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Abstract
In a classic experiment, Saffran, Aslin, and Newport (1996)
used a headturn preference procedure to show that infants can
discriminate between familiar syllable sequences (“words”)
and new syllable sequences (“non-words” and “part-words”).
While several computational models have simulated aspects of
their data and proposed that the learning of transitional prob-
abilities could be mediated by neural-net or chunking mech-
anisms, none have simulated the absolute values of infants’
listening times in the different experimental conditions. In this
paper, we used CHREST, a model based on chunking, to sim-
ulate these listening times. The model simulated the fact that
infants listened longer to novel words (non-words and part-
words) than familiar words. While the times observed with the
model were longer than those observed with infants, we make
a novel finding with regard to phonological store trace decay.
We also propose how to modify CHREST to produce data that
fits closer to the human data.
Keywords: chunking; CHREST; headturn preference proce-
dure; transitional probability; word segmentation

Introduction
Much of learning occurs implicitly, without conscious inten-
tion or awareness of the knowledge learned (Reber, 1993).
Examples include learning in naturalistic environments (de-
velopment of a first language and the acquisition of expertise)
and controlled laboratory experiments (learning of artificial
grammars and serial reaction time tasks). Particularly strong
evidence is provided by first language acquisition: children
become proficient in vocabulary, syntax, semantics and prag-
matics without explicit instruction.

A standard example of implicit learning is word segmenta-
tion. To master language, infants must segment speech into
words yet, word boundaries are unclear. For example, short
silences in speech provide unreliable cues since they some-
times occur not only between words, but also within words. It
is thought that children use a combination of several cue types
to segment speech, including prosody, allophonic variation,
phonotactic regularities, transitional probabilities, semantics,
and words occasionally occurring in isolation (Ambridge &
Lieven, 2011; Rowland, 2014; Gobet, 2015).

Of these cue types, we are particularly interested in for-
ward transitional probabilities; predictions of syllable occur-
rence in a word based on the final syllable of the preceding
word. These probabilities provide useful information for seg-
menting the speech stream, even if they are learnt approxi-
mately. The importance of forward transitional probabilities

for word segmentation was demonstrated in a classic experi-
ment by Saffran, Aslin and Newport (1996).1 The paper pro-
poses that infants use mechanisms which allow them to com-
pute statistical properties of their language rapidly and such
mechanisms are demonstrably active in 8 month-old infants.

SAN studied two groups of 24 8-month-old infants in two
experiments. Each experiment was composed of a learning
and test phase. During learning, each participant was played
a continuous stream of four nonsense words, composed of
three syllables (e.g. “bidaku”) and randomly assorted so that
no word occurred in succession in the stream, for 2 minutes.
Words were uttered at a rate of 270 syllables per minute and
the stream was designed so no information about prosody or
cues to word boundaries existed, except for the transitional
probabilities between words (unknown to the participants).
Each group of infants were assigned to one of two experi-
ment conditions, A or B, which varied the words used in the
learning stream. During testing, a blinking light appeared on
the wall ahead of the infant to direct their attention. Follow-
ing fixation on this, a blinking light randomly appeared above
a speaker on one of two side walls. Following fixation on this
light, a test word from a set of 4 was played until the partici-
pant either turned their head 30◦ from the speaker or until the
participant had fixated on the speaker for 15s (the “headturn
preference procedure” (Jusczyk & Aslin, 1995)). Two words
in the set were present in the learning stream (familiar words),
the other two words (novel words) were either not present in
the learning stream (experiment 1) or were part-words, i.e.
composed of the last syllable of a familiar word and the first
two syllables of another familiar word.

SAN’s results demonstrated that infants listened to famil-
iar words for less time than novel words in both experiments:
7.97s (SE = 0.41) vs. 8.85s (SE = 0.45) in experiment 1
(P < 0.04) and 6.77s (SE = 0.44) vs. 7.60 (SE = 0.42) in
experiment 2 (P < 0.03). Thus, after an exposure of only 2
minutes, infants were able to learn enough information about
the order of syllables to discriminate between familiar and
novel words. Experiment 2 directly tested the hypothesis that
infants can learn forward transitional probabilities; SAN took
their results as evidence that they had.

