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SUMMARY

The accurate identification and quantitation of RNA isoforms present in the cancer transcriptome 

is key for analyses ranging from the inference of the impacts of somatic variants to pathway 

analysis to biomarker development and subtype discovery. The ICGC-TCGA DREAM Somatic 

Mutation Calling in RNA (SMCRNA) challenge was a crowd-sourced effort to benchmark 

methods for RNA isoform quantification and fusion detection from bulk cancer RNA sequencing 

(RNA-seq) data. It concluded in 2018 with a comparison of 77 fusion detection entries and 65 

isoform quantification entries on 51 synthetic tumors and 32 cell lines with spiked-in fusion 

constructs. We report the entries used to build this benchmark, the leaderboard results, and the 

experimental features associated with the accurate prediction of RNA species. This challenge 

required submissions to be in the form of containerized workflows, meaning each of the entries 

described is easily reusable through CWL and Docker containers at https://github.com/SMC­

RNA-challenge. A record of this paper’s transparent peer review process is included in the 

supplemental information.

In brief

The SMC-RNA Challenge benchmarked isoform quantification and fusion detection methods. 

Challenge participants submitted CWL workflows made up of containerized methods to the 

challenge administrators who then ran the code on held-out samples never available to contestants. 

For the Fusion Detection sub-challenge, Arriba and STAR-Fusion were identified as top 

performers.

INTRODUCTION

While only a small fraction of the genome encodes proteins, the majority is either 

transcribed or has putative regulatory functions, with the consequence that cellular functions 

are extensively regulated at the RNA level. The regulation of RNA, and its dramatic 

dysregulation in cancer cells, occurs in multiple ways. RNA abundances of certain spliced 

products may be altered and these have served as the basis for clinically important 

prognostic biomarkers. RNA sequencing (RNA-seq) uses sequencing techniques to detect 

and quantify specific RNA isoforms. These isoforms can derive from the same gene but 

differ in many ways, including through alternative splicing, by germline or somatic variation 

on any allele, or through the generation of novel fusion transcripts. The raw read counts 

from an RNA-seq study can be used to estimate transcript abundances, and from it elucidate 

other biologically relevant information. Traditional protocols for RNA-seq involve reverse 

transcription into cDNA, which is then sequenced using high-throughput technologies, such 

as Illumina HiSeq, Roche 454, or PacBio (Metzker, 2010). After sequencing, reads can be 

assembled de novo, aligned to a reference genome, or aligned to a reference transcriptome. 

Some key challenges in RNA-seq include biases occurring in RNA fragmentation, cDNA 

fragmentation, and library preparation, in addition to, potential polymerase chain reaction 

(PCR) artifacts that skew estimated abundances and possible alignment to multiple locations 

in a reference genome (Han et al., 2015). Many of these same artifacts remain for the 
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more recent task of interpreting RNAs from individual cells (i.e., with single-cell RNA­

seq platforms). Due to these and other influences, methods for detecting and quantifying 

transcriptional isoforms and fusion products remains an important task.

Genomic rearrangements in cancer cells produce fusion transcripts, which may give rise to 

protein products not present in normal cells. These can serve as robust diagnostic markers, 

e.g., TMPRSS2-ERG in prostate cancer (Tomlins et al., 2008) or drug targets, e.g., SET­

NUP214 in acute T-lymphoblastic leukemia (Mohseni et al., 2018). Ongoing research efforts 

are beginning to unveil the potential clinical relevance of aberrant processing of RNA in 

cancer, such as defects in alternative splicing. An assortment of computational methods 

is needed to fully document the transcriptomic differences between tumor cells and their 

normal counterparts. Cataloging the “alterome” of tumors by fully characterizing their RNA 

landscapes will expand our understanding of cancer mechanisms, provide new biomarkers, 

and reveal possible new RNA-based therapeutics, improving personalized patient treatment.

Gene fusions occur when two genes are joined through a DNA translocation, interstitial 

deletion, or chromosomal inversion. Trans-splicing events can also occur in which two 

transcripts are fused (Zaphiropoulos, 2011). Gene fusions often have an important role in 

the initial steps of tumorigenesis. Specifically, gene fusions have been found to be the driver 

mutations in neoplasia and have been linked to various tumor subtypes. An increasing 

number of gene fusions are being recognized as important diagnostic and prognostic 

parameters in malignant hematological disorders and childhood sarcomas. Reviews have 

estimated that gene fusions occur in all malignancies and that 16.5% of human cancer cases 

harbor at least one driving RNA fusion event (Gao et al., 2018).

Isoforms are alternative combinations of exons combined into a transcript formed from 

splicing during post-transcriptional processing. Dysregulation of alternative splicing occurs 

in every one of the hallmarks of cancer (Hanahan and Weinberg, 2000, 2011). Modifications 

in splicing may occur due to mutations of cisacting splicing elements, trans-acting 

regulators, and microRNAs. Moreover, the switch from one isoform to another in cancer 

cells leads to functional consequences and measurable differences in patient outcomes, 

especially when observed in multiple tumor types (Vitting-Seerup and Sandelin, 2017).

The goal of the ICGC-TCGA DREAM SMC-RNA Challenge was to use a crowd-based 

competition to identify optimal method(s) for quantifying isoforms and detecting mRNA 

fusions from RNA-seq data. Several methods have been developed to detect and quantify 

cancer-associated RNA species abundance. It is not clear which methods are best used and 

in what contexts. However, the evaluations published in these studies may suffer from the 

well-known “self-assessment trap,” as the benchmarking includes one of the tools developed 

by the evaluators. The challenge we describe evaluated workflows composed of one or 

more methods for two separate sub-challenges using an objective approach. The Fusion 

Detection sub-challenge measured performance in detecting cancer-associated fusions at any 

expression level while the Isoform Quantification sub-challenge measured performance in 

predicting the relative level of each transcript across samples. For each sub-challenge, an 

unbiased assessment was conducted by using a combination of computationally simulated in 
silico RNA sequences as well as experimentally generated in vitro RNAs. All submissions 
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were run by the challenge administrators so that contestants never had access to evaluation 

datasets. Participants submitted to the administrators their trained model including their 

workflows (composed of one or more methods), parameters, and environments needed 

for execution using Docker and Common Workflow Language (CWL) definitions. The 

challenge ran for seven months, with 221 participants comprising of 17 teams that submitted 

65 entries for the Isoform Quantification sub-challenge and 82 for the Fusion Detection 

sub-challenge. Participants were able to submit up to three trained models to include in the 

evaluation for the leaderboards. Submissions were run on the Institute for Systems Biology 

Cancer Genomics Cloud with resulting predictions stored and evaluated. Performance 

metrics of the evaluated submissions were used to generate leaderboards for each round 

of the challenge. Notably, because the administrators had access to all of the results, we 

were able to investigate possible explanations leading to algorithm failure.

For the Fusion Detection sub-challenge, two methods—Arriba (https://github.com/suhrig/

arriba) and STAR-Fusion (Haas et al., 2017)—outperformed all others submitted. Both of 

these align the transcriptome using STAR (Dobin et al., 2013) and use “chimeric reads” 

as the basis for identifying potential fusion junction sites. Further, both emphasize the 

importance of using filters to detect bona fide fusions from myriad background fusions. 

In these analyses, junction coverage and abundance were the most important influences 

upon false negatives, while GC content and the total number of alternate gene isoforms 

contributed most to false positives. For the Isoform Quantification sub-challenge, no 

submissions outperformed standard approaches used to initialize the leaderboard. We found 

methods that had the most error in distinguishing between isoforms for a few genes when 

spiked-in levels differed by 2-fold compared with 5-fold.

