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Electrocorticography-based neurotechnology development:  

Recording from and effectively stimulating the human brain 

Leah Muller 

 

Neural devices have great potential to improve the treatment of neuropsychiatric, 

sensorimotor, and epileptiform disorders in humans.  Recently, focus has been 

appropriately directed toward enabling the bidirectional flow of information between 

these devices and the brain with the goal of delivering electrical therapy only when 

necessary and in an appropriate amount. Interactions between the nervous system and 

the device improve when the devices are able to 1) record high quality neural signals 

using the appropriate number of sensors over the correct area and 2) stimulate the 

brain with an electrical signal that causes a desired effect.  

The work presented here addresses these two major issues necessary for neural 

device design. In the first section, the spatial resolution of the brain at its surface is 

investigated and quantified using recordings from human patients with implanted ECoG 

sensors. In the second section, a novel ECoG sensor array with high spatial resolution 

is described and tested in human subjects that undergo awake brain surgery. Finally, 

the neural changes associated with sub-threshold and super-threshold electrical 

stimulation are examined and described for the first time in relation to stimulation 

parameters and stimulation outcome.  

We found that the level of spatial resolution at the cortical surface depends on 

the neural frequency. For the highest neural frequency studied, the high gamma band, a 
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denser array of sensors than what is commercially available should increase the 

information content. Because of this observation, we worked with Lawrence Livermore 

National Labs to manufacture an array of electrodes for collecting neural activity from a 

single human gyrus, and we observed that the increased density of electrodes did 

indeed improve decoding accuracy. Electrical stimulation of the sensorimotor cortex 

induced high gamma activity when the subject consciously perceived the stimulation, 

suggesting that high gamma is a reliable biomarker of effective stimulation. Together, 

these results suggest that devices should record from the brain’s surface at a higher 

density than is typically used, and that high gamma can be utilized as a feedback signal 

indicating whether stimulation is effective. 
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Introduction 

 
 

In the last half a century, the fields of biomedical engineering, electrical 

engineering, mechanical engineering, and neuroscience have fostered the development 

of devices that interface with the nervous system.  For humans, neural devices restore 

basic senses (cochlear and retinal implants), alleviate pain (i.e., spinal cord stimulation), 

and provide therapy for neural disorders such as Parkinson’s disease and epilepsy 

(deep brain stimulation, cortical stimulation, and vagal nerve stimulation), among many 

other indications. In all of these examples, the devices are based on the same principle: 

electrodes placed in an appropriate area of the nervous system send electrical 

impulses, and the nervous system alters its activity based on this artificial input.  

Electrocorticography (ECoG) is the recording of neural activity from the surface 

of the brain. With ECoG, a large area of the cortical surface may be monitored at 

relatively high spatial resolution and high temporal resolution. The large spatial 

coverage is in contrast to penetrating arrays that cover at most a couple of square 

centimeters of the cortical surface; ECoG can cover hundreds of square centimeters.  

On the other end of the spectrum is EEG, which records from the scalp; in comparison, 

ECoG achieves drastically higher spatial resolution and attains higher signal quality due 

to its direct placement on the cortical surface. Finally, temporal resolution is achieved 

because ECoG is an electrical measurement with little time lag, in contrast to methods 

such as fMRI. From a safety standpoint, ECoG has the benefit of not penetrating brain 

tissue, thus reducing tissue damage and inflammation. Tissue damage and resulting 

gliosis, such as is caused by insertion of electrodes into the cortex, is associated with 
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loss of signal over time, a complication that ECoG avoids. Finally, because ECoG-

based devices have the potential to be implanted, they can record from the brain for 

long-term applications. 

In recent years, focus has been directed toward enabling the bidirectional flow of 

information to enhance the capabilities of neural devices. In this paradigm, referred to 

as ‘closed-loop stimulation,’ neural devices receive information from the nervous system 

and use it to inform the way that they deliver electrical pulses. Interactions between the 

nervous system and the device improve when the devices are able to 1) record high 

quality neural signals using the appropriate number of sensors over the correct area 

and 2) stimulate with an electrical signal that induces beneficial neural modulation in 

that area.  

