrices can be in any order, and here the

rows are ordered by |m|. The first term on the right-hand side of boundary conditions (2.24a) for

equation of Y
0
1 (n = 1,m = 0) is

N−1
2∑

l=0

2l∑
m′=−2l

p0
2l,1∆

2l
0,m′ I

m′
2l =

[
p0

0,1∆
0
0,0, p0

2,1∆
2
0,−2, p0

2,1∆
2
0,−1, p0

2,1∆
2
0,0, p0

2,1∆
2
0,1, p0

2,1∆
2
0,2

]
· φ = q(1,0) · φ

(4.14)
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the subscripts of q(n,m) show the n and m associated with Y
m
n , and the vector φ is defined as

φ =



φ1

φ2

φ3

φ4

φ5

φ6



=



I0
0

I−2
2

I−1
2

I0
2

I1
2

I2
2



(4.15)

Applying the same formulation to the rest of the equations associated with the remaining Y
m
n ,

the coefficients in front of Im
n for the entire system of equations may be expressed as

Q =



q(1,0)

q(3,0)

q(1,−1)

q(1,1)

q(3,−2)

q(3,2)



=



p0
0,1∆

0
0,0 p0

2,1∆
2
0,−2 p0

2,1∆
2
0,−1 p0

2,1∆
2
0,0 p0

2,1∆
2
0,1 p0

2,1∆
2
0,2

p0
0,3∆

0
0,0 p0

2,3∆
2
0,−2 p0

2,3∆
2
0,−1 p0

2,3∆
2
0,0 p0

2,3∆
2
0,1 p0

2,3∆
2
0,2

0 p1
2,1∆

2
−1,−2 p1

2,1∆
2
−1,−1 p1

2,1∆
2
−1,0 p1

2,1∆
2
−1,1 p1

2,1∆
2
−1,2

0 p1
2,1∆

2
1,−2 p1

2,1∆
2
1,−1 p1

2,1∆
2
1,0 p1

2,1∆
2
1,1 p1

2,1∆
2
1,2

0 p2
2,3∆

2
−2,−2 p2

2,3∆
2
−2,−1 p2

2,3∆
2
−2,0 p2

2,3∆
2
−2,1 p2

2,3∆
2
−2,2

0 p2
2,3∆

2
2,−2 p2

2,3∆
2
2,−1 p2

2,3∆
2
2,0 p2

2,3∆
2
2,1 p2

2,3∆
2
2,2



(4.16)

Let Qx, Qy, Qz be the coefficient matrices for ∂φ/∂τx, ∂φ/∂τy and ∂φ/∂τz, respectively. The
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resulting form for the Qx matrix is shown here:

Qx =



qx(1,0)

qx(3,0)

qx(1,−1)

qx(1,1)

qx(3,−2)

qx(3,2)



=



0 v0
1,1∆

2
1,−2 v0

1,1∆
2
1,−1 . . . v0

1,1∆
2
1,2

0 v0
1,2∆

2
1,−2 v0

1,2∆
2
1,−1 . . . v0

1,2∆
2
1,2

0 v1
1,1∆

2
−2,−2 v1

1,1∆
2
−1,−1 . . . v1

1,1∆
2
−2,2

v1
0,1∆

0
2,0 v1

1,1∆
2
2,−2 v1

1,1∆
2
2,−1 . . . v1

1,1∆
2
2,2

0 v2
1,2∆

2
2,−2 v2

1,2∆
2
2,−1 . . . v2

1,2∆
2
2,2

v2
0,2∆

0
3,0 v2

1,2∆
2
3,−2 v2

1,2∆
2
3,−1 . . . v2

1,2∆
2
3,2



−



0 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

2u1
0,1∆

0
0,0 2u1

1,1∆
2
0,−2 2u1

1,1∆
2
0,−1 . . . 2u1

1,1∆
2
0,2

0 2u2
1,2∆

2
−1,−2 2u2

1,2∆
2
−1,−1 . . . 2u2

1,2∆
2
−1,2

u2
0,2∆

0
1,0 u2

1,2∆
2
1,−2 u2

1,2∆
2
1,−1 . . . u2

1,2∆
2
1,2



(4.17)

Finally, let p be the coefficient vector for Iw on the left-hand side of Eq. (2.24a), which only

has a nonzero value when m = 0:

p =



p(1,0)

p(3,0)

p(1,−1)

p(1,1)

p(3,−2)

p(3,2)



=



p0
0,1

p0
0,3

0

0

0

0



(4.18)

Two observations regarding the above matrices may be made. First, all coefficient matrices

are functions of geometry only, and thus they only need to be calculated once. The second is that

69



the first column of matrix Q and vector p are identical, which leads to

Q−1 · p = [1, 0, 0, 0, 0, 0]T (4.19)

which will be employed later in this section. Equation (4.19) can be proved by applying Gaussian

elimination to the system of Q · x = p where vector p equals the the first row of the invertible matrix

Q.

For general orders of PN , the row vectors of the boundary condition are given by

q(n,±m) =

[
δm,0 pm

0,n, pm
2,n∆

2
±m,−2, pm

2,n∆
2
±m,−1, . . . , pm

2,n∆
2
±m,2, pm

4,n∆
4
±m,−4, . . . , pm

N−1,n∆
N−1
±m,N−1

]
(4.20a)

qx(n,0) =

[
0, v0

1,i∗∆
2
1,−2, v

0
1,i∗∆

2
1,−1, . . . , v

0
1,i∗∆

2
1,2, . . . , v

0
N−1

2 ,i∗
∆

N−1
1,N−1

]
(4.20b)

qx(n,−m) =

[
0, vm

1,i∗∆
2
−(m+1),−2, v

m
1,i∗∆

2
−(m+1),−1, . . . , v

m
1,i∗∆

2
−(m+1),2, . . . , v

m
N−1

2 ,i∗
∆

N−1
−(m+1),N−1

]
− (1 − δm,1)

[
0, um

1,i∗∆
2
−(m−1),−2, u

m
1,i∗∆

2
−(m−1),−1, . . . , u

m
1,i∗∆

2
−(m−1),2, . . . , u

m
N−1

2 ,i∗
∆

N−1
−(m−1),N−1

]
(4.20c)

qx(n,+m) =

[
vm

0,i∗∆
0
m+1,0, v

m
1,i∗∆

2
m+1,−2, v

m
1,i∗∆

2
m+1,−1, . . . , v

m
1,i∗∆

2
m+1,2, . . . , v

m
N−1

2 ,i∗
∆

N−1
m+1,N−1

]
− (1 + δm,1)

[
um

0,i∗∆
0
m−1,0, u

m
1,i∗∆

2
m−1,−2, u

m
1,i∗∆

2
m−1,−1, . . . , u

m
1,i∗∆

2
m−1,2, . . . , u

m
N−1

2 ,i∗
∆

N−1
m−1,N−1

]
(4.20d)
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qy(n,0) =

[
0, v0

1,i∗∆
2
−1,−2, v

0
1,i∗∆

2
−1,−1, . . . , v

0
1,i∗∆

2
−1,2, . . . , v

0
N−1

2 ,i∗
∆

N−1
−1,N−1

]
(4.20e)

qy(n,−m) = −

[
vm

0,i∗∆
0
m+1,0, v

m
1,i∗∆

2
m+1,−2, v

m
1,i∗∆

2
m+1,−1, . . . , v

m
1,i∗∆

2
m+1,2, . . . , v

m
N−1

2 ,i∗
∆

N−1
m+1,N−1

]
− (1 + δm,0)

[
um

0,i∗∆
0
m−1,0, u

m
1,i∗∆

2
m−1,−2, u

m
1,i∗∆

2
m−1,−1, . . . , u

m
1,i∗∆

2
m−1,2 . . . , u

m
N−1

2 ,i∗
∆

N−1
m−1,N−1

]
(4.20f)

qy(n,+m) =

[
0, vm

1,i∗∆
2
−(m+1),−2, v

m
1,i∗∆

2
−(m+1),−1, . . . , v

m
1,i∗∆

2
−(m+1),2, . . . , v

m
N−1

2 ,i∗
∆

N−1
−(m+1),N−1

]
+ (1 − δm,1)

[
0, um

1,i∗∆
2
−(m−1),−2, u

m
1,i∗∆

2
−(m−1),−1, . . . , u

m
1,i∗∆

2
−(m−1),2, . . . , u

m
N−1

2 ,i∗
∆

N−1
−(m−1),N−1

]
(4.20g)

qz(n,±m) = −

[
δm,0w

m
0,n, w

m
2,n∆

2
±m,−2, w

m
2,n∆

2
±m,−1, . . . , w

m
2,n∆

2
±m,2, w

m
4,n∆

4
±m,−4, , . . . , w

m
N−1,n∆

N−1
±m,N−1

]
(4.20h)

where the case of m = 0 is included in the ±m notation for Eq. (4.20a), while for the rest, the m = 0

case is shown separately for clarity. i∗ = (n + 1)/2 and adding ∗ is just to avoid symbol conflict for

this chapter.

The entire set of boundary equations (2.24) for general PN boundary conditions may now be

written in matrix form as

Q · φ + Qx ·
∂φ

∂τx
+ Qy ·

∂φ

∂τy
+ Qz ·

∂φ

∂τz
= pIw (4.21)

After all elements of the coefficient matrices are calculated, the next step is to convert Eq. (4.21)

into individual Robin-type boundary conditions, Eq. (4.13), which can then be directly applied to

each corresponding governing equation Yi. For consistency of the notation, let i be the row index of

the matrices, as given by Table. 4.1, the (N + 1)N/2 Robin boundary conditions are

φi + Zi,i
∂φi

∂τz
= δ1iIw −

N2∑
j=1, j,i

[
Xi, j

∂φ j

∂τx
+ Yi, j

∂φ j

∂τy
+ Zi, j

∂φ j

∂τz

]
(4.22)
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Figure 4.1: Schematic of one boundary cell and its neighboring cell.

where

X = Q−1 ·Qx

Y = Q−1 ·Qy

Z = Q−1 ·Qz

(4.23)

The coefficient matrix for the normal derivative ∂φ/∂τz is split into two parts. The diagonal elements

of Z are kept on the left-hand side, and the rest are placed on the right-hand side. In order to calculate

X,Y and Z, LU decomposition [229] of Q is employed. Equation (4.19) is readily shown to be valid

for arbitrary orders of PN , and thus the coefficient in front of Iw in Eq. (4.22) is 1 when i = 1 and

equals zero for all other cases. Also, the diagonal elements of X and Y, Xi,i and Yi,i, turn out to

be zero for all Euler angles, which means there is no tangential derivatives of φi in the boundary

conditions.
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One feature of the finite volume method is the treatment of Robin-type boundary conditions.

Since integration is performed over each control volume, the boundary conditions are never applied

directly to the cell centers, but as fluxes at boundary faces. Therefore, boundary conditions of

Robin-type cannot be satisfied simultaneously with the internal cells and the boundary face values

have to be explicitly updated. The value of the dependent variable at the patch faces (b in Fig. 4.1)

is found by

φib = giFib + (1 − gi)φiC (4.24)

where Fib is the right-hand side of Eq. (4.22).

Fib = δ1iIw −
N2∑

j=1, j,i

[
Xi, j

∂φ j

∂τx
+ Yi, j

∂φ j

∂τy
+ Zi, j

∂φ j

∂τz

]∣∣∣∣∣∣
b

(4.25)

The tangential derivatives in Fib are explicitly calculated at the cell centers by Eq. (4.10) and then

extrapolated to the boundary face (b). Usually the normal derivative is discretized with a first-order

scheme for FVM implementations (adopted by, but not limited to, OpenFOAM R©), i.e.,

∂φ

∂z

∣∣∣∣∣
b

=
φb − φC

dCb
(4.26)

where dCb is the distance between face center b and neighboring cell center C for an orthogonal

mesh, so that the fraction gi is calculated by

gi =

[
1 −

(
1
β

)
b

Zi,i

dCb

]−1

(4.27)

Regarding the discretization in the finite volume method, the conservation law is applied to adja-

cent cells, where the gradients/fluxes on the cell-cell interfaces are discretized as before, Eq. (4.6),

while the gradient/flux at the boundary face is specified according to the boundary conditions. The
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gradient/flux at the boundary face is expressed by

(∇φi)b · Sb =
φib − φiC

dCb
S b =

S b

dCb

[
giFib + (1 − gi)φiC − φiC

]
=

S b

dCb
giFib −

S b

dCb
giφiC (4.28)

At this point, the Marshak’s boundary condition is ready to be integrated into the coefficient matrix,

Eq. (4.7). Substituting Eq. (4.28) back to Eq. (4.8) for the cells adjacent to boundaries, the elements

representing the boundary cells in the coefficients matrix are

aC = −cnm
2

∑
f

(
1
β

)
f

S f

dFC
− cnm

2

∑
b

(
1
β

)
b

S b

dCb
gi − (1 − ωδ1i)βCVC (4.29a)

bC = βCEiCVC − cnm
2

∑
b

(
1
β

)
b

S b

dCb
giFib (4.29b)

with aF remains the same as for the internal cells, Eq. (4.8b). All information required to construct

the coefficient matrices is contained in Eqs. (4.8) and (4.29).

4.1.3 Solution Method

The full coefficient matrix can be expressed as a single block-coupled matrix as



A1,1 A1,2 · · · A1, j · · · A1,N2

A2,1 A2,2 · · · A2, j · · · A2,N2

...
...

. . .
...

. . .
...

Ai,1 Ai,2 · · · Ai, j · · · Ai,N2

...
...

. . .
...

. . .
...

AN2,1 AN2,2 · · · AN2, j · · · AN2,N2





Φ1

Φ2

...

Φi

...

ΦN2



=



b∗

0
...

0
...

0



(4.30)

where the block matrices in each row are obtained from numerical discretization of each governing

equation of Yi. The formulation of the block matrices has already been described in the last section,

while the off-diagonal block matrices Ai, j represent the coefficient matrices discretized from the
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double derivatives and cross derivatives in Ei (excluding the Lzzφi term) and the surface derivatives

in Fib, even though they are calculated explicitly on the right-hand side for segregated solution

method. Vector b∗ represents the constant terms of Ib and Iw.

Generally, the segregated solution method is preferable since all diagonal block matrices Ai,i

are symmetric and sparse, which facilitates the iteration by employing stable and efficient symmetric

matrix solvers. Also, the segregated method requires less memory (RAM). Let N2 be the number

of unknowns and N3 be the number of cells of the mesh, the full matrix is of the size of (N2 × N3)2

(N2 is the number of unknowns). The size of the whole matrix A increases quadratically with the

increase of the number of unknowns, which makes the block-coupled method less attractive to real

applications with a large RAM requirement. For the segregated method, N2 diagonal matrices Ai,i

of size of N3 × N3 need to be iterated and the number of outer iterations required are problem

dependent.

Since the segregated solution method is employed, all the Ai, j block matrices are moved to

the right-hand side as



A1,1 0 · · · 0 · · · 0

0 A2,2 · · · 0 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · Ai,i · · · 0
...

...
. . .

...
. . .

...

0 0 · · · 0 · · · AN2,N2





Φ1

Φ2

...

Φi

...

ΦN2



=



b1

b2

...

bi

...

bN2



(4.31)
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

b1

b2

...

bi

...

bN2



= −



0 A1,2 · · · A1, j · · · A1,N2

A2,1 0 · · · A2, j · · · A2,N2

...
...

. . .
...

. . .
...

Ai,1 Ai,2 · · · 0 · · · Ai,N2

...
...

. . .
...

. . .
...

AN2,1 AN2,2 · · · AN2, j · · · 0





Φ1

Φ2

...

Φi

...

ΦN2



+



b∗

0
...

0
...

0



(4.32)

In order to solve the entire system of block matrices, two loops of iterations are required: the

iterations solving Ai,iΦi = bi, Eq. (4.31), and outer iterations to resolve the coupling between

Φi and Φ j. In this study, the incomplete Cholesky preconditioned conjugated gradient method

(PCG) [230] is employed for inner iterations, while the Gauss-Seidel method is used for the outer

iterations. The iteration processes can also be written in the form of:

Φ
(k+1)
i = Ã−1

i,i

− i−1∑
j=1

Ai, jΦ
(k+1)
j −

N2∑
j=i+1

Ai, jΦ
(k)
j + δ1ib∗

 (4.33)

where the integer k > 0 denotes the sequence of outer iterations and Ã−1
i,i is symbolizing the inner

iterations. As mentioned in the last section, the boundary values Φib are not iterated in the inner

iterations and are explicitly updated by Eq. (4.24). The Lzzφi term is also explicitly updated during

the outer iterations but is left outside of the expression in the whole matrix A.

A numerical solution is obtained after the whole system has been iterated sufficiently. A

normalized residual [231] is used to measure how well the solution satisfies the governing equations.

For a system AΦ = b, the residual R is calculated as

R =
|b − AΦ|1

|AΦ − AΦ̄|1 + |b − AΦ̄|1
(4.34)

where | · |1 denotes the L1-Norm. Φ̄ is calculated from the arithmetic average of the elements of Φ.

The convergence criteria εinner for all the inner iterations is R < εinner = 1×10−5. In practice, it is not
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necessary to have the inner iteration fully converged if the problem requires many outer iterations,

so that the overall numbers of inner iterations can be decreased. Therefore, a changing convergence

criteria is employed instead, which gradually decreases the εinner. Also, the maximum number of

inner iterations for one single equation can be specified. A convergence criterion for outer iterations

is also necessary to obtain meaningful results. Since φ1 (I0
0) is the incident radiation, the initial

residual R(k+1)
1,init of A1,1Φ

(k+1)
1 = b(k)

1 after (k) outer iterations is used to evaluate the convergence of

outer iterations. It is often good enough if it is also observed that the initial residuals of all equations

are decreasing monotonically. For stand-alone radiation simulations, R(k+1)
1,init < εouter = 1×10−3 is an

appropriate choice. For unsteady combustion simulations, εouter of the PN methods can be chosen

close to the initial residuals of the energy equation between every time step. Since the radiative

heat source S rad, Eqs. (1.2) and (2.29), is the difference between emission and absorption, and the

emission is constant for a single time step and absorption is related to I0
0 by a factor of 4πκ, it is also

helpful to scale the εouter based on the maximum absorption coefficient κmax.

The outer iterations with the Gauss-Seidel method is stable, if the spectral radius of the iter-

ating matrices satisfies

ρ(A−1
i,i · Ai, j) = max{|Λ1|, · · · , |ΛN3 |} < 1 (4.35)

where Λ are the eigenvalues of A−1
i,i · Ai, j. For example, if the full matrix A is symmetric positive

definite (SPD) or A is strictly diagonally dominant, Eq. (4.35) will be unconditionally satisfied.

Unfortunately the complete matrix A is not SPD, nor does it always have diagonal dominance. The

diagonal dominance can be established when β is large, while the solver becomes less stable when

β is small. The explicit derivative terms in the boundary condition are the major cause of instability.

All the derivative operators in Fib, Eq. (4.25), can be seen as the source of large coefficients in the

Ai, j matrices when β→ 0.

An inertial damping technique is employed to slow down the outer iterations when β → 0,

which is implemented by adding λiφi to both sides of the boundary conditions, Eq. (4.22) followed
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by division of the whole equation by (1 + λi), i.e.,

φi + (
1

1 + λi
)Zi,i

∂φi

∂τz
= (

1
1 + λi

)Iwδ1i − (
1

1 + λi
)

N2∑
j=1, j,i

[
Xi, j

∂φ j

∂τx
+ Yi, j

∂φ j

∂τy
+ Zi, j

∂φ j

∂τz

]
+ (

λi

1 + λi
)φi

(4.36)

the gi in Eq. (4.27) is therefore replaced by

gi =

[
1 −

(
1
β

)
b

Zi,i

(1 + λi)dCb

]−1

(4.37)

and Fib is changed to

Fib = (
1

1 + λi
)Iwδ1i − (

1
1 + λi

)
N2∑

j=1, j,i

[
Xi, j

∂φ j

∂τx
+ Yi, j

∂φ j

∂τy
+ Zi, j

∂φ j

∂τz

]∣∣∣∣∣∣
b

+ (
λi

1 + λi
)φib (4.38)

Applying such inertial damping decreases the eigenvalues of A−1
i,i · Ai, j, and therefore stabilizes

the outer iterations. The general idea is to relate λi to the local optical thickness τ, however, the

optimum values of λi are problem dependent and require trial and error.

Other implementations of the boundary conditions are also possible, e.g., one can apply a

Dirichlet type boundary condition by moving all derivatives to the right-hand side; or apply the

boundary conditions as

Q−1
z ·Q · φ + Q−1

z ·Qx ·
∂φ

∂τx
+ Q−1

z ·Qy ·
∂φ

∂τy
+
∂φ

∂τz
= Q−1

z · pIw

or

φ + (D∗)−1 ·
∂φ

∂τz
= (D∗)−1 ·

[
Q−1

z · pIw −Q−1
z ·Qx ·

∂φ

∂τx
−Q−1

z ·Qy ·
∂φ

∂τy
− (Q−1

z ·Q − D∗) · φ
]

(4.39)

where D∗ denotes the diagonal matrix of Q−1
z ·Q. This implementation will eliminate the coupling

between surface normal derivatives of φi and φ j but adding the coupling between the surface values

instead, so that stability can be improved wherever τ → 0 at the boundary. The major robustness
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issue however is caused by the tangential derivatives, which cannot be resolved by this implemen-

tation. Since the number of equations increases quadratically, N2 = N(N + 1)/2, with the order of

N, it is difficult to develop an unconditionally-stable high-order PN solver based on relaxation and

simple transformation of the boundary conditions. Designing a preconditioning matrix [232, 233]

for the full matrix, which partially resolves the coupling between the block matrices, is a superior

strategy, but is beyond the scope of this thesis. This method should be examined in future studies.

4.1.4 Implementation of Special Boundary Conditions

The finite volume implementation of special boundary conditions, including boundary condi-

tions for mixed diffuse-specular reflective surfaces, specified radiative heat flux at the wall, specular

reflection/symmetry boundary condition and cyclic boundary conditions will be described.

4.1.4.1 Boundary Conditions for Mixed Diffuse-Specular Surfaces

The implementation of boundary conditions for mixed diffuse-specular surfaces Eq. (3.37)

is similar to that of the Marshak boundary condition for black walls, Eq. (2.24), since they almost

have the same forms and can be converted to Robin-type boundary conditions in the same way. The

original coefficients pm
n,2i−1, Eq. (2.13) and Table. 2.4, um

l,i, v
m
l,i and wm

l,i ,Eq. (2.26a), in Q,Qx̄,Qȳ,Qz̄,

Eq. (4.21), are replaced by p̂m
n,2i−1, ûm

l,i, v̂
m
l,i and ŵm

l,i in Eqs. (3.35) and (3.36). Another change

is to replace Iw in Eq. (2.24) with εIbw as shown in Eq. (3.37). The rest is to follow the same

implementation procedure of the Marshak’s boundary condition for black walls.

4.1.4.2 Boundary Condition for Specified Radiative Heat Flux at the Wall

As discussed in Section 4.1.2, the Marshak’s boundary conditions were transformed to Robin-

type boundary condition as given by Eq. (4.22). Following this implementation, only the boundary

condition for φ1 (I0
0) includes the radiative intensity Iw from the wall. The boundary condition for

specified radiative flux at the wall is implemented by replacing Eq. (4.22) for φ1 with Eq. (3.42)

79



while keeping the rest of Eq. (4.22) unchanged. When i = 1, let F1b′ represents all the explicit

calculations of the right-hand side of Eq. (3.42), the gradient/flux at the boundary face is then

expressed by:

(∇φ1)b′ · Sb′ = S b′F1b′ (4.40)

which is readily integrated into the coefficient matrix for i = 1 as:

bC = βCE1CVC − c00
2

∑
b′

(
1
β

)
b′

S b′F1b′ (4.41)

where the expression of aC and aF are as the same as those for the internal cells, Eqs. (4.8a) and

(4.8b).

