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Abstract

The development of a novel model for a single vehicle is outlined in this
report. The model uses the theory of a Cosserat point to account for the
deformable nature of the vehicle. This theory is supplemented with various
developments from vehicle system dynamics, such as suspension and tyre
models. The complete set of ordinary differential equations governing the
vehicle’s motion are presented and numerical simulations of the model under
various operating conditions are discussed. Several generalizations of the
model presented here are possible, and these are mentioned throughout the
report.

Keywords: IVHS America, Vehicle Dynamics, Collision Dynamics, Safety,
Computer Simulation, Animation and Simulation
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Executive Summary

In this report, a novel model for a single vehicle is developed. The devel-
opment of the model was prompted by the need for a vehicle model which
can be used to study various impact scenarios which may arise in vehicle
platoons. In this respect, although the model provides a coarse approxima-
tion to the deformations of an actual vehicle, it has the distinct advantage
of being relatively cheap to simulate numerically.

The collisions of interest here involve small relative velocities. For in-
stance, where two vehicles bump each other. In this situation it is crucial to
determine the effects of the collision on the vehicles’ subsequent motion. We
emphasize that the vehicle model we develop here is not suited to accidents
where the vehicles suffer severe damage.

The model uses a theory of a deformable medium which is known as
a Cosserat point to model the deformation of the body of the vehicle. In
addition, other elements of the vehicle such as the tyres and the suspension
systems are discussed in this report. In particular, a Calspan tyre formula
is used to model the road-wheel interactions and the suspension system is
assumed to consist of MacPherson struts. These elements combined with
the Cosserat point constitute the vehicle model.

The report also presents simulations of the vehicle. These simulations
show the behavior of the model when the vehicle’s center of mass is moving
in a straight line and in a curve. The results of these simulations con-
firm that the model is physically realistic for normal driving maneuvers. In
addition, these simulations serve to illustrate some of the difficulties associ-
ated with numerical integrations of the vehicle model’s governing equations.
These difficulties arise because the system of ordinary differential equations
associated with the model is stiff.

The present report is part of a series of intended works on the use of the
model developed here. Its contents and developments serve as a foundation
for the development of models for platoons of vehicles. Each of the vehicles
in the platoon will be modeled using the single vehicle model discussed
here. In the sequels to this report, we will outline how collisions between
two vehicle models can be detected and simulated.
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1 Introduction

Within the framework of the PATH project, the accurate simulation of a
single car or a platoon of several cars during regular driving maneuvers is
crucial. These maneuvers include acceleration, braking and cornering. They
usually arise in combinations, at various speeds and numerous street and
weather conditions. There are several vehicle models available to accom-
modate these issues (see, e.g., [7], [12] and [27]). Due to their complexity,
studies of these models usually center on numerical simulations. Clearly, the
more refined a model, the more detailed (and hopefully more accurate) are
its predictions of the car dynamics during such extreme driving maneuvers
as swerving around an obstacle, hard braking or wheel-lockup. Arguably,
the most extreme situation arises when the vehicle is in contact with another
object.

The types of impacts of interest in the present work are not large scale
car crashes where major damage to the chassis results in severe injuries to
the passengers. A typical scenario encompassed by our work is rather the
following: Consider two cars traveling at highway speeds (perhaps within
a platoon) which contact with a moderate relative velocity. We wish to
develop a car model which is able to simulate this situation. Furthermore,
it should be able to predict the likelihood that this initial contact will lead
either to a major accident or a situation where the vehicles can resume their
journey after appropriate steering adjustments.

In the majority of vehicle models, the chassis of the vehicle is assumed
to be a rigid body which is connected by a suspension system to four wheels.
An obvious advantage of this type of model is its relative simplicity: it only
has a few inertia parameters and six generalized coordinates to describe
the kinematics of the chassis. All additional modeling efforts center on the
suspensions, the steering and braking systems, the powertrain and, most
importantly, the tyres. Even models for air resistance and wind gusts may
be considered in certain cases.

If the aforementioned impact scenario is to be simulated with a rigid
body model, coefficients of restitution need to be introduced. These account
for the deformation induced by a collision and specify which portions of the
vehicle’s momenta are lost during the contact. The time of contact for a
model of this type is assumed to be negligible. A definite advantage of this
method is that it allows this type of model and the computer codes used
for its simulation to be easily amended to encompass collision scenarios.
However, the main drawback of this approach lies in the specification of



the restitution coefficients; these may depend on impact parameters such as
relative velocities, and must be determined using more elaborate models or
experiments.

In reality, the chassis is a continuum which deforms during the impact. It
may be modeled using standard methods from continuum mechanics. How-
ever, it is difficult to obtain any analytical results from the resulting model
and recourse to numerical methods, such as the Finite Element Method, is
normally used. Using finite elements, the chassis is subdivided and the re-
sulting components are each modeled using a single element. The behavior
of each of these elements is described by a set of ordinary differential equa-
tions (ODE’s) which are relatively easy to integrate numerically. However,
the resulting models tend to be elaborate and, in the context of multi-vehicle
platoons, computationally expensive.

In the work presented here, a new modeling approach is used. It is based
on the use of the theory of a Cosserat point to model the chassis. This
theory was introduced by Rubin [18] and subsequently developed by Green
and Naghdi [8, 9. Cosserat (or directed) continua are generalizations of
the classic continuum theories. They also find application in rod and shell
theories. A Cosserat point models a continuum as a material point and a
set of directors (hence the name directed theory). From a simplified point of
view, one can say that the material point defines the position of the center of
mass of the body, while the directors record its orientation and deformation.
The more directors used, the better one can approximate the deformation
of the body. Section 2 of this report presents this theory in more detail.
For simplicity, we will subsequently restrict ourselves to the case of three
directors. This particular theory of a Cosserat point is equivalent to the
theory of a pseudo-rigid body (see [4, 5, 6, 13, 20, 21, 22]). The latter
theory takes its name from its relation to the theory of a rigid body.