RESULTS

The SMC-RNA challenge included two sub-challenges: Fusion Detection and Isoform 

Quantification. For these sub-challenges, in silico simulated and in vitro-derived spike-in 

datasets were designed for use in evaluating entries (Figure 1). To generate simulated data, a 

custom pipeline called rnaseqSim was created to simulate RNA-seq reads that mimic several 

realistic aspects of biology and current technology such as uneven read coverage across 

a transcript, the insert size distribution, GC content biases, and the presence of possibly 

different haplotypes produced from a diploid genome (STAR methods, isoform and fusion 

simulation pipeline). The final test set contained an in vitro benchmark of 6 cell lines 

with 5 replicates each, with varying cell line backgrounds, transcript or fusion construct 

spiked-ins, and spike-in concentrations (Table S7 and STAR methods, spike-in fusion 

construction, benchmark transcript selection). The data and various quality estimates are 

available on Synapse(https://www.synapse.org/Synapse:syn22344794). The spike-in design 

varied in complexity across samples and included multiple isoforms from the same gene 

(from 1 up to 3) as well as different levels of the transcripts and number of fusion 

events (Table S8 and STAR methods, spike-in fusion construction, and benchmark transcript 

selection). Participants were required to submit two components for the challenge: a Docker 

image encapsulating their code, executables, and environment, and a CWL workflow to 

define the steps and parameters for running their algorithms. The resulting output of each 

entry also had to meet the format specifications published on the challenge website. For 

Creason et al. Page 4

Cell Syst. Author manuscript; available in PMC 2021 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/suhrig/arriba
https://github.com/suhrig/arriba
https://www.synapse.org/Synapse:syn22344794


both sub-challenges, participants were allowed to submit any number of entries but were 

restricted to selecting up to three entries for scoring on the official leaderboard. Participants 

could choose to have these three entries be based on different algorithms or optimize the 

same algorithm with different trained parameters. The performances of entries for both the 

Fusion Detection and the Isoform Quantification sub-challenges were benchmarked against 

constructs spiked into the cell line-based samples. For the Fusion Detection sub-challenge, 

we identified two entries, using the methods Arriba and StarFusion, that were better than all 

others. For the Isoform Quantification sub-challenge, there was no top entry and none of the 

participant submissions outperformed the challenge organizer based submissions.

Fusion detection sub-challenge results

The Fusion Detection sub-challenge evaluation received 77 entries, of which the organizers 

were able to execute and evaluate 35 (Table S1). The majority of entries failed due to 

an ill-formed submission (submission error, 26 entries), followed by the packaged code 

running into problems during execution (workflow error, 13 entries), and lastly, a few cases 

produced output that was unable to be properly evaluated (evaluation error, 3 entries). Of 

the successful 35 entries, 17 represented valid entries after restricting submissions to allow 

up to three from any one team as specified by the challenge rules. Fusion detection entry 

workflows were often composed of two steps to first align sequence reads followed by 

fusion detection and calling. Examples of commonly used alignment methods included 

STAR and GSNAP and fusion detection methods included STAR-Fusion, STAR-SEQR, 

Arriba, FusionRnadt, and Hera (Table S1 includes the full list of methods submitted).

Two different datasets were created to evaluate entries, a computationally simulated dataset 

and an experimentally generated set using spike-ins (Figure 1B). The simulated dataset 

was used to evaluate entries in the preliminary rounds. The simulated data were generated 

with the program rnaseqSim (https://github.com/Sage-Bionetworks/rnaseqSim) that created 

reads from computationally constructed fusions. On average, the simulated tumor samples 

contained 39 fusions per transcriptome, ranging from 3 to 100 to test how callers reacted to 

various levels of signal. This number is in line with those reported for several popular cell 

lines (Picco et al., 2019).

A second evaluation dataset of spiked-in fusions was used for the final assessment of entries. 

The spike-in data were created in the lab using a predefined series of 18 fusion products, 

formed between arbitrarily selected gene partners. The RNA from each of 6 different cell 

lines was aliquoted into 5 replicates, 4 of which were spiked with designed quantities of 

synthetic fusion RNA. Lung, ALL, prostate, and breast cancer cell lines were used. Each 

fusion was introduced at an amount of either 0, 5, 25, or 50 pg. The 5th replicate was spiked 

only with 20-μL nuclease-free water to act as a negative control. Three technical replicates 

were made for one of the HCC1143 cell line’s spike-in designs by splitting the cell line’s 

RNA into three aliquots prior to adding the same spike-in mixture to each.

The spike-ins provide a basis for evaluating the methods. On the one hand, if a method fails 

to detect a fusion construct known to be added at a particular level in a sample, we call this 

event a fusion false negative (FFN). On the other hand, methods that report on a fusion that 

was not spiked into a sample, but are nonetheless reported by a method, are labeled as a 
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fusion false positive (FFP). Notably, FFPs could result from the existence of transcripts in 

the cell line’s background. For such naturally occurring transcripts, we expect many (or all) 

of the methods to detect their presence. Thus, we introduced a correction to the evaluation 

that extends the truth set (see discussion of i-Truth below). As far as FFNs, we found that 

a majority of the fusions included in the spike-in experiment were detected at similar rates, 

with only three fusion constructs missed by more than half of the methods. We also looked 

into extreme cases to determine whether any properties influence detection difficulty. One 

such extreme case is the designed fusion of interleukin-15 (IL-15) and IL-21 that was never 

detected by any of the methods. The construct appears to have been synthesized correctly 

as we verified by manual inspection the presence of junction-spanning reads. We suspect 

that the homology between IL-15 and IL-21 lead to detection failures. Either the mapping 

step misaligned the relevant junction-spanning reads, or the methods themselves filtered 

these reads out (ironically, methods often exclude junctions spanning homologous genes to 

remove a major source of mapping misalignment noise). We next discuss our approach to 

systematically evaluate the accuracy of the methods using the spike-in designs that include 

estimates of both types of errors, FFNs, and FFPs.

On the one hand, it is straightforward to estimate the sensitivity of an entry as the fraction 

of spike-in controls reported. On the other hand, it is not as obvious how to estimate 

precision or specificity due to the possibility that true fusions exist outside the spike-in set 

because any naturally occurring fusions present in the cell lines would also be detected by 

contesting algorithms. One approach would be to use a long-read technology that could 

detect the native constructs. We found that current read depths of a Nanopore-based long­

read approach were insufficient to accurately detect the presence of fusions. Inspired by 

recent work in the area (Ahsen et al., 2018), we instead estimated a set of “imputed truth” 

(i-Truth) fusions from the calls made by the entries (STAR methods, imputing an extended 

truth dataset for fusion evaluation). Along with spiked-in controls, predicted fusions were 

considered as positives for evaluation if several callers detected them in the replicates of 

the same cell line background. To this end, a “meta caller” was created to combine the 

submitted predictions into a consensus score, made up of the proportion of callers voting 

in favor of the presence of a particular fusion in a specific sample. If the consensus score 

exceeded a critical threshold, then a fusion event was considered as good as truth and 

included in the i-Truth set. Assuming the i-Truth contains bona fide fusions, the recall of the 

entries should be similar to when they are run on the actual truth, i.e., on the spike-ins. Using 

this reasoning, we set the critical threshold such that the recall measured using the i-Truth 

matched the recall measured using the spike-ins (STAR methods, imputing an extended truth 

dataset for fusion evaluation). This produced an i-Truth set containing 48 predicted fusions, 

ranging from 2 up to 17 fusions in every cell line (Tables S8 and S12). This set offered a 

notable increase in the number of events to gauge entry performance compared with using 

the spike-ins alone.

Including even a small proportion of erroneous events as truth could detrimentally affect the 

ultimate ranking of entries. We, therefore, estimated the accuracy of the i-Truth by querying 

several cancer-specific fusion databases including the Broad’s cancer cell line encyclopedia 

(CCLE) database for the presence of the i-Truth fusions in cancer cell lines as well as 

several other databases documenting fusions in normal tissue including the GTEx dataset 
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of fusions in normal tissue to confirm their absence in non-cancerous tissue (Table S8). 

Remarkably, 28 (61%) of the i-Truth fusions had evidence for the existence of the exact 

breakpoint in the predicted cell line based on the CCLE collection. Of the remaining i-Truth 

fusions, another 10 (22%) had evidence that the 3’ and 5’ partner genes participated in 

a fusion in the same cell line, albeit with different breakpoints. The remaining 10 (22%) 

had no evidence of either breakpoint being present in the CCLE collection. Of these 10, 

6 were found to have partial matches in either the ChimerSeq or TumorFusion guanosine 

diphosphate (GDP) collection. Thus, altogether, 44 out of the original 48 (92%) had either 

an exact or inexact match in existing fusion databases. Reassuringly, none of the i-Truth 

fusions were found recorded in normal tissue databases, reflecting their cancer specificity. 