4.1.4.3 Specular Reflection/Symmetry Boundary Condition

The equations describing specular reflection/symmetry boundary, Eq. (3.45), can also be writ-

ten in matrix form similar to Eq. (4.20), because the variables φ and their surface normal derivatives,

∂φ/∂τz̄, are also coupled through the summation terms. Let

q(n,m) =

[
∆̄n

m,−n ∆̄n
m,−n+1 · · · ∆̄n

m,n

]
(4.42)

For even n (n= 0, 2,· · · , N-1), when m is even, applying the discretization of the surface normal

derivative as Eq. (4.26), Eq. (3.45a) can be expressed as

q(n,m) · φ(n)b′ = q(n,m) · φ(n)C (4.43)

and when m is odd, Eq. (3.45b) is reduced to

q(n,m) · φ(n)b′ = 0 (4.44)
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with φ(n) defined as

φ(n) =



I−n
n

I−n+1
n
...

In−1
n

In
n


(4.45)

Considering each q(n,m) vector as a row of a matrix, and denoting the matrix on the left-hand-side

as Qb′ , and the matrix on the right-hand side as QC , one obtains

Qb′ · φ(n)b′ = QC · φ(n)C (4.46)

Taking P3 as an example, the corresponding five boundary conditions resulting from Eqs. (3.45)

become 

∆̄2
−2,−2 · · · · · · ∆̄2

−2,2

∆̄2
−1,−2 · · · · · · ∆̄2

−1,2

∆̄2
0,−2 · · · · · · ∆̄2

0,2

∆̄2
1,−2 · · · · · · ∆̄2

1,2

∆̄2
2,−2 · · · · · · ∆̄2

2,2





φ2

φ3

φ4

φ5

φ6


b′

=



∆̄2
−2,−2 · · · · · · ∆̄2

−2,2

0 · · · · · · 0

∆̄2
0,−2 · · · · · · ∆̄2

0,2

0 · · · · · · 0

∆̄2
2,−2 · · · · · · ∆̄2

2,2





φ2

φ3

φ4

φ5

φ6


C

(4.47)

With the matrix formulation, φ at boundary walls are calculated from

φ(n)b′ = Q−1
b′ QCφ(n)C (4.48)

or

φib′ = Vi,iφiC + Fib′ (4.49)

81



where V = Q−1
b′ QC and Fib′ is representing the sum of the relevant φ jC terms as

Fib′ =

n∑
j=1, j,i

Vi, jφ jC (4.50)

The gradient/flux at the specular/symmetry surface is calculated according to

(∇φi)b′ · Sb′ =
φib′ − φiC

dCb′
S b′ =

S b′

dCb′

[
Vi,iφiC + Fib′ − φiC

]
=

S b′

dCb′
Fib′ −

S b′

dCb′
(Vi,i − 1)φiC (4.51)

which leads to the expression for the elements of the coefficient matrix:

aC = −cnm
2

∑
f

(
1
β

)
f

S f

dFC
− cnm

2

∑
b′

(
1
β

)
b′

S b′

dCb′
(Vi,i − 1) − (1 − ωδ1i)βCVC (4.52a)

bC = βCEiCVC − cnm
2

∑
b′

(
1
β

)
b′

S b′

dCb′
Fib′ (4.52b)

where the expression for aF are as same as that of the internal cells, Eqs. (4.8b). The φ1 (I0
0)

equation can be regarded as a special case, where V1,1 = 1 and Fib′ = 0, which results in a zero-

gradient boundary condition. The above implementation is for pure specular reflection/symmetry

surfaces.

4.1.4.4 Cyclic boundary conditions

The cyclic boundary condition for high-order PN methods is implemented by manipulating

the connectivity of the mesh. The two patches that are cyclic are mathematically connected to each

other, even though they are not connected geometrically. The above implementation is achieved by

first labeling the paired cells as neighbors and then solve the system as if they are internal cells.

This is all that required for the cyclic boundary conditions of high-order PN method Eq. (3.7) when

m = 0.

However for m , 0, one needs to construct the elements of the coefficients matrix reflecting

the mathematical relations of Eq. (3.9). The process can be better understood by the concept of
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1

2

Θ

cyclic

Figure 4.2: A schematic of cyclic boundary conditions for high-order PN methods

ghost cells as shown in Fig. 4.2. The value of the ghost cell F′ next to the boundary cell C is

obtained from Eq. (3.9). The gradient/flux across the shared face b′ is discretized as

(
1
β
∇φi

)
b′
· Sb′ =

(
1
β

)
b′

S b′

dF′C
(φiF′ − φiC) (4.53)

following Eq. (3.9)

φiF′ = cos mΘφiF + LiF′ (4.54)

where Θ is the angle (counter-clockwise) between patches shown in Fig. 4.2 and LiF′ includes the

term with φ jF sin mΘ in Eq. (3.9). Substituting Eq. (4.54) into Eq. (4.53) and rearranging, one

obtains the expression for the coefficient matrix as:

aCφC +
∑

F

aFφF + aF′φF′ = bC (4.55)
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with the coefficients representing the cyclic boundary cells found from:

aC = −cnm
2

∑
f

(
1
β

)
f

S f

dFC
− cnm

2

(
1
β

)
b′

S b′

dF′C
− (1 − ωδ1i)βCVC (4.56a)

aF = cnm
2

(
1
β

)
f

S f

dFC
(4.56b)

aF′ = cnm
2

(
1
β

)
b′

S b′

dF′C
cos mΘ (4.56c)

bC = βCEiCVC + cnm
2

(
1
β

)
b′

S b′

dF′C
LiF′ (4.56d)

Normally, a discretization scheme has to satisfy a rule that demands opposite signs of aC and aF

(or aF′). This is to guarantee the boundedness of the discretization scheme, which requires φC

changes with φF (or φF′) in the same direction. In practice, it is not easy to tell whether breaking

the boundedness rule damages the stabilities of iterations, because, for the high-order PN method,

the signs of the intensity coefficients (when m , 0) across the cyclic wall can be opposite as well.

4.1.5 Non-Orthogonality Correction

In previous sections, the discussion was limited to orthogonal meshes. A grid is orthogonal

if, for all the cells in the computational domain, the surface normal vector S f and vector dCF joining

the centers of the owner (C) and neighbor (F) cells are collinear. (By this definition, a 2-D or 3-D

cylindrical mesh will also be considered nonorthogonal.) One example of one owner cell and one

neighbor cell that are non-orthogonal to each other is shown in Fig. 4.3, where the non-orthogonality

is measured by the angle between S f and dCF . Non-orthogonality can introduce large errors and

even cause instability issues, but is very common in numerical simulations of complex geometries,

especially with unstructured grids. One advantage of the FVM is its flexibility in treating complex

geometries, because of its innate compatibility with unstructured grids. OpenFOAM R© is based on

unstructured meshes and has adopted a deferred non-orthogonality correction in which the non-

orthogonal contribution is treated explicitly [231]. The basic treatment of a non-orthogonal mesh
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C
F

f

dCF

dCf

dfF

Sf

f'

df'f

Figure 4.3: Schematic of non-orthogonality between center-to-center and face normal vectors.

in OpenFOAM R© as related to the implementation of high-order PN methods will be discussed in

this section. Meanwhile, it is worthwhile to emphasize that creating a high-quality mesh is more

important than finding better correction methods.

4.1.5.1 Laplacian operator

The Laplacian term in the governing equations of high-order PN methods is discretized ac-

cording to Gauss’ divergence theorem, Eq. (4.4). The following discretization of (∇φ) f · S f , as

found in Eq. (4.5), requires its discretized expression in terms of φC and φF , as in Eq. (4.6) for two

orthogonal cells. For a non-orthogonal mesh, Eq. (4.6) needs to be corrected. This is achieved by

splitting the product (∇φ) f · Sf into two parts:

(∇φ) f · Sf = (∇φ) f · e f + (∇φ) f · k f (4.57)
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Several decomposition methods exist [231], and OpenFOAM R© adopted the following decomposition

that constrains k f to be normal to the surface normal S f , as shown in Fig. 4.4, i.e.,

e f =
dCF

dCF · S f
S 2

f (4.58a)

k f = S f − e f (4.58b)

The discretized Laplacian becomes

(∇φ) f · S f =
e f

dFC
(φF − φC) +

[
(∇φ) f · k f

]
old

(4.59)

The first term on the right hand side of Eq. (4.59) is represented implicitly by the variable at the

center of the adjacent cell, which is regarded as the orthogonal contribution of the gradient, while

the second term on the right hand side represents a contribution of non-orthogonal correction part,

which needs to be updated explicitly or, in another word, to use an old value from the former

iteration. Therefore, the coefficient matrix for internal non-orthogonal cells is obtained as

aC = −cnm
2

∑
f

(
1
β

)
f

e f

dFC
− (1 − ωδ1i)βCVC (4.60a)

aF = cnm
2

(
1
β

)
f

e
dFC

(4.60b)

bC = βCEiCVC − cnm
2

∑
f

(
1
β
∇φ · k

)
f

(4.60c)

Equation (4.60) reduces to Eq. (4.8) when the cells are orthogonal, i.e., when e f = S f and k f = 0.

4.1.5.2 Boundary Conditions

Consider a boundary cell with one face at the boundary, as shown in Fig. 4.5. The gradient at

boundary surfaces needs to be corrected when the surface area vector Sb does not pass through the

cell center C. To correct for the non-orthogonality, the surface normal vector dCb′ between the cell
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C
F

f

dCF

Sf

f'

df'f
ef

kf

Figure 4.4: Schematic of correction vectors of non-orthogonal cells.

C b
dCb

Sb

b'
dn(dCb')

eb

Figure 4.5: Schematic of non-orthogonality correction for non-orthogonal cells at the boundary.

center C and the boundary face is used instead of the vector dCb between C and the center of the

boundary face b, which can be calculated from
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dn = dCb′ = (dCb · ŝb) ŝb (4.61)

where ŝb = Sb/S b = −n̂ is the unit vector along surface area vector Sb. For relatively traditional

FVM implementations, including OpenFOAM R©, the value of φ is assumed to be uniform on the entire

boundary face, so that φb′ = φb and the discretization of the normal derivative at the boundary

becomes
∂φ

∂z

∣∣∣∣∣
b

=
φb − φC

dn
(4.62)

therefore, the fraction gi,NonOrth for Marshak’s boundary conditions (replacing Eq. (4.27) for the

orthogonal grid) is now

gi,NonOrth =

[
1 −

(
1
β

)
b

Zi,i

dn

]−1

(4.63)

with the coefficients matrix changed to

aC = −cnm
2

∑
f

(
1
β

)
f

S f

dFC
− cnm

2

∑
b

(
1
β

)
b

S b

dn
gi,NonOrth − (1 − ωδ1i)βCVC (4.64a)

bC = βCEiCVC − cnm
2

∑
b

(
1
β

)
b

S b

dn
gi,NonOrthFib (4.64b)

Once again aF remains the same as for internal cells, Eq. (4.8b).

Other boundary conditions can be corrected similarly by replacing the magnitude of vector

dCb with the magnitude of face normal vector dn.

4.1.5.3 Face Interpolations

Explicit calculations of gradients within EiC in Eqs. (4.60) and (4.64) require interpolation

of the variable and its gradient to the face centers through Gauss’s gradient theorem, Eq. (4.9).

In non-orthogonal grids, the intersection of dCF with the shared face, f ′, is not at the face center

f , shown in Fig. 4.4. As can be seen, another correction, which is called skewness correction, is

sometimes necessary. In the OpenFOAM R© implementation, the skewness correction is integrated into
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the interpolation as

φ f = w fφF + (1 − w f )φC +
[
(∇φ) f · d f ′ f

]
old

(4.65)

where d f ′ f is shown in Fig. 4.3 and the interpolation weight w f in Eq. (4.65) is calculated as

w f =
S f · dC f

S f · dC f + S f · d f F
(4.66)

dC f and d f F are also shown in Fig. 4.3.

4.1.6 2-D Cartesian PN Solver and 2-D Axisymmetric PN Solver

FVM implementations of the 2-D Cartesian and 2-D axisymmetric versions of high-order PN

methods, with the number of governing equations reduced to (N + 1)2/4, follow the same proce-

dure as that of the 3-D solver described in this chapter. The corresponding indices are listed in

Table 4.2. Since the governing equations for 2-D formulations are also second-order elliptic PDEs,

the implementation steps are almost the same as for the 3-D solver, which are:

• Collect the unknown φi in governing equation Yi on the left-hand-side, and move extra Lzzφi

terms, if they exist, to the right-hand side together with the derivatives of other unknowns φ j

similar to Eq. (4.1);

• Construct the boundary matrices for Marshak’s boundary conditions similar to Eqs. (4.20)

and (4.21);

• Generate N2 = (N + 1)2/4 Robin-type boundary conditions similar to Eq. (4.22);

• Each governing equation with its boundary condition is solved by the PCG method (inner

iterations) and the Gauss-Seidel method is employed for the outer iterations until convergence

is reached.

It is useful to summarize the equations that are critical for the implementations.

For 2-D Cartesian PN solver:
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Table 4.2: Denotations and indices of unknowns and governing equations for 2-D solvers.

2-D Cart. 2-D Axis.

i φi Im
n Ym

n Îm
n Ym

n

1 φ1 I0
0 Y0

0 Î0
0 Y0

0

2 φ2 I−2
2 Y−2

2 Î0
2 Y0

2

3 φ3 I0
2 Y0

2 Î1
2 Y1

2

4 φ4 I2
2 Y2

2 Î2
2 Y2

2

5 φ5 I−4
4 Y−4

4 Î0
4 Y0

4

6 φ6 I−2
4 Y−2

4 Î1
4 Y1

4

7 φ7 I0
4 Y0

4 Î2
4 Y2

4

8 φ8 I2
4 Y2

4 Î3
4 Y3

4

9 φ9 I4
4 Y4

4 Î4
4 Y4

4

10 φ10 I−6
6 Y−6

6 Î0
6 Y0

6

11 φ11 I−4
6 Y−4

6 Î1
6 Y1

6

12 φ12 I−2
6 Y−2

6 Î2
6 Y2

6

13 φ13 I0
6 Y0

6 Î3
6 Y3

6

14 φ14 I2
6 Y2

6 Î4
6 Y4

6

15 φ15 I4
6 Y4

6 Î5
6 Y5

6

16 φ16 I6
6 Y6

6 Î6
6 Y6

6

Left-hand-side of the governing equation:

(Lxx +Lyy)cnm
2 φi − (1 − ωδ1i)φi

= cnm
2 ∇

2
τφi − (1 − ωδ1i)φi

(4.67)

Marshak’s boundary conditions in matrix form:

Q · φ + Qx̄ ·
∂φ

∂τx̄
+ Qz̄ ·

∂φ

∂τz̄
= pIw (4.68)
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where the matrices Q, Qx̄ and Qz̄ are constructed from Eq. (3.4).

Robin-type boundary conditions after transformation:

φi + Zi,i
∂φi

∂τz
= δ1iIw −

N2∑
j=1, j,i

(
Xi, j

∂φ j

∂τx
+ Zi, j

∂φ j

∂τz

)
(4.69)

with X, Z are defined as

X = Q−1 ·Qx̄, Z = Q−1 ·Qz̄ (4.70)

For 2-D axisymmetric PN solver:

Left-hand-side of the governing equation with Lzzφi term:

δm1

2
cnm

2

[
Lrr +

1
βr
Lr −

1
β2r2 +

1
r
Lr

(
1
β

)]
φi

+cnm
2

(
Lrr +

1
βr
Lr −

m2

β2r2 − 2Lzz

)
φi

+
[
Lzz − (1 − ωδ0n)

]
φi

= a∗nm∇ ·

(
1
β
∇φi

)
+ b∗nmφi + c∗nmLzzφi (4.71)

where

a∗nm = cnm
2

1 + δm1/2
β

, (4.72a)

b∗nm = cnm
2

[
δm1/2

r
Lr

(
1
β

)
−

m2 + δm1/2
β2r2

]
− (1 − ωδ1i) (4.72b)

c∗nm = 1 − (3 + δm1/2)cnm
2 . (4.72c)

Marshak’s boundary conditions in matrix form:

Q · φ +
1
β

Qr · φ + Qx̄ ·
∂φ

∂τx̄
+ Qz̄ ·

∂φ

∂τz̄
= pIw (4.73)
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where the matrices Q, Qr, Qx̄ and Qz̄ are constructed from Eq. (3.23). The Qr · φ/β term is con-

structed from the second term on the right-hand side of Eq. (3.23). In order to leave 1/β outside of

Qr which only depends on the geometric information, the Qr · φ/β term is not combined with Q · φ

term.

Robin-type boundary conditions after transformation:

φi +
Zi,i

(1 + Ri,i)
∂φi

∂τz̄
=

1
(1 + Ri,i)

δ1iIw −
N2∑

j=1, j,i

(
Xi, j

∂φ j

∂τx̄
+ Zi, j

∂φ j

∂τz̄
+ Ri, jφ j

) (4.74)

where X, Z and R are defined as

X = Q−1 ·Qx̄

Z = Q−1 ·Qz̄

R = Q−1 ·Qr

(4.75)

4.2 Finite Difference Implementation of the 1-D Axisymmetric PN Method

The procedure for the finite difference discretization of the 1-D axisymmetric PN equations

is presented in this section. The high-order spherical harmonics method in 1-D axisymmetric ge-

ometry can be derived from the 2-D axisymmetric formulation, i.e., Eqs. (3.13) and (3.16). Then

the governing equations as well as the Marshak’s boundary conditions are discretized by the finite

difference method (FDM) with second-order accuracy. The FDM implementation of the axisym-

metric P3 method is shown here to demonstrate the discretization process, and the implementation

of other higher-order PN methods follows the same procedure. After the entire coefficient matrix is

constructed, it is solved by direct inversion of the entire coefficient matrix in GNU Octave R©.
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4.2.1 FDM Discretization of the Governing Equations

The governing equations of the PN formulation for 1-D axisymmetric geometry are obtained

from Eq. (3.13) by picking only the relevant equations and intensity coefficients and eliminating

any terms related to operators for z-direction derivatives, i.e., Lz, Lzz, Lrz and Lzr. Similar to the

PN formulations for the 2-D Cartesian geometry, the associated Legendre polynomials Pm
n (µ) are

odd functions when (m + n) are odd and thus Im
n with (m + n) being odd must vanish also for the

1-D axisymmetric formulation of the PN method. The governing equation for 1-D axisymmetric

formulation of the PN method becomes

For each Ym
n : n = 0, 2, ...,N + 1 and m = 0, 2, 4, ..., n :

3∑
k=1

{
(1 + δm2)anm

k

[
Lrr −

2m − 3
βr

Lr +
m(m − 2)
β2r2 −

m − 2
r
Lr

(
1
β

)]
Îm−2
n+4−2k

+
δm1

2
cnm

k

[
Lrr +

1
βr
Lr −

1
r2β2 +

1
r
Lr

(
1
β

)]
Îm
n+4−2k

+enm
k

[
Lrr +

2m + 3
βr

Lr +
m(m + 2)
β2r2 +

m + 2
r
Lr

(
1
β

)]
Îm+2
n+4−2k

+cnm
k

(
Lrr +

1
βr
Lr −

m2

β2r2

)
Îm
n+4−2k

}
−(1 − ωδ0n)Îm

n = −(1 − ω)Ibδ0n

(4.76)

The relevant governing equations and intensity coefficients for the P3 method are Y0
0 , Y0

2 , Y2
2

and Î0
0 , Î0

2 , Î2
2 . Denoting the intensity coefficients Î0

0 , Î0
2 and Î2

2 as φI, φII and φIII and symbols for

each governing equation Y0
0 , Y0

2 , Y2
2 as YI, YII and YIII, the governing equations for the P3 method

(with no scattering) for 1-D axisymmetric geometry become
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Figure 4.6: Schematic of a one-dimensional uniform mesh for the finite-difference discretization.

YI :
1
3

(
Lrr +

1
βr
Lr

)
φI − φI −

1
15

(
Lrr +

1
βr
Lr

)
φII +

2
5

[
Lrr +

1
βr
Lr +

2
r
Lr

(
1
β

)]
φIII = −Ib

(4.77a)

YII : −
1
3

(
Lrr +

1
βr
Lr

)
φI +

5
21

(
Lrr +

1
βr
Lr

)
φII − φII −

4
7

[
Lrr +

1
βr
Lr +

2
r
Lr

(
1
β

)]
φIII = 0

(4.77b)

YIII :
1
6

(
Lrr −

1
βr
Lr

)
φI −

1
21

(
Lrr −

1
βr
Lr

)
φII +

9
21

(
Lrr +

1
βr
Lr −

4
β2r2

)
φIII − φIII = 0

(4.77c)

Before discretization, the governing equations are multiplied by β. For any internal node at j

(0 < j < M) shown in Fig. 4.6, the derivative terms βLrrφ and βLrφ are discretized as

βLrrφ =
d
dr

(
1
β

d
dr

)
φ :

(
1
β

)
j+1/2

φ j+1 − φ j

∆r2 −

(
1
β

)
j−1/2

φ j − φ j−1

∆r2 (4.78a)

βLrφ =
dφ
dr

:
φ j+1 − φ j−1

2∆r
(4.78b)

where the subscripts (I,II,III) to distinguish unknowns are omitted here for clarity and j is the index

for a spatial node. The remaining term βLr (1/β) φ has two different options for discretization:

βLr

(
1
β

)
φ =

d
dr

(
1
β

)
× φ :

(1/β) j+1/2 − (1/β) j−1/2

∆r
φ j (4.79a)

βLr

(
1
β

)
φ = −

1
β2

dβ
dr
φ :

(
1
β

)2

j

β j+1/2 − β j−1/2

∆r
φ j (4.79b)
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For a smooth profile of β (and 1/β) with a fine mesh, both discretization methods will give very

similar coefficients for φ j.

4.2.2 FDM Discretization of the Boundary Conditions

4.2.2.1 Marshak’s boundary condition at the outer wall (at j = M where r = R)

The Marshak boundary condition is applied to the outer wall where j = M (r = R). Equa-

tion (3.23) of the 2-D axisymmetric formulation gives four boundary conditions from Y
0
1,Y

1
1, Y

0
3

and Y
2
3. The boundary equation characterized by Y

1
1 gives one equation for the intensity coefficient

of I1
2 which is irrelevant for 1-D formulations. Thus, the Y

1
1 boundary condition is not taken and the

Marshak boundary condition for 1-D axisymmetric geometry reduced from Eq. (3.23) for P3 are:

Y
0
1 :

1
2
φI +

1
3βM

φ′I −
1
16
φII −

1
15βM

φ′II +
3
8
φIII +

2
5βM

φ′III +
1

βMR
4
5
φIII =

1
2

Ibw (4.80a)

Y
0
3 : −

1
8
φI −

1
16
φII −

3
70βM

φ′II +
3
8
φIII +

9
35βM

φ′III −
1

βMR
12
35
φIII = −

1
8

Ibw (4.80b)

Y
2
3 :

15
8
φII +

6
7βM

φ′II +
15
4
φIII +

12
7βM

φ′III −
1

βMR
48
7
φIII = 0 (4.80c)

The surface normal gradient φ′ in Eq. (4.80) needs also to be discretized. Coefficients for a

second-order accurate numerical stencil for discretization of the surface normal gradient φ′ at the

boundary node M can be obtained by Tailor expansions:

φM−1 = φM − ∆rφ′M +
∆r2

2!
φ′′M + O(∆r3) (4.81a)

φM−2 = φM − 2∆rφ′M +
4∆r2

2!
φ′′M + O(∆r3) (4.81b)

The second-order accurate difference formula using points (φM−2, φM−1, φM) by 4×(4.81a)−(4.81b)

is:
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φ′M =
φM−2 − 4φM−1 + 3φM

2∆r
(4.82)

Since a direct solution method will be used to solve the whole system of algebraic equations,

it is not necessary to further transform Eq. (4.80) into individual Robin-type boundary condition for

each unknown.

