
UCLA
UCLA Previously Published Works

Title
A scalable bottom-up data mining algorithm for relational databases

Permalink
https://escholarship.org/uc/item/2g40z8bf

Authors
Giuffrida, G
Cooper, LG
Chu, WW

Publication Date
1998

DOI
10.1109/ssdm.1998.688125

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2g40z8bf
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

A Scalable Bottom-Up Data Mining Algorithm
for Relational Databases

Giovanni Giuffrida
Computer Science Dept.

UCLA
giovanni@cs.ucla.edu

Lee G. Cooper
Anderson School

UCLA
lee.cooper@anderson.ucla.edu

Wesley W. Chu
Computer Science Dept.

UCLA
wwc@cs.ucla.edu

Abstract

Machine learning induction algorithms are difficult to scale
to very large databases because of their memory-bound na-
ture. Using virtual memory results to a significant perfor-
mance degradation. To overcome such shortcomings, we
developed a classification rule induction algorithm for rela-
tional databases. Our algorithm uses a bottom-up rule gen-
eration strategy that is more effective for mining databases
having large cardinality of nominal variables. We have
successfully used our algorithm to mine a retail grocery
database containing more than 1.6 million records in about
5 hours on a dual Pentium processor PC.

1. Introduction

Machine learning practice has been based mostly on
memory-boundtechniques. The combinatorial nature of
the knowledge induction process may rapidly use all the
available (physical) main memory when mining very large
datasets. As a result, the process relies on thevirtual mem-
ory mechanism available in the hosting operating systems
and significantly degradates the performances.

In this paper we present KDS (KnowledgeDiscovery us-
ing SQL), a SQL-based algorithm to discover classification
rules. KDS has been designed to work on top of relation
DBMS. The entire learning process in KDS is a series of
complex SQL queries executed on the relational database.
Such queries use optimization techniques (e.g. indexing,
user defined functions, etc.) extensively. We have suc-
cessfully applied KDS to a real world database containing
1.6 millions records, a size that is usually prohibitive for
memory-bound induction algorithms.

1This research has been supported by equipment grants from Intel Cor-
poration and software donations from Microsoft. The data were provided
by ems, inc. The assistance of Penny Baron, Wayne Levy, Mike Swisher,
Bill Weissenberg, and Paris Gogos is gratefully acknowledged.

2. The KDS algorithm

KDS generates symbolic “if-then” classification rules.
The input examples for KDS are sets offeatures. A feature
is a pair(argument; value). Rules are in the form “if
<condition> then <class-distribution>” in
the style of CN2 [4].condition is a conjunction ofse-
lectors. A selector is an equality test of the forma = A,
wherea is an independent variable andA is one of its legal
values.class-distribution is a counter distribution
over the target variable.

KDS was designed to be implemented on top of rela-
tional databases and is based on simple concepts already
exploited for other types of learning. As opposed to the ma-
jority of memory-boundmachine learning algorithms, KDS
is implemented on relational databases. Thus it isdisk-
bound. We have implemented KDS in atightly-coupled
mode [2] with DB2 (a commercial relational database from
IBM). Optimization techniques available in DB2 have been
largely exploited (e.g. indexing and User Defined Func-
tions). Its integration with DBMS makes KDS more ad-
vantageous when very large number of records (e.g.: few
millions) are involved in the mining process and/or insuffi-
cient physical memory is available to guarantee traditional
learning systems to effectively process such a large amount
of data.

Most mining algorithms are based on an eitherdivide-
and-conquer[14] or separate-and-conquer[9] approach.
In both approaches, the input database is progressively re-
duced in size at each iteration. This makes rules discovered
at the beginning of the process have a stronger statistical
support than the ones discovered later. In turn, inducing
rules from small datasets exacerbates thesmall disjuncts
problem [10]. KDS uses theconquer-without-separating
approach proposed by Domingos [7] which overcomes such
a problem. Thus,all rules in KDS are always mined from
the entire dataset.

