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ABSTRACT

Software safety issues become important when computers are

used to control real-time, safety-critical processes. This survey

attempts to explain why there is a problem, what the problem is,

and what is known about how to solve it. Since this is a relatively

new software research area, emphasis is placed on delineating the

outstanding issues and research areas.

[Note to readers: This technical report has been submitted for pub
lication to Computing Surveys. Comments on this manuscript are

welcomed.]
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Introduction
*

Digital computers are not inherently unsafe, and until recently they have

not been used to control potentially unsafe processes. But computers are increas
ingly being used to monitor and/or control complex, time-critical physical

processes or mechanical devices where a run-time error or failure could result in

death, injury, loss of property, or environmental harm. Examples can be found

in transportation, energy, aerospace, basic industry, medicine, and defense sys
tems.

A natural reluctance to introduce unknown and complex factors to these sys

tems has previously kept computers out of most safety-critical loops. However,
the potential advantages of using computers now often outweighs nervousness,
and digital computers are being given more and more control functions previously
performed only by human operators and/or proven analog methods. As just one
example, only 10% of our weapon systems required computer software in 1955,
while today the figure is over 80% [45,125]. Both computer scientists and system
engineers are finding themselves faced with difTicult and unsolved problems.

This paper presents some of these issues and problems along with a survey of
some currently suggested solutions. Unfortunately, there are more problems than

solutions. Most of the problems are not new, but are only of a greater magni
tude. Some techniques that have not been cost effective suddenly become more

viable. Some issues call for unique and original research and procedures.

r

The word "computer" is used in this paper to denote digital computers only.



Background (Is there a problem?)

There are a variety of reasons for introducing computers into safety critical

environments. Digital computers have the potential to provide increased versatil

ity and power, improved performance, greater efficiency, and decreased cost. It

has been suggested that introducing computers will also improve safety [122], but
there is some question about this. Safety-critical systems tend to have reliability

requirements ranging from 10"^ to 10'̂ . For example, NASA has a requirement
of 10'̂ chance of failure over a 10 hour flight [30]. British requirements for reac
tor safety systems include a requirement that no single fault shall cause a reactor

trip. There also must be a 10 average probability, over 5000 hours, of failure to

meet a demand to trip [141]. FAA rules require that any failure condition that
would be catastrophic is extremely improbable. The p. rase ^'extremely improb

able" is defined by the FAA as 10 ^ per hour or per fi .,nt, as appro iate, or in
words: "is not expected to occur within the total life span of the whole fleet of

the model " [137]. There is no way that these levels of reliability can be
guaranteed (or even measured) for software with the software engineering tech
niques existing today. In fact, it has been suggested that we are orders of magni

tude below these requirements [30]. When computers are used to replace elec

tromechanical devices that can achieve higher reliability levels, then safety may

not be improved.

Even in systems where computers can improve safety, it is not clear that the

end result is actually an increase in safety. For example, Perrow [110] argues
that although technological improvements reduce the possibility of aircraft

accidents substantially, they also enaole those making decisions to run greater

risks in search of increased performance. As the technology improves, the

increased safety potential is not fully realized because the demand for speed, fuel

economy, altitude, maneuverability, and all-weather operations increases.

But despite potential problems, computers are being introduced to control

some hazardous systems. There are just too many good reasons for using them

and too few practical alternatives. Decisions will have to be made about where

the use of computers provides more potential improvements than problems, i.e.,

computer use will need to be evaluated in terms of benefits and risks. There have

been suggestions that certain types of systems provide too much risk to justify

their existence (or to justify using computers to control them) [14,110]. More
information is needed in order to make these decisions.



One important trend is the building of systems where manual intervention is

no longer a feasible backup measure [4]. For example, the Space Shuttle is

totally dependent on the proper operation of its computers; a mission cannot

even be aborted if the computers fail [4). As another example, the new unstable,

fuel-efficient aircraft require computer control to provide the fine degree of con

trol surface actuation required to maintain stability. The Grumman X-29, for

example, is flown by digital computers. If the digital computers fail, there is a

backup analog system. However, the switch to the backup system must be done

at a speed that precludes human control.

Direct monitoring or control of hazardous processes by computers is not the

only source of problems. Some computers provide indirect control or data for

critical processes, such as the attack warning system at NORAD, where errors

can lead to potentially erroneous decisions by the human operators or companion

systems. As an example of what can happen, in 1979 an error was discovered in

a program used to design nuclear reactors and their supporting cooling systems

[lOl]. The erroneous part of the program dealt with the strength and structural
support of pipes and valves in the cooling system. The program had supposedly
guaranteed the attainment of earthquake safety precautions in operating reactors.

The discovery of the program error resulted in the Nuclear Regulatory Commis

sion shutting down five nuclear power plants.

Since computers are currently being used to control safety critical systems,
potential problems should now be apparent. Space, military, and aerospace sys
tems have been the largest users of safety critical software. And indeed, software

faults are believed to account for many operational failures of these systems
[13,49]. Some incidents axe cited as examples throughout this paper. For those
who are interested in finding out more about actual incidents, many examples
have been collected by Neumann [104]. Frola and Miller [39] describe aircraft
accidents and near-accidents caused by software faults. Bassen, et.al, [9] cite
examples of serious problems in medical devices. Reiner [116] reports pilot con
cerns about computer malfunctions, unexpected mode changes, loss of data, and

other anomalies of flight guidance systems.



System Safety — An Overview

Safety is a system problem. In order to understand and provide new tech

niques to handle the software aspects of the problem, it is necessary first to

understand something about the general field of system safety. Knowledge of the

techniques and approaches used in building safety-critical electromechanical dev

ices will aid in designing new techniques for software as well as in ensuring that

these new techniques will interface with the hardware approaches and tools.

Ideally, global integrated techniques and tools can be developed that apply

system-wide.

System safety became a concern in the late 1940's and was defined as a

separate discipline in the late 1950's [118,120]. A major impetus was that the mis
sile systems developed in the 1950's and early 1960's required a new approach to

controlling hazards associated with weapon systems 120]. The Minuteman ICBM
was one of the first systems to have a formal, disciplined system safety program

associated with it. NASA soon recognized the need to have system safety as part

of their programs, and there have been extensive system safety programs for

space activities. Eventually, the programs pioneered by the military and NASA

were adopted by commercial industry in such areas as nuclear power, refining,

mass transportation, and chemicals.

System safety is a subdiscipline of system engineering that involves the

application of scientific, management, and engineering principles to ensure ade

quate safety within the constraints of operational effectiveness, time, and cost

throughout the system life cycle. Note that safety here is regarded as a relative

term. Although it is often defined as "freedom from those conditions that can

cause death, injury, occupational illness, or damage to or loss of equipment or

property" [92], it is generally recognized that this is unrealistic [44]. By this abso
lute definition, any system that presents an element of risk is unsafe. But almost

any system that produces personal, social, or industrial benefits contains an

indispensable element of risk [18]. For example, safety razors and safety matches

are not sa/c, only safer than their alternatives. They present an acceptable level

of risk while preserving the benefits of the devices they replace. No aircraft could

fly, no automobile move, and no ship put out to sea if all hazards had to be elim

inated first [48].

The problem is exacerbated by the fact that attempts to eliminate risk often

result in risk displacement rather than risk elimination [86]. For example,

nitrates in food may cause cancer but their elimination could cause deaths by



botulism. Benefits and risks often have tradeoffs — e.g., trading off the benefits of

improved medical diagnosis capabilities against the risks of exposure to diagnostic

X-rays. Unfortunately, the question "How safe is safe enough?" has no simple

answer [96,97].

Safety is also relative in that nothing is completely safe under all conditions.

There is always some case in which a relatively safe material or piece of equip

ment becomes hazardous. The act of drinking water is usually considered safe,

but drinking too much water can cause kidney failure [44]. Thus safety is a rela

tive concept that is a function of the situation in which it is measured. One

definition might be that safety is a measure of the degree of freedom from risk in

any environment.

In order to understand the relationship between computers and safety, it is

helpful to consider the nature of accidents in general. An accident is traditionally

defined by safety engineers as an unwanted and unexpected release of energy [58].

However, release of energy is not involved in some hazards associated with new

technologies (e.g., recombinant DNA) and potentially lethal chemicals. There

fore, the term mishap is often used to denote an unplanned event or series of

events that results in death, injury, occupational illness, damage to or loss of

equipment or property, or environmental harm. The term mishap includes both

accidents and harmful exposures.

Mishaps are caused almost without exception by multiple factors, and the

relative contribution of each is usually not clear [39,48,55,58,110,111,117]. A

mishap may be thought of as a set of events combining together in random

fashion [ill] or, alternatively, as a dynamic mechanism that begins with the

activation of a hazard and flows through the system as a series of sequential and

concurrent events in a logical sequence until the system is out of control and a

loss is produced (the "domino theory") [86]. Either way, major incidents often

have more than one single cause, and it is usually difficult to place blame on any

one event or component of the system. The high frequency of complex, multifac-

torial mishaps may arise from the fact that the simpler potentials have been anti

cipated and handled. But the very complexity of events leading up to a mishap

implies that there may be many opportunities to intervene or interrupt the

sequences [58]. Three Mile Island is a good example.

The mishap at Three Mile Island [110] involved four independent failures

(see figure 1). It started in the secondary cooling system where some water leaked

out of the condensate polisher system through a leaky seal. The moisture got
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FIGURE 1

Ml Unit 2 March 28. 197H

Clogged condensate polisher

line

Moisture in instrument air line

False signal to turbine

Turbine stops
Feedwaier pumps slop
Emergency feedwaier pumps

start

Pow blocked; valves closed

instead of open

No heat removal from primary
coolant

Rise in core temperature and
pressure

Reactor scrams

Reactor continues to heat,

"decay heat"
Pressure and lemperaturc rise

Pilot Operated Relief Valve
(PORV) opens

PORV told 10 close

PORV slicks open

PORV position indicator
signifies it has shut

\SD Reactor coolant pumps come
on

Piiinary coolant pressure
dtnsn, temperature up

Steam voids form in coolant

pipes and core, restricting
flow forced by coolant
pumps, creating uneven
pressures in system

VSD Hi Pressure Injection (HPI)
starts, to reduce temperature

Pressurizer blis with coolant as

it seeks outlet through
PORV

'Operator Operators reduce HPI to save
error" pressurizer, per procedures

Temperature and pressure in
core continue to rise because

of lack of heat removal, de
cay heat generation, steam
voids, hydrogen generation
from the zirconium-water

reaction, and uncovering of
core. Reactor coolant pumps
cavitate and must be shut

off, further restricting
circulation.

•ASD (automatic safety device)
Source: Kcmeny. John, ct al. Report of the President's Commission on the Accident at Three Mile
Island. VVashingion. IX'.: (io\crnmcni Printing OlfKC, 1979.

and Perrow, C. Noinnal Accidents, Basic Books, 1984.



into the instrument air system, interrupting the air pressure applied to two feed-

water pumps. This interruption erroneously signalled to the pumps that some

thing was wrong and that they should stop. When the cold water flow is inter

rupted, the turbine shuts down automatically (a safety device), and the emer
gency feedwater pumps come on to remove the heat from the core. Unfor

tunately, two pipes were blocked; a valve in each pipe had been accidentally left
in a closed position after maintenance two days before. The emergency pumps
came on (which was verified by the operator), but he did not know that they
were pumping water into a closed pipe. There were two indicators on the control

panel that showed that the valves were closed instead of open. One was obscured

by a repair tag hanging on the switch above it. But at this point the operators
were unaware of the problem with emergency feedwater and had no occasion to

make sure those valves, which are always open except during tests, were indeed
open. Eight minutes later, when they were baffled by the performance of the
plant, they discovered it. By then much of the initial damage had been done. It
is interesting that some experts thought the closed valves constituted an impor
tant operator error, while other experts held that it did not make much difference

whether the valves were closed or not, since the supply of emergency feedwater is
limited and worse problems were happening anyway.

With no heat being removed from the core, the reactor "scrammed" (a pro
cess that stops the chain reaction). Normally there are thousands of gallons of
water in the primary and secondary cooling systems to draw off the intense heat

of the reactor core, but the cooling system was not working. An automatic safety
device, called a pilot-operated relief valve (PORV), is supposed to relieve the
pressure. Unfortunately, it just so happened that with the block valves closed,
one indicator hidden, and the condensate pumps out of order, the PORV failed to
close after the core had relieved itself sufficiently of pressure. Since there had

been problems with this relief valve before, an indicator had recently been added
to the valve to warn operators if it did not reseat. Unfortunately, this time the
indicator itself failed, probably because of a faulty solenoid.