4.2.2.2 Boundary condition at the centerline (at j = 0 where r = 0)

The second boundary condition must be applied to the centerline where j = 0 (r = 0). There

are two ways to apply the centerline boundary condition. One is to directly apply Eq. (3.46) at

the centerline. Note that multiplying Eq. (4.77c) by r2 will give the same equation as Eq. (3.46b),

which is φIII = 0 at r = 0. Multiplying Eq. (4.77a) and (4.77b) by r and substituting φIII = 0 into

Eq. (4.77a) and (4.77b) will lead to φ′I = φ′II = 0 at r = 0, which are consistent with Eq. (3.46a). A

second-order accurate difference formula using points (φ0, φ1 and φ2) similar to Eq. (4.82) is used

to discretize φ′0, which is

φ′0 =
−3φ0 + 4φ1 − φ3

2∆r
(4.83)

Another way is to apply L’Hospital’s rule:

lim
r→0+

β

r
Lrφ = lim

r→0+

1
r

dφ
dr

=
d2φ

dr2

∣∣∣∣∣∣
r=0

, when lim
r→0

dφ
dr

= 0 (4.84)

followed by substitution of Eq. (4.84) into the governing equations. L’Hospital’s rule can be applied

to the P1 equation without any difficulty, but it is more difficult for high-order PN methods. For the

example of P3, there is no simple way to apply L’Hospital’s rule to all terms related to φIII satisfying

the governing equation Eq. (4.77) at r = 0. Therefore, the first method is used for the centerline

boundary.

Another second-order accurate approach to discretize the surface normal gradient φ′ at both
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boundaries is by adding ghost nodes next to the boundary nodes, which the added ghost nodes are

labeled as j = −1 and j = M + 1, and then use the central differencing scheme to discretize φ′,

which are:

φ′0 =
φ1 − φ−1

2∆r
(4.85a)

φ′M =
φM+1 − φM−1

2∆r
(4.85b)

Applying both the discretized governing equations and boundary conditions at the boundary nodes

with central differencing scheme results in a system of M + 3 equations.

4.2.3 Solution Method

The same procedure is followed for the FDM implementation of P5 and P7 methods for the 1-

D axisymmetric geometry. The resulting coefficient matrix from the described second-order finite-

difference discretization from the axisymmetric PN equations is solved by direct inversion of the

entire coefficient matrix in GNU Octave R©. It is found that using different second-order differencing

schemes at the boundaries does not affect the results much. Compared with the segregated solution

method used previously in the finite volume implementation, the direct solution does not require

iteration and is more competitive than the segregated solution method when the the unknowns are

strongly coupled. For example, from Eq. (4.77), it can be seen that the coefficients in front of φI (or

I0
0) and φII (or I0

2) are of the same order, while for φIII (or I2
2), coefficients are related to (1/r)Lr (1/β)

which can easily affect the level of coupling between the unknowns. In that sense, the direct solution

method could also be a good direction to look at for future improvements of iterations of the PN

equations, especially for designing preconditioners to partially solve the whole matrix while leaving

a diagonal dominant matrix to be solved by segregated iterative methods.
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Chapter 5

Results

5.1 Examples for Gray Media

The accuracy and efficiency of high-order PN methods (up to P7) will be studied through a

series of examples. The results in terms of radiative heat source S rad = −∇ ·q calculated from high-

order PN methods as implemented in the FVM-based platform OpenFOAM R© will be compared to

that of exact solutions, either from direct integration or the PMC method. Other reference solutions,

including analytical solution of PN for 1-D Cartesian geometry, finite difference method (FDM) so-

lution of the PN method for 1-D cylindrical geometries and DOM are also used in different examples

for comparison.

The goal of these examples is to test the performance of the high-order PN methods with

respect to the order of PN , overall optical thickness, geometry, homogeneity of radiative properties,

etc., as well as to verify the FVM implementations of the high-order PN methods on OpenFOAM R©.

Gray media are assumed in this chapter since spectral variations of real participating media will

hinder the evaluation of the performances of the high-order PN methods. For some examples the

angular distribution of intensities will be reconstructed from the truncated spherical harmonics ex-

pansions to further study the mechanism behind the high-order spherical harmonics PN methods.
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τ = 10.0, 1.0, 0.5, 0.001

I(z,θ)

θ

cold and black

cold and black

Figure 5.1: Diagram of the radiative transfer between two infinitely long parallel plates.

All calculations are carried out on a single 2.66 GHz Intel (R) Xeon (R) X7460 processor.

5.1.1 1-D Slab Geometry

The first geometry to test the high-order PN methods is a 1-D slab, which represents the radia-

tive transfer between two infinitely long parallel plates. An exact solution [21] by direct integration

is available for 1-D radiative transfer problems and, therefore, used to evaluate the performance of

the PN methods. For 1-D Cartesian problems, analytical solutions for the PN methods may also be

found and are used to verify the numerical PN solutions from OpenFOAM R©. In the PN FVM imple-

mentation, these 1-D slab examples are solved by treating walls at two suppressed dimensions as

symmetry/specular boundaries as described by Eq. (3.45). For all three examples, the lower and

upper walls are assumed to be cold and black (Iw = 0.0, ε = 1.0).
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5.1.1.1 Problem 1: 1-D slab with homogeneous radiative properties

The first group of examples are 1-D Cartesian problems with homogeneous radiative media

of different optical thicknesses. A diagram of the problem is shown in Fig. 5.1. A 1×1×101 slab is

employed and four optical thicknesses τ are selected to test the performances of different orders of

the PN methods for these optical thicknesses. Four different orders of PN approximations are tested

i.e., P1, P3, P5 and P7.

The numerical results from different orders of PN methods in terms of normalized quantities

are presented in Figures 5.2–5.5. Since the medium is homogeneous, the resulting incident radiation

G, radiative heat source −∇·q and the intensity I are normalized by 4πIb, 4πκIb and Ib, respectively.

In common applications, only the incident radiation G and the radiative heat source −∇ · q, which

are angular-integrated values of intensity I, are of interest. However, to show the performance of PN

methods for different optical thicknesses, the angular distribution of the normalized intensity at the

center τ/2 is also presented together with the exact angular distributions of the normalized intensity

calculated from direct integration [21]. For the PN methods, the angular distribution of intensity I

is reconstructed by summing up the truncated spherical harmonics expansion, Eq. (2.1).

For the example of τ = 10, which is shown in Fig. 5.2, all orders of the PN methods give

solutions close to the exact solution except that the normalized incident radiation and radiative

heat source of P1 are slightly off next to boundaries. This is because the angular distributions

of the intensities are more isotropic for optically thick conditions, as shown in Fig. 5.2(b) for the

normalized intensity at the center as a sampling point. At the optical thickness of 10, the normalized

radiative heat source is almost zero close to the center (from z/L=0.3 to 0.7), which reflects the

physics that the photons emitted close to the center are absorbed locally so that the net heat exchange

at the center regions is a small portion of the total emission.

There is more energy escaping from the medium to the cold black walls for the example with

τ = 1 because the photons travel ten times longer distances compared with the example of τ = 10

, as shown in Fig. 5.3. The results in Fig. 5.3(a) show that P1 incurs large errors predicting the
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Figure 5.2: Comparison of numerical PN solutions to the exact solutions for the 1-D slab example
with homogeneous medium for optical thickness τ=10; (a) normalized incident radiation G/4πIb

and normalized radiative heat source −∇ · q/4πκIb, and (b) normalized radiative intensity I/Ib.
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Figure 5.3: Comparison of numerical PN solutions to the exact solutions for the 1-D slab example
with homogeneous medium for optical thickness τ=1; (a) normalized incident radiation G/4πIb and
normalized radiative heat source −∇ · q/4πκIb, and (b) normalized radiative intensity I/Ib.

normalized incident radiation and radiative heat source. P3 increases the accuracy significantly over

P1 while the results from P5 and P7 are very close to the exact solution. The angular distribution of
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Figure 5.4: Comparison of numerical PN solutions to the exact solutions for the 1-D slab example
with homogeneous medium for optical thickness τ=0.5; (a) normalized incident radiation G/4πIb

and normalized radiative heat source −∇ · q/4πκIb, and (b) normalized radiative intensity I/Ib.

intensity at the center in Fig. 5.3(b) is anisotropic since the emission path is longer close to θ = 90◦

(parallel to the surfaces) than that from θ = 0◦ (perpendicular to the surfaces). And P1 predicts

the angular distribution of intensity to be isotropic at the center since the expansion of spherical

harmonics of order 1 has only the I0
0Y0

0 term at the center (where Im
1 =0). As is shown in Fig. 5.3(b),

increasing the order of PN consistently improves the accuracy of the PN method until the intensity

predicted by P7 at the center almost captures the exact angular distribution.

If one further decreases the optically thickness to τ = 0.5, even P7 fails to catch the peak of

radiative intensity as shown in Fig. 5.4(b). Once again the angular distribution of intensity at the

center predicted by P1 method is isotropic, which fails to capture the nonisotropic feature of the

exact intensity distribution. The gradually improving results in Fig. 5.4(b) for higher order ones are

consistently closer to the exact solution, while more oscillations in the distributions are observed.

As is seen from the forms of associated Legendre polynomials, Table 2.1, the high order spherical

harmonics Ym
n represent high-frequency bases of a function, and therefore, higher-order spherical

harmonics expansions are able to closer approximate the exact anisotropic angular distributions
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Table 5.1: Comparison of errors of normalized incident radiation at the center point (z/L = τ/2) for
different orders of PN methods for the example of τ=0.5

Order εabs. µN,N−2

1 -0.102987 /

3 -0.037692 -63.4 %
5 -0.015087 -60.0 %
7 -0.005431 -64.0 %

Exact 0.482256

while introducing more oscillations of the solution with regard to angular distributions of inten-

sity. The integrated values, expressed by normalized incident radiation and radiative heat source

in Fig. 5.4(a) also show consistent improvements of accuracies. Table 5.1 summarizes the absolute

error εabs. of the normalized incident radiation comparing the results obtained from the PN methods

with the exact solution at the center. Another value µN,N−2 is used to measure the error reduction

rate, which is defined as

µN,N−2 =
εabs.,N − εabs.,N−2

εabs.,N−2
(5.1)

The errors are reducing at the rate about 60% for each increase of the order of the PN methods.

Figure 5.5 shows the results for the condition of an optically thin example with τ = 0.001.

The predicted angular distribution of intensity from P1 to P7 in Fig. 5.5(b) is not showing a gradual

convergence but rather step-wise improvements even with this step-shape distribution, while on the

opposite, the normalized incident radiation and radiative heat sources from P1 to P7 in Fig. 5.5(a)

seem to gradually converge to another value other than the exact solution. Table. 5.2 summarizes

the absolute error εabs. and the error reduction rate µN,N−2 of the normalized incident radiation

comparing the results obtained from the PN methods with the exact solution at the center. The error

reduction is much slower than for the case of τ = 0.5 and the reduction rate also becomes slower

with the increase of the order N, which implies that a much higher order of PN method is required

to obtain an exact solution for optical-thin conditions. It is important to point out that the radiative
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Figure 5.5: Comparison of numerical PN solutions to the exact solutions for the 1-D slab example
with homogeneous medium for optical thickness τ=0.001; (a) normalized incident radiation G/4πIb

and normalized radiative heat source −∇ · q/4πκIb, and (b) normalized radiative intensity I/Ib.

heat source before normalization is what will eventually matter, and if one looks at the total scale

of energy absorbed in Fig. 5.5(a), which is around 0.2-0.4% of the emitted energy, the error of the

PN method actually can be safely ignored since even an optically thin solution will be sufficient

for this homogeneous optically thin example. This will be discussed further in the later problems.

Furthermore, this example gives a reasonable minimum value of τmin, which will be used to find a

minimum κmin for inhomogeneous cases with optically thin regions to avoid division by zeros.

All the above numerical PN results have been verified against the analytical solution of PN

for 1-D Cartesian geometries. Figure 5.6 shows the comparison of the numerical solutions and the

Table 5.2: Comparison of errors of normalized incident radiation at the center point (z/L = τ/2) for
different orders of PN methods for the example of τ=0.001

Order εabs. µN,N−2

1 -0.0030125717 /

3 -0.0026799798 -11.0 %
5 -0.0024807361 -7.4 %
7 -0.0023386386 -5.7 %
Exact 0.004012
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Figure 5.6: Comparison of numerical and analytical solutions of the PN methods for the example of
τ = 1; (a) P1, P5 and exact solutions and (b) P3, P7 and exact solutions.

analytical solutions of the PN methods for the example of τ = 1, where the numerical solutions

of the PN methods perfectly overlap the analytical solutions. Since the analytical solutions are

dimensionless, the comparison can also be regarded as a grid independence check for the numerical

solutions.

A CPU time comparison for Problem 1 is given in Table 5.3. The computational cost in-

creases with the decreases of the optical thickness τL which is due to the stronger coupling between

governing equations for the optically thinner case.

Table 5.3: Comparison of CPU time (s) for Problem 1: 1-D slab with homogeneous κ and Ib

No. of cells τL P1 P3 P5 P7

101 10 0.01 0.04 0.14 0.26
1 0.01 0.04 0.14 0.26

0.5 0.01 0.04 0.14 0.28
0.001 0.01 0.05 0.15 0.33
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5.1.1.2 Problem 2: 1-D slab with variable radiative properties

Problem 2 considers radiative transfer between two infinitely long plates with an inhomoge-

neous medium. For this example a 1× 1× 100 slab is employed. The properties of the medium vary

according to

Ib = 10(1 + 0.5y2), W · m−3· sr−1 (5.2a)

κ = y, m−1 (5.2b)

τL = 0.5 (5.2c)

where y is the perpendicular distance from the lower wall. The thickness of the slab is L = 1 m, and

the optical thickness is τL = 0.5. In optical coordinates the Planck function field (Ib) is linear, which

is convenient for finding an analytical solution. For the numerical computations, a lower limit of

κmin = 10-3 m-1 was set for κ in order to avoid division by zero at the lower wall.

Since this example is 1-D and in Cartesian coordinates, the analytical solution can be ob-

tained to verify certain aspects of the PN approximation and the program implementation itself. For

instance, by orienting the 1-D slab at different angles within each of the three coordinate planes (see

Fig. 5.7), the 1-D slab can be used to verify that all partial derivatives are accounted for correctly in

the implementation. For example, setting the configuration angle to φ = 0 with the slab positioned

in the x-y plane, one can test theLxx derivatives, neglecting all mixed derivative, Lyy, andLzz terms

from the PDEs. Similarly, setting φ = 90◦, the combination of Lyy derivatives can be singled out,

and for φ = 45◦, the combination of Lxx, Lyy, Lxy, and Lyx terms can be verified, etc.. In terms

of solution profiles within the slab, the solutions for I0
0 should be identical (and matching the an-

alytical profiles) for arbitrary orientations of the 1-D slab. The numerical and analytical solution

for incident radiation G and radiative heat source −∇ · q, for the case of the slab oriented in the

y-direction is shown in Fig. 5.8. The numerical results are found to perfectly overlap the analytical

results for various orientations, which demonstrates that the PN implementation correctly employs
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Figure 5.7: Rotations of 1-D slab at angles φ = 0, 45◦, -45◦ in the x-y plane. The medium properties
increase with low values at the lower wall to higher values at the upper wall.

Table 5.4: Comparison of errors of radiative heat source at two locations (y=0.1 m and y=0.8 m)
for different orders of PN methods for the example of τ=0.5

y=0.1 m y=0.8 m
Order εabs. µN,N−2 εabs. µN,N−2

1 -0.199823 / -13.574682 /

3 0.219627 -209.9 % -5.332582 -60.7 %
5 0.221957 +1.06 % -2.402082 -55.0 %
7 0.168297 -24.2 % -1.072482 -55.4 %

Exact -7.499817 -71.567518

all the terms in the PDEs. Comparing with the exact solution for this 1-D problem [21], higher

order PN generally produce more accurate results over the entire slab, except near the lower wall

where the PN methods incur larger errors for the incident radiation G. This is due to the optically

thin region (small values of κ) close to the lower wall. Table 5.4 summarizes the absolute error εabs.

and the error reduction rate µN,N−2 for the radiative heat source comparing the results obtained from

the PN methods with the exact solution at two locations (y=0.1 m and y=0.8 m). At the position

of y=0.8 m, the errors are dropping consistently at similar rates while at y=0.1 m the errors are

dropping with oscillations. Nevertheless, the overall errors of the radiative heat source are reduced

by approximately 55% every time the order is increased for this example.

This example has shown the rotational invariance of the PN method in the x-y plane and the

capability of the PN methods predicting radiative heat source for 1-D Cartesian inhomogeneous

case even with optically thin regions. The overall performance of the high-order PN method in this
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Figure 5.8: Comparing incident radiation and radiative heat source with analytical solutions of PN

and exact solution for 1-D slab; (a) incident radiation G and (b) radiative heat source −∇ · q.

Table 5.5: Comparison of CPU time (s) for Problem 2: 1-D slab with inhomogeneous κ and Ib

No. of cells τL P1 P3 P5 P7

100 0.5 0.01 0.04 0.15 0.27

inhomogeneous example has been shown to be similar to that of the homogeneous example at the

same optical thickness τL = 0.5.

The CPU time comparison for Problem 2 is given in Table 5.5. The computational cost does

not differ much from that of the homogeneous case (Table 5.3) with the same optical thickness

(τL = 0.5).

5.1.1.3 Problem 3: 1-D slab with flame-like variable radiative properties

In this example, the radiative properties are flame-like with a strongly emitting and absorbing

region in the center next to the optically thin regions. The computational domain is a 1-D slab

(1 × 1 × 200) with length L = 0.52 × 2 m. In the previous examples, the Planck function Ib was
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Figure 5.9: Flame-like variable radiative properties of Problem 3.

either normalized, as in Problem 1, or artificial values were used without physical significance, as in

Problem 2. For this example a more physical scale of the Planck function 4πIb is used to represent

an exponential distribution of a flame with peak temperature around 1562 K. The corresponding

radiative properties as shown in Fig. 5.9 are

4πIb = 1.35 × 103e−83.333z2
, kW · m−3 (5.3a)

κ = 5.293e−83.333|z|2.65
, m−1 (5.3b)

−0.52 6 z 6 0.52, m (5.3c)

τL/2 = 0.886 (5.3d)

Figure 5.10 shows the incident radiation G and the radiative heat source −∇ · q produced by PN

methods with different orders as well as the result from the exact solution. The sign of radiative heat

source −∇ · q reflects the net radiative heat transfer from the medium, where negative radiative heat

source indicates a loss of energy and vice versa. The radiative heat sources plotted in Fig. 5.10(b)

show a negative peak (emission outstrips absorption) in the center (z = 0 m) with a rapid attenuation

away from the peak until the net radiative heat transfer becomes positive (at z = ±0.1 m; absorption
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Figure 5.10: Comparing incident radiation and radiative heat source with exact solution for 1-D slab
with flame-like radiative properties; (a) incident radiation G and (b) radiative heat source −∇ · q.

dominates). The results for the radiative heat source predicted by higher-order PN methods become

increasingly better in the central region (|z| < 0.25 m) and with P7 result almost match the exact

solution. And for optically thin regions (|z| > 0.25 m) where the radiative heat sources are rela-

tively small, the differences between different orders of PN methods seem unimportant, although

the incident radiation G from different orders of PN methods in Fig. 5.10(a) show relatively larger

differences between different orders of PN methods.

Figures. 5.11 and 5.12 present the angular distribution of radiative intensities at two locations

(at z = 0.0026 m and z = 0.455 m). The plot at the central location (z = 0.0026 m) in Fig. 5.11 shows

consistent improvements in accuracy from higher-order methods and is similar to what has been

shown in Fig. 5.3(b) for the homogeneous example with τ = 0.5. Since this location (z = 0.0026

m) is not exactly at the center, the plots are no longer symmetric. Therefore, P1 gives nonisotropic

results though it still incurs quite large errors. At the location of z = 0.455 m, it can be seen from

Fig. 5.11(a) (the value 0 is a circle in this polar plot) that the magnitude of intensities in the upper
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Figure 5.11: Comparison of intensity distributions calculated by PN methods and exact solution at
z = 0.0026 m.

hemisphere (0◦ < θ < 90◦) is still large with the magnitude of intensities being close to zero in

the lower hemisphere. This is expected since the radiation mostly comes from the central emitting

regions and there is no emission from the optically thin region and the wall. The performance of

the PN approximations becomes increasingly better with higher orders and P7 almost catches the

exact solution. Figure 5.12(a) is replotted in Cartesian coordinates as in Fig. 5.12(b) to show the

oscillations of high-order PN methods clearer. For this specific distribution of intensity, PN methods

with higher orders incur less errors but negative intensities are observed in the lower hemisphere.

Though negative intensity is unphysical, and will never result from exact solutions of the RTE, it

is inevitable for the PN methods due to the oscillatory nature of finite-order spherical harmonics

approximations when dealing with a jump discontinuity of intensity.

For the purpose of showing rotational invariance of the PN methods and for code verifica-

tion, the 1-D slab is then rotated by multiple random angles in a 3-D coordinate system. The I0
0

and radiative heat sources are almost the same as expected, while the remainder of the Im
n change

according to the coordinate orientation. The P7 results in direction (0 0 1) (along z-axis), direction
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Figure 5.12: Comparison of intensity distributions calculated by PN methods and exact solution at
z = 0.455 m; (a) in polar coordinates (b) in Cartesian coordinates.

(1 0 0) (along x-axis) and direction (-0.3756, 0.4631, 0.8027) are shown in Fig. 5.13.

Finally, the radiative heat source predicted by PMC results is also calculated and compared

to the exact solution, which is shown in Fig. 5.14. The PMC result, which will be used as refer-

ence solution when exact solutions are no longer available for later examples. PMC is a stochastic

method so that the accuracy and computational cost of PMC method depend on many factors such

as the number of photon bundles that are traced, optical thickness of the problem, boundary con-

ditions, mesh size, etc.. It is quite inconclusive to interpret a direct comparison of computational

cost between other deterministic methods and PMC method. Furthermore, in the inhomogeneous

examples in this thesis, as well as in real world applications, the emission and absorption may vary

over several orders of magnitude across the domain, there is so far no general rule to determine the

optimal number of photon bundles for any specific problem. For example, the results from Fig. 5.14

have shown that mean values predicted from 1-million-photon-bundle scheme are still not good

enough at the center of the slab compared from that of the 50-million-photon-bundle scheme for

this 1-D case, while the PMC results from 50-million-photon-bundle scheme are almost identical to
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Figure 5.13: Comparing radiative heat source calculated from P7 method with three orientations.
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Figure 5.14: Comparing radiative heat source calculated from PMC method with the exact solution
of 1-D slab for flame-like radiative properties.

the exact solution.

The CPU time comparison for Problem 3 for the PN methods and the PMC is given in Ta-

ble 5.6. The computational cost increases a lot especially for P5 and P7 from that of former 1-D
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slab cases (Table 5.3 and 5.5).

Table 5.6: Comparison of CPU time (s) for Problem 3: 1-D slab with flame-like κ and Ib

Num. of cells τL P1 P3 P5 P7 PMC (0.1M×10) PMC (5M×10)
200 0.886 0.01 0.10 0.52 1.34 45.7 2532.1

5.1.2 2-D Square or Rectangular Geometry

Like the 1-D slab case, radiative transfer in 2-D square or rectangular geometry is solved

by treating the walls of a 3-D cube at one suppressed dimension as perfectly reflective (symmetry

boundary). For examples in 2-D square or rectangular geometries, PMC will be used as the reference

solution.

