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Despite several decades of research, most mental health treatments are based on

pharmacological manipulations that globally affect the nervous system. Such treatments

often lead to undesired side effects and short term symptomatic relief. The difficulty of

diagnosing and treating mental health illnesses stems from the overwhelming complexity

of the brain and is exacerbated by the fact that our ability to probe, simultaneously, the

activity of dynamic and distributed brain networks is limited. In this dissertation, I propose

an alternative way to tackle the mental health problem by using high-resolution imaging-
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based brain-computer interface (BCI) neurotechnology. I focus on new neuroimaging

technology that allows us to monitor the electrical activity of cortical networks at low-

cost and high spatiotemporal resolution using noninvasive electroencephalographic (EEG)

measurements. This technology will serve as the “neural decoder” component of yet to

come imaging-based closed-loop systems that can effectively restore impaired cognition.

The decoder allows a BCIs to dynamically probe specific cognitive abilities of the subject

in search for signatures of circuit dysfunctions. Then, various types of feedback can be

designed to induce the engagement of neural populations that can compensate for the

detected aberrant neuronal activity.

In this dissertation, first, I develop the mathematical framework to efficiently

map scalp EEG responses back into the cortical space, and by doing so, I show that

the biological mechanisms responsible for the neurocognitive processes of interest are

easy to study. Of theoretical and practical relevance, I demonstrate that this framework

successfully unifies three of the most common problems in EEG analysis: data cleaning,

source separation, and imaging. Then, I develop the algorithmic and software machinery

necessary to implement high-resolution imaging-based BCIs. Finally, I analyze data from

healthy adults performing a self-paced unconstrained schoolwork-like computerized task

and show that within the proposed framework, I can identify brain network correlates

of attention switches at a millisecond time scale. Since attention-related dysfunctions

are linked to several psychiatric disorders, these results represent a step forward towards

developing BCI interventions to treat several mental health illnesses.
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Chapter 1

Introduction

1.1 The mental health problem

A mental illness can be defined as a mental, behavioral, or emotional disorder that

can result in mild, moderate, or severe functional impairments that interfere with life

activities. These conditions include depression, anxiety and bipolar disorders, attention-

deficit/hyperactivity disorder, autism, schizophrenia, among others. Despite substantial

advances in drug therapies, according to the National Institute of Mental Health (NIMH),

nearly one in five adults in the U.S. lives with a mental health illness1, that was 46.6

million in 2017.

The difficulty of diagnosing and treating these conditions stems from the facts that

their genetic, neurological, and environmental causes remain poorly understood. Mental

illnesses are likely to be the result of dysfunctional neural circuits [Akil et al., 2010].

Developmental, structural, and functional defects in these circuits can lead to a plethora

of symptoms. And since thousands of genes are involved in the regulation of neural

development and function, abnormalities in one or more of them can lead to complex

neuropsychiatric phenotypes. In addition, cellular metabolic dysfunctions and brain lesions

can disturb brain circuits in complicated ways, thereby resulting in ambiguous clinical

manifestations. This overwhelming complexity is exacerbated by the fact that our ability
1https://www.nimh.nih.gov/health/statistics/mental-illness.shtml
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to monitoring the functional activity of dynamic brain networks is limited.

In this dissertation, I focus on the development of neuroimaging technology that

allows us to monitor the electrical activity of cortical networks in a noninvasive way,

with low-cost, and high spatiotemporal resolution. This technology can serve as the

“neural decoder” component of yet to come imaging-based closed-loop brain-computer

interface (BCI) systems in which we can dynamically probe specific cognitive abilities in

search for signatures of circuit dysfunctions while giving feedback targeted to inducing

the engagement of neural populations that can compensate the aberrant neuronal activity

(see Fig. 1.1). Although the feedback component of such a system is beyond the scope of

this dissertation, in Chapter 4 I develop a library that can aid in its implementation.

1.2 EEG source imaging BCI in mental health

We can define a BCI as a bidirectional communication channel between a brain and a

computer with the purpose of compensating dysfunctional neuronal activity, rehabilitating

motor skills, or enhancing a cognitive ability. Likewise, a closed-loop BCI can be defined

as a BCI that uses stimulation and feedback loops to adapt its communication channel to

ongoing changes in brain dynamics, task goals, and environmental signals. A promising

application of closed-loop BCI technology to clinical neuroscience is the development of

personalized computerized therapies that can target specific neural circuit dysfunctions

leading to psychiatric disorders.

The electroencephalogram (EEG) is appealing for developing BCI neurotherapeutics

because it is noninvasive, has an excellent temporal resolution, and is now available as

low-cost mobile technology. Traditional EEG-based BCIs are implemented using features

(neuromarkers) derived from the sensor data collected on the scalp. However, since the

electrical activity of EEG sources is mixed by several layers of tissue while propagating from

the cortex to the scalp, sensor-space features constitute a loose reflection of the underlying
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brain processes of interest and are often confounded by other non-neural (ocular/muscular)

responses unrelated to the targeted cognitive state. Furthermore, even if we can decode

cognitive and behavioral states form scalp-space features with high accuracy, that doesn’t

help us to further our understanding of the brain network mechanisms responsible for

mental illnesses. Thus, despite impressive advances in signal processing and machine

learning algorithms, the use of BCI in mental health remains limited.

The central theme of this dissertation is the development of the mathematical

framework that allows us to map brain responses measured by EEG back into a space

where the neurobiological mechanisms responsible for the cognitive behaviors of interest are

easy to study. In contrast to the common black-box approach followed by most machine

learning practitioners, here we want to learn about neural circuit dysfunctions that lead

to mental illnesses, so we need to be able to interpret the parameters of our models in a

neurobiological context. Therefore, imaging-based BCIs have the potential to fulfill two

important objectives of modern clinical neuroscience: 1) to characterize the brain network

dysfunctions that lead to psychiatric illnesses and 2) to develop non-invasive circuit-specific

personalized neurocognitive interventions.

To support closed-loop BCI applications such as the one depicted in Fig. 1.1, EEG

signal processing algorithms need to be fast and robust to artifacts. Although the methods

presented here can be used to analyze data offline, in which case processing speed is not a

concern, in online systems, we usually monitor and perturb brain dynamics that evolve

at a millisecond time scale; thus we need processing algorithms that can operate at that

speed. Furthermore, to design neurotechnology that can function successfully in the real

world (i.e., outside of a tightly controlled lab environment and without user intervention),

we need to obtain data representations that adapt to the statistics of the sensor noise,

minimizing the effect of biological and environmental artifacts, while keeping up with the

speed of the measurements. I show that the framework proposed here unifies three of the

most common problems in EEG analysis: data cleaning, source separation, and source
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imaging. The solution of these dissimilar problems can be understood as the optimization

of a quantity known as the Bayesian evidence of a biologically inspired model of how

cortical sources give rise to the noisy EEG voltages measured on the scalp. Furthermore, I

show that his framework yields an implementation that can achieve real-time performance.

Figure 1.1. Schematic of the proposed closed-loop neurotechnology. EEG time series are
collected while the subject engages naturally in daily life activities. A processing pipeline
estimates the inverse mapping from signals in the sensor space onto the cortex minimizing
the effects of artifacts without user intervention. Neural features, such as source power
and connectivity can be calculated and passed onto a machine learning module to perform
a cognitive state estimation. Depending on the cognitive state, feedback may be delivered
to steer the mental state of the subject towards the desired target.

1.3 Attention regulation in mental illness

Since developing closed-loop neurotechnology that can monitor, restore, and enhance

general cognitive abilities may be a career-long endeavor, as a proof of principle, here

I study the brain network mechanisms that may be involved in the switch of attention

in an unconstrained self-paced schoolwork computerized task. Since attention-related

brain network dysfunctions have been observed in several psychiatric disorders [Arnsten

and Rubia, 2012; Millan et al., 2012], including attention-deficit/hyperactivity disorder,

post-traumatic stress disorder, schizophrenia, and even mood disorders such as depression
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and anxiety, I use this example to demonstrate the potential of the proposed imaging

framework to unveil the neural mechanisms of mental illnesses and develop effective BCI

neurotherapeutics.

1.4 How to read this document and outline

The rest of the dissertation is organized as follows. In Chapter 2, I develop a

unifying Bayesian framework for EEG data cleaning, source separation, and imaging; this

is the methodological core of the dissertation. Chapters 3-4 build up the algorithmic and

software machinery to implement imaging-based BCIs. In Chapter 3, I redesign parts of the

block-sparse Bayesian learning algorithm to yield sensor noise adaptation and EEG source

estimates in real-time; although the algorithm is developed assuming artifact-free EEG

data, it can be recast to invert the probabilistic generative model proposed in Chapter 2.

In Chapter 4, I develop SimBSI, a graphical library for the rapid prototyping of closed-loop

BCIs using the brain imaging methods developed in earlier chapters. In Chapter 5 I apply

the framework of Chapter 2 to the study of the cortical networks involved in the switch of

attention of healthy adult subjects during an unconstrained schoolwork-like computerized

task.

Each chapter is as auto-contained as possible, so in principle, they can be read in

any order. The left panel of Fig. 1.2 shows the default order, which may be more suitable

for readers with a background in neuroimaging, signal processing, and data science. This

order goes from the mathematical framework to algorithm and software development to

a cognitive state decoding application. The order displayed on the right panel may be

more appropriate for readers with a background in cognitive sciences or mental health,

as it starts with the application and software tools for BCI and then progresses onto the

mathematical framework.
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Chap-
ter

Read as a neuroimaging or
data scientist (default order)

1
Unification of EEG data
cleaning, source sep-
aration and imaging

2
Fast block-sparse Bayesian

learning inverse solver

3
SimBSI: rapid prototyp-
ing of closed-loop BCIs

4 Attention switch in an
unconstrained real-world task

Chap-
ter

Read as a cognitive scientist
or mental health practitioner

4
Attention switch iden-
tification in an uncon-
strained real-world task

3
SimBSI: rapid prototyp-
ing of closed-loop BCIs

1
Unification of EEG data
cleaning, source sep-
aration and imaging

2
Fast block-sparse Bayesian

learning inverse solver

Figure 1.2. Recommended reading order of this dissertation depending on reader’s
background and interest. At a glance, the dissertation is organized as follows: Chapter 2 is
the theoretical framework, Chapters 3-4 build up the algorithmic and software machinery
to analyze imaging data and implement closed-loop BCIs, and we finalize in Chapter 5 with
an application of EEG source imaging to the study of attention switches in a real-world
computerized task.

1.5 Notation

Unless otherwise stated, throughout this document I use the following notation.

Bold lowercase and uppercase characters or symbols denote column-wise vectors and

matrices respectively. IN represents a N × N identity matrix. x̂ is the estimate of

parameter x. The character N is used to denote the length of an array along some

dimension, e.g., if x ∈ RNx , then Nx denotes the length of vector x. Lastly, ‖A‖2
F denotes

the square of the Frobenius norm of matrix A, trace(ATA).
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Chapter 2

A Bayesian framework for unifying
data cleaning, source separation and
imaging of electroencephalographic sig-
nals

Abstract

Electroencephalographic (EEG) source imaging depends upon sophisticated signal

processing algorithms for data cleaning, source separation, and localization. Typically,

these problems are addressed by independent heuristics, limiting the use of EEG images

on a variety of applications. Here, we propose a unifying parametric empirical Bayes

framework in which these dissimilar problems can be solved using a single algorithm

(PEB+). We use sparsity constraints to adaptively segregate brain sources into maximally

independent components with known anatomical support, while minimally overlapping

artifactual activity. Of theoretical relevance, we demonstrate the connections between

Infomax ICA and our framework. On real data, we show that PEB+ outperforms Infomax

for source separation on short time-scales and, unlike the popular ASR algorithm, it can

reduce artifacts without significantly distorting clean epochs. Finally, we analyze mobile

brain/body imaging data to characterize the brain dynamics supporting heading compu-

tation during full-body rotations, replicating the main findings of previous experimental
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literature.

2.1 Introduction

The electroencephalogram (EEG) is a noninvasive functional brain imaging modal-

ity that allows the study of brain electrical activity with excellent temporal resolution.

Compared to other noninvasive imaging modalities such as fMRI, PET, SPECT, and

MEG, EEG acquisition can be mobile and more affordable [Mcdowell et al., 2013; Mehta

and Parasuraman, 2013], allowing the widespread study of human cognition and behavior

under more ecologically valid experimental conditions [Makeig et al., 2009]. Imaging

cognitive processes while participants engage naturally with their environment (natural

cognition in action [Gramann et al., 2014]) has potential for developing a new generation

of applications in brain-computer interfaces (BCI), mental health, rehabilitation, and

neuroergonomics [Jungnickel and Gramann, 2016; Mishra and Gazzaley, 2014; Wagner

et al., 2016]. However, despite impressive methodological advances in the estimation of

the electrical activity of the cortex from EEG voltages recorded on the scalp, a number of

practical and theoretical issues remain unsolved.

Imaging EEG source activity (also known as electromagnetic source imaging or

ESI) is challenging for several reasons. First, since many configurations of currents in

the brain can elicit the same EEG scalp topography [Michel and Murray, 2012], it entails

solving an ill-posed inverse problem [Lopes da Silva, 2013]. Second, the EEG signal is

often contaminated by artifacts of non-brain origin such as electrooculographic (EOG) and

electromyographic (EMG) activity that need to be identified and removed. Third, there is

evidence that large-scale brain responses measured by EEG are generated by underlying

cortical dynamics that evolve over time and can exhibit nonlinear features [Breakspear,

2017; Khambhati et al., 2018], thereby rendering the simplifying assumptions of linearity

and stationarity used by most inverse methods hard to justify. These problems are usually
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addressed separately using a variety of heuristics, making it difficult to systematize a

methodology for obtaining biologically plausible EEG source estimates in the presence of

artifacts and nonlinear and nonstationary dynamics. The objective of this chapter is to

develop a unifying Bayesian framework in which these, apparently dissimilar, problems

can be understood and solved in a principled manner using a single algorithm.

To cope with the ill-posed nature of the inverse problem and ensure functional

images with biological relevance, several inverse algorithms have been proposed that seek

to estimate EEG sources subject to neurophysiologically reasonable spatial [Baillet et al.,

2001; Friston et al., 2008; Haufe et al., 2011; Pascual-Marqui et al., 2002; Trujillo-Barreto

et al., 2004], spatiotemporal [Martínez-Vargas et al., 2015; Trujillo-Barreto et al., 2008;

Valdés-Sosa et al., 2009], and frequency-domain [Gramfort et al., 2013] constraints, just to

mention a few examples. These approaches can work relatively well when the EEG samples

are corrupted by Gaussian noise and the signal to noise ratio (SNR) is high. In practice,

however, raw EEG data are affected by many other types of noise such as interference

from the 50/60 Hz AC line, pseudo-random muscle activity, and mechanically induced

artifacts, among others. Thus, before source estimation, non-Gaussian artifacts need to be

removed from the data.

There is a plethora of methods for dealing with artifacts corrupting the EEG

signal [Islam et al., 2016; Mannan et al., 2018]. Popular approaches used in real-time

BCI applications are based on adaptive noise cancellation [Kilicarslan et al., 2016] or

Artifact Subspace Removal (ASR) [Mullen et al., 2015] algorithms. The former has the

inconvenience that an additional channel recording purely artifactual activity (i.e., EOG or

EMG activity not admixed with EEG) needs to be provided, while the latter rests on the

assumption that the statistics of data and artifacts stay the same after an initial calibration

phase. In studies where the data can be analyzed offline, artifactual components can be

largely removed using Independent Component Analysis (ICA) [Jung et al., 2000]. ICA-

based cleaning, however, has the drawback that non-brain components need to be identified
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for removal, which is usually done manually based on the practitioner’s experience.

ICA is a special case of blind source separation (BSS) method [Cichocki and Amari,

2002] that can be used to linearly decompose EEG data into components that are maximally

statistically independent. ICA has been used to analyze event-related potentials (ERP)

under the assumptions that during the task 1) the decomposition is stationary and 2)

that brain components can be modeled as a predefined number of dipolar point processes

with fixed spatial location and orientation [Makeig and Onton, 2011]. The stationarity

assumption can be relaxed using a mixture of ICA models [Palmer et al., 2011] while

the selection of brain scalp projections is typically done either manually or automatically

based on the residual variance afforded by a dipole fitting algorithm. The practical use

of ICA has been limited by its computational cost and the need for user intervention.

Only recently, a real-time recursive ICA algorithm has been proposed [Hsu et al., 2016],

as well as a number of automatic methods for minimizing the subjectivity of manual

component selection [Pion-Tonachini et al., 2017; Radüntz et al., 2017; Tamburro et al.,

2018]. Despite these advances, turning ICA into a brain imaging modality requires that

after source separation, we solve the inverse problem of localizing the set of identified

brain components into the cortical space.

One way of estimating EEG sources subject to multiple assumptions (constraints)

in a principled manner is to use the framework of parametric empirical Bayes (PEB)

[Casella, 1985; Morris, 1983]. In this framework, constraints are used to furnish prior

probability density functions (pdfs). Empirical Bayes methods use data to infer the

parameters controlling the priors (hyperparameters), such that those assumptions that are

not supported by the data can be automatically discarded without user intervention. Here

we use priors to “encourage" source images to belong to a functional space with biological

relevance, but the exact form of those priors is determined by the data (empirically). In

the context of sparsity-inducing priors, PEB is sometimes referred to as Sparse Bayesian

Learning (SBL) [Tipping, 2001]. The PEB framework has been applied extensively to
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brain imaging for inverting hierarchical models of fMRI and PET [Friston et al., 2002] as

well as EEG responses [Friston et al., 2008; Henson et al., 2011].

In this chapter, within the PEB framework, we propose a probabilistic generative

model (PGM) of how the raw EEG time series arises from the superposition of the brain

and non-brain (artifact) source activity. We use an anatomical brain atlas to parameterize

the source prior such that we induce sparsity in the number of cortical regions active at

any given time (this is known in the SBL literature as block-sparsity [Zhang and Rao,

2013]). Then, our model can be inverted using an efficient block SBL algorithm recently

proposed by Ojeda et al. [2018]. Henceforth, we refer to this new approach as PEB+

(PEB with the addition of artifact modeling). Our main contribution is that, by explicitly

modeling non-brain sources within the PEB framework, we can unify three of the most

common problems in EEG analysis: data cleaning, source separation, and source imaging.

In addition, we show that the PEB+ algorithm has online adaptation, thereby allowing it

to capture transient brain dynamics. On the theoretical side, we point out the connections

between distributed source imaging and ICA, two popular approaches that are often

perceived to be at odds with one another.

The rest of the chapter is organized into two main sections concerned with methods

and results respectively. Methods: In Section 2.2.1 we propose the augmented PGM

of the EEG taking into account the contribution of artifact sources and motivate all our

modeling assumptions. In Sections 2.2.3-2.2.4 we point out the connections between PEB+

and ICA. Results: In Section 2.3.1 we explain how to construct an empirical dictionary of

artifact scalp projections. In Sections 2.3.2, 2.3.3, and 2.3.4 we investigate the respective

source imaging, separation, and data cleaning capabilities of the PEB+ algorithm.
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2.2 Methods

It has been shown that popular source estimation algorithms used in ESI such as

weighted minimum l2-norm [Baillet et al., 2001], FOCUSS [Cotter et al., 2005; Gorodnitsky

and Rao, 1997], minimum current estimation [Huang et al., 2006], sLORETA [Pascual-

Marqui et al., 2002], beamforming [Van Veen et al., 1997], variational Bayes [Friston et al.,

2008], and others can be expressed in a unifying Bayesian framework [Wipf and Nagarajan,

2009]. We extend this framework by explicitly modeling non-brain artifact sources.

2.2.1 Augmented probabilistic generative model

In source imaging, the neural activity is often referred to as the primary current

density (PCD) [Baillet et al., 2001] and it is defined on a grid of known cortical locations

(the source space). Typically, a vector of Ny EEG measurements at sample k, yk ∈ RNy ,

relates to Ng PCD values, gk ∈ RNg , through the following linear equation [Dale and

Sereno, 1993],

yk = Lgk + ek, k = 1, . . . , N (2.1)

where ek ∈ RNy represents the measurement noise vector. The PCD is projected to

the sensor space through the lead field matrix L = [l1, . . . , lNg ] ∈ RNy×Ng (Ny � Ng)

where each column li denotes the scalp projection of the ith unitary current dipole with

fixed orientation within the source space. When dipole orientations are considered, then

L ∈ RNy×3Ng and we determine a source vector gk ∈ R3Ng . The lead field matrix is usually

precomputed for a given electrical model of the head derived from a subject-specific MRI

[Hallez et al., 2007]. Alternatively, if an individual MRI is not available, an approximated

lead field matrix obtained from a high-resolution template can be used [Huang et al.,

2016]. Then, the inverse problem of the EEG can be stated as the estimation of a source

configuration ĝk that is likely to produce the scalp topography yk.

In the generative model presented above, the noise term ek is assumed to be
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Figure 2.1. Proposed augmented generative model of the EEG. The model postulates
that the EEG scalp topography yk arises from the linear superposition of brain gi,k and
artifact νj,k components weighted by their respective scalp projections li and aj, corrupted
by spatially uncorrelated Gaussian noise ek.