Most induction algorithms use atop-downrule gener-
ation approach. In such an approach, a “for each pos-

sible selector” loop usually takes place at the time can-
didate rules are generated and statistically tested on the
mined dataset. This can be very costly for attributes with
large cardinality (large value sets) when thousands of pos-
sible values need to be considered for each attribute. Be-
sides the complexity of testing thousands of selectors, the
method also needs to test every possible combination of
selectors. As a result, semantically meaningless combi-
nations (e.g.“STATUS=pregnant & SEX=male”, “RELI-
GION=catholic & MARITAL-STATUS=married & OCCU-
PATION=priest”) with no coverage on the database are
evaluated and discarded. Therefore, top-down rule induc-
tion may be very costly due to the statistical test of a very
large number of meaningless combinations. In the real case
of a retail grocery database, thousands of manufacturers
would need to be crossed (joined) with hundreds of cat-
egories, which translates to wasting time for testing non
existing patterns like:“MANUFACTURER=Coca-Cola &
CATEGORY=Baby-Supplies”. KDS avoids this additional
cost by abottom-uprule generation strategy.

KDS builds rules incrementally starting from the most
general rules to more specialized ones. The process starts
from the most general patterns (having only one term in the
conjunction: 1-termpatterns) and then progressively spe-
cializes to2-term, 3-term, and so on. The specialization
is always driven by the input database. By doing so, only
combinations of features actually existing in the database
are considered as rule specialization selectors.

The KDS algorithm is shown in Figure 1.R[N] repre-
sents the set of N-term rules. The setS contains all the N-
combinations of the independent variables assigned to the
values of the current record. For instance, consider the in-
put record is: fa = 10; b = low; c = johng, then the
set S at the second iteration (N=2) is:ffa = 10; b =lowg; fa = 10; c = johng; fb = low; c = johngg. Like-
wise, the setT is constructed from the elements ofS. For
instance, for the elementfa = 10; b = lowg of S, T would
be: ffa = 10g; fb = lowgg, a set of (N-1)-term patterns.
The notationR[N]:supp(X) specifies the popularity of the
patternX in the rule setR[N]. X:class is the class value
of the input exampleX , whileR[N]:class(Y;C) is the fre-
quency of the classC for the ruleY in the rule setR[N].
2.1. Rule generation and organization

In most induction algorithms, rule generation and rule
ranking phases are so tightly integrated that it is difficultto
make a distinction between them. A rule scoring mecha-
nism is used to generate the best rule at each iteration. In
contrast, in KDS, there is a distinct separation between the
rule generation phase and the rule (selection and) ranking
phase. The KDS algorithm does not perform any rule rank-
ing at the rule generation phase. It creates all the rules and

I = input database;
N = 1;
Flag = True;
While Flag

Flag = False;
R[N] = fg;
For each record W in I do

S =fN-term patterns from Wg;
For each X in S do

T = f(N-1)-term patterns from Xg;
If (N=1) or (all elements in T are supported) Then

Flag = True;
If X 2 R[N] then

R[N].supp(X) = R[N].supp(X) + 1;
Else

R[N] = R[N] [fXg;
R[N].supp(X) = 1;

End If
R[N].class(X, X.class) ++;

End If
End For

; Pruning by minimum support
For each Y in R[N] do

If R[N].supp(Y)� min-supp Then
R[N] = R[N] - Y;

End If
End For
N = N + 1;

End While

Figure 1. The KDS Algorithm

arranges them in a convenient structure. The rule selection
and ranking task is postponed until classification time. This
approach is also justified by the KDS goal of supporting
incremental knowledge discovery. Rules have to be stored
even if poorly scored; successive mining of new incoming
input can update rule scores and readjust the global rank2.
Additional study needs to be done to make KDS learn in-
crementally.

KDS typically generates a large set of discovered rules.
These rules are stored in the DBMS in a proper structure
called pattern network. This structure optimizes rule re-
trieval and speeds up the classification task. An example of
a fragment of a pattern network is shown in Figure 2. The
lowest levels of the pattern network contain the 1-term pat-
terns. One level up are the 2-term patterns, and so on. Each
link between lower and upper levels represents apattern-
specializationoperator. Rules are more general in the lower

2KDS performs a rule pruning based on the minimum support concept.
So, not all rules are later updateable. Value of the minimum support is a
trade-off between speed of execution, storage space and thelevel of in-
crementality supported. Further study needs to be done to support full
incrementality.

Me=7
Mfr=381370
Tpr=None

Me=7
Mfr=381370

::ttttttttt
Me=7

Tpr=None

OO
Mfr=381370
Tpr=None

ddJJJJJJJJJ
Me=7

OO 88qqqqqqqqqqq
Mfr=381370

ffMMMMMMMMMMM 88qqqqqqqqqqq
Tpr=None

ffMMMMMMMMMM OO
Figure 2. A fragment of a Pattern-Network

levels and become more specific in the upper levels. The
specialization operator is a partial order on the set of dis-
covered rules. In Figure 2 the 2-term rule “if Me=7 &
Mfr=381370 then . . . ” is a specialization of its two children
“if Me=7 then . . . ” and “if Mfr=381370 then . . . ”. This ar-
chitecture eases the process of selecting all rules containing
a specific pattern. They are simply identified by all the an-
cestors of the node containing the pattern of interest. Each
node of the pattern network contains the specification of the
pattern itself and the class distribution vector3.