5.1.2.1 Problem 4: square enclosure with variable radiative properties

One example for a square enclosure is presented here to study the accuracy of the PN methods

for fields with strongly varying radiative properties in a two-dimensional geometry. The square in

this 2-D example uses a 51 × 51 × 1 mesh, and the four boundaries are assumed black and cold

(the remaining two in the suppressed dimension use the specular reflection/symmetry boundary

condition). The following radiative properties are chosen for the square enclosure:

4πIb = 4π
[
1 + 5r2(2 − r2)

]
, W · m−3 (5.4a)

κ = Ck
[
1 + 3.75(2 − r2)2

]
, m−1 (5.4b)

r2 = x2 + y2, −1 ≤ x ≤ 1,−1 ≤ y ≤ 1, m (5.4c)

τR =

∫ R

0
κdr = 9

√
2Ck,R =

√
2, m, along diagonal (5.4d)

The profiles of the Planck function and the absorption coefficients along the diagonal are shown in

Fig. 5.15 and three values of Ck are investigated, i.e., Ck=0.01, 0.1 and 1.0, which represent optically

thin, intermediate and thick conditions, respectively. Results predicted from high-order PN methods
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Figure 5.15: Radiative properties of Problem 4 along the diagonal.

as well as those from the PMC method for all three optical conditions in terms of both the negative

radiative heat source ∇ · q and the incident radiation G are shown in Fig. 5.16. Comparing results

from the PN methods with the PMC simulation for the optically thick case, Fig. 5.16(a) shows that

all PN methods except P1 method do very well. In the optically intermediate case, Fig. 5.16(b),

neither P1 nor P3 is able to catch the trend of peaks and valleys for the incident radiation G, while

P5 is very close to the PMC results and P7 follows the variations in G well. For the optically thin

case, Fig. 5.16(c), all PN methods fail to follow the true variation of incident radiation G, with

the higher-order methods performing marginally better than P1; gratifyingly, the more important

negative radiative heat source ∇ · q is captured well even for the optically thin situation. This is

because only a small portion of the radiative energy is absorbed (G/4πIb) comparing the scale of G

in Fig. 5.16(c) with that of the Planck function in Fig. 5.15.
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Figure 5.16: Incident radiation and radiative heat source for a square enclosure with various PN

approximations; (a) Ck=1, (b) Ck=0.1 and (c) Ck=0.01.

116



Distance along diagonal x=y, r/R

In
ci

de
nt

 r
ad

ia
tio

n G
 (

W
/m

2 )

-1 -0.5 0 0.5 1
0

5

10

15

20

25

30

35

P7, 51 51
P7, 128 128

Ck=0.1
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Mesh dependency test has been conducted to further verify the results. A uniform mesh with

128 × 128 computational cells is tested with the same distributions of radiative properties. The

comparison of G from P7 method for the Ck = 0.1 case with both meshes are shown in Fig. 5.17,

and the results from both meshes are found to be overlapping with each other.

The 2-D square mesh is placed into different coordinate planes (x-y, x-z, y-z) to show the ro-

tational invariance of the PN methods as well as for code validation. It is found that, even though the

relevant intensity coefficients are different for all three placements, the incident radiation G = 4πI0
0

predicted are identical for all three placements and for all three optical conditions. As a demonstra-

tion, the contour profiles of the incident radiation G and the non-zero intensity coefficients Im
2 by the

P7 method from three different placements of the square mesh for the optically intermediate case

(Ck=0.1) are shown in Figures 5.18–5.20. When the mesh is placed into the x-z plane (Fig. 5.19)

and the y-z plane (Fig. 5.20), it is found that
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Figure 5.18: Incident radiation G and intensity coefficient Im
2 from P7 method for Problem 4 when

Ck = 0.1 in x-y plane; (a) G(= 4πI0
0), (b) I0

2 , (c) I−2
2 and (d) I2

2 .
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Figure 5.19: Incident radiation G and intensity coefficient Im
2 from P7 method for Problem 4 when

Ck = 0.1 in x-z plane; (a) G(= 4πI0
0), (b) I0

2 , (c) I1
2 and (d) I2
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Figure 5.20: Incident radiation G and intensity coefficient Im
2 from P7 method for Problem 4 when

Ck = 0.1 in y-z plane; (a) G(= 4πI0
0), (b) I0

2 , (c) I−1
2 and (d) I2
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Table 5.7: Comparison of CPU time (s) for Problem 3: 2-D square enclosure with variable κ and Ib

No. of cells Ck τR P1 P3 P5 P7 PMC
2,601 (51×51) Ck=1 12.7 0.02 0.75 4.71 7.0 459 (5M×10)

Ck=0.1 1.27 0.02 0.87 5.05 9.33 125.5 (0.5M×10)
Ck=0.01 0.127 0.02 1.78 7.09 19.2 21.2 (0.05M×10)

The CPU time comparison for Problem 4 for the PN methods and the PMC is given in Ta-

ble 5.7. For the computational cost of PN methods, the overall optical thickness plays a more im-

portant role in this 2-D square problem. The CPU times for optically thick and intermediate cases

do not differ much but the optically thin case consumes much more time. The computational cost

of PMC method is also related to the overall optical thickness. More time is spent on ray tracing

for optically thin case than that of the optically intermediate and thick cases. On the other hand, for

optically thin case, it is not necessary to trace as many as photon bundles for optically intermediate

and thick cases.

Figure 5.21 depicts the radiative flux qw along one of the cold black walls for the same three

optical conditions. Even for the optically thick case, P1 is found to incur serious errors (6% at

the center and 40% in the corners) while all high-order PN methods perform well with a distinct

improvement of accuracy from P1 to P3 and a small improvement from P3 and P5 to P7 at the

center of the wall. Similarly, for the optically intermediate case, P1 again has large errors in the

corners while P3, P5 and P7 perform well against the PMC. Finally, P1 predicts uniform heat flux

for the optically thin case, while the high-order PN methods predict almost the correct heat flux

from the PMC method.

To test the specified-qw boundary condition, one wall in each direction (x and y) is flagged as

a specified-qw boundary condition by inputting qw according to the profile shown in Fig. 5.21 (first

obtained by setting all walls to cold and black), while the opposite walls are kept as black and cold.

Figure 5.22 shows the contour plot of ∇ · q from the 2-D Cartesian P7 solver with the specified-qw

boundary condition for the optically thick (Ck = 1.0) case. The differences between the cases with

and without the the specified-qw boundary condition are within 0.1%. The specified-qw boundary
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Figure 5.21: Radiative flux along the bottom wall (y=−1.0 m).

condition can be very useful which allows using experimental measurements as boundary values

directly.

5.1.2.2 Problem 5: square enclosure with pure scattering radiative properties

A purely scattering medium in a square enclosure with a heated strip is studied next. This

problem has formerly been studied by Modest and Yang [145] and Ravishankar and Mazumder [149]

for P1 and P3 methods. The former had P3 implemented in FlexPDE software [218] and the latter

using in-house software. They found that the P3 method is as inaccurate as the P1 method for the

optically thin and intermediate cases, and that higher-order PN methods are expected to improve the

solutions of PN methods for this problem.

A square enclosure with the length of side being L, as shown in Fig. 5.24, with four black

walls is considered, in which only the mid-section with the length of 0.2L of the bottom wall is

hot, while the remainder of the bottom wall and the other three walls are cold. Since there is no
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Figure 5.22: The radiative heat source −∇·q from 2-D Cartesian P7 solver with specified-qw bound-
ary condition for the Ck = 1.0 example. The upper wall (y = 1.0 m) and right wall (x = 1.0 m)
employ specified-qw boundary condition, while the other two are kept as black and cold wall.

medium absorption for this problem (where ∇ · q = 0 everywhere), the radiative energy emitted by

the hot strip is redistributed to all four walls by scattering. A homogeneous and purely isotropically

scattering medium with three different optical thickness (τL = σsL= 0.1, 1.0 and 5.0; κ=0.0) is

tested. The dimensionless irradiation (H∗ = H/σT 4
h ) along the surfaces is plotted to evaluate the

accuracy of different RTE solvers, including the spherical harmonics (PN) method, the discrete

ordinates method (DOM) and PMC. PN methods with orders from P1 to P7 are tested and DOMp×a

for three discrete ordinates schemes with respect to the number of discrete polar ordinates p and

azimuthal ordinates a, which are 4×8, 4×16 and 4×32, are tested. A 50×50 2-D grid is employed

for all calculations.

Figure 5.24 shows the results for different optical thicknesses from (a) optically thin (τL =

0.1), to (b) optically intermediate (τL = 1.0), and to (c) optically thick (τL = 5). The dimensionless

irradiation H∗ is plotted along the top wall (on the left), along one of the side walls (in the middle)

and along the bottom wall (on the right). The PMC results are regarded as exact. Neither DOM nor
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Figure 5.23: Diagram of the square enclosure with hot strip at the bottom center.

PN can predict the irradiation well for optically thin and optically intermediate medium. As to be

expected, the PN methods predict irradiation H∗ less accurately at the bottom surface, because of the

discontinuity of intensity in the incoming and outgoing directions near the hot strip. The irradiation

H∗ calculated from PN at the bottom wall may even obtain negative values for all optical thicknesses,

which is physically impossible. In contrast, all DOM calculations provide decent results on the

bottom wall but poorer results compared with PN for the top and side walls due to ray effects.

P1 and P3 results are found to be as same as those of Modest and Yang [145] and Ravishankar

and Mazumder [149], which had different implementations other than OpenFOAM R© and used differ-

ent meshes. P5 and P7 methods do not seem to improve the accuracy to a great extent. But consistent

small improvements of H∗ at the bottom wall, though still negative, for all three cases are observed.

The trend of the convergence from P1 to P7 indicates that much higher orders of PN method is

required for the PN method to match the PMC results for the optically thin and intermediate cases.
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Figure 5.24: Comparison of different RTE solvers of dimensionless irradiation on surfaces; strip of
bottom surfaces heated; (a) τL = 0.1, (b) τL = 1.0 and (c) τL = 5.0.
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Table 5.8: Dimensionless irradiation at the walls

τL = 1 P1 P3 P5 P7 PMC
Q∗top 0.0466874 0.0337713 0.0449401 0.0480993 0.0484804
Q∗side 0.0725066 0.0528072 0.0540381 0.0514984 0.0521100
Q∗bottom 0.00821792 0.0606176 0.0470249 0.0489417 0.0472123
εrel.,t −3.69 % −30.3 % −7.30 % −0.786 % /

εrel.,s +39.1 % +1.34 % +3.70 % −1.17 % /

εrel.,b −82.6 % +28.4 % −0.40 % +3.66 % /

τL = 5 P1 P3 P5 P7 PMC
Q∗top 0.0149507 0.0160292 0.0151374 0.0152146 0.0151887
Q∗side 0.0333291 0.0299472 0.0309418 0.0310494 0.0312782
Q∗bottom 0.118391 0.124077 0.122969 0.122677 0.122192
εrel.,t −1.57 % +5.53 % −0.338 % +0.170 % /

εrel.,s +6.56 % −4.26 % −1.08 % −0.731 % /

εrel.,b −3.11 % +1.54 % +0.636 % 0.397 % /

Although the profiles of the dimensionless H∗ predicted by the PN methods are not good

for the optically intermediate case, the overall energy distributions at the walls predicted by PN

methods are relatively better, which is shown in Table 5.8. Q∗ is defined to be the integration of

H∗ along each wall and it is validated that Qtop + 2Qside + Qbottom ≈ 0.2 (balancing emission) for

all PN and PMC results. The relative errors εrel are the errors of the PN results with respect to the

PMC results for each wall. Q∗ and εrel for the optically thick case is also shown in Table 5.8 as

a reference. Comparing Q∗ from different orders of PN methods with that from the PMC for the

optically intermediate case, P1 and P3 are found to be totally off the correct answer but P5 and P7

have significantly reduced the levels of errors for all walls.

The CPU time comparison for Problem 5 for the PN methods, the DOM and the PMC is

given in Table 5.9. The computational costs of high-order PN methods and the DOM show opposite

trends as expected. DOM equations are coupled for scattering media and the computational costs of

DOM increases with the optical thickness, while the elliptic PDEs of the high-order PN methods are

coupled more strongly for optically thinner media. It is also found that treating scattering is quite

expensive for PMC method.
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Table 5.9: Comparison of CPU time (s) for Problem 5: 2-D square, pure scattering

No. of cells τL P1 P3 P5 P7 DOM4×8 DOM4×16 DOM4×32 PMC (2M×10)
2,500 5.0 0.03 0.65 2.98 7.72 14.8 30.3 65.5 6621

1.0 0.03 1.03 4.42 15.3 2.22 4.58 9.85 5645
0.1 0.03 4.39 20.6 73.2 0.96 1.96 4.12 5549

Besides the results from the ordinary PN methods, results from the modified PN methods are

also presented for comparison, as shown in Fig. 5.25. For comparison, results from non-modified P7

and PMC are also included. The details of modified differential approximation (MDA) are described

in [90,91] and will not be repeated here. The principle is to split the intensity into two components,

i.e., one is a ballistic part related to wall emission, and a diffusive part. The ballistic component is

easily solved by direct integration, while the diffusive component is suitable to be solved by the PN

method.

Excellent accuracy is achieved for the entire optical range when the MDA is applied to the

PN methods (the MPN method). For the top wall and side walls, the MPN methods are almost

as accurate as the PMC results for all three optical conditions. Though the errors at the bottom

wall by the MPN methods are still relatively large for the optically thin and intermediate cases,

the improvement is significant and unphysical negative irradiation is no longer present. Further

improvements can be achieved by the advanced differential approximation (ADA) [92], which will

not be covered here.

The results in this example have shown the limits of PN methods as well as the possibility

of hybrid solution methods such as the MPN if the non-diffusive intensity fields can be evaluated

separately when series of spherical harmonics cannot resolve them.
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Figure 5.25: Comparison of different MPN solvers of dimensionless irradiation on surfaces; strip of
bottom surfaces heated; (a) τL = 0.1, (b) τL = 1.0 and (c) τL = 5.0.
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5.1.2.3 Problem 6: rectangular enclosure with mixed diffuse-specular gray walls

Polished metals and glassy materials, which display strong specular reflection peaks, can ef-

fectively be approximated by a combination of diffuse reflection and specular reflection. Sample

simulations to test the accuracy of the high-order PN method for mixed diffuse-specular walls have

been performed on a 2-D rectangular geometry enclosed by walls with different surface character-

istics. The geometry and radiative properties are shown in Fig. 5.26, and the properties of the left

and right walls make up four test cases, i.e.,

1. purely specular reflection (ρs = 1);

2. purely diffuse reflection (ρd = 1);

3. mixed diffuse-specular reflection without emission (ε = 0, ρs = 0.7, ρd = 0.3);

4. mixed diffuse-specular reflection with emission (ε = 0.5, ρs = 0.2, ρd = 0.3).

A 80 × 20 grid is employed for this problem.

The negative radiative heat source, ∇ · q along the centerline (x = 1 m), and the heat flux at

the top and bottom walls, qw, calculated with different orders of PN methods as well as the PMC

method are shown in Figs. 5.27-5.30 for Cases 1–4. Generally speaking, good agreement is observed

between the results from high-order PN and those from PMC for all four cases, with results for heat

flux at the corners showing the biggest discrepancies. For the pure-specular-reflection case, Case 1

as shown in Fig. 5.27, only the result from P1 shows relatively large discrepancies compared to PMC

results near the top and bottom walls. P5 and P7 methods even outperform the PMC on the heat

fluxes predictions at the walls; since Case 1 is essentially a 1-D problem (even though the mesh is 2-

D), the heat fluxes are supposed to be uniform along both top and bottom walls, and the uniformity

of heat flux is successfully predicted by the PN methods. In the pure-diffuse-reflection case, Case

2 as shown in Fig. 5.28, a clear gradual convergence from lower-order PN methods to high-order

PN methods towards the PMC results is observed. P7 gives the correct radiative heat source along
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Figure 5.26: Schematic of rectangular enclosure for tests of specular, diffuse and mixed diffuse-
specular surfaces; the bottom and top walls are black emitting walls and the left and right walls are
following the configurations from (1) to (4).

the centerline but is still a little bit off for the heat flux predictions at both walls. P1 gives the

same results for both Case 1 and Case 2, because there is no difference in the P1 formulation for

treating specular and diffuse reflection as is shown in Appendix C. For Case 3 (Fig. 5.29), in which

the left and right walls are mixed diffuse-specular surfaces, P1 predicts the same uniform results as

in the former two cases as expected. All high-order PN methods are doing well for the prediction

of radiative heat sources along the centerline. Compared with the performances of high-order PN

methods observed in Cases 1 and 2, it is found that more specular reflection (larger ρs) results

in more accurate results from the high-order PN methods. For the last case, Case 4 (Fig. 5.30),

the left and right walls are two mixed diffuse-specular-emitting surfaces. This time P1 predicts a

non-uniform qw at both walls and the performances of high-order PN methods are similar to their

performances in Case 2.
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Figure 5.27: Radiative heat source ∇ · q along x = 1.0 m and the heat flux qw at top and bottom
walls for Case 1; (a) x = 1.0 m, (b) y = 8.0 m and (c) y = 0.0 m.
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Figure 5.28: Radiative heat source ∇ · q along x = 1.0 m and the heat flux qw at top and bottom
walls for Case 2; (a) x = 1.0 m, (b) y = 8.0 m and (c) y = 0.0 m.
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Figure 5.29: Radiative heat source ∇ · q along x = 1.0 m and the heat flux qw at top and bottom
walls for Case 3; (a) x = 1.0 m, (b) y = 8.0 m and (c) y = 0.0 m.
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Figure 5.30: Radiative heat source ∇ · q along x = 1.0 m and the heat flux qw at top and bottom
walls for Case 4; (a) x = 1.0 m, (b) y = 8.0 m and (c) y = 0.0 m.
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Figure 5.31: Comparison of radiative heat source ∇ · q and the heat flux at the wall qw from P7
solver for four surface properties.

Figure 5.31 shows a comparison of the P7 results for the four surface characteristics. The

differences between the results from Case 1 and Case 2 show that the wall properties can signifi-

cantly affect the radiative heat source distributions and the heat flux profiles at the wall especially

for larger aspect ratios. The differences between the results from purely diffuse walls and purely

specular walls are expected to increase with higher aspect ratio of the geometry. Also, it is expected

that the radiative heat source in the medium and the heat flux at walls for Case 3 lie between that of

Case 1 and Case 2.

The performance of PN methods has been tested by this example in a rectangular geometry

with mixed diffuse-specular walls. The error from P1 in this example is not solely due to the

optical-thickness but a physical phenomenon that cannot be formulated through the P1 method. The

high-order PN methods are found to be capable of treating surfaces with mixed diffuse-specular

properties which makes it a good tool for radiative transfer researches concerning wall properties.
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Table 5.10: Comparison of CPU time (s) for Problem 6: 2-D rectangle, mixed diffuse-specular-
emitting walls

No. of cells τL P1 P3 P5 P7 PMC (2M×10)
1,600 4.0 0.02 0.35 2.05 4.37 4660

The CPU time comparison for Problem 6 for the PN methods and the PMC is given in Ta-

ble 5.10. The computational costs for all four sets of surface properties are similar.

5.1.3 Cylindrical and Wedge Geometries

Axisymmetric geometries are common in general CFD applications, and thus also in the

study of radiative transfer. In finite-volume applications, three different kinds of cylindrical meshes

tend to be used. The first type of a computational domain is a full 3-D cylinder. The full 3-D cylin-

drical grid, which usually leads to a large number of computational cells, is nevertheless often used

in flow field simulations by large eddy simulation (LES) and direct numerical simulation (DNS),

because these problems by nature are three-dimensional. The second type is a thin wedge with

single node in the circumferential direction, which is much more efficient than using a full cylinder

for axisymmetric problems. Many combustion problems in a cylinder are axisymmetric, but most

finite volume-based CFD codes rarely have cylindrical coordinates and/or axisymmetric capability.

In those cases, such a thin-wedge mesh instead of the full cylinder is usually chosen to expedite the

computation. The last one is a fan-shape wedge with multiple nodes in the circumferential direc-

tion, in order to reduce computational cost by recognizing periodic patterns in the circumferential

direction within a cylinder.

In the coming sections, the radiative transfer predicted by the high-order PN methods for all

of these three grids will be studied. It is well-known that P1 will perform poorer in a cylindrical ge-

ometry than in a Cartesian geometry [21], because radiative intensities tend to have more anisotropic

angular distributions. The performance of high-order PN methods in cylindrical geometry is to be

demonstrated with three different examples.

136



5.1.3.1 Problem 7: Cylindrical enclosure and a 10◦ wedge enclosure with variable radiative

properties

In this problem, a cylindrical geometry with axisymmetric radiative properties is considered.

A long cylindrical enclosure (R = 0.5 m and Z = 2.5 m) with variable radiative properties is

tested with the PN methods as well as an exact solution obtained by direction integration [21]. The

absorption coefficient κ varies both in the r-direction and z-direction described by Eq. (5.6):

Ib = 1 +
20
R4 r2(R2 − r2), W · m−3 (5.6a)

κ = Ck

[
1 +

15
R4 (R2 − r2)2

]
, m−1 (5.6b)

Ck = 0.3 + z 0 ≤ r ≤ R = 0.5, 0 ≤ z ≤ 2.5, m (5.6c)

τR =

∫ R

0
κdr = 3.75Ck (5.6d)

The radial optical thickness τR ranges from 1.125 (optically intermediate) to 10.5 (optically thick).

The scale and dimension of the Planck-function Ib for this problem do not have any physical signif-

icance.

Radiative calculations are conducted on two meshes: a 2-D thin wedge and a full 3-D

cylinder, with the same axisymmetric radiative medium. The computational meshes are shown

in Fig. 5.32. The cylinder has 45 cells along the radius and 40 cells along the axis with a small

square cuboid (15× 15× 40) at the center as shown in Fig. 5.32(a). The size of the square cuboid is

0.0156 m × 0.0156 m × 2.5 m. The size of the square is not very important for this example because

the gradients of the radiative properties close to the center of the cylinder are small. The wedge has

84 cells along the radius and 40 cells along the axis as shown in Fig. 5.32(b). The tip of the wedge

is cut off to avoid mathematical singularity at r = 0.

All walls of the full cylinder are cold and black. For the 2-D wedge, the top (z = 2.5 m),

bottom (z = 0 m) and right (r = 0.5 m) walls are cold and black, the centerline boundary condition
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(a) (b)

Figure 5.32: The grids used for Problem 7 in (a) a full 3-D cylinder and (b) a 10◦ wedge.

for axisymmetric PN method, Eq. (3.46) (the surface normal derivative of Im
n are 0 when m=0, and

Im
n =0 when m ,0), is applied for the centerline of the wedge mesh.

Comparison of calculated incident radiation G for both the 3-D cylinder and the 2-D wedge

meshes at two locations (z=0.71 m and z=1.60 m) are presented in Fig. 5.33. The PN solutions from

both geometries overlap each other, to within a maximum discrepancy of 2% close to the centerline

of the wedge/cylinder.