Gaussian and spatially uncorrelated with variance λ. This simplification is acceptable

as long as EEG topographies are not affected by non-Gaussian pseudo-random artifacts

generated by eye blinks, lateral eye movements, facial and neck muscle activity, body

movement, among others. Therefore, before source estimation, EEG data are usually

heavily preprocessed and cleaned [Bigdely-Shamlo et al., 2015]. Since artifacts contribute

linearly to the sensors, ideally, one would like to characterize their scalp projections to

describe more accurately the signal acquisition. To this end, we propose the following

generalization of Eq (2.1),

yk = Lgk + Aνννk + ek (2.2)

where ννν ∈ RNν is a vector of Nν artifact sources and A = [a1, . . . , aNν ] ∈ RNy×Nν is a

dictionary of artifact scalp projections (see Fig 2.1).

Although the entries of A that correspond to muscle activity may be obtained

based on a detailed electromechanical model of the body [Böl et al., 2011], in most studies

this approach may not be feasible due to computational and budgetary constraints. Janani

et al. [2017] modelled A by expanding the lead field matrix to account for the contribution

of putative scalp sources, which were assumed to be the generators of EMG activity.

They used sLORETA to estimate brain and scalp sources simultaneously. Although this
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approach was shown to be as effective as ICA-based artifact removal, it was suggested

by the authors that the use of the non-sparse solver sLORETA may lead to unrealistic

configurations of brain and non-brain sources. Similarly, Fujiwara et al. [2009] augmented

the magnetic lead field matrix to model the scalp contribution of two current dipoles

located behind the eyes and used a Bayesian approach, that has similarities with ours, to

estimate brain and eye source activity from MEG data. Although successful for removing

EOG activity, in their formulation, Fujiwara et al. [2009] ignored other types of artifacts

that are harder to model such as those produced by muscular activity.

In this chapter, we take an empirical view inspired by the success of ICA-based

artifact removal approaches. We propose constructing the dictionary A using a set of

stereotypical artifact scalp projections such as those obtained from applying ICA to a

database of EEG recordings [Bigdely-Shamlo et al., 2013a]. We then rewrite Eq (2.2) in a

compact manner as follows,

yk = Hxk + ek (2.3)

where the gain matrix is now H , [L,A] and xk , [gTk , ννν
T
k ]T is the augmented vector of

hidden (latent) brain and artifact sources (see Fig 2.1).

Note that, structurally, the standard generative model in Eq (2.1) and the aug-

mented one in Eq (2.3) are identical. They differ however in that in Eq (2.3) we are

explicitly modeling the instantaneous spatial contribution of non-brain sources to the scalp

topography yk. Therefore, we may be able to dispense with computationally expensive

preprocessing data cleaning procedures. The assumption of Gaussian measurement noise

yields the following likelihood function,

p(yk|xk, λ) = N(yk|Hxk, λINy) (2.4)

Since Eq (2.3) does not have a unique solution, to obtain approximated source
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maps with biological interpretation we introduce constraints. One way of incorporating

constraints in a principled manner is to express them in the form of the prior pdf of the

sources p(xk). Since the neural generators of the EEG are assumed to be the electrical

currents produced by distributed neural masses that become locally synchronized in space

and time [Nunez and Srinivasan, 2006], here we chose a parameterized prior p(xk) that

induces source maps to be globally sparse (seeking to explain the observed scalp topography

by a few spots of cortical activity) and locally correlated (so that we obtain spatially

smooth maps as opposed to maps formed by scattered isolated sources). Artifactual

sources, on the other hand, can be assumed to be uncorrelated from one another. We use

a Gaussian prior to express these modeling assumptions as follows,

p(xk|γγγ) = N(xk|0,ΣΣΣx) (2.5)

where the covariance matrix ΣΣΣx has a block diagonal structure [Zhang and Rao, 2013]

defined as

ΣΣΣx =

ΣΣΣg

ΣΣΣν

 (2.6)

In Eq (2.6), the brain source prior covariance is defined as

ΣΣΣg =


γ1C1

. . .

γNROICNROI

 (2.7)

and ΣΣΣν = diag(γNROI+1, . . . , γNROI+Nν ) is the covariance of artifact sources. The matrices

Ci ∈ RNi×Ni encode the intra-group brain source covariances and are precomputed based

on source distance taking into account the local folding of the cortex. γγγ ∈ RNROI+Nν

denotes a nonnegative scale vector that encodes the sparsity profile of the group of sources.

Here we define NROI = 148 groups based on anatomical regions of interest (ROI) obtained
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from the Destrieux cortical atlas [Destrieux et al., 2010]. The parameterization of ΣΣΣg

based on a cortical atlas is described greater detail in Chapter 3. We note that although

other atlases could be used within the framework outlined in this section (e.g. the popular

Desikan-Killiany 68-ROI cortical atlas [Desikan et al., 2006]), the discussion of issues

pertaining to the selection of an optimal cortical parcellation is beyond the scope of this

chapter.

Next, let model M = {λ,γγγ} be the set of hyperparameters that encode the

generative model proposed above. We use the Bayes theorem to express the posterior pdf

of the sources given the data and model as,

p(xk|yk,M) =
p(yk|xk,M)p(xk|M)

p(yk|M)
(2.8)

Note that p(yk|xk,M) , p(yk|xk, λ) and p(xk|M) , p(xk|γ) because the likelihood and

priors are independent of γγγ and λ respectively. The density function p(yk|M) is known as

the model evidence [MacKay, 2008b] and, as we show in Section 2.2.2 (and in Chapter 3

in greater detail), its optimization allows us to reshape our modeling assumptions in a

data-driven manner. The graph in Fig. 2.2 summarizes our generative model.

k=1,...,N

C1 C2 . . . CNROI+Nν

γγγ ΣΣΣx

xk H

λ yk

Figure 2.2. Graphical representation of our probabilistic generative model. Square,
circle, and shaded circle symbols represent constant, hidden, and measured quantities
respectively.

The model evidence is the normalization constant of the posterior in Eq (2.8),
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therefore it can be ignored while searching for the maximum a posteriori (MAP) source

estimate x̂k = xMAP , which we find as the mode of the numerator of Eq (2.8) conditioned

onM,

x̂k = arg max
xk

p(yk|xk,M)p(xk|M) (2.9)

We readily determine the functional form of the posterior as p(xk|yk,M) = N(xk|x̂k,ΣΣΣx|y),

with the following conditional mean and covariance [Wipf and Nagarajan, 2009],

x̂k = ΣΣΣxH
TΣΣΣ−1

y yk

ΣΣΣx|y = ΣΣΣx −ΣΣΣxH
TΣΣΣ−1

y HΣΣΣx

(2.10)

where the model data covariance is given by the following expression,

ΣΣΣy = λINy + HΣxH
T (2.11)

In case that we need to obtain the cleaned EEG signal ȳk, e.g. for visualization or

scalp ERP analysis, we subtract the artifact signal from the data as follows

ȳk = yk −Aν̂ννk = Fyk (2.12)

where F = I−AΣΣΣνA
TΣΣΣ−1

y is a spatial filtering operator and ν̂ννk is obtained (if needed) by

selecting the last Nν elements of the vector x̂k. Likewise, the estimated PCD vector ĝk

can be obtained by selecting the first Ng elements of x̂k or using the formula

ĝk = ΣΣΣgL
TΣΣΣ−1

y yk (2.13)

and the source activity specific to the the ith ROI can be obtained using the formula

ĝi,k = γiCiL
TΣΣΣ−1

y yk (2.14)
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Further analysis of the source time series (e.g. ERP and connectivity analysis) can be

done by averaging the source activity obtained in Eq (2.14) within ROIs,

ḡi,k =
1

Ni

∑
j∈ROIi

ĝj,k (2.15)

where ROIi ⊂ {1, . . . , Ng} is the subset of indices that belong to the ith ROI.

2.2.2 Model learning

The source estimates and cleaned data can be obtained analytically by evaluating

the formulas given in Eq (2.10)-(2.13). These formulas, however, are model dependent

because they depend on the specific values of the hyperparameters λ and γγγ. In this section

we outline the algorithm for learning those.

To evaluate Eq (2.10) conditioned on the optimal model estimate we maximize the

posterior density,

M̂ = arg max
λ,γγγ

p(M|yk) (2.16)

where p(M|yk) ∝ p(yk|M)p(M) and p(M) is a hyperprior. To determine the evidence

described in Eq (2.8) we need to marginalize out the sources,

p(yk|M) =

∫
p(yk|xk,M)p(xk|M)dxk (2.17)

which for a linear Gaussian model like ours, is readily expressed as [Barber, 2012],

p(yk|M) ∝
exp

(
− 1

2
yTk Σ−1

y yk
)

|Σy|−1/2
(2.18)

Next, we need to specify the hyperprior p(M). Assuming that λ and γi are independent

yields the factorization p(M) = p(λ)
∏

i p(γi). SinceM contains only scale hyperparam-

eters, a popular choice is to assume Gamma hyperpriors on a log-scale of λ−1 and γ−1
i
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[Tipping, 2001]. When the scale and shape parameters of the Gamma tend to zero the

hyperpriors become flat (noninformative), in which case the optimization of the model

posterior density depends only on the model evidence. This choice of hyperprior has

the effect of assigning a high probability to low values of γi, which tends to shrink the

irrelevant components of xk to zero, leading to a sparsifying behavior know as Automatic

Relevance Determination (ARD) [MacKay, 1992; Neal, 1996].

To obtain robust hyperparameter estimates in an online fashion, we use a block

of consecutive measurements Y = [yk, . . . ,yk+N ] as opposed to a single data point yk.

Here we assume that the parameters characterizing the generative model vary at a slower

rate compared to the brain and artifact dynamics producing the measurements. In other

words, sources producing a given data block Y are not expected to go silent from one

sample to the next. This assumption can be further motivated by the fact that the EEG

can be temporally segmented into a sequence of discrete quasi-stable microstates, each of

which consisting of a scalp configuration lasting for approximately 80 to 120 milliseconds

before transitioning to a different microstate [Khanna et al., 2015; Koenig et al., 2002; Van

De Ville et al., 2010]. With this in mind, we ignore short-term correlations within a Y

block (iid assumption) and approximate the evidence of the ensemble as,

p(Y|M) ≈
N∏
k=1

p(yk|M) (2.19)

where N is set so that we deal with consecutive blocks of approximately 40 milliseconds in

a way that we don’t miss microstates.

The maximization of the model block evidence is equivalent to minimizing the

so-called type-II Maximum Likelihood (ML-II) cost function [Barber, 2012], which is
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obtained by applying −2 log(·) to Eq (2.19),

L(M) = log |ΣΣΣy|︸ ︷︷ ︸
Complexity

+ trace
(
CyΣΣΣ

−1
y

)︸ ︷︷ ︸
Accuracy

(2.20)

where Cy = N−1YYT is the empirical data covariance. Note that the data should be

zero-mean, which can be achieved with a high-pass filtering stage during preprocessing.

Eq (3.6) embodies a tradeoff between model complexity and accuracy. Geometrically, the

complexity term represents the volume of an ellipsoid defined by Σy. In particular, as the

axes of the ellipsoid shrink due to the pruning of irrelevant sources, the volume is reduced.

The second term measures model accuracy; i.e., how similar are the empirical and analytic

covariances Cy and ΣΣΣy. We update the model on every block by solving the following

optimization problem

λ̂, γ̂γγ = arg max
λ,γγγ
L(M) (2.21)

We will show in Chapter 3 that Eq (2.21) can be solved efficiently using a two-stage

optimization algorithm.

2.2.3 Connections between PEB+ and ICA

In the analysis presented above, the matrix H is prespecified. In this section, we

analyze the generative model of Eq. (2.3) from the ICA viewpoint. ICA is a blind source

separation method that seeks to estimate the source time series (often called activations

in the ICA literature) xk from the data time series yk without knowing the gain (mixing)

matrix H. In ICA, we assume that the latent sources are instantaneously independent,

which yields the following prior distribution

p(xk) =
Nx∏
i=1

pi(xi,k) (2.22)

To simplify the exposition, we assume the same number of sensors and sources,
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Ny = Nx, and the interested reader can find the case Ny < Nx in Le et al. [2011]; Lewicki

and Sejnowski [1998]. From these premises, the objective of the algorithm is to learn

the unmixing matrix H−1 such that we can estimate the sources with x̂k = Ĥ−1yk. The

unmixing matrix Ĥ−1 can be learned up to a permutation and rescaling factor, which has

the inconvenience that the order of the learned components can change depending on the

starting point of the algorithm and data quality. We can use a data block Y to write the

likelihood function

p(Y|H, λ) =
∏
k=1

p(yk|H, λ) (2.23)

under the assumption of independent data collection. However, we should point out that

in ICA, Y is usually a data block longer than the one considered in Chapter 3, thus the

iid data assumption is harder to justify. To alleviate this situation the data are usually

whitened during preprocessing. We can obtain each factor in Eq (2.23) by integrating out

the sources as follows

p(yk|H, λ) =

∫
p(yk|xk,H, λ)p(xk)dxk (2.24)

As noted by MacKay [2008a], assuming that the data are collected in the noiseless

limit, λ→ 0, transforms the Gaussian likelihood p(yk|xk,H, λ) into a Dirac delta function,

in which case Eq (2.24) leads to the Infomax algorithm of Bell and Sejnowski [1995].

The learning algorithm essentially consists in finding the gradient of the log likelihood,

log p(Y|H, λ), with respect to H and updating H on every iteration such that the proba-

bility of the data increases. As pointed out by Comon [1994], the ICA model is uniquely

identifiable only if at most one component of xk is Gaussian. Therefore, the prior densities

pi(xi,k) are usually assumed to exhibit heavier tails than the Gaussian and, in particular,

the prior pi(xi,k) ∝ cosh−1 xi,k yields the popular ICA contrast function tanh(H−1yk).

Note that this prior is not motivated by a biological consideration but by a mathematical
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necessity.

It is remarkable that ICA can learn columns of Ĥ that are consistent with bipolar

(single or bilaterally symmetric) cortical current source scalp projections without using

any anatomical or biophysical constraint whatsoever [Makeig et al., 1997]. Onton et al.

[2006] have shown that other columns may correspond to different stereotypical artifact

scalp projections as well as a set of residual scalp maps that are difficult to explain from

a biological standpoint. Delorme et al. [2012] have shown that the best ICA algorithms

can identify approximately 30% of dipolar brain components (approximately 21 brain

components out of 71 possible in a 71-channel montage). Although ICA has proven to be

a useful technique for the study of brain dynamics [Makeig and Onton, 2011], we must

wonder if its performance can be improved, perhaps by making BSS of EEG data less

“blind". In other words, if we know a priori what kind of source activity we are looking for

(dipolar cortical activity, EOG and EMG artifacts and so on), why limit ourselves to a

purely blind decomposition?

In this chapter, we advocate the use of as much information as we can to help solve

the ill-posed inverse problem. In that sense, the use of a prespecified lead field matrix in

the generative model of the EEG forces inverse algorithms to explain the data in terms of

dipolar sources, because the lead field is precisely an overcomplete dictionary of dipolar

projections of every possible source there is in a discretized model of the cortex. It has been

shown that source estimation can greatly benefit from the use of geometrically realistic

subject-specific [Cuspineda et al., 2009] or, alternatively, population-based approximated

lead fields matrices [Valdés-Hernández et al., 2009]. Furthermore, augmenting the lead

field dictionary with a set of stereotypical artifact projections, as proposed in Section

2.2.1, furnishes a more realistic generative model of the EEG in a way that renders blind

decomposition unnecessary or at least suboptimal for brain imaging.
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2.2.4 Independent components through PEB+

Since the source activity measured in the EEG is mixed by the volume conduction

effect, ideally, we would like the PEB+ framework to exhibit the ICA property of yielding

maximally independent (demixed) source time series. In this section we show that this is

indeed the case. We start by rewriting the biologically motivated source prior of Eq (2.5)

as

p(xk|γ) =

Nγ∏
i=1

pi(xi,k|γi) (2.25)

where each factor is a Gaussian pdf and i indexes a group of sources or an artifact

component. To write Eq (2.25) as the ICA prior in Eq (2.22) we need to integrate out the

hyperparameter γi from each factor as follows:

p(xk) =

Nγ∏
i=1

∫
pi(xi,k|γi)p(γi)dγi︸ ︷︷ ︸

pi(xi,k) is a Student t-distribution

(2.26)

which, given our choice of hyperprior on γi, renders each marginalized prior pi(xi,k) a

heavy-tailed Student t-distribution [Tipping, 2001]. We note that in our development

we take the route of optimizing the γi hyperparameters rather than integrating them

out because the former approach yields a simpler algorithm and tends to produce more

accurate results in ill-posed inverse problems [MacKay, 1996]. Moreover, the optimization

of γi allows for automatic removal of irrelevant brain and artifact components that are not

supported by the data, thereby eliminating the subjectivity implicit in manual component

selection. Assuming the prior in Eq (2.25), the ICA data likelihood of Eq (2.23) becomes

exactly the evidence of Eq (2.19), with the difference that in the PEB+ algorithm the H

matrix is known and the evidence is optimized on small blocks of data, which gives our

algorithm the ability to run in an online manner and to capture transient brain dynamics.

We summarize the advantages of using the PEB+ framework over ICA for source
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separation and imaging of EEG data as follows:

• It deals gracefully with the overcomplete case (Ny � Nx) by finding the MAP source

estimator, which always exist even in the presence of rank-deficient data, e.g. after

removing the common average reference.

• It deals with the redundancy in brain responses by inducing independence over

groups of sources.

• The use of the ARD prior allows for the automatic selection of components in a

data-driven manner, thereby eliminating the subjectivity of selecting components

based on practitioner’s experience.

• It can adapt to non-stationary dynamics by updating the model on smaller blocks of

data.

• It can be used in online applications by leveraging fast evidence optimization algo-

rithms.

• Artifact removal, source separation, and imaging can be obtained simultaneously

as a consequence of optimizing the evidence of a biologically informed generative

model.

• It facilitates subject-level analysis because we estimate the same number of cortical

source activations per subject, each of which has known anatomical support. This

eliminates the complications of clustering ICs and dealing with missing components

[Bigdely-Shamlo et al., 2013b] while allowing the use of more straightforward and

widespread statistical parametric mapping techniques [Penny et al., 2007].
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2.3 Results

The PEB framework has been validated extensively on simulated and real data

elsewhere [Friston et al., 2008; Henson et al., 2011; Ojeda et al., 2018; Zhang and Rao,

2013]. In this section, we study the effects of modeling artifactual sources in the quality of

the model inversion. We also discuss source separation through PEB+, as well as its use

for data cleaning. Then in Section 2.3.5 we show an application of PEB+ to the study of

heading computation during full-body rotations in the context of a mobile brain/body

imaging (MoBI) experiment.

2.3.1 Construction of artifact projection dictionary A

To characterize artifactual ICs we used data from two different studies made public

under the umbrella of the BNCI Horizon 2020 project1 [Brunner et al., 2015]. Since in

the next two sections we investigate different features of the PEB+ algorithm rather

than the biological interpretation of its results, we don’t dwell into the details of the

experimental paradigms used in each study, and we direct the interested reader to the

respective publications referenced below.

Data set 1: Error related potentials

The first study, 013-2015, provided EEG data from 6 subjects (2 independent

sessions per subject and 10 blocks per session) collected by Chavarriaga and del R. Millán

[2010] using an experimental protocol designed to study error potentials during a BCI

task. EEG samples were acquired at a rate of 512 Hz using a Biosemi ActiveTwo system

and a 64-channels montage placed according to the extended 10/20 system.
1http://bnci-horizon-2020.eu/database/data-sets
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Data set 2: Covert shifts of attention

The second data set, 005-2015, provided EEG and EOG data from 8 subjects

collected by Treder et al. [2011] using an experimental protocol designed to study the EEG

correlates of shifts in attention. The EEG was recorded using a Brain Products actiCAP

system, digitized at a sampling rate of 1000 Hz. The montage employed had 64 channels

placed according to the 10/10 system referenced to the nose. In addition, an EOG channel

(labeled as EOGvu) was placed below the right eye. To measure vertical and horizontal

eye movements, from the total of 64 EEG channels, two were converted into bipolar EOG

channels by referencing Fp2 against EOGvu, and F10 against F9, thereby yielding a final

montage of 62 EEG channels.

Data preprocessing and IC scalp maps clustering

After transforming each data file to the .set format, both studies were processed

using the same pipeline written in MATLAB (R2017b The MathWorks, Inc., USA) using

the EEGLAB toolbox [Delorme et al., 2011]. The pipeline consisted of a 0.5 Hz high-pass

forward-backward FIR filter and re-referencing to the common average, followed by the

Infomax ICA decomposition of the continuous data. We pooled all the preprocessed data

sets and randomly assigned them to one of two groups: 80 % to the training set and 20 %

to the test set. The training set was used to construct the artifact dictionary and the test

set was used to evaluate the performance of the PEB+ algorithm.

To construct an artifact dictionary from a heterogeneous EEG database, we need

to represent each independent scalp map into a common (co-registered) channel space. To

that end, we used the coordinates of the common channels between the montages used in

the two studies described above to estimate a linear transformation from the 62-channel

space to the 64-channel one. After co-registration, we pooled both studies in the training

set resulting in a matrix of 64 channels by 6774 independent scalp maps (101 sessions and

blocks yielding 64 ICs each plus 5 sessions yielding 62 ICs each). It is worth emphasizing
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that we only warped IC scalp maps and not the actual data or IC activations.