The work presented in the following pages addresses these two major issues 

necessary for neural device design. In the first section, the spatial resolution of the brain 

at its surface is investigated and quantified using recordings from human patients with 

implanted ECoG sensors. In the second section, a new kind of ECoG sensor array with 

even higher spatial resolution is described and tested in human subjects that undergo 

awake brain surgery. Finally, the neural changes associated with sub-threshold and 

super-threshold stimulation are examined and described for the first time in relation to 

stimulation parameters and stimulation outcome. 
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Abstract Objective. Electrocorticography (ECoG) has become an important tool in 

human neuroscience and has tremendous potential for emerging applications in neural 

interface technology. Electrode array design parameters are outstanding issues for both 

research and clinical applications, and these parameters depend critically on the nature 

of the neural signals to be recorded.  Here, we investigate the functional spatial resolution 

of neural signals recorded at the human cortical surface. We empirically derive spatial 

spread functions to quantify the shared neural activity for each frequency band of the 

electrocorticogram.  Approach. Five subjects with high-density (4mm center-to-center 
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spacing) ECoG grid implants participated in speech perception and production tasks 

while neural activity was recorded from the speech cortex, including superior temporal 

gyrus, precentral gyrus, and postcentral gyrus.  The cortical surface field potential was 

decomposed into traditional EEG frequency bands.  Signal similarity between electrode 

pairs for each frequency band was quantified using a Pearson correlation coefficient. 

Main results. The correlation of neural activity between electrode pairs was inversely 

related to the distance between the electrodes; this relationship was used to quantify 

spatial falloff functions for cortical subdomains.  As expected, lower frequencies remained 

correlated over larger distances than higher frequencies. However, both the envelope 

and phase of gamma and high gamma frequencies (30-150Hz) are largely uncorrelated 

(<90%) at 4mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays 

smaller than 4mm have significant promise for increasing signal resolution at high 

frequencies, whereas less additional gain is achieved for lower frequencies. Significance. 

Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on 

the neural frequency of interest. We demonstrate that this relationship is consistent 

across patients and across cortical areas during activity. 

Keywords: electrocorticography, brain machine interface, neural device design, spatial 

resolution, neural frequency band 

 

1. Introduction 

 

Electrocorticography (ECoG) is a method of recording electrical neural signals from the cortical 

surface and is a well-established clinical tool for localizing seizure foci in epileptic patients. 

Clinical ECoG records neural activity using electrodes positioned in a grid arrangement, usually 

spaced 1cm apart.  More recently ECoG has found utility in both scientific and engineering 

applications due to its high spatial and temporal resolution relative to noninvasive imaging 
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approaches. In research applications, high frequency neural responses have been shown to be 

informative for task-related neural decoding, while low frequency bands can serve as markers 

for neural states (N. E. Crone, Korzeniewska, & Franaszczuk, 2011; Engel & Fries, 2010; Fries, 

Nikolić, & Singer, 2007; Kellis et al., 2010; Lachaux, Axmacher, Mormann, Halgren, & Crone, 

2012; Miller et al., 2007; Ray, Crone, Niebur, Franaszczuk, & Hsiao, 2008; Womelsdorf & Fries, 

2007).  Moreover, high frequency neural signals have been described to be more spatially 

discrete than low frequency signals(Buzsaki & Draguhn, 2004; Edwards et al., 2009; Leski, 

Lindén, Tetzlaff, Pettersen, & Einevoll, 2013; Pesaran, 2010; Viventi et al., 2011). However, the 

spatial resolution of neural signals from the human cortical surface with respect to these 

functional neural frequency bands has never been fully quantified in humans.  