Although it is possible to subdivide the chassis into several Cosserat
points in a manner reminiscent of finite elements, it was decided to use
a single Cosserat point with three directors as a preliminary model. The
kinematics of the resulting chassis model are described by 12 generalized
coordinates. This number is higher than that used in a rigid body model,
but is lower than the corresponding number for a finite element model. In
contrast to the rigid body model, the Cosserat point model is deformable
and may be viewed as a model which provides an attractive alternative to the

!Related theories were independently established by Cohen [4], Muncaster [13], Cohen
and Muncaster [5, 6] and Slawianowski [20, 21, 22].



rigid body and finite element models. The companion report [15] discusses
algorithms for studying contact and impact of vehicles modeled as Cosserat
points.

We now provide a brief outline of this report. In Section 2, background
from the theory of a Cosserat point is recalled. This material provides one
of the ingredients for developing the vehicle model for a passenger car in
Section 3. In the latter section, details on the chassis, suspension and tyre
models are presented. The computer codes and simulation for the model
developed in Section 3 are provided in Section 4. The final section of this
report, Section 5, outlines both the limitations of the model developed here
and how additional effects can be incorporated.

2 Summary of the Theory of a Cosserat Point

Consider a three-dimensional (deformable) body B in Euclidean three—
space. The body is bounded by a surface dB. The theory of a Cosserat
point was developed by Rubin [18] and Green and Naghdi [8] to provide a
model for B. Albeit a precise theory in its own right [8], it can also be mo-
tivated as an approximation to the classical theory of continuum mechanics
[18]. We choose the latter approach here because of our future purpose of
modeling the chassis of a vehicle.

Let us identify the material points of the body B using a convected
coordinate system X* (i =1,2,3). We will assume that in the fixed reference
configuration kg of B these coordinates are Cartesian. Let r*(X?,t) denote
the position vector of a typical particle of B at time t. We approximate this
vector (and hereby define the Cosserat point) by

(X = () + A (X)) , N=1,... K . (1)

Note that the summation convention over repeated indices is used. The
weighting functions AV(X') depend on the problem under consideration
and are chosen accordingly.? The time dependent vectors r(t) and dy(t),
(N =1,...,K) are called the position vector of the Cosserat point and the
directors, respectively. Clearly, the directors record the motion of the body
with respect to r(¢). The deformation gradient F of the motion of B is

_or” NN

= 9E =2 dvoE , i=123 , 2
axi axi N © ! (2)

?In particular, the determinant of the deformation gradient defined in equation (2)

F

needs to be positive for all motions.



where the basis vectors E; form a fixed orthonormal basis for Euclidean
three-space and have the associated Cartesian coordinates X*. The symbol
® in equation (2) denotes the usual tensor product.

A fixed reference configuration of the Cosserat point is defined by the
vectors R and Dy . The velocity and director velocities of the Cosserat point
are

v=r |, WNIdN , N=1,....K |, (3)

where a superposed dot denotes the time derivative.

From the developments of Rubin [18] and Green and Naghdi [8], we recall
the mass conservations, the balance of linear momentum, the K balances of
director momentum and the balance of angular momentum:

m=0 , g¥=0 , gMV =0 | (4)
m(v+y¥wy)=n | (5)
m(y" v+ y M) =1V KV (6)
dyxkV¥ =0 (7)

In these equations, m is the mass of the Cosserat point and yV, yVM = yMN

are its inertia parameters. Given the body’s reference mass density function
po(X?), the values of these terms are calculated as follows:

m:///POpOdV ) (8)
myN:///POpO/\NdV , (9)

myNM:///P poAAM qv (10)
0

Here, Py denotes the volume occupied by B in the reference configuration
and 0Py will denote the boundary of this volume. For completeness, we also
record the mechanical power of the Cosserat point:

P=kV wy . (11)

In the equations (5) and (6), n(t) and 1V(¢) are the applied force and the
applied director forces, respectively. These are calculated using the following

identifications:
n:// pdA—I—/// pobdV | (12)
9P Po
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1N:/ /\diA—l—/// poAVbdV (13)
9Py Po

Here, p(X?, ) is the Piola-Kirchhoff stress vector® and b(X?, ) is the body
force. It should be noted that the derivation of the balance laws for a
Cosserat point presume that the body is subject to a body force density b
and surface tractions p only.

In equations (6) and (7), ky are the intrinsic director forces. Their
function is similar to that of a stress tensor in the classical theory of con-
tinuum mechanics and constitutive equations for the material response are
required. We also note at this point that these constitutive equations are
such that they identically satisfy the balance of angular momentum (7);*
a situation that parallels the symmetry of the Cauchy stress tensor in the
classical theory.

If the first Piola—Kirchhoff stress tensor P(X? ¢) under the motion (1)
is known, the intrinsic director forces can be calculated using

N NN :
Po

Alternatively, for a Green—elastic material, the constitutive relations for the
intrinsic director forces can be derived in a direct fashion from a stored
energy function®

¢(dN-dM,DN-DM) R N,MII,...,I( R (15)

as o9
KN =m_—— . 16

odn (16)

A third alternative is the use of the strain energy function ¥* from classical
continuum mechanics. Here, we substitute for the deformation gradient (2)

and integrate ©¥* over the volume of the body:

m = ///PO Pt (FTF, X*¥) V" . (17)

3Note that in the subsequent sections of this report, we will use point forces instead of
stress distributions. The integrals are then replaced by summations.

*The identical satisfaction of the moment of momentum balance law is attributable to
the proper invariance under superposed rigid body motions of the constitutive relations
(cf., e.g., O'Reilly [14]).