Encouraged by the documented existence for all of the i-Truth fusions, each of the predicted 

events was combined with the spike-ins to create an extended truth set.

To create the final leaderboard, all submitted entries were ranked by their F1 scores based 

on their performance predicting fusions included in the extended truth benchmark (spike-ins 

plus i-Truth; Figure 1B). F1, an average of precision and recall, was chosen because limiting 

the number of extraneous predictions is just as important as predicting known fusions since 

only a few options can be considered in cancer treatment due to factors like time and cost. 

Two of the submitted entries/methods emerged as the overall winners of this sub-challenge, 

Arriba (F1 = 0.73) followed by STAR-Fusion (F1 = 0.70) (Table S3). These winners were 

followed by other lower-ranking entries that were found to be statistically lower in score 

based on bootstrap resampling (STAR methods). The third highest ranked entry was a 

variation of the STAR-Fusion method (F1 = 0.63), followed by fusioncatcher (F1 = 0.58) 

contributed by this challenge’s organizers, then STAR-SEQR (F1 = 0.47).

Features influencing the accuracy of fusion detection

To determine what factors influence entries to incorrectly call fusion events, we created a 

fusion feature importance pipeline, similar to what was done for the ICGC/TCGA DREAM 

SMCDNA challenge (Lee et al., 2018). We collected 128 genomic features related to each 

predicted fusion event, including gene length, transcript length, distance from the breakpoint 

to repeats, and the abundance for each fusion partner. To identify features predictive of 

error across cell lines and entries, the cell line and submission identifier were also included 

as features to account for those covariates. The full list of features is recorded in Table 

S9. Next, we built a random forest (RF) classification model to predict FFPs from each 

submission. In other words, the RF model was trained to select features that predict when 

an entry erroneously calls a fusion event when no such event was present according to the 

extended truth. We built a second RF model to select features that predict FFNs; i.e., the 

RF predicts when an entry fails to detect a spiked-in fusion construct. To quantify feature 

importance for each of our classification models, we applied the Boruta feature selection 

algorithm to the RF models (Figures 2A and 2B) (Degenhardt et al., 2019; Kursa and 

Rudnicki, 2010). Boruta determines feature relevance by comparing the original importance 

with the importance achievable at random, estimated using permuted versions of a feature, 

and progressively eliminates insignificant features to stabilize a test statistic. An accurate 

FFP model was obtained that achieved an out-of-bag error rate of 0.26% (see resource 

table for links to SMC-RNA-Eval code). The FFN model had lower, but still respectable, 
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accuracy due to fewer observations, achieving an error rate of 7.64%. The Boruta algorithm 

revealed that the number of transcripts and GC content were the most important features 

for determining FFPs among all fusion prediction methods whereas submission identifier, 

coverage across the junction and abundance were the top features for FFNs (Figures 2C 

and 2D). We speculate that the informative GC feature could reflect the presence of low 

complexity repeats influencing hybridization efficiency or alignment problems in the area of 

the predicted fusions. Further analysis for FFNs revealed a marked decrease in coverage and 

abundance as additional top features (Figure S1A).

Isoform quantification sub-challenge results

For the Isoform Quantification sub-challenge, we received 65 submissions, of which 32 were 

successfully executed to completion through the leaderboard evaluation pipeline. Of the 32 

that were successful, 16 were included in the final leaderboard (Table S4). Entries failed 

for several reasons including submissions of the wrong format (23 Submission Errors), 

incompatibility with the runtime system based on the CWL (8 workflow errors), and two 

that were runnable but produced ill-formatted output for evaluation (Table S2).

A diverse set of algorithms were submitted to the challenge representing two major classes 

of isoform quantification approaches: alignment-based workflows (e.g., STAR and RSEM) 

and hashing-based workflows (e.g., Kallisto and Salmon). Common components of the 

entries (i.e., workflows) submitted for the Isoform Quantification sub-challenge included 

STAR (Dobin et al., 2013), Kallisto (Bray et al., 2016), Salmon (Patro et al., 2017), Hera, 

RSEM (Li and Dewey, 2011), GSNAP(Wu et al., 2016), eXpress (Roberts and Pachter, 

2013), Cufflinks, and Flux-Capacitor. We considered transcriptome-wise and sample-wise 

evaluation of the results (Figure 1C and STAR methods, Evaluating Isoform Quantification). 

Transcriptome-wise correlation (TWC) measures the degree to which the levels of a 

transcript relative to other transcripts in the same sample match the known set. On the other 

hand, sample-wise correlation (SWC) measures how well the level of a transcript matches 

relative to the same transcript across different samples. TWC reflects the ability of an entry 

to estimate dominant splice forms from others while SWC measures the accuracy for use in 

differential abundance analysis when sample subgroups are compared. An evaluation using 

the computationally simulated data found that the top-performing entry was based on RSEM 

using TWC as a measure (Figure S2D). Similar results were obtained when SWC was used 

(data not shown). However, since the simulation program itself invokes RSEM to generate 

FASTQ reads, this result could indicate a systematic bias and not reflect the accuracy of 

entries when run on real tumors.

For this reason, we compared entries using a spike-in dataset and a non-parametric 

comparison of submissions (STAR methods, benchmark transcript selection). Submissions 

were evaluated against a set of 20 synthetic tumors and a panel of six cell lines with 18 

native transcripts spiked in at different levels. As was done for fusions, the same six cell 

lines were used to introduce four different spike-in designs plus a negative control (no spike­

in), and a technical replicate was created for one of the HCC1143 designs. The transcripts 

were selected from genes exhibiting expression levels at or below that of background across 

a mix of breast cancer cell lines and tumors.
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For technical reasons related to manipulating spike-ins, we used SWC for the evaluation 

because the relationship between the abundance spiked into the number of sequenced reads 

scripts spiked in at the same concentrations may not show a could differ from one gene to 

the next, adding an appreciable comparable number of reads due to sequencing efficiencies 

amount of noise to a calculation of TWC. For example, two tran- that may vary from 

transcript to transcript (e.g., potentially, though not necessarily, due to causes such as GC 

content or differing hybridization efficiencies of the probes). On the other hand, results 

from our pilot studies suggest that the relationship could be much more comparable for a 

particular transcript from one sample to the next (data not shown).

To this end, we calculated Kendall’s Tau-β correlation for each transcript for each 

submission that measured the agreement of ranking between the predicted and actual levels 

across all of the cell lines. The final Kendall’s Tau-β score (KTBS) for a submission was 

then determined by taking an average across all of these transcript-specific correlation 

values. Standard deviations for each entry were obtained by creating bootstrap replicates 

(see STAR methods).

Despite the range of different methods included in the benchmark, the spike-in based 

evaluation failed to identify a clearly superior entry. The top 14 entries, covering pipelines 

including Kallisto, Salmon, RSEM, Hera, and Express, all had statistically indistinguishable 

scores within a span of 8×10−3 of each other, with a standard deviation across all 

submissions of 4.16 × 10−2. The two top-performing entries were based on Salmon and 

submitted by the challenge organizers followed by another organizer-submitted version of 

Kallisto, scoring only slightly worse (p = 0.043) (Figure 3A). Of the entries submitted by 

challenge participants, the best performing entry was based on Kallisto, followed closely 

by RSEM and Hera. Entries submitted by the challenge organizers were not considered for 

deciding the challenge winner. However, because of the lack of separation between the top 

participant-submitted entries evaluated using spike-in controls, no winner was declared for 

the Isoform Quantification sub-challenge.

Features influencing the accuracy of isoform detection

Although no entries emerged as a leading approach for this sub-challenge, we investigated 

the influence of various aspects of the data on calling accuracy, to determine whether 

particular callers might be more accurate under certain circumstances. First, we attempted 

to identify any genomic features influencing the abundance estimates of the entries. We 

investigated transcript length, gene size, number of exons, and GC content, but did not 

find any correlation with the rankings of transcripts among the entries (data not shown). 