 

Higher density ECoG grids collect more information from the cortical surface than the standard 

1 cm grids, leading to better decoding performance in brain machine interface 

applications(Blakely, Miller, Rao, Holmes, & Ojemann, 2008; Breshears et al., 2011; Flinker, 

Chang, Barbaro, Berger, & Knight, 2011; Kellis et al., 2010; Khodagholy et al., 2015; Leuthardt, 

Freudenberg, Bundy, & Roland, 2009; Wang et al., 2009). In most cases, these high density 

arrays have covered a very small area of cortex, and therefore large scale comparisons of 

shared signal in space have not been evaluated.  Recently, correlations in the raw signal have 

been explored with respect to distance using a clinical ECoG array and a microwire ECoG 

array(Kellis et al., 2015). However, the measured signals from the microwire array are inherently 

different from those of the clinical array due to filtering effects of electrode size and shape(Kent 

& Grill, 2014; Lempka et al., 2011). Furthermore, the microwire array can examine signal 

similarity only within a very small area of cortex, while the clinical array sparsely samples a wide 

expanse of cortex that may or may not be actively engaged at the time of recording.  

 

Ultra high-density, low impedance electrode arrays for chronic human recordings are not 
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presently FDA approved in the United States, which is a dilemma for empirically deriving spatial 

resolution values for this work. Work in animal models can give us some insight into spatial 

correlations at higher electrode density(Kajikawa & Schroeder, 2011; Katzner et al., 2009; Xing, 

Yeh, & Shapley, 2009); however, it may be that spatial correlations in human cortex differ due to 

differences in underlying cytoarchitecture, cortical thickness, and differences in cortical folding 

across species(Elston, 2003). Thus, we hope that this study serves to illustrate the utility of 

moving toward higher-density arrays in human subjects as well. A high-density ECoG grid with 

4mm spacing of electrodes offers a unique opportunity to identify shared signal at close spacing 

of electrodes, over a broad area of active cortex, and across neural frequency bands. We 

describe frequency band-specific spatial spread at the cortical surface in patients performing 

speech-related tasks. We use these observations to compare spatial spread functions across 

patients and across functional areas during speech perception and production tasks. 

 

2. Materials and Methods 

 

2.1 Experimental setup 

2.1.1. Subjects Experimental procedures were approved by the Committee for Human Research 

at the University of California, San Francisco, and all participants provided written informed 

consent. Patients undergoing ECoG grid implantation for epilepsy focus localization (N=5, 

0M/5F, 25 – 41 years old) volunteered to participate in this research study. Patients were 

implanted with 256 channel high-density subdural electrode arrays (AdTech, Racine, WI or 

Integra, Plainsboro, NJ) with 4mm center-to-center spacing (1.17mm exposed diameter). 

Electrodes were positioned according to clinical criteria but included coverage over the superior 

temporal gyrus and the ventral sensorimotor cortex (pre- and post-central gyri). An electrode in 

the sub-galeal space served as the reference electrode and ground. 
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2.1.2. Tasks and stimuli The patients either spoke or listened to sentences taken from the TIMIT 

database (Garofolo, 1993; Wrench, 1999). In the listening task, patients heard a subset of 125 

sentences drawn pseudo-randomly from a list of 499 sentences spoken by 354 male and 145 

female speakers. In the speaking task, patients were instructed to read a set of 50 sentences, 

presented visually on a laptop screen at a user-driven pace. In both tasks, sentences were 

chosen to evenly sample the distribution of phonemes present in English. These tasks lasted 

approximately 5-10 minutes each.  Presentation of experimental stimuli was synchronized to 

neural recordings and controlled using custom MATLAB software running on a Windows laptop.  

 

2.2 Recording and data processing  

Signals were acquired at a sampling rate of 3051.8 Hz and were amplified and digitized using a 

Tucker-Davis Technologies (Alachua, FL, USA) neural recording system (RZ2 DSP combined 

with a 256-channel PZ2 amplifier).  Manual artifact and channel rejection was performed, 

followed by common average referencing (CAR) (N. Crone, Boatman, Gordon, & Hao, 2001). 

The CAR consists of the mean across sixteen-channel banks of non-rejected electrodes that are 

spatially arranged in a row that spans 6cm. The CAR approximates the activity contributed by 

the original reference, so subtracting the CAR from each channel largely removes contributions 

of the original reference electrode and electrical artifacts that are often present in groups of 

sixteen channels due to shared connectors and cabling (see Crone et al. 2001 for a discussion 

of CAR in ECoG recordings). The CAR can also be thought of as the spatial DC portion of the 

signal, and CAR-re-referencing as a typical mean or DC removal.  