Note that at this point in the mishap, there had been a false signal causing
the condensate pumps to fail, two valves for emergency cooling out of position
and the indicator obscured, a PORV that failed to reseat, and a failed indicator

of its position. Perrow claims that the operators could have been aware of none

of these. From that point on, there is considerable debate about whether the fol

lowing events in the mishap were the result of operator errors or events beyond



what the operators could have been resisonably expected to L. able to hand^o.

The point is that the mishap was caused by many contributm^ factors.

It is interesting to note that some of the events contributing to this mishap

involved failures of safety devices. In fact, ssifety devices have more than once

been blamed for causing losses or increasing the chances of mishaps [110]. For
example, in Ranger 6 (designed to survey the moon) redundant power supplies
and triggering circuits were used to ensure that the television cameras would

come on to take pictures of the moon's surface. But a short in a safety device (a
testing circuit) depleted the power supplies by the time Ranger 6 reached the

moon. It hcLS been noted that the more redundancy is used to promote safety,
the more chance for spurious actuat; ; "redundancy is not always the correct

design option to use" [138]. Another ^ .mple of a safety device causing a mishap
can be found in the core meltdown at ..e Fermi breeder reactor near Detroit [41]
where a triangular piece of zirconium, installed at the insistence of an indepen

dent safety advisory group, broke off and blocked the flow of sodium coolant. A

software example occurred with a French meteorological satellite [7], The com
puter was supposed to issue a "read" instruction to some high altitude weather

balloons but instead ordered an "emergency self-destruct." The self-destruct

instruction had been included to ensure that no mishaps would occur from out-

of-control balloons. As a result of the software error, 72 of the 141 weather bal

loons were destroyed.

Finally, mishaps often involve problems in subsystem interfa [39,48]. It
appears to be easier to deal with failures of components than failures in the inter

faces between components. This should not come as any surprise to software

engineers. Consider the large number of operational software faults that can be

traced back to requirements problems [11,33]. The software requirements are the

specific representation of the interface between the software and the processes or

devices being controlled. Another important interface is that between the

software and the underlying computer hardware. Iyer and Velardi [56] examined
software errors in a production operating system and found that 11% of all

software errors and 40% of all software failures were computer-hardware related.

How do engineers deal with safety problems? The earliest approach to

safety, called Operational or Industrial Safety, involves examining the system dur

ing its operational life and correcting what are deemed to be unacceptable

hazards. In this approach, accidents are examined, the causes determined, and

corrective action initiated. In some complex systems, however, a single accident



can involve such a great loss as to be unacceptable. The goal of System Safety is

to design an acceptable safety level into the system prior to actual production or

operation.

System safety engineering attempts to optimize safety by applying scientific

and engineering principles to identify and control hazards through analysis,

design, cind management procedures. The first step is hazard analysis, which

involves identifying and assessing the criticality level of the heizards and the risk

involved in the system design. The next step is to eliminate from the design the

identified hazards that pose an unacceptable level of risk or, if that is not possi

ble, to reduce the associated risk to an acceptable level. Procedures for accom

plishing these analysis and design objectives are described in separate sections of

this paper.

Management procedures are the third component of system safety engineer

ing. The root causes of mishaps often relate to poor management [ill]. Simi

larly, the degree of safety achieved in a system depends directly on management

emphasis. Safety engineers have carefully defined the requirements for manage

ment of safety-critical programs such as setting policy and defining goals, defining

responsibility, granting authority, documenting and tracking hazards and their

resolution (audit trails), and fixing accountability. Specific programs have been

outlined and procedures developed such as MORT (Management Oversight and

Risk Tree) [58], which is a system safety program originally developed for the

U.S. Nuclear Regulatory Commission. The application of safety management

techniques to the management of software development has been explored by

Trauboth and Frey [132]. This is an important area that deserves more investi

gation.

Why is there a problem?

System safety techniques have been developed to aid in building elec-

"~^omeGhanical-systems with minimal risk. Unfortunately, many of these tech
niques do not seem to apply when computers are introduced. By examining why

adding computers seems to complicate the problem and perhaps increzise risk, it

may be possible to determine how to change or augment the current techniques.

The major rezisons appear to stem from the differences between hardware and

software and from the lack of system-level approaches to building software-

controlled systems.
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Before software was used in safety-critical systems, they were often con

trolled by conventional (non-programmable) mechanical and electronic devices.

System safety techniques are designed to cope primarily with random failures in

these systems. I Human design errors are not considered since it is assumed that
all faults caused by human errors can be avoided completely or located and

removed prior to delivery and operation [68]. This assumption is based on the

use of a systematic approach to design and validation as well as the use of

hardware modules proven through extensive prior use. It is justified due to the

relatively low complexity of the hardware.

With the advent of microprocessors and the possibility of powerful automa

tion procedures, there has been a dramatic increase in the complexity of the

software and hardware, .using a nonlinear increase in human error induced

design faults. Because of this complexity, it appears to be impossible to demon

strate that the computer hardware or the software of a realistic control system is

perfect and that failure mechanisms are completely eliminated [68]. Perrow [110]

has examined the factors involved in "system accidents" and has concluded that

they are intimately intertwined with complexity and coupling. By using comput

ers to control processes, we are increasing both these factors and therefore, if Per

row is right, inc.easing the potential for problems.

, An important difference between conventional hardware control systems and

computer-based control systems is that hardware has historical usage informa

tion, whereas software usually does not [43]. Hardware is generally produced in

greater quantities than software, and standard components are reused frequently.

Therefore, reliability can be measured and improved through experience in other

applications. Software, on the other hand, is almost always specially constructed

for each application. Although there is research being conducted on the reuse of

software and software design, extensive reuse of software (outside of mathemati
cal subroutine libraries or operating system facilities) or reuse of software design

is unlikely to occur soon in these special-purpose systems.

But lack of reuse is only part of the explanation for the added problems with

software. An excellent discussion of why software is unreliable can be found in

Parnas [109]. He argues that continuous or analog systems are built of com

ponents that, within a broad operating range, have an infinite number of stable

states and their behavior can be described by continuous functions. Most tradi

tional safety systems are analog, and their mathematics well understood. The

mathematical models can be analyzed to understand the system's behavior.
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Discrete state or digital systems are made from components with a finite

number of stable states. If digital subsystems have a relatively small number of

states or a repetitive structure, exhaustive analysis and exhaustive testing is pos

sible. But software has a large number of discrete states without the repetitive

structure found in computer circuitry. Although mathematical logic can be used

to deal with functions that are not continuous, the large number of states ajid

lack of regularity in the software results in extremely complex mathematical

expressions. Progress is being made, but we are far from being able to analyze

most realistic control-system software.

Not only is exhaustive testing and analysis impossible for most non-trivial

software, but it is difficult to provide realistic test conditions. It is often the case

that operating conditions differ from test conditions since testing in a real setting

(e.g., actually controlling a nuclear power plant or an aircraft that has not been

built yet) is impossible. Most testing must be done in a simulation mode, and

there is no way to guarantee that the simulation is accurate. Assumptions must

always be made about the controlled process and its environment."^
As an example of what can happen, the limits on the range of control

C'traver') imposed by the software for the F18 aircraft are based on assumptions

about the ability of the aircraft to get into certain attitudes. Unfortunately,

some of the intentionally excluded attitudes are attainable [102]. In another

mishap, a wing-mounted missile on the F18 failed to separate from the launcher

after ignition because a computer program signalled the missile-retaining mechan

ism to close before the rocket had built up sufficient thrust to clear the missile

from the wing [39]. An erroneous assumption had been made about the length of

time that this would take. The aircraft went violently out of control. As another

example, it has been reported that aviation software written in the northern hem

isphere often has problems when used in the southern hemisphere [13]. Finally,

software designed to bring aircraft to the altitude and speed for best fuel econ

omy has been blamed for flying the aircraft into dangerous icing conditions [124].

These types of problems are not caught by the usual simulation process since

they either have been considered and discarded as unreasonable or involve a

misunderstanding about the actual operation of the process being controlled by

the computer. After studying serious mishaps related to computers, system

safety engineers have concluded that and specification

errors are the greatest cause of software safety problems [35,45]. Testing can

only show consistency with the requirements eis specified; it cannot identify-
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misunderstandings about the requirements. These will be " 'T^atified o- / by use

of the software in the actual system which can, of course, to mishaps. Also,

accurate live testing of computer responses to catastrophic situations is, of course,

difficult in the absence of catastrophes.

^furthermore, the point in time or environmental conditions when the com
puter fault occurs may determine the serioxisness of the result. Softwau'e faults

may not be detectable except under just the right combination of circumstances.

It is difficult (and often impossible) to consider and account for all en' 'onmental

factors and all conditions under which the software may be operating. The

operating conditions may even change in systems that m^- or in which the

environment can change. For example, a computer iss ued a jse weapons bay

door command on a B-IA aircraft at a time when a mechanical inhibit had been

put in place in order to perform maintenance on the door. The close command

was generated when someone in the cockpit punched the close switch on the con

trol panel during a test. Two hours later, when the maintenance was completed

and the inhibit removed, the door unexpectedly closed. Luckily nobody was

injured [39]. The software was altered to discard any commands not completed
within a certain time frame, but this situation had never been considered during

testing.

To complicate things further, most verification and validation techniques for

software assume "perfect'* execution environments. But software failures may be

caused by undetected hardware errors such as transient faults causing mutilation

of data, security violations, human mistakes during operation ar. ; maintenance,

errors in underlying or supporting software, or interfacing prob ms with other

parts of the system such as timing errors. As another real example of what can

happen, in a fiy-by-wire flight control system, a mechanical malfunction set up an

accelerated environment for which the flight control computer was not pro

grammed. The aircraft went out of control and crashed [39]. It is difficult, if not

impossible, to test the software under all failure modes of the system. Trying to

include all of these factors in the analysis or testing procedures makes the prob

lem truly impossible to solve given today's technology.

It appears that the removal of all faults and perfect execution environments

cannot be guaranteed at this point in time (and perhaps never will be).^ Because
of this, there have been attempts to make software fault-tolerant. In this

approach, techniques are used to try to ensure that software will continue to

function correctly in spite of the presence of errors. 1
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For hardware, redundancy \can be used to provide fault tolerance since the

individual components can either be shown to fail independently or common

mode analysis techniques can detail dependent failure modes and minimize them.

A similar application of redundancy has been proposed for software [4]. But the

models and arguments used to prove that these methods will provide the ultra-

high reliability required in safety-critical software are based primarily on an

assumption of independence in failure behavior between independently produced

software versions. This assumption has been shown [61] to be unsubstantiated

for empirical data. Although reliability may in theory be increased [62], there is

not yet enough data to show that the amount of increase will justify the added

cost of producing multiple versions of the software. In fact, the added complexity

of providing fault-tolerance may itself cause run-time failures (e.g., the synchroni

zation problems caused by the back-up redundancy procedures on the first Space

Shuttle flight [42]). Perhaps the most important consideration is that- most

fault-tolerance methods do not solve the problem of erroneous requirements.

greatest cause of the problems experienced when computers are used to

control complex processes may be a lack of system-level methods and viewpoints.

Many hardware-oriented system engineers do not understand software due to the*

newness of software engineering and the significant differences between software

and hardware [35]. The same is true, only vice versa, for software engineers. This

has led to system engineers considering the computer as a^_^ck box [45,60,125]
while the software engineer has treated the computer as merely a stimulus-

response system [e.g., 1,26]. This lack of communication hcis been blamed for

several mishaps.

One such incident involved a chemical reactor [60]. The programmers were
told that if a fault occurred in the plant, they were to leave all controlled vari

ables ELS they were and to sound an alarm. One day, the computer received a sig

nal telling it that there was a low oil level in a gearbox (see figure 2). The com

puter reacted as the requirements specified: it sounded an alarm and left the

controls as they were. By coincidence, a catalyst had just been added to the

reactor and the computer had just started to increase the cooling-water flow to

the reflux condenser. The flow was therefore kept at a low value. The reactor

overheated, the relief valve lifted, and the contents of the reactor were discharged

into the atmosphere. The operators responded to the alarm by looking for the

cause of the low oil level. They established that the level was normal and that

the low-level signal was false but, by this time, the reactor had overheated.
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Later study of the causes of the mishap [60] determined that the system
engineers had performed a hazard and operability study on the plant but that

those concerned had not understood what went on inside the computer. It is also

apparent that there was a misunderstanding by the programmer about what was

meant by the requirement that all controlled variables be left as they were when

a fault occurred — did this mean that the cooling-water valve should remain

steady or that the temperature should remain steady? A lack of understanding
of the process being controlled could have contributed to the programmer's con

fusion. Unfortimately, these situations are not imcommon.