®The functional dependence on the scalar products of the directors is an assumption
that is made for invariance requirements under rigid body motion (see [14]).



In the next section, we will use the third approach to derive 1 for the chassis
of our vehicle.

We close this section with a brief summary of kinematic constraints (see
[26]).5 We will consider only holonomic constraints ¢ of the form

o(r,di,...,dy,t)=0 . (18)

This type of constraint occurs whenever a Cosserat point comes into contact
with a surface or another Cosserat point. This results in a constraint force
n and constraint director forces IV in addition to the applied forces n and
1V given by (12) and (13), respectively: these quantities are calculated using
the assumption’

00 v _ 00

n:’}/ar ’ _F}/adN ’

N=1,....K |, (19)
where « is an indeterminate Lagrangian multiplier, that is determined using
the equations of motion (5) and (6), the constitutive relations (14) or (16)
and the constraint (18).

3 The Vehicle Model

Engineers have invented and improved a variety of solutions for functional
elements of the automobile such as the motor, the suspensions or the steering
system. There are numerous intricate manners in which these elements are
related to each other: a feature which make the modeling and design of
a single vehicle an extremely difficult task. In response to this difficulty,
problem specific mathematical models and computer codes are used to fine—
tune design parameters. In this report, a coarse model of a single vehicle
is developed for the purpose of investigating impact scenarios. The model
uses the theory of a Cosserat point.

The model developed here has the overall features of a vehicle; how-
ever, the emphasis is placed on the development of a chassis model using
a Cosserat point. In order to gain some insight into the behavior of this
model, several important features of the vehicle model are simplified. The

®Material constraints, such as incompressibility, are treated in a related manner. We
refer the reader to [26] for details.

"The derivation of the constraint forces is based on a normality assumption. For details
see Casey [2, 3]



various assumptions and simplifications used are discussed in the appropri-
ate locations and suggestions for future possible improvements are made.
These modifications are often purely algebraic in nature.

First, we will present the detailed model of the chassis. The suspensions
and the wheels are then discussed. The section ends with a discussion of the
road/tyre contact. Despite their obvious influence on the overall dynamics
of the car, we do not address the brakes, the steering mechanisms, or the
motor. These components are, however, present in the form of steering
angles and wheel torques. If desired, algebraic or differential expressions for
these quantities can be derived and incorporated later.

We wish to make a few more preliminary remarks considering the envi-
ronmental setting. The reader will find that any influences due to air drag
or weather conditions are absent. Road conditions are also of no present
concern to us either. In particular, the road is simply modeled as an infi-
nite horizontal plane, i.e., the often tilted and curved nature of highways is
ignored.

3.1 The Chassis

3.1.1 Inertia Parameters

We identify the chassis with the body B of the previous section and present
a model that uses the simplest possible Cosserat point with three directors
(K = 3) and the weighting functions

N=X'" | i=1,23 . (20)

In the reference configuration, we identify the directors with the basis vectors
of the Euclidean three—space, i.e.,

D,=E;, , i=1,2,3 . (21)

The reader is referred to Figure 1 for details on the orientation of the direc-
tors.

This type of Cosserat point is also known as a pseudo-rigid body [6] for
it relates to a rigid body as follows. Using (1), the motion of the particles
of B is

r*(Xi,t) =r(t) + Xidi(t) . (22)

From equation (2) we see that the deformation gradient

F=d,QE, (23)



Figure 1: Schematic depiction of the reference configuration of the chassis.
The coordinates of the suspension assembly points are also shown in the
figure.

is that of a homogeneous deformation. Furthermore, using equation (9), one
observes that in the reference configuration, the inertia parameters y* are
the coordinates of the center of mass of the Cosserat point with respect to

the position vector r:
my' = /// poXtdV . (24)
Po

In particular, if we choose r as the position vector of the center of mass of
the chassis,® we obtain
y'=0 . (25)

Finally, considering equation (10), we see that the inertia parameters
my' = / / po XX AV (26)
Po

are in fact the components of the Euler tensor with respect the basis {E; ®
E;}. We recall, from [1], the definition of the inertia tensor Jy of a rigid
body,

Jo = JVE,QE;
= /// 00 (XkaE,'®E,'—XinEi®Ej) v, (27)
Po

8This assumption is intrinsic to the theory of a pseudo-rigid body, see, e.g., [6].



to obtain the following identities

myt = —J L i#j (28)
mytt -t 11 JH
my?? =5 1 -1 1 J3? : (29)
my>3 11 -1 J33

Guided by these relations we can obtain the inertia parameters from the
data sheets of a specific vehicle.

3.1.2 Constitutive Relations

We are going to derive constitutive relations for the Cosserat point by as-
suming that all the deformable parts of the chassis are made of the same
elastic material with a homogeneous density distribution pg. We hereby
ignore any plastic deformations that might occur during an impact.”

We proceed by assuming that the chassis consists of a material that, in
the classical theory of continuum mechanics, can be described by a nonlin-
early elastic, homogeneous, St. Venant—Kirchhoff material with Lamé con-
stants A and g and a strain energy function

pot™ = % (\(HE)? +24E -E) | (30)

where )
T
E:EijEi@@Ej:i(F F-1) (31)
is the standard Lagrangian strain tensor. Here, I = ¢,;E; ® E; is the
identity tensor and é;; denotes the Kronecker symbol. After substituting for
the deformation gradient (23), the components of E become

E,']‘ = (d, . d]‘ — (5,]) . (32)

N | —

Note that E, and therefore also @™, are functions of time only. Hence, the
integration of (17) yields

myp =V pop™ = % (/\ (ttE)? + 24 E - E) . (33)

°To our knowledge, there is presently no elasto-plastic theory for pseudo-rigid bodies.