 

The signal from each electrode channel was filtered into 40 frequency bands using an FFT 

followed by a Hilbert transform with logarithmically increasing center frequencies (range of CF = 

4.07 Hz – 193.8 Hz).  The analytic amplitude, also known as the envelope, and the phase were 

calculated for each (Edwards et al., 2009). The filtered frequencies were then averaged into 
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frequency bands corresponding to the traditional theta (4 – 7 Hz), alpha (7 – 14 Hz), beta (15 – 

30 Hz), gamma (30 – 60 Hz), and high gamma (70 – 150 Hz) bands.  This signal was then z-

scored with respect to rest (no-task) epochs within the same recording.  The anatomical location 

of electrodes was determined with the aid of co-registered brain CT and MRI images. The 

precentral gyrus (preCG), the postcentral gyrus (postCG), the suprasylvian region, the superior 

temporal gyrus (STG), and the middle temporal gyrus (MTG) were grouped and evaluated 

separately for some analyses.  

 

2.3 Analytical methods   

Electrodes were chosen for analysis within an anatomically defined area using a bootstrap t-test 

to find electrodes that responded significantly to speech over silence in the high gamma band.  

The high gamma band was chosen because it has been shown to exhibit specificity in activation 

to speech sounds in eloquent cortex. Electrode responses during speech were compared to 

responses during silence using short consonant-vowel syllables as the stimulus.   The threshold 

p-value for inclusion was p<0.001 over 10,000 bootstrap iterations.  Of the 256 electrodes on 

the grid, an average of 80±6 electrodes were anatomically localized to the superior temporal 

gyrus, which is expected to respond to speech sounds. Of these anatomically localized 

electrodes, an average of 87% showed significant responses to speech over silence.  

 

A Pearson correlation coefficient was calculated between the time series of either the analytic 

amplitude or the phase of each electrode pair within the anatomically and functionally defined 

subset (described above) and associated with the Euclidean distance between the electrodes. 

Figure 1 shows representative data along with its subsequent comparison for two nearby 

electrodes.  For simplicity, the term ‘component’ will be used to refer to either the analytic 

amplitude or the phase of a single frequency band for a single patient.  The entire 5-10 minutes 

of data from each task were used to derive the correlation coefficient for the aforementioned 
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subsets of electrode pairs. Both the electrode subset and the time series used to derive 

correlation coefficients varied by task. The datasets for the two tasks were analyzed 

independently. We calculated chance level correlations for each frequency band by randomizing 

the data for each component in time for each electrode separately and repeating the correlation 

measures for all distances. Correlations for the randomized data fell very close to zero (± 5x10-

4) irrespective of frequency band and distance. 

 

To define the spatial relationship of correlation between electrode pairs, we modeled the falloff 

of the electrode correlations vs. distance, using the interquartile range of the data for each 

component.  We tested exponential (equation 1), Lorentzian (equation 2), Gaussian (equation 

3), and power law (equation 4) functions to describe this falloff.  These equations were chosen 

to fit the data because they are typical equations that describe non-linear fall offs and that allow 

for the necessary observation that when distance is zero, correlation is one. A constant term 

was added where necessary to correct for the noise floor of the correlation dataset, which is 

most likely due to either shared activity from the reference electrode or shared noise (Bruns, 

Eckhorn, Jokeit, & Ebner, 2000). In each case, the number of free parameters was limited to 

two to avoid over-fitting of the function to the data. 

 

! = 1 − ! !!!" + !      (1) 

! = 1 − ! !!
!!!!! + !      (2) 

! = 1 − ! !!!!