Several computational models have simulated aspects of

1“SAN” hereafter.
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SAN’s study. These include simple recurrent networks
(Elman, 1991; French, Addyman, & Mareschal, 2011), con-
nectionist autoassociators (French et al., 2011), Kohonen net-
works (Anderson, 1999), and PARSER (Perruchet & Vinter,
1998), a symbolic model. In these models, transition proba-
bilities are approximated by learning mechanisms based on
connectionist algorithms or the creation of chunks. How-
ever, to our knowledge, no model has been used to simulate
the ability of infants in SAN’s study to discriminate between
words, non-words and part-words and to replicate the times
recorded by SAN when the headturn preference procedure is
used to assess familiarity with words.

In this paper we aim to account for SAN’s results using
chunking mechanisms that indirectly implement the learning
of forward transitional probabilities. Most importantly, we
aim to simulate SAN’s exact timing data, as opposed to sim-
ply demonstrating notable discrimination between the words
used by SAN. Doing this adds confidence that a model cap-
tures the actual cognitive processes used by the infants rather
than an abstract measure of their discrimination ability.

Participant Modelling
Each participant is simulated using an instance of the com-
putational CHREST (Chunking Hierarchy and Retrieval
STructures) model; a symbolic cognitive architecture (Gobet
& Lane, 2010). In this study, CHREST is augmented with
a phonological loop (Baddeley & Hitch, 1974) that is sub-
ject to time-sensitive trace decay (Baddeley, 2007).2 Since
CHREST’s cognitive operations are also time-sensitive, we
show how these structures can interact to segment speech and
attempt to replicate the times recorded in SAN’s study.

CHREST
CHREST has been used to account for data in several do-
mains characterized by the acquisition of implicit learning.
These include the acquisition of expertise in board games (de
Groot & Gobet, 1996), implicit learning tasks (Lane & Gobet,
2012), children’s acquisition of vocabulary (Jones, Gobet, &
Pine, 2000) and syntax (Freudenthal, Pine, & Gobet, 2009).

A CHREST model consists of three major components:
long-term memory (LTM), short- term memory (STM) and an
input interface (the phonological loop, in this case). CHREST
uses patterns, φ, generated from the environment using its in-
put interface to create, modify and retrieve LTM nodes, i.e.
to learn and recognise. These nodes are organised in a dis-
crimination network: nodes are first organised according to
their modality (action, visual or verbal) then according to the
information that differentiates them from other nodes. STM
is a fixed-size, first-in, first-out list structure that stores re-
trieved LTM nodes (whereupon they are called “chunks”) to
facilitate recognition. Note that there exists a STM structure
for each modality.

2A simplified phonological loop has been used in earlier
CHREST models, see (Jones, Gobet, & Pine, 2005; Lane & Gobet,
2012) and references therein.

The version of CHREST used in this paper simply learns
and recognises verbal information when requested. To learn,
content from the phonological loop is added to a φ in the order
it was inserted into the phonological loop (oldest information
added first) and φ is then sorted through the model’s LTM.
The LTM node reached, θ, is simultaneously placed into STM
and its image (the pattern contained in θ) is analysed to deter-
mine if φ contains any new information. If there is new infor-
mation in φ, CHREST will attempt to learn it either either by
discriminating or familiarising. When recognising, CHREST
simply checks if φ is present in a verbal STM chunk retrieved
after sorting φ through LTM.

Discrimination increases the number of nodes in a
CHREST model’s LTM and occurs either when θ is a modal-
ity root node (φ is not recognised at all), or θ is not a modal-
ity root node but its image either mismatches φ or is finished,
i.e. no new information can be added to it. In the first case,
a new node is created and connected to the relevant modal-
ity root node (see Figure 1(b)); the new node is technically
called a primitive. In the second case, a new node is created
and connected to θ (see Figure 1(c)). The connection created
is a test-link that contains the first unit of information that is
present in φ but not θ’s image.

Familiarisation (see Figure 1(d)) adds new information to
images of existing LTM nodes and occurs when φ contains a
sub-pattern, ρ, that exists as a primitive; ρ is not present in
θ’s image; information preceding ρ in θ’s image and φ are the
same; θ’s image is not finished.

Learning consumes a CHREST model’s cognitive resource
for a specified period of time. Consider a CHREST model,
c that takes 10000ms to discriminate, 10ms to traverse a link
in LTM and 50ms to update its STM. If c’s LTM is in the
state depicted in Figure 1(a) and it is asked to learn the verbal
pattern < pa go > at time t (resulting in the production of
the LTM state seen in Figure 1(b)), c will take 20ms to sort <
pa go > through LTM (10ms to sort its modality and 10ms to
traverse the link to node 3). When node 3 is retrieved, it will
be placed into verbal STM at time t +20ms+50ms and node
5 will be created at time t + 20ms+ 10000ms. Any requests
to learn another pattern between t and t + 20ms+ 10000ms
will be blocked.