An obvious conclusion from the above is that system-level approaches are
necessary [10,68,74,75]. Note that the software itself is not "unsafe." Only the
hardware that it controls can do damage. Treating the computer as a stimulus-

response system allows verifying only that the computer software itself is correct

or safe; there is no way to verify system correctness or system safety. To do the
latter, it must be possible to verify the correctness of the relationship between the
input and the system behavior (not just the computer output).

In fact, it is difficult to define a software "fault" without considering the sys
tem. If the problem stems from an error in the requirements, then the software

may be "correct" with respect to the stated software requirements, but wrong
from a system standpoint. It is the interaction between the computer and the
controlled process that is often the source of serious problems. For example, a
particular software fault may cause a mishap only if there is a simultaneous

human and/or hardware failure. Also, a failure of a component of the system
external to the computer may cause a software fault to manifest itself. Software

engineering techniques that do not consider the system cis a whole including the
interactions between hardware (computer and non-computer), software, and
human operators will have limited usefulness for real-time control software.

Implications and Challenges for Software Engineering

How does all this affect the software engineering practitioner and researcher?

Most major safety-critical system purchasers are becoming concerned with

software risk sind are incorporating requirements for software safety analysis and
verification in their contracts [35]. In many countries, a formal validation and
demonstration of the safety of the computers controlling safety-critical processes
is required by an official licensing authority. Standards for building safety-critical
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systems [e.g., 92,93,94] often already include, or are being updated to include,

software-related requirements such as software hazard analysis and verification of

software safety.

The standards and licensing requirements are pushing researchers to find

strategies for designing and building computer hardware and software that satisfy

these standards and that can be certified by safety licensing authorities. Several

national •and international working groups are studying these problems and

attempting to promote and evaluate current practice and research.

The problem is complicated by the fact that safety involves many areas of

traditional software research, and where it fits in exactly has been a matter of

some controversy. Neumann [103] suggests that safety requires a merging of a

wide range of concepts including (among others) reliable hardware, reliable

(although not necessarily totally correct) software, fault tolerance, security,

privacy, and integrity. He adds that not only is the running software of concern,

but also its use, administration, and maintenance.

Safety has most frequently been argued to be a part of either reliability or

security. But even though these areas of traditional software research are related

to safety, changes or differences in emphasis may be required to apply them to

safety problelhs.'^'N^nd there are some aspects of software safety that are unique

with respect to current-software engineering concerns.

Reliability vs. Safety.

\.^ Safety and reliabilfty are often equated, especially with respect to software,
bu^tdiereis- ar growing trend to separate the two concepts. Reliability is usually
defined as the probability that a system will perform its intended function for a

specified period of time under a set of specified environmental conditions.

Although a more precise definition is given in a later section, safety is the proba

bility that conditions that can lead to a mishap (hazards) do not occur whether

the intended function is performed or not [35,63,74]. In general, reliability

requirements are concerned with making a system failure-free whereas safety

requirements are concerned with making it mishap-free. These are not

synonymous. There are many failures of differing consequences that are possible

in any complex system. The consequences may range from minor annoyance up

to death or injury. Reliability is concerned with every possible software error

whereas safety is only concerned with those that result in actual system hazards.

Not all software errors cause safety problems and not all software that functions
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according to specification is safe [35]. Severe misha' ^ have occurred • hile some

thing Wcis operating exactly as ir.zended — hat is, \ hout failure [120

It is convenient to separate the requirements of a system into those related

to the mission and those related to safety while the mission is being accom

plished. There are some systems in which safety is the mission, but these are

rare. It is more common to find that there are some requirements that are not

safety-related at all, some that are related to the mission and can result in a

mishap if the system is unable to satisfy them, and others that are unrelated to

the mission and are concerned only with preventing hazards. That is, a subset

(which may be all) of the requirements are related to ssifety. If the probability of
those requirements being satisfied i "ncreased, then safety will have been

increased. But the reliability of the s .em can also be increased by increasing

the satisfaction of the non-safety related requirements. Unfortunately, in many

complex systems, safety and reliability may imply conflicting requirements, and

thus the system cannot be built to maximize both.

Consider the hydraulic system of an aircraft. The reliability of that system

is more or less complementary to the safety. As the reliability increases, the

safety also increases [120]. That is, the probability of a mishap resulting from

hydraulic system failure decreases. The risk of a mishap increases as a result of

the inability of the system to perform its mission. In the case of munitions, the

opposite is true. Since reliability is the probabilitv of detonation or functioning

of the munition at the desired time and place whi. safety is related to inadver

tent functioning, there is no direct relationship. However, one would expect that

as the reliability of a munition is increased, the safety would decrease. That is,

procedures to increase the ability of the weapon to fire when desired may increase

the likelihood of accidental detonation. This is true unless the design of the muni

tion is modified to improve the safety as the reliability increases [120]. In fact,

the safest system is sometimes one that does not work at all. These same types

of conflicts can be found when comparing software design techniques [62].

Another aspect of reliability that has been equated with safety is availabil

ity. But like reliability, a system may be safe but not available and may also be

available but unsafe (e.g., operating incorrectly).

For the most -^art*, reliability models have merely counted failures, which is

tantamount to tre ng all failures equally. Recently there have been suggestions

that the relative severity of the consequences i faih:. s be considered

[22,29,67,71,84].
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Leveson [74] has argued that there is a need for a completely different
approach to safety problems that is complementary to standard reliability tech
niques. This approach focuses on the failures that have the most drastic conse

quences. Even if all failures cannot be prevented, it may be possible to ensure

that the failures that do occur are of minor consequence or that even if a poten
tially serious failure does occur, the system will "fail-safe".

This approach is useful under the following circumstances: (1) not all
failures are of equal consequence, and (2) there are a relatively small number of
failures that can lead to catcistrophic results. Under these circumstances, it is
possible to augment traditional reliability techniques that attempt to eliminate all
failures with techniques that concentrate on the high-cost failures. These new
techniques often involve a "backward" approach that starts with determining
what are unacceptable or high-cost failures and then ensures that these particular
failures do not occur or at least minimizes the probability of their occurrence.
This new approach and the traditional reliability approach are complementary,
but their goals and appropriate techniques are different.

Security vs. Safety

Safety and security are closely related. Both deal with threats or risks, one
with threats to life or property and the other with threats to privacy or national
security. They both often involve negative requirements that may conflict with
some important functional or mission requirements. Both involve global system
requirements that are difficult to deal with outside of a system context. Both
involve requirements that are considered of supreme importance (in relation to
other requirements) in deciding whether the system can and should be used.
That is, particularly high levels of assurance may be needed, and testing alone is
insufficient to establish the required level of confidence [65]. Both involve aspects
of a system that specific government agencies or licensing bureaus (e.g., National
Security Agency, Nuclear Regulatory Commission) regulate, and approval is
based on factors other than whether the system does anything useful or is
»

Fail-safe or fail-passive procedures attempt to limit the amount of damage caused by a
failure — there is no attempt to satisfy the functional specifications except where neces
sary to ensure safety. This contrasts with fail-operational behavior providing full func
tionality in the face of a fault. A fail-soft system continues operation but provides only
degraded performance or reduced functional capabilities until the fault is removed or the
run-time conditions change.
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economically profitable.

These qualities lead to other similarities. Both may benefit from using tech

niques that are too costly to be applied to the system as a whole, e.g., formal

verification, but which may be cost effective for these limited subsets of the

requirements. Both also involve problems and techniques that apply specifically

to them and not to other more general functional requirements.

There are some differences, however, between safety and traditional security

research. Security has focused on malicious actions while safety is also concerned

with inadvertent actions. Furthermore, the primary emphasis in security

research has been on p" venting the imauthorized access to classi?«d information

as opposed to preventii. more general n licious a tions.

Safety as a Separate Research Topic

It would be possible to include safety under the category of security or relia

bility (or to possibly include one or both of these under safety). However, adding
safety to either reliability or security would require major changes in the way

that these two more traditional topics are defined and handled which might not

be practical. Much work highly applicable to software safety has been accom

plished in the areas of software reliability and security, and regardless of whether

they are separate or integrated, all three obviously have a close relationship.

Laprie and Costes [67] have suggested that the three be differentiated but all con

sidered under the general rubric of "dependability."

Leveson hcis argued [74] that it would be beneficial to consider safety as a
separate research topic for several reasons. First, separation of concerns allows

the safety aspects of systems to be culled and considered together in a smaller

realm, potentially making solutions easier to generate. "Divide and conquer" is a

time-honored approach to handling complexity.

Separate consideration also allows special emphasis and separation of con

cerns when decisions are being made. The construction of any large, complex

system requires weighing alternative and conflicting goals. In automobiles, for

example, safety and fuel-economy may vary inversely as design parameters such

as weight are changed. The quality and usefulness of the resulting system will

depend on how the tradeoffs are made. To ensure that the 'al system is safe, it

is necessary to make explicit any tradeoffs that involve i^u'ety. Resolution of

conflicts in a consistent and well-reasoned manner (rather than by default or by

the whim of some individual programmer) requires that safety requirements be
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separated and identified and that responsibilities be assigned.

In system engineering, reliability and safety are usually distinguished. This

distinction has arisen from actual experiences in building safety-critical systems.
For example, an early major antiballistic missile system had to be replaced

because of serious mishaps caused by previously unnoticed interface problems
[118]. Later analysis suggested that the mishaps stemmed from a lack of specific
identification and assignment of responsibility for safety. Instead, safety was con

sidered to be every designer's and engineer's responsibility. Since that time, sys
tem safety has received more and more attention with strict standards being
issued and enforced. When softwcire constitutes an important part of a safety-
critical system, software safety needs to be given the same type of attention.

Software engineers may find these distinctions and issues forced on them

soon. As mentioned earlier, government regulations and liability laws are begin
ning to require that the builders of safety-critical systems establish safety stan
dards and programs to verify the safety of the software involved. Current

software reliability enhancing techniques and software reliability assessment
models do not satisfy these requirements. New techniques and approaches are
needed along with new perspectives and emphases.

The rest of this paper establishes a starting point for those interested in this

new research area. Some preliminary definitions are first advanced and then a

survey of some of the currently available techniques is presented. In each section,
basic system safety concepts are followed by their implications for software.
Emphasis is placed on describing open research questions. As the reader will see,
there are many interesting and important questions to be answered. Finally, since
the purpose of this paper is to interest more people in software safety problems
and issues, an extended bibliography is included at the end to provide some gui
dance for further search. Some papers have been included for completeness that
have not been directly referenced in this survey.

Definitions

Definitions tend to be controversial in a relatively new area of research and

as more is learned, they often change. However, in order to have a place to start,
some preliminary working definitions will be given. In order to further communi

cation and the exchange of ideas, an attempt has been made to make these

definitions as consistent as possible with those of system safety.
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' has been argued that there is no such thing as software safety since

softv. ..e cannot, by iic-elf, be unsafe. However, since software by itself is of little

value to anyone other than a programmer, a broader system view is that software

can have various unexpected and undesired effects when used in a complex sys

tem [27]. Note that the same argument can be made about correctness (when
correctness is considered in a larger sense than just consistency with the specified

requirements). Software is only correct or incorrect with respect to some larger

system in which it is functioning.

A system is the sum total of all its component parts working together within

a given environment to achieve a given purpose or mission within a given time

over a given life span [117|. If safety is defined in terms of a mishap or catzis-

trophic event, then difficulties arise from the fact that mishaps are often multifac-

torial and may involve conditions in the environment (i.e., not part of the system

being considered or evaluated) over which the designer has no control. Would

one say that the computer has not done anything dangerous if it fails to sound a

warning or close a gate at a railroad crossing when a train is approaching just

because no car happens to be at the crossing at that particular time or because

the driver is alert enough to see the train coming and stops anyway? In fact, a

near-miss is usually considered a safety problem. For exajnple, the software

would be considered unsafe in an air traffic control system if it caused two air

craft to violate minimum separation distances whether a collision actually

resulted or not (which may be dependent on pilot and air traffic controller alert

ness and perhaps luck).