! + !      (3) 

! = (! + 1)!!       (4) 

These functions were fit separately for each component, allowing maximum goodness of fit and 



	 10	

equal opportunity for different functions to describe the different frequencies. The best-fit 

equation was chosen as the one with the highest R-squared value using a least-squares 

method.  For each component, the best-fit function across patients was chosen to represent the 

average falloff of correlation versus distance. To adequately capture the curvature of the falloff, 

we used only pairwise correlations at distances of 20mm and below.  Using data in this range 

minimizes the contribution to the fit from the noise floor of low correlation, which is also captured 

in the constant c.  The fits with the highest R-squared values were corroborated by visual 

inspection; the data were well approximated by the chosen fit for every patient at every 

frequency.  

 

3. Results 

The goal of our study was to quantify the average spatial spread at the cortical surface for each 

functional frequency band. Using high-density ECoG arrays and data from human intracranial 

recordings, we applied a correlation-based analysis to determine the extent of shared signal 

across the cortical surface for the amplitude and phase content of five frequency bands.  

 

A natural starting point for estimating spatial falloff is to look at that of the raw signal before 

decomposing the signal into frequency bands.  This is shown in Figure 2, where for each 

distance of separation on the electrode grid, the interquartile range of data points is plotted as a 

box plot.  The majority of electrode pairs are correlated above noise floor only within 2cm; after 

this distance of separation between electrodes the plot approximates a horizontal line.  

Therefore, only electrodes located 2cm or less from one another were used for analyses. We 

then fit curves to the data points corresponding to electrode pair correlations to describe the 

falloff of correlation with distance. The best fit in this example is plotted with a dashed line.  Note 

that the curve continues to points that are unobservable by the high-density grid, including 

distances less that 4mm. This part of the curve is extrapolated, and it can give us intuition about 
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what correlations would be observed in the raw signal with more closely spaced electrodes, with 

the caveat that correlations at distances below 1.17mm (the contact diameter of the electrode) 

are underestimated. 

 

Correlations at low frequencies are higher in magnitude and more widespread than at high 

frequencies.   This is shown in Figure 3 for the theta and the high gamma frequency bands. The 

high gamma band signals at nearby electrodes show a lower maximum correlation in 

comparison to the theta band signals, and the spatial spread of notable correlations 

encompasses less area on the cortical surface than that of theta. As expected, we observe a 

decrease in correlation between pairs of electrodes as the distance increases between them.  

 

The correlations between electrode pairs differ predictably not only by frequency band but also 

by whether or not the patient was engaged in a task.  The tasks that we examined were speech 

perception and production. The rest versus task distinction is particularly evident in the high 

gamma band for electrodes that are considered active (see Methods for details in determining 

which are active).  Figure 4 shows the drastic difference in correlation patterns with distance for 

electrodes in the STG when the patient listened to speech versus when the patient sat quietly. 

Points at each distance are represented in a distribution plot to compare the shape of 

distributions. The correlations are more variable and on average higher during rest than when 

the patient is listening to speech.  Both the median and the mean are lower during activity than 

during rest at all distances.  A paired t-test was performed for the correlation values at each 

distance, and at all distances shown (distance<20mm) there were statistically significant 

differences in correlations for task vs. rest (p<0.05). Similar differences in correlation with 

activity have been described elsewhere (Buckner & Vincent, 2007; Cohen & Kohn, 2011; 

Fukushima, Saunders, Leopold, Mishkin, & Averbeck, 2012). Because correlations decrease 

with activity, the spatial spread function shows a steeper fall off during activity than during rest.  
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Considering this fact, and additionally considering that the neural signal of interest is most likely 

elicited while a subject is engaged in a task of some sort, we decided to base the remainder of 

our analyses on electrodes that are considered active in an anatomical area, during a stimulus 

that elicits that activity.  

 

As mentioned in Section 2.3, four functions were fit to the data. Representative data from the 

theta band of one subject is shown with all fit lines superimposed in Figure 5.  The Lorentzian 

and exponential forms were similar in shape and in goodness-of-fit, and the R-squared value for 

goodness-of-fit was quite high for both (R2
Lorentzian = 0.93, R2

exponential = 0.92).  Indeed, the best fit 

choice was either Lorentzian or exponential for all components tested; however, the difference 

between R2 values for these models increased for high neural frequencies (gamma and high 

gamma). Regardless of whether the function tested was Lorentzian or exponential, the resulting 

fit lines for correlation decrease with distance differed only slightly.  In all cases, the Lorentzian 

and exponential forms were greatly superior to the Gaussian and Power Law forms in 

describing the falloff in correlation for each component.  