Next, we used the matrix of co-registered independent scalp maps to estimate

clusters using the k-means algorithm. Clusters were labeled as Brain, EOG, EMG, or

Unknown (scalp maps of unknown origin) by an expert. Unknown clusters were not

used further in this chapter. Fig 2.3 shows a visualization of the IC scalp maps using

the t-distributed stochastic neighbor embedding (t-sne) algorithm [Van Der Maaten and

Hinton, 2008]. The t-sne algorithm allows us to represent each 64-dimensional IC scalp

map as a dot in a 2D space in a way that similar and dissimilar scalp maps are modeled

by nearby and distant points respectively with high probability. We ran the k-means

algorithm for several numbers of clusters, and we stopped at 13 after noticing that many

small islands scattered at the periphery of Fig 2.3 started to be either mislabeled as Brain

or labeled consistently as EOG, EMG or Unknown. The grey points in the figure denote

most of the scalp maps labeled as non-brain.

Using the insights from Fig. 2.3, we completed the augmented PGM of Eq (2.3) by

building the A dictionary as follows:

A =

[
aEOGv , aEOGh , aEMG1 , . . . , aEMG11 , INy

]
(2.27)

where aEOGv and aEOGh are the centroids of the vertical and horizontal EOG clusters

respectively, aEMGi are the centroids of EMG clusters and we modeled spike artifacts

affecting each individual channel with the columns of the identity matrix INy , with Ny = 64.

Calculation of subject-specific H matrices

Depending on the montage of each subject, we nonlinearly warped their 62 or

64-channel montage to the scalp surface of a four-layer (scalp, outer skull, inner skull, and

cortex) “Collin27" template using the DSI toolbox. Then we computed the orientation-fixed

lead field matrices L using the boundary element method solver in the OpenMEEG toolbox
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Figure 2.3. t-sne visualization of IC scalp map clusters. We used the t-sne algorithm to
represent each 64-dimensional scalp map as a dot in a 2D space in a way that similar and
dissimilar scalp maps are modeled by nearby and distant points respectively with high
probability. The clusters were estimated using the k-means algorithm. The grey points
indicate mostly non-brain or mislabeled scalp projections.

[Gramfort et al., 2010]. Next, we calculated individual A matrices by linearly warping

its columns from the 64-channel space to the space defined by the head surface of the

template. Finally, we divided each column of the augmented dictionary H by its norm so

that their relative contribution to the scalp EEG could be determined by the amplitude of

the source activation vector xk.

28



2.3.2 PEB+ artifact model validation

In this section, we investigate whether the approach of explicitly modeling artifact

scalp projections used in PEB+ yields significantly better source estimates than the

traditional PEB. To quantify the support in the data for a given model we used the Bayes

factor. In Bayesian model selection/comparison, the Bayes factor is used as an alternative

to classical hypothesis testing, replacing the p-value as a measure of evidential strength

while avoiding the abuse to which the latter is often subjected to these days [Stern, 2016].

The Bayes factor between two generative modelsMi andMj is denoted as Bi,j and is

defined as the ratio between the evidence of each model:

Bi,j =
p(Y|Mi)

p(Y|Mj)
(2.28)

Interpreting Bi,j is straightforward, for instance Bi,j > 1 indicates that there is

more evidence in favor of generative modelMi overMj. Likewise, Bi,j ≈ 1 means that

there is no conclusive evidence in favor of any of the models considered. Usually, a Bayes

factor in 2 loge units higher than 2, 6, and 10 is respectively considered positive, strong

and very strong evidence in favor ofMi [Kass and Raftery, 1995]. Conversely, note that

Eq (2.28) can be interpreted as evidence in favor ofMj simply by flipping the ratio.

As we explained earlier, in this chapter we characterize artifacts empirically rather

than in a mechanistic principled way. Therefore, next we used Bayes factors to assess the

performance of the PEB+ algorithm under different variants of the artifact dictionary A.

In our analysis we considered the following models:

• M0: ignoring artifacts, A ∈ ∅ (classic PEB)

• M1: modeling artifacts with Eq (2.27),

• M2: modeling EOG and EMG components only, A = [aEOGv , aEOGhaEMG1 , . . . , aEMG11 ],
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Figure 2.4. Comparison of generative models with different variants of the artifact
dictionary with respect toM0. Left: Bayes factor kernel pdf estimate for each artifact
model. Right: B1,0 kernel pdf estimate as a function of artifact power.

• M3: modeling single channel spikes only, A = INy .

To that end, we estimated the brain and artifact source time series of all subjects in the

testing set under each model. We collected the log evidence afforded by each model in

blocks of 40 msec of data and computed Bayes factors with respect toM0.

The left panel of Fig 2.4 shows the kernel pdf estimate of each Bayes factor: B1,0,

B2,0, B3,0 in blue, orange, and yellow traces respectively. The area above the dot-dashed

black trace represents the probability space in which modeling artifacts yielded a better

generative model for the EEG signal. We computed the probability of having very

strong evidence in favor of modelMi by integrating over Bayes factors higher than 10,

Pi(10 ≤ Bi,0) =
∫
Bi,0≥10

fi(Bi,0), where fi(Bi,0) denotes a pdf as a function of modelMi.

The models 1 to 3 scored 0.9704, 0.9705, and 0.4202. Since modelsM1 andM2 yielded

the highest probability and because M1 includes M2 and M3, henceforth we use the

artifact dictionary given by Eq (2.27).

To further illustrate the importance of modeling artifact components, the right

panel of Fig 2.4 shows the kernel pdf estimate of B1,0 as a function of the artifact power.
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The artifact power was calculated as the maximum RMS power over the artifact sources

for each 40 msec window. We note that the shape of its pdf depicted on the left panel

seems to be determined by the higher performance of the PEB+ algorithm under different

clusters of artifactual activity expanding several orders of magnitude.

Fig 2.5 shows an example of applying PEB+ to an epoch of data of 4 seconds

centered around an eye blink event. Panel A shows a 32-channel subset of the raw and

reconstructed (cleaned) EEG traces in black and red respectively. In addition to an eye

blink, we have a lateral eye movement event around the -1 sec latency. Panel B shows the

estimated EOGv and EOGh artifact source activity in blue and orange respectively. We

note that these artifact sources are active only at the latencies where the EEG is affected

and mostly zero elsewhere. In panel C, the first and last two columns represent the raw

and cleaned EEG topographies at the maximum of the lateral eye movement and eye

blink events respectively. Panel D shows different views of the estimated cortical source

maps underlying the raw topographies in C. The cleaned topographies in C are obtained

after the estimated artifact sources are projected out of the data. Panel E shows the log

evidence for generative modelsM1 andM0 in blue and orange respectively. Note that

both traces differ mostly only when artifacts occur and higher log evidence in favor of

modelM1 indicates that source estimation benefits from modeling artifacts.

It is worth noting that, in the last column of panel D, some residual eye blink

artifact seems to be mistakenly represented as a small activation in the frontal pole. We

point out that, in practice, it may be extremely hard to totally remove artifactual activity

because: 1) the use of a lead field matrix derived from a template head model may misfit

the anatomy of the subject introducing errors in the L dictionary, 2) errors in the sensor

locations can cause the EEG topography to shift with respect to the expected brain and

artifact source projections, 3) EMG scalp projections are difficult to characterize due

to their variability, as opposed to EOG projections that are more stereotyped, and 4)

unmodeled muscle projections, such as those towards the back of the head that were largely
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Figure 2.5. Example of applying PEB+ to an epoch of EEG with lateral eye movement
and eye blink artifacts. A: 32-channel subset of raw and cleaned EEG traces. B: Estimated
EOGv and EOGh artifact source activity. C: Columns 1 and 3 and 2 and 4 represent
the raw and cleaned EEG topographies at the maximum of the lateral eye movement
and eye blink events respectively. D: Different views of the estimated cortical source
maps underlying the raw topographies in C. E: Log evidence yielded by PEB+ and PEB
algorithms on consecutive 40 msec blocks of data along this epoch.

ignored in this study. Despite all these issues, Figures 2.4 and 2.5 demonstrate that PEB+

can yield reasonably robust source estimates in the presence of artifacts. Furthermore,
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panel E of Fig 2.5 suggests that we could use dips in the log evidence to inform subsequent

processing stages of artifactual events that were not successfully dealt with.

2.3.3 Source separation performance

In this section, we investigate the source separation performance of the PEB+

algorithm. To that end, we used the test set to compare PEB+ and Infomax ICA

regarding 1) volume conduction unmixing performance and 2) data size requirements for

good source separation. We assessed the unmixing performance by calculating the mutual

information reduction (MIR) achieved by each algorithm on data blocks of different sizes.

The MIR is an information theoretic metric that measures the total reduction

in information shared between the components of two sets of multivariate time series.

The mutual information (MI) between two given time series xi,k and xj,k, I(xi, xj), can

be defined as the Kullback-Leibler (KL) divergence between their joint and marginal

distributions:

I(xi, xj) = DKL[p(xi, xj) ‖ p(xi), p(xj)] (2.29)

where I(xi, xj) > 0 indicates that processes xi and xj share information while I(xi, xj) = 0

indicates that they are statistically independent such that

p(xi, xj) = p(xi)p(xj)���
��:0

p(xi|xj)

We define the MIR of source separation algorithm A with respect to B, as the difference

in normalized total pairwise MI (PMI) achieved by each decomposition:

MIRA,B =
2

NA(NA − 1)

NA∑
i=2

i−1∑
j=1

I(xAi , x
A
j )−

2

NB(NB − 1)

NB∑
i=2

i−1∑
j=1

I(xBi , x
B
j )

(2.30)
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where xAi and xBi are the set of components yielded by each method and NA and NB are

the number of components afforded by each decomposition. We note that to obtain a

PMI that is not biased by the number of components, we normalize each summation by

the number of unique (i, j) pairs. Here we calculated the MI using the non-parametric

kernel pdf estimates of the quantities in Eq (2.29) for the the multichannel EEG data, the

ROI-collapsed sources estimated by PEB+, and the ICs obtained by Infomax.

In Fig 2.6, the left panel shows a box plot of the MIR of PEB+ and Infomax

calculated with respect to the MI of channel data. As indicated by the x-axis, we ran the

experiment multiple times varying the data sizes from 0.5 to 500 seconds (∼ 8 minutes).

As expected, both algorithms reduce source MI, thereby reversing to some extent the

mixing effect of the volume conduction. We see also that, on average, when the MIR is

calculated in short blocks of data, PEB+ exhibits higher unmixing performance while

Infomax seems to do better on longer blocks. This effect is more clearly represented in the

panel on the right, which shows the box plot of the MIR of PEB+ with respect to Infomax.

In that panel, distributions with entire positive (orange) or negative (blue) values indicate

a significant source crosstalk reduction performance in favor of the PEB+ or Infomax

algorithms respectively. We note that PEB+ better captures transient dynamics for short

0.5-8 sec data blocks.

It is worth noting that with PEB+, it is possible to update the unmixing matrix

(given by the term ΣxH
TΣ−1y in Eq (2.10)) on a time-scale of tens of milliseconds because

of the regularization induced by the multiple constraints. This allows for adaptation to

non-stationary brain and artifact source dynamics. Infomax (and most ICA algorithms) on

the other hand, requires larger data blocks to learn a global factorization of mixing matrix

and source activations of reasonable quality. Moreover, Fig 2.6 suggests that the estimation

of a global ICA model is suitable for identifying components that remain stationary over

the whole experiment, but otherwise, it is suboptimal for capturing transient dynamics.
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Figure 2.6. Source separation performance. Left: Box plot of MIR with respect to
channel data computed on blocks of various sizes. Right: Box plot of MIR of PEB+ with
respect to Infomax ICA for the same data blocks shown on the left. On each box, the
central mark indicates the median, and the bottom and top edges indicate the 25th and
75th percentiles respectively. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the + symbol. On the
right, the distributions with entire positive (orange) or negative (blue) values indicate
a significant source crosstalk reduction in favor of the PEB+ or Infomax algorithms
respectively.
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2.3.4 Data cleaning performance

In this section, we benchmark the data cleaning performance of the PEB+ algorithm

against ASR. The ASR algorithm has gained popularity in recent years for its ability to

remove a variety of high amplitude artifacts in an unsupervised manner, thereby enabling

automatic artifact rejection for offline as well as real-time EEG-based BCI applications.

Since in real data we do not have a ground truth for artifactual activity, we benchmark

the methods according to the correlation between raw and cleaned data samples in blocks

with negligible or no artifactual activity, where low correlation values indicate needless

distortion of the brain activity.

We ran both algorithms for each subject in the test set and collected the following

quantities on subsequent blocks of 40 msec: 1) the correlation between raw and cleaned

data (computed as the correlation between the correspondent data blocks vectorized across

channels and time points) and 2) the maximum RMS artifact power yielded by PEB+ as

described in Section 2.3.2. ASR’s performance depends on multiple parameters, but it has

been indicated that the most critical one is the cutoff [Chang et al., 2018]. In the first

experiment we used a cutoff equal to 5, which was the default value of EEGLAB’s ASR

plugin at the time of this publication.

In Fig 2.7, the left and right panels show the empirical kernel pdf estimation of

the correlation as a function of the artifact’s power for the ASR and PEB+ algorithms

respectively. We see that in both methods, the correlation decreases as artifact power

increases. This effect is expected and desired because cleaning algorithms are supposed

to modify contaminated raw data. Towards low power artifact regions, however, ASR

exhibits a significant amount of probability mass that spreads down to low correlation

values while PEB+ seems to have most of its probability mass bounded from below at

around 0.8. This result indicates that, at a cutoff of 5, ASR cleaning is overly aggressive

to the point of significantly modifying the data in the absence of artifacts. These findings

36



-0.2

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4

ASR cleaned

-1 0 1 2 3 4

PEB+ cleaned

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
e

rn
e

l 
p

d
f 

e
s
ti
m

a
ti
o

n

Figure 2.7. Data cleaning performance. Kernel pdf estimation of the correlation between
raw and cleaned data as a function of artifact power. Left: Data cleaned by ASR using
cutoff=5 (default). Right: Data cleaned by PEB+. Note that, as expected, in both
algorithms the correlation drops as artifacts increase. Towards low amplitude artifacts,
however, ASR significantly distorts the data while PEB+ does not.

are in agreement to what was recently reported by Chang et al. [2018].

In Section 2.3.2 we showed that PEB+ can reduce the effects of eye-related artifacts.

In Fig 2.8 we show an example of its performance removing EMG. The data correspond

to an excerpt of EEG extracted from a subject selected at random from the test set while

he/she was performing the respective cognitive task. In the left panel, the gray and colored

traces represent contaminated and cleaned EEG signals respectively. The traces shown

correspond to channels located on each side of the cap. Channels in these areas are often

contaminated by EMG activity due to their proximity to the temporalis muscle [Fu et al.,

2006]. As we can see, the higher amplitude decorrelated EMG activity is largely reduced.

In the panel on the right, the gray and colored traces represent the power spectral density

estimates of their respective channels on the left. We see that a significant amount of

broad band power related to the EMG activity was removed, especially towards frequencies

higher than 18 Hz. We note that a strong 50 Hz AC line noise remains in the cleaned

data, this is expected because in our approach we do not model this type of artifacts and
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Figure 2.8. EMG artifact cleaning. EEG channels contaminated by EMG noise, the gray
and colored traces represent raw and cleaned data respectively. Left: Excerpt of EEG
signal. Right: Welch power spectral density estimation of the data shown on the left.

they can be relatively easily removed using a notch filter.

To further illustrate the results of the analysis shown in Fig 2.7, in Fig 2.9 we

compare the cleaning performance of PEB+ against ASR using two cutoff parameters (5

and 100) and ICA on a typical epoch of EEG containing lateral eye movement, eye blink,

and muscle artifacts. As before, the EEG data were extracted from a subject selected

at random from the test set. In panel A, the shaded area in blue indicates a segment of

clean data, while green, red, and yellow areas indicate segments contaminated by lateral

eye movement, muscle, and eye blink artifacts respectively. The correlation achieved by

each method (computed by vectorizing all channels and samples in the blue segment)

is displayed on the top left corner of each panel. All correlations were significant with

p-values lower than 0.005. Panels A, B, C, and D show the raw and cleaned EEG traces

produced by PEB+, ICA, ASR (100), and ASR (5) methods respectively. For the ICA

approach we cleaned the data by removing the contribution of several stereotypical EOG

and EMG components selected manually. PEB+ and ICA displayed similar performance

in the sense that lateral eye movement and eye blink artifacts were largely removed, EMG

was not totally removed by PEB+, while the clean data segment was minimally distorted,
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Figure 2.9. Example of the data cleaning performance of PEB+, ICA, and ASR on a
noisy epoch. Only 16 channels are shown. A: PEB+. B: ICA. C: ASR with cutoff=100.
D: ASR with cutoff=5 (current default value in EEGLAB’s clean_rawdata plugin). In
panel A, the segment of data used to compute the correlations between raw and cleaned
EEG is indicated with the blue shaded area (-2000 msec to -1000 msec) while the areas
shaded in green, yellow and red indicate lateral eye movement, eye blink, and muscle
artifacts respectively.

as indicated by correlations with the raw samples of 0.8922 and 0.8294 respectively. We

note that the distortion introduced by ICA could be reduced by a more conservative

selection of the artifactual ICs to remove. ASR (100) did not distort the clean data

segment and removed the higher amplitude eye blink artifact but failed to remove lateral

eye movement and muscle artifacts. ASR (5) removed all the artifactual activity, however

it also significantly distorted the clean data segment as indicated by a correlation of 0.2468.
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2.3.5 Heading computation during full-body rotations

We finalize the chapter with an application of the PEB+ algorithm to MoBI data.

MoBI experiments are notoriously difficult to analyze due to the amount of motion-induced

artifacts as well as the presence of transient and stationary brain dynamics of variable

duration across trials. Here, we try to replicate the main findings of a study that looked

into the dynamics of the retrosplenial cortex (RSC) supporting heading computation

during full-body rotations [Gramann et al., 2018].

Heading computation is key for successful spatial orientation of humans and other

animals. The registration of ongoing changes in the environment, perceived through an

egocentric first-person perspective has to be integrated with allocentric, viewer-independent

spatial information to allow complex navigation behaviors. The RSC provides the neural

mechanisms to integrate egocentric and allocentric spatial information by providing an

allocentric reference direction that contains the subject’s current heading relative to the

environment [Byrne et al., 2007]. Single-cell recordings in freely behaving animals have

shown that the RSC is also implicated in heading computation [Sharp et al., 2001]. And

although there is fMRI evidence that points to the same conclusion in humans that navigate

in a virtual environment [Baumann and Mattingley, 2010], verifying this hypothesis in

more naturalistic settings has remained elusive.

Recently, Gramann et al. [2018] used EEG synchronized to motion capture record-

ings combined with virtual reality (VR) to investigate the role of the RSC in heading

computation of actively moving humans. Data were recorded from 19 participants using

157 active electrodes sampled at 1000 Hz and band-pass filtered from 0.016 Hz to 500 Hz

using a BrainAmp Move System (Brain Products, Gilching, Germany). 129 electrodes

were placed equidistant on the scalp and 28 were placed around the neck using a custom

neckband. In that study, data from physically rotating participants were contrasted with

rotations based on visual flow. In the physical rotation condition, participants wore a Vive
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HTC head-mounted display (HTC Vive; 2× 1080× 1200 resolution, 90 Hz refresh rate,

110◦ field of view). They were placed in a sparse VR environment devoid of any landmark

information facing an orienting beacon at the beginning of each trial. The beacon was then

replaced by a sphere that started rotating around them to the left or the right at a fixed

distance with two different, randomly selected, velocity profiles on each trial. Participants

were instructed to rotate on the spot to follow the sphere and keep it in the center of their

visual field. The sphere movement was completed at an eccentricity randomly selected

between 30◦ and 150◦ relative to the initial heading. When the sphere stopped, they had

to rotate back and press a controller button to indicate when they believed to have reached

their initial heading orientation. After the button press, the beacon would reappear and

participants had to rotate to face the beacon and to start the next trial. In the joystick

rotation condition, participants stood in front of a large TV screen (1.5 m viewing distance,

HD resolution, 60 Hz refresh rate, 40′′ diagonal size) controlling a gaming joystick to rotate

in the same VR environment with an otherwise identical trial structure.

Using an ICA/dipole fitting approach, the data was analyzed with a focus on

oscillatory activity of ICs located in or near the RSC. ICs were clustered using repetitive

k-means clustering optimized to the RSC as the region of interest. Four subjects without

an IC in the RSC were excluded from the analysis (21% of all participants). Subsequently,

the wavelet (Morlet) time-frequency decomposition was computed for each IC in the RSC

cluster for the rotation periods. The spectral baseline was defined as the 200 msec period

before stimulus onset and subtracted from each time-frequency decomposition. To account

for different trial durations, single trial time-frequency maps were linearly time-warped

with respect to the presentation of the stimulus and rotation onset and offset to create

time-warped event-related spectral perturbations (ERSPs). Using this approach, the data

from the RSC cluster in the joystick rotation condition replicated previous studies using

desktop navigation protocols and comparable data analysis approaches [Chiu et al., 2012;

Gramann et al., 2010; Lin et al., 2015, 2018], exhibiting 1) a theta burst between stimulus
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onset and movement onset and 2) alpha and beta desynchronization during the rotation.

The physical rotation, however, had drastically different properties: no clear theta burst

was present before movement onset, and only minor desynchronization in higher beta

bands, but synchronization in the alpha and low beta bands after movement onset and

delta and theta bands during the rotation (see Fig 2.10 A-B).