Instead, safety must be defined in terms of hazards or states of the system

that when combined with certain environmental conditions could lead to a

mishap. Risk is a function of the probability of the hazardous state occurring,

the probability of the hazard leading to a mishap, and the perceived severity of

the worst potential mishap that could result from the hazard. Thus there are

two aspects of risk: (1) the probability of the system getting into a hazardous

state (e.g., the probability of the air traffic control softwzire giving information to

the air traffic controller that could lead to two aircraft violating minimum

separation eissurance) and (2) the probability of the hzizard leading to a mishap

(e.g., the probability of the two aircraft actually colliding) combined with the
severity of the resulting mishap. The former is sometimes referred to as the

hazard probability while the latter is sometimes called the danger or hazard criti-

cality. System hazards may be caused by hardware component failure, design
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faults in the hardware or software, interfacing (communication and timing) prob

lems between components of the system, human error in operation or mainte

nance, or environmental stress.

In summary, the state of the system is comprised of the states of the com

ponents of the system, one of which is the computer. Often the computer func

tions as a controller of the system and thus has a direct effect on the current

state. Therefore, it makes sense to talk of "software safety" since the software

usually has at least partial control over whether the system is in a hazardous

state or not. That is, system safety involves the entire hazardous state of the

system whereas component safety involves just the part of the hazcirdous state

that the component comprises or controls. Each component may make a contri

bution to the safety or unsafety of the system state and that contribution

comprises the safety (or risk) of the component.

Software safety then involves ensuring that the software will execute within

a system context without resulting in unacceptable risk. What risk is acceptable

or unacceptable must be defined for each system and often involves political,

economic, and moral decisions outside the decision-making realm of the softwgure

engineer. As with "hardware safety", software safety is achieved by identifying

potential hazards early in the development process and then establishing require

ments and design features to eliminate or control these hazards [35]. Safety-
critical software functions are those that can directly or indirectly cause or allow

a hazardous system state to exist. Safety-critical software is software that con

tains safety-critical functions.

Given these definitions to start from, attention can be turned to some

aspects of software safety that are of particular concern to the software engineer

including requirements analysis, verification, cLSsessment, and design of safety-

critical software. The goal is not to provide a complete description of all related

work, but instead to provide the reader with some information about the status

of the field and the important research issues.

Analysis and Modeling

System safety analysis starts at the early concept formation stages of a pro

ject and continues throughout the life cycle of the system. Various analyses are

performed at different stages including Preliminary Hazard Analysis (PHA), Sub

system Hazard Analysis (SSHA), System Hazard Analysis (SHA), and Operating
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and Support zard lysis (OSHA). These are describer )riefly in , ppendix

B. Recently, .e neec. *software hazard analysis has been recognized. In this

section, after a brief in. jduction to hazard analysis in general, software hazard

analysis is defined and proposed techniques to accomplish it are described.

The purpose of system safety modeling and analysis is to show that the sys

tem is safe if it operates as intended and to show that it is safe in the presence of

faults. In proving the safety of a complex system in the presence of faults, it is

necessary to show that no single fault can cause a hazardous effect and that

hazards resulting from sequences of failures are sufficiently remote. The latter

approaches the impossible if an attempt is made to combine all possible failures

in all possible sequences and to analyze the output. Because of this, syste:-

safety analysis procedures often involve techniques that first define what is hazai

dous and then work backward to find all combinations of faults that produce the

event. When using probabilistic analysis, the probability of occurrence of the

event can then be calculated and the result evaluated as to acceptability.

The first step in any safety program is to identify hazards and categorize

them with respect to criticality and probability (i.e., risk). This is called a Prel

iminary Hazard Analysis. Potential hazards to be considered include nojmal

operating modes, maintenance modes, system failure modes, failures or unusual

incidents in the environment, and errors in human performance. Hazards for

some particular types of systems are identified by law or government standards.

For example, the U.S. DoD requires that the following be considered in any

hazard analysis for nuclear weapon systems [94]:

• inadvertent nuclear detonation

• inadvertent prearming, arming, launching, firing, or releasing of any nuclear

weapon in all normal or credible abnormal environments

• deliberate prearming, arming, launching, firing, or releasing of any nuclear

weapon, except upon execution of emergency war orders or when directed by
♦

a competent authority.

Once hazards are identified, they are assigned a severity and probability.

Hazard severity involves a qualitative measure of the worst credible mishap that

could result from the hazard. Appendix A shows some typical hazard

• ! .
Note the inclusion of what are usually considered security issues within the safety stan

dards.
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categorization strategies. Identification and categorization of hazards by severity

may be adequate during the early design phase of a system. Later, qualitative or

quantitative probability ratings are often assigned to the hazards.

Typical qualitative probability categories might include: frequent (likely to

occur often), occaisional (will occur several times in life of system), reasonably
remote (likely to occur sometime in life of item), remote (unlikely to occur but

possible), extremely remote (probability of occurrence cannot be distinguished

from zero), and physically impossible. Quantitative probability assessment is
•7

often stated in terms of likelihood of occurrence of the hazard, e.g., 10" over a

given time period.

Once the Preliminary Hcizard Analysis is completed, software hazard

analysis can begin. Software safety modeling and analysis techniques identify

softw2ire hazards and safety-critical single and multiple failure sequences, deter

mine software safety requirements including timing requirements, and analyze

and measure software for safety. As mentioned previously, software safety

analysis and verification is beginning to be required by contractors of safety-

critical systems. For example, at least three DoD standards include related tasks.

A general safety standard [92] includes tasks for Software Hazard Analysis and
verification of software safety. An Air Force standard for missile and weapon

systems [93] requires a Software Safety Analysis and Integrated Software Safety
Analysis (which includes the analysis of the interfaces of the software to the rest

of the system, i.e., the assembled system). And the U.S. Navy has a draft stan

dard for nuclear weapon systems [94] that requires Software Nucleeir Safety

Analysis (SNSA). All of these analyses are not meant to substitute for regular
verification and validation, but instead involve special analysis procedures to ver
ify that the software is safe. It is not clear, however, that the procedures yet
exist that will satisfy these requirements.

As has been stressed repeatedly in this paper, the software must be analyzed

within the context of the entire system including the computer hardware, the

other components of the system (especially those that are being monitored

and/or controlled), and the environment. The next three sections discuss three

particular aspects of the software analysis and modeling activity, i.e., require

ments analysis, verification and validation, and measurement.
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Software Safety Requirements Analysis

Determining the requirements for software has proved very difficult. How

ever, in terms of safety (and probably most other software qualities), this may be

one of the most important sources of problems. Many of the mishaps cited in

this paper can be traced back to a fundamental misunderstanding about the

desired operation of the software. These examples are not unusual. As noted

earlier, after studying actual mishaps where computers were involved, safety

engineers have concluded that inadequate design foresight and specification errors

are the greatest cause of software safety problems [35,45]. These problems arise

from many possible causes including the difficulty of the problem intrinsically, a

lack of emphasis on it in software engineering research (which has tended to con

centrate on avoiding or removing implementation faults), and a ertain cubbyhole

attitude that has led computer scientists to concentrate on the computer eLsp^^cts

of the system and engineers to concentrate on the physical and mechanical p.irts

of the system with few people dealing with the interaction between the two [35].

While functional requirements often focus on what the system shall do,

safety requirements must also include what the system shall not do — including

mesins for eliminating and controlling system hazards and for limiting damage in

case of a mishap. An important part of the safety requirements is the

specification of the ways in which the software and the system can fail safely and

to what extent failure is tolerable.

Some requirements specification procedures have noted the need for special

safety requirements. The specifications for the A-7E aircraft include both

specification of undesired events and the appropriate responses to these events

[51]. SREM [1,2] treats safety-related requirements as a special type of non
functional requirement that must be systematically translated into functions that

are to be implemented by a combination of hardware and software.

Taylor [127] has suggested that goal specifications rather than the more com

mon input/output specifications may have advantages for analysis of errors eind

safety. Input/output specifications state the required relationship between inputs

and outputs of the software, at different points in time or as a function of time.

A goal specification states the conditions Jo be maintained (regulated) and the

conditions or changes to be achieved in the process that the software is control

ling. The goal specification can be compared and tested with respect to a model

of the environment, and faults can be detected.
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An important question, of course, is how to identify the software safety

requirements. Several techniques have been proposed and used in limited con

texts. Fault Tree Analysis (FTA) [135] is an analytical technique used in the
safety analysis of electromechanical systems. An undesired system state is

specified, and the system is then analyzed in the context of its environment and

operation to find credible sequences of events that can lead to the undesired

state. The fault tree is a graphic model of vairious parallel and sequential combi

nations of faults (or system states) that will result in the occurrence of the

predefined undesired event. The faults csin be events that are associated with

component hardware failures, human errors, or ztny other pertinent events that

can lead to the undesired event. A fault tree thus depicts the logical interrela

tionships of basic events that lead to the hazardous event. One possible problem

with the technique is that it is highly dependent on the ability of the person

doing the analysis. The analyst needs to thoroughly understand the system being-

analyzed and its underlying scientific principles.

An advantage in using this technique is that all the system components

(including humans) can be considered. This is extremely important since^ for

example, a particular software fault may cause a mishap only if there is a simul

taneous human and/or hardware failure. Alternatively, the environmental failure

may cause the software fault to manifest itself. Like the nuclear power plant

mishap at Three Mile Island, many mishaps are the result of a sequence of inter

related failures in different parts of the system.

The analysis process starts with the categorized list of system hazards that

have been identified by the Preliminary Hazard Analysis (PHA). A separate

fault tree must be constructed for each hazardous event. The basic procedure is

to assume that the hazard has occurred and then to work backward to determine

its set of possible causes. The root of the fault tree is the hazardous event to be

analyzed called the loss event. Necessary preconditions are described at the next

level of the tree with either an AND or an OR relationship. Each subnode is

expanded in a similar fashion until all leaves describe events of calculable proba

bility or are unable to be analyzed for some reason. Figure 3 shows part of a

fault tree for a hospital patient monitoring system.

Once the fault tree has been built down to the software interface (as in

figure 3), the high level requirements for software safety have been delineated in

terms of software faults and failures that could adversely affect the safety of the

system. Software control faults may involve:
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• failure to perform a required function, i.e., the function is never executed or

no answer is produced

• performing a function not required, i.e., getting the wrong answer or issuing

the wrong conttol instruction or doing the right thing but under inappropri

ate conditions (for example, activating an actuator inadvertently, too early,

too late, or failing to cease an operation at a prescribed time).

• timing or sequencing problems, e.g., failing to ensure that two things happen

at the same time, at different times, or in a particular order.

• failure to recognize a hazardous condition requiring corrective action

• producing the wrong response to a hazardous condition.

As the development of the software jroceeds, fault tree analysis can be performed

O- he design and finally the actual code.

Jahanian and Mok [57] have shown how to formalize the safety analysis of

timing properties in real-time systems using a formal logic RTL (Real Time

Logic). The system designer first specifies a model of the system in terms of

events and actions. The event-action model describes the data-dependency and

temporal ordering of the computational actions that must be taken in response to

events in a real-time application. This model can be mechanically translated into

RTL formulas. While the event-action model captures the timing requirements

of a real-time system, RTL is more amenable to mechanical manipulation by a

cor-outer in a formal analysis. In contrast to other forms of temporal logic

sp fication, RTL allows specification of the absolute timing of events —not only

their relative ordering — and provides a uniform i.y to incorporate different

scheduling disciplines in the inference mechanism.

To analyze the system design, the RTL formulas are transformed into predi

cates of Presburger Arithmetic with uninterpreted integer functions. Decision

procedures are then used to determine if a given safety assertion is a theorem

derivable from the system specification. If the safety assertion is derivable, then

the system is safe with respect to the timing behavior denoted by the safety

assertion cis long as the implementation satisfies the requirements specification. If

the safety assertion is unsatisfiable with respect to the specification, then the sys

tem is inherently unsafe because successful implementation of the requirements

will cause the safety assertion to be violated. Finally, if the negation of the

safety assertion is satisfiable under certain conditions, then additional constraints

must be imposed on the system to ensure its safety. Although a full Presbiirger
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arithmetic is inherently computationally expensive, a restricted set of Presburger
formuleis is used which allows for a more efficient decision procedure. Jahanian

and Mok also describe ways to restrict the design complexity in order to ease the

job of design verification.