2.2. Classification of new observations

Once the pattern network has been created, classification
of new previously unseen observations can take place. Clas-
sification in KDS is performed through the following steps:

1. Rule selection:find all the rules covering the observa-
tion to be classified.

2. Rule ranking: select the best rule(s) according to the
ranking criterion.

3. Classification: assign the class of the chosen rule(s)
to the input observation.

The selection algorithm starts from the bottom of the pattern
network by activating the 1-term rules corresponding to the
selectors of the input example. The activation is then propa-
gated upward, and each intermediate node is activated only
if all its children are active as well. The activation travels
to the highest nodes of the network. At this point all rules
covering the input examples are selected. All selected rules
are then ranked and the best one is chosen. The best class of
the chosen rule is the predicted class for the input example.

The pattern network structure provides a flexible struc-
ture for developing differentad-hocrule ranking criteria.
Domain knowledge can be easily modeled in the ranking
method.

3In the implementation of KDS other data (entropy, rule coverage, etc.)
are associated to the class distribution vector.

2.3. Cost Analysis

KDS works based on a progressivebreadth-firstrule spe-
cialization. Thenth iteration creates all the n-term rules ex-
isting in the input database. The rule specialization function
is a monotonic operator, decreasing upon each application
from more general to more specific patterns. The process
is halted as soon as further specialization leads to coverage
below the specified minimum support for all new generated
rules. As already mentioned, KDS makes a clear distinc-
tion between the rule generation and rule selection/ranking
phase. The rule generation performs a total ofk iterations,
wherek is the maximum number of terms in the patterns be-
fore the coverage drops below the minimum support value
(for all the new rules.) Actually, a maximum value ofk
is set. By doing so, we allow only a maximum number of
terms in the rule antecedents: conjunctions with large num-
ber of terms tend to be more difficult to be interpreted by
users. Therefore, the while loop in the algorithm has costO(k � e) wheree is the number of input examples. Thenth
iteration is based upon the results of the(n-1)th iteration.
For instance, it is necessary (but not sufficient) for adding
the new pattern “a&b&c” at the 3rd iteration that “a&b”,
“a&c”, “b&c” are all supported. The cardinalitys of the
setS in the algorithm shown above at thenth iteration isa!=[n!(a� n)!], wherea is the total number of independent
variables. The setS contains the candidates for new pat-
terns to be added to the rule set. For each element ofS the
set of sub-patterns is generated and stored in the setT . For
each element ofT a lookup (with logarithmic cost) is exe-
cuted until one element is not supported or all the elements
have been verified to be supported. In the worst casejT j
lookups have to be performed for each element ofS. The
total cost becomes:O(k � e � jSj � jT j � log(l)) wherel is the
size of theR[n�1] set at thenth iteration. Furthermore, for
each iteration a pruning loop is executed to remove all new
rules that are not supported. This has a minor cost that can
be omitted in the computation.

2.4. KDS Application Domain

The absence of a “for each selector” loop and its lin-
ear time cost with respect to the number of input exam-
ples makes KDS well suited for mining datasets with large
value sets and large number of tuples. However, KDS does
not scale well to datasets with a large number of indepen-
dent variables. Thus, KDS applies well to datasets with (1)
a large number of records, (2) large value sets and (3) a
small number of independent variables. Conversely, top-
down separate-and-conquer algorithms have a better fit for
datasets with (1) a small number of records, (2) small value
sets and (3) a large number of independent variables.

The SQL based nature of KDS is beneficial when the size

of a problem is too big to fit in physical memory. Smaller
datasets can be better processed by other memory-bound
induction algorithms [13].

The execution of KDS on a real world large database
(1.6 millions records, 6 independent variables for a total of
4,334 different values) required a total of about 5 hours on a
dual Pentium Pro system with 128Mb of physical memory
and over 30Gb of disk storage. For the sake of performance
comparison, the same database was also used as input for
Ripper [5]. The latter ran on the same dataset for 21 days
(no other process running at the same time) without com-
pleting the task (we had to kill the process). Once Ripper
exhausted the physical memory it resorted to using virtual
memory (set up to 1 Gb), resulting in a tremendous perfor-
mance decrease.