Phonological Loop

The phonological loop implemented adheres closely to the
architecture proposed by Baddeley and Hitch (1974). How-
ever, we only implement the phonological store and omit an
articulatory rehearsal mechanism since sub-vocal rehearsal
of phonological loop content is not believed to emerge un-
til around 7 years of age (Baddeley, Gathercole, & Papagno,
1998; Cowan & Kail, 1996; Gathercole & Hitch, 1993).

The phonological store is a first-in, first-out list structure
of arbitrary length whose spaces can be occupied by, at most,
one syllable (the smallest unit of phonological input speci-
fied by SAN). The debate regarding how phonological store
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(a) Before pattern presenta-
tion.

(b) After first presentation of
pattern (go unrecognised; dis-
crimination).

(c) After second presentation of pattern (mis-
match on chunk retrieved, < pa do >; dis-
crimination).

(d) After fourth presentation of pattern (< ti >
learned as primitive during third presentation but
not present in chunk retrieved after fourth pre-
sentation, < pa go >; familiarisation).

Figure 1: LTM states when learning verbal pattern < pa go
ti >. Tests on links are indicated by grey rectangles.

capacity is limited is noted.3 Since this debate is unresolved
and Baddeley appears to favour the trace decay explanation of
phonological store capacity limitation (Baddeley, 2007), we
implement this mechanism. Consequently, when syllables are
added to a phonological store, they will only be retained for
the trace decay value specified before they are removed.

We set the default trace decay value to 600ms according
to data reported by Glass, Sachse, and Suchodoletz (2008)
who estimate the duration of sensory auditory memory to be
between 1 and 2 seconds in 2- and 3-year-old children; ex-
trapolating infant trace decay to 600ms seems reasonable.

3The phonological store’s capacity constraint may be caused by
a bound on the number of items that it can store at any time or an
artefact of content trace decay. See Baddeley (2007) for a review.

Experiment Simulations
A complete simulation run consists of repeating SAN’s ex-
periment battery (experiments 1 and 2), with 24 simulated
participants in each experiment, 50 times. This set-up en-
sures that the sample sizes in our simulations are equal to the
sample size of SAN, making statistical comparisons between
the simulated and human data more valid.

Each experiment consisted of a 2 minute learning phase
followed by a test phase. There are some notable assump-
tions we made when considering how to implement the ex-
periments computationally that should be noted:

• SAN do not indicate a participant’s prior familiarity with
the syllables used so every simulated participant is ini-
tialised with a LTM containing nodes for each syllable used
in their experiment. The alternative is to initialise sim-
ulated participants with empty LTMs; this is implausible
since SAN’s participants must have learned some of the
syllables used in the study before they took part, since the
syllables are taken from the infant’s native language.

• The time taken by infants in SAN’s study to initially fix-
ate on the lights in the test phase is not specified. So, be-
fore the presentation of each word in the simulated testing
phase, the simulated participant’s S/LTM operations were
allowed to complete and both their phonological store and
STM were cleared.

During the learning phase, a learning string (randomly gen-
erated for each participant according to SAN’s conditions)
was used to populate the phonological store of each simu-
lated participant. SAN report that 270 syllables are uttered
every minute and a learning phase lasts for 120000ms. So, if
every syllable took an equal amount of time to utter, a syllable
should be uttered every 222ms: 120000 ÷ (270 × 2) = 222.
Since every word is composed of 3 syllables, a word should
be uttered every 666ms (222 × 3 = 666). Consequently, ac-
cording to our best estimate, a syllable is placed into a simu-
lated participant’s phonological store every 222ms and simu-
lated participants constantly tried to learn the contents of their
phonological store.4

During the test phase, the test words used by SAN in their
study were presented to each simulated participant. Again,
their phonological store was populated according to the tim-
ings specified in the previous paragraph. However, like
SAN’s study, after a whole word had been uttered, a 500ms
break occurred before the next test word was presented. Sim-
ulated participants attempted to recognise the test word con-
stantly; if recognition failed then the participant would at-
tempt to learn the contents of its phonological store.