Time Petri net models have also been proposed for software hazard analysis.

Petri nets [112] allow mathematical modeling of discrete-event systems. The sys
tem is modeled in terms of conditions and events and the relationship between

them. Analysis and simulation procedures have been developed to determine

desirable <ind undesirable properties of the design especially with respect to con

current or parallel events. Leveson and Stolzy [80,81] have developed analysis

procedures to determine software safety requirements (including timing require

ments) directly from the system design, to analyze a design for safety, recovera-
bility, and fault tolerance, and to guide in the use of failure detection and

recovery procedures. For most Ccises, the analysis procedures require construction

of only a small part of the reachability graph. Procedures are also being
developed to measure the risk of individual hazards.

Faults and failures can be incorporated into the Petri net model to deter

mine their effects on the system [81]. Backward analysis procedures can be used

to determine which failures and faults are potentially the most hazardous and

therefore which parts of the system need to be augmented with fault-tolerance

and fail-safe mechanisms. Early in the design of the system, it is possible to treat
the software parts of the design at a very high level of abstraction and consider

only failures at the interfaces of the software and non-software components. By
working backward to this software interface, it is possible to determine the

software safety requirements and identify the most critical functions. One possi
ble drawback to this approach is that building the Petri net model of the system
is a nontrivial exercise. Some of the effort may be justified by the use of the

model for other objectives, e.g., performance analysis. Petri net safety analysis

techniques have yet to be tried on a realistic system so there is no information

available on the practicality of the approach.

The whole area of requirements analysis is one needing more attention.

System-wide techniques that allow consideration of the controlled system rather
than just considering the software in isolation are in short supply.
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Verification and Validatio )f Safety

A proof of safety involves a choice (or combinacion) of the following:

1) showing that a fault cannot occur, i.e., that the software cannot get into an
unsafe state and cannot direct the system into an unsafe state or

2) showing that if a software fault occurs, it is not dangerous.

Boebert [10] has argued eloquently that verification systems that prove the

correspondence of source code to concrete specifications are only fragments of

verification systems. They do not go high enough (to an inspectable statement of

system behavior), and they do not go low enough (to the object code). The
verification system must also capture the semantics of the hardware.

Anderson anc tty [5] provided an early ai .mpt to specify wb is meant

by a proof of safet> . Instead of attempting to pre: -e the correctness . program

with respect to its original specification, a weaker criterion of acceptable behavior

is selected. That is, if the original specification is denoted by P, then a

specification Q is chosen such that:

a) any program that conforms to P will also conform to Q and

b) Q prescribes acceptable behavior of the program.

The program is then designed and constructed in an attempt to conform to P,

but so as to facilitate the provision of a much simpler proof of correctness with

respect to Q than would be possible using P. They term such a proof a proof of

adequacy. They identify a special case of adequacy termed safeness. This weaker

specification takes Q to be "P or error/'meajiing that the program should either

behave as weis originally intended or should termina.e with an explicit indication

of the reason for failure. A proof of safeness, in these terms, can rely on assert

statements holding when the program is executed since otherwise a failure indica

tion would be generated. Of course, a complete proof of safety would require

that the recovery procedures involved when an assert statement failed be verified

to ensure safe recovery.

Another verification methodology for safety involves the use of Software

Fault Tree Analysis (SFTA) [77,128]. ^^Once the detailed design or code is com
pleted, software fault tree analysis procedures can be used to work backward

from the critical control faults determined by the top levels of the fault tree

through the program to verify whether the program can cause the top-level event

or mishap. The basi. chnique used is the same backward rea^ning (weakest

precondition) approaci .at has been used in formal axioma: verification [28],
but applied slightly difterently than is common in "proofs of coirectness."
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The set of states or results of a program can be divided into two sets —

correct and incorrect. Formal proofs of correctness attempt to verify that given a
precondition that is true for the state before the program begins to execute, then

the program halts and a postcondition (representing the desired result) is true.
That is, the program results in all and only correct states. For continuous, pur

posely non-halting (cyclic) programs, intermediate states involving output may
need to be considered. The basic goal of seifety verification is more limited. We

will assume that, by definition, the correct states are safe (i.e., that the designers
did not intend for the system to have mishaps). The incorrect states can then be

divided into two sets — those that are considered safe and those that are con

sidered unsafe. Software Fault Tree Analysis attempts to verify that the pro
gram will never allow an unsafe state to be reached (although it says nothing
about incorrect but safe states).

Since the goal in safety verification is to prove that something will not hap-
pen^^is- uaefd to use proof by contradiction. That is, it is assumed that the

software has produced an unsafe control action, and it is shown that this could

not happen since it leads to a logical contradiction. Although a proof of correct
ness should theoretically be able to show that software is safe, it is often imprac
tical to accomplish this because of the sheer magnitude of the proof effort
involved and because of the difficulty of completely specifying correct behavior.
In the few SFTA proofs that have been performed, the proof appears to involve
much less work than a proof of correctness (especially since the proof procedure
can stop as soon as a contradiction is reached on a software path). Also, it is
often easier to specify safety than complete correctness, especially since the
requirements may be actually mandated by law or government authority as with
nuclear weapon safety requirements in the U.S. Like correctness proofs, the

analysis may be partially automated, but highly skilled human help is required.

Details on how to construct the trees may be found in Leveson and Harvey
[77] and Taylor [128|. Software fault tree procedures for analyzing concurrency
and synchronization are described in Leveson and Stolzy [79]. Introducing timing
information into the fault tree causes serious problems. Fault tree analysis is
essentially a static analysis technique while timing analysis involves dynamic

aspects of the program. Taylor [128] has added timing information to fault trees

by making the assumption that information about the minimum and maximum

execution time for sections of code is known. Each node in the fault tree then

has an added component of execution time for that node. In view of the
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nondeterminism inherent in a multitasking environment, it may not be practical

to verify that uming problems cannot occur in all cases. However, information

gained from the fault tree can be used to insert run-time checks including dead

line mechanisms into the application program and the scheduler [78].

Fault trees can also be applied at the assembly language level to identify

computer hardware fault modes (such as erroneous bits in the program counter,

registers, or memory) that will cause the software to act in an undesired manner.

Mclntee [89| has used this process to examine the effect of single bit failures on

the software of a missile. The procedure identified credible hardware failures that

could result in the inadvertent early arming of the weapon. This information was

usrd to redesign the software so that the failure could be detected and a '*DUD"

(fail-safe) routine called.

Finally, fault trees may be applied to the software design before the actual

code is produced [76]. The purpose is to enhance the safety of the design while

reducing the amount of formal safety verification that is needed. Safe software

design techniques are discussed in a later section of this paper.

Experimental evidence of the practicality of SFTA is lacking. Examples of

two small systems (approximately 1000 lines of code) can be found in the litera

ture [77,89]. There is no information available on how large a system can be

analyzed with a realistic amount of effort and time. But even if the software is

so large that complete generation of the software trees is not possible, partial

trees may still be useful. For ample, peirtial analysis may still find faults.

Furthermore, partially complete .'tware fault trees may be used to identify criti

cal modules and critical functions which can then be augmented with software

fault tolerance procedures [50]. They may also be used to determine appropriate

run-time acceptance and safety tests [78].

In summary, software fault tree analysis can be used to determine software

safety requirements, to detect software logic errors, to identify multiple failure

sequences involving different parts of the system (hardware, human, and

software) that can lead to hazards, and to guide in the selection of critical run

time checks. It can also be used to guide testing. The interfaces of the software

parts of the fault tree can be examined to determine appropriate test input data

and appropriate simulation states and events.

Other analysis methods have been developed or are currently being

developed. Nuclear Safety Cross Check Analysis (NSCCA) [91] is a rigorous

methodology developed to satisfy U.S. Air Force requirements for nuclear
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systems. The method employs a large selection of techniques to attempt to show,
with a high degree of confidence, that the software will not contribute to a

nuclear mishap. The NSCCA process hcis two components: technical and pro-
cedural. The technical component evaluates the software by multiple analyses
and test procedures to assure that it satisfies the system's nuclear safety require
ments. The procedural component implements security and control me<isures to

protect against sabotage, collusion, compromise, or alteration of critical software

components, tools, and NSCCA results.

NSCCA starts with a two-step criticality analysis; (l) identification of
specific requirements that are the minimum positive measures necessary to
demonstrate that the nuclear weapon system software is predictably safe accord
ing to the general DoD standards for nuclear systems, and (2) analysis of each
function of the software to determine the degree to which it controls or influences
a nuclear critical event (e.g., prearming or arming). Qualitative judgment is used
to give each function an influence rating (high, medium, low), and suggestions are
made for the best methods to measure the software functions. The program
manager uses the criticality assessment to decide where to allocate resources to

meet the requirements, and an NSCCA plan is written. The program plan estab
lishes the tools and facilities requirements, test requirements, test planning, and
test procedures. This family of documents establishes in advance the evaluation

criteria, purpose, objectives, and expected results for specific NSCCA analyses
and tests in order to promote the independence of the NSCCA and to avoid rub-

berstamping.

NSCCA has the advantage of being independent of the software developers.
It spans the entire development cycle of the system so it is not just a post facto
analysis. However, whether NSCCA is effective depends upon the particular ana
lyses and test procedures that are selected.

Another more specialized technique, called Software Common Mode

Analysis, is derived from hardware common mode analysis techniques [106].
Redundant, independent hardware components are often used to provide fault
tolerance. A hardware failure that affects multiple redundant components is
called a common mode faUure. For example, if a power supply is shared by
redundant channels, then a single failure in the power supply will cause the
failure of more than one channel. Hardware common mode failure analysis exam
ines each connection between redundant hardware components to determine

whether the connection provides a path for failure propagation. If there are



- 31 -

shared critical components or if the connection is not suitably buffered, then the

design must be changed to satisfy the independence requirement.

Noble argues that just as there is a potential for a hardware failure to affect

more than one redundant component via a hardware path, there is also a poten

tial for a hardware failure to affect the operation of redundant components

through a software path. For example, a processor could fail in ^uch away that
it sends out illegal.^esults that cause a supposedly independent processor to fail.

Software Common Mode Analysis examines the potential for a single failure to

propagate across hardware boundaries via a software path (usually a serial or

parallel data link or shzired memory). The process essentially involves a struc

tured walkthrough. All hardware intercr-.nections identified in the hardware

common mode analysis are examined to identify those with connections to

software. Then all software processes that receive input from the connection are

examined to determine whether any data items or combinations of data items csin

come through this interface and cause the process to fail. In some cases, the

analyst must examine a path through several modules before it can be deter

mined whether there is an undesired effect. Software Common Mode Analysis

has been used by Noble as part of the safety analysis of a commercial system, and

it did identify areas of common mode exposure in the design.

Sneak Software Analysis [133] is derived from hardware sneak circuit

analysis, and it has been claimed that it is useful for verification of software

safety. The software is translated into flow diagrams using electrical symbols

(i.e., into a circuit diagram) and examined to detect certain mtrol anomalies

such as unreachable code and unreferenced variables. It is basically just a stan

dard static software flow analysis. Much of this type of information is provided

by a good compiler. There are several problems with the technique. First, it

attempts to find all faults and therefore is more a reliability than a safety tech

nique. More important, it is unlikely that many serious faults will be found this

way. An analogy might be to try to find the errors in a book by checking the

grammar. In comparison with other software safety verification and analysis tech

niques which have been proposed, this appears to be the least useful.

There is much more to be learned about how to analyze safety. This section

has outlined some of what is known or has been suggested to date. A few of

these approaches have been tested and used extensively while others are still in

the development stage. None are sufficient to completely verify safety. For

example, most of the methods described assume that the program does not
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change while running. However, subtle faults can occur due to hardware failures

that alter a program or its flow of control. A program may also be altered as a

result of overwriting itself. Furthermore, all of the methods are complex and

error-prone themselves.

Many open questions remain such as:

• For systems of what size and level of complexity are these techniques practi

cal and \iseful?

• How can they be extended to provide more information?

• How can they most effectively be used in software development projects?

• What other approaches to software hazard analysis are possible?

Important work remains to be done in extending eind testing these proposed tech

niques and in developing new ones.