The volume V encompasses the entire chassis. We note that the geometry
or design of the chassis does not enter the present constitutive relations.
However, as deformation gradients become non—homogeneous in future de-
velopments of our vehicle model, we will require more detailed data on the
composition and geometry of the chassis.

We can now use equation (16) to derive the following expressions for the
intrinsic director forces:

.V

Finally, for future reference, we record the relations between the Lamé con-

stants and Young’s modulus E and Poisson’s ratio v (see [24]):
v B E

Q+m)1-20) * M7 o110

(35)

3.1.3 Applied Forces

The forces that act on the chassis in our present model are gravity, the
suspension forces and the constraint forces during an impact. Once the
constraint (18) is known, we can calculate the functional form of the lat-
ter forces from (19). We note at this point that for practical reasons, we
presently choose an ellipsoid for the outer geometry of the car. The reader
is referred to the sequel of this report [15] for further details. Finally, the
sole body force acting on the chassis is gravity, i.e.,

b = —g E3 ) (36)

where ¢ is the gravitational acceleration.

The suspensions are discussed in the next section. In particular, we
will make the assumption that each of the forces f¢ (¢ = 1,...,4) due to the
four suspensions act at a single point.!° Using the blue—prints of the vehicle,
we record the coordinates (X1, X%, X?) of these four assembly points with
respect to the previously defined basis {E;} (see Figure 1):

1: ( Ly, Bi/2,—Hy) left front

2: ( Ly,—B1/2,-Hy) right front (37)
3: (=L, By/2,—Hy) Ileft rear ’

4: (—Ly,—By/2,—H;) right rear

10Ty reality, the lateral forces act separately from the vertical forces of the shock
absorber.
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where By and By are the lateral distances between the two front and two
rear wheels, respectively. The assembly points are material points of the
chassis and their position vectors ry can be calculated from equation (1);
e.g., for the right, front suspension,

I'z(t) = I'(t) + Ll dl(t) — B/2 dz(t) — Hl d3(t) . (38)

Using equations (12) and (13), we can now proceed to calculate the
applied force and the applied director forces as follows:

n 1 1 1 1 f! E;
11 - Ll Ll —L2 —L2 f2 yl E3
12 o B1/2 —31/2 B2/2 —32/2 f3 - y2 E3
13 —Hl —Hl —H2 —H2 f4 y3 E3
(39)

For the gravitational terms we have used the fact that r is the position vector
of the center of mass. We recall that, during an impact, the constraint forces
(19) need to be added to n and I' calculated from (39).

3.2 The Suspensions

The suspension of a vehicle connects the wheels to the chassis. It has three
main functions; to isolate the chassis from vibrations due to an uneven
road surface, to keep the wheels properly aligned and in contact with the
road, and to transmit the tyre forces. For practical reasons, independent
front suspensions are found in almost all passenger vehicles. They allow
a wheel to move vertically without affecting the opposite wheel - which is
also advantageous for our modeling purposes. Rear suspensions may also be
independent, but one still finds rigid beam axles connecting the rear wheels
in some rear wheel driven vehicles.

We start our discussion with independent front suspensions and outline
the three basic designs types (see also [7]):

The MacPherson strut is a telescopic member that incorporates a spring
and a damping element. At its upper end, it is fixed to the chassis. The
kingpin of the wheel is rigidly attached to its lower end. Additional linkages
at the lower end transmit the longitudinal and lateral force to the chassis.
This configuration is widely used in front wheel driven cars. Since the ori-
entation of the strut with respect to the chassis is constant, this type of
suspension can be modeled in a simple manner.

11



Well adapted to front engine rear wheel driven cars are the A—arm type
suspensions. Here, one or two lateral control arms (A-arms) with simple
lateral links at each side hold the wheel in place. Between one arm and the
chassis, there is a shock absorber. While the arms transmit the lateral and
longitudinal tyre forces to the vehicle, they also guide the vertical motion
of the wheel. Unlike the MacPherson strut configuration, this motion is not
necessarily linear, but follows a curve and the axis of rotation of the wheel
may change with respect to the chassis. However, due to the rather simple
design, the kinematics of this type of suspension are easily determined. For
many purposes it may be sufficient to assume that the wheel motion is
rectilinear.

Multi-link suspensions are characterized by ball-joint connections at the
end of the linkages. The use of linkages gives the designer freedom to pre-
scribe the six degrees of freedom of the wheel relative to the chassis. Sus-
pensions of this type require substantial modeling efforts to analyze their
kinematics.

Given these three concise descriptions, it seems natural to implement
the MacPherson strut configuration in our vehicle model. This provides
a reasonable approximation for most front suspensions during normal ride
and, perhaps, even during the short contact time of an impact. We note
however that the additional kinematic features of some front suspensions
may become important during corrective maneuvers following the impact.

If we assume a linear spring with coefficient C and a linear damping
element with coefficient D, we can calculate a measure of the force generated
by the suspension:

Fousp = C(As— As,ef) + DAG (40)

where As is the distance between the upper and the lower end of the strut
and As,es is some reference length. This simple model does not account for
the nonlinearities of the suspension or for the limitations of the telescope.

If we assume that body roll is moderate, that the radial compliance of
the wheels is small (see below), and the road to be horizontal, As in the
previous equation can be taken as the height over ground of the upper end
of the strut (i.e., where the strut connects to the chassis). We will use this
simplification in the next section, but the equations can be readily changed
if deemed necessary.

Concerning the rear suspensions, one may find a solid drive axle joining
the rear wheels in a rear wheel drive car. On it sits the differential with

12



the drive shaft. The rear suspensions support the axle laterally and ab-
sorb shocks vertically. Their kinematics are linked by the rigid rear axle.
Sometimes this is modeled by taking the rear axle with the wheels as one
body with the suspensions assumed to be independent MacPherson type
assembly struts (see, e.g., [10]). The lateral displacements of the tips of the
axle due to its rolling are then neglected. This is the model that is used in
the work presented here. We are essentially using our aforementioned front
suspensions for the rear ones also.