Here, we used the PEB+ algorithm to re-analyze the data. To this end, we further

down-sampled the data to 250 Hz, removed the neck channels, applied a 0.5 Hz high-pass

forward and backward FIR filter, and subtracted the common average reference. We

co-registered each subject-specific 129-channels montage with the head surface of the

“Colin27" template, computed each lead field matrix, and linearly warped the A dictionary

to the space of the individualized template as explained in Section 2.3.1. Then we ran

the PEB+ algorithm for each condition and computed the ERSPs of the centroid source

activity (see Eq (2.15)) within the RSC. The computation of ERSPs was identical to the

previous one, only the IC activity of the RSC cluster was replaced by PEB+ RSC source

activity of all subjects.

Fig 2.10 C-D shows the PEB+ group ERSP for the joystick and physical rotation

conditions as well as their difference. The top panel shows in red the location of the RSC

in our template brain. Despite the differences between the two methodologies, our results

largely replicate those in Gramann et al. [2018] displayed in panels A-B. A few differences

between the two results are worth mentioning though. We point out that the differences

in ERSP scales exhibited in panels B and D may be explained by different scales of the

sources obtained by ICA and PEB+. Also, we note that the low-frequency power increase

towards the end of the head rotation cycle in panel D Joystick condition can be explained

by artifacts improperly removed near the end of a few trials. It should be emphasized that,

unlike the approach used by Gramann et al. [2018], ours has the advantage of using data

from all subjects without any cleaning in the time, channel, or trial domains, except for

the inherent cleaning capabilities of the PEB+ algorithm. To increase the robustness to

42



residual artifacts, Fig 2.5 E suggests that a future research direction could explore the use

of the log evidence yield by PEB+ to automatically downplay the influence of artifactual

trials into post hoc statistical summaries.
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Figure 2.10. Event-related spectral perturbations (ERSPs) in the retrosplenial cortex
(RSC). Panels A and B are adapted from [Gramann et al., 2018]. A: Cluster of IC
equivalent current dipoles in or near the RSC. B: ICA derived ERSPs of the joystick and
physical rotation conditions and their difference. C: Location of the RSC in the cortical
surface of our template. D: PEB+ derived ERSPs of the joystick and physical rotation
conditions and their difference. The x-axes at the bottom of panels B and D are annotated
with the stimulus onset (Stm), movement onset (Start), percentage of the head rotation
cycle, and movement offset (End).
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2.4 Conclusions

In this chapter, we have extended the Parametric Empirical Bayes (PEB) framework

previously proposed for electrophysiological source imaging [Henson et al., 2011; Wipf and

Nagarajan, 2009] in two ways. First, we augmented the standard generative model of the

EEG with a dictionary of artifact scalp projections obtained empirically. In our model, we

captured EOG, EMG, and single-channel spike artifacts. Second, we used an anatomical

atlas to parametrize a source prior that encourages sparsity in the number of active cortical

regions, which has the desired property of inducing the segregation of the cortical electrical

activity into a few maximally independent components with known anatomical support.

We used these elements to develop the PEB+ inversion algorithm. Under the proposed

framework, dissimilar problems such as data cleaning, source separation, and imaging can

be understood and solved in a principled manner using a single algorithm. Furthermore,

we used our framework to point out the connections between distributed source imaging

and Independent Component Analysis (ICA), two of the most popular approaches for

EEG analysis that are often perceived to be at odds with one another.

We used publicly available data from two independent studies to develop and

test the proposed algorithm. In particular, we have shown that PEB+: 1) outperforms

classic PEB for source imaging when artifacts are present in the data, while on clean

data their performance is comparable, 2) outperforms Infomax ICA for source separation

on short blocks of data, thereby showing potential for tracking non-stationary cortical

dynamics, and 3) unlike the popular Artifact Subspace Removal algorithm, it can reduce

artifacts without significantly distorting epochs of clean data. Furthermore, we were able

to replicate the main finding of a study that looked into the dynamics of the retrosplenial

cortex (RSC) supporting heading computation during full-body rotations.

The ability to estimate the time series of EEG sources that correspond to known

anatomical locations accounting for the influence of artifacts without user intervention, as
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well as its online adaptation, makes the PEB+ algorithm appealing for established ERP

paradigms as well as MoBI. We believe that the proposed algorithm can help to solve

basic research questions employing EEG as the functional imaging modality, and at the

same time constitute a biologically-grounded signal processing tool that can be useful to

translational efforts.
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Chapter 3

Fast and Robust Block-Sparse Bayesian
Learning for EEG Source Imaging

Abstract

We propose a new Sparse Bayesian Learning (SBL) algorithm that can deliver

fast, block-sparse, and robust solutions to the EEG source imaging (ESI) problem in the

presence of noisy measurements. Current implementations of the SBL framework are

computationally expensive and typically handle fluctuations in the measurement noise

using different heuristics that are unsuitable for real-time imaging applications. We address

these shortcomings by decoupling the estimation of the sensor noise covariance and the

sparsity profile of the sources, thereby yielding an efficient two-stage algorithm. In the

first stage, we optimize a simplified non-sparse generative model to get an estimate of

the sensor noise covariance and a good initialization of the group-sparsity profile of the

sources. Sources obtained at this stage are equivalent to those estimated with the popular

inverse method LORETA. In the second stage, we apply a fast SBL algorithm with the

noise covariance fixed to the value obtained in the first stage to efficiently shrink to zero

groups of sources that are irrelevant for explaining the EEG measurements. In addition,

we derive an initialization to the first stage of the algorithm that is optimal in the least

squares sense, which prevents delays due to suboptimal initial conditions. We validate

our method on both simulated and real EEG data. Simulations show that the method is
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robust to measurement noise and performs well in real-time, with faster performance than

two state of the art SBL solvers. On real error-related negativity EEG data, we obtain

source images in agreement with the experimental literature. The method shows promise

for real-time neuroimaging and brain-computer interface applications.

3.1 Introduction

A fundamental issue that prevents electroencephalography (EEG) from becoming a

more widely used imaging modality for studying the functioning brain is that the mapping

from scalp sensors to brain sources is not unique [Michel and Murray, 2012]. As infinite

configurations of currents in the brain can elicit the same EEG scalp topography, EEG

source imaging (ESI) entails solving an ill-posed inverse problem [Lopes da Silva, 2013].

Compared to other brain imaging modalities such as functional magnetic resonance imaging

(fMRI), positron emission tomography (PET), or functional near-infrared spectroscopy

(fNIRS), the temporal resolution of EEG allows the study of brain dynamics at their

natural time scale. However, EEG source estimates only become available after solving the

inverse problem. Although this is not a handicap when the analysis can be done offline,

there are many applications of interest where real-time source estimates are desirable. For

example, in applications involving brain-computer interfaces1 (BCI) and neurofeedback,

brain responses at specific anatomical locations can be used to improve real-time predictions

of subject’s intentions compared to sensor-based predictions [Bauer and Pllana, 2014;

Edelman et al., 2016; Haufe et al., 2011; Noirhomme et al., 2008]. In this chapter, we

focus on a Bayesian inversion scheme that facilitates the development of such real-time

imaging applications.

As we mentioned in Chapter 2, we can deal with the ill-posed nature of the inverse

problem by imposing regularizing constraints to “encourage" a solution to belong to a

particular functional space with biological relevance [Tikhonov and Arsenin, 1978]. There
1Also known as brain-machine interfaces (BMI).
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are several software packages readily available to tackle this problem within the framework

of constraint optimization [Boyd et al., 2011; Combettes and Pesquet, 2011; Tomioka et al.,

2009; Vega-Hernández et al., 2008]. Most of these packages are used in combination with

different heuristics to determine the amount of regularization needed at each time step to

optimize the value of gk [Bauer and Lukas, 2011; Golub et al., 1979; Reichel and Sadok,

2008]. Selecting the right amount of regularization, however, is a crucial issue because, if

set suboptimally, even small perturbations in the data can lead to neurophysiologically

unreasonable results [Bertero et al., 1988].

One way of estimating EEG sources subject to biological and mathematical con-

straints in a principled manner is to use a probabilistic approach known as Parametric

Empirical Bayes. PEB has its roots in the statistical literature starting in the 1950’s with

the work of Herbert Robbins [Robbins, 1956] and further developed by Bradley Efron, Carl

Morris, and others [Casella, 1985; Efron and Morris, 1972a,b; Morris, 1983], exploiting the

idea of using data to infer the prior distribution of a statistical model in contrast to the

more conventional Bayesian method of fixing the prior before any data are observed. In

the context of sparsity-inducing priors, PEB is sometimes referred to as Sparse Bayesian

Learning (SBL) [Tipping, 2001]. This approach has been used to invert hierarchical models

of fMRI and PET [Friston et al., 2002] as well as EEG responses [Henson et al., 2011;

Phillips et al., 2005]. It has been shown that PEB offers a unifying framework in which a

variety of popular EEG inverse solvers can be obtained [Wipf and Nagarajan, 2009]. In

this framework, sparse source estimates are obtained by enforcing appropriate priors at

two levels of inference [MacKay, 2008b]. At the first level, a prior over the source vector is

controlled by a set of hyperparameters, each of which represents the variance (alternatively

the precision, i.e., inverse variance) of each source. At the second level, sparsity-inducing

hyperpriors are used so that when the hyperparameters are learned from the data, most of

them go to zero (or infinity in the case of precision hyperparameters), a property known

as Automatic Relevance Determination (ARD) [MacKay, 1992; Neal, 1996]. For linear
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models such as the one introduced in Chapter 2, once the sparsity profile is determined,

the maximum a posteriori (MAP) source estimate, ĝk, can be easily computed in closed

form [Bishop, 2006].

In this chapter, we use “SBL” rather than “PEB" to be consistent with the terminol-

ogy of Wipf and Nagarajan [2009], Zhang and Rao [2013] , and our own publication [Ojeda

et al., 2018], heavily cited here. We point out, however, that in the context of sparse

EEG source imaging, both frameworks are equivalent as they rest on the same general

sparsity-inducing priors, hyperpriors, and the optimization of covariance components.

Assuming that the statistics of the noise affecting the EEG samples can be learned

from pre-stimulus data, sparse sources can be estimated efficiently using the Champagne

algorithm [Wipf et al., 2010]. In many practical BCI applications, however, the EEG data

are not time-locked to any specific event and the signal to noise ratio (SNR) can be subject

to random fluctuations due to a variety of physiological and environmental conditions

[Costa et al., 2016; Kilicarslan et al., 2016], and hence there is a need for inversion

algorithms with built-in online noise adaptation. Some authors have proposed combining

noise adaptation and sparse source estimation in a double optimization algorithm [Zhang

and Rao, 2013]. We will show in Section 3.3.4 that such an approach may incur a significant

computational cost that limits the usability of the SBL framework for real-time ESI.

In the context of EEG source estimation, the use of global sparsity and local

correlation (smoothness) constraint can be motivated by the fact that EEG signals are

due to the electrical activity of neural masses locally synchronized in space and time.

Block-SBL (BSBL) approaches comprise different flavors of the SBL framework in which

the sparsity constraints can be enforced at the level of groups of sources [Zhang and Rao,

2011, 2013], thereby providing a principled way to model intra-group source correlations. A

similar approach termed Multiple Sparse Priors (MSP) has been developed independently

by [Friston et al., 2008]. In BSBL, block-sparse source estimates that are easy to interpret

can be induced by partitioning the source space according to an atlas of the cerebral
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cortex [Saha et al., 2017]. In this chapter, we build on this approach. In addition to its

biological motivation, group-sparsity is appealing for real-time ESI because the reduced

number of hyperparameters that need to be learned from the data can help to further

accelerate the algorithm. The objective of this chapter is to develop a BSBL algorithm

with built-in noise adaptation that is suitable for real-time imaging applications. The

motivation for our method is an approximation to the model evidence proposed by [Friston

and Penny, 2011] that allows for decoupling the estimation of the sensor noise covariance

from the optimization of the ARD priors. This yields a fast and robust two-stage BSBL

algorithm which we refer to as BSBL-2S. In the first stage, we optimize a simplified

non-sparse generative model to get an estimate of the sensor noise covariance and a good

initialization of the group-sparsity profile of the sources. In the second stage, we apply a

fast SBL algorithm with the noise covariance fixed to the value obtained in stage one to

efficiently shrink to zero groups of sources that are irrelevant for explaining the observed

EEG data. Furthermore, we derive an initialization to the first stage of the algorithm that

is optimal in the least squares sense, thereby preventing delays due to suboptimal initial

conditions. To achieve globally sparse and locally smooth source estimates while reducing

the computational cost of our algorithm, we use an anatomical atlas of the cortex and

discrete Laplacian operators to furnish the source prior of our generative model.

The remainder of the chapter is organized as follows. In Sections 3.2.1-3.2.6 we

develop the BSBL-2S algorithm. In Sections 3.3.1-3.3.6 we validate our method on

simulated data. In Section 3.3.7 we show an application on real EEG data for imaging the

sources of error-related negative/positive scalp potentials. We finalize in Section 3.4 with

our concluding remarks.
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3.2 Methods

As we mentioned in Chapter 2, in practice, raw EEG data are affected by artifacts

of different nature such as interference from the 50/60 Hz AC line, pseudo-random muscle,

and movement artifacts, among others. However, to simplify the exposition, in this chapter

we don’t model artifacts explicitly as in the PEB+ framework proposed in Chapter 2.

Instead, we assume that before source estimation, EEG samples pass through an online-

capable artifact rejection procedure where high-variance and non-Gaussian artifacts are

largely removed [Kilicarslan et al., 2016; Matiko et al., 2013; Mullen et al., 2015]. We do

this so that later in the chapter we can benchmark our algorithm against others without

built-in artifact modeling on equal footing.

To invert the probabilistic generative model of Chapter 2 we maximize the evidence

p(Y|M) with respect to the hyperparameters (see Section 2.2.2). We note that for the

purpose of deriving an algorithm to optimize the evidence, the simplifying assumption

that A ∈ ∅, does not constitute a loss of generality. Due to the linearity of our generative

model, considering a nonempty artifact dictionary implies that we just need to recast the

algorithm developed here (see pseudo-code 1) and detailed in appendix C with L← H,

ΣΣΣg ← ΣΣΣx, so that we obtain X̂k estimates instead of Ĝk.

As in Chapter 2, we define the prior source covariance in terms of the following

covariance components Wipf and Nagarajan [2008],

ΣΣΣg(γ) =

Ng∑
i=1

γiCi, i = 1, . . . , Ng (3.1)

where Ci ∈ RNg×Ng represents a known nonoverlapping intra-group pseudo-covariance

matrix and γ ∈ RNg is a nonnegative scale vector. Ci is zero everywhere except for a

block in the main diagonal that takes the value (∆T
i ∆i)

−1, where the matrix ∆i is a

discrete Laplacian operator which allows enforcing spatial smoothness within each group.
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To obtain each ∆i, we first build a discrete Laplacian operator ∆ defined in the entire

cortical mesh [Oostendorp et al., 1989], excluding the vertices that belong to the corpus

callosum, then we zero out the columns of ∆ that are not in the ith group. We partition

the source space into Ng regions of interest (ROIs) according to the Desikan & Killiany

atlas [Desikan et al., 2006], as depicted in Fig. 3.1. Within the framework outlined in this

section, different brain parcellations can be included based on structural and functional

data contributed by other neuroimaging modalities [Lei et al., 2015]. It has been shown

that the parametrization of Eq. (3.1) allows for recovery of a variety of physiologically

relevant source configurations, from broadly smooth to extremely sparse [Friston et al.,

2008].

Figure 3.1. Definition of covariance components. The left panel shows the Desikan &
Killiany atlas used in this chapter subdivided into Ng = 488 regions of interest (ROI), each
covering approximately 5 cm2 of surface area. Each color represents a meta-ROI which
is subdivided into smaller regions as indicated by the boundary marks. The right panel
shows the unweighted sum of covariance components C =

∑Ng
i=1 Ci, where each Ci matrix

takes values according to the neighborhood structure of the correspondent ith ROI.

The combination of discrete Laplacian operators and a cortical atlas has been used

before to constraint EEG sources [Trujillo-Barreto et al., 2004]. In the context of BCI,

Duque-Munoz et al. [2016] recently proposed to reduce computational cost by using the
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Broadmann atlas to drastically limit the source space to a few exemplars inside each ROI.

A key distinction between our approach and the latter is that we do not use ROIs to

reduce the source space at the outset, which would reduce the spatial resolution of our

method. Instead, we use ROIs to induce sparsity at the level of groups of sources, i.e., in

the first level of inference we still estimate the amplitude of Ng sources.

3.2.1 Two-stage evidence optimization (BSBL-2S)

The motivation for our method is an approximation to the model evidence proposed

by Friston and Penny [2011] that allows for decoupling the estimation of the sensor noise

variance λ from the optimization of the sparsity profile of the sources encoded by γ. Due

to the ARD properties of our generative model, in the process of learning γ most entries

shrink to zero, causing the corresponding sources to have zero variance. This allows for

removal of the respective columns of L from the model of Eq. (2.1), thereby reducing the

column dimension of L. We refer to models where some of its sources have identically zero

variance as reduced (sparse) models,MR ⇔ γ � 0. Note that if a source has zero mean

and variance, it is identically zero almost surely and contributes nothing to the value of

Y. Conversely, we say that a model is full (non-sparse) if all the sources can have finite

non-zero variance,MF ⇔ γ � 0.

Friston and Penny [2011] showed that if the likelihoods of the reduced and full

models are assumed to be the same (i.e. modelsMF andMR yield the same reconstruction

error), the inversion of the full model can be used as a stepping stone to invert a reduced

one. Their so-called post hoc model selection technique yields simple expressions for the

reduced model evidence and source posterior, but requires matrix-vector operations in

the source space RNg which are unsuitable for real-time imaging applications of medium

to high spatial resolution. Nonetheless, their result is relevant for obtaining a fast and

noise-adaptive SBL algorithm because a constrained parameterization of the full model

may facilitate the optimization of the sensor noise variance λ with respect to p(Y|MF ),

53



clearing the way for the subsequent application of an efficient learning rule for γ. We

develop this idea further below.

LetMF = {λ, γ ∈ Γ} be our chosen class of “γ-constrained" full models, where Γ

denotes the following constraint set,

Γ = {γi = γF |γF > 0, i = 1, . . . , Ng} (3.2)

We can learnMF by finding the mode of the full model evidence as follows,

M̂F = arg max
λ,γF

p(Y|λ, γF ) (3.3)

Eq. (3.3) defines our “stage one" optimization problem. Conveniently, the constraint (3.2)

reduces problem (3.3) to the learning of just two scalar hyperparameters (λ, γF ) which, in

the context of EEG where Ng can be quite large (see Fig. 3.1), is a significant reduction

in complexity. Furthermore, it forces the source prior covariance defined in Eq. (3.1) to

take the simpler form

ΣΣΣg(γ) = γFC (3.4)

where C ,
∑

i Ci is known. Eq. (3.4) yields the smoothness prior used in the popular

source estimation method LORETA [Pascual-Marqui et al., 1994]. LORETA has been

proposed as a valid choice for implementing real-time (non-sparse) brain imaging pipelines

[Courellis et al., 2017; Mullen et al., 2015; Pieloth et al., 2014; Pion-Tonachini et al., 2015],

thus, the solution of Eq. (3.3) can yield a reasonable starting point for a subsequent

sparsity-inducing pruning algorithm, as we show is indeed the case in Section 3.3.2.

The “stage two" of our algorithm is SBL, used for the pruning of redundant sources

from the γ-constrained optimal full model that was found in the previous stage,

M̂R = arg max
γ

p(Y|λ̂, γ) (3.5)
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which we solve using the so-called γ-MAP algorithm [Wipf and Nagarajan, 2008]. We

note that by using γ-MAP, our stage two is equivalent to the Champagne algorithm

[Wipf et al., 2010]. Our method differs from Champagne in that the latter estimates the

noise covariance Σe from pre-stimulus data while ours do not require time-locking to any

experimental event. Next, we summarize the proposed algorithm.

3.2.2 Algorithm outline

Algorithm 1 gives a high-level pseudocode outline of the two-stage method developed

so far (see a detailed pseudocode in C). The algorithm takes as input a block of EEG

samples Y and returns the correspondent MAP source estimates in the matrix Ĝ. In line

2 we obtain an estimate of the full model M̂F = {λ̂, γ̂F} by solving problem (3.3). In

line 3 we use γ̂F as the initial condition for the solution of problem (3.5). In line 5 we fix

λ to the value λ̂ and continue the optimization of the evidence, now allowing irrelevant

groups of sources to shrink to zero. Finally, in line 7 we use the optimal sparse model

M̂R = {λ̂, γ̂} to estimate the sources Ĝ.

We present simulations showing that this two-stage strategy works well in Section

3.3.4. But first, we turn to developing the details of the algorithms needed to perform the

optimizations (3.3) and (3.5).