Assessment of Safety

It is possible that safety is not as amenable to quantitative treatment as reli

ability and availability [39]. As noted several times, mishaps are almost without

exception caused by multigjeJactors. Also, the probabilities tend to be so small
that assessment is extremely difTicult. For example, the frequency of mishaps for
any particular model of aircraft and cause or group of causes (such as those that

might be attributable to design or production deficiencies) is probably not great
enough to provide statistically precise assessments of whether or not the aircraft

has met a specified mishap rate [39]. But despite this, attempts at measurement

are being made.

There are three forms of quantitative risk analysis: single-valued best esti

mate, probabilistic, and bounding [96,97], Single-valued best estimate is useful

when a particular risk problem is well understood and enough information is

available to build determinate models and use best-estimate values for the

model's parameters. If the science of the problem is reasonably well understood

but only limited information is available about some important parameters, pro

babilistic analysis can be used that gives an explicit indication of the level of

uncertainty in the answers. In this case, the single-valued best estimates of

parameters are replaced by a probability distribution over the range of values

that the parameters are expected to take. If there is uncertainty about the func

tional form of the model that should be used, this uncertainty may also be
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incorporated into the model. Some problems are so little understood that a pro

babilistic analysis is not appropriate. However, in some of these cases it is possi

ble to use what little is known to at least b^^d the answer.

There are pros and cons in using any of these assessment techniques. Quanti

tative risk assessment can provide insight and understanding and allow com

parison of alternatives. The necessity to calculate very low probability numbers

forces a discipline on the analyst that requires studying the system in great

detail. But there is also the danger of placing implicit belief in the accuracy of a

calculated number. It is easy to place too much empheisis on the models and for

get the many assumptions that are implied. And since these approaches can

never capture all the factors, such as quality of life, th are important in a prob

lem, they should not become a substitute for careful hi. .an judgme: i [96,97].

Probably one of the most complex probabilistic risk analyses that has been

attempted is a U.S. reactor study WASH-1400 [83]. This was an enormously com

plex xmdertaking because of the many possible failures that could lead to a

mishap. This study has been criticized [85] for using elementary data that was

incomplete or uncertain and for making many unrealistic assumptions. For

example, independence of failures was assumed — common mode failures were

largely ignored. Also, it was assumed that nuclear power plants are built to plcui

and are properly operated. Recent events suggest that this may not be the case.

Critics also maintain that the uncertainties are very large, and therefore the cal

culated risk numbers are not very accurate.

Another example of the problems associated with formal safety assessment is

the "Titanic Effect". The Titanic was thought to be so safe that some normal

safety procedures were neglected, resulting in many more lives being lost than

might have been necessary. Unfortunately, certain assumptions were made in the

analysis that did not hold in practice. For example, the ship was built to stay

afloat if four or less of the sixteen water-tight compartments (spaces below the

waterline) were flooded. Previously, there had never been an incident where

more than four compartments of a ship were damaged so this assumption was

considered reasonable. Unfortunately, the iceberg ruptured five spaces. It can be

argued that the assumptions were the best possible given the state of knowledge

at that time. The mistake was in placing too much faith in the assumptions and

the models and in not taking measures in case they were incorrect. Much effort is

frequently diverted to proving theoretically that a system meets a stipulated level

of risk when the effort could much more profitably be applied to eliminating.
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minimizing, and controlling hazards [48]. This seems especially true when the

system contains software. Considering the inaccuracy of our present models for

a.ssessing software reliability, some of the resources applied to assessment might

be more effectively utilized if applied to sophisticated software engineering and

software safety techniques. Models are important, but care and judgment must

be exercised in their use.

Since safety is a system quality, models that assess it must consider all com

ponents of the system. Few currently do so when the system contains programm

able subsystems. In general, the expected frequency with which a given mishap

will occur (M) is:

M = Prob (hazard occurs) * Prob (hazard leads to a mishap)

For example, if a computer has a control function, such as controlling the move

ment of a robot, a simple model [25] is:

M = Prob(computer causes a spurious or unexpected machine movement) *

Prob (human in field of movement) * Prob (human has no time to move or

will fail to diagnose the robot failure).

As another example, given that the computer has a continuous protective or

monitoring function along with a requirement to initiate some safety function on

detection of a potentially hazardous condition:

M = Prob(dangerous plant condition arising) * Prob(failure of computer to

detect it) * Prob(failure of computer to initiate safety function) *

Prob(failure of safety function to prevent hazard) * Prob(conditions occur

ring that will cause hazard to lead to a mishap).

Note that the mishap probability or risk will be overstated if all computer failures

are included and not just those that may lead to hazards. Furthermore, the

analysis is an oversimplification since it assumes that the factors that comprise

the mishap are statistically independent. However, the probability of a hazard

leading to an accident may not be independent of the probability of a hazard

occurring. For example, the probability of a person being in the field of
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movement of a robot may be higher 1 'he robot is behaving strangf ; the ope

tor may have approached in order to investigate. A more sophis. .ated mouei

would also include such factors as the exposurt time of the hazard (the amount of

time that the hazard exists or, to state it another way, the average time to detec

tion and repair). The longer the exposure of the hazard, the more likely that

other events or conditions will occur that will cause the hazard to lead to a

mishap. That is, if an event sequence is involved, exposure time for the first fault

must be short or the fault must be rare in order to minimize the probability of a

mishap [95].

Probabilities of complex fault sequences are often analyzed by using fault

tree' Probabilities can be attached to the nodes of the tree, and the probability

of system and minimal cut set failures can be calc ulated. Minimal cut .^ets are

composed of all the unique combinations of component events that can cause the

top level event. To determine the minimal cut sets of a fault tree, the tree is first

translated to its Boolean equations, and then Boolean algebra is used to simplify

the expressions and to remove redundancies.

The question of how to assess software safety is still very much an unsolved

problem. High software reliability figures do not necessarily mean that the

software is acceptable from the safety standpoint. Several researchers

[16,22,29,36,37,38,63] have attempted to assess the safety of software using

software reliability models either by applying the model only to the critical func-

tio'-? or modules or by adding penalty cost or severity to the model. Arlat and

La, rie [8] have defined measures of safety and reliability using homo'^eneous Mar

kov processes.

This is an area of research that has many interesting questions including

when and how safety assessment should be used and how it can be accomplished.

There also needs to be some way of combining software and hardware assess

ments to provide system measurements.

Design for Safety

Once the hazardous system states have been identified and the software

safety requirements determined, the system must be built to minimize risk and to

satisfy these requirements. It is not possible to ensure the safety of a system by

analysis and verification alone because these techniques are so complex as to be

error-prone themselves, the cost may be prohibitive, and elimination of all
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hazards may require too severe a performance penalty. Therefore, hazards will

need to be controlled during the operation of the software, and this has impor

tant implications for design.

System safety has an accepted order of precedence for applying safety design

techniques. At the highest level, a system is intrinsically safe if it is incapable of

generating or releasing sufficient energy or causing harmful exposures under nor

mal or abnormal conditions (including outside forces and environmental failures)
to cause a hazardous occurrence, given the equipment and personnel in their most

vulnerable condition [86].

If an intrinsically safe design is not possible or practical, then the next step

in design is to prevent or minimize the occurrence of hazards. This can be

accomplished in hardwcire through such techniques as monitoring and automatic

control (e.g., automatic pressure relief valves, speed governors, limit-level sensing

controls), lockouts, lockins, and interlocks [48]. A lockout device prevents an
event from occurring or prevents someone from entering a dangerous zone. A

lockin is provided to maintain an event or condition. Finally, an interlock

ensures that a sequence of operations occurs in the correct order. That is, it is

provided to enstire that event A does not occur (l) inadvertently (e.g., a prelim
inary, intentional action B is required before A can occur), (2) while condition C
exists (e.g., an access door is placed on high voltage equipment so that when the

door is opened, then the circuit is opened), and (3) before event D (e.g., the tank
will fill only if the vent valve has been opened first).

The next lower level of precedence is to design to control the hazard if it

occurs using automatic safety devices. This includes detection of hazards and

fail-safe designs as well as damage control, containment, and isolation of hazards.

The lowest level of precedence is to provide warning devices, procedures, and

training to help personnel react to the hazard.

Many of these system safety design principles are applicable to software.

Note that software safety is not an afterthought to software design — it needs to

be designed in from the beginning. There are two general design principles: (l)
the design should provide leverage for the verification effort by minimizing the

amount of verification required and simplifying the certification procedure, and

(2) any design features to increase safety must be carefully evaluated in terms of

any complexity that might be added. An increase in complexity may have a

harmful effect on safety (as well as reliability).
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A safe software design includes not only standard software engineering and

fault tolerance techniques to enhance reliability, but also special safety features.

The emphasis here will be to survey those design features that are directly related

to safety. Risk can be reduced by reducing hazard likelihood or severity or both.

Hazards can be prevented, or they can be detected and treated. Prevention of

hazards tends to involve reducing functionality or design freedom while detection

is difficult and unreliable.

Preventing Hazards Through Software Design

Preventing hazards through design involves designing the software so that

faults and failures cannot cause hazards. That is, •' software design is made

intrinsically safe or the number of software hazards is . nimized.

Software can cause problems through acts of omission (failing to do some

thing required) or commission (doing something that should not be done or doing

something at the wrong time or in the wrong sequence). Software is usually

extensively tested to try to ensure that it does what it is specified to do. But due

to its complexity, it may be able to do a lot more than the software designers

specified (or intended). Design features can be used to limit the actions of the

software.

As an example, it may be possible to use modularization and data access

limitation to separate non-critical functions from critical functions and to ensure

that failures of non-critical modules cannot put the system into a hazardous

state, e.g., cannot impede the operation of the safety-critical functions. The basic

idea is to reduce the amount of software that affects safety (and thus to reduce

the verification effort involved) and to change as many potentially critical faults

into non-critical faults as possible. The separation of critical and non-critical

functions may be difficult, however. In any certification arguments that are

based on this approach, it will be necessary to provide supporting analyses that

prove that there is no way that the safety of the system can be compromised by

faults in the non-critical software.

Often in safety-critical software there are a few modules and/or data items

that must be carefully protected because their execution (or in the case of data,

their destruction or change) at the wrong time can be catcistrophic, e.g., the insu

lin pump administers insulin when the blood sugar is low or the missile launch

routine is inadvertently activated. It has been suggested [65] that security tech
niques involving authority limitation may be useful in protecting safety-critical
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functions and data. Security techniques devised to protect against malicious

actions can be used sometimes to protect against inadvertent but dangerous

actions. In this approach, the safety-critical parts of the software are sepsu-ated

using the above techniques, and an attempt is made to limit the authority of the

rest of the software to do anything ssdety-critical. The safety-critical routines

can then be carefully protected. For example, the ability of the software to arm

and detonate a weapon might be severely limited and carefully controlled with

multiple confirmations required. Note that this is another example of safety pos

sibly conflicting with reliability. To maximize reliability, it is desirable that

faults be unable to disrupt the operation of the weapon. However, for safety,

faults should lead to non-operation. That is, for reliability the goal is a multi

point failure mode while safety is enhanced in this case by a single-point failure

mode.

Authority limitation with regard to inadvertent activation can also be imple

mented by retaining a person in the loop. That is, a positive input by a human

controller may be required prior to execution of certain commamds. Obviously,

the human will require some independent source of information on which to base

the decision besides the information provided by the computer.

In some systems, it is impossible to always avoid hazardous states. In fact,

they may be required for the system to accomplish its function. A general

software design goal is to minimize the amount of time a potentially hazardous

state exists. One simple way this can be accomplished is to start out in a safe

state cind require a change to a higher risk state. Also, critical flags and condi

tions should be set or checked as close to the code that they protect as possible.

Finally, critical conditions should not be complementary (e.g., absence of the arm

condition should not mean safe).

Often the sequence of events is critical. For example, a valve may need to

be opened prior to filling a tank in order to relieve pressure. In electromechanical

systems, an interlock is used to ensure sequencing or to isolate two events in

time. An example is a guard gate at a railroad crossing that keeps people from

crossing the track until the train hcis passed. Equivalent design features often

need to be included in software. Programming language concurrency and syn

chronization features are used to order events, but do not necessarily protect

against inadvertent branches caused either by a software fault (in fact, they are

often so complex as to be error-prone themselves) or by a hardware fault (a seri

ous problem, for example, in aerospace systems where hardware is subject to
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unusual environmental stress such as cosmic ray bombardment). Some protec

tion can be afforded by the use of batons (a variable that is checked before the

function is executed to ensure that the previously required routines Kave entered

their signature) and handshaking. Another example of designing to protect
against hardware failure is to ensure that bit patterns used to satisfy a condi

tional branch to a safety-critical function do not use common failure patterns

(i.e., all zeros).