Since both geometries produce the same results, results from only the wedge geometry are

shown next. The results at two axial locations are shown in Fig. 5.34.
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Figure 5.33: Comparison of the numerical results for the 2-D PN formulation on a wedge mesh and
the 3-D PN formulation on a cylinder mesh. (a) z=0.71 m and (b) z=1.60 m.
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Figure 5.34: Incident radiation G and negative radiative heat source ∇·q for a wedge enclosure with
variable radiative properties. (a) G at z=0.71 m, (b) G at z=1.60 m, (c) ∇ · q at z=0.71 m and (d)
∇ · q at z=1.60 m.
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Table 5.11: Comparison of CPU time (s) for Problem 7: 3-D cylinder and 2-D 10◦ wedge with
inhomogeneous κ and Ib

No. of cells τR P1 P3 P5 P7

131,400 (Cylinder) 1.125∼10.5 1.01 90.5 269 727
3,360 (Wedge) 1.125∼10.5 0.02 0.57 5.88 11.7

The incident radiation G and negative radiative heat source ∇ · q are plotted and compared

against the exact solution [21]. The incident radiation G predicted from P3 to P7 are very close

to the exact solution, while P1 has certain levels of discrepancies with the exact solution and this

discrepancy decreases with increasing optical thickness. For the ∇ · q predictions, only P7 overlaps

the exact solution at the axial location of z = 0.71 m while at z = 1.60 m both P5 and P7 essentially

overlap the exact solution. This is also due to the overall optical thickness τR(z) at different axial

locations, where larger–z locations have a larger τR. Both the incident radiation G and the negative

radiative heat source ∇ · q from P7 correctly catch the sharp gradient near the cylinder wall.

The CPU time comparison for Problem 7 for the PN methods is given in Table 5.11.

5.1.3.2 Problem 8: Cylindrical enclosure and a 10◦ wedge enclosure with flame-like radiative

properties

In this example, the radiative properties are flame-like with a strongly emitting and absorbing

region in the center of a cylinder surrounded by the optically thin regions. The radiative properties

are exactly the same as in Problem 3 expressed by Eq. (5.3) and are shown in Fig. 5.9 by changing

the coordinate z to r for this example. A 1-D thin wedge and a 2-D cylinder with the same radius

(R = 0.52 m) are used to represent an infinitely-long cylinder. The PN methods are tested on both

meshes and the PMC method from the 2-D cylinder is used as the exact solution.

The cylinder has a large square (100 × 100) at the center and has 20 more cells along the

radius as shown in Fig. 5.35. The size of the square is 0.294 m × 0.294 m covering the flame at

the center. The wedge has 70 cells along the radius and again the tip of the wedge is cut off to

avoid mathematical singularity at r = 0. The peripheral walls of the cylinder as well as the right
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(a) (b)

Figure 5.35: The mesh of the 2-D cylinders with the square at the center covering the flame; (a) the
mesh and (b) the contour plot shows the κ distribution according to Eq. (5.3).

wall (r = R = 0.52 m) of the wedge are set to black and cold, while the flat walls of the wedge, as

well as the top and bottom walls of the cylinder are set to symmetry/specular reflection boundary

condition; the centerline boundary condition for axisymmetric PN method, Eq. (3.46) is applied to

the centerline surface (r ≈ 0) of the wedge.

Comparison of the negative radiative heat source ∇ · q for both the 2-D cylinder and the 1-

D wedge meshes is presented in Fig. 5.36(a). The P1 method predicts a ∇ · q about 30% larger

compared to that predicted from the PMC method. High-order PN methods are doing much better

than the P1 method. However, the results predicted by P3, P5 and P7 are still not very accurate

compared to the PMC predictions. It is found that even the P7 result incurs a 12.5% error at the

center compared to the PMC results, and the improvement of accuracy from P5 and P7 to P3 is

marginal. Although even high-order PN method have problems converging to the PMC+LBL re-

sults, the overlapping PN results from different geometries (Fig. 6.14) indicate the correctness of

the implementation of the PN methods in the finite-volume-method (FVM) based OpenFOAM R©.

To further verify whether the errors of high-order PN methods are due to the accuracy of the
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Figure 5.36: Comparison of negative radiative heat source ∇·q (a) from the axisymmetric PN solver
on a wedge mesh and the PN solver on a cylinder mesh and (b) from the axisymmetric PN solver in
FVM–OpenFOAM R© and FDM–Octave R© on the wedge.

spherical harmonics methods itself, or perhaps due to unknown issues in OpenFOAM R©, results from

a finite-difference-method (FDM) based solver implemented in Octave R© for the 1-D axisymmetric

PN formulation was generated and is shown in Fig. 5.36(b). The results show that for this 1-D

axisymmetric radiative transfer problem with flame-like radiative properties, the results from the

FDM implementation of the PN methods are almost the same as that from the FVM implementations

in OpenFOAM R©. The PN methods up to the order of P7 are proved to be not capable of accurate

predictions for such profile of radiative properties in cylindrical geometry, and much higher order

of the PN methods would be required for the PN methods to be as accurate as the PMC result for

such problem. In the next chapter, the turbulent jet flame simulated in it will have a very similar

distribution of radiative properties.

The CPU time comparison for Problem 8 for the PN methods and the PMC is given in Ta-

ble 5.12.
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Table 5.12: Comparison of CPU time (s) for Problem 8: 2-D cylinder and 1-D 10◦ wedge with
flame-like κ and Ib

No. of cells τR P1 P3 P5 P7 PMC (1M×10)
18000 (Cylinder) 0.886 0.12 8.29 25.5 68.8 9614

70 (Wedge) 0.886 0.01 0.18 1.0 3.8 /

5.1.3.3 Problem 9: Cylindrical enclosure and a 45◦ wedge enclosure with engine-combustion

radiative properties

In this example, the PN solver is applied to a 2-D cylinder and a fan-shape 45-degree wedge.

Many combustion problems in a cylindrical domain, such as in a diesel engine (with multiple in-

jectors along a circle), are periodically axisymmetric, in which the pattern of the azimuthal-angle-

dependent flow field is repeated for every certain number of degrees. In these cases generally a

fan-shape wedge mesh instead of a full cylinder is chosen to expedite the simulation. To test the

performance of the high-order PN methods (with radius r and azimuthal angle φ expressed in terms

of x and y in Cartesian coordinates) as well as the symmetry/specular reflection boundary condition

and cyclic boundary condition for the fan-shape wedge mesh, simulations are carried out on a 45◦

wedge and a full cylinder (Fig. 5.37) with specified absorption coefficients κ and the Plank function

Ib:

Ib = 1 +
20
R4 r2(R2 − r2), W · m−3 (5.7a)

κ =

[
1 +

15
R4 (R2 − r2)2

] (
1 + 0.5

r
R

cos 8φ
)
, m−1 (5.7b)

0 ≤ r ≤ R = 0.5, m (5.7c)

−22.5◦ ≤ φ ≤ 22.5◦ for the wedge (5.7d)

The wedge has 45 cells along the radius and 21 cells in the circumferential direction with the tip cut

off to avoid stability issues; the cylinder contains 20 cells along the radius with a square (41 × 41)

at the center. The peripheral walls of the cylinder as well as the outer peripheral walls of the wedge
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(a) (b)

Figure 5.37: The mesh of the 45◦ wedge (a) and the cylinder (b) in the analysis, the contour plot
shows the κ distribution according to Eq. (5.7).

are set to black and cold, while the flat walls of the wedge and the top and bottom of the cylinder

are set to symmetry/specular reflection boundary condition; the centerline boundary condition for

axisymmetric PN method, Eq. (3.46) is applied to the centerline surfaces (r ≈ 0) of the fan-shape

wedge.

Comparison of incident radiation, G, and radiative heat source, −∇ · q, from P1 to P7 is

shown in Fig. 5.38 for both meshes along the the radius (at 0◦). The PN results from the 45◦

wedge mesh (lines with hollow symbols) overlap the results from the full cylinder (lines with solid

symbol) at this position. Figure 5.39 shows the contour plot of −∇ · q for P7 from the 45◦ wedge. It

is observed that the P7 solutions from the 45◦ wedge match those from the cylinder (the differences

are within 2% and mainly due to the grids), and similar comparison was made for other orders of

PN methods and the results are consistent. The results of P7 are very close to that of the PMC

except at the cylinder/wedge center and near r = 0.35 where incident radiation is maximum, as

shown in Fig. 5.38(b). The larger uncertainties for the PMC close to the cylinder center are due to

the small sizes of the cells at the cylinder center, and the discrepancy of P7 at r = 0.35 maybe due
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Figure 5.38: Incident radiation G and radiative heat source −∇·q along the centerline of a 45◦ wedge
enclosure and that of a cylinder; (a) Incident radiation G and (b) negative radiative heat source ∇ ·q.

to its remaining approximations, or due to inaccuracies in the PMC method (a zeroth order method,

assuming properties to be constant across cells).

The cyclic boundary condition is tested by rotating the wedge mesh by an angle of 10.714◦

clockwise which is shown in Fig. 5.40. This cyclic case is still representing 1/8 of the cylinder

as shown in Fig. 5.37(b), but the symmetry/specular reflection boundary conditions can no longer

be applied to the side walls. Both side walls use the cyclic PN boundary conditions replacing

the formerly used symmetry/specular reflection boundary conditions, with the rest of boundary

conditions unchanged. The specific angle of 10.714◦ is to guarantee that the y-axis at x = 0 still

overlaps the centerline of the artificial flame just as Fig. 5.37(a). Negative radiative heat sources

∇ · q from PN methods with the symmetric flame and the cyclic flame are found to overlap each

other as expected.
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Figure 5.39: Comparison of negative radiative heat source ∇ · q between a wedge mesh and part of
a cylinder mesh; (a) a 45◦ wedge and (b) 1/8 of a full cylinder.

Figure 5.40: The mesh of the 45◦ wedge rotated by 10.714◦, the contour plot shows the κ distribu-
tion.
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Table 5.13: Comparison of CPU time (s) for Problem 9: 2-D cylinder and 2-D 45◦ wedge with
engine-combustion radiative properties

No. of cells τR(0◦) P1 P3 P5 P7 PMC (2M×10)
4961 (Cylinder) 3.75 0.06 4.72 12.2 24.4 853

945 (Wedge) 3.75 0.01 0.56 1.35 2.57 /

The CPU time comparison for Problem 9 for the PN methods and the PMC is given in Ta-

ble 5.13.

5.2 Method of Manufactured Solutions

5.2.1 Introduction

The method of manufactured solutions (MMS) [234] has been employed to further validate

the implementation of high-order PN method in OpenFOAM R©. MMS is a widely used technique to

verify codes in numerical simulations of many scientific and engineering areas, e.g., the full Navier-

Stokes equations in CFD simulations [235]. MMS can also be used to perform grid convergence

tests for numerical discretization method. Comparison of results from different grids to the assumed

analytical solution not only demonstrate the convergence of the numerical solution to the assumed

analytical solution but also the order of accuracy of the numerical method. The procedure for the

MMS for systems of PDEs is as follows:

1. Assume an analytical solution for each unknown. The solution should be continuous and

smooth so that its derivatives exist and can be analytically calculated. The manufactured

solution does not require any physical realism.

2. Substitute the manufactured solutions into the governing equations and obtain the resulting

analytical expressions of source terms.

3. Add the obtained analytical source terms to the right-hand side of each governing equation,

and then solve the whole system of PDEs numerically.
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4. Comparing the calculated numerical solution for different mesh sizes with the assumed mesh-

free analytical solution, one obtains the errors and the order of accuracy of the numerical

method applied.

For the purpose of this thesis, the MMS has been carried out for the P3 solvers in 2-D square

meshes with four different mesh sizes to study the order of accuracy for the finite-volume dis-

cretizations. Dirichlet boundary conditions are employed instead of the original Robin-type ones to

simplify the verification. The manufactured solutions are

Im
n = sin

[
(3 + n/2)πx

L
+

mπ
4

]
cos

[
(3 + n/2)πy

L
+

mπ
4

]
(5.8)

where L=1; And the extinction coefficient β=1 for all tests. The square is placed into the x-y plane

and only four intensity coefficients are relevant, which are I0
0 , I0

2 , I−2
2 and I2

2 . The software package

Mathematica R© [236] is used to obtain the source terms S m
n for each governing equation Ym

n by

substituting the analytical expressions of the manufactured solutions, Eq. (5.8), into the governing

equations, Eq. (2.9). Then the generated analytical source terms are added to the PN solver and

the numerical solutions corresponding to these source terms are calculated. Four mesh sizes (∆)

are tested, which are ∆=0.02 (50 × 50), ∆=0.01 (100 × 100), ∆=0.005 (200 × 200) and ∆=0.0025

(400 × 400).

5.2.2 Results and Discussion

The results with mesh size of 0.005 (200 × 200) for all the relevant intensity coefficients I0,

I−2
2 , I0

2 and I2
2 from MMS are shown in Fig.5.41, which are close to the values directly calculated

from Eq. (5.8). Figure 5.42 shows the L2 norm of error between calculated numerical solution and

analytical solution with increasing grid size of the P3 method, where the L2 norm is calculated from

L2 =

 1
Ncell

Ncell∑
n=1

(
Im
n,numerical − Im

n,analytical

)2

0.5

(5.9)
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Figure 5.41: Contour plot for radiative intensity for MMS problem on 200× 200 grid; (a) I0
0 , (b) I0

2 ,
(c) I−2

2 and (d) I2
2 .

With the finer mesh or the decrease of cell sizes, the numerical solutions get increasingly closer to

the analytical solution. The finite-volume discretization methods is consistent since the error goes

to 10−5 as the cell size δ goes to 0.0025. A line with the slope of 2.0 in the logarithmic coordinates

is also drawn as a reference.
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Table 5.14: Observed order of accuracy and L2 norms for different unknowns from different grids
for P3 methods in the MMS study

Grid Cell size, ∆ L2 of I0
0 L2 of I0

2 L2 of I−2
2 L2 of I2

2

50×50 0.02 0.015830 0.015009 0.004658 0.004803
100×100 0.01 0.004162 0.003793 0.001221 0.001302
200×200 0.005 0.001059 0.000947 0.000319 0.000342
400×400 0.0025 0.000269 0.000237 8.35E-005 9.02E-005

Observed Order / 1.97 2.0 1.94 1.93

The observed orders of accuracy of I0
0 , I0

2 , I−2
2 and I2

2 are close to 2.0 and shown in Table 5.14.

The absolute values of the L2 norms are not very important since they depend highly on the con-

figuration of the profiles of the assumed solutions and the corresponding derived source terms. It is

the converging trend and the orders of accuracy that are of the most interest, which are proved to be

second-order accurate.
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Figure 5.42: L2 norm of error with increasing cell size.
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5.3 Summary

This chapter has demonstrated the performance of high-order PN methods (up to the order of

P7) in nine representative radiative transfer problems. For the purpose of assessing the high-order

PN methods as the RTE solver, all examples presented were limited to gray media in this chapter.

These gray examples can be used as foundations for further analyzing radiative transfer problems

in nongray media. Several conclusions were drawn from the results:

1. High-order PN methods are accurate in terms of both incident radiation G and radiative heat

source −∇ ·q for generally optically thick problems in both Cartesian and cylindrical geome-

tries.

2. High-order PN methods do not improve the accuracy much from the P1 method for radiative

transfer in optically thin media in terms of incident radiation G or radiative intensity I. But

all PN methods are able to predict the correct radiative heat source −∇ · q for optically thin

problems since there is very limited absorption, in which case the RTE solver is no longer

important.

3. For the optically intermediate media, the performance of high-order PN methods relies on

the distribution of radiative properties in 3-D space (regardless of the dimension of computa-

tional grid). If the resulting intensities are not very anisotropic, which is usually the case for

1-D and 2-D Cartesian problems, constant but decreasing improvements of accuracy from

higher-order PN methods are expected and it is clear that the the PN methods are gradually

converging to the exact solution. If the intensities are very directionally anisotropic, for ex-

ample in a cylinder where the maximum of both Planck functions and absorption coefficients

are at the center of the cylinder surrounded by cold thin media, the improvements from high-

order PN methods are limited, i.e., P3 improves results from P1 to a certain extent, but P5 and

P7 are only marginally better than P3. And much higher order of the PN method is required

for such problems.
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4. All PN methods (including P1) perform better in slab like geometries than in cylindrical

geometry.

5. The second-order PDEs of PN methods are weakly coupled for optically thick and interme-

diate examples while strongly coupled for optically thin examples. This does not cause any

problem for coupled simulations since, once convergence is achieved, all the Im
n can be stored

and used as initial values for later iterations.

6. Considering the improvement of accuracy, computational cost and generality for applications,

the P3 method is often the optimal choice.

7. High-order PN methods are able to accurately treat surfaces with mixed diffuse-specular

reflections.
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Chapter 6

Combustion Simulations

6.1 Nongray Radiation Model

6.1.1 Nongray Radiation Module

In this chapter, the high-order PN methods are to be tested for examples with nongray partici-

pating media, which are mixtures of real combustion product gases (CO2, H2O, CO). The high-order

PN solvers are part of the nongray radiation module developed by Modest’s group and implemented

in OpenFOAM R© 2.2.x. The module provides various choices of RTE solvers and spectral models

with a user-friendly interface. All RTE solvers and spectral models supported by this module are

shown in Fig. 6.1. The RTE solvers except the PMC are coded in C++ while the PMC and the

spectral models are coded in FORTRAN90. The user can choose the RTE solver in conjunction

with a spectral model through a generic interface of the nongray radiation module.

A pressure-based LBL absorption coefficient database generated from high-resolution molec-

ular spectroscopic databases of HITEMP 2010 [160] and HITRAN 2012 [161] is used as the foun-

dation of all spectral-based evaluations. The database includes 5 gas species, i.e., CO2, H2O, CO

(from HITEMP 2010) as well as CH4 and C2H2 (HITRAN 2012) at temperatures 300–3000 K and

total pressures 0.1–80 bar. This database is used to calculate the Planck-mean absorption coefficient,
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Figure 6.1: A schematic of supported RTE solvers and spectral models in the nongray radiation
module.

narrow-band database, full-spectrum k-distribution (FSK) look-up table and LBL database for PMC

to guarantee the consistency of all the spectral models.

The spectral models and RTE solvers of the nongray radiation module are briefly discussed

in the following sub-section. The discussion is focused on their practical applications in combustion

simulation.

6.1.1.1 Selection of spectral models and RTE solvers

Optically thin solver:

The optically thin solver (O.T.), employing the Planck-mean absorption coefficient, only pre-

dicts the emission from the flame. If the size of the flame is small, the O.T. may give correct radiation

evaluations. However, for larger flames it will predict the lowest-possible temperature distribution
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of a flame, which can be used as a reference to validate the results predicted by other RTEs and

spectral models. Unfortunately, there is no strict definition of the size of a flame radiation-wise, and

therefore, it is recommended to always run the O.T. model first: if the O.T. results are very close to

the results with no radiation, it proves the flame to be a weakly radiating flame and there is no need

to apply other models. If the temperature predicted by the O.T. result is much lower (50–500 K)

than the no-radiation runs, then the next step is to pick better spectral models and RTE solvers.

PMC+LBL solver:

PMC+LBL [57,67,237] is the most accurate solver, which is regarded as an exact solution if

enough photon bundles are traced. The computational cost is mainly scaled by the number of photon

bundles traced. The current version supports loading the LBL database only at a single pressure due

to the large memory demands when loading the LBL database. For example, the size of the LBL

database at 1 bar is 2 GB. Loading a LBL database for multiple pressures is not recommended, and

linear scaling for approximating the absorption coefficient at other pressures from the LBL database

pressure is used instead.

Full-spectrum k-distributions (FSK)-based spectral models:

Three different implementations of the FSK method are currently available, i.e. a look-up

table [169, 174], a narrow-band database [169, 170] and correlation functions [238–240].

The look-up table directly interpolates from a pre-calculated table of k-distributions for mix-

tures. The total size of the look-up table is 5 GB and can be dynamically loaded for individual

applications. The current version is generated for three species (CO2, H2O and CO) plus soot. It

was proved to be very accurate and is currently the optimal FSK implementation for combustion

simulations.

Assembly of FSKs from a narrow-band database is another option, requiring much less stor-

age and memory. The only bottleneck is that it needs to assemble the k-distributions for mixtures

on the fly with a certain mixing scheme, which is computationally expensive for large grids. The

current version supports five species (CO2, H2O, CO, CH4 and C2H2) and is more easily expanded
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to more species and wider range of thermodynamic states.

The idea of correlations is to fit k-distributions for single species into hyperbolic tangent func-

tions. The current version supports CO2 and H2O at 1 bar, and an approximate mixing scheme must

be employed. It requires the least amount of computer resources among the three FSK implemen-

tations, since it only needs to store a few coefficients for the correlations. However, the correlations

in the current version are not as accurate as the other two FSK implementations.

Two mixing schemes are available for the narrow-band FSK and the correlations, which are

the multiplicative scheme and the uncorrelated mixture scheme. The uncorrelated mixture scheme

is more accurate but more expensive than the multiplicative scheme.

PN+FSK, SPN+FSK and DOM+FSK:

P1+FSK probably is the most cost-effective solver for its reasonable accuracy and small

computational cost. P1+FSK usually predicts a temperature distribution between those predicted

from O.T. and PMC+LBL methods for optically thin and intermediate flames and will be very close

to PMC+LBL results for optically thick flames (again, there is no strict definition of the optical

thickness of a flame). P1+FSK is computationally very fast, which makes it the optimal choice at

the preliminary stage of a combustion simulation, when other sub-models (turbulence, chemistry,

etc.) are still evolving.

The Simplified-PN method [241,242] (SP3 and SP5) is also provided, which is an asymptotic

correction to the diffusion approximation. It is very efficient and sometimes gives very good results

in an ad-hoc manner.

The accuracy and efficiency of the high-order PN+FSK and DOM+FSK solvers are to be

compared and discussed in the examples in later sections of this chapter. Comparison between

these two, in a general sense, is a much larger topic which requires careful design of numerical

examples. In principle, it compares whether directional variation of intensity is better approximated

by discrete points or by finite Fourier series. It is well known that DOM performs less efficiently

in the presence of scattering and in optically thick cases and the high-order PN is expected to have
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Table 6.1: The number of second-order PDEs for different orders of the PN method, and the number
of first-order PDEs for different numbers of discrete ordinates for DOM

PN DOMp×a

P1 1 DOM2×4 8
P3 6 DOM4×4 16
P5 15 DOM4×8 32
P7 28 DOM8×8 64

trouble when the intensities are extremely anisotropic. What kind of combustion problems will

produce the nongray radiative properties favoring either solver is still an open question. The number

of second-order PDEs for different orders of PN methods and the number of first-order PDEs for

DOMp×a, with respect to the number of discrete polar ordinates p and azimuthal ordinates a, are

shown in Table 6.1. The coupling between the second-order PDEs for the high-order PN depends

on the problems, while for DOM, there is no coupling between the PDEs for non-scattering cases

in principle.

6.1.2 Full-Spectrum k-Distribution (FSK) Look-Up Table

A full-spectrum k-distribution (FSK) look-up table is employed to treat the nongray par-

ticipating gases for the simulations in this chapter. A full-spectrum k-distribution (FSK) look-up

table has been constructed for gas–soot mixtures for three gas species, i.e., CO2, H2O and CO, and

soot [174]. Since soot is not included in any of the calculations in this thesis, it will be excluded from

the following description. The k-distribution of a mixture is assembled directly from the summation

of the linear absorption coefficients of three gas species. The systematic approach to generate the

table, including the generation of the pressure-based absorption coefficient and the generation of

the k-distribution, is discussed in [173, 174]. To efficiently obtain accurate k-values for arbitrary

thermodynamic states from tabulated values, a 6-D linear interpolation method is employed.

The idea of k-distribution of gaseous absorption coefficients is based on the fact that the

oscillatory absorption coefficient has the same value at many different wavenumbers. The absorption

coefficients with respect to the wavenumber can be reordered into corresponding k-distributions,
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(a) (b)

Figure 6.2: Extraction of k-distribution from spectral absorption coefficient data for small amounts
of CO2 in nitrogen, across a small part of its 4.3 µm band at p=1.0 bar, T=300 K; (a) actual absorp-
tion coefficient, (b) reordered equivalent k-distribution. [6]

which is illustrated in Fig. 6.2 showing a reordering process for in a narrow-band database.