There are designs with independent rear suspensions for both front and
rear wheel drive cars. Like the front suspensions discussed above, they use
control arm and multi-link configurations. We postpone for future work the
decision on whether a MacPherson strut type model is be too simplified for
them.

3.3 The Wheels

It is customary to model the whole wheel as a disk, with constant inertia
but variable radius (see [16, 7, 27, 12]). That way it behaves essentially
like a rigid disk but can account for the radial compliance of the tyre. The
kinematics of the wheel are constrained by the road surface and the vehicle
suspension.

In order to keep our vehicle model simple, we model each wheel as a mass
point with mass my,. Vertically, the center of each wheel is assumed to stay
at a constant distance from the horizontal road surface. Laterally, we assume
that the wheels are rigidly attached to a suspension of the MacPherson strut
type. Therefore, aside from the tyre forces, the wheels enter the equations
of motion (5) and (6) in the form of additional (lateral) inertia parameters
that we will derive next. The forces generated in the wheel/road contact
are discussed below. Steering forces on the front tyres are assumed to be
provided by the steering system and ignored for the time being.

In equation (37), we have defined the coordinates of the four suspension
assembly points (¢ = 1,...,4). Additional assembly points can be intro-
duced when modeling vehicles with more than four wheels. We recall that
these points are material points. Hence, we can calculate their velocities v,
and accelerations vg; e.g., for the right front assembly point (using (38)):

vo=v+Liwy—B/2wy; — H wsg . (41)

V22V+L1W1—B/2W2—H1W3 . (42)

13



We can now split each of the applied forces f? into a force f7 and an
inertial force f9. The forces f¢ consist of the forces due to the shock absorbers
and the wheel/road contact. The inertial forces are

fq = —mw ((Vq . El) E1 + (Vq . Ez) Ez) . (43)

This accounts for the facts that the inertial forces of the wheels are only
transmitted laterally and that the road is horizontal. Algebraically, we can
add the acceleration terms to the left—hand side of the equations of motion
(5) and (6), hereby adding additional inertia parameters.

Despite the above assumption of a mass point, we will allow a moment of
inertia Iy about the wheel axis so that the wheel can accelerate and brake.
By neglecting the radial compliance of the tyres and the remaining moments
of inertia, we add only one degree of freedom for each wheel to our system.
The additional differential equations are

Iww, =T (44)

where w, are the angular velocities of the wheels about the respective wheel
axis and T are the corresponding applied torques about the axes. If the
vehicle under consideration is a rear wheel drive car with rear axle and a
differential, then ws and w4 are kinematically linked and equation (44) must
be modified accordingly.

In order to calculate the forces acting between the tyres and the road
surface, it will be necessary to know the orientations of the wheels. The
MacPherson type strut suspensions discussed earlier keep the wheels in an
upright position. We will assume that the unit heading vectors hs 4 of the
rear wheels are parallel to the projection of dy into the road plane, i.e.,

(di -Eq1)E; + (dy - E3)Ey
[(dy - Eq) Eq + (dy - Ep) Eof|
while the unit orientation vectors ag 4 of the rear wheels are perpendicular
to hs 4, i.e.,

hy = hy =

(45)

__—(di-Ep)Ey 4 (dy - Ey) By
|| = (d1 - E2) Eq + (dy - Eq) Ey|

Similarly, if we define a steering angle © about Es, the unit heading vectors
h; > and the unit orientation vectors a; 5 of the front wheels are given by

h1 = h2 =cos© h374 + sin © as 4 (47)

as = ay (46)

and
ag =a; = —sinO®hs s+ cosOazy . (48)
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3.4 Wheel/Road Contact

The proper modeling of the forces generated by the tyres is crucial for an
accurate vehicle simulation. Analytical models are not feasible due to the
tyre’s complex design of rubber and steel and its finite deformations during
maneuvering of the vehicle. One needs to resort to empirical and semi—
empirical methods. We mention here two sources for such models: The
Calspan Corporation does extended testing of tyre performance and provides
individual curve fitted models of the empirical relationships [25]. The Magic
Tyre Model given in [16] provides a set of mathematical formulae from which
the tyre characteristics can be calculated. The parameters for these formulae
are measured from experiments performed by the Delft University in the
Netherlands. Common to these tyre models is the use of terminology. We
will recall some (see Figure 2) and refer to [23] for more details. We note in
advance that these models do not necessarily apply for combined maneuvers
such as combined braking/cornering, even though this is exactly the kind
of corrective maneuver one expects following a minor collision between two
cars. We postpone the investigation of this problem for future work.

The contact force between the road and the wheel is split as follows:
the normal force is normal to the road surface and is generated by the
radial compliance of the wheel. Since we have assumed that this compliance
is negligible, the normal force is generated directly by the suspension. The
longitudinal force acts in the direction of the wheel heading, while the lateral
force acts perpendicular to it. Both of these forces act in the road plane.

The wheel camber angle is defined as the angle between the road surface
normal and the wheel plane (see Figure 2). When large, e.g., for motorcy-
cles and off-road vehicles, it has considerable influence on the tyre response.
Since the suspension of our vehicle model is such that the wheels stay essen-
tially vertical at all times, the camber angle can be neglected. The longitu-
dinal slip is a measure of the difference between the circumferential speed
of the wheel and its forward velocity. If they are not equal, a longitudinal
friction force is generated. The side slip angle is defined as the angle between
the direction of wheel heading and the direction of wheel travel. A non—zero
slip angle generates a lateral cornering force.