 

Across frequency bands there is a nonlinear falloff of correlation with distance for both 

amplitude and phase of the signal.  The falloff becomes steeper as the neural frequency 

increases.  This is shown in Figure 6 where best fits are averaged over five patients. The fits 

shown are for electrodes in the STG while the patients listened to sentences.  There is a clear 

similarity in falloff pattern for theta and alpha bands and for gamma and high gamma bands.  In 

the analytic amplitude data, correlation falloffs were best fit by a Lorentzian function in individual 

patients as well as the subject-pooled data. For phase correlations, theta and alpha were best fit 

by an exponential function, whereas beta, gamma, and high gamma were best fit by the 

Lorentzian. Importantly, the best fit function in each case was identical across patients. This did 

not have to be the case, since the analytic amplitude and phase for each frequency band for 
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each patient were fit separately.  The functional form of best fit for any patient could have 

differed from that of the other patients for the same component; however, all components of the 

same class were fit best with the same functional form across all five patients. This made the 

task of defining a best fit curve for each component easy because we simply average the 

coefficients of best fit for each component across patients. 

To determine if the form or slope of the best fit function differs by anatomical location, we then 

took correlations between electrodes overlying the preCG and postCG while the patient spoke 

sentences, a task that evokes reliable activity in the sensorimotor cortex(Bouchard, Mesgarani, 

Johnson, & Chang, 2013). The correlation analysis was repeated for these anatomical areas.  

Again we found the same effect: a steeper correlation falloff with increasing neural frequency. 

On closer comparison of fits between areas, we found that the spatial correlation falloff fit lines 

for preCG, postCG, and STG did not differ significantly (p>0.05, paired t-test with Bonferroni 

correction for multiple comparisons).  Therefore, the presented results also apply to the pre- and 

post-central gyri as well as to the STG. This is shown in Figure 7 as a function of the coefficient 

B, which represents the steepness of descent of the fits.  This coefficient value is conserved 

over patients and anatomical areas, but notably not across frequency bands.  The shift in value 

can be noted best for the same function form for all analytic amplitude fall offs.  The B values 

shift from a relatively high value to a lower value as frequency band increases, corresponding to 

the increased steepness of the fall off with distance.  The same pattern is seen with best fits in 

the phase data.  

Our estimations to this point were mostly constrained to a single gyrus and by nature assume a 

continuous surface.  We next wanted to determine how anatomical factors such as cerebral 

convolutions and lobar divisions affect spatial correlations.  We therefore analyzed the spatial 

correlations between electrodes that were within a single gyrus, across a sulcus (the superior 

temporal sulcus between the STG and MTG), and across brain lobes (the Sylvian Fissure, 
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between the frontal and temporal lobe).  We hypothesized that spatial correlations within the 

STG would be significantly greater than across the superior temporal sulcus, and even more so 

than across the Sylvian Fissure.  To test this prediction, we shifted our focus from the 

interquartile range to the upper quartile range of values so that high correlation values were 

preserved.  We observed that correlations were higher between electrodes within a gyrus and 

that patterns of correlation seemed to cluster with anatomical boundaries such as sulci. This 

relationship was quantified for electrodes in the STG to electrodes in the MTG and for 

electrodes in the STG to electrodes across the Sylvian fissure. An ANOVA was performed 

between groups for each distance, followed by post-hoc pairwise t-tests where applicable.  The 

most convincing differences were in the low neural frequencies.  The theta band observations 

are shown in Figure 8.  For the theta frequency band at near distances, the STG-STG 

electrodes were more highly correlated than the STG-MTG electrodes and the STG-IFG 