Algorithm 1. Two-stage evidence optimization
Input: Y
Output: ĝ
1: stage one (LORETA):
2: λ̂, γ̂F ← arg maxλ,γF p(Y|λ, γF )
3: γi ← γ̂F , i = 1, . . . , Ng

4: stage two (pruning):
5: γ̂ ← arg maxγ p(Y|λ̂, γ)
6: Source estimation:
7: Ĝ← ΣΣΣg(γ̂)LTΣΣΣy(λ̂, γ̂)−1Y
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3.2.3 Optimization of the model log evidence

The maximization of the model evidence is equivalent to minimizing the so-called

type-II Maximum Likelihood (ML-II) cost function Barber [2012], which is also known

as the evidence framework MacKay [2008b]. The only implication of using ML-II for

Algorithm 1 is the switch in lines 2 and 5 to the minimization of the functional (3.6)

subject to the appropriate constraint. Applying −2 log(·) to Eq. (2.19) yields,

L(M) = log |ΣΣΣy|︸ ︷︷ ︸
Complexity

+ trace
(
CyΣΣΣ

−1
y

)︸ ︷︷ ︸
Accuracy

(3.6)

where Cy = N−1YYT is the empirical data covariance. The first term in Eq. (3.6)

measures model complexity. Geometrically, this term represents the volume of an ellipsoid

defined by ΣΣΣy; as the axes of the ellipsoid shrink, the volume is reduced. The second term

measures model accuracy; i.e., how similar are the empirical and analytic covariances Cy

and ΣΣΣy.

Although several learning rules for λ and a scalar γ based on the evidence frame-

work are readily available MacKay [1992]; Trujillo-Barreto et al. [2004], they require

vector operations in RNg which for high-resolution source spaces could hamper real-time

performance. Therefore we next develop learning rules equivalent to those traditionally

used in the evidence framework which only require operations in the space of the data

RNy (see details in A).

3.2.4 Stage one: optimization of the full model

Inserting the γ-constrained source covariance (3.4) in Eq. (2.11) (evaluated in L

since here we ignore artifacts) yields the simplified analytic data covariance,

ΣΣΣy(λ, γF ) = λINy + γFLCLT (3.7)
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Then, we use the relation C = (∆T∆)−1, where ∆ is the discrete surface Laplacian operator

introduced in Section 3.2, and the singular value decomposition of the standardized lead

field matrix L∆−1 = Udiag(si)V
T to succinctly write L(MF ) as a spectral function (a

function that depends only on the eigenvalues of a matrix),

L(MF ) =

Ny∑
i=1

logψi︸ ︷︷ ︸
log |ΣΣΣy |

+

Ny∑
i=1

ỹ2
iψ
−1
i︸ ︷︷ ︸

trace(CyΣΣΣ−1
y )

(3.8)

with
ψi = γF s

2
i + λ

ỹ2
i = N−1‖Ỹi‖2

2, i = 1, . . . , Ny

(3.9)

where ψi are the regularized eigenvalues of Eq. (3.7) and Ỹi is the ith row of the matrix

Ỹ = UTY.

We obtain the optimal hyperparameter estimates λ̂ and γ̂F simply by finding the

root of the gradient of L(MF ), which using Eq. (3.8) yields the following fixed-point

update rules,

λ̂← λ̂

∑Ny
i=1 ỹ

2
iψ
−2
i∑Ny

i=1 ψ
−1
i

, γ̂F ← γ̂F

∑Ny
i=1 ỹ

2
i s

2
iψ
−2
i∑Ny

i=1 s
2
iψ
−1
i

(3.10)

3.2.5 Stage one least squares initialization

Initializing Eq. (3.10) at random could reduce the convergence speed of stage one

depending on how far are the initial points λ0 and γ0 in the ML-II landscape from the

optimal λ̂ and γ̂F (see Fig. 3.3). In this chapter, we propose using a starting point that is

optimal in the least squares (LS) sense.

Inspecting the trace term in Eq. (3.8) we see that if the model fits the data perfectly

the following condition is met,
Ny∑
i=1

ỹ2
iψ
−1
i = Ny (3.11)
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yielding the following system of linear equations,


s2

1 1

...
...

s2
Ny

1


︸ ︷︷ ︸

S

γ0

λ0

 =


ỹ2

1

...

ỹ2
Ny


︸ ︷︷ ︸

ỹ2

(3.12)

which we can solve analytically by least squares as,

γ0

λ0

 = (STS)−1ST ỹ2 (3.13)

Note that the LS estimator of Eq. (3.13) is prone to overfitting, however, a few iterations

of the update rules in Eq. (3.10) will cause the complexity term to be taken into account

thereby moving the hyperparameter set towards more plausible values. The properties of

the estimator in Eq. (3.13) are not discussed further in this chapter.

3.2.6 Stage two: pruning of irrelevant sources

In this section we perform stage two of Algorithm 1 by leveraging the γ-MAP

learning rule, initialized by the γ-constrained solution M̂F . Let {L1, . . . ,LNg} be a set

of standardized observation operators such that Li , L∆−1
i , where ∆i are the ROI-

specific Laplacian operators introduced in Section 3.2. Note that the Li matrices can be

significantly reduced by removing the columns corresponding to the zero entries of ∆−1
i ,

thereby saving compute time and storage. Then, we update each γi as follows Wipf and

Nagarajan [2008],

γ̂i ←
γ̂i√
N

∥∥LT
i (ΣΣΣy)

−1Y
∥∥
F

(
trace

[
LT
i ΣΣΣ−1

y Li

])−1/2 (3.14)
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where ΣΣΣy is updated at each iteration as,

ΣΣΣy ← λ̂INy +

Ng∑
i=1

γ̂iLiL
T
i (3.15)

The complexity of learning rule (3.14) is at most O(N3
yNg), but with access to parallel

hardware each γi could be optimized simultaneously, thereby lowering the compute cost

even further. Although we do not use such implementation here, we show in Section 3.3.4

that real-time performance is attainable.

3.3 Results and Discussion

In this section we first use simulated data to illustrate different aspects of the

BSBL-2S algorithm and test speed performance and noise adaptation. In addition to

the log evidence score, we use the area under the convex-hull (AUC) of the ROC curve

[Provost and Fawcett, 2000] to assess the reconstruction accuracy with respect to the

ground truth source maps. We calculate the AUC compensating against class imbalance

as done in previous neuroimaging studies [Chowdhury et al., 2013; Trujillo-Barreto et al.,

2008]. Second, we used BSBL-2S for imaging the sources of error-related negative/positive

scalp potentials obtained from real EEG data.

3.3.1 Data simulation

We constructed simulations based on a montage of Ny = 64 sensors (a superset

of the standard 10-20 system) and Ng = 5003 sources distributed over the cortical mesh.

The source orientations were constrained to be normal to the cortical surface. The lead

field matrix L was computed from a four-layer (scalp, outer skull, inner skull, and cortex)

head model derived from the MRI template “Colin27" [Holmes et al., 1998] using the

boundary element method solver OpenMEEG [Gramfort et al., 2010]. We simulated the

ground truth source vector gtrue by placing a truncated Gaussian at the center of four
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ROIs (middle frontal gyrus (R), caudal middle frontal gyrus (L), inferior parietal cortex

(L/R)), each one covering an area of approximately 5 cm2 (see Fig. 3.2). We generated

synthetic EEG samples at 250 Hz by adding iid Gaussian noise to the ground truth source

projection,

yk = Lgtrue + ek, k = 1, . . . , N (3.16)

The block smoothness and sparsity constraints were constructed based on the

488-ROI sub-parcellation of the Desikan & Killiany atlas shown in Fig. 3.1, which we

obtained with the help of the Brainstorm software [Tadel et al., 2011]. The discrete surface

laplacian operator ∆ was extracted from the irregular cortical mesh using MATLAB code

by Darren Weber and Robert Oostenveld that implemented the formulas in [Oostendorp

et al., 1989]. The discrete Laplacian operators ∆i were constructed zeroing out the rows

of ∆ that do not correspond to the ith ROI.

We define the SNR used in our experiments as the power of Hxtrue divided by

the average power of ek. Likewise, the AUC is calculated between the average estimated

PCD, ĝ2
k, and the ground truth PCD, x2

true. We define the convergence of the ML-II cost

function as a difference in the log evidence of two consecutive iterations of the optimization

algorithm equal to 0.12. All the simulations were implemented in MATLAB and ran on a

4-core i5 Intel CPU laptop with 8 GB of RAM.

3.3.2 BSBL-2S model inversion

In this experiment, we illustrate how ESI is realized through the BSBL-2S algorithm.

The objective here is to show qualitatively and quantitatively how the block-sparse source

vectors gk are obtained from the simulated noisy measurements yk described in Section

3.3.1. Fig. 3.2 shows images obtained at each stage of the algorithm. To better illustrate

the difference between each type of solution, the source maps shown correspond to the
2We note that a difference of 0.1 in log evidence units implies that the models compared in iterations i

and i+ 1 have almost the same probability, 1.052 · p(Y|Mi) ≈ p(Y|Mi+1).
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power ĝ2
k averaged over N = 10 samples, i.e. such that spurious positive and negative

sources on each trial cannot cancel each other out, thereby artificially improving the

results.

As shown in Fig. 3.2, the full model M̂F , estimated during the first stage of the

algorithm, converged in seven iterations. Regarding reconstruction accuracy, the non-sparse

solution achieved an AUC of 0.8818. However, as it is typical with LORETA-type images,

some undesired low-amplitude ghost sources remained active. The algorithm proceeds

to the second stage (pruning) using the update rule (3.14) with λ fixed to the previously

learned value λ̂. The reduced model M̂R converged in an additional seven iterations.

Qualitatively, we see that ghost sources were mostly removed from the sparse solution,

achieving an AUC of 0.9504. Note that AUC increases with the log evidence of the model as

the estimated source map approaches the ground truth. In addition, we compared models

MF andMR according to their log Bayes factor, BR,F = log p(Y|M̂R)− log p(Y|M̂F ),

where BR,F ≈ 15 indicates that the data are more likely to be generated by the sparse

modelMR [Kass and Raftery, 1995].

3.3.3 Effect of the initial conditions

In this section we investigate, empirically, how random initial conditions affect the

convergence properties of our algorithm. We simulate 1000 values for λ0 and γ0 by drawing

independent samples from a uniform distribution in a log-space,

λ0, γ0 ∼ U
[
10−6, 106

]
(3.17)

The sampling intervals were set to cover values that yield physiologically plausible solutions,

i.e., avoiding source vectors of all zeros or infinity.

Starting from each of the 1000 initial conditions, we optimized λ and Ng = 488

γi hyperparameters. Fig. (3.3) plots the log evidence (denoted by the colors) at each
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Figure 3.2. Two-stage log evidence optimization. The blue trace represents the opti-
mization of the log evidence (arrived at via the iterative minimization of L). The first 7
iterations are spent in the optimization of the full model, after that, an increase in log
evidence is achieved by removing unnecessary sources. The 3D maps represent the average
source power correspondent to the full, sparse, and ground truth maps. The right y-axis
shows the AUC at each stage. The SNR of the simulation was set to 4 dB.
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optimization iteration. The simulations (bottom axis) were sorted by the number of

iterations required for stage one of the algorithm to converge. We note that, regardless of

the initial conditions, the two stages of the algorithm appear to converge to approximately

the same value of log evidence. To test this, we computed the Bayes factor between

the models with maximum and minimum log evidence, log p(Y|M+
R) = 135.968 and

log p(Y|M−
R) = 135.5518 respectively, yielding BR+,R− = 0.411. Since 2BR+,R− < 2, we

can discard the hypothesis that the 1000 final models are distinguishable from one another

[Kass and Raftery, 1995].
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Figure 3.3. Two-stage evidence optimization surface as a function of the initial conditions
(top-down view). The color denotes the log evidence. All the optimizations used the same
synthetic data and an SNR of 4 dB. The simulations (bottom axis) were sorted by the
number of iterations required for stage one of the algorithm to converge.

It is possible that although the algorithm converges to the same value of the

log evidence, the resulting models could have different sparsity profiles (e.g., reflecting

convergence to different local minima of the objective function). To assess this, in Fig. 3.4
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we plot the hyperparameter estimates λ̂ and γ̂i, following convergence, for each simulation

sorted by the value of λ̂. We augment these results by including the hyperparameter

estimates yielded by the least squares initialization, whose location is denoted by the red

circle in the bottom panel. A view to the bottom panel makes clear that λ converges to

two different values. To measure the similarity of the sparsity profiles we compute one

minus the cosine distance between pairs of γ̂ vectors across simulation (Fig. 3.5). The top

panel of Fig. 3.5 reveals that the algorithm converged to two slightly distinctive sparsity

profiles. The bottom panel shows the source maps yielded by the hyperparameter set

of three exemplary simulations. The left (initialized at random) and center (initialized

by LS) panels show that the four simulated sources are recovered while the right panel

shows an oversparsified map where the source in the middle frontal gyrus (R) is severely

underestimated. We note that, although our algorithm is sensible to getting trapped in

a local minima, the use of the LS initialization seems to place it on the path towards a

plausible solution.

In Fig. 3.6 we compare the shortest (dash blue) and largest (dash-dot orange)

optimization paths yielded by the random initial conditions shown in Fig. 3.3 and the

path yielded by the LS initialization (solid black) using Eq. (3.13). The figure shows

that the LS initialization produces an optimization path that is just a few iterations

longer than the shortest path (within the models considered). Compared to the largest

path, we see that stage one converges in half of the iterations, thereby contributing to

speed up the algorithm. This experiment suggests that using Eq. (3.13) to initialize the

hyperparameters of our model can remove delays due to suboptimal initial conditions.

3.3.4 Benchmark of the computational performance

BSBL methods have been shown to outperform many popular sparse solvers [Zhang

and Rao, 2013]. In this experiment, we investigate the computational performance of the

BSBL-2S algorithm in comparison with two closely related state of the art algorithms
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Figure 3.4. Values of the hyperparameters after algorithm convergence, sorted by the
value of λ̂ (bottom panel). In the top panel, the color of each pixel reflects the value of
each γ̂i parameter (y-axis) for the respective initialization (x-axis). The red circle in the
bottom panel indicates the simulation initialized by least squares.

BSBL-EM and BSBL-BO [Zhang and Rao, 2013]. BSBL-EM uses update rules based on

the EM algorithm and BSBL-BO uses the same λ update as the former and a γ update

based on the optimization of an upper bound to the ML-II cost function that is essentially

equivalent to γ-MAP. The benchmark simulates the online processing of EEG data blocks

80 milliseconds long. All algorithms were implemented fairly and optimized to reflect their

minimum asymptotic complexity. Each benchmark used the same simulated ground truth

data of Section 3.3.1 adding Gaussian noise accordingly.

In Fig. 3.7, the columns show benchmarks under different SNR from 2 dB to 10

dB. In each row, we plot the log evidence as a function of algorithm iterations (top) and

milliseconds elapsed (bottom) respectively. The black dash line denotes the time point

65



Figure 3.5. The top panel shows the similarity of every pair of γ̂ vectors in Fig. 3.4. The
similarity is measured as one minus the cosine distance between two γ̂ vectors. The bottom
panel shows the semitransparent source maps yielded by three exemplary simulations.

by which the subsequent batch of samples is available for processing. For an algorithm

to perform in “real-time" it must converge before this mark. For the time span shown,

from left to right we see that the log evidence increases as the SNR increased, intuitively

indicating that the model uncertainty is reduced as the measurements are less affected by

noise.

Inspecting the top row, we note that in some cases BSBL-2S requires only slightly
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Figure 3.6. Detailed view of Fig. 3.3 showing the shortest and largest optimization paths
yielded by random initial conditions and the one yielded by the LS initialization.

less iterations to converge than BSBL-BO. However, the bottom row panels demonstrate

significant differences in the convergence time, with BSBL-2S significantly out-performing

its counterparts. This suggests that the computational cost per iteration differs between

algorithms. As indicated by the blue trace, we note the steep growth in log evidence

achieved by stage one in the first iteration after the LS initialization, thereby contributing

to the speed boost of BSBL-2S. As expected, in all cases the EM-based algorithm BSBL-

EM displayed a slower convergence. We note that, in many practical online applications,

source inference is one component of a pipeline wherein additional delays may be incurred

by other signal processing or machine learning algorithms. As such, it is desirable for an

algorithm to reach convergence in substantially less time than the minimum required for

real-time processing.

Most SBL algorithms, including BSBL-BO and BSBL-EM, learn the hyperparame-
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Figure 3.7. Benchmark of different SBL methods. All the tests used the same simulated
data consisting of multiple sources concentrated within 4 ROIs scattered over the cortex.
Each panel shows the benchmark under different SNR. The dash black line marks the
moment when a new batch of samples is ready to be processed; to perform in real-time
the algorithms must converge before this mark.

ters λ and γ simultaneously. BSBL-2S on the other hand, learns only two hyperparameters

(λ, γF ) in stage one, which from Fig. 3.7 seems to be quite efficient. In stage two, BSBL-2S

learns the values of all Ng entries of the hyperparameter vector γ. We note that the fact

that, in this simulation, BSBL-2S and BSBL-BO achieve approximately the same value of

log evidence should be considered a happy accident and may not hold in general because

in our algorithm the reduced model is never optimized with respect to λ. Nevertheless, our

experiments show that the initialization of the second stage with the optimal full model

has a positive impact on the convergence speed of the algorithm. Intuitively, we can see

this process as an initial fast and reasonable, albeit coarse-grained, estimation, followed by

a fine tuning step.

3.3.5 Adaptation to sensor noise fluctuations

In this example, we study the sensor noise adaptation characteristics of BSBL-2S.

We simulated 1200 EEG samples, where after every 100 samples we changed the SNR by
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varying the amplitude of the measurement noise, progressively changing the SNR from 10

dB to 0.5 dB and back to 10 dB. Sources were estimated in consecutive, contiguous, and

nonoverlapping blocks of 10 samples. In Fig. 3.8, the blue trace represents the estimated

noise precision (left y-axis) while the orange trace represents the SNR (right y-axis). The

estimated noise precision is the inverse of the estimated noise variance λ̂. We note that

the estimated noise precision very closely tracked the changes in SNR, demonstrating that

BSBL-2S can adapt to changes in sensor noise.
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Figure 3.8. The blue trace represents the inverse of the hyperparameter λ̂ estimated
every 10 consecutive samples. The orange trace represents the simulated changes in SNR.

3.3.6 Benchmark of the source reconstruction quality

With the objective of reducing computational cost during real-time source estima-

tion, some authors have proposed fixing the regularization parameters to values obtained

offline [Pieloth et al., 2014]. Following up on the results of Section 3.3.5, in this example

we show that the lack of features such as online adaptation and sparsity can significantly

reduce the quality of the recovered sources. We compared the BSBL-2S algorithm against
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the following inverse solvers that can be readily obtained within the framework outlined

in this chapter:

• BSBL-2S (λ fixed): Same as BSBL-2S but λ is fixed after the first 10 samples. In

this case the algorithm does not adapt to changes in sensor noise.

• LORETA: optimization of the full model only (stage one) and the pruning stage

(stage two) disabled. This method estimates sources subject only to smoothness

constraints but adapting λ and γF .

• LORETA (λ fixed): same as LORETA but with λ updates turned off after the first

10 samples.

We do not include BSBL-BO and BSBL-EM algorithms in the comparison because, as

shown in Fig. 3.7, they do not perform in real-time. In particular, we note that for a fixed

λ, BSBL-2S and BSBL-BO algorithms reduced to the same procedure (γ-MAP).

In Fig. 3.9, the top panel shows the performance achieved by each inverse method.

The bottom panel indicates groups of samples with different SNR, which for this simulation

followed the same pattern as in Fig. 3.8. In all cases, SBL methods outperformed LORETA.

This is not surprising given the tendency of LORETA to overestimate the spatial extent

of the activations and produce “ghost" (spurious) source estimates. For samples with high

SNR, we can see the performance boost introduced by the pruning step, highlighting the

importance of using sparsity constraints. The simulation shows that BSBL-2S was the

only method robust enough to extreme noise conditions (SNR ≤ 1 dB), demonstrating

the importance of not only imposing sparsity constraints (γ inference) but also adapting

to changes in sensor noise (λ inference) in a data-driven manner.

3.3.7 Source estimation of error-related potentials

In this section, we use the BSBL-2S algorithm for computing single-trial estimates

of the sources underlying error-related EEG activity from a healthy subject performing

70



Figure 3.9. The traces show the AUC of different inverse methods. The colored bars
represent groups of samples with different SNR, from 10 dB to 0.5 dB.
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Figure 3.10. Single-trial EEG activity correspondent to the correct (left panel) and error
(right panel) conditions and averaged ERP for sensor Cz. Response-locked trials are sorted
by the time elapsed from the presentation of the target (dashed trace) to the onset of the
response (solid trace). The cartoon head on the top left shows the location of sensor Cz.

a modified Flanker task. The data were kindly provided by McLoughlin et al. [2014].

Data were recorded using a 64-channel (BrainAmp DC; Brain Products, GmbH, Munich,

Germany) extended 10-20 system montage (reference at FCz) digitized at a 500 Hz sampling

rate. The subject was presented with visual stimuli consisting of two flankers (horizontal

arrows pointing either to the left or the right) above and below a fixation mark. 100

milliseconds later a central target arrow appeared for a duration of 150 milliseconds. The

subject was instructed to press a response button with the index finger of the hand (left

or right) corresponding to the direction indicated by the target arrow (left or right). On

congruent trials, the flanker and target arrows pointed in the same direction, while on

incongruent trials they pointed in opposite directions. 10 blocks of 40 trials were recorded.

For further details on the task and data recording, we direct the reader to [McLoughlin

et al., 2014].