The aforementioned quantities are sufficient to implement a simple tyre
model in the next section. One important addition is related to the tyre’s
lag dynamics. The lag we are referring to here, is an approximate model for
the lateral and longitudinal compliances of the tyre. The presence of these
compliances results in a lag of the tyre’s response to changes in the side
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camber angle
|

wheel-plane

suspension
system

ground-plane

Figure 2: Schematic depiction of one tyre illustrating the forces and kine-
matic quantities defined in the text. Here, n, is the surface normal, such
that {a,, hy, n,} form a local orthonormal basis. The force N is the normal
contact force.

slip angle and longitudinal slip. They imply that the wheel must travel a
certain distance, i.e., the wheel must rotate, before the tyre’s profile inside
the contact patch can adapt to a new situation.

There is yet another, more practical, reason to implement lag dynam-
ics into our model. Since laterally, the wheels are rigidly attached to the
deformable chassis, vibrations generated in the chassis can influence the cal-
culations of slip and slip angle directly and may lead to erroneous results.
In rigid body vehicle models, this problem is not present. If we introduce
lag into our tyre model, these vibrations can be filtered out effectively since
the stiffness of the chassis is orders of magnitude higher than the stiffness
of the tyre material.

If o denotes the slip angle calculated by the previously indicated method,
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then a first—order!! lagged slip angle response a4y can be calculated from
T Olag + Qlgg = @ . (49)

This is in fact a low pass filter with a cutofffrequency 7=! [rad/s] and
a unity low—frequency amplification. A similar equation may be derived
for the longitudinal slip. We note that this increases the overall order of
our vehicle. However, the additional computational effort is minimal when
compared to the rest of the vehicle.

4 Implementation of the Vehicle Model

Using the material from previous sections, we derive here the explicit dif-
ferential equations of our vehicle model. We subsequently outline our im-
plementation of this model in ANSI C and the integration procedure. This
section closes with some simulation results for an illustrative example of a
vehicle.

4.1 Differential Equations of Motion

We recall that we use are using a Cosserat point with three directors whose
position vector is the position vector of the center of mass of the chassis.
Besides gravity, suspension forces act at assembly points defined by equation
(37). Using equations (25) and (39), the balance equations (5) and (6) may

be written in the following form:'?
m 0 0 0 v 0 mg Es
0 my'l my'? my'® i | k! - 0 .
0 my? my?? my® wy | T K2 0
0 my3l my? my® W3 K3 0
1 1 1 1 £l f!
Ly Ly -L, —L, 2 + 2

Bi/2 —Bij2 By/2 —By/2 || 4 (50)

—Hy —-H, —H, —H, £4 4 4

The intrinsic director forces k' are given by equation (34). The inertial wheel
forces f7 are given by equation (43). For further algebraic manipulations of

'1Second-order lag models can be used to further improve the tyre response (see [10]).
12In writing these equations, r is chosen such that y* = 0.
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equation (50), we define the components of r, d;, k' and £ with respect to

the basis {E;}:

r; = r-E; (51)
dij = d;-E; (52)
kE, = k'-E; (53)
fi = f1.E; . (54)

Subsequently, we introduce the state vector z, the intrinsic force component
vector k, a force component vector f and a body force component vector u,

i.e.,
z = (7‘1,7‘2,7‘3,d11,d12,d13,d21,d22,d23,d31,d32,d33)T, (55)
k = (0,0,0 kll,klz,k13,kzl,kzz,k23,k31,k32,k3)T, (56)
P= (7 AR BLRL BB R ) 6D
u = (0,0,—mg,o,o,o,o,o,o,o,o,o)T. (58)

Equation (50) can now be written in a Lagrangian second order state space
form as

Mz+k(z)=Af(z,z,t)+u . (59)
The symmetric matrix M is given by
My M, Mis My
M1 Mj, My My
M3 Ms; Mss My 7
Miy My, Mys Mys

M = (60)

where My, (¢,p=1,...,4) are diagonal three by three sub-matrices. They
are listed in Appendix A. The matrix A is given by

I I I I
L1 LT —L, 1 —IL,I
Bi/21 —By/21 B,/21 —B,/21 | °

~H,1  -H I —-H I —H 1

A=

-
(

oS O =

S = O

= o O

(61)
We now proceed to calculate the remaining forces f¢. We recall the
assumption that the suspensions absorb shocks vertically and transmit the

tyre forces ff _ laterally, i.e.,

f1 = ~F Es+fl., . f =0 (62)

s tyre
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where F2 s given by equation (40). If we admit the simplification that As

susp
in equation (40) is the height over ground of the assembly point, we obtain,

using definitions (37), (51) and (52) and equations (38) and (41),

Fslusp = Ci(rs+ Lidis+ By /2dy3s — Hidsg — Asyep1) +

Di(vs + Ly wiz + By /2wa3 — Hy wss) ; (63)
Fszusp = Ci(rs+ Lidis— By/2dy3 — Hidsg — Asyep1) +

Dy (v3 4 Ly wiz — By /2wa3 — Hy ws3) ) (64)
Ffusp = Cy(rs— Lodis+ By/2dy3s — Hydsz — Asyep2) +

Dy(vs — Lywiz + Ba/2wa3 — Hy wss) ; (65)
Ffusp = Cy(rs— Lodiz— By/2dy3 — Hydsz — Asyef2) +

Dy(vs — Ly wiz — By /2 w3 — Hy wss) . (66)

Here, C1, Dy, and As,.y, are the linear spring coefficient, the linear damping
coefficient and the spring reference length for the front suspensions, respec-
tively. For the rear suspensions, Cy, Dy, and As,f o are the corresponding
parameters.