We note that while we expect transcript size and exon count to be inversely related to the 

accuracy, the spike-in design used in the challenge was likely too simplistic to reveal such 

dependencies.

Next, we analyzed, which spike-in quantities were misordered as part of the discordant pairs 

influencing the KTBS (STAR methods, Evaluating Isoform Quantification). Transcripts 

were spiked at 0, 5, 25, and 50 pg (see “spike-in fusion construction” section in STAR 

methods). Interestingly, there was an overwhelming majority of incorrectly predicted 

orderings between the 25- and 50-pg pairs, not only across transcripts (Figure S2B) but 
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also across cell line pairs (Figure S2C). The entries may have more difficulty in quantifying 

the 25:50 comparison either because the difference is merely doubled, whereas all of the 

other pairs have at least a 5-fold difference, or the spike-in amount is already saturated at 

the 25-pg level. For the other relative pairwise rankings—0:50, 0:25, and 5:50—there were 

no incorrect pairs among any of the entries. Since there was an obvious bias toward the 

incorrect 25:50 pairs in only a few transcripts, we re-ran the ranking after removing those 

pairs and we found the ranking to be even less discerning between submissions. In fact, most 

submissions tied for first place with only submissions using Kallisto and Cufflinks coming 

in last.

DISCUSSION

The winning submissions for the Fusion Detection sub-challenge, based on Arriba 

and STAR-Fusion, implement several strategies that may contribute to their superior 

performance over other approaches. Both entries make use of filtering strategies to eliminate 

potentially thousands of artifacts from true fusions among the chimeric reads found in 

RNA-seq alignments. Arriba identifies three types of false positives: alignment artifacts, 

in vitro-generated artifacts, and benign transcripts, which are erroneously classified as 

aberrant due to the incomplete annotation of genes. Alignment artifacts are mediated by 

sequence homology in the genome, causing reads to be mapped to the wrong locus, or by 

regions posing challenges to short-read aligners, such as homopolymers, tandem repeats, and 

loci subject to somatic hypermutation. By discarding reads with low sequence complexity, 

an excessive number of mismatches, or segments aligning to homologous genes, Arriba 

eliminates such spurious alignments. A substantial amount of artifactual chimeric fragments 

are produced in vitro during reverse transcription (Houseley and Tollervey, 2010) and 

amplified by the PCR step of library preparation. These artifacts are effectively reduced 

by ignoring PCR duplicates and by requiring a higher number of supporting reads with 

an increasing level of a gene’s background noise, estimated as the total number of fusion 

candidates involving that gene. Many benign transcripts are not annotated by available 

gene models, including circular RNAs, trans-splicing, read-through fusions, and alternative 

promoters. Such transcripts give rise to chimeric reads, which are hard to distinguish 

from reads originating from aberrant transcripts and may thus lead to false-positive fusion 

predictions. Such benign transcripts are discarded by Arriba with the help of a blacklist 

trained on samples from normal tissue. While false-positive filtering certainly helped top­

performing entries, we found that maintaining sensitivity was just as important to maintain 

accuracy. STAR-Fusion applies similar ideas, but with some small differences. For dealing 

with likely mismappings, reads with low complexity and paralogous sequences are excluded. 

To deal with the PCR artifact issue, STAR-Fusion requires more evidence, quantified by the 

number of supporting reads, for breakpoints that fail to match reference annotation splice 

sites. In the version of STAR-Fusion used for the competition, read mappings that anchored 

to regions of transcripts that matched the repbase repeat library (Bao et al., 2015) were 

excluded. STAR-Fusion uses a filter to remove “promiscuous” fusion calls. These calls are 

characterized when a fusion gene partner “A” has multiple partners, e.g., “A–B”, “A–C”, 

and “A–D”. Finally, STAR-Fusion utilizes a blacklist of “red herrings,” including fusions 

recurrently seen in normal data sets, which could be the result of trans-splicing or other 
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artifact-producing processes. Various additional elements are considered for removal as part 

of filtering steps for these top two methods (see Table S10).

If filtering out false positives is truly what separates the performance of entries, then one 

would expect the variability in false-positive calls across these entries to be higher than for 

true-positive calls. For example, in the extreme case that all entries find the same fusions 

but differ in the number of false positives, they would have the same sensitivity, i.e., zero 

standard deviation in the true positive rate (TPR) but a non-zero standard deviation in the 

false discovery rate (FDR). In fact, we do find this trend among the top-performing entries

—where top entries are defined as the nine submissions with F1 at least 0.25—in which 

the standard deviation of the TPR is 0.106 and nearly twice as high for the FDR, 0.201 

(Table S3). For example, the ninth versus the first report a similar number of true positives 

(448 versus 423, respectively) while the ninth called four times as many total fusions 

(2,465 versus 619). However, when considering all of the submissions, the variability is 

much more comparable and the relationship reversed, with the TPR standard deviation 

was calculated to be 0.310 and the FDR standard deviation was calculated to be 0.265. 

This suggests that the top-performing entries distinguish themselves from poorer-performing 

entries by maintaining both high sensitivity and precision. Whereas, when considering the 

top-performers among themselves, additional improvements were obtained by controlling 

the FDR possibly due to the benefits of the employed filtering strategies.

The challenge utilized the “Model to Data” approach (Ellrott et al., 2019; Guinney and Saez­

Rodriguez, 2018), where participants produced and shipped a functional prediction model to 

the challenge organizers that could be run on held-out data. There are many advantages to 

this setup beyond avoiding the transfer of large data files. Notably, participants never saw 

the final testing data set. Instead, the organizers provided simulated training datasets to allow 

participants to run their model, check their compatibility of output, estimate performance, 

and make adjustments as needed. Administrators ran containerized workflows on behalf of 

participants that specified all parameters needed for execution and thus all data remained 

protected. For example, the same set up could be used to preserve patient privacy in those 

cases where the evaluation data contain such sensitive information. All entries ranked on 

leaderboards are reproducible, rerunnable, and able to be distributed to the community for 

further analysis. For example, we expect subsequent efforts to create better fusion detectors 

may come from the investigation of “wisdom of crowds” ensembles (Marbach et al., 2012) 

that combine the strengths of the methods. The portability has allowed the top-performing 

fusion methods to be adapted into the NCI’s genomic data commons (GDC) workflow 

system and deployed across several large datasets. Methods profiled by this benchmarking 

effort were used to generate fusion calls on the NCI’s TARGET dataset and were included in 

release 25.0 of the GDC dataset. Future work datasets profiled with these methods will also 

include the BeatAML and CPTAC cohorts.

Recent systematic comparisons have been performed to evaluate RNA-seq analysis methods 

(Kanitz et al., 2015; Teng et al., 2016; Zhang et al., 2017). Kumar et al. (2016) conducted an 

impartial survey of 12 different methods based on their accuracy, length of execution time, 

and memory requirements. Zhang et al. (2017) and Kanitz et al. compare several methods 

on isoform detection and find accuracy dependent on gene complexity (e.g., the number 
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of transcripts or exons), read depth, and alignment method. Similar to our findings, both 

reviews report that the majority of methods perform similarly well and that a difference 

in accuracy across methods was only seen at higher transcript complexities when genes 

had more than 1–5 transcripts. Krantiz et al., then goes on to explore different memory 

and computational efficiency considerations, which was not a focus of our study. Teng et 

al. (2016) investigate data preprocessing and metrics for method comparison. They advise 

against using correlations on raw levels due to non-normality, which inspired our use of 

the non-parametric Tau-βeta correlations in this study. Several methods were not included 

in the challenge because they were not submitted by competing teams. The challenge 

administrators augmented the submissions with additional methods, however, a number 

of programs were excluded due to being either outdated or failing to pass sanity checks, 

producing thousands of fusion calls per sample. Additionally, a number of methods have 

been developed since the time of running the competition (see Table S1). Even so, recent 

reviews suggest our survey of methods here reflect those that are most competitive (Haas et 

al., 2019).