3. Related Work

Recently, integration of data mining algorithms with re-
lational databases has been receiving attention. Provost
and Kolluri [13] mention the problem of mining relational
databases (instead of a single flat file) and the integration of
KDD with DBMS as a direction in scaling up to very large
datasets (when not enough main memory is available.) John
and Lent [11] propose a middle layer between data mining
algorithms and SQL systems. They outline an implementa-
tion of C4.5 [14] and a Bayesian classifier by using their SIP
methodology. Agrawal and Shim [2] describe a methodol-
ogy for developing data mining applications tightly coupled
with relational systems. In their paper they describe the im-
plementation of theApriori algorithm [1] for mining associ-
ation rules. Apriori is based on a bottom-up rule generation
approach similar to KDS.

SLIQ [12], a classifier for disk-resident datasets, builds
classification trees. SLIQ is based on the “divide-and-
conquer” strategy followed by the tree induction algorithms.
As reported in the paper, SLIQ scales almost linearly with
the number of training examples and the number of at-
tributes. However, no scalability report was discussed for
increasing cardinality of nominal variables (the problem
was however recognized by the authors as a difficult one
for large value sets).

Numerous “separate-and-conquer” strategy based algo-
rithms have been proposed in the past. Furnkranz [9] lists
and classifies 40 of them. The “divide-and-conquer” ap-
proach is basically used by all the tree induction algorithms
rooted in the work of Quinlan [14]. Domingos proposes
a “conquer-without-separation” approach for his CWS and
RISE systems [7, 8]. His “without-separation” approach is
oriented to solve the problem of progressive fragmentation
of the input dataset. Domingos [6] shows how such a tech-
nique achieves substantial improvements in accuracy when
mining databases with large number of disjuncts (each one

covering few training records). Aronis and Provost [3]
tackle the inefficiency of induction algorithms when work-
ing with large value sets in the input database. They propose
a general pre-processing technique to speed up the subse-
quent mining task.

4. Conclusions

We presented KDS, a (classification) rule induction al-
gorithm for relational databases. KDS uses abottom-up
strategy during rule specialization. This saves computa-
tion time by testing only combinations of features that exist
in the mined dataset. This strategy is effective for mining
large databases containing attributes with large cardinality.
KDS scales linearly with the number of training records and
the cardinality of nominal variables. However, it does not
scale well with the number of attributes. We have success-
fully applied KDS to discover classification rules from a
real world grocery retailer database containing about 1.6
millions records. The processing time was about 5 hours
on a Dual Pentium Pro PC system.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and V. A.
I. Fast discovery of association rules.In Advances in Knowl-
edge Discovery and Data Mining, 1996.

[2] R. Agrawal and K. Shim. Developing tightly-coupled data
mining applications on a relational database system.KDD-
96, 1996.

[3] J. M. Aronis and F. J. Provost. Increasing the efficiency of
data mining algorithms with breadth-first marker propaga-
tion. KDD-97, 1997.

[4] P. Clark and T. Niblett. The cn2 induction algorithm.Ma-
chine Learning, 1(3), 1989.

[5] W. W. Cohen. Fast effective rule induction.Procs of 12th
Int.l Conf. on Machine Learning, 1995.

[6] P. Domingos. The rise system: Conquering without separat-
ing. Procs. of the 6th IEEE Intern. Conf. on Tools with Artif.
Intelligence, 1994.

[7] P. Domingos. Linear-time rule induction.KDD-96, 1996.
[8] P. Domingos. Unifying instance-based and rule-based in-

duction.Machine Learning, 24:141–168, 1996.
[9] J. Furkranz. Separate-and-conquer rule learning.Technical

Report OEFAI-TR-96-25, 1996.
[10] R. Holte, L. E. Acker, and B. Porter. Concept learning and

the problem of small disjuncts.Procs of 11th Intern. Joint
Conference on Artificial Intelligence, 1989.

[11] G. H. John and B. Lent. Sipping from the data firehose.
KDD-97, 1997.

[12] M. Metha, R. Agrawal, and J. Rissanen. Sliq: A fast scalable
classifier for data mining.Proc. of the Fifth Int’l Conf. on
Extending Database Technology, 1996.

[13] F. Provost and V. Kolluri. Scaling up inductive algorithms:
An overview.KDD-97, 1997.

[14] J. R. Quinlan.C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, 1993.