In this paradigm, after the commission of an error, a response-locked error-related

negativity (ERN) ERP is often elicited, also referred to as Ne. Typically, the Ne shows

a negative peak in the frontocentral sensors within 100 milliseconds after the erroneous
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response. The Ne component is often followed by a pronounced positivity in the centropari-

etal sensors around 200-500 milliseconds, which is referred to as Pe. We test our method

on this type of data because error-related potentials have been studied in great detail

[Gehring et al., 2012] and they have practical relevance for BCIs [Chavarriaga et al., 2014].

We carried out standard data pre-processing within the EEGLAB software envi-

ronment [Delorme et al., 2011]. We removed electrooculogram (EOG) channels yielding

60 EEG channels. We then applied a 0.5 Hz to 35 Hz band-pass forward-backward FIR

filter, downsampled to 250 Hz, and re-referenced the data to the common average. We

removed eye-blink artifacts using the online-capable Artifact Subspace Reconstruction

method [Mullen et al., 2015]. EEG data were epoched into trials spanning -500 to 1000

milliseconds relative to the onset of correct and erroneous responses and the mean baseline

over -500 to 0 milliseconds was subtracted. The erroneous trials included those were

the stimulus were both congruent and incongruent. The final data set consisted of two

tensors Yc,e ∈ RNy×Ns×Tc,e, where Ny = 60 denotes the number of sensors used for analysis,

Ns = 250 is the number of samples in each trial, and T is the number of trials (Tc = 305

correct and Te = 74 erroneous).

To construct a head model, we first nonlinearly warped the subject’s sensor locations

to the scalp surface of the template using the headModel toolbox3. In contrast to previous

experiments on simulated data, in this section we computed the orientation free lead

field, i.e., we estimated (x, y, z) components for each source for a total of 3Ng = 15009

parameters. The group sparsity constraints were imposed along every (x, y, z) direction

independently, i.e., sources were allowed to have a trivial component along one or more

directions. We estimated the source activity along the time dimension of the Yc,e tensors

independently for every trial. We applied BSBL-2S to batches of 80 milliseconds (20

samples) data with 50% overlapping to smooth out high-frequency components introduced

by sharp transitions in the sparsity profile of the sources from one block to the next.
3https://github.com/aojeda/headModel
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Fig. 3.10 shows correct (left panel) and erroneous (right panel) single-trial EEG

responses for sensor Cz as ERP-images4 [Delorme et al., 2015]. In each panel, we sorted

trials by the time elapsed from the presentation of the target arrow (dashed trace) to

the onset of the response (solid trace). The bottom panel shows the ERP obtained by

averaging the trials in the top panel. As shown in the panel on the right, we obtained an

Ne component with maximum negativity at 68 milliseconds, followed by the Pe component

with a peak at 252 milliseconds.

Figure 3.11. Source estimates averaged over error trials. The leftmost panel shows the
ERP time courses for sensors Fz and Cz. The dashed circles mark the latency of Ne/Pe
components and each arrow points to the respective mean scalp topography (interpolated
on the surface of the head) and their underlying cortical PCD maps. The bottom arrow
indicates that the scalp transparency fades out from left to right, allowing us to see in
the center panels the superposition of scalp topographies and cortical activations. The
orientations of the source dipoles are indicated by black arrows on the cortical surface. A
movie detailing the scalp and source ERP activity can be found https://www.dropbox.
com/s/nuqwkviy4d9khfo/movie_Fig11.avi?dl=0.

Averaging the single-trial source images for the error condition obtained by BSBL-2S
4In this section, the lower and upper colormap limits reflect the 5th and 95th percentile, respectively,

over the displayed images.
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revealed consistent activity within two brain regions that have been linked to conflict

monitoring and error processing, the anterior cingulate cortex (ACC), and the posterior

cingulate cortex (PCC) [Buzzell et al., 2017; Herrmann et al., 2004; Luu et al., 2004;

Roger et al., 2010; Vocat et al., 2008]. We found that the generators of the Ne component

included sources located in both ACC and PCC regions pointing away from the sensors,

while the Pe component was generated by sources in the PCC pointing towards the sensors

(see Fig. 3.11).

(a) Correct trials.

(b) Erroneous trials.

Figure 3.12. Baseline corrected single-trial source estimates magnitude averaged within
the ACC and PCC regions.
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Figure 3.13. Two Gaussian mixture model fit of baseline-corrected source magnitudes
from ACC and PCC in the 0-100 msec interval for error (red ×’s) and correct (green
circles) trials. The colored contour lines represent regions of equal probability.

Finally, we present a simple example illustrating the use of brain-localized single-

trial source estimates for identifying error-related brain responses. Fig. 3.12 plots the

baseline-corrected magnitude of the single-trial source estimates averaged within the ACC

and PCC regions for the correct (a) and error (b) conditions. We further averaged the

source magnitude within the first 100 milliseconds after the response and plotted each trial

as a data point in an (ACC, PCC) plane (see Fig. 3.13). In Fig. 3.13, the green circles

and red × symbols represent correct and error trials respectively and the colored contour

lines represent regions of equal probability obtained by fitting a two Gaussian mixture

model to the data. Although the issues pertaining the learning of a classifier are beyond

the scope of this chapter, the proposed method may be useful for obtaining features with

increased biological relevance compared to sensor-based features.
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3.4 Conclusions

In this chapter, we have developed BSBL-2S, a new Sparse Bayesian Learning

(SBL) algorithm that can deliver fast, block-sparse, and robust solutions to the EEG

source imaging (ESI) problem. Our contribution can be seen as a sensor noise adaptive

pre-training for the γ-MAP algorithm of Wipf and Nagarajan [2008] that allows for real-

time batch processing of EEG samples. To achieve this in a computationally efficient

manner, we decouple the estimation of the sensor noise covariance and the sparsity profile

of the sources, yielding a fast two-stage algorithm. In the first stage, we optimize a

simplified non-sparse generative model to get an estimate of the sensor noise covariance

and a good initialization of sources group-sparsity pattern. Sources obtained at this stage

are equivalent to those estimated with the inverse method LORETA. In the second stage,

we apply the γ-MAP algorithm with the noise covariance fixed to the value obtained in

stage one to efficiently shrink to zero groups of sources that are irrelevant for explaining

the observed EEG data. Furthermore, we derive an initialization to the stage one of the

algorithm that is optimal in the least squares sense, thereby preventing delays due to

suboptimal random initialization parameters.

On 64-channel simulated EEG data, we showed that the BSBL-2S algorithm can

perform in real-time and that the two-stage approach improved the convergence speed

relative to comparable single-stage SBL algorithms. We additionally demonstrated that

the algorithm can robustly adapt to fluctuations in the sensor noise variance. On real

EEG data, we localized the Ne and Pe components of single-trial error-related potentials

to compact regions of the cortex that are in agreement with previous neuroimaging studies.

We believe that the proposed approach will prove useful for applications within and outside

of the neuroimaging and brain-computer interface fields, thereby contributing to the use

of EEG as a brain imaging modality.
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Chapter 4

SimBSI: An open-source Simulink li-
brary for fast development of cross-
species closed-loop brain signal inter-
faces

4.1 Introduction

We can define a brain-computer interface (BCI) as a bidirectional communication

channel between a brain and a computer with the purpose of compensating dysfunctional

neuronal activity [Liang et al., 2010], rehabilitating motor skills [Hurtier et al., 2016], or

enhancing a cognitive ability [Burke et al., 2015]. Likewise, a closed-loop BCI can be defined

as a BCI that uses stimulation and feedback loops to adapt its communication channel to

ongoing changes in brain dynamics, task goals, and environmental signals. A promising

application of closed-loop BCI technology to clinical neuroscience is the development of

personalized computerized therapies that can target specific neural circuit dysfunctions

leading to psychiatric disorders [Carelli et al., 2017; McFarland et al., 2017; Mishra and

Gazzaley, 2014]. Most common BCI applications, however, offer limited therapeutic value

due to oversimplified designs and poor understanding of the neurobiological basis of the

mental health conditions being treated [Jeunet et al., 2016; Lotte et al., 2013].

Building BCI therapies on more solid grounds may require the characterization of
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the brain dynamics supporting cognition and behavior at multiple scales, from single-cell

and local field potential (LFP) recordings in animals to non-invasive electroencephalogram

(EEG), functional near-infrared spectroscopy (fNIRS), and functional magnetic resonance

imaging (fMRI) in humans [Mishra and Gazzaley, 2016]. For instance, taking advantage

of complementary species-specific methods, cross-species studies have shed light on the

neurophysiological mechanisms of fear and anxiety [Malter Cohen et al., 2013; Pattwell

et al., 2012; Soliman et al., 2010], rapid learning [Sagi et al., 2012], and error-related

adaptive learning [Narayanan et al., 2013]. Furthermore, BCI training has shown to

diminish distractibility in aging rats and humans [Mishra et al., 2014].

Despite recent efforts [Siegle et al., 2017], software and hardware supporting cross-

species closed-loop studies are still lacking. In this chapter, we introduce Simulink for Brain

Signal Interfaces (SimBSI), an open-source library and auxiliary programs for facilitating

closed-loop BCI research in rodents and humans. Simulink is a graphical programming

environment for modeling and simulation of dynamical systems and signal processing

that is tightly integrated with MATLAB (The MathWorks, Inc., Natick, Massachusetts,

USA), which has gained popularity in recent years for implementing EEG [Chiesi et al.,

2018; Georgieva et al., 2014; Guger et al., 2001] and single-cell [Zrenner et al., 2010] BCIs.

SimBSI adds to this ecosystem advanced human brain mapping methods for monitoring

and targeting cortical regions in real-time based on EEG signals, flexible cross-species

multimodal data acquisition based on the Lab Streaming Layer (LSL) library [UCSD

Swartz Center for Computational Neuroscience, 2011], as well as a flexible experimental

design platform for developing closed-loop BCI systems.

The rest of the chapter is organized as follows. In Section 4.2 we explain the design

principles that we followed to deveop the SimBSI library. In Section 4.3 we explain briefly

how Simulink works in the context of real-time signal processing applications. In section 4.4

we give an overview of multimodal, multirate data acquisition and synchronization using

the LSL library. Sections from 4.5-4.7, comprise a series of examples for signal processing,
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Table 4.1. BCI environments reviewed for this chapter compared against SimBSI.

Software Language Graphical prog. Built-in LSL Android and iOS Raspberry Pi Arduino Ref.
BCI2000 C++ 7 7 7 7 7 [Schalk et al., 2004]
AsTeRICS Java, C/C++ 3 7 7 7 7 [Drajsajtl et al., 2013]
OpenViBE C++ 3 3 7 7 7 [Renard et al., 2010]
BCILAB MATLAB 7 3 7 7 7 [Kothe and Makeig, 2013]

Pyff Python 7 7 7 3∗ 7 [Venthur et al., 2010]
TOBI C++ 7 7 7 7 7 [Müller-Putz, 2011]
BCI++ C/C++, C#, MATLAB 7 7 7 7 7 [Perego et al., 2009]
xBCI C++ 3 7 7 7 7 [Susila et al., 2010]
BF++ C++ 7 7 7 7 7 [Quitadamo et al., 2008]
gumpy Python 7 3 7 3∗ 7 [Tayeb et al., 2018]
SimBSI MATLAB, C/C++ 3 3 3 3 3 This chapter
∗Although it is not specified by the authors, a simplified version of this software may run on a Raspberry Pi board.

EEG source imaging, cross-species cognitive task design, and closed-loop neuromodulation.

Finally, in Section 4.9 we describe a hardware/software environment for closed-loop animal

BCIs.

4.2 Design principles

Over the last two decades, we have witnessed a rapid development of miniaturized,

high-precision, and low-cost bio-sensing technologies [Mcdowell et al., 2013] accompanied

by hardware of increased computing power. These advancements have fulled the creation of

several software environments dedicated to human BCI where practitioners can implement

a variety of predefined as well as customized approaches [Brunner et al., 2012]. Ideally,

one would like to extend existent human BCI systems, such as those shown in Table 4.1,

to support cross-species experiments. Extending existent BCIs to other species, however,

may be a cumbersome process and in many cases unfeasible due to differences in hardware,

data modalities, experimental paradigms, and programming languages.

SimBSI is not a BCI software per se, i.e., it does not offer popular predefined

approaches, nor is it optimized with a specific data modality in mind. Instead, we designed

it as a library that implements functionality for biosignal acquisition and processing that

complements the broad set of tools already available in Simulink for online signal processing

(see Fig. 4.1). In particular, we designed SimBSI with the following principles in mind:

• Intuitive programming environment: many BCI practitioners come from fields where
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mastering a programming language is not a requirement. So, not having to code in

the traditional way, but graphically, automatically lowers the technical background

required to design a BCI.

• Transparency of data processing: the flowchart nature of the Simulink language

makes it straightforward to debug and document a processing pipeline.

• Multiplatform: most Simulink programs can be compiled into standalone apps and

deployed to 1) traditional platforms such as Windows, Mac and Linux, 2) embedded

hardware such as Arduino and Raspberry Pi, 3) mobile devices such as Android,

iPhone, and iPad.

• Flexible data acquisition: Simulink’s Instrument Control Toolbox allows interfacing

instruments using standard communication protocols such as TCP/IP, UDP, and

the serial port.

• Reuse as much code as possible: large frameworks require much effort to develop,

maintain, document, and validate. Since Simulink offers a well validated general-

purpose online signal processing environment, why start from scratch? Furthermore,

Simulink can be extended with new blocks using C/C++ or standard MATLAB

code, so it is possible to reuse a large set of neuroscientific tools already developed

and tested in MATLAB. For example, popular human BCI approaches could be

ported from BCILAB [Kothe and Makeig, 2013] or BioSig [Schlögl and Brunner,

2008] toolboxes.

4.3 Simulink in a nutshell

In this section we outline the fundamentals of how Simulink works. This is important

because it will help us to understand the capabilities and limitations of Simulink as a

platform for closed-loop BCI and how to circumvent them. We base our exposition upon
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what we have learned from MathWorks’ online documentation and we refer the reader to

it for more in-depth explanations.

To write a program in Simulink, we use its graphical editor to connect different

blocks to form a flow diagram (or pipeline) that represents the time-dependent operations

performed to the signals that propagate through it. Once the pipeline is designed, we set

the sample time at which the system will operate (Model Configuration Parameters →

Solver → Fixed-step size); this is usually set as the inverse of the highest sampling rate

of the signals acquired by the pipeline. We set also the stop time in the toolbar of the

editor (also exposed in Model Configuration Parameters → Solver → Stop time); this is

the total time that the system will run for. For testing, the stop time could be any number

of seconds, and for deployment, we can set it to a large number, e.g., 3600 if we want it to

run for 1 hour or inf if we want it to run indefinitely.

Figure 4.1. SimBSI shown inside the Simulink library browser.
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In a closed-loop experiment, it is paramount to control the rate at which a pipeline

is executed so that we can deliver feedback to the subject during the targeted neural

state. To make sure that a pipeline runs in real time, during the prototyping phase of

a project it is a good practice to use the performance tools in the editor (Analysis →

Performance Tools), e.g., processing 10 seconds of data should take up to 10 seconds

but no more. Depending on the complexity of the pipeline it may be possible to achieve

real-time performance in the default mode of operation, which is called “normal mode”. In

normal mode, the pipeline can be executed combining compiled and interpreted blocks,

thus facilitating rapid prototyping, testing, and debugging. For soft real-time deployment,

however, we would typically use an accelerated mode [MathWorks, 2018a]. In accelerated

modes, all blocks are translated into C code and the pipeline is compiled into a binary.

If additional performance is needed beyond what can be achieved in accelerated

modes, there are two more options: the Simulink Desktop Real-Time (SDRT) Toolbox

and Simulink Real-Time (SRT). SDRT technology works by turning a general-purpose

computer into a real-time system during the execution of a Simulink pipeline. It does

so by installing a real-time kernel that takes over the CPU at run-time so that I/O and

other time-critical operations can be performed without sharing CPU time with unrelated

processes. After completing each execution step, the kernel yilelds the CPU to serve the

processes put on hold during pipeline execution. SRT, on the other hand, needs a host

and a target computer. The host is used to design and tune the pipeline before it is

deployed onto a dedicated (target) hardware, which can be a high-performance computer,

FPGA, or DSP board for processing high volumes of data at shorter sample times. This

technology also allows routing signals from the target back to the host computer for online

visualization without compromising real-time performance.
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4.4 Multimodal data acquisition with LSL

As we mentioned earlier, Simulink offers several blocks for standard instrument

communication. For instance, in a closed-loop experiment, a pipeline could read in

LFP/EEG samples via the TCP/IP protocol, filter them, extract neuromarkers, and send

out a feedback stimulation signal if a target state is detected. If in addition, we need to

save signals to disk or account for time delays between different sensors or stimulation

devices, a common practice is to time stamp every sample using the clock of the LFP/EEG

amplifier. To record experimental and behavioral events, it is a common practice to

use TTL pulses connected to the auxiliary channels of the amplifier used to record the

electrophysiological data.

In experiments involving the distributed collection of multiple data modalities at

different rates, stimulation devices, and control signals, the synchronization via TTL pulses

can become nontrivial. In these cases, a much simpler approach is to link data acquisition,

stimulus presentation, and stimulation hardware with the LSL library. LSL is built on top

of the TCP protocol and is designed to synchronize different devices that publish their data

on the same local area network (LAN). Each sample received by the library gets assigned a

time stamp calculated taking into account the offsets of the different clocks participating in

the experimental session. Furthermore, the time synchronization mechanism implemented

in LSL was designed after the widely used Network Time Protocol (NTP) with the objective

of achieving sub-millisecond accuracy. Thanks to its extensive documentation and easy to

use API, LSL has gained popularity within the EEG community and now is supported by

several hardware makers [UCSD Swartz Center for Computational Neuroscience, 2018b].

To our knowledge, so far LSL is virtually unknown in the field of animal elec-

trophysiology. We believe, however, that its use could greatly simplify complex animal

experimental setups. Also, recording data using the same underlying technology and

file formats would enable the use of common software tools for online and offline signal
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processing and analysis in cross-species studies. For these reasons we have written an LSL

plugin for the Open Ephys platform [UCSD Neural Engineering and Translation Labs,

2018a] (see Fig. 4.2). Open Ephys is a popular open-source plugin-based framework mostly

used for multichannel animal electrophysiology [Siegle et al., 2017]. This plugin is not

part of the SimBSI library but it is an essential component of the LSL ecosystem that

enables the development of closed-loop animal experiments using Simulink and the tools

in SimBSI.

Figure 4.2. LSL plugin for Open Ephys GUI. The configuration shows Open Ephys
connected to the RHD2000 FPGA Rhythm board (Intan Thechnologies, Inc., USA) for 30
kHz data acquisition from implanted electrodes and visualization. Every small batch of
data acquired from the board is forwarded to LSL for online analysis or storage to disk.

To access LSL data streams within the Simulink environment we created the

LSLInlet block. The LSLInlet block is a Simulink extension function (s-function) written

in C using LSL and Simulink’s APIs. Fig. 4.3 A shows an example of EEG data acquisition
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Figure 4.3. EEG data acquisition and visualization. A: Simulink pipeline that uses the
LSLInlet block for reading data in from the network and the Multichannel Scope block for
visualization. B: LSL configuration window. C: Stream selection tool that pops up when
we click on Select stream.

using the LSLInlet block, which can be found in SimBSI → Sources. To configure the

LSLInlet block we double click on it and set the stream parameters in the configuration

window (panel B). For convenience, all the parameters can be filled up automatically by

clicking on the Select stream button and selecting the desired stream from the list of all

stream available in the LAN we are connected to (panel C). Panel D shows 2 second

snapshot of EEG data flowing through the pipeline. After the sampling rate is set, i.e., to

128 Hz, the LSLInlet block automatically sets the sample time of the pipeline to 0.0078125

(1/128) sec. We note that in normal mode, Simulink typically runs as fast as it can

regardless of the set sampke time, however, the use of the LSLInlet block forces Simulink
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to wait until a new sample is available in LSL, thereby guaranteeing an effective execution

time equal or higher, but not faster, than the sample time of the EEG stream.

4.5 Signal processing example

In this example, we use prerecorded EEG data to show filter design tools available in

Simulink relevant to closed-loop systems. Digital filtering is a necessary preprocessing step

in almost every biosignal processing pipeline that requires careful consideration Widmann

and Schröger [2012]; Widmann et al. [2015]. FIR filters usually need higher orders than

their IIR counterparts to satisfy the same frequency response, but can incur significant

time delays. An FIR filter has a linear phase response, which is desirable because, within

the band of interest, the filtered signals are delayed by the same amount thereby preventing

phase distortions. Time delays can be overlooked when the analysis is performed offline.

In real-time systems, however, it is worth considering the use of IIR filters at the cost of

introducing small phase distortions. Hopefully, the DSP System Toolbox has tools that

allow us to design digital filters precisely quantifying these properties.

We used the pipeline in the left panel of Fig. 4.4 to illustrate time delays introduced

by band-pass FIR and IIR filters between 1 Hz and 30 Hz. We used the block From

EEGLAB to read prerecorded data stored in an EEGLAB-compatible file format Delorme

et al. [2011] to simulate an EEG headset. This block reads all the data stored in a file

prior to pipeline execution and then emits a multichannel sample on every sample time,

where the latter is set automatically as the inverse of the sampling rate declared in the

file. We note that this block also guarantees a pipeline execution of at least the sampling

period of the EEG by blocking the next execution until that time has elapsed. Although

filter blocks can work with multichannel data, in this example we use a Selector to process

only the Fp1 channel. The motivation for using the Fp1 channel is to use an eye-blink

event to illustrate the delays introduced by each filter. Next, we filter data in parallel
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using the FIR and IIR filters. For visualization purposes, we also compensate the raw

signal by the delay introduced by each filter, concatenate raw and filtered signals and pipe

them into a Scope block. On the right panel we show the filter design window that pops

up if we double click on the Band-pass blocks. After designing a filter, we can inspect its

frequency response by clicking on the View Filter Response button on the top right. We

show the frequency response of both FIR and IIR filters in Fig. 4.5.