Finally, using definitions (45)-(48), we can decompose the tyre forces

into lateral and longitudinal components with magnitudes quong and

q
i;yre
lwq

1at> Tespectively:

= F¢

long

fq

tyre

hy + Floag - (67)

In order to calculate F}! , we will need the side slip angles a,. For this, using
definition (37) and equation (41), we define the direction of wheel travel v,

to be parallel to the projection of v, onto the plane of the road, i.e.,

(\fq . IDl) 131 —F (\fq . IDZ) 152

v, = , 68
" ltv B B (v B B o
Using equations (47) and (45), the slip angles are now obtained from
h, xv,)-E
aq = arctan (M) (no sum on q). (69)
h, - v,

4.2 Numerical Integration

Simulating the motion of a pseudo-rigid body is numerically expensive com-
pared to rigid body models. The frequencies induced by the elastic defor-
mations require very small time steps during integration. Furthermore, for
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a Cosserat point, the balance of director momentum (6) is far stiffer than
the balance of linear momentum (5). This is due to the intrinsic director
forces kIV. This system of equations represents what is called a ‘stiff’ ODE
[17]. Such systems cause problems when integrated with standard numeri-
cal methods and special methods have been devised. In the implementation
of our vehicle model however, we use a transformation T of state space
variables

h=Tz (70)

between the state vector z defined in (55) and a new state vector h to
circumvent this problem. We choose the invertible transformation matrix
T in a manner that linearly combines the non—stiff equations with the stiff
ones, hereby alleviating the stiffness problem; for example,

Doror
T=|] 1 1 I , I=]0 10 (71)
I I I —I 001

Using this transformation, the second order system of differential equa-
tions (59) can now be written into the first order form

d (h) (h ;
@t \ h )7\ T™M' (—k(T~'h) + Af(T~'h, T~'h, ) + u) (72)

and integrated with a numerical package.

The authors have written an ANSI C compatible [11] program that in-
corporates a vehicle simulation using the equations derived so far. The
integration methods include a fixed step-size algorithm, an adaptive step-
size control Runge-Kutta algorithm with third order error control, and the
Bulirsch—Stoer method with Richardson interpolation. These algorithms
have been adapted from the Numerical Recipes handbook [17].

4.3 Examples

We close this section with two illustrative simulations. In the first example,
the vehicle is driving forward in a straight line and we show the decaying
oscillations of the directors about their equilibria. In the second example,
the vehicle is driving in a curve with a constant steering angle.
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The vehicle parameters for these test simulations are partly assumed and
partly derived from a Toyota Corolla.'® This data is listed in Appendix B.
A Calspan tyre model was adapted from the ILTIS!'* benchmark in [12]. In
that benchmark, the wheels are assumed to roll without longitudinal slip
and without longitudinal resistance, i.e.,

Fq

long =0 . (73)

For this reason, the rotation of the wheels given by equation (44) may be
ignored. For each wheel, the lateral tyre forces is given by'®

ﬂat = ,uyFsusp g(d) P (74)
where p, is the tyre sideforce friction coefficient given by
pty = (—B1Fyusp + B3 + B4F2,)SN . (75)

The sideforce shaping function is

N S _

gla) = af— 304|04|—|—2704 for |a] <3 (76)

gla) = o forlal<3 (77)
a

where the non—-dimensional sideslip angle & is calculated using

_ AlFsusp(Fsusp Az) - AOA2 .
- wo i (=Fausp) <= Ay, (78
“ AZ,uyl susp g ( p) < : ( )

Ao
a = QAlq if (—Flusp) > 49 . 79
2y () (79

For each wheel, the lagged side slip angle a4, is obtained from the differen-

tial equation (49). The the numerical values of the tyre parameters Ag, A1,

Ay, By, Bz, By and SN, as well as the cutoff frequency 7!, are listed in

Appendix B. Note that Fj,; is positive for a positive (lagged) slip angle.
The initial conditions for both simulations are the following;:

r(0)=0 , d;(0)=E; , (80)
v(0) =25E; [kTm] , w;(0)=0 |, (81)
g lag(0) =0 (82)
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Figure 3: Simulations of a vehicle driving in a straight line for a period of 4
seconds: (a) forward motion of the center of mass, (b) vertical motion of the
center of mass, (c¢) dy1(t) and ds3(t) (which are practically identical), and
(d) di3(t) and ds1(t) (which, apart from the sign, are practically identical).

In the first example, the vehicle is driving in a straight line in the direc-
tion of Eq, i.e., the steering angle is © = 0. The following components of
the position vector and the directors are zero (see definitions (51) and (52)):

Tz(t) =0 ) dlz(t) = dzl(t) = d23(t) = d32(t) =0 . (83)

Figure 3a) shows ri(¢) and indicates that the vehicle’s center of mass is

3Data communicated through Prof. Karl Hedrick, Dept. of Mechanical Engineering,
U.C. Berkeley.

4The ILTIS is a off-road vehicle. A simplified model of it is used in [12] as a benchmark
for the comparison of several vehicle simulation packages.

15For readability, we drop the wheel index g¢.
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Figure 4: Simulations of a vehicle driving in a curve: (a), (b) and (c) are
the respective projections of r(t), di(¢) and da(¢) on the road plane during
a simulation period of 4 seconds.

moving at a constant speed. Figure 3b) shows rs(t), i.e., the vertical motion
of the vehicle’s center of mass. The decaying oscillation about an equilibrium
are attributable to the suspensions. The director d, oscillates in length
without changing its orientation. The magnitude of this oscillation is of the
order 1076, The deformation of the chassis in this example is, as expected,
negligibly small. Since the springs in the front suspension systems are softer
than those in the rear suspension systems, the vehicle pitches forward in
an oscillatory fashion which decays with time. This motion is indicated in
Figures 3c) and 3d). Apart from the opposite signs, dy3(t) and dq3(t) are
identical up to high precision and so are dq1(t) and dss(t). From this we
can conclude that the pitching motion of the vehicle is indeed a rigid body
rotation for all practical purposes, i.e., the three directors {d;,ds, b3} are
almost perfectly orthonormal at all times.