A full-spectrum k-distribution is weighted by the Planck function and is defined as [21]

fφ,T (k; φ,T ) =
1

Ibη

∫ ∞

0
Ibη(T )δ(k − κη(φ))dη (6.1)

where κη is the absorption coefficient calculated from a spectroscopic database, δ() is the Dirac-

delta function, φ is a vector of local thermodynamic state variables including pressure, temperature

and species concentration, fφ,T (k; φ,T ) is a Planck-function-weighted k-distribution with absorption

coefficient evaluated at the local state φ and a Planck function temperature T , Ib(T ) and Ibη(T ) are

the Planck function and the spectral Planck function, respectively, at temperature T , and η is the

wavenumber.

The cumulative full-spectrum k-distribution is defined as

gφ,T (k; φ,T ) =

∫ k

0
fφ,T (k′; φ,T )dk′ (6.2)
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Thus, gφ,T (k; φ,T ) represents the fraction of the spectrum whose absorption coefficient lies below

the value of k and therefore, 0 ≤ gφ,T ≤ 1. Inverting Eq. (6.2), a smooth, monotonically increasing

function k(g) can be obtained, with minimum and maximum values identical to those of κη. For

a nonhomogeneous mixture, the spectral variable is reordered at a reference state φ0. The RTE

(ignoring scattering) can be reordered at the reference state φ0 as

dIg
ds

= kφ,T (gφ0,T )
[
a(gφ0,T 0 ; T,T 0)Ib(T ) − Ig

]
(6.3)

where

Ig =

∫ ∞
0 Iηδ(k − κη(φ0))dη

fφ0,T 0(k)
(6.4)

a(gφ0,T 0 ; T,T 0) =
fφ0,T 0(k)

fφ0,T 0(k)
=

dgφ0,T (k)

dgφ0,T 0(k)
(6.5)

This is known as the full-spectrum correlated-k (FSCK) method. The total intensity is evaluated

through the sum of a numerical quadrature (with quadrature points g and weights wg)

I =

∫ 1

0
Igdgφ0,T 0 =

N∑
i=1

wgIgi (6.6)

and for each quadrature point g, Eq. (6.3) can be rewritten as

dIg
ds

= kg
[
agIb(T ) − Ig

]
(6.7)

where kg is the k-value corresponding to the quadrature point g for a gas mixture and ag is obtained

from Eq. (6.5).

Usually, an eight-quadrature-point scheme is accurate enough for mixtures of major combus-

tion products of hydrocarbon fuels. As can be seen from Eq. (6.7), by employing the FSK spectral

model, eight RTEs are to be solved with eight different distributions of kg. The value of kg for one

single cell with certain amounts of participating gases may differ by orders of magnitude depending
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on the thermodynamic state of the mixture as is shown in Fig. 6.2(b) as an example. Therefore,

the ideal RTE solver for nongray radiation simulation needs to be able to predict accurate results

under a wide range of optical thicknesses. The performance of the RTE, especially the high-order

PN method, is sensitive to the overall optical thickness. The PN method is expected to perform well

for the larger quadrature points (if the size of the flame is not too small) but poorly for the middle

quadrature points. For the small quadratures, where the kg satisfies optically thin conditions, the

RTE is no longer important since there is very little self-absorption.

6.2 1-D Slab Geometry with Nongray Media

This problem (Problem 10) demonstrates the performance of different RTE solvers for radia-

tive transfer problems between two infinitely-large parallel plates. The hot medium between the two

plates (L=1 m) consists of a mixture of CO2, H2O and CO. The thermodynamic properties of the

mixture are listed in Eq. (6.8a):

p = 1, bar (6.8a)

T = 1600 × exp

− (
x − 0.2

0.3

)2 + 400, K (6.8b)

xCO2 = 0.15 × exp

− (
x − 0.2

0.3

)2 (6.8c)

xH2O = 0.15 × exp

− (
x − 0.2

0.3

)2 (6.8d)

xCO = 0.075 × exp

− (
x − 0.2

0.3

)2 (6.8e)

The profile of temperature and mole fractions of the gases represents a realistic flame-like distri-

bution. The 1-D slab has totally 100 cells. Both plates are treated as cold black walls. The PN

(From P1 to P7) methods and DOM with different number of discrete polar ordinates are coupled
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Figure 6.3: Radiative heat source predicted by different solvers for a 1-D slab with nonhomogeneous
gas mixture.

with the FSK look-up table as the spectral model with an 8-quadrature-point evaluation. PMC+LBL

and an exact LBL solution are used as references. The exact LBL solution is obtained from direct

integration of the RTE and LBL calculations for the whole spectrum.

The results in terms of radiative heat source are shown in Fig. 6.3. Figure 6.3(a) compares

different RTEs, which illustrates the accuracy of PN methods with respect to the order of N and of

the DOMp×a with respect to the number of discrete polar ordinates p and azimuthal ordinates a.

The predicted radiative heat sources are increasingly accurate with the increase of the order of PN

approximation and the number of discrete ordinates of DOM. The P7+FSK results are almost the

same as the exact LBL results, which is clearer in Fig. 6.3(b). This is partly because of the similar

distribution of the mole fractions of gases, where xCO2 : xH2O : xCO = const.. It also proves that

under these thermodynamic conditions, an eight-quadrature-point FSK model is as accurate as LBL

calculations. Thus, any errors are mostly due to the accuracy of different RTEs. For this 1-D slab

problem, results from DOM8×8 is slightly above the exact LBL results.
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Table 6.2: Comparison of CPU time (s) of RTEs for Problem 10: 1-D slab geometry with nongray
radiative properties

No. of cells PN DOM PMC
100 P1 P3 P5 P7 DOM2×4 DOM4×4 DOM4×8 DOM8×8 1M×10

CPU time (s) 0.02 0.41 2.07 5.37 0.02 0.06 0.12 0.25 706.7

The computational cost of different RTEs is shown in Table 6.2. All calculations were done

on a single 2.66 GHz Intel (R) Xeon (R) X7460 processor. PMC+LBL employed 10 million photon

bundles for this 1-D problem. Comparing the time costs from different orders of PN methods, it is

found that for this one-step calculation the time costs of the PN methods do not scale with the PDE

numbers solved due to a large number of outer iterations are required. At the same time, DOM does

not require outer iteration for non-scattering media, thus turn out to be much more efficient than the

PN methods.

6.3 Scaled Sandia Flame D

6.3.1 Background

Accurate simulation of turbulent flames is a challenging task due to the fact that all sub-

models, such as chemistry, turbulence and radiation are interacting with each other in a complicated

way. Careful choices of approximate models can save a lot of effort and computational time. Since

radiative transfer in combustion simulations has not been treated seriously until recently, the choice

of the spectral model and RTE solver for radiative transfer in a specific flame is still an open ques-

tion. It is important to identify relative accurate tools with acceptable computational cost for the

radiation evaluation of a flame. In this section, the high-order PN solvers are tested for an artificial

jet flame, Sandia Flame D×4 (which is scaled from Sandia Flame D [243, 244]), for both a coupled

combustion simulation and a snapshot simulation. The reason of scaling is to show more effects

of radiation from the nongray participating gases, which is closer to the sizes of flames in real

applications. The accuracy and computational cost of the high-order PN methods for the coupled
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(a) (b)

Figure 6.4: Photographs of Flame D; (a) in full size and (b) close-up of the jet and pilot [243].

combustion simulation and the snapshot simulation are studied to show the limits and strengths of

high-order PN methods and their potential in coupled combustion simulations.

Sandia Flame D is a turbulent piloted jet flame [243] with a Reynolds number of ReD=22,400.

The fuel from the main jet is a mixture of methane and air with a ratio of 1:3 by volume. As is shown

in Fig. 6.4, the main jet with a diameter of d j = 7.2 mm at the center is surrounded by an annular

pilot with a diameter of 2.62d j to stabilize the main jet. The precise and careful measurement of

Sandia Flame D provided a series of high quality experimental data [243] that makes it a standard

benchmark of a turbulent jet flame to validate combustion models.

The effects of radiative transfer for the simulation of Sandia Flame D have been studied by

Li [41], Wang [237] and Pal [34]. The importance of radiation and its interaction with turbulence

(TRI) have been established by comparing the simulation results and the experimental measure-

ments. Pal [34] also found that different spectral models and RTE solvers yield similar results
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Table 6.3: Sizes of the main jet and the pilot and the inlet velocities in the simulation [245]

Sandia Flame D Sandia Flame D×4
d (mm) u (m/s) d (mm) u (m/s)

main jet 7.2 49.89 28.8 12.4725
pilot 18.864 10.57 75.456 2.6425

co-flow 258.2 0.90 1032.8 0.2250

because of the relatively small size of Sandia Flame D. For this case, the P1 RTE solver with a FSK

spectral model is sufficient for the radiation calculations (though the small differences in predicted

temperature resulted in totally different predictions of NO) [34]. Since the size of turbulent jet

flames in real applications tends to be much larger, Sandia Flame D was scaled four times (Sandia

Flame D×4) to study the effects of radiation for thicker turbulent jet flames [34, 41, 237]. Sandia

Flame D is scaled up in such a way that the diameter of the main jet and the outer diameter of the

pilot are quadrupled while decreasing the exit velocity of the mixture out of the jet and pilot to keep

the Reynolds number ReD unchanged. The geometric sizes of the main jet and the pilot and the

inlet velocities of the original Sandia Flame D and Sandia Flame D×4 are shown in Table 6.3. The

co-flow represents the environmental air entering the wind tunnel.

6.3.2 Coupled Simulations

So far, the high-order spherical harmonics (PN) method has only been tested for non-coupled

simulations. In this section, they are coupled to the RANS-based (Reynolds-Averaged Navier-

Stokes) simulation models in OpenFOAM R© 2.2.x. PN methods from P1 to P7 as the RTE solver

with the FSK look-up table as spectral models are tested in a coupled simulation of Sandia Flame

D×4 partially-premixed jet flame. The optically thin, DOM+FSK and PMC+LBL solvers are also

coupled to the reacting flow fields, respectively, as references. Turbulence–radiation interaction

(TRI) is not considered here since the focus of this study is the performance of RTEs and only

mean flow fields and mean radiative heat source will be discussed in this section. With the coupled

simulation, it can be seen how the error of radiative heat source by the high-order PN solvers or the
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Figure 6.5: Schematic of the coupling between radiation and other sub-models; and between the
radiation interface with PN method as the RTE solver and FSK look-up table as the spectral model.

DOM solvers affect the resulting flow fields.

The coupling between the radiation sub-model and other sub-models is demonstrated in

Fig. 6.5. There is no fundamental difference between PN solvers and DOM solvers in terms of

coupling with flow fields. In principle DOM equations are not coupled for non-scattering media

while PN equations are strongly coupled except for homogeneous optically thick media. The radia-

tive heat source, S rad, calculated from the radiation module is fed back to the energy equation, and

in turn, the updated scalar fields (Y, T and p) of the flow field will determine the radiative properties.

From an overall energy balance, it is certain that considering radiative transfer will result in a flame

with lower temperature, in general. Since the chemical reaction rate and thermodynamic properties

of the gases are functions of temperature, the effects of radiation on the rest of the flow field other

than temperature is hard to predict. The size of the flame is also critical to the role of radiation in

overall flame simulations. A small flame will have very little total radiation (like the original Sandia

Flame D) while a larger flame generally has more total radiation and self-absorption, which makes

the influence of nongray spectral properties of the combustion gases more prominent.
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Figure 6.6: Grid system used in the axisymmetric flame simulation of Sandia Flame D.

6.3.2.1 Problem setup

In this study, a 10◦ wedge-shape grid consisting of 3325 cells (35 cells along the radial direc-

tion, or r-axis, and 95 cells along the axial direction, or z-axis) is employed as shown in Fig. 6.6.

The full size of the computational domain is 0.516 m × 2.88 m and the mesh is optimized to have

a finer mesh close to the jet to resolve the large local gradients there, and coarser in the air co-flow

region and downstream of the flame to save computational time. Mesh dependency tests have been

conducted by doubling the number of cells in both directions, and the results from two meshes for

no-radiation reacting flows are compared with each other. It is found that the results are different

for these two meshes. Although the grid independence of the mesh used for the coupled simulation

can not be established for the mesh used as shown in Fig. 6.6, the current mesh is considered fine

enough for the study of the effects of radiations in this thesis.

In this study, a pressure-based algorithm, i.e., PIMPLE or merged PISO (Pressure Implicit

with Splitting of Operator)–SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algo-

rithm [223] in OpenFOAM R© 2.2.x, is employed to resolve the coupling between pressure and velocity
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for the RANS simulation. Since the maximum velocity of the reacting flow in the Sandia Flame

D×4 is much smaller than a Mach number of 0.3, compressibility of the gases can be neglected, and

therefore, PIMPLE is suitable for the flow simulation of Sandia Flame D×4. The pressure-coupled

momentum equation, the energy equation in terms of sensible enthalpy, species transport equations

and k− ε equations along with the chemical kinetics equations are iterated in sequence to predict the

flow fields of the flame. A standard two-equation k − ε model is employed as the turbulence model

with only Cε1 being increased to 1.55 for a better representation of the turbulent flow field 1. A

49 species and 277 reactions chemical reaction mechanism for methane, GRI–Mech 2.11 [246], is

employed as chemistry mechanism and the SIBS (Semi-Implicit Bulirsch Stoer) ODE solver [229]

is used to solve the chemical reaction equations. The PaSR (Partially Stirred Reactor) model [205]

is employed for turbulence-chemistry interactions (TCI). The idea of PaSR is to assume only part

of the gases in the computational cell are mixed. This sub-grid assumption is carried out by cor-

recting the mean reaction rate by considering the turbulence mixing time scale (determined by the

turbulent kinetic energy k and the turbulent dissipation ε) in addition to the chemical time scale.

The nongray radiation models are integrated into OpenFOAM R© 2.2.x and employed for the radiation

evaluation. PN RTE solvers with an FSK look-up table as the spectral model (PN+FSK), the DOM

solvers with the same FSK table (DOM+FSK), the PMC solver with the line-by-line spectral model

(PMC+LBL), and the optically thin solver with gray-Planck-mean spectral model (O.T.) are coupled

to the reacting flow. The orders of the PN solvers are from P1 to P7 and the combinations of numbers

of discrete polar (p) and azimuthal (a) ordinates of the DOMp×a are DOM2×4, DOM4×4, DOM4×8

and DOM8×8. Three gas species, CO2, H2O and CO, are considered by the spectral models. All

FSK calculations employ an eight-quadrature-point scheme, which means the RTE is solved eight

times per radiation evaluation for the PN+FSK and DOM+FSK solvers. The PN solver is the ax-

isymmetric version, in which the total number of governing equations are reduced from N(N + 1)/2

to (N + 1)2/4. The DOM solver is also an axisymmetric version [247] modified from the original

1This value of 1.55 is not discussed but actually used in [34]
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DOM solvers in OpenFOAM R©2.2.x.

The inlet boundary conditions for temperature, velocity and mass fractions of gases are listed

in Table 6.4. For the radiative transfer, the outside boundaries are treated as cold and black and the

top and bottom walls are treated as symmetry/specular reflection walls. The coupled simulation is

carried out in the following manner: The simulation starts with no-radiation reacting flow. After

running the no-radiation reacting flow for 2.2 s (about 9.5 flow-through times of the main jet or 2

flow-through times of the pilot), radiation models are activated. The radiation-coupled reacting flow

keeps running for another 1.1 s until a time of 3.3 s. A constant time step of 8×10−6 s is used starting

from 0 s to the end (3.3 s). Thus, from 2.2 s to 3.3 s, during which time the radiation models are

considered, there are a total of 137,500 time steps. One advantage of the DOM and PN methods in

coupled combustion simulations is that they are able to use results of previous time steps as initial

values for iterations at the new time step, which will reduce the computational cost of iterations

required for DOM and PN methods. The governing equations for DOM are not coupled for non-

scattering media so that the benefit is limited. For the high-order PN methods, since the governing

equations are strongly coupled, storing the results from previous time steps will significantly reduce

the total numbers of iterations required. The computational time for the PN methods can be further

improved by reducing the frequency of radiation evaluations for the coupled simulation. This is

based on the fact that, in the multi-scale simulation of combustion, the time step is often determined

by chemical models and, therefore, the change of the flow field may be small between time steps

(this can also be taken advantage of by a time-blending scheme for the PMC solver). Therefore,

four different frequencies are chosen: the PN+FSK and DOM+FSK scheme evaluates radiation

every 1/10/100/250 time steps. The PMC+LBL calculation employs 5,000 photon bundles per time

step with a recursive time-blending scheme, as given by:

(∇ · q)(k) = (1 − α)(∇ · q)(k) + α(∇ · q)(k−1) with (∇ · q)(0) = 0 (6.9)

with a blending factor α = 0.98 and k is the time step. Time-blending can reduce the number
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Table 6.4: Inlet boundary conditions of Sandia Flame D×4 [245]

main jet pilot co-flow
T (K) 293 1880 291
u (m/s) 12.4725 2.6425 0.2250
YCH4 0.15605 0.0 0.0
YO2 0.1962 0.054 0.23113
YH2O 0.0 0.0942 0.00581
YCO2 0.00045 0.1098 0.00055
YN2 0.6473 0.7377762 0.76251
YCO 0.0 0.00407 0.0
YH2 0.0 0.000129 0.0
YH 0.0 0.0000248 0.0

of photon bundles required for each time step. This scheme is equal to employing about 1.25

million photon bundles for every 250 time steps (the contribution from 250 time steps ago is

0.02 × (0.98)250 = 1.28 × 10−4). Another scheme with the same blending factor but with 10,000

photon bundles per time step is also used as an accuracy validation for the former one. All compu-

tations are performed on twelve 2.66 GHz Intel (R) Xeon (R) X7460 processors. Simple domain

decomposition into blocks with same number of cells along the axial direction is employed.

6.3.2.2 Results

The effects of radiation on the temperature predicted by different RTE solvers in the case of

Sandia Flame D×4 are demonstrated in Fig. 6.7 in a 2-D contour plot followed by Fig. 6.8 showing

centerline profiles. The PN/DOM+FSK results with different solving frequencies are found to be

almost the same. Since the PMC+LBL results with different photon bundles per time step are also

found to be very close to each other, only one PMC+LBL result is shown as the reference solution to

be compared with. The profiles of radiative heat source and standard deviations of the PMC+LBL

method (with 5000 photon bundles per time step) at three axial locations are shown in Fig. 6.9, as

well, for reference. The standard deviation is obtained by splitting 5000 photon bundles into 10

sampling groups and keep running the PMC solver with the reacting flow for another 1000 time

steps.
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Radiation and reacting flow are fully coupled in the simulations, so that different radiation

models result in different radiative heat sources and, therefore, different temperature distributions,

which in turn further lead to different chemical reaction rates and species concentrations. As ex-

pected, adding radiative transfer cools down the flame. It can be seen that for Sandia Flame

D×4, the choice of radiation model plays a very important role. Totally ignoring radiation will

introduce the largest error by over-predicting the flame temperature. The O.T. approximation ig-

nores absorption and predicts the lowest temperature distribution; the PN+FSK, DOM+FSK and

PMC+LBL predict considerably higher temperatures due to self-absorption. All DOM+FSK results

are found to be very close to the PMC+LBL results, and only the temperature contours predicted

from DOM4×4+FSK and DOM8×8+FSK are shown in Fig. 6.7 for reference. The small differences

between the results predicted by DOM8×8+FSK and PMC+LBL are believed to be partly due to

the errors of FSK. P1+FSK performs much better than O.T., but it still under-predicts the flame

temperatures compared with the results from high-order PN+FSK, DOM+FSK and PMC+LBL. P3

only slightly improves the temperature profile compared with P1 while P5 and P7 are very close

to P3 results. The temperature profiles predicted by high-order PN methods are still quite different

from the DOM8×8 and PMC+LBL results, which will be further examined in a snapshot study in a

later sub-section.

Peak temperatures along the centerline, Tp,c, predicted from different solvers as shown in Fig. 6.8,

are summarized in Table 6.5. By comparing the peak temperatures, one can observe a decrease of

temperature when employing different radiation models. The emission-only O.T. model predicts a

drop of peak temperature of 520 K; the PMC+LBL predicts a drop of 329 K; the DOMp×a+FSK

predict the temperature drops of 330 K, 338 K, 350 K and 353 K with an increase in number of

discrete ordinates; P1+FSK predicts a drop of 408 K, while the high-order PN+FSK models predict

a peak temperature drop of around 386 K.

The radial distributions of two scalars, i.e., temperature (T ) and mass fraction of nitrogen

monoxide (YNO) at three axial locations z/d j = 15, z/d j = 30 and z/d j = 45 are shown in Figs. 6.10
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Table 6.5: The peak temperatures along the centerline Tp,c predicted from different solvers at 3.3 s

Radiation Solvers Tp,c (K) ∆Tp,c (K) %
No Rad. 2074 / /

O.T. 1554 -520 -25.1
P1+FSK 1666 -408 -19.7
P3+FSK 1683 -391 -18.8
P5+FSK 1688 -386 -18.6
P7+FSK 1689 -385 -18.6
DOM 2×4 1744 -330 -15.9
DOM 4×4 1736 -338 -16.3
DOM 4×8 1724 -350 -16.9
DOM 8×8 1721 -353 -17.0
PMC+LBL 1745 -329 -15.9

and 6.11, respectively. These two plots show the flame structure and local distribution of the pollu-

tant NO. The radial profiles of both scalars predicted by DOM+FSK are very close to those from the

PMC+LBL. For the temperature predictions, at upstream locations of z/d j = 15 and 30, P1+FSK

results are shown to be already very close to PMC+LBL results, while at the downstream location of

z/d j = 45, the errors of PN methods are larger. The NO production is very sensitive to temperature,

therefore resulting in larger differences between different radiation solvers.
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Figure 6.10: Temperature profiles at different axial locations: (a) z/d j = 15, (b) z/d j = 30 and (c)
z/d j = 45.
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Figure 6.11: Mass fraction of NO profiles at different axial locations: (a) z/d j = 15, (b) z/d j = 30
and (c) z/d j = 45.
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Table 6.6: The resulting heat release from combustion Q̇C , total emission Q̇rad, net radiative heat
loss Q̇rad, radiation escape ratio as Q̇rad/Q̇emi and actual radiant fraction Q̇rad/Q̇C from different
radiation solvers

Radiation Solver Q̇C (kW) Q̇emi (kW) Q̇rad (kW) Q̇rad/Q̇emi χR = Q̇rad/Q̇C

No Rad 68.4 / / / /

O.T. 66.6 40.7 40.7 100 % 61.1 %
P1+FSK 67.3 54.4 22.5 36.7 % 33.4%
P3+FSK 67.3 63.4 20.8 32.8 % 30.9%
P5+FSK 67.3 63.7 20.7 32.4% 30.7%
P7+FSK 67.3 63.8 20.6 32.2% 30.6%
DOM 2×4+FSK 66.6 73.8 17.7 24.0 % 32.0 %
DOM 4×4+FSK 67.0 69.8 17.2 24.7 % 26.6 %
DOM 4×8+FSK 67.0 68.0 18.6 27.4 % 25.8 %
DOM 8×8+FSK 67.0 67.7 18.7 27.7 % 27.8 %
PMC+LBL 67.3 71.3 21.6 30.2 % 28.0 %

As discussed earlier, the coupling between radiative transfer and reacting flow is determined

by many factors. Several quantities that describe the overall heat transfer are shown in Table 6.6.