Our review here has included several tools, the use of spike-ins for an unbiased 

assessment of sensitivity, an objective evaluation framework in which the administrators 

have run submitted methods to generate all predictions, and a statistical procedure to infer 

background fusions to accurately measure precision. In addition to providing an evaluation 

of methods, our work contributes a tool for simulating RNA isoforms and fusions, a new 

benchmark dataset against which forthcoming methods can be compared, and all of the 

tested methods in standardized workflows for re-execution, which should facilitate further 

progress in this area of study. As part of our benchmark, we employed a computational 

simulation that can create a cancer transcriptome that includes alternative isoform levels 

as well as novel fusions. The simulator is available as an open-source repository and the 

full details of its design are described in a companion manuscript (unpublished data). 

However, while the in silico benchmarking provides a valuable assessment, an in vitro 
analysis was also used to avoid any evaluation biases among methods that use overlapping 

computational strategies with the simulator as well as to assess any issues in detecting RNA 

species stemming from laboratory and sequencing effects. For this reason, we synthetically 

constructed isoforms and fusion transcripts that were introduced into cell line backgrounds. 

The constructs were added at pre-specified quantities of 0, 5, 25, and 50 pg. While the 

spike-in design provided valuable information to rank fusion detection entries, we failed 

to elucidate a meaningful ranking of entries for the Isoform Quantification sub-challenge. 

All entries were able to perfectly identify higher from lower transcript levels between 

all comparisons except the two highest levels (e.g., 25 pg compared with 50 pg). We 

speculate that either the tested methods were not accurate enough to predict the 2-fold 

relative difference between the 25 and 50-pg quantities or the transcripts that were ultimately 

sequenced did not reflect the input quantities either due to saturation or internal cellular 

degradation that both effectively equalized the concentrations of these two spike-in levels. 

An important follow-up investigation could include an additional spike-in level among the 

array of levels tested here. For example, the use of an additional 10 pg could have helped 

assess methods in their ability to distinguish in the 2- to 2.5-fold range of resolution. It is our 

theory that the methodology to estimate transcript abundance may have plateaued or that the 
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challenge design itself lacked critical resolution to discriminate among methods. Additional 

experiments including higher quantities of spike-ins (25 to 50 pg range) also would help 

further elucidate the issue.

For the Fusion Detection sub-challenge, the spike-ins were effective for assessing the 

sensitivity of the submitted entries. However, there is an issue in estimating the precision of 

the entries because fusions were added to cell lines that may express their own background 

fusions. Thus, methods predicting the presence of such background fusions would be 

improperly penalized in a precision assessment. We, therefore, attempted to estimate the 

background fusions in a number of ways, first using long-read sequencing approaches that 

each failed for different reasons (STAR methods, attempts to assess background transcripts 

with long read sequencing). To compensate, we introduced a computational strategy to infer 

fusions present in the background from submitted predictions. We reasoned that in such 

cases the fusions would be predicted in multiple designs that included the same cell line 

(i.e., the background set of fusions should be the same or very similar), multiple submitted 

entries would predict such cases, and they would also be detected by more accurate entries. 

We computationally determined a set of fusions called the imputed truth (i-Truth) that were 

added to the spike-in truth set (see resource table for links to SMC-RNA-Eval code). The 

i-Truth contributed an additional 48 high-confidence fusion calls for the final evaluation. 

Follow-up validation revealed that 43 out of 48 of the i-Truth constructs were supported 

by one or more sources of external evidence. Thus, even in the absence of a ground truth 

orthogonal set, the procedure and results of this challenge establish a computational strategy 

highly effective for unbiased assessment of methods that could be applied more broadly to 

an additional set of problems beyond RNA-seq analysis.

The detection of RNA species is becoming an increasingly important diagnostic tool in 

the analysis of cancer samples, with multi-gene transcript abundance panels used for 

prognosis and prediction of response to therapy, and fusion transcripts used for diagnosis 

and prediction of treatment efficacy. These applications continue to expand, and an 

improved understanding of the ways in which the cancer transcriptome is dysregulated 

has the potential for basic, translational, and clinical applications in essentially every cancer 

type. Key applications will include refining tumor subtypes and their differentiation status, 

mapping clonal complexity, illuminating the role of the microenvironment, pinpointing the 

state and function of immune cells, linking transcriptomic biomarkers to targeted treatments, 

and understanding the differential activity of specific driver mutations. It remains unclear 

what sequencing and computational approaches will have sufficient accuracy to identify 

transcript variants and estimate their abundances for routine clinical use. Our results suggest 

that additional work is needed to identify fusions in complex samples. For example, the 

sensitivity for detecting the smallest quantities of a fusion in this challenge (5 pg) were 

82% ± 8% compared with 88.0 ± 9% for 25 pgand 88.7 ± 12% for 50 pg (see Table S11). 

The top caller suffered the same drop in sensitivity for the lowest spike-in level, achieving 

93.6% for the 5-pg spike-in compared with 98.9% (for 25 pg) and 100% (for 50 pg). If we 

assume that the 25 pg levels reflect the typical expression level of a fusion in a relatively 

pure tumor sample, then the 5-pg quantities reflect fusions expressed at 5-fold lower levels 

or those expressed at the same level in only one out of the five cells sequenced due to normal 

contamination or tumor subclonal heterogeneity. While suitable for routine cases, current 
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methods would lead to a large number of missed calls for subclonal variants or in samples 

with large amounts of normal tissue admixture. For example, at these estimated sensitivity 

levels, the best method is expected to miss 1 out of every 15 to 16 cases of a driving fusion 

if present in one out of every five subclones or if it is expressed at lower levels. On the 

other hand, for applications in which relative transcript abundances are used to calculate 

signature scores, such as the well-known PAM50 breast cancer subtypes, methods provide 

accurate quantitation. In conclusion, we identified, benchmarked, and made available in a 

standardized containerized format a suite of tools for estimating key features of the altered 

cancer transcriptome that should further the applicability of RNA’s use in patient care.

CONSORTIA

The participants of the SMC-RNA Challenge are Hongjiu Zhang, Yifan Wang, Yuanfang 

Guan, Cu Nguyen, Christopher Sugai, Alokkumar Jha, Jing Woei LI, and Alexander Dobin.

FEATURE IMPORTANCE ANALYSIS

Random forest models were created using R’s randomForest function, version 4.6–14, which 

implements Breiman’s random forest algorithm (based on Breiman and Cutler’s original 

Fortran code) (https://cran.r-project.org/web/packages/randomForest/randomForest.pdf).All 

parameters were left as default except for the number of trees which was set to 100. The 

feature importance analysis was performed using the the Boruta R package with default 

parameters, version 6.0.0 (https://www.jstatsoft.org/article/view/v036i11).

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Kyle Ellrott (ellrott@ohsu.edu)

Materials availability—This study did not generate new materials.

Data and code availability—SpikeIn Sequencing Data has been deposited at 

Synapse.org and is publicly available under the accession numbers: syn22344794.

Challenge workflows have been deposited at Github.org and is available under https://

github.com/smc-rna-challenge

rnaseqSim original code is publicly available at https://github.com/Sage-Bionetworks/

rnaseqSim

The scripts used to generate the figures reported in this paper are available at https://

github.com/smc-rna-challenge/SMC-RNA-Eval
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Any additional information required to reproduce this work is available from the Lead 

Contact.

METHOD DETAILS

Isoform and fusion simulation pipeline—The simulated benchmark was constructed 

using 32 training and 20 test datasets (Table S5). The datasets varied in the number of 

simulated fusion events ranging between 3 and 111 events. Other parameters that varied 

between datasets included read depth (50100 million reads), insert size (150 or 200 base 

pairs), coverage bias, and the abundance of individual transcripts.

These genomes were created using a new simulator called rnaseqSim (the source code can 

be found at https://github.com/Sage-Bionetworks/rnaseqSim ).

Fusion transcripts were simulated by randomly selecting two protein coding transcripts 

(using Ensembl v75 annotation). For each of the selected transcripts, a random number of 

exons are used to generate the fusion. If the transcript was selected as the donor, then the 

number of exons incorporated are counted from the beginning of the transcript. Conversely, 

if the transcript was selected as the acceptor, then the number of exons incorporated are 

counted from the end of the transcript. Selected transcripts are fused only at the exon-intron 

boundaries. Using the exon coordinates for each selected transcript, a synthetic fusion 

sequence is generated using the GRCh37.75 genome and biopython. A reference index is 

generated for the synthetic fusion sequence using RSEM v1.2.31 with the STAR 2.4.2a 

aligner.