The second simulation shows the vehicle driving with a constant steering
angle of twenty degrees, i.e.,

s

0= 5 [rad] . (84)

From Figure 4a) we see that, the curve traced by the projection of r(¢) on
the road plane is a circle. Figure 4b) and Figure 4c) show the corresponding
projections of the directors dy(¢) and da(¢). This clearly indicates how the
car is turning to its left. As in the previous example, the chassis behaves
essentially like a rigid body. The vertical motion of the center of mass
depicted in Figure 5a) is the same as when the car was going straight (see
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Figure 5: Simulations of a vehicle driving in a curve: (a) vertical motion of
the center of mass, (b) ds3, (¢) di3 and ds;, and (d) da3. From these figures,
(c) indicates that the vehicle is pitching, while (d) indicates that the vehicle
is rolling. The simulation period is 4 seconds.

Figure 3b)). The forward roll of the chassis is indicated by ds3(¢) in Figure
5b) and by dq3(t) and dsz;(t) in Figure 5¢). This rolling motion is indeed the
same as in the previous example (see Figures 3c) and 3d)) if one observes
that dq3(t) starts off as the mirror image of ds;(t) and, because the vehicle is
driving in a circle, gradually changes its sign to become identical with ds1(t)
towards the end of the simulation. Finally, d23(?) in Figure 5d) indicates that
the vehicle is rolling slightly to its right. In reality however, this effect should
be much larger that it is indicated by these simulations. We anticipate that
improved vehicle parameters and suspension models will remedy this issue.
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5 Conclusions

In this report, a model for a single vehicle has been developed and simu-
lated. The model uses the theory of a Cosserat point to account for the
deformation of the vehicle. After outlining the theory of a Cosserat point,
various developments from vehicle system dynamics were recalled. These
developments were then used to complete the vehicle model. Following
the presentation of the governing equations for the model in Section 4, a
sample of some numerical simulations were presented and discussed. The
results of these simulations also served to validate the model: the behav-
ior of the model proved to be physically realistic. The C program which
was used for these simulations is available from oreilly@me.berkeley.edu or
panos@me.berkeley.edu.

We close this report by referring the reader to the sequel of this report
[15]. There, the manner in which vehicle collisions can be studied using
the model presented here is discussed. These two reports are part of a
series of works aimed at developing models for certain types of collisions
which arise in the platooning of vehicles. As mentioned earlier, these models
are designed to be suited to modeling impact scenarios where the relative
velocities of the vehicles are small.
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A Components of the Matrix M

This appendix lists the components of the sub—matrices of the matrix M
defined in equation (60):1

0]
S

M = diag(m+4mw ,m+4mw ,m)

0]
(=]

Moo = diag( my't +2 L2—|—L2)mw ,mytt —|—2(L%—I—L§)mw 7myll) ,

o
[C NN |

My = diag( my33 42 H2—|—H2)mw 7myBB—|—2(]'1T2—|—]'1T2)mW ,my® ) ,

0]
Ne]

(
Mjzy= dlag(my22—|— B2—|—B2)mw 7my22—I—l(B2—I—B2)mW 7my22) ,
(

M12 1— dlag 2( LQ)mW 5 (Ll—LQ)mW 70) 5

Yol
o

M13:M31: o

Ne]
—

e’ e’ e e e e e e N N

Ml4 41—dlag 2(H1+H2)mW7—2(H1+H2)TTLW7O) s

Ne]
o

Moy = 32_dlag my my! )

Ne]
w

o~~~ o~ o~~~ =

(-
M24 42_dlag(my13 2H1L1 HQLQ)TTLW,mle—Z(HlLl—HQLQ)mW,mylg) 5

[Ne]
=~

My, =MJ; = diag(my*® ,my** ,my>®)

In writing equations (85)—(94), we have used the symmetries my”7 = my?’.

B Vehicle Parameters

The mass of the vehicle m, the inertia parameters!'” Jéj and the coordinates
of the assembly points L{,L,,B1 and By are derived from a Toyota Corolla,
and so are the suspension parameters Ci, Cy, Dy and D,;. The assembly
point coordinates H; and H; and the spring reference lengths As, s and
ASyego are assumed:

Jgt =479.6 -
m=1573.0 [kg] , J¥? =2594.6 ; [kgm?] , JY =0 i#j ,
J33 =2782.0

r 0 O
Y diag(, y, z) denotes the matrix ( 0 y 0 )
0 0 =z,
1"Use equations (28) and (29) to calculate my™.
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L, =1.034

[2 =1.491 } m} -, Bi=B:=145[m] , Hi=H=0,
ASref,l = Asreﬂz = 0.15 [m] R

C, = 17000.0 } [N Dy = 1500.0 } [Ns

Cy = 40000.0 E] " Dy = 1200.0 W]
The gravitational acceleration is

g=981[5] |

52
and the mass of a wheel is assumed to be

mw = 10.0 [kg]

The volume V of the chassis, Young’s modulus E and Poisson’s ratio v are
assumed to have the values!®

N
V=042[m’] ., E=2000-10°[—=] , »=0.30[]
m

Finally, the parameters for the Calspan tyre model given in [12] are

Ag=2625[N] , A3 =1447[] , Ay =12930[N] ,
By =-0.46410"*[N"'] , B3=1.216[] , By=0.21810""°[N"?] |
SN =1.0274 ]

The cutoff-frequency 7! for describing the tyre’s lag dynamics is assumed
to be
771 = 27.100 [rad s7]

'8The Lamé constants are calculated using (35).
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