Finally, Neumann [I05j has suggested the application of hierarchical design
to simultaneously attain a variety of important requirements such as reliability,

availability, security, privacv. integrity, timely resoonsiveness, long-term evolva-

bility, and safety. By accc lodating all of these quirements with.n a unified

hierarchy, he claims that .i sensible ordering of agrees of criticality can be

achieved that is directly and naturally related to the asign structure.

Detection and Treatment at Run-Time

Along with attempts to prevent hazards, it may be necessary to attempt to
detect and treat them during execution. It is helpful to divide the latter tech

niques into those concerned with detection of unsafe states and those that i. olve

response to unsafe states once they have been detected.

Ad hoc tests for unsafe conditions can be programmed into any softwsire, but

some general mechanisms have been proposed and implemented including asser

tions, exception-handling, external monitors, and watchdog timers. Surveys of

run-time fault detection techniques can be found in Anderson and Lee [4], Yau
and Cheung [144], and Allworth [3].

Monitors or checks may be in-line or external, and they may be at the same

or a higher level of hierarchy. In general, it is important (l) to detect unsafe

states as quickly as possible in order to minimize exposure time, (2) to have mon

itors that are independent from the application software so that iV.ults in one can

not disable the other, and (3) to have the monitor add as little complexity to the

system as possible. A general design for a scifety monitor facility is proposed in

Leveson, Shimeall, Stolzy, Thomas [82].

Although many mechanisms have been proposed to help implement fault

detection, little assistance is provided for the more difficult problem of formulat

ing the content of the checks. It has been suggested that the information con

tained in the software safety analysis can be used .o guide the content and place

ment of run-time checks [50,78].
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Recovery routines are needed (from a safety standpoint) when an unsafe
state is detected externally, when it is determined that the software cannot pro

vide a required output within a prescribed time limit, or when continuation of a

regular routine would lead to a catastrophic system state if there is no interces

sion. Recovery techniques can, in general, be divided into two types — backward

and forward.

Backward recovery techniques basically involve returning the system to a

prior state (hopefully one that precedes the fault) and then going forward again
with an alternate piece of code. There is no attempt to diagnose the particular
fault that caused the error nor to assess the extent of any other damage the fault
may have caused [4]. Note the assumption that the alternate code will work

better than the original code. To try to ensure this, different algorithms may be
used (e.g., algorithms that were not chosen originally for efficiency or other rea
sons). There is, of course, still a possibility that the alternate algorithms also will
produce undesired results. This is especially likely if the error originated from
flawed specifications smd misunderstandings about the required operation of the
software.

Backward recovery is adequate if it can be guaranteed that software faults
will be detected and successful recovery completed before the faults affect the

external state. However, this usually cannot be guaranteed. Fault tolerance

facilities may fail or it may be determined that a correct output cannot be pro
duced within prescribed time limits. Control actions that depend upon the incre
mental state of the system such as torquing a gyro or a stepping motor cannot be
recovered by checkpoint and rollback [l2l]. A software error may not necessarily
be readily or immediately apparent. A small error may require hours to build up
to a value that exceeds a prescribed safety tolerance limit. And even if backward

application software recovery is attempted, it may be necessary to take some con
current action in parallel with the recovery procedures. For example, it may be

necessary to ensure containment of any possible radiation or chemical leakage

while attempting softwaire recovery. Therefore, forward recovery to repair any
damage or minimize hazards will be required [73].

Forward recovery includes techniques that attempt to repair the faulty state.
This may involve an internal state of the computer or the state of the controlled

process. Forward recovery techniques may return the system to a correct state

or, if that is not possible, contain or minimize the effects of the failure. Examples
of forward recovery techniques include using robust data structures [l26j,
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dynamically altering the flow of control, ignoring single cycle errors that will be

corrected on the next iteration, and changing to a reduced function or fail-safe

mode.

Most safety-critical systems are designed to have a safe-side, that is, a state

that is reachable from any other state and that is always safe. Often this safe

side has penalties from a performance standpoint; for example, the system may

be shut-down or switched to a subsystem that can provide fewer services.

Besides shutting down, it may be necessary to take some action to avoid harm,

such as blowing up a rocket in mid-air. Note that these types of safety systems

may themselves cause harm as in the example of the emergency destruct facility

that accidentally blew up 72 French weather ballc

In more complex designs, there may be intern iiate safe states with limited

functionality, especially in those systems for which a shutdown would be heizar-

dous itself. For example, a failure of a traffic light often results in the light being

switched to a state with the light blinking red in all directions. The X-29 is an

experimental, unstable aircraft that cannot be flown safely by human control

alone. If the digital computers fail, control is switched to an analog device that

provides less functionality than the digital computers but allows the plane to

land safely. The new U.S. Air Traffic Control system has a requirement to pro

vide for several levels of service including Full Service, Reduced Capability, and

Emergency Mode. Keeping a person in the loop is another simple design for a

' ^ckup system.
•

In general, the non-normal control modes for a process-control system might

•xlude:

• Partial Shutdown: the system has partial or degraded functionality

• Hold: no functionality is provided, but steps are taken to maintain safety or

to limit the amount of damage

• Emergency Shutdown: the system is shutdown completely

• Manual or Externally Controlled: the system continues to function, but con

trol is switched to a source external to the computer — the computer may

be responsible for a smooth transition

• Restart: the system is in a transitional state from non-normal to normal.

Reconfiguration or dynamically altering the flow of control is a form of par

tial shutdown. In real-time systems it is often the case that the criticality of

tasks may change during processing and may depend upon run-time



- 42 -

environmental conditions. If peak system overload is increasing the response time

above some critical value, run-time reconfiguration of the system may be

achieved by delaying or temporarily eliminating non-critical functions. Note that

system overload may be caused or increased by internal conditions such as exces

sive attempts to perform backward recovery. Some aspects of deadline schedul

ing have been explored by Campbell, Horton, and Belford [20].

Higgs [52] describes the design of the software to control a turbine-generator.
This design provides an example of the use of several of the techniques described

above including a very simple hierarchy, self-test, and reduction of complexity.

The safety requirements for the system include the requirements that (1) the
governor should always be able to close the steam valves within a few hundred

milliseconds if overstressing or even catastrophic destruction of the turbine is to

be avoided, and (2) under no circumstances can the steam valves open spuriously,
whatever the nature of the internal or external fault.

The software is designed as a two-level structure with the top-level responsi

ble for the less important governing functions and for the supervisory, co

ordination, and management functions. Loss of the upper level cannot endanger
the turbine and does not cause the turbine to shutdown. The upper control level

uses conventional hardware and softwaje aind resides on a separate processor from

the base level software.

The bsuse level is a secure software core that can detect significant failures of

the hardware that surrounds it. It includes self-checks to decide whether incom

ing signab are sensible and whether the processor itself is functioning correctly.

A failure of a self-check leads to the output reverting to a safe state through the

action of fail-safe hardware. There are two potential software safety problems:
(1) the code responsible for self-checking, validating incoming and outgoing sig
nals, and for promoting the fail-safe shutdown must be effectively error-free, and

(2) spurious corruption of this vital code must not cause a dangerous condition or

allow a dormant fault to be manifested.

Base level software is held as firmware and written in assembler for speed.

No interrupts are used in this code other than the one, nonmaskable interrupt

used to stop the processor in event of a fatal store fault. The avoidance of inter

rupts means that the timing and sequencing of operation of the processor can be

defined for any particular state at any time. This allows the opportunity for

more rigorous and exhaustive testing. The avoidance of interrupts means that

polling must be used. A simple design in which all messages are unidirectional
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and there are no contention or r ecovery protocols required is also aimed at ensur

ing a higher level of predictability in the operation of the base software.

The organization of the base level functional tasks is under the control of a

comprehensive state table that, in addition to defining the scheduling of tasks,

also determines the various self-check criteria that are appropriate under paxticu-

lar conditions. The ability to accurately predict the scheduling of the processes

means that very precise timing criteria can be applied to the execution time of

certain sections of the most important code such as the self-check and watchdog

routines. Finally, the store is continuously checked for faults.

Some design techniques proposed for enhancing safety have been briefly

described in this section. There are many more that could be invented. Although

much has been written about how to design software, there needs to be a sorting

out of which techniques are actually the most effective for systems where safety is

important.

Human Factors Issues

As computers take over more and^ more monitoring and control functions in
systems where they are required to intleract with humans, software engineers will
need to consider human factors issues, especially with respect to software require-

menrspecifications. Several issues arise with regard to safety.

When designing a system that humans and computers will interact to con

trol, one of the basic problems is determining the allocation of tasks between the

human and computer. The goal is to optimize with respect to some criteria such

as maximizing speed of response, minimizing deviations of important variables,

maximizing availability, and maximizing safety. Again, it may not be possible to

achieve the optimum with respect to all desired variables because of conflicts, and

therefore tradeoffs must be considered.

One essential Ingredient in solving the task allocation problem is knowledge

of the ways in which multiple tasks may interact and subsequently degrade or

enhance the performance of the human or computer. Two or more tasks may be

complementary in that having responsibility for all of them leads to improved

performance on each because they provide important information about each

other. On the other hand, tasks can be mutually incompatible in that having

responsibility for all of them degrades performance on each of them [122].
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Rouse [l22j notes that there are two possible approaches to task allocation:

(1) partition the tasks into two subsets giving one to the computer and one to

the human; (2) dynamically allocate a particular task to the human or computer

controller that has at the moment the most resources available for performing the

task.

Air TrafTic Control (ATC) is an interesting and timely example of the

difficulty in solving the task-allocation problem. The long term plan of the FAA

is to increase automation of the controller function with a human role change

from controller of every aircraft to an ATC manager who handles exceptions

while the computer takes care of routine ATC commands. There has been some

concern voiced about this goal in Europe [136] and the U.S. [69]. The European
approach involves more of a partnership between the computer and the human

that, it is hoped, will be superior to either of them, working alone. Questions

have been raised in Europe as to whether the controller who has to intervene in

an exceptional case will be properly placed and able to do so. The lack of experi

ence in talking to aircraft individually over a long period of time may lead to

either mistakes in instructions or to a generally increasing reluctance to intervene

in the system at all [136].

There is little experimental evidence to support or negate these hypotheses,

but a study of an automated steel plant in the Netherlands [136] found serious
productivity problems resulting from the changed roles of the human operators.

The operators found that they did not know when to take over from the com

puter, and they became unsure of themselves. They were hampered from observ

ing the process by a lack of visual contact and had difficulty in assessing when

the computer was failing to control the operation effectively. The operators also

failed to fully understand the control programs used by the computer, and this

reinforced their attitude of "standing well back" from the operation except when

things were clearly going awry. Therefore, they tended to intervene too late.

A Rand report [142] has proposed a concept for Air Traffic Control called

shared control in which primary responsibility for traffic control would rest with

human controllers, but the automated system would assist them by continually

checking and monitoring their work zind proposing alternative plans. In high

traffic periods, the controllers could turn increztsing portions of the planning over

to the automated system. They could thus keep their own workloads relatively

constant. The most routine functions, requiring the least intellectual abilities,

such as monitoring plans for deviations from agreed flight paths, would be the
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only functions fully automated.

The question of whether the best results are achieved by automating the

human operator's tasks or by providing aids to help the operator perform it is not

yet solved. But the current trend is to have the human become more of a moni

tor and supervisor and less of a continuous controller. As this happens, one of his

or her primary responsibilities may be to detect system failures and diagnose

their source. One particularly important issue in the area of failure detection

concerns how the human's performance is affected by simultaneously having

other tajsks to do in addition to failure detection. Experimental data is

conflicting [34,122,123]. Rouse [122] suggests that it is reasonable to conjecture
that having to control while monitoring for failures is beneficial if performing the

control task provides cues that directly help to detect failures and if the work

load is low enough to allow the human to utilize the cues. Otherwise, controlling

simply increases the work load and decreeises the amount of attention that can be

devoted to failure detection.