(suprasylvian) electrodes.  At distances of 5.65mm (for diagonally adjacent electrodes) and 4 

mm, the STG-STG electrode correlations differ from STG-IFG correlations but do not differ 

significantly from the STG-MTG electrodes.  This pattern is also seen for the alpha band. The 

pattern of significance suggests that within-gyrus correlations are highest, followed by within-

lobe correlations, and finally across-lobe correlations on gyri. The pattern was not statistically 

significant for the beta to high gamma band.  We surmise that this is due to the already-low 

correlations that are observed at the shortest observable distance of 4mm in these bands.  We 

postulate that if the density of the grid were high enough, the same pattern would be observed 

in higher frequency bands as in the theta band; within-gyrus correlations are highest, followed 

by within-lobe correlations, and finally across-sulcus correlations. 

 

4. Discussion 

This study was done to empirically define the spatial spread function of ECoG signals towards 
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understanding the relationship of neural frequency with spatial spread of activity across 

electrodes. We quantitatively defined the relationship of neural signal correlation and spatial 

distance. We further quantified how frequency band components affect this relationship, as 

higher frequencies have higher spatial resolution than low frequencies. We compared the 

spatial spread function across patients and across functional gyri, and noted consistency in the 

spatial fall off across patients and across functionally distinct areas. We then examined the 

effect of gyral and sulcal structural anatomy on spatial correlations.    

 

There are three major contributions to the observed positive spatial correlations, not including 

artifact or a common reference. First, there are correlations that are due simply to the physical 

properties of the measured electric field; this is referred to as volume conduction. The 

magnitude of electric fields decrease as a function of one over distance squared(Cybulski et al., 

2014). Second, there are functional correlations in neural networks due to synaptic connectivity. 

These functional correlations could appear in regions far away from each other because 

networks are not constrained to neighboring areas. Third, there are correlations due to the 

properties of the underlying neurophysiological generators of electric signals.  While the neural 

origins of the various canonical frequency bands are still a topic of debate, one theory is that low 

frequency signals are due to the spatial summation of synchronous dendritic inputs and that 

high frequency signals are the fields produced by spiking sub-populations and fast ionic and 

synaptic currents(Edwards et al., 2009, 2010; Lempka et al., 2011; Pesaran, 2009). If this is the 

case, low frequency correlations are more widespread than high frequency correlations because 

their generators act as a synchronous unit over a larger area than a high frequency spiking 

subpopulation.  All three major categories of correlation are presumably represented in the 

dataset that we have analyzed in this paper.  

 

To date, the closest study to the one presented here was a spatial correlation analysis of ECoG 
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signals across different electrode types in various places on the human cortex(Kellis et al., 

2015).  This was done using small microwire arrays in addition to large clinical arrays with 1cm 

spacing.  The findings in this paper suggest similar patterns in spatial correlation fall off with 

distance for both tested arrays, for raw data.  However, the reported spatial correlation fall offs 

are shallower than we observe.  This is probably due to recording while the patient was not 

engaged in a task to specifically elicit activity in the recorded area.  In our own analysis of 

correlations during rest versus activity, we observed a similar shallow fall off curve during rest. 

Interestingly, high-frequency modulation, which is believed to represent the activity of spatially 

localized neural processes, shows a greater change in correlation for rest versus task conditions 

than low frequency data. This is consistent with the idea that spatially discrete high frequency 

generators are recruited for a task, while low frequency generators maintain a brain state or 

modulate attention(Donner & Siegel, 2011; Engel & Fries, 2010). Importantly, our finding of 

stronger falloff of correlations during activity suggests that higher electrode densities may add 

specificity to observed task-related signals. Since distinct patterns of evoked activity may be 

observed even at small distances, increased spatial resolution may improve decoding of task-

related output. Determining the optimal spacing between electrodes would allow us to determine 

at what spatial scale neural signals are redundant for a given task.  

 

It would seem that the optimal spacing of electrodes would simply be to use the smallest inter-

electrode distance possible that avoids shunting.  However, there are other factors to consider. 