The first quantity of interest is the actual heat release from combustion, Q̇C , which is the integral

of reaction heat over the control volume that contains the flame. If the combustion is complete,

Q̇C should equal to the chemical energy that is supplied to the flame in the reactants, which are

quantified by ṁF∆hC , where ṁF is the mass flow rate of the fuel and ∆hC is the lower heating value

of the fuel. For Sandia Flame D×4, ṁF∆HC = 70.4 kW and the rate of incoming enthalpy from the

hot pilot is around 6% of that. Two quantities related to radiative transfer are the total emission Q̇emi

and the net radiative heat loss Q̇rad. The total emission Q̇emi and the net radiative heat loss Q̇rad are

defined as the integral of the radiative emission S emi and negative radiative heat source −S rad over

the control volume, respectively. In terms of these three quantities, the radiant fraction χR is defined

here as the ratio of Q̇rad/Q̇C (instead of Q̇rad/ṁF∆HC) and the radiation escape ratio as Q̇rad/Q̇emi.

The radiant fraction χR is a useful notion to quantify the ratio of the net radiative energy that escapes

to the surroundings to the chemical energy released from the combustion and the radiation escape

ratio shows the ratio of escaped radiation to the emitted.

These quantities lead to better understanding of the role of radiative transfer on the combus-
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tion process. In addition to the direct cooling effects of radiation discussed earlier, adding radiation

is shown to have slightly lowered the total heat release from combustion Q̇C as a secondary effect

resulting in less complete combustions. Total emission is found to be quite large, which is very

close to the total heat release from combustion. However, what matters is the value of net radiative

heat source Q̇rad, which is reasonable (around 1/3 of the total total heat release from combustion)

except for O.T. results. Note that chemical reactions are taking place only at the flame zone while

the radiation regions are much larger in volume. Therefore radiative transfer is very important not

only in terms of peak temperature but also affects the size of flame, especially downstream of the

flame.

Table 6.7 shows averaged CPU time per time step spent by both solving the equations for

reacting flow and a radiation evaluation including spectral models and RTE solvers. The average

tRT E + toverhead and tFS K are only shown for runs with radiation evaluated once per time step. The

number of second-order elliptic PDEs for the corresponding PN methods, the number of first-order

PDEs for the corresponding DOM solvers and the number of photon bundles traced for the PMC

method are also presented in the table. It is also observed that, though convergence speed is slow

for the high-order PN methods at early time steps, once convergence is reached, only one or two

outer iterations are required for the RTE solution for each quadrature point at later time steps. Two

empirical correlations can be obtained for the time cost of the spherical harmonics methods and the

discrete ordinates methods for the simulations in which the radiation is evaluated once per time step,

i.e.,

tPN = 0.0059 × nquad × nPDE + t f low + tFS K + toverhead,PN (6.10)

tDOM = 0.0015 × nquad × nPDE + t f low + tFS K + toverhead,DOM (6.11)

where nquad is the number of quadrature points (8 for the above simulations); nPDE is the number
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Table 6.7: Average CPU time per time step (radiation is evaluated once per 1/10/100/250 time steps
for the PN/DOM+FSK solvers and the average tRT E + toverhead and tFS K are only shown for runs
with radiation evaluated once per time step)

Radiation Solver Average CPU Time (s) tRT E+toverhead (s) tFS K (s)
No Rad 0.82 / /

P1+FSK 0.97/0.85/0.82/0.82 0.09

0.06

1 second-order PDE
P3+FSK 1.05/0.87/0.83/0.83 0.17 4 second-order PDE
P5+FSK 1.36/0.88/0.84/0.84 0.48 9 second-order PDE
P7+FSK 1.64/0.90/0.85/0.85 0.76 16 second-order PDE
DOM 2×4+FSK 1.11/0.86/0.85/0.84 0.23 8 first-order PDE
DOM 4×4+FSK 1.20/0.87/0.85/0.84 0.32 16 first-order PDE
DOM 4×8+FSK 1.42/0.91/0.86/0.86 0.54 32 first-order PDE
DOM 8×8+FSK 1.78/0.94/0.87/0.87 0.9 64 first-order PDE
PMC+LBL 0.87 / / 5,000 with time-blending
PMC+LBL 0.92 / / 10,000 with time-blending

of PDEs for the corresponding RTE method; t f low = 0.82 s, tFS K = 0.06 s, toverhead,PN = 0.07 s

and toverhead,DOM = 0.14 s. It can be seen that by storing intensity coefficients Im
n for each time

step in coupled simulations, the time cost for different orders of PN methods is actually linearly

proportional to the number of the second-order PDEs of the PN formulation with order N. In

principle and especially for this flame, DOM does not need outer iterations so that the benefit of

storing intensities along each discrete ordinate is limited.

Comparison of average CPU time required for one time step with different radiation evalu-

ation frequencies is also shown in Table 6.7. Reducing the radiation evaluation frequency for the

PN/DOM+FSK solvers (or applying time blending for the case of PMC+LBL) can significantly re-

duce the time cost for radiation evaluations and make radiation evaluation relatively cheap compared

to the computational cost of reacting flow simulations. Since the computational cost of PMC+LBL

solver is proportional to the total number of photon bundles traced for a same mesh, it is not sur-

prising that the time cost of PMC+LBL is small after applying the time-blending scheme.
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6.3.3 Frozen Snapshot Study

A one-step snapshot study is carried out to isolate the radiation evaluation from the changing

flow fields to study the accuracy and computational cost of different RTE solvers for one single time

step, including the PN solvers from P1 to P7, the DOMp×a solvers, with four different combinations

of numbers of discrete polar (p) and azimuthal (a) ordinates, and the PMC method. The PN and

DOM methods are coupled with the FSK look-up table as the spectral model with a 8-quadrature-

point evaluation. The PMC again employs the most accurate LBL calculations. In this section,

the frozen scalar fields are calculated from smooth correlations to eliminate the possible effects of

smoothness of the radiative properties on the performance of different RTE solvers.

Radiative calculations are conducted on a two-dimensional wedge, a three-dimensional cylin-

der and a three-dimensional cuboid. The size of the computational domain is 0 ≤ r ≤ 0.52 m and

0 ≤ z ≤ 2.88 m. For the grids of a 3-D cylinder and a 3-D cuboid, all walls are cold and black, while

for the 2-D wedge, the top (z = 2.88 m), bottom (z = 0 m) and right (r = 0.52 m) walls are cold and

black. The temperature and species concentration in the flame mimics the fully-developed Sandia

Flame D×4. Equation (6.12) describes the temperature and mole fractions distributions of CO2,

H2O and CO, whereas Fig. 6.12 shows contour plots of the scalar fields obtained from Eq. (6.12).

p = 1 bar (6.12a)

T = 1700 × exp
[
−

( r
0.05 + 0.1z

)2
]
× exp

− (
z − 1.3

0.5z + 0.7

)2 + 300 K (6.12b)

xCO2 = 0.08 × exp
[
−

( r
0.05 + 0.1z

)2
]
× exp

− (
z − 1.1

0.5z + 0.6

)2 (6.12c)

xH2O = 0.19 × exp
[
−

( r
0.05 + 0.1z

)2
]
× exp

− (
z − 1.0

0.5z + 0.7

)2 (6.12d)

xCO = 0.07 × exp
[
−

( r
0.05 + 0.04z

)2
]
× exp

− (
z − 1.0

0.7

)2 (6.12e)
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Figure 6.12: Temperature and mole fraction fields for the artificial flame.

The computational meshes are shown in Fig. 6.13, where the 2-D wedge, 3-D cylinder and

cuboid have cell numbers of 5000, 0.45 million and 0.49 million, respectively. For the snapshot

study, the wedge mesh is orthogonal compared with the unstructured wedge mesh used in the cou-

pled simulation to avoid the potential error introduced by an unstructured grid. The flame profile is

axisymmetric and has the same distributions of temperature and mole fractions for all three different

meshes.

As a validation of the RTE solvers, the results from three geometries with the same RTE

solver are compared first. Comparison of the calculated negative radiative heat sources (∇ · q) us-

ing P7+FSK, DOM 8×8+FSK and PMC+LBL for three different meshes is presented in Fig. 6.14.

The P7+FSK solutions from all three geometries are overlapping each other, which is an indica-

tion of the correctness of the PN implementations in OpenFOAM R© and an indication of the merit

of rotational invariance of the spherical harmonics PN methods, while for DOM 8×8+FSK and
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Figure 6.13: Computational geometries and meshes for the snapshot simulation of Sandia Flame
D×4.

PMC+LBL solvers, all show small discrepancies between the 2-D wedge results and the results

from 3-D geometries.
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Figure 6.14: Comparison of negative radiative heat source ∇ · q for different geometries: (a)
P7+FSK, (b) DOM 8×8+FSK and (c) PMC+LBL.
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Figure 6.15: Comparison of negative radiative heat source ∇ · q for a 2-D wedge geometry at three
axial locations: (a) z=0.5 m, (b) z=1.0 m and (c) z=1.4 m.
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Since all three geometries produce practically identical results, results from only the wedge

geometry are shown next. The negative radiative heat sources (∇ · q) using PN+FSK, DOM+FSK

and PMC+LBL at three axial locations on the 2-D wedge geometry are shown in Fig. 6.15. All

DOM+FSK calculations perform well compared to the the PMC+LBL results, which also proves

the 8-quadrature FSK model is very accurate compared to LBL evaluations. As far as the accuracy

of PN methods is concerned, P3 improves the P1 solution to some extent, but the improvement

of accuracy from P5 and P7 compared with P3 is marginal and converge very slowly toward the

PMC+LBL results.

To further investigate the error of the PN+FSK solver, a comparison for each special quadra-

ture point was carried out. The optical thickness τR,g along the radius at z = 1.0 m and weight wg

for each quadrature point is shown in Table 6.8. The accuracy of the PN solver for each quadrature

point is shown in Figs. 6.16 and 6.17. The PMC results for each quadrature point are calculated

with gray models by direct taking the kg and 4πagIb from each quadrature point as input.

For quadrature points with optically thin conditions (for this case, quadrature points 1 through

4 in Fig. 6.16), since self-absorption is a very small portion of the total emission, any RTE solver

including the O.T. model can predict correct radiative heat sources. For the optically thick condition,

such as the largest quadrature point 8 shown in Fig. 6.17(d), all PN methods except P1 capture the

PMC results. The major source of errors for the high-order PN methods are from the quadrature

points in the middle, quadrature points 5–7, indicating an optically intermediate condition. This is

due to the extremely anisotropic intensities resulting from this particular shape of flame. For such

cases, the truncated series of spherical harmonics cannot follow the near step-function of the angular

distribution of intensities for optically intermediate conditions. Much higher orders of spherical

harmonics series would be required to fully resolve the discontinuity of the the angular distribution

of the intensities.

At this point, it is clear that the discrepancy between the radiative heat sources from PN and

PMC RTE solvers for quadrature points 5–7 shown in snapshot analysis is the root source of the
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Table 6.8: Optical thickness τR,g along radius at z = 1.0 m and weights wg for each quadrature point

Index 1 2 3 4 5 6 7 8
wg 0.1834 0.1962 0.1624 0.1510 0.1194 0.1030 0.0606 0.0399
τR,g 0.0006 0.0035 0.0120 0.03348 0.08081 0.2112 0.8327 3.5118

Table 6.9: Comparison of CPU time (s) for RTE solvers

Mesh
PN DOM PMC

P1 P3 P5 P7 DOM2×4 DOM4×4 DOM4×8 DOM8×8

2-D wedge 0.32 11.78 32.47 83.72 1.92 2.44 5.55 11.15 723 (1M×10)
3-D cylinder 430 4884 14964 40499 396 914 1577 2747 13869 (10M×10)

3-D cube 270 6998 20666 48492 533 953 1711 3210 14422 (10M×10)

errors in the flow fields in coupled simulations.

In summary, it appears that the P3 method is the best choice for combustion simulations. For

the optically thick quadrature points, it greatly improves the P1 solution. For optically intermediate

quadrature points, P5, P7 or even higher order approximations do not improve results a lot over P3

solutions, but increase the number of PDEs quadratically.

The computational cost of different RTE solvers for all three geometries in this snapshot study

is presented in Table 6.9. All calculations were done on a single 2.66 GHz Intel (R) Xeon (R) X7460

processor. PMC employed 100 million photon bundles for 3-D meshes and 10 million for the 2-D

wedge mesh. The number of second-order PDEs for different orders of PN methods and the num-

ber of first-order PDEs for DOMp×a, with respect to the number of discrete polar ordinates p and

azimuthal ordinates a, are shown in Table 6.1 for reference. The coupling between the second-order

PDEs for the high-order PN in this problem is quite strong, while for DOM, there is no coupling

between the first-order PDEs. For this reason, the high-order PN methods are very inefficient due to

large number of outer iterations required to resolve the coupling between PDEs. Though the com-

putational cost of high-order PN methods is not competitive with DOM and PMC solvers for this

snapshot run, the problem is eliminated for coupled simulations as shown in the previous section.
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Figure 6.16: Negative radiative heat source ∇ · q predicted from PN and PMC solvers at one axial
location z = 1.0 m; (a) the 1st Quadrature, (b) the 2nd Quadrature, (c) the 3rd Quadrature and (d)
the 4th Quadrature.
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Figure 6.17: Negative radiative heat source ∇ · q predicted from PN and PMC solvers at one axial
location z = 1.0 m; (a) the 5th Quadrature, (b) the 6th Quadrature, (c) the 7th Quadrature and (d)
the 8th Quadrature.
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In summary, it appears that the P3 method is a good choice for combustion simulations of this

specific type of flames. For the optically thick quadrature points, P3 is able to improve the P1 solu-

tion, while for optically intermediate quadrature points, P5, P7 or even higher order approximations

do not improve results a lot over the P3 solution, but increase the number of PDEs quadratically.

However, the above conclusion may be limited to this specific type of flames of similar

sizes without further generalization because it can be seen that the performance of PN methods

are strongly related to the radiative properties of the flame. Since the optical thickness and spa-

tial distribution of k for each quadrature point is determined by many factors of the flame, such as

the products of combustion, size of the flame, surrounding gases, etc., it is difficult to tell whether

high-order PN methods would perform better or worse for other combustion simulations. Future

applications of the high-order PN methods in combustion simulations could be studies of flames in

furnaces, sheet flames and rocket plumes, etc. A high-temperature oxy-natural gas furnace will be

presented next to demonstrate the strengths of the high-order PN methods.

6.4 Oxy-Natural Gas Combustion

6.4.1 Background

Oxy-fuel combustion is the process of burning a fuel using pure oxygen instead of air as

the primary oxidant. Oxy-fuel combustion has several advantages over the traditional air-fuel com-

bustion: (1) using oxygen as the oxidizer raises the adiabatic flame temperature; (2) the products

contain a high concentration of CO2, which facilitates its sequestration; (3) production of nitrogen

oxide is greatly reduced. The heat transfer characteristics in an oxy-fuel furnace are found to be

quite different from those of a traditional air-fuel furnace because of resulting higher temperatures

and higher concentrations of CO2 and H2O, which significantly increase the magnitude of radiative

transfer in the furnace.

The International Flame Research Foundation has conducted a series of oxy-natural gas com-
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bustion experiments under the OXYFLAME project [248,249]. A couple of CFD simulations were

carried out as part of the OXYFLAME project for better understanding of the oxy-natural com-

bustion process as well as to validate the CFD models. Early modeling efforts have focused on

chemistry and TCI models where a gray radiation model is usually employed to avoid complex-

ity [250–252]. Later numerical studies started employing nongray spectral models, including Yin

et al. [253] using a weighted sum of gray gases (WSGGM) model and Zhao et al. [254] with a

LBL calculation. Zhao et al. [254] simulated a 0.8 MW oxy-natural gas burner (OXYFLAM-2A)

from the OXYFLAME project. Their high-fidelity RANS study has employed a consistent hy-

brid Lagrangian particle/Eulerian mesh method including a transported PDF turbulence model, and

PMC+LBL solver for the radiation calculation, which fully resolves TRI. Although predicted mean

temperature, velocity and gas fractions are still quite different from experimental measurements, the

results are considered to have captured most of the physical and chemical characteristics of the oxy-

natural gas combustion processes in the furnace. Therefore, their results are used here for snapshot

studies to test the performance of high-order PN methods. The aim of the frozen snapshot study is

to analyze the performance of high-order PN solvers in the application of oxy-fuel combustions as

a comparison to the less satisfactory performance of high-order PN methods in the jet flames.

6.4.2 Frozen Snapshot Study

A one-step snapshot study is presented next to show the performance of PN methods (up to the

order of P7) against that of the PMC method as well as the DOM. Both gray and nongray spectral

models coupled with PN , DOM and PMC RTE solvers are tested. The Planck-mean absorption

coefficient is used for the gray simulation while the PN methods and DOM are coupled with the FSK

look-up table (PN+FSK and DOM+FSK) and PMC employs the most accurate LBL calculations

(PMC+LBL) for the nongray simulations.

Radiative calculations are conducted on a two-dimensional wedge with 10,260 computational

cells. The size of the furnace and the injector are shown in Fig. 6.18. The height and radius of the
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Figure 6.18: Size of the furnace and the inlet nozzle [254].

furnace are 3.44 m and 0.525 m. The unstructured mesh is refined for the flame regions and is shown

in Fig. 6.19. In this study, all furnace walls are treated as cold and black. The inlet and outlet are

treated as symmetry/specular reflections boundaries in PN , DOM and PMC solvers. The contours

of temperature and mole fractions of CO2, H2O and CO are also shown in Fig. 6.19. The furnace is

filled with CO2 and H2O except in the flame region close to the center. The mole fraction of CO in

the flame region close to the nozzle is much higher than that in an air-fuel furnaces. This oxy-natural

gas flame can be generally regarded as an optically thick example because of high concentrations of

CO2 and H2O.

In terms of radiative transfer, the furnace can be roughly divided into two regions: one is the

high-temperature flame region at the center and the other is the large recirculation region where the

temperature is lower. The small flame region has the highest temperature and the lowest mole frac-

tions of CO2 and H2O which results in an optically thin region. The streamline plot in Fig. 6.20(a)

shows the recirculation region that fills most of the furnace. The large recirculation region has rel-

atively lower temperature and higher mole fractions of CO2 and H2O which is an optically thick

region. These two regions are indicated by the radial distributions of radiative properties at three

axial locations plotted in Fig. 6.20(b).
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Figure 6.20: (a) The streamline plot showing a large recirculation zone in the furnace and (b) the
radial distributions of radiative properties at three axial locations.

The comparison of the calculated negative radiative heat sources (∇ · q) from PN and PMC

solvers at three axial locations for the gray case is shown in Fig. 6.21. Since the same Planck-mean

absorption coefficients are used, the differences between both PN and PMC solvers are solely due

to RTE in accuracies. The results show that the flame region close to the center has a negative

∇ · q (positive radiative heat source) which indicates net absorption of radiative heat from the sur-

roundings. At the axial location of z = 0.22 m, all PN methods are found to perform well at the

flame region close to the center. Compared with the PMC solution, P1 predicts higher ∇ · q in the

recirculation region. P3 improves P1 results in the recirculation region to a large extent but is not

very accurate at the interface of two regions around r = 0.05 m; P5 and P7 almost overlap the

PMC results at this axial location. All PN methods except P1 are found to be almost identical to the

PMC solutions at the axial location of z = 0.82 m. At z = 1.42 m, there is consistent improvement

of accuracy from lower-order PN methods to higher-order ones close to the center with P7 almost

catching the results of PMC.
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Figure 6.21: Comparison of negative radiative heat sources (∇ · q) from PN and PMC solvers at
three axial locations for the gray case, (a) z = 0.22 m, (b) z = 0.82 m and (c) z = 1.42 m.
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DOM results with four combinations of discrete polar and azimuthal ordinates for the gray

case are presented in Fig. 6.22. For this problem, the results of DOM, especially DOM2×4 and

DOM4×4 except for the DOM2×4 results in Fig. 6.22(a), are found to be less accurate than the P1

and P3 solvers. At the same time, DOM4×8 and DOM8×8 are found to be very accurate at all three

locations compared with the PMC results.

Comparison of calculated negative radiative heat sources (∇ · q) at the same axial locations

for the nongray case is shown in Fig. 6.23 and Fig. 6.24. Compared with the gray results, more

radiative heat is absorbed locally in the recirculation region so that the profile of ∇ · q is flatter in

the region 0.2 < r < 0.45 m. The jump of ∇ · q close to the boundary is due to a combined effect

of the small drop of gas temperatures and a large increase of absorption coefficients close to the

wall as shown in Fig. 6.20(b). All PN+FSK solvers perform very well compared with PMC+LBL

results except that P1 is slightly inaccurate. All DOM results are very accurate at the axial location

of z = 0.22 m, which is shown in Fig. 6.24(a), while at the other two axial locations as shown in

Fig. 6.24(b) for z = 0.82 m and Fig. 6.24(c) for z = 1.42 m, DOM4×8 and DOM8×8 perform well

compared with PMC+LBL results but DOM2×4 and DOM4×4 results are still quite different from

the PMC+LBL predictions and less accurate than that from the P3 method.

The computational cost of different RTE solvers in this snapshot study is presented in Ta-

ble 6.10. All computations are by a single 2.66 GHz Intel (R) Xeon (R) X7460 processor. PMC

employed a total of 10 million photon bundles for the gray case and 100 million photon bundles

for the nongray case. DOM is found to be still more efficient than PN since there is no scattering

involved and no wall reflections. Nevertheless, compared with the performance of high-order PN

solvers in the previous snapshot study of the jet flame (Table 6.9), the time cost of high-order PN

method for oxy-fuel flame simulation are much shorter even for this larger mesh.
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Figure 6.22: Comparison of negative radiative heat sources (∇ · q) from DOM and PMC solvers at
three axial locations for the gray case, (a) z = 0.22 m, (b) z = 0.82 m and (c) z = 1.42 m.
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Figure 6.23: Comparison of negative radiative heat sources (∇ · q) from PN and PMC solvers at
three axial locations for the nongray case, (a) z = 0.22 m, (b) z = 0.82 m and (c) z = 1.42 m.
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Figure 6.24: Comparison of negative radiative heat sources (∇ · q) from DOM and PMC solvers at
three axial locations for the nongray case, (a) z = 0.22 m, (b) z = 0.82 m and (c) z = 1.42 m.
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Table 6.10: Comparison of CPU time (s) for RTE solvers for both the gray case and the nongray
case

P1 P3 P5 P7 DOM2×4 DOM4×4 DOM4×8 DOM8×8 PMC
Gray 0.22 2.95 10.2 27.8 4.53 5.45 6.66 13.9 223 (1M×10)

Nongray 0.95 12.8 49.7 111 13.1 25.8 39.4 77.5 1672 (10M×10)

In this section, a snapshot study was carried out for an oxy-natural gas flame. Results and

computational costs show that the high-order PN method is a very good tool to study such oxy-

fuel flames. Although the benefits of high-order PN methods such as P5 and P7 for the nongray

simulations in this snapshot study are not obvious due to the large overall optical thickness, it can

be deducted from the gray case that for a slightly optically thinner case (or a smaller oxy-fuel

furnace), the high-order PN methods would be the optimal choice for radiation simulations.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the research presented in this thesis on the topic of high-order spher-

ical harmonics (PN) methods for radiative heat transfer and applications in combustion simulations.

Conclusions are drawn from this research and directions for further studies on the spherical har-

monics PN methods are also suggested.

7.1 Summary

This thesis started with a review of the second-order elliptic formulation of high-order PN

methods to the radiative transfer equation and described further development of special boundary

conditions, their implementation in the finite volume-based library OpenFOAM R© and their application

in combustion simulations. Another goal of this research presented in this thesis has been to explore

the accuracy and efficiency of the high-order PN methods with emphasis on combustion-related

conditions.