Figure 4.4. Band-pass filtering example in Simulink using blocks from SimBSI and DSP
libraries. Left: Processing pipeline using prerecorded data. Right: Filter design window.

Figure 4.5. Frequency response of FIR and IIR filters used in the example of Fig. 4.4.
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Figure 4.6. 10 sec snapshot of the output of Fig. 4.4 pipeline. The top and bottom
panels show the effect of FIR and IIR filters respectively. The eye-blink event was used to
illustrate the time delay introduced by each filter.

Fig. 4.6 shows a 10 sec window of the pipeline output in a Scope window. Both

panels show the filtered and raw signals in yellow and blue respectively. The top panel

shows the FIR branch of the pipeline and the bottom panel shows the IIR one. Note

that we shifted raw signals in time by the group delay of each filter so that we could

visually inspect the distortions introduced. We can see that both filters smooth the data

and kept the eye-blink event; again, this is expected because eye movement activity have

frequency components higher than 1 Hz. Although the FIR filter did not distort the

signal, it introduced a significantly delay of ∼ 3.6 sec. Such long delay is prohibitive in a

closed-loop system that reacts to brain or behavioral responses in the order of hundreds

of milliseconds. The IIR filter exhibited a shorter delay of ∼ 31 msec, at the cost of
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introducing some phase distortion around the high amplitude eye-blink artifact, which

may be a reasonable compromised solution for some applications. We note that, typically,

eye-blink artifacts cannot be removed by digital filters alone because they overlap the

frequency content of neural signal, thereby calling for more sophisticated artifact removal

methods such as the PEB+ algorithm.

4.6 Online EEG source imaging

It is well known that the inverse mapping from EEG scalp sensors to cortical

currents is not unique [Michel and Murray, 2012]. Thus, there are many instances where

it is more desirable to build a human closed-loop around signals coming from specific

brain regions rather than scalp sensors. For example, several studies have pointed out

the therapeutic effect of transcranial magnetic stimulation (TMS) to the dorsolateral

prefrontal cortex (DLPFC) for treating depression [Pascual-Leone et al., 1996], chronic

pain [De Martino et al., 2019], and cocaine addiction [Terraneo et al., 2016], to mention

a few. Most TMS protocols, however, are applied in open-loop fashion ignoring ongoing

fluctuations in the functional state of the targeted area and this can hinder the efficacy of

the treatment [Karabanov et al., 2016]. In this example, we demonstrate an EEG source

imaging pipeline for monitoring the activity of several cortical areas in real-time. Then,

in Section 4.8 we show a TMS example can be used for building an EEG source-based

closed-loop system.

The successful application of EEG-based imaging algorithms depends on the use of

data cleaning preprocessing stages that are typically conceived for offline analysis [Artoni

et al., 2018]. Recently, we proposed a unifying Bayesian framework, PEB+, that allows

for the use of ongoing EEG activity to adaptively segregate cortical source activity into

maximally independent components with known anatomical support, while minimally

overlapping artifactual activity (see Chapter 2 and [Ojeda et al., 2019]).
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In Fig. 4.7, we show an EEG source pipeline where the preprocessing is limited

to the common average reference and a 1 Hz high-pass filter. Then, we use the PEB+

block to minimize the effect of EOG, EMG, and single-channel spikes artifacts while

simultaneously estimating EEG source activity in 8003 locations regularly scattered across

the cortical surface of the brain. The PEB+ block relies on the prior deployment of

the Co-register block to co-register the sensor locations of the incoming EEG data (in

this example assumed in the 10-20 system) with a template head model based on the

Colin27 head. At initialization time, this block finds the common set of channels between

our montage and that of the template, then it selects the corresponding columns of a

precomputed lead field matrix1, which is used down the line by the PEB+ block for brain

mapping. At run-time, the PEB+ block takes as input a multichannel sample of EEG

data and produces the following quantities: G: 8003 cortical source amplitude vector, V:

a vector containing the activity of several EOG, EMG and single channel spike artifacts,

Yc: is a sample of the multichannel EEG signal cleaned by projecting out the artifact

subspace, λ: an estimate of the common mode sensor noise variance, γγγ: a vector estimate

of the scale (variance multiplier) of different groups of brain and artifact sources, and logE:

the log evidence of the generative model optimized by PEB+, which is a quantity that

can be used to measure the quality of the brain mapping procedure at any given time.

Figure 4.7. Pipeline for online EEG data cleaning, source separation, and imaging using
the PEB+ block and OpenGL viewers.

In our experience, 3D visualizations can severely hinder the real-time performance

of a Simulink pipeline. So in this example, to visualize the cleaned EEG and source
1The lead field is an overcomplete dictionary of unitary source scalp projections that can be calculated solving Maxwell’s

equations in a discretized model of the head obtained from MRI data (see [Baillet et al., 2001] for details).
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Figure 4.8. Python-based OpenGL real-time scalp and source viewers. Left: Scalp
viewer [UCSD Neural Engineering and Translation Labs, 2018c]. Right: Cortex viewer
[UCSD Neural Engineering and Translation Labs, 2018b]. Follow the link to see a movie
of a live visualization using these apps https://www.dropbox.com/s/rkkz5ywj7m8xjyb/
rt_esi.mp4?dl=0.

estimates produced by the PEB+ block we use two freely available OpenGL-based apps

written in Python, the ScalpViewer [UCSD Neural Engineering and Translation Labs,

2018c] and the CortexViewer [UCSD Neural Engineering and Translation Labs, 2018b].

The blocks Cortex Viewer GL and Scalp Viewer GL forward the data they receive to LSL

which are then rendered externally by the Python apps. In the specific case of the Scalp

Viewer GL block, it also linearly extrapolates the voltages from the sensor locations to the

rest of the scalp so that we can render EEG topographies as a continuous field. We note

that, in addition to LSL, the Python apps can consume data using the TCP/IP protocol,

so in application where the data need to be inspected remotely, we can simply replace the

GL blocks in the pipeline by standard TCP/IP Send blocks from the Instrument Control

Toolbox.
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4.7 Stateflow cognitive task design

In addition to having a fully vetted graphical environment for signal processing, of

which we have full control, ideally one would like to have an experimental environment that

exhibits these same features. In this section, we explore the use of Stateflow for the design

of cognitive tasks within the Simulink environment. Performing the experimental design

within Simulink is advantageous for cross-species studies because we can implement the core

logic of the task once, and then use it with species-specific data acquisition and stimulus

presentation devices. Stateflow is a visual environment where we can design sequential

decision logic triggered by subject’s behavioral responses based on state machines and flow

charts [MathWorks, 2018b]. Furthermore, Stateflow allows us to visualize state transitions

while the subject is playing the task, which is especially useful for debugging in the earlier

stages of the experimental design.

In this section we use a special type of Simulink block called Stateflow Chart. A

Chart is composed of a collection of states whose transitions can be triggered by internal

or external signals. Inside a Chart, blocks represent states while state transitions are

represented by arrows. Each state has a name (mandatory) followed by any number of

instructions written in MATLAB language, this is what the state does and is called “state

action”. State actions can be of three types depending on when we want the code to be

executed: 1) entry – right when the state becomes active, 2) during – during the time

that the state is active, and 3) exit – right before transitioning out of the state. In this

example we only use entry actions because there is no obvious reason to do otherwise but

we encourage practitioners to check Stateflow’s documentation for other options and use

cases. A state can have any number of transitions which are then triggered in order of

priority by combining logical and temporal statements. For example, in Fig. 4.9 B, the

fourth transition of the state WaitForResponse is triggered after 1.8 sec of being in that

state and a Go image was displayed.
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Fig. 4.9 shows an example of a Go/NoGo task designed in Stateflow. Panel A show

the Simulink system. The blocks enclosed in the purple areas represent task parameters

(Go stimulus probability and number of trials) and the acquisition of subject’s behavioral

responses. In this example, human subject’s key presses are captured by a key logger

app written in Python that runs in the background. The logger app forwards the key

codes to LSL, which are then read in by Simulink using the Key Logger block (which

internally uses the LSL Inlet block). The blue area groups species-independent blocks for

the probabilistic presentation of Go/NoGo images and the trial logic. The orange area

groups visual and auditory stimuli presentation blocks as well as task and performance

measures (trial counter, correct and incorrect trials, subject’s key presses, etc) that may

be useful to the experimenter.

Fig. 4.9 B shows the Trial Logic block implemented in a Chart. From top to

bottom, the entry point to the system is the TaskInit state, this is where we initialize

variables and prepare for subsequent actions. To transition out of the entry point to

the NewTrial state, and thereby start the task, we wait for the user to press the Enter

key (code 65293). In NewTrial we increment the trial counter and set show=1, when

this signal rises it triggers the Go/NoGo Image Presentation block outside the chart

to randomly select the image that will be immediately shown on the screen. After 200

msec we transition to the WaitForResponse state and set show=0, which has the effect of

removing the image and displaying a blank screen. WaitForResponse has four possible

transitions: 1) to CorrectTrial if response is equal to 32 (space bar key code) and was a Go

image (correct go condition), 2) to ErrorTrial if the response is 32 but was a NoGo image

(incorrect go condition), 3) to CorrectTrial if there was no response for 1.8 sec and was a

NoGo image (correct withholding condition) and 4) to ErrorTrial if there was no response

for 1.8 sec and it was a Go image (incorrect withholding condition). In the CorrectTrial

and ErrorTrial states we activate the respective correct or erroneous auditory feedback

tone for 100 msec and then we transition to EndOfTrial. If we reached the maximum
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Figure 4.9. Stateflow experimental design.

number of trials we terminate otherwise we wait for 2 sec and start a new trial.

Panel C represents a dual monitor setup in which the left screen can be used for

subject’s stimulation while the right one could face the experimenter in a control room.

Both screen can be controlled by Simulink and all the relevant signals flowing through the

system can be saved in a Matlab file using the To File block or sent to LSL through LSL

Outlet blocks and then saved in the .xdf file format using the LabRecorder app [UCSD

Swartz Center for Computational Neuroscience, 2018a].

4.8 EEG-based closed-loop neurostimulation

TMS has become a popular technique for studying the relationships between brain

and behavior [Thut and Pascual-Leone, 2010] through noninvasive interventions both in

healthy human subjects and patients. As such, TMS have been proposed as a valuable

experimental and therapeutic tool for closed-loop neuroscience [Zrenner et al., 2016].
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For instance, it has been shown that stimulation guided by the phase and frequency of

intrinsic EEG rhythms can result in different types of long-term plasticity [Zrenner et al.,

2018]. Using this as a motivation, in Fig. 4.10 we demonstrate the relative simplicity of

implementing a TMS closed-loop human BCI pipeline in Simulink.

At a higher abstraction level, the pipeline is composed of four major submodules

for: 1) EEG data acquisition, 2) occipital alpha phase estimation (brain state estimation),

3) control and stimulation, and 4) visualization. The pipeline is designed to acquire EEG

samples from LSL and continuously monitor the power in the alpha band of the Oz channel.

When the power in the alpha band is greater than other frequency components within

1 Hz and 40 Hz for at least 1 second, a single TMS pulse is triggered phase-locked to

the positive peak of the EEG signal in Oz. Since we build on standard DSP blocks, the

pipeline allows to flexibly change the monitored channel, frequency, phase of interest, as

well as the stimulation pattern sent to the stimulation hardware. Figures 4.10-4.14 show

in greater detail the different components of the system.

In this example, we send trigger pulses from Simulink to a MagVenture MagPro TMS

machine using a PulsePal device [Sanders and Kepecs, 2014]. PulsePal is an inexpensive

and low-latency pulse generator that has been used in closed-loop electrophysiological

experiments to deliver auditory and optogenetic stimulation to mice during a Go/NoGo

task [Pi et al., 2013]. Furthermore, PulsePal has been recently integrated into Open Ephys.

We used PulsePal’s open-source C++ DSK to write an s-function and interface it with

Simulink, which we encapsulated into the To PulsePal block. We note that by having a

common software stack, it becomes relatively easy to translate between human and animal

closed-loop experiments, keeping most parts intact and swapping out species-specific

components only, e.g., EEG by LFP signals and TMS by optogenetic stimulation hardware,

and so on.
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Figure 4.10. Closed-loop BCI with TMS stimulation composed of four major modules:
1) Data acquisition, 2) EEG alpha wave phase estimation, 3) Control and stimulation, and
4) Visualization. The system is designed to acquire EEG data through LSL and trigger a
TMS pulse if an alpha wave is detected at the Oz channel and it is stable for at least one
second. The stimulation pulse is locked to the positive peak of the EEG signal, which a
that point should consist of mostly alpha rhythm activity. Each submodule is explained in
the panels below.

Figure 4.11. Data acquisition submodule: 1) The LSLInlet pulls EEG samples from
LSL at the sampling rate of the EEG acquisition device. 2) The Selector block selects the
subset of channels we are going to work with, which in this case is Oz. 2) The Sample
and Hold block enables EEG samples to pass through while the TMS pulse is not active,
otherwise, it holds the last sample acquired before a TMS pulse and resumes sampling
once the artifacts are no longer present in the measurement channel. 4) The Spectrum
Estimator block computes the Welch (or filter bank) power spectral density estimates
on 1 sec windows with a 50% overlap. 5) User-defined function that sums the power in
δ, θ, α, β, γ bands and outputs 1 if the maximum power is in α, otherwise, the output is 0.
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Figure 4.12. Submodule for triggering a TMS pulse locked to the positive phase of the
alpha wave. The bottom branch produces a Kronecker delta at the positive peak of the Oz
channel, say y(tk), implementing the expression diff(−sign(y(tk)− y(tk−1))). Note that to
phase-lock to the trough of the wave we just flip the sign of the unitary gain above.

Figure 4.13. Control submodule. Once we have determined that a TMS pulse should be
delivered, we send out the stimulation trigger by the serial port and use two Monostable
blocks to 1) disable the data acquisition for a time span approximately equal to the
duration of the TMS artifact and 2) disable stimulation for a period of time. This can be
reconfigured depending on the stimulation protocol, e.g., single pulse, burst, and so on.
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Figure 4.14. Left: Visualization submodule. Right: Excerpt of 2 sec data flowing
through the system.

4.9 Animal experimental environment

Our last example blends most elements explained so far (with the exception of human

EEG imaging) in the creation of an experimental environment for rodents. The environment

consists of two major components: 1) a behavioral box and 2) an electrophysiology data

acquisition system. Although this environment will be described in detail in a separate

publication, next we proceed to briefly explain how we used elements in the SimBSI library

and auxiliary apps to integrate Stateflow task design, behavioral and electrophysiology

data acquisition, stimulation and post hoc data analysis.

4.9.1 Behavioral box

The behavioral box consists of a custom built chamber where animals are placed to

perform a cognitive task while we record their behavioral responses and electropysiological

signals (see Fig. 4.15 A). The chamber has a display where visual stimuli can be presented.

In front of the display there are 5 nose ports, each of which is equipped with infrared (IR)

sensors for collecting animal choices and a liquid reward delivery mechanism. There are

speakers placed on each side of the display for delivering auditory feedback and house

lights glued to the top face of the chamber, which are often used to indicate to the animal
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the start of the task or to reinforce negative feedback in the form of short bursts of 10 Hz

flashing light.

The display, IR sensors, reward mechanism, auditory feedback, and house light are

controlled by a Simulink process running on a Raspberry Pi 3 model B+ (Pi for short)

that is attached to the outer face of one of the walls of the box (see Fig. 4.15 B). The

Pi interfaces with sensors and actuators via the GPIO pins connected to a custom-built

power electronics control board. Before deployment to the behavioral box, we assign an

IP address to the Pi and configure it to connect to a dedicated LAN (typically wireless),

this way we can have several boxes in the lab and treat them as self-contained mobile

experimental environments.
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Figure 4.15. Animal experimental environment.

Once the Pi is fully configured and attached to the box, it can be programmed
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Figure 4.16. The BrainER GUI allows us to manage the software that runs on Pis
that control several behavioral boxes that we may have in the lab. Once the GUI is
first launched, it searches the network for Pi devices connected between IP addresses
192.186.0.90-150.

using a Simulink session running on a remote computer connected to the same network.

Common cognitive tasks such as the one shown in Section 4.7 can be coded using Stateflow

and Simulink blocks in the host computer, simulated, and then deployed to the targeted

Pi using MATLAB Coder. MATLAB Coder compiles a Simulink program into C, which is

then optimized and compiled specifically for Pi’s hardware. The resulting binary can be

launched on the Pi remotely from the host computer and run as a real-time standalone

application. Once the task is compiled, the binary stays permanently in the Pi’s SIM

card. To access compiled tasks stored on the Pi remotely without using Simulink, we have

created a MATLAB GUI called BrainER2 (see Fig. 4.16). With BrainER we can select

one or several Pis and reconfigure, stop, and start tasks on them.

4.9.2 Electrophysiology data acquisition system

The animals that participate in the tasks administered through the behavioral box

are usually implanted with intracranial electrodes. To acquire LFP data we use Intan
2https://bitbucket.org/neatlabs/brainer/wiki/Home
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headstages connected to a RHD2000 acquisition board which is controlled using the Open

Ephys software. To synchronize the LFP data with the control and behavioral signals

coming in and out of the behavioral box we use LSL. As we mentioned in Section 4.4, we

use a LSL Outlet plug-in for Open Ephys to forward to LSL each LFP sample acquired.

To enable LSL communication on the behavioral box, we used the read/write GPIO blocks

in the Raspberry Pi support library to create new blocks that also forward to LSL the

signals they read in or write out respectively.

Since LFP, behavioral, and control signals can be accessed via LSL, we can save

the data generated on each session using the LabRecorder app, and analyze them offline

in MATLAB using MoBILAB [Ojeda et al., 2014] and EEGLAB [Delorme et al., 2011]

toolboxes and custom scripts. Furthermore, in experiments where we need to close the

loop, we can implement an additional Simulink pipeline that reads from LSL the LFP

data to monitor a target brain state and trigger a stimulation device similar to what we

did in Section 4.8.

4.10 Conclusions

In this chapter, we have developed SimBSI, an open-source Simulink library for

the rapid prototyping of brain signal interfaces. We designed the library to achieve the

following design principles: 1) easy to adopt by users of different programming backgrounds,

2) transparency of data processing, 3) multiplatform, and 4) flexible data acquisition. Most

of these design principles are achieved by using a mature signal processing environment

such as Simulink, powered by an intuitive graphical programming language. Simulink

programs are multiplatform and can be deployed as standalone applications that run on

standard or embedded hardware such as a Raspberry Pi and Arduino. We extended the

data acquisition capabilities of Simulink by implementing LSL streaming blocks. We used

several examples to demonstrate the capabilities of the library for implementing cross-
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species BCIs, ranging from simple signal processing, EEG source imaging, task design,

to closed-loop neuromodulation. Furthermore, we demonstrated that a sophisticated

experimental environment for animals is feasible and relatively straightforward to develop

within Simulink using SimBSI.
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Chapter 5

Towards source-based identification of
attention switch in an unconstrained
computerized task

5.1 Introduction

Cognitive control is a fundamental human ability that allows us to flexibly pay

attention to and act upon goal-relevant information, while further suppressing irrelevant

distractions. Higher cognitive skills such as memory, learning, and task planning crucially

dependent on it [Fortenbaugh et al., 2017; Gazzaley and Nobre, 2012]. Since sustained

attention is a plastic brain function, the overuse of distracting technologies can deteriorate

its deployment at times when we need to focus on a task, thereby leading to reduced

productivity [Ophir et al., 2009; Ziegler et al., 2015]. It has been estimated that U.S. children

between 8 and 18 years old spend an average of 9 hours of their day consuming media

in the form of television, Internet, email, video games, social networks, and interaction

with mobile devices [CSM, 2015]. Moreover, despite the wide availability of pharmacologic

therapies, Akinbami et al. [2011] found in a similar sample that the number of individuals

diagnosed each year with attention deficit disorders (ADD) is steadily growing.

Here, we develop noninvasive mobile brain-computer interface (BCI) neurotech-

nology to address this problem. A BCI can be used to encourage the subject to skip
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distractions while reinforcing the use of brain circuits that support sustained attention.

Although attention has been studied within the constraints of the lab [Fortenbaugh et al.,

2017], its biological underpinnings as a whole, acting during unconstrained daily-life ac-

tivities remain poorly understood. Towards realizing our vision of a neurotherapeutic

BCI, in this chapter, we use the brain imaging methods developed in earlier chapters to

study the internally driven deployment of attentional resources in healthy adult subjects

performing a self-paced schoolwork-like computerized task. In particular, we focus on

characterizing the brain network dynamics during transitions from periods of sustained

attention to distraction.