To ensure that the only variability in recognition times
would be produced by the ordering of words in the learning
phase (rather than the order of learning in the testing phase

4If a phonological store was empty, no attempts to learn would
occur thus the simulated participant’s attentional and cognitive re-
sources were not consumed.
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too), the order of test word presentation for each simulated
participant was not varied over the entire simulation. We as-
sume this consideration was also afforded by SAN; however,
there is no information regarding this.

We approximated the headturn preference procedure as fol-
lows: as in SAN’s study, test word presentation occurred con-
tinuously. However, unlike SAN’s study, presentation ended
if the simulated participant either recognised the test word or
the test word was not recognised after 15 seconds from first
presentation; the presentation time length was then recorded.
This strategy allows for direct testing of the headturn pref-
erence procedure’s proposal that novel (unrecognised) stim-
uli causes perceptual fixation. It also allows us to investigate
whether there is evidence to posit that the participant’s fixa-
tion on a speaker in SAN’s study is an indicator of the partici-
pant’s engagement in discrimination or familiarisation. Since
learning in our simulations is analogous to a participant fix-
ating on a speaker in SAN’s study, if the presentation times
recorded in our simulations are a good fit to the looking times
recorded in SAN’s study, this hypothesis could be accepted.

We first report results obtained with default CHREST
values for discrimination (10000ms) and familiarisation
(2000ms); trace decay in the phonological store is set to
600ms (as justified earlier). We then report the results of a
grid search aimed at finding the optimal values for these three
parameters. In 27 simulations, each repeated 50 times, sim-
ulated participants were set-up with a unique combination of
values for the three parameters mentioned:

• Phonological store trace decay: 600ms, 800ms, 1000ms

• Discrimination: 8000ms, 9000ms, 10000ms

• Familiarisation: 1000ms, 1500ms, 2000ms

The mean familiar word presentation times and mean novel
word presentation times for each simulated participant type
repeat were used together with SAN’s mean listening times
for familiar and novel words in both experiments to calculate
r2 and root mean square error (RMSE) values. This data was
then used to answer the following questions:

1. Do simulated participants with default times for trace de-
cay, discrimination and familiarisation produce presenta-
tion times that are a good fit to SAN’s data?

2. Do a different combination of values for these parameters
offer a better fit to SAN’s data?

Results
Figure 2 displays the r2 and RMSE values calculated for each
repeat of the 27 distinct combinations of the trace decay, dis-
crimination time and familiarisation time parameters along
with their means. Note that, whilst higher r2 values indicate
a better fit of the simulation data to the human data, higher
RMSE values indicate a worse fit.

(a) r2 values.

(b) Root mean squared error (RMSE) values.

Figure 2: Model fit data for each simulated participant type’s
repeat experiment battery (mean values denoted by ‘+’).

Default Parameter Model Fit

CHREST clearly discriminates between familiar words and
non-words (experiment 1) and familiar words and part-words
(experiment 2), as shown in Figure 3. Since 50 replica-
tions were carried out, we used Fisher’s method to aggre-
gate the p values achieved by the model with default parame-
ter values. The resulting chi squares were highly significant:
χ2(100) = 1,792.8, p < 4.09×10−308, for experiment 1, and
χ2(100) = 681.6, p < 2.35×10−87, for experiment 2. How-
ever, the fit with human data was poor: r2 = 0.33, RMSE =
3.14. The problem is that CHREST magnifies the effect with
novel stimuli, compared to the human data; infants appear
to become bored much more quickly than the model. Inter-
estingly, French et al. (2011) report the same effect with the
SRN model after measuring the proportion of familiar words
better recognised than novel words.
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(a) Experiment 1

(b) Experiment 2

Figure 3: Human listening times vs. CHREST presentation
times.

Better Model Fits
When trace decay = 600ms, average r2 values are poor and no
clear pattern of r2 improvement or deterioration emerges as
trace decay values increase. The same is true when one con-
siders how r2 values change as discrimination and familiari-
sation times increase. The best r2 on average (0.61) was ob-
tained when trace decay = 1000ms, discrimination = 9000ms
and familiarisation = 2000ms.

Conversely, with regard to RMSE values, the best fits are
obtained when trace decay = 600ms. Whilst RMSE values
generally deteriorate as trace decay is incremented to 800ms
and 1000ms, pockets of high RMSE values are still observed.
The best RMSE value on average (3.00 seconds) was ob-
served when trace decay = 600ms, discrimination = 10000ms
and familiarisation = 1500ms.