First, as density increases, electrode size necessarily decreases to make space and indeed to 

avoid electrical shunting. Smaller electrodes may not be ideal for electrocorticography 

recordings because they measure integrated activity of a smaller body of neural generators, and 

they potentially lose sensitivity to deeper cortical sources(Wodlinger, Degenhart, Collinger, 

Tyler-Kabara, & Wang, 2011). Furthermore, as electrodes become smaller their impedance 

increases, making the signal-to-noise ratio lower than similar electrodes of a larger scale. 
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Second, higher channel counts mean more wires, connectors, amplifiers, and data storage 

units.  This is not trivial as channel counts increase into the thousands, though it may not be 

necessary if a more efficient use of materials can give a similar picture of the neural activity.  

 

Considering the above as motivation, it is clear that determining the falloff of signal correlations 

over cortical distance has implications for the design of ECoG grids. Freeman et al. performed a 

study on the optimal spacing of electrodes in ECoG for signals recorded from the human STG 

and motor cortex(Freeman, Rogers, Holmes, & Silbergeld, 2000).  The study was done with a 

linear microwire array, and it examined the spatial frequency of neural oscillations up to 50 Hz. 

The conclusion was that for these frequency bands, the smallest spatial frequency observed 

above the noise floor was one that corresponds to 2.5mm per cyclic spatial change. This 

correlates well with our shared variability observation for low frequency neural signals. Another 

more recent study(Slutzky et al., 2010), used modeling of neural dipoles to estimate the optimal 

spacing of surface electrodes for human cortex.  The resulting recommendation for electrode 

spacing was 1.4mm correcting for Nyquist sampling, a measurement that again corresponds 

roughly to our observed and extrapolated correlations for low frequency neural data in the theta 

and alpha bands.   

 

We have demonstrated the relationship between neural frequency and the spatial spread of 

signals at the cortical surface.  Whether the application is during rest or active behavior will 

change the expected signal correlation over distance.  The phase and amplitude observations 

have similar dependencies; however, phase correlations decrease more quickly with distance.  

This is of particular importance in the theta and alpha bands where phase is a common signal of 

interest.  
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Although this study included areas that were both sensorimotor and higher-order processing, 

correlations were computed for speech-related tasks in speech-related areas.  Cortical encoding 

and tuning might be at different scales in other brain regions or even for other types of stimuli. A 

potential limitation of the fitting approach is that it leans toward the average of many data points, 

and therefore the resulting fit can over- or underestimate the activity spread from any one 

specific point. The results are an estimated fit averaged over several patients; as such, the 

cortical resolution suggested by these results should be interpreted as an average, not an 

absolute minimum.  By the same token, taking the interquartile range leaves out the most highly 

correlated electrodes at each distance and can therefore be considered a conservative measure 

of shared signal. 

 

Furthermore, our results provide novel information about the spatial spread of local field 

potential signals at the cortical surface. With ECoG grids of sufficient density and area, analysis 

of cortical activity can better describe the dynamics and functional connectivity of the cortex.  

Future studies can reveal if there are truly separable functional areas that respond to similar 

stimuli. The identification of functional areas corresponding to frequency of neural signal can 

shed light onto the origin of neural oscillations of various frequencies, most of which are not 

currently well understood.  

5. Conclusions 

The optimal spacing of ECoG electrodes depends heavily on the neural frequency band. The 

shape of the curve that defines this relationship is consistent across patients, but differs 

depending on which frequency band is represented and on which feature, amplitude or phase, 

is being represented. The dependence of this correlation falloff function on anatomical region is 

minimal, but falloff is stronger during speech-related tasks compared to rest. Correlations within 

functionally defined gyri are higher than those across sulci for low frequency oscillations.  
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Figure 1 Comparing ECoG signals 
from adjacent electrodes.   (A) MRI 
reconstruction with CT co-registered 
electrode positions. (Inset) Two 
adjacent electrodes are spaced 4mm 
apart on the STG (green and blue). 
(B) Sound waveform of example 
sentence presented aurally.  (C) Raw 
ECoG signal from green electrode 
(after notch filtering and common 
average referencing). (D-E) Time-
locked neural signal from the blue 
(D) and the green (E) electrodes in 
the theta range.  Light color shaded