Chapter 1 presented a review of the importance of radiation in combustion simulations, ra-

diative properties created by the combustion products, the radiative transfer equation (RTE), current

numerical solution methods for the RTE and previous state-of-art of spherical harmonics PN meth-

ods. Current status, difficulties and unsolved questions of these topics have been described. These

200



discussions provided the motivation for further exploring the high-order PN method with regard to

combustion simulations. Chapter 2 reviewed the second-order elliptic formulation of the high-order

(PN) method for general three-dimensional geometry. N(N + 1)/2 second-order elliptic PDEs and

the Marshak’s boundary conditions have been formulated for arbitrary order of N. Compared to

the first-order formulation with (N + 1)2 PDEs, the second-order formulation reduces the number

of governing equations almost by half with a factor of 2(N + 1)/N. Marshak’s boundary conditions

have been extended to 3-D geometry for arbitrary order of N. Chapter 3 started with a review of fur-

ther developments of high-order spherical harmonics PN methods to 2-D geometries, including 2-D

Cartesian geometry and 2-D axisymmetric geometry. Using the underlying geometric relationships

of the intensity coefficients, the number of unknowns, governing equations and boundary conditions

are reduced from N(N + 1)/2 to (N + 1)2/4. Then, further development of special boundary condi-

tions, including symmetry/specular reflection boundaries, walls with specified radiative flux, cyclic

boundaries and mixed diffuse-specular surfaces are described. General formulations of these special

boundary conditions for arbitrary order of PN method in terms of intensity coefficients with even

n have been developed. Chapter 4 discussed the spatial discretization of the resulting governing

equations of the elliptic formulation of the high-order PN methods (up to P7) based on the finite

volume-based software OpenFOAM R© and the solution methods for both inner and outer iterations.

The finite-volume implementations of Marshak’s boundary conditions and the special boundary

conditions have also been described in detail. A segregated solution sequence is employed, with

which each governing equation is solved by the preconditioned conjugate gradient method, and

outer iterations to resolve the coupling between the governing equations are by the Gauss-Seidel

method.

Chapter 5 presented nine numerical examples in different geometries, validating the imple-

mentation as well as showing the accuracy and efficiency of the high-order PN methods compared

for a wide range of optical thicknesses and various distributions of gray radiative properties. Other

reference solutions, including exact solutions through direct integration, Photon Monte Carlo (PMC)
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method, analytical solutions of PN for 1-D Cartesian geometry, finite difference method (FDM) so-

lutions of the PN method for 1-D cylindrical geometries and DOM are also used in different exam-

ples for comparison. The results have shown that the accuracy of high-order PN methods are related

to the overall optical thickness as well as the geometry of the problem. All PN methods, including

P1, perform well for optically thick problem. For optically intermediate media, P3 improves the

accuracy from P1 to a great extent. The accuracy gains from P5 and P7 depend on the specific case

and are usually smaller than that from P3 to P1. For some extreme conditions, where the angular

distributions of angular intensities are highly anisotropic, P5 and P7 are only marginally better than

P3. For optically thin media, although all PN fail for prediction of incident radiation, they are able

to predict correct radiative heat sources since there is very little self-absorption under such optical

conditions. The efficiency of the PN methods is also studied by these gray examples. The ideal CPU

time is to have the time cost of different PN methods proportional to the number of PDEs that are

solved. However, the observed CPU time for these one-step simulations are far from that for opti-

cally thin and intermediate cases in multidimensional geometries. This is mostly due to the strong

coupling between PDEs and a large number of outer iterations are required to obtain a converged

result. In Chapter 6, the PN methods are applied by coupling them with two combustion applica-

tions, including a turbulent jet flame and a high-temperature oxy-natural gas flame with nongray

radiative media. A full-spectrum k-distribution spectral model is used to treat the nongray spectral

properties of real gases, such as CO2, H2O and CO. For the simulations of turbulent jet flames, the

RANS solver in OpenFOAM R© was coupled with various radiation models to test the performances

of high-order spherical harmonics (PN) methods as well as to study the effects of radiation on this

turbulent flame. Results from different orders of PN methods (up to the order of 7) with the full-

spectrum k-distribution (FSK) method as the spectral model were compared with line-by-line PMC

calculations as well as with solutions from DOM. For the scalar predictions in coupled simulations,

the P3+FSK solver is able to significantly improve the accuracy over P1+FSK results, but the im-

provements by P5+FSK and P7+FSK are limited and the results are still not accurate compared
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with PMC+LBL results. A one-step snapshot study was also carried out to further investigate the

performance of high-order PN methods by isolating the radiation from the changing reacting flow

fields. The results of the snapshot study show that high-order PN methods are capable of obtaining

the correct radiative heat source for the largest quadrature point and the small quadrature points

but fail for the intermediate quadrature points. The computational costs of high-order PN methods

were also studied for both the coupled simulation and the snapshot study. Although the coupled

PDEs from high-order PN methods may take a long time to converge for the first few time steps,

once initial convergence is reached, it only takes 1 or 2 outer iterations for the coupled PDEs of

each quadrature for later time steps. In addition, the computational cost of high-order PN methods

can be further reduced by choosing a proper frequency for radiation evaluation. For the oxy-natural

gas flame, only a frozen snapshot study was carried out to test the performance of high-order PN

method for analyzing radiative transfer within the oxy-natural gas furnace filled with the CO2 and

H2O. The results showed that the high-order PN method is a very good tool to study such flames in

contrast to its performance in turbulent jet flames.

In terms of the choices of spectral models and RTE solvers for any specific flames, the most

obvious factor is the size. For open jet flames of the sizes smaller than or similar to Sandia Flame D

where the jet diameter is d j < 7.2 mm, the optically thin model or even ignoring radiative transfer

would probably be good enough for flame simulations. For open jet flames of size similar to Sandia

Flame D×4, as shown in Section 6.2, one has to employ a nongray spectral model and high order

RTE solvers or a line-by-line PMC solver. For flames enclosed by a furnace or a burner, such as

the oxy-fuel flame shown in Section 6.3 or combustors of gas turbines where the CO2 and H2O fills

the entire furnaces, the optically thin approximation would probably give wrong results. The PN

solver is expected to be preferable to PMC solutions in terms of computational cost due to larger

emission from these flames. Fuel also plays an important role when choosing radiation models. For

example, methane flames do not produce soot so that radiation is mostly from the gases, which are

strongly nongray. Luminous flames such as ethylene flames produce certain amounts of soot, which
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emits and absorbs radiation across the entire spectrum so that a gray spectral model may be feasible

for analyzing radiative transfer. Since soot is always concentrated at certain locations, PN methods

may perform poorly for luminous flames. For other fuels such as hydrogen which does not produce

CO2, it is possible that the radiation effects will be lower than those from flames whose products

include CO2. For all the above flames, there is no scattering involved so that DOM with enough

discrete ordinates (e.g., 8×8) is expected to be accurate for all these flames. However, DOM suffers

from ray effects, false scattering and slow convergence in scattering media while scattering usually

results in smoother profiles of intensities which are suitable for the PN solvers. For simulations of

such flames, e.g., rocket plumes, DOM is expected to perform poorly and inefficient compared with

PN solvers.

7.2 Future Work

Prospective areas, which need to be addressed in terms of future research and potential appli-

cations of current research will be discussed in this section.

Theoretical Study: Accuracy of the Spherical Harmonics Expansion

In this thesis, the angular distributions of intensities approximated by the truncated spherical har-

monics were shown for some examples. It was found that truncated spherical harmonics expansions

are incapable to approximate representative discontinuous functions (e.g., a Dirac δ function, a

Heaviside step function, etc.). Two major questions are to be addressed: (1) What is the truncation

error by neglecting all the intensity coefficient Im
n with n > N for both continuous and discontinuous

functions? (2) What are the level of oscillations of the reconstructed intensity from the truncated

spherical harmonics expansion of different orders? With these knowledges, one can probably find

more desirable choices of spherical harmonics bases based on specific problems and extend ma-

turer algorithms developed in Fourier-series analysis (e.g. Cesaro sums, Lanczos sigma factors,

etc. [255]) to the spherical harmonics series to improve the accuracy and reduce the oscillations.
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Also, in this way, one may be able to find a proper metric to evaluate the accuracy of RTE solvers

regarding the angular profiles of radiative intensities.

Improvement of Solution Method: Preconditioning Matrix for Segregated PN Solvers

In the implementation of PN methods in this thesis, a Gauss-Seidel method is employed for the

outer iterations, which is much slower converging than what is employed for the inner iterations:

the Krylov-space based preconditioned conjugated-gradient method. As was discussed in Chapter 4,

the number of outer iterations required is determined by the spectral radius of the full block matrix.

Designing a preconditioning matrix M for the full matrix A is able to minimize the spectral radius.

The preconditioning matrix has to satisfy two criteria: (1) the preconditioning matrix M itself can

be efficiently inverted directly; (2) the spectral radius of the preconditioned coefficient matrix A has

to be small. Practically, it is a process of rearranging the governing algebraic equations for better

diagonal dominance for the resulting block-matrix. A proper preconditioning matrix will certainly

improve the robustness and efficiency of the high-order PN solvers.

Application: High-order PN Methods for coupled simulations of multiphase reacting flows

In this thesis, the high-order PN methods have been applied to two combustion problems: a turbulent

jet flame and a high-temperature oxy-natural gas furnace. More studies are required to explore

the strengths and weaknesses of the high-order PN methods. In some multiphase reacting flow

problems, e.g., in rocket plumes, scattering due to the particulate phase can be very strong. It is well

known that DOM/FVM suffers ray effects, false scattering and slow convergence when dealing with

such scattering media. In contrast, the high-order PN methods are expected to perform very well

with scattered intensity fields.

Application: High-order PN Methods for phonon Boltzman Transport Equation

The main motivation of this thesis was to apply PN methods for solving photon transport problems
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in combustion simulations. Other physical processes, such as phonon transport problems governed

by the Boltzman Transport Equation (BTE) are also direction dependent. Therefore, the high-order

PN methods discussed in this thesis can be formulated and implemented similarly for deterministic

solutions of phonon transport problems as well.
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Appendix A

Calculations of Half-moments of

Associated Legendre Polynomials

The half-moments of associated Legendre polynomials pm
n, j is determined from the recursion

relationship [147]:

If n , j:

pm
n, j =

(2n − 1)
[
Pm

n−1(0)Pm
j (0) − ( j − m + 1)pm

n−1, j+1

]
+ (n + j − 1)(n + m − 1)pm

n−2, j

(n − j)(n − m)
(A.1)

where the Pm
n (0) are given by

Pm
n (0) =


0 n + m odd

(−1)(n+m)/2(n + m − 1)!
[(n + m)/2 − 1]!2n−1 [(n − m)/2]!

n + m even
(A.2)

When n = j

pm
n,n =

(n + m)!
(2n + 1)(n − m)!

(A.3)

For nonsensical subscripts (n < m or j < m), pm
n, j = 0. For any given m, pm

n,n can be calculated from

Eq. (A.3) first followed by the calculation of pm
n, j, n > j from Eq. (A.1).
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When n = j + 2, Equation (A.1) becomes

pm
j+2, j =

−(2 j + 3)( j − m + 1)pm
j+1, j+1 + (2 j + 1)( j + m + 1)pm

j, j

2( j + 2 − m)
(A.4)

where p j+1, j+1 and p j+1, j+1 can be calculated by Eq. (A.3), which leads to pm
j+2, j = 0.

When n = j + 4,

pm
j+4, j = H j+4 pm

j+3, j+1 + G j+4 pm
j+2, j = 0 (A.5)

whereH and G are the coefficients. Since both pm
j+3, j+1 and pm

j+2, j equal zero, the exact expressions

of H and G are not necessary. The conclusion can be extended recursively for any pm
n, j with n =

j + 2k, k = 1, 2, 3, ...,

pm
j+2k, j = H j+2k pm

j+2k−1, j+1 + G j+2k pm
j+2k−2, j = 0 (A.6)

which can be better stated as Eq. (2.14).
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Appendix B

Derivation of the Axisymmetric

Formulation of PN Method

This appendix is summarized and reorganized from the hand-written personal communica-

tions with the authors of [219].

The transformation of the PN formulation in x-y-z Cartesian coordinate system to an axisym-

metric formulation in r-z Cylindrical coordinate system is completed by (i) applying the geometric

relations between the intensity coefficients Im
n (x, y, z) and Îm

n (r, z), Eq. (3.11) and (ii) converting the

derivatives/operators in Cartesian coordinate system and derivatives/operators in Cylindrical coor-

dinate system, Eqs. (3.12) and (3.20).

B.1 Governing Equations

Terms in Eq. (2.9) can be rearranged and grouped together to facilitate the derivation. The

derivation of the governing equations for Ym
n , Eq. (2.9a), is shown first, and the derivation of the

governing equations for Y−m
n , Eq. (2.9b), is similar to that of the former.
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The terms of Eq. (2.9a) are grouped in the following manner:

(
Lxx +Lyy

)
Im
n+4−2k = (Lrr +

1
βr
Lr +

1
r2β2

∂2

∂φ2 ) cos mφÎm
n+4−2k

= cos mφ(Lrr +
1
βr
Lr −

m2

r2β2 )Îm
n+4−2k

= cos mφA+
m Îm

n+4−2k (B.1)

(
Lxx − Lyy

)
Im′
n+4−2k ±

(
Lxy +Lyx

)
I−m′
n+4−2k

= cos(m′ ∓ 2)φ
{
Lrr −

1
βr
Lr +

m′2

r2β2 ± m′
[

2
βr
Lr −

2
β2r2 +

1
r
Lr

(
1
β

)]}
Îm′
n+4−2k

= cos(m′ ∓ 2)φ(A−m′ ± m′B)Îm′
n+4−2k (B.2)

(Lxz +Lzx) Im′
n+4−2k ±

(
Lyz +Lzy

)
I−m′
n+4−2k

= cos(m′ ± 1)φ
{
Lrz +Lzr ∓ m′

[
2
βr
Lz +

1
r
Lz

(
1
β

)]}
Īm′
n+4−2k

= cos(m′ ± 1)φ
[
C ∓ m′D

]
Īm′
n+4−2k (B.3)

whereA+
m,A−m′ , B, C andD are simply shorthand symbols and m′ is denoting m − 2, m − 1, etc. in

the original governing equation. Applying Eqs. (B.1-B.3) to Eq. (2.9), we obtain
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For each Ym
n : n = 0, 2, . . . ,N − 1; and 0 ≤ m ≤ n

3∑
k=1

{
(1 + δm2)anm

k

[
cos mφ(A−m−2 + (m − 2)B)Îm−2

n+4−2k

]
+(1 + δm1)bnm

k

[
cos mφ(C − (m − 1)D)Îm−1

n+4−2k

]
+
δm1

2
cnm

k

[
cos mφ(A−m + mB)Îm

n+4−2k

]
+dnm

k

[
cos mφ(C + (m + 1)D)Îm+1

n+4−2k

]
+enm

k

[
cos mφ(A−m+2 + (m + 2)B)Îm+2

n+4−2k

]
+cnm

k cos mφ
(
A+

m − 2Lzz
)

Îm
n+4−2k

}
+ cos mφ(Lzz − 1)Îm

n = −(1 − ω)Ibδ0n

(B.4a)

similarly, for each Y−m
n : n = 0, 2, . . . ,N − 1; and 1 ≤ m ≤ n :

3∑
k=1

{
(1 + δm2)anm

k

[
sin mφ

(
A−m−2 + (m − 2)B

)
Îm−2
n+4−2k

]
+(1 + δm1)bnm

k

[
sin mφ (C − (m − 1)D) Îm−1

n+4−2k

]
+δm1cnm

k

[
sin mφ

(
A−m + mB

)
Îm
n+4−2k

]
+dnm

k

[
sin mφ (C + (m + 1)D) Îm+1

n+4−2k

]
+enm

k

[
sin mφ

(
A−m+2 + (m + 2)B

)
Îm+2
n+4−2k

]
+cnm

k sin mφ
(
A+

m − 2Lzz Îm
n+4−2k

)}
+ sin mφ(Lzz − 1)Îm

n = 0.

(B.4b)

B.2 Boundary Conditions

The boundary conditions of the axisymmetric formulation can be derived by applying Eq. (3.11)

to Eq. (2.24a) of Ȳm
n with indices from Eq. (2.12). Observing the rotation matrices, Eq. (2.20), For

m ≥ 0 and α = φ − π, γ = 0, Ψ−m(0) = 0 and Ψm(0) = 1, therefore

∆̄n
m,m′ = sign(m′)Ψm′(π − φ)D′n

|m||m′ |(−β) (B.5)
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where

D′n
|m||m′ |(−β) = dn

|m|,|m′ |(−β) + (−1)m′dn
|m|,−|m′ |(−β) (B.6)

For m′ > 0,

∆̄n
m,m′ =Ψm′(π − φ)D′n

|m||m′ |(−β) = cos m′(π − φ)D′n
|m||m′ |(−β) (B.7)

∆̄n
m,−m′ = − Ψ−m′(π − φ)D′n

|m||m′ |(−β) = − sin m′(π − φ)D′n
|m||m′ |(−β) (B.8)

Therefore, together with Eq. (3.11), we obtain

∆̄n
m,m′ I

m′
n + ∆n

m,−m′ I
−m′
n = cos πm′D′n

|m||m′ |(−β) = Dn
|m||m′ |(−β)Îm′

n (B.9)

where cos πm′ = (−1)m′ .

Similarly, with γ = 0, α = φ − π and m < 0, then Ψ−m(0) = 1, Ψm(0) = 0, and −sign(m) = 1,

the rotation matrices become

∆̄n
m,m′ = Ψ−m′(π − φ)B′n

|m||m′ |(−β) (B.10)

where

B′n
|m||m′ |(−β) = dn

|m|,|m′ |(−β) − (−1)m′dn
|m|,−|m′ |(−β) (B.11)

therefore,

∂

∂τȳ

[
∆n

m,m′ I
m′
n + ∆n

m,−m′ I
−m′
n

]
=

m′

βr

[
sin m′(π − φ) sin m′φB′

|m||m′ |(−β) −
(
cos m′(π − φ) cos m′φB′

|m||m′ |(−β)
)]

Îm′
n

= −
m′

βr
B|m||m′ |(−β)Îm′

n (B.12)
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Appendix C

Note for Special Boundary Conditions

C.1 Reflections at the Wall in P1 Approximation

When N = 1 and following Eq. (2.12), the Marshak’s boundary conditions are characterized

by the local spherical harmonics Y
0
1, where i = 1 and m = 0. Substituting i and m together with

values of p0
0,1 = 1/2 and p0

1,1 = 1/3, Equation (3.31) becomes

1
2

(1 − ρs − ρd)I0
0 +

1
3

(1 + ρs + ρd)Ī0
1 =

1
2
εIbw (C.1)

Replacing ρs + ρd with 1 − ε and applying the relation of Ī0
1 = −∂I0

0/∂τ̄z from Eq. (2.31a), one

simplifies Eq. (C.1) to

I0
0 −

2 − ε
ε

(
2
3

)
∂I0

0

∂τ̄z
= Ibw (C.2)

which is the Marshak’s boundary condition for the P1 approximation [21]. It can be concluded that

there is no distinction between diffuse and specular reflections at reflective surfaces with the P1

formulation.
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C.2 Symmetry/Specular Boundaries

The boundary conditions for symmetry/specular boundaries can also be directly derived from

Eq. (3.31), which is based on Marshak’s boundary condition. When ρs = 1, Equation (3.31) be-

comes
N∑

n=0

[
1 − (−1)m+n] pm

n,2i−1 Īm
n = 0, i = 1, 2, ...,

1
2

(N + 1), all relevant m (C.3)

which does not lead to identity equations only when m + n is odd. Thus it is useful to separate Eq.

(C.3) for even and odd m, respectively, as

(N−1)/2∑
l=0

pm
2l,2i−1 Īm

2l = 0 all relevant odd m (C.4a)

(N+1)/2∑
l=1

pm
2l−1,2i−1 Īm

2l−1 = 0 all relevant even m (C.4b)

i = 1, 2, ...,
1
2

(N + 1)

where the relevant m are selected from Eq. (2.12). According to Eq. (2.14), pm
2l−1,2i−1 = 0 when l , i

because the sum of the subscripts of pm
2l−1,2i−1, i.e., 2(l + i − 1), is even. For a given i, Eq. (C.4b)

does not give an identity equation (0 ≡ 0) only when l = i. Therefore, Eq. (C.4b) leads to

Īm
2i−1 = 0 i = 1, 2, ...,

1
2

(N + 1), all relevant even m (C.5)

which, after applying the relationship between Īm
2i−1 and surface normal derivatives of Īm

2i and Īm
2i−2 [145],

is Eq. (3.45a).

While Eq. (C.5) provides the boundary conditions for the even m, the boundary conditions for

the odd m are to be obtained by Eq. (C.4a). Equation (2.13) that indicates pm
2l,2i−1 = 0 when m > 2l,

can be applied to the expansion of Eq. (C.4a). For the case of P3 with N = 3, Equation (C.4a) with
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i = 1 and m = ±1 becomes

1∑
l=0

p±1
2l,1 Ī±1

2l = 0

0 + p±1
2,1 Ī±1

2 = 0

Ī±1
2 = 0 (C.6)

For higher order of PN , the rest of the boundary conditions can be developed similarly. For example,

for the P5 formulation with N = 5, the local spherical harmonics that characterize the Marshak’s

boundary conditions are Y
±1
2 , Y

±1
4 and Y

±3
4 , which lead to a set of equations from Eq. (C.4), which

are

2i − 1 = 2, m = ±1

2∑
l=0

p1
2l,2 Ī±1

2l = 0

p1
2,2 Ī±1

2 + p1
4,2 Ī±1

4 = 0 (C.7a)

2i − 1 = 4, m = ±1

2∑
l=0

p1
2l,4 Ī±1

2l = 0

p1
2,4 Ī±1

2 + p1
4,4 Ī±1

4 = 0 (C.7b)

2i − 1 = 6, m = ±3

2∑
l=0

p3
2l,4 Ī±3

2l = 0

p3
4,4 Ī±3

4 = 0 (C.7c)

Since all the remaining pm
2l,2i−1 in Eq. (C.7) are nonzero, the corresponding boundary conditions are
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obtained, which are Ī±1
2 = 0, Ī±1

4 = 0 and Ī±3
4 = 0.

As shown by the above examples, the resulting boundary conditions when m is odd are iden-

tical to Eq. (3.45b).

216



Bibliography

[1] Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics

and Heat Transfer, Hemisphere, New York.

[2] Launder, B. E. and Spalding, D. B., 1974, “The Numerical Computation of Turbulent Flows”,

Computer Methods in Applied Mechanics and Engineering, 3, pp. 269–289.

[3] Pope, S. B., 2000, Turbulent Flows, Cambridge University Press, Cambridge.

[4] Westbrook, C. K., Mizobuchi, Y. P., Thierry, J., Smith, P. J., and Warnatz, J., 2005, “Compu-

tational Combustion”, Proceedings of the Combustion Institute, 30(1), pp. 125–157.

[5] Pitsch, H., 2006, “Large-Eddy Simulation of Turbulent Combustion”, Annual Review of Fluid

Mechanics, 38, pp. 453–482.

[6] Modest, M. F. and Haworth, D. C., 2016, Radiative Heat Transfer in Turbulent Combustion

Systems, Springer Verlag, New York.

[7] Imamori, Y., Hiraoka, K., Endo, H., and Oda, Y., 2011, “Combustion Simulations Con-

tributing to the Development of Reliable Low-Emission Diesel Engines”, Mitsubishi Heavy

Industries Technical Review, 48(1), p. 65.

[8] Sarofim, A. F. and Hottel, H. C., 1978, “Radiative Transfer in Combustion Chambers: Influ-

217



ence of Alternative Fuels”, In Proceedings of the Sixth International Heat Transfer Confer-

ence, 6, Washington, D.C., Hemisphere, pp. 199–217.
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