Several studies have shown that periods of lower sustained attention are character-

ized by high response time (RT) variability and frequent errors on task [Esterman et al.,

2013; Fortenbaugh et al., 2015]. These metrics can be obtained on trial-based continuous

performance tasks (CPTs) where individuals discriminate task-relevant target information

from task-irrelevant non-targets [Conners et al., 2003]. A recent study acquired data from

thousands of individuals across the lifespan on a CPT paradigm and showed that when

subjects were attentive (or “on-task”), they exhibited lower RT variability and higher

discrimination ability as opposed to when they were distracted (or “off-task”) [Fortenbaugh

et al., 2015]. Moreover, RT variability has been proposed as a bio-marker for ADD

[Di Martino et al., 2008]. Building upon these results, here we propose to define periods of

putative sustained attention and distraction from the variability of keystroke and mouse

click events produced by the subject during a self-paced schoolwork computerized activity

(see task description in Section 5.2.1).

To characterize the fluctuations in brain dynamics that are predictive of incoming

distracted behaviors at a millisecond time scale, we collect EEG data in sync with

behavioral events. In addition to its excellent temporal resolution, EEG is appealing for

BCI interventions because it is noninvasive and available as low-cost mobile technology

[Bateson et al., 2017; Kumari et al., 2017]. Traditional EEG-based BCIs are implemented
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using features obtained in sensor space [Lotte et al., 2018]. However, since the inverse

mapping from EEG sensor voltages to cortical currents is not unique [Lopes da Silva, 2013],

sensor-space features constitute distorted descriptors of the underlying brain processes

of interest and are often confounded by other non-neural (ocular/muscular) responses.

Thus, despite impressive advances in signal processing and machine learning [Congedo

et al., 2017; Lotte et al., 2018], current BCIs interventions offer marginal therapeutic value

[Lee et al., 2013]. To overcome these limitations, in this chapter, we use the EEG source

imaging algorithm PEB+ developed in Chapter 2.

PEB+ extends the PEB framework previously proposed for EEG source imag-

ing [Henson et al., 2011; Wipf and Nagarajan, 2009] in two ways. First, it augments

the standard generative model of the EEG with a dictionary of empirically-obtained

stereotypical artifact scalp projections. Second, it uses an anatomic parcellation of the

cortical surface to constraint the source estimates to be sparse in the number of areas

that are active at any given time. These two elements have the property of inducing the

segregation of the source activity into a few maximally independent components (ICs)

with known anatomical support, while EOG, EMG, and single-channel spike artifacts are

also segregated to their respective ICs. Furthermore, while other imaging algorithms are

limited by their computational footprint, PEB+ is capable of real-time performance and

is resilient to fluctuations in the variance of the sensor noise corrupting EEG samples (see

Chapter 3).

Although central to our approach, source estimation alone cannot unveil how

different brain regions dynamically interact to support attentive and distracted behaviors.

To that end we use source time series to estimate source connectivity. Popular approaches

for estimating EEG source connectivity use parametric models based on strong biophysical

[David et al., 2006; Kiebel et al., 2009] or statistical [Giraldo et al., 2010; Yamashita et al.,

2004] assumptions. These approaches tend to give reasonable results when used to analyze

event-related brain responses. In this chapter, however, we characterize source connections
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on an ongoing basis, therefore, without prior knowledge of what cortical regions may

be active or what type of temporal dynamics are expected to arise (i.e., steady-state,

non-stationary, linear or nonlinear dynamics), the assumptions of the parametric models

are hard to justify. To circumvent these issues, Lizier et al. [2008] proposed to compute the

transfer entropy (TE) between the electrical activity of pairs of brain areas, conditioned on

the activity of all the other areas, as a non-parametric measure of their effective (causal)

connectivity (EC). Furthermore, it has been shown that TE-based EC is sensitive to

ongoing linear and nonlinear brain dynamics [Wibral et al., 2014].

A data-driven characterization of the EC of large-scale cortical networks that corre-

late with attention switches in an unconstrained task such as ours calls for a comprehensive

statistical analysis that is beyond the scope of this chapter. As a proof of principle, here

we focus on testing the presence of salience network (SN) activity during the putative

transitions from on-task to off-task periods. The SN connects the anterior insula (AI)

and the anterior cingulate cortex (ACC). Based on results from fMRI data, Menon and

Uddin [2010] proposed the AI as a hub that mediates the dynamic interactions between

different large-scale networks and is implicated in attention switches driven by external

and internal events. In their model, Menon and Uddin [2010] postulate that the AI is

sensitive to salient events, and that its key function is to identify such events for additional

processing, while the coupling with ACC facilitates rapid access to the motor system,

thereby triggering behavioral changes when needed. They also showed that the activity of

the SN is more lateralized to the right (rAI). To the best of our knowledge, the causal

interplay between nodes in the SN during unconstrained tasks involving internally-driven

attention switches has not been yet demonstrated on EEG data. So, to this end, here we

use these previous results to hypothesize that within 2 seconds around the transition from

on-task to off-task, there will be a causal influence from rAI to ACC. If we can prove this

hypothesis, we will move one step closer to understanding the mechanisms of attention

regulation in the brain at a millisecond resolution.
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The rest of the chapter is organized as follows. In Sections 5.2.1-?? we describe the

task, the behavior and EEG data processing, feature extraction, and our model learning

approach. In Section 5.3 we present our results of learning subject-level and group-level

classification models that map source-resolve features to on-task and off-task states. We

finalize with a discussion in Sections 5.4 and our conclusion in ??.

5.2 Materials and methods

5.2.1 Task description and experimental setup

A total of 25 subjects participated in the study, 46.43% male and 53.57% female,

ages 23.3 +/- 5.7 years old. All participants were informed of the nature of the experiment

before signing a consent form. The experiment was approved by the IRB committee of the

University of California San Diego.

The task consisted of sitting in front of the computer for one hour to solve high

school level problems combining self-chosen modules of math, critical reading and writing.

The subjects were instructed to work through the problems at their own pace. We did not

record their scores. As in any real-world computerized task, we allowed them to self-choose

when to be on-task and when to be distracted and move away from the task (see Fig. 5.1).

We measured subject’s behavior by capturing the keystroke and mouse click events

that they generated throughout the task. To this end, we implemented a secure key and

mouse logger app that ran in the background without user intervention. To co-register the

behavioral events with the EEG signal we used the Lab Streaming Layer (LSL1) library.

Each keyboard or mouse event captured received a time stamp by sending to LSL the

characters ‘1’ or ‘2’ respectively, thereby obfuscating the exact identity of those events. We

acquired the subject’s EEG at 500 Hz using an LSL-compatible mobile amplifier (Smarting,

mBrainTrain, Belgrade, Serbia) and a 24-channel montage placed according to the 10/20
1https://github.com/sccn/labstreaminglayer
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system. We recorded event markers and EEG data into an EEGLAB-compatible .xdf file

using the LabRecorder 2 app.

Figure 5.1. Self-paced schoolwork-like task. The subjects were instructed to solve
problems combining self-chosen modules of math, critical reading, and writing for one
hour. They were allowed to take as many breaks they wanted with the only restriction
of moving away from the computer during breaks. The blue and red blocks represent
putative on-task and off-task periods respectively, which we identified using the variability
of the subject’s interaction with the computer. We used EEG data one second after and
before putative transitions from on-task to off-task periods to study the network correlates
of attention switch.

5.2.2 Identification of on-task/off-task epochs

We defined periods of putative sustained attention (on-task) and distraction (off-

task) using the variability of keystrokes and mouse click events produced by the subject

during the task. We used a subject-specific 95 percentile of RT to indicate an off-task

switch (see left panel of Fig. 5.2 and inset histogram). We defined attention switch events

as the last behavioral event before an off-task period. In Fig. 5.2 we show behavior and
2https://github.com/labstreaminglayer/App-LabRecorder
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Figure 5.2. Identification of attention switch events as the transition from on-task to
off-task epochs. Left: Behavior of one participant (keystroke and mouse click events)
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95 perentile was used to identify the off-tasks periods. Right: Co-registered behavioral
events and EEG signal for a portion of the session exhibiting an attention switch from
on-task to off-task states.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Subject

0

10

20

30

40

50

60

N
um

be
r o

f t
ria

ls
 

Figure 5.3. Number of trials collected by subject.

EEG data from one participant. Fig. 5.3 shows the total number of trials collected by

subject.
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5.2.3 EEG preprocessing

We processed the EEG data in MATLAB (R2018b The MathWorks, Inc., USA)

using the EEGLAB toolbox [Delorme et al., 2011]. The preprocessing consisted of a

0.5 Hz to 50 Hz band-pass zero-lag FIR filter and re-referencing to the common average

channel. We note that this choice of filter is convenient for offline analysis as it doesn’t

shift EEG samples with respect to event markers. In an actual BCI, however, we would use

a minimum lag IIR filter and shift behavioral events according to the group delay of the

filter. We visually inspected the data and removed 8 subjects from the analysis because

they exhibited more than three faulty channel connections throughout the task. Next, we

collected trials consisting of one second before and after the attention switch event and

manually removed those excessively contaminated by artifacts. Trials contaminated with

EOG and EMG artifacts were kept because those artifacts were dealt with in the source

estimation stage by the PEB+ algorithm. Since we didn’t have access to a digitizer, we

used channel labels to look up the columns of a precomputed lead field matrix defined on

the four-layer (scalp, outer skull, inner skull, and cortex) “Collin27” template head. The

lead field matrix was precomputed for a 339-channel superset of the 10/20 system using

the OpenMEEG toolbox [Gramfort et al., 2010].

5.2.4 Source power estimation

We used the PEB+ algorithm to estimate single trial EEG source time series

resulting in arrays of 8003 cortical sources by 2 sec by trial by subject. The PEB+

algorithm uses sparsity constraints to automatically segregate the cortical activity into a

sparse number of independent clusters of sources active at any given time. The group-

sparsity constraints were enforced using 68 ROIs defined in the Desikan-Killiany atlas

[Desikan et al., 2006] as in Chapter 3. After source estimation, we calculated the source

ROI power time series by summing up the square of the activity within each ROI.
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5.2.5 Source effective connectivity estimation

We used the ROI power time series to calculate the time series of the functional

connectivity between every pair of ROIs. Functional connectivity was characterized by

TE, which we computed on a sliding window of 100 msec with a 50% overlap. We defined

the strength of each causal connection as the maximum TE value across several lags.

Furthermore, to factor out common influences from other ROIs, we conditioned the TE

on the activity of those. We used Kraskov’s TE estimator [Kraskov et al., 2004] as

implemented in the Java Information Dynamics Toolkit (JIDT) [Lizier, 2014].

5.3 Results

Although we estimated the EC between all pairs of connections, which constitutes a

wealth of information in on itself, in this section, we followed a hypothesis-driven analysis

limited to the activity of the SN. In particular, we tested whether there is a causal influence

of the rAI over the ACC (rAI→ACC) within the 2 sec window relative to the putative

attention switch event. If there is, this would suggest that the detection of salient events is

related to the observed transition in subject’s behavior from on-task to off-task periods. To

this end, first, we investigated whether there is network activity time-locked to the putative

attention switch event. In Fig. 5.4, we show the time series of rAI→ACC connectivity

(left) and the power in rAI (right) time-locked to the attention switch event, which is

represented by the dashed black trace. The y-axes denote all the trials of all subjects, and

the intensity of the colors represent the respective magnitude of the EC and power time

series. Next, in Fig. 5.5 we time-locked the connectivity and power data to the maximum

of the rAI→ACC connectivity time series. Lastly, in Fig. 5.6 we plot the group-level trial

average of the rAI→ACC connectivity time series (top) and rAI and ACC power (bottom),

and the inset equation models empirically the activity of the ACC as a function of the

activity in rAI and their coupling.
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Figure 5.4. SN connectivity (left) and power (right) dynamics time-locked to the putative
attention switch event. The y-axes denote all the trials of all subjects and the intensity
of the colors represent the respective magnitude of the rAI→ACC connectivity and rAI
power time series.
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Figure 5.5. SN connectivity (left) and power (right) dynamics time-locked to the
maximum of rAI→ACC connectivity time series. The y-axes denote all the trials of all
subjects and the intensity of the colors represent the respective magnitude of rAI→ACC
connectivity and rAI power time series.

5.4 Discussion and conclusions

The results shown in Fig. 5.4 indicate that there is no consistent activity in the

SN time-locked to the attention switch event. This is not surprising because, given the

unconstrained nature of our task, the last behavioral event in the on-task period does
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not necessarily have to align with the deployment of attentional resources but with the

fulfillment of a motor command. Fig. 5.5, however, tells a more interesting story. In that

figure, we see that when we time-lock connectivity and power data to the maximum of the

rAI→ACC connectivity there is a clear “internally-driven” evoked activity in the SN. In

the left panel of that figure, we see that from left to right, the causal coupling rAI→ACC

increases, reaches a peak, and then falls to a background value from which it does not

recover. In the right panel, we also see a consistent increase in rAI power right after the

connectivity reaches its peak. The results of Fig. 5.5 indicate that information flows from

rAI to ACC in the vicinity of the attention switch event, and that this flow was consistent

across trials and subjects, which is the hypothesis what we wanted to test at the outset.

This interpretation is supported more clearly in Fig. 5.6, where we see that the peak of

power activity in the rAI reaches the ACC approximately 150 msec after, thus indicating

that these two regions are effectively (causally) connected.
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We need more experiments to determine whether, in our unconstrained task, the

observed SN activity is triggering a switch in attention, and thereby causing the observed

behavioral change. At this point, our analysis can establish that there is a correlation

between SN activity and behavior, but we cannot prove causation. We will further

this analysis in future research to find a mechanistic explanation for internally-driven

switches of attention. Taken as a whole, the results obtained in this chapter underscore

the importance of the brain imaging methods developed in this dissertation for: 1) the

discovery of brain mechanisms that support cognition and behavior, and 2) designing

circuit-specific personalized BCI neurotherapies based on those mechanisms. For instance,

if indeed rAI→ACC network activity causes our attention to switch, an imaging-based

BCI could monitor the rAI→ACC coupling and the power in rAI, and when both increase

significantly over a threshold, the BCI would know that an attention switch will be

triggered ∼150 after.
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Chapter 6

Conclusion

In this dissertation, I focused on the development of neuroimaging technology based

on EEG that allows us to monitor the electrical activity of cortical networks in a noninvasive

way, with low-cost, and high spatiotemporal resolution. This technology can serve as the

“neural decoder” component of yet to come imaging-based closed-loop brain-computer

interface (BCI) systems in which we can dynamically probe specific cognitive abilities in

search for signatures of circuit dysfunctions while giving feedback targeted to inducing

the engagement of neural populations that can compensate the aberrant neuronal activity.

The motivation for such systems is twofold: 1) a neural decoder based on EEG source

network activity can shed light on the neurobiological dysfunctions that lead to mental

illnesses and 2) the use of features with biological relevance can facilitate the mapping

from neural states to behavior.

To realize my vision of imaging-based neurotherapeutic BCIs, first in Chapter 2 I

used biological and mathematical constraints to develop a coherent Bayesian framework

(PEB+, Parametric Empirical Bayes with the addition of artifacts modeling) that allowed

the unification of three of the most common problem in EEG analysis: data cleaning,

source separation, and imaging. Chapters 3 and 4 I developed the algorithmic and software

infrastructure to develop imaging-based BCIs. In particular, in Chapter 3 I redesigned an

existent block-sparse Bayesian learning algorithm to yield efficient noise adaptation and
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real-time performance. This algorithm is then used in the SimBSI library, introduced in

Chapter 4 as the solver for the PEB+ framework. Finally, in Chapter 5, I applied these

imaging methods to the study of the cortical networks involved in the switch of attention

of healthy adult subjects during an unconstrained schoolwork-like computerized task. The

results of this last chapter underscore the importance of using EEG source imaging with

a high spatiotemporal resolution for studying the neurobiological mechanisms by which

brain activity give rise to high-level cognition and organizes behavior.

As I look into the future, there are several directions in which this research can be

extended. First, the artifact dictionary used in the PEB+ framework may be augmented

over time to cover a wider variety of artifact sources. Also, although in PEB+ there are

no regularization parameters to set because we learn them from data, we still need to

select the size of the block over which we assume iid data samples so that we robustly

estimate hyperparameters. To eliminate the iid assumption, future work could reformulate

PEB+ into the state-space framework by incorporating temporal priors, thereby switching

from batch updates to a proper sample-based spatiotemporal filter. On the data analysis

side, we can further the study of the attention switch data to unveil the circuits that

intervene in the regulation of attentional resources and the utilization of this knowledge in

the development of closed-loop therapies that can increase the attention span of people

with attention deficit disorders.
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Appendix A

Equivalence between the the first stage
of BSBL-2S and the evidence frame-
work

The log evidence of a linear Gaussian model subject to the constraint of Eq. (3.2)

is typically expressed as follows [Bishop, 2006]1,

log p(Y|λ, γF ) =− 1

2
log |γFC| − Ny

2
log λ− E(Ĝ)−

1

2
log |A| − Ny

2
log 2π

(A.1)

where we have defined the following quantities,

E(ĝ) = λ−1‖Y − LĜ‖2
F + ‖Ĝ‖2

(γFC)−1 , (A.2a)

A = (γFC)−1 + λ−1LTL (A.2b)

and Ĝ is given by Eq. (2.10) evaluated in Y. We reduce Eq. (C.2a) using the following

identity

trace(CyΣΣΣ
−1
y ) = λ−1‖Y − Lĝ‖2

F + ‖Ĝ‖2
(γFC)−1 (A.3)

1In that reference C = INg
.
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Next, we reduce Eq. (C.2b) using the matrix determinant lemma,

log |A| = log |ΣΣΣy| −Ny log λ− log |γFC| (A.4)

Substituting Eq. (C.3) and Eq. (C.4) in Eq. (C.1), dropping quantities that do not

depend on λ or γF , and multiplying by -2 we obtain L(MF ),

−2 log p(Y|λ, γF ) = log |ΣΣΣy|+ trace(CyΣΣΣ
−1
y ) (A.5)

Furthermore, using the SVD of L∆−1 we simplify the following expressions,

ΣΣΣy =λINy + γFUdiag(s2
i )U

T

=Udiag(ψi)U
T

ΣΣΣ−1
y =Udiag(ψ−1

i )UT

log |ΣΣΣy| =
Ny∑
i

logψi

(A.6)

Finally, inserting Eq. (C.6) in Eq. (C.5) we write the ML-II functional as a function of

the regularized eigenvalues ψi in Eq. (3.8).
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Appendix B

Algebraic manipulations to avoid com-
puting the inverse of the source prior
covariance

In Chapter 3, we defined the known (“designed") source prior covariance to have a block-

diagonal structure. This block-diagonal matrix can be defined in terms of a Laplacian

operator constructed from the cortical mesh, C = (∆T∆)−1. Note that the matrix ∆ is

the matrix square root of C. The matrix ∆ is sparse with the following block structure:

∆ =


∆1

. . .

∆n

 (B.1)

where each ∆i cell corresponds to a Laplacian operator defined on the ith group only.

From linear algebra we have that its inverse can be computed as the inverse of each block

as follows:

∆−1 =


∆−1

1

. . .

∆−1
n

 (B.2)
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Then, abusing the notation, let’s define the ith square root covariance ∆−1
i by zeroing

out the entries in Eq. (B.2) outside the ith group such that:

∆−1
i ,



01

. . .

∆−1
i

. . .

0n


(B.3)

Note that we compute the inverse before applying the ith mask, otherwise the ith inverse

won’t exist. Finally we obtain the standardized observation operators as:

Li = L∆−1
i (B.4)

In practice, to reduced even moore the computational footprint of Eq. (B.4), we can select

the columns in L that belong to the ith group and multiply that submatrix with the ∆−1
i

cell that appears in the right hand side of Eq. (B.2).
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Appendix C

Fast two-stage BSBL algorithm

The log evidence of a linear Gaussian model subject to the constraint of Eq. (3.2)

is typically expressed as follows [Bishop, 2006]1,

log p(Y|λ, γF ) =− 1

2
log |γFC| − Ny

2
log λ− E(Ĝ)−

1

2
log |A| − Ny

2
log 2π

(C.1)

where we have defined the following quantities,

E(ĝ) = λ−1‖Y − LĜ‖2
F + ‖Ĝ‖2

(γFC)−1 , (C.2a)

A = (γFC)−1 + λ−1LTL (C.2b)

and Ĝ is given by Eq. (2.10) evaluated in Y. We reduce Eq. (C.2a) using the following

identity

trace(CyΣΣΣ
−1
y ) = λ−1‖Y − Lĝ‖2

F + ‖Ĝ‖2
(γFC)−1 (C.3)

Next, we reduce Eq. (C.2b) using the matrix determinant lemma,

log |A| = log |ΣΣΣy| −Ny log λ− log |γFC| (C.4)
1In that reference C = INg .
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Substituting Eq. (C.3) and Eq. (C.4) in Eq. (C.1), dropping quantities that do not

depend on λ or γF , and multiplying by -2 we obtain L(MF ),

−2 log p(Y|λ, γF ) = log |ΣΣΣy|+ trace(CyΣΣΣ
−1
y ) (C.5)

Furthermore, using the SVD of L∆−1 we simplify the following expressions,

ΣΣΣy =λINy + γFUdiag(s2
i )U

T

=Udiag(ψi)U
T

ΣΣΣ−1
y =Udiag(ψ−1

i )UT

log |ΣΣΣy| =
Ny∑
i

logψi

(C.6)

Finally, inserting Eq. (C.6) in Eq. (C.5) we write the ML-II functional as a function of

the regularized eigenvalues ψi in Eq. (3.8).
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