For simulating isoform abundance, a diploid genome was synthetically designed to capture 

allele-specific SNPs and haplotypes during read generation. First, the GRCh37 genome 

build (Homo sapiens GRCh37.75) and GTF annotation (Homo sapiens Ensembl v75) 

were duplicated and chromosomes were labeled to distinguish the two sets of haploid 

chromosomes. bcftools consensus was then used to introduce phased SNPs found in the 

Genome in a Bottle into each set of haploid chromosomes. The diploid genome sequence 

and annotations were then used to generate a reference index with STAR v2.4.2a. Isoform 

abundance was simulated using abundance data originating from prostate cancer samples 

(Chen et al., 2019) and select TCGA samples including:

• TCGA-GBM: TCGA-26–5139-01A-01R-1850–01

• TCGA-LUAD: TCGA-44–6775-01A-11R-1858–07

• TCGA-LUSC: TCGA-21–1082-01A-01R-0692–07

• TCGA-OV: TCGA-24–1467-01A-01R-1566–13

• TCGA-BRCA: TCGA-BH-A1F8–11B-21R-A13Q-07

• TCGA-BLCA: TCGA-H4-A2HQ-01A-11R-A180–07

Abundance profiles were estimated for each sample using RSEM v1.2.31. Each profile was 

adjusted by adding noise, modeled using a gamma distribution, to a subset of transcript 

selected using a binomial distribution. Synthetic fusion transcripts were incorporated into the 

expression. An abundance is randomly assigned to the fusion transcript, such that its value 
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was greater than the overall median transcript abundance. Abundances are then normalized 

to sum to 1 million, i.e. TPMs (Li and Dewey, 2011; Wagner et al., 2012). During this 

normalization step, donor transcripts were removed. The abundance assigned to the fusion 

transcript was then divided (randomly following a uniform distribution) between the original 

donor transcript and the fusion transcript. Abundances were then allocated to one of two 

alleles in the diploid GTF annotation (previously described) using a uniform distribution to 

model allelic expression. Finally, RSEM v1.2.31 was used to simulate the generation of the 

FASTQ sequence reads.

Simulated tumor workflow deployment—Each entry was submitted as a defined 

workflow written using the Common Workflow Language (CWL v1.0). Source code for 

the algorithm and any dependencies needed for installing or running the algorithm were built 

into a Docker image by the participant. Workflow descriptions for all entries are available at: 

https://github.com/smc-rna-challenge and Docker images are available from https://quay.io/

organization/smc-rna-challenge. All workflows were provided the GRCh37.75 genome 

assembly and annotation as reference files. If additional reference files were required for 

the workflow, participants were allowed to upload files to synapse and link to those files 

using a synapse ID.

Deployment of workflows was done using ISB cloud resources (Google Compute Engine). 

Most entries for the Isoform Quantification sub-challenge were provided a virtual machine 

with 4 vCPUs and 15 GB of RAM (n1-standard-4) while most entries for the Fusion 

Detection sub-challenge were provided a virtual machine with 16 vCPUs and 60 GB of 

RAM (n1-standard-16). For some entries, the default resources were not sufficient to run, in 

which case, a virtual machine with more resources was provided (maximum 16 vCPUS and 

104 GB RAM, n1-highmem-16). All entries were provided a 400 GB persistent disk and a 

time limit of 35 hours to complete running of the workflow.

A virtual machine was created for each workflow being run on a given test dataset. The 

CWL workflow, docker image, default reference files, participant-provided reference files, 

and test datasets were pulled down onto the VM. A JSON file was generated to point to 

all necessary input files for the workflow. The CWL workflows were run with cwltool 

v1.0.20161007181528. Output files generated by the CWL workflows were stored in a 

Google Bucket for evaluation.

Spike-in fusion construction—For the fusion constructs, genes were randomly selected, 

with an eye only toward the likelihood of successful PCR during library preparation and 

a total length of less than 1kb. The Invitrogen GeneArt Gene Synthesis service built DNA 

constructs from our provided sequences, and the RNA spike-in material was generated using 

the NEB HiScribe T7 Quick high Yield RNA Synthesis Kit. Low abundances of these genes 

were observed post sequencing (Figure S3E). Additionally, to verify the presence of the 

spike-in products in the short read sequencing, we inspected the alignment of the reads using 

IGV to confirm reads mapped as expected across the junctions. We did this by including the 

constructed fusion sequences in the reference genome. This allowed the alignment algorithm 

to easily identify reads from the fusion constructs and verify that indeed hundreds of reads 

exist in the cell line files.

Creason et al. Page 16

Cell Syst. Author manuscript; available in PMC 2021 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/smc-rna-challenge
https://quay.io/organization/smc-rna-challenge
https://quay.io/organization/smc-rna-challenge


The spike-in constructs were programmed according to the design in Table S8. Some genes 

had multiple isoforms (up to 3). The transcript complexity (from 1 up to 3 per gene) varied 

across the samples. In addition, a range of fusions, from 7 up to 18, were included in the 

samples.

Benchmark transcript selection—To ensure the accuracy of our technical spike-in 

approach, we elected to assemble a list of transcripts known to be non-expressors in a 

suitable cell line. To this end, we assembled a cohort of normal breast tissue RNA-seq 

data from GTEx (GTEx Consortium, 2013), Fantom5 (Abugessaisa et al., 2017), Illumina 

Body Map (Petryszak et al., 2016) and TCGA (Nawy, 2018) to establish a baseline 

for all transcripts. To be considered a non-expressing transcript in normal breast tissue, 

transcripts were filtered to include only those with FPKM <= 0.5 and total expression of the 

corresponding gene with FPKM <= 0.9, where data was available for >= 80% of the samples 

(lincRNAs were excluded from consideration). Transcripts retained following this filtration 

of the normal data were confirmed to also be non-expressing in both the JWGray Breast 

Cancer Cell Line Panel (Neve et al., 2006) and in the TCGA BRCA RNA-seq data (Neve et 

al., 2006).

Criteria for transcript selection:

• We selected non-expressing genes in breast cancer cell lines, with individual 

transcript expression of FPKM <=0.5 and overall gene expression of with FPKM 

< 0.9

• We selected genes with 3–5 transcripts, of which one or more of the following 

structural variations were present in at least one of those transcripts:

– Alternate 5’ UTR

– Alternate 3’ UTR

– Cassette exon

– Retained intron

– Alternate transcription start site

– Alternate stop codon

• Transcripts with length >0.5kbp and < 1kbp

Isoforms selected for benchmarking were converted to spike-in RNA in identical fashion to 

that of the synthetic fusion set discussed above.

Final benchmark collection: 20 transcripts from 6 different genes, 3–5 transcripts/gene, 

plus 40 additional transcripts selected for construction of the 20 synthetic fusions (alternate 

splicing not taken into account for fusion).

As proof-of-concept we could accurately detect proportional increases in “expression” 

between different spike amounts, 5 replicates of MDA-MB-415 (breast adenocarcinoma 

metastasis) RNA was spiked with 5pg, 25pg, and 125pg and sequenced. Following this test 

run, we were satisfied with our ability to measure proportional “differential expression” 
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between the spike amounts. Further examination of this BCCL exploratory analysis 

indicated 5pg to be closest to endogenous expression of most transcripts in these cell lines 

while 125pg was excessively high, so the spike amounts were adjusted to 5pg, 25pg, and 

50pg.

For the benchmark experiment, we chose six cell lines for use in the challenge. These 

include A549 (lung carcinoma), HCC1143 (breast primary ductal carcinoma), Jurkat I 9.2 

(acute T-lymphoblastic leukemia), LNCaP clone FGC (prostate carcinoma metastasis), PC-3 

(prostate adenocarcinoma metastasis), and PC9 (non-small cell lung carcinoma). Cell lines 

were grown to subconfluency in RPMI media supplemented with 10% FBS.