Figure 3 illustrates how the average presentation times for
the simulated participants that achieve the best r2 values on
average compare to the human data. It can be seen that,
whilst the general trend is well captured, the absolute values
obtained by the model are still incongruent with SAN’s data.

Conclusions
In this paper, we have used CHREST to simulate the listen-
ing times displayed by the infants in SAN’s highly influential

experiment. The key assumptions were that syllables were
maintained in a phonological store and that listening time was
directly mapped to the time taken to learn and recognize se-
quences of these syllables. Based on the previous literature,
we speculated that the likely value for the trace decay time of
the phonological store would be 600ms.

Simulated participants with default values for the trace de-
cay, CHREST discrimination time and CHREST familiarisa-
tion time parameters succeeded in capturing the result that
infants can significantly discriminate between familiar words
and novel words (both non-words and part-words). In fact,
the times achieved by simulated participants showed that
differentiation between the two types of words was sharper
than that observed with infants. Conversely, the sensitiv-
ity analysis provided inconsistent results: simulated partici-
pants whose trace decay is set to 600ms achieve both the best
RMSE on average along with one of the worst r2 on average.
The best r2 on average was obtained with simulated partici-
pants whose trace decay = 1000ms, discrimination = 9000ms
and familiarisation time = 2000ms.

Interestingly, a trace decay time of 600ms means that a
simulated participant is able to retain only three syllables or,
a word using SAN’s set-up, in its phonological store at any
time. At the beginning of the learning and testing phase,
a simulated participant will “hear” the first syllable of the
first word at 222ms. This syllable will therefore decay at
time 822ms, 156ms after the third syllable is heard at 666ms
but 66ms before the fourth syllable (the first syllable of a
new word) is heard. This buttresses statements presented by
Gathercole and Adams (1993): “...in a 3-year longitudinal
study of children, we found that 10% of children aged be-
tween 2 years 10 months and 3 years 1 month could already
achieve a digit span of four, whereas 36% of the same cohort
did not reach this level until 2 years later”. If we accept that
phonological store capacity is mutable and that the digit span
task is a good indicator of phonological store capacity, the
data obtained in this paper would lend credence to the pro-
posal that the trace decay time of the phonological store is
around 600ms for very young infants.

However, we acknowledge that the model’s fit overall
was low. The low fit with regard to r2 measurements is in
part explained by the fact that SAN only published 4 data
points making goodness of fit comparisons difficult. In addi-
tion, it is generally accepted by developmental researchers
that the headturn preference procedure is inherently noisy
(Bergmann, ten Bosch, Fikkert, & Boves, 2013).

The high RMSEs observed may be explained by one of
our design choices. We approximated the headturn prefer-
ence procedure by assuming that presentation of the test word
continued until CHREST had fully recognised it. The fact
that the simulated times are too long suggests that this con-
dition might be too strong. Another approach would be to
assume that, rather than needing to have fully familiarized
the LTM node image with a word in order for the word to
be “recognised”, it is sufficient to recognise most of the word
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(2 syllables); this would certainly reduce the times recorded.
Whether this change would produce times that fit SAN’s data
better can only be established by running more simulations.

Word segmentation is an essential aspect of (implicit) lan-
guage acquisition, and this study has illuminated how time-
limited cognitive processes, together with chunking mecha-
nisms, mediate statistical learning, showing that transitional
probability learning is not necessary. The paper’s novelty was
to simulate how listening times, as opposed to just the degree
of recognition between familiar and novel nonsense words
constructed using considerations of forward transition proba-
bilities, differed as a function of key timing parameters asso-
ciated with the phonological store and cognitive processes.

While the results of the simulations were encouraging,
there is room for improvement. Future research should apply
the model to more experimental results on word segmenta-
tion obtained with the headturn preference procedure, so that
goodness of fit can be calculated with more data points re-
sulting in more reliable conclusions. In particular, more accu-
rate simulation of “head-turning” will hopefully provide data
whose accuracy is much improved. This could be achieved
using CHREST’s simulated eye movements. We also intend
to establish if a trace decay value of 600ms for the phonolog-
ical store generalises to similar word segmentation studies of
infants around the age of 8-months old. This is perhaps the
most interesting and exciting result obtained in this paper.
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