The problem of human complacency and keeping the operator's attention

appeeirs to be a serious one. There is evidence that complacency and lack of

situational awareness has become a problem for pilots of aircraft with sophisti

cated computer controls [39,54,107,110,130]. For example, Perrow [110] reports
that a government study of thousands of near mishaps reported voluntarily by

aircraft crews and group support personnel concluded that the altitude alert sys

tem (an aural signal) had resulted in decreased altitude awareness by the flight

crews and recommende .at the device be disabled for all b ' a few long-

distajice flights. Ternhem [130] reports many examples of piivcs leaning on

automatic flight control systems to such a degree that m<my become lax in their

attention to the primary flight instructions or even revise their priorities. Com

placency and inattention appeared to cause them to react to failures and errors in

the automatic controls much slower than they should have. Experiments have

shown that the reliability of an operator taking over successfully when the

automated system fails increases as the operator's subjective probability of an

equipment failure increases [134]. Perrow [110] contends that when a pilot sud
denly and unexpectedly is brought into the control loop (i.e., must start partici

pating in decision msiking) as a result of equipment failure, he is disoriented;

long periods of passive monitoring make one unprepared to act in emergencies.

Another aspect of complacen- ' has been noted with regard to robots. For

example, Park [108] suggests that warning signals that a robot arm is moving
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should not be present continuously because humans quickly become insensitive to

constant stimuli. Humans also commonly make mistaken assumptions about

robot movements. For example, if the arm is not moving, they assume it is not

going to move; if the arm is repeating one pattern of motion, they assume it will

continue to repeat that pattern; if the ctrm is moving slowly, they assume it will

continue to move slowly; and if they tell the arm to move, they assume it will

move the way they want it to.

There axe other interesting issues with respect to safety and human factors.

One is selecting the amount, type, and structure of information presented to the

human under both normal and emergency conditions in order to optimize the

human's performance. Another is maintaining human confidence in the

automated system. For example, unless the pilot has confidence in ein aircraft

autolanding system, he is likely to disconnect it instead of allowing the landing to

be completed automatically [95j. Below certain altitudes, however, safe manual

goarounds cannot be assured when the system is disconnected. The autolanding

system, therefore, must consistently fly the aircraft in a marmer that the pilot

considers desirable. Data should also be provided to allow the pilot to monitor

the system progress and dynamic performance. When the pilot is able to observe

on the flight displays that the proper altitude corrections are being made by the

autopilot, then the pilot is more likely to leave it engaged even in the presence of

disturbances that cause large control actions.

A final issue is that of spurious shutdowns. While it is important that the

computer provide fail-safe facilities, evidence shows that if the rate of spurious

shutdowns or spurious warnings is too high, operators can be tempted to ignore
them or bridge up relevant devices to avoid them [21].

For many reasons, some of which involve liability and other issues that have

little to do with safety, operators have unfairly been blamed for mishaps that

really resulted from equipment failures. Some of the reasons for this are exam

ined by Perrow [110]. One result is that it has been suggested that humans be

removed from the loop. The current evidence appears to be that although

humans do make mistakes, computers also make mistakes, and removing humans
from the loop in favor of so-called expert systems or total computer control is

probably not desirable.

A mishap at the Crystal River nuclear reactor plant in February, 1980 [87]
provides jtist one example of an incident that would have been much more seri

ous if the operator had not intervened to counteract erroneous computer
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commands. For unknown reasons^ a short circuit occurred in some of the con

trols in the control room. The utility said that it ild have been due to a bent

connecting pin in the control panel or by some maintenance work being done on
an adjacent panel. The short circuit distorted some of the readings in the sys
tem, in particular the coolant temperature. The computer "thought" the coolant
was growing too cold, so it speeded up the reaction in the core. The reactor

overheated, the pressure in the core went up to the danger level, and then the

reactor automatically shut down. The computer correctly ordered the pressure

relief valve to open, but incorrectly ordered it to remain open until things settled

down. Pressure dropped so quickly, that it caused the automatic high pressure

injection to come on which flooded the primary coolant loop. A valve stuck and

43,000 gallons of radioactive water were dumped the ^.oor of th reactor build

ing. The operator noticed the computer's error i.. keepir.g the re.ief valve open

and closed the valve manually. Had the operator followed the dictum that the

computer is always right and hesitated to step in, the incident would have been

much more serious.

Considering the much repeated statement in this paper that mishaps often

result from unanticipated events and conditions, it is doubtful that computers

will be able to cope with emergencies as well as humans can. The emphasis

should be on providing the human operator with an operational environment and

appropriate information that will allow intervention in a timely and correct

manner. Since this involves software requirements and design, it is important

hat software engineers become mere familiar with human factors issues and that
quirement specification procedures and fault tolerance techniques consider

human/computer interaction.

Conclusions

This paper has attempted to survey software safety in terms of why, what,

and how. A fair conclusion might be that "why" is well understood, "what" is

still subject to debate, and "how" is completely up in the air. There are no
software safety techniques that have been widely used and validated. Some tech

niques that are touted as useful for software safety are probably a waste of
resources. The best that builders of these types of systems can do 3 (l) to select

a suite of techniques and tools spanning the entire soft••are development process

that appear to be coherent a. useful and (2) to apply them in a conscientious
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and thorough manner. Dependence on any one approach is unwise at this stage

of knowledge.

Although this paper has focused on the technological aspects of the problem,

there are also larger, social issues that must be considered by us as humans who

also happen to be technologists. Perrow and others [14, 110] have asked whether
these systems should be built at all- He suggests partitioning high-risk systems

into three categories. The first are those systems with either low catastrophic

potential or high-cost alternatives. Examples include chemical plants, aircraft,

air traffic control, dams, mining, fossil fuel power plants, highways, and automo

biles. These systems are self-correcting to some degree and could be further

improved with quite modest efforts. Systems in this category can be tolerated,

but should be improved. The second category includes those technologies with

moderate catastrophic potential and moderate-cost alternatives. These are sys

tems that could be made less risky with considerable effort and that we are either

unlikely to be able to do without (e.g., marine transport) or where the expected
benefits are so substantial that some risks should be run (e.g., recombinant
DNA). The final category includes systems with high catastrophic potential dJid
relatively low-cost alternatives. He argues that systems in this final category
should be abandoned and replaced because the inevitable risks outweigh any rea

sonable benefits. He places nuclear weapons and nuclear power in this group.
This is just one view, but addresses a question that needs to be raised and con

sidered by us all.

Another issue is that of regulation and the government's right to regulate.

Does the government have the right to impose a small involuntary cost on mzmy

or most of its citizens (in the form of a tax or higher prices) to make a few or
even most people a little safer [96,97]? Alternative forms of regulation include

tort law, insurance, and voluntary standard-setting organizations. The decision

to rely on any of these forms of regulation involves ethical and political issues

upon which not everybody would agree.

Morgan [96,97] argues that managing risk involves using resources that

might otherwise be devoted to advancing science and technology, improving pro

ductivity, or enriching culture. If we become overly concerned about risk, we are

likely to build a society that is stagnant and has very little freedom. Yet no rea

sonable person would argue that society should forget about risk. There is a need

for a continual balancing act.
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It is apparent tha* there are more questions than answe. A^ith regard to

software safety. Many .iportant research problems are waiting for creative and

innovative ideas. Just as the developing missile and space programs of the 1950's

and 1960's forced the development of system safety, it has been suggested that

because of the increasing use of computers in safety-critical systems, we must

force the development of software safety before major disasters occur (13].
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Appendix A — Hazard Categorization Examples

Hcizard severity categories are defined to provide a qualitative measure of

the worse potential consequences resulting from personnel error, environmental

conditions, design inadequacies, procedural deficiencies, system, subsystem, or

component failure, or malfunction. Some examples follow:

MIL-STD-882B: System Safety Program Requirements:

category I - Catastrophic; may cause death or system loss

category II - Critical; may cause severe injury, several occupational illness,

or major system damage.

category III - Marginal; may cause minor injury, minor occupational illness,

or minor system deunage.

category IV - Negligible; will not result in injury, occupational illness, or sys

tem damage.

NHB 5300.4 (l.D.l) a NASA document:

Category 1 - loss of life or vehicle (includes loss or injury to public)

Category 2 - loss of mission (includes both post-launch abort and launch

delay sufficient to cause mission scrub)

Category 3 - all others.

DOE 5481.1 (Nuclear)

low - those hazards that present minor onsite and negligible offsite impacts

to people or the environment

moderate - those that present considerable potential onsite impacts to people

or environment, but at most only minor offsite impacts

high - those with potential for major onsite or offsite impacts to people or

the environment.

Appendix B — Hazard Analysis

There are many different types of hazard analysis that are used and multiple

techniques for accomplishing them. The following is a brief description of some

typical types of hazard analysis. More information can be found in system safety
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textbooks [e.g., 87,117].

Preliminary Hazard Analysis (PHA): FHA involves an initial risk assess
ment. The purpose is to identify safety critical areas and functions, identify and

evaluate hazards, and identify the safety design criteria to be used. It is started

early during the concept exploration phase or the earliest life cycle phases of the

progreun so that safety considerations are included in tradeoff studies and design

alternatives. The results may be used in developing system safety requirements

and in preparing performance and design specifications.

Subsystem Hazard Analysis (SSHA): SSHA is started as soon as the subsys
tems are designed in sufficient detail, and it is updated as the design matures.

Design changes are also evaluated to determine whether the safety of system is

affected. The purpose of SSHA is to identify hazards associated with the design
of the subsystems including component failure modes, critical human error

inputs, and hazards resulting from functional relationships between the com

ponents and equipment comprising each subsystem. This analysis looks at each
subsystem or component and identifies hazards associated with operating or
failure modes including performance, performance degradation, functional failure,
or inadvertent functioning. SSHA is especially intended to determine how failure

of components affects overall safety of the system. It includes identifying neces
sary actions to determine how to eliminate or reduce the risk of identified hazairds

and also evaluates design response to the safety requirements of the subsystem
specification.

System Hazard Analysis (SHA): SHA begins as the design matures —
around preliminary design review — and continues as the design is updated until

it is complete. Design chctnges need to be evaluated also. SHA involves detailed

studies of possible hazards created by interfaces between subsystems or by the

system operating as a whole including potential safety-critical human errors.

Specifically, SHA examines all subsystem interfaces for (a) compliance with safety
criteria in system requirements specifications, (b) possible combinations of

independent, dependent, and simultaneous hazardous events or failures, including
failures of controls and safety devices, that could cause hazards, (c) degradation
of the safety of the system from the normal operation of the systems and subsys
tems. The purpose is to recommend changes and controls and to evaluate design

responses to safety requirements. It is accomplished in same way as SSHA.

However, SSHA examines how component operation or failure affects the system

while SHA determines how system operation and failure modes can affect the
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safety of the system and its subsystems.

Operating and Support Hazard Analysis (OSHA): OSHA identifies hazards

and risk reduction procedures during all phases of system use and maintenance.

It especially examines hazards created by the man-machine interface.

Several techniques are used to perform these analyses. These include:

• Design reviews and walkthroughs

• Checklists

• Fault Tree Analysis - Construction of a logic diagram containing credible

event sequences, mechanical and humam, that could lead to a specified

hazcurd. Probabilities can be assigned to each event, and thus an overall pro

bability for the hazeird can be calculated [135].

• Event Tree Analysis (or Incident Sequence Analysis): Traces a primary

event forward in order to define its consequences. Differs from a Fault Tree

in that the fault tree traces an undesired event back to its causes. The two

trees together comprise a cause-consequence diagram.

• Hazard and Operability Studies (HAZOF): a qualitative procedure that

involves a systematic search for heizards by generating questions considering

the effects of deviations in normal parameters.

• Random Number Simulation Antdysis (RNSA): Uses a fault tree or similar

logical model as basis for the analysis. However, instead of expressing the

probability of each individual contributing failure event as a single number,

it is expressed as a range of probabilities over which the failure event can

occur. Results in a probability distribution curve of the hazsurd instead of a

single numerical value.

• Failure Modes and Effects Analysis (FMEA): Basically a reliability tech

nique sometimes used in safety studies. Examines the effects of all failure

modes of the system or subsystems. Advantages of FMEA are that it can be

used without first identifying the possible mishaps and can therefore help in

revealing unforeseen hazards, but very time consuming and expensive since

all failures including non-hazardous failures are considered. Good at identi

fying potentially hazardous single failures, but normally does not consider

multiple failures. Failure Mode, Effect, and Criticality Analysis (FMECA)

extends FMEA by categorizing each component failure according to the



- 67-

seriousness of its effect and its probability and frequency of occurrence.