From the original 40 selected transcripts and synthetic fusions, we selected 36 by removing 

the two highest and the two lowest expressing transcripts/fusions (including one failed 

construct), then randomly assigning each to one of six evenly populated spike-in groups. . 

Minor modifications to the random assignment were made to ensure no group contained 

more than one transcript from the same gene. The six cell lines were each divided into five 

aliquots. Four of these were each spiked with the transcripts/fusions from two of the six 

spike-in groups (12 constructs per replicate), attempting to randomize the groups per cell 

line as much as possible in order to minimize the pairing of any two groups within the same 

replicate. (Table S6). The fifth aliquot remained unadulterated. Finally, each sample aliquot 

underwent RNA sequencing.

RNA preparation and sequencing—RNA was isolated from cell lines using a Zymo 

Research Quick-RNA Kit following manufacturer’s instructions. Extracted RNA samples 

were divided into 5 aliquots (1 ug each) per cell line and spiked with different amounts 

of transcript and fusion constructs (Table S7). Library preparation for RNA-Seq was 

performed using the Agilent SureSelect Strand-Specific RNA Library Prep Kit. Samples 

were sequenced at the OHSU Massively Parallel Sequencing Shared Resource (MPSSR) 

core facility using the Illumina NextSeq500 for 2×100 cycles. The results of the sequencing 

have been uploaded to Synapse under syn22344794.

QUANTIFICATION AND STATISTICAL ANALYSIS

Attempts to assess background transcripts with long read sequencing—
Because spike-ins were added to established cell lines that contained their own background 

transcripts, we attempted to estimate the fusions present in the background by sequencing 

the cell lines using three different approaches based on long read sequencing data. First, we 

attempted direct long-read sequencing on the LNCaP and A549 cell lines, using MinION 

nanopore sequencing. We performed direct sequencing of poly-A RNA from A549 cell 

line which yielded 293,813 reads. We also performed nanopore sequencing of cDNA from 

A549 poly-A RNA, which yielded 281,319 reads. While there were fusions detected in 

the existing reads, the read depth was insufficient to conclusively rule out background or 

technical artifacts, and the large amount of sample RNA that would be required prevented 

further analysis of the matched samples used for spike-in studies. Second, we performed 

indirect long read sequencing to estimate the background. We obtained long-read sequencing 

of the LNCap cell line using the IsoSeq protocol, paired to matched short-read sequencing. 
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Integrated analysis of both the long- and short-read data to call fusions using IDP-Fusion 

(Weirather et al., 2015), resulted in one high confidence (supported by both short/long reads) 

fusion (chr5:95234564-/chr5:135587632+; KIAA0825-PCBD2). We compared the results 

of the hybrid short/long read fusion detection results with our own short read paired-end 

sequencing data for the LNCap cell and found no fusion calls for this exact fusion (same 

breakpoints or same donor/acceptor genes). We did observe 2 entries call 2 different fusions 

involving PCBD2 as the donor gene. This sample provided a comparison point, but would 

not take into account any fusion events that could have occurred in the passages that 

separated the two aliquots. Finally, we attempted to estimate false-positive rates using the 

Genome in a Bottle (GIAB) sample as a null model. To our knowledge, given the available 

transcriptomic data, no fusions have been detected for the SRR5665260 GIAB sample. 

Consistent with this expectation, we ran the IDP-Fusion caller (Weirather et al., 2015) 

using both the short reads and long reads from the sample and indeed found no identifiable 

fusions. Therefore, if any entries predicted fusions in this sample we could assume they 

represented false positives. We ran contestant entries using the short reads of the GIAB 

sample. A number of the entries failed to run on these new samples. In total, 19 of the 

entries were able to run on the GIAB short read data. The number of fusions predicted by 

entries ranged from 0 to 208 with an average of 56 (median 22) fusions called. In summary, 

the results on long read sequencing either provided too little sequencing depth to base fusion 

predictions or the results were inconclusive due to issues with entries failing to run.

Imputing an extended truth dataset for fusion evaluation—From the design of the 

experiment, three factors enabled deeper analysis of these potential native fusions. First, 

contestants had contributed a wide distribution of workflows composed of different detection 

methods and filtering options. Second, the same cell lines had been used multiple times 

across separate spike-in experiments that created a set of biological replicates. Third, the 

spike-in panel provided an estimate of the sensitivity of different entries as well as any 

potential meta-calling entry.

Given these factors, we created an imputed truth set (i-Truth) for each cell line made up 

of the known spike-ins and those predicted to be in the background based on a meta-caller 

created from the consensus of submitted entries. The first step in creating the meta-caller 

was to eliminate entries that were too similar, to remove the bias of having multiple, near 

identical methods over-influence what is interpreted as truth. Second, we removed entries 

that fell below a sensitivity cutoff, in this case a true positive rate of 0.6, which is the 

approximate sensitivity found when running callers on the spike-ins. This meta-calling was 

done at the cell line level, aggregating the calls across multiple spike-in experiments. This 

means the meta-calling approach would be unable to detect the spike-ins, which would only 

occur in a fraction of the biological replicates, but the background native fusions would be 

common across the replicates. Each i-Truth was based on an agreement cutoff, with the total 

number of agreeing calls across all the entries and all the biological replicates. Fifty percent 

agreement could come from half of the entries agreeing on a call across all the biological 

replicates, or all the entries agreeing across half of the replicates. Across the six cell lines, 

we used a threshold of two or more entries or replicates being in agreement, which would 
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yield a total of 30,031 potential fusion junction breakpoints. With five replicates per cell line 

and ten representative callers, there were 50 potential callsets.

We expect background fusions to be consistently predicted across these callsets but do 

not know a good agreement level across the callsets to set for a priori detection. Higher 

levels of required agreement decrease the total number of calls and increase the requirement 

that the calls be based on a wide variety of supporting methods and evidence. To identify 

an agreement threshold, we utilized the determined rate of recall seen in the spike-in set 

using the representative set of callers, which was 0.726. By using various agreement levels, 

we could create a new i-Truth set and evaluate both sensitivity and specificity. The total 

number predicted i-Truth sites vary as a function of the confidence level, measures as k 

out of the 50 callsets that predicted a site’s existence (Figure S1B). Conversely, as more 

low confidence sites are added to the i-Truth the average recall rate of entries decreases. 

At its lowest setting, an agreement level of 4%, the recall rate of the meta-caller is 5%, as 

the agreement rate increases, the total number of new sites added to the i-Truth decreases 

and the recall rate increases. For example, out of the 30,031 breakpoints, 289 of them were 

predicted by at least 10 out of 50 call sets (20%). By increasing the agreement rate to 50%, 

the recall rate of the meta-caller approached a recall rate of 0.736, similar to the recall rate 

seen in the spike-in data set. Using this threshold of agreement, 48 additional possible RNA 

fusions were predicted across the cell lines and used as the i-Truth set and added to the 

synthetic constructs. We used this extended set for evaluating the sensitivity and precision of 

individual entries.

Imputed truth fusion validation—We collected database reports and literature support 

for the 48 i-Truth fusions to determine prior predictions or validation for each. In searching 

for previous observations of these 48 fusions, 44 had some level of breakpoint support. Of 

these, 28 were exact matches in both the donor and acceptor breakpoints as well as occurring 

in the correct cell line or tumor type, as per either the Broad Cancer Cell Line Encyclopedia 

(Ghandi et al., 2019; Panigrahi et al., 2018), a unique database which accumulates and 

reports fusion support data from multiple databases at once. At least 3 fusions have been 

experimentally validated in previous literature (Guo et al., 2016; Maher et al., 2009; Winters 

et al., 2018). While the contents of these databases would have been generated using 

source material parallel to the sequencing used in the benchmark, these databases are likely 

generated using the same algorithm. The summary of this analysis can be found in Table S9. 

The spreadsheet covers results from both the CCLE and from FusionHub, which compiled 

reports from the following databases and/or methods for predicting and reporting fusions:

• 18Cancers [EC] - FusionCatcher

• Babiceanu Dataset [BD] - SOAPfuse

• ChimerKB [KB] - Fusion database with FISH, SangerSeq, or RT-PCR validation

• ChimerSeq [CS] - PRADA, FusionScan, TopHat-Fusion, ChiTaRS

• ChimerPub [CP] - PubMed text mining

• ChiTaRS-2.1 [CH] - Database of chimeric transcripts
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• FusionCancer [FC] - Tophat2, FusionMap, SOAPfuse, chimerascan

• Klijn Database [KD] - GSNAP

• Known Fusions [KF] - FusionCatcher fusions from literature

• Literature [LT] - Known fusions compiled from literature

• Prostate Dataset [PD] - Tophat2

• Tumor Fusions GDP [TF] – PRADA

• 1000 Genomes [TG] - FusionCatcher for 1000 Genome project

• GTEx [GX] - FusionAnnotator & FusionCatcher on normal tissue

• Non Tumor Cells [NT] - FusionCatcher for non-tumor cell

Evaluating Isoform Quantification—The Isoform Quantification sub-challenge was 

evaluated using the Kendall’s Tau-β correlation coefficient. Simulated data was initially 

evaluated using Spearman correlation coefficient as the input model data for the simulator 

was TPM quantities, fully described and in the same dimension as the results data being 

produced by the submissions. However, the spike-in data was much more sparse, with 18 

separate isoforms spiked in at three different concentrations. Additionally the truth data from 

the experiment involved picograms of spike-in material, a much different metric than the 

results. For this reason, the scoring against the spike-in set was done using Kendall’s tau 

coefficient to evaluate rank based correlation.

For synthetically generated samples, in the Isoform Quantification sub-challenge, the 

abundance, in the form of Transcripts Per Million (TPM) is a known input into the 

simulator. Calculation of a Spearman correlation coefficient of the TPM outputs for the 

entries could be fully calculated. However, evaluation of the isoform abundance in the 

spike-ins is confounded by two factors: 1) the input quantities are much more sparse and 

2) the units of measurement are not linearly associated to the output units. The full spike-in 

experiment was developed by spiking in pairs of transcripts across 6 different cell lines, 

which causes a much more sparse set of possible points for evaluation. Secondly, the inputs 

to the spike-in system were in picograms of material spiked into the system. We have 

demonstrated correlation of spike-in quantity to TPM (shown in Figure S2E), but this is for 

the same transcript across multiple samples. Each transcript will have a different coefficient 

that connects the spike-in amount in picograms to the output TPMs. This means that direct 

comparison between different transcripts in a single sample in the TPM space could be 

distorted by this mix of coefficients. Thus, for evaluating isoform quantity in the spike-in set, 

we evaluated the predicted abundance level of a single transcript across multiple samples.

In order to evaluate an entry’s ability to determine isoform abundance in the spike-in 

samples, we calculated a Kendall’s Tau-β Score (KTBS), by first calculating separate 

Kendall Tau-βeta correlations for each transcript (across replicates and cell lines). The 

Kendall’s Tau-β correlation thus compares the agreement of the abundance ordering 

between the predictions and the truth for one transcript. Importantly, the Kendall Tau-β 
statistic makes adjustment for ties, which do exist in our truth set.
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The KTBS for each entry was then defined as the mean of the Kendall Tau-β correlations 

computed for each of the 18 transcripts. (Figure 3B). We then ranked the submissions 

by KTBS (Figure 3C). Because this ranking resulted in close scores among many entries, 

we performed a leave-one-out cross-validation and bootstrap ranking (Figure 3A). The 

leave-one-out procedure was performed by setting aside one transcript from the KTBS 

calculation to ensure that any one transcript did not unduly influence the ranking of any 

given method. The final ranking of the leave-one-out procedure was based on the average 

rank of the method across 18 folds. In order to more finely compare methods with similar 

accuracies, we performed a bootstrap procedure. To do this, for each method, , we drew 

bootstrap samples from the 18 transcript Kendall Tau-β correlations 1000 times. We then 

ranked the methods by the mean of each Tau-β score distribution. This allowed us to 

estimate and significantly compare the mean and variance of the closely ranked methods. We 

also confirmed that there was no bias between genes by calculating a Tau-β correlation score 

within the 3 transcripts per gene and the 5 replicates among cell lines (Figure S2A).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The SMC-RNA Challenge benchmarked isoform quantification and fusion 

detection methods

• These methods were benchmarked using both in silico and in vitro datasets

• Methods were captured using reproducible computing methods, including 

docker and CWL

• The best methods have been incorporated into the NCI’s Genomic Data 

Commons
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Figure 1. Overview of the challenge
(A–C) The challenge generated simulated (or in silico) and spike-in datasets represented as 

RNA-seq reads (FastQ files) and ground truth. Challenge participants could submit entries 

(i.e., CWL workflows and Docker images) as individuals or teams using Synapse. Submitted 

entries were run on the FastQ files using cloud-based compute resources to generate 

predictions. The resulting predictions were evaluated based on statistical performance 

measurements. Evaluation of the Fusion Detection sub-challenge (B) used four types of 

input datasets to calculate sensitivity and either precision or the total number of fusion calls. 

Datasets where the fusion genes are known are represented as red (5’ donor) and blue (3’ 

acceptor), and datasets where unknown fusion genes may exist are represented as light and 

dark gray. The confusion matrix displays the known (green), unknown (red), and irrelevant 

(gray) parameters used to calculate the subsequent statistical metrics. Evaluation of the 

isoform quantification sub-challenge (C) used two metrics for evaluating the correlation of 

predictions to the truth. The transcriptome-wise evaluation compared predictions and truth 
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in a single sample across all transcripts using a Spearman correlation. The sample-wise 

evaluation compared predictions and truth for a single transcript across multiple sample 

replicates using Kendall’s tau-β.
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Figure 2. Boruta feature importance analysis across by fusion submissions
(A–D) A heatmap showing results from performing the Boruta algorithm on each 

submission’s false-positive fusion events (A) and false-negative fusion events (B). Each 

cell in the heatmap represents the Z score mean decrease in accuracy. Higher Z scores are 

in red and represent more important features. Rows are the fusion submission names and 

columns are the features. Only features that had a mean value greater than Boruta’s shadow 

maximum value are shown. Boxplots showing results from performing the Boruta algorithm 

on all Fusion Detection sub-challenge submissions. (C) is the importance analysis against 
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false positives and (D) is against the false negatives. The y axis represents the Z score MDA 

and features are across the x axis. The red plots are the Z scores of the actual features 

and blue are Boruta’s shadow features, which are considered the randomized background 

features. Only features that performed better (p < 0.05) than the random features are shown 

in this plot.
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Figure 3. Isoform abundance Kendall Tau-β correlation coefficient bootstrap
(A–C) Ranking of methods based on their performance in predicting isoform levels as 

measured by 1,000 bootstrap replicates of the Kendall Tau-β score (KTBS) (see STAR 

methods). The x axis represents the submissions and the y axis the KTBS. Each boxplot 

represents the 1,000 mean Tau-β scores for each bootstrap. Results of the Student’s t 

test for closely ranked submissions shown between boxplots. Values greater than 0.05 

were considered as ties between submissions. (B and C) Kendall’s tau-β correlation by 

transcript and submission method. Plots show Kendall’s tau-β correlation coefficient for 
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each transcript with Submission ID across the x axis (B) or transcript across the x axis (C). 

The color corresponds to the feature in the legend.

Creason et al. Page 31

Cell Syst. Author manuscript; available in PMC 2021 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Creason et al. Page 32

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

SpikeIn sequencing Data https://www.synapse.org/Synapse:syn22344794 N/A

Experimental Models: Cell Lines

PC-3 Joe W. Gray Lab N/A

Jurkat I 9.2 Joe W. Gray Lab N/A

HCC1143 Joe W. Gray Lab N/A

LNCapFGC Joe W. Gray Lab N/A

PC-9 Joe W. Gray Lab N/A

A549 Joe W. Gray Lab N/A

Oligonucleotides

Fusion Spike-in DNA templates Integrated DNA Technologies N/A

Software and Algorithms

rnaseqSim https://github.com/Sage-Bionetworks/rnaseqSim N/A

SMC-RNA-Eval https://github.com/smc-rna-challenge/SMC-RNA-Eval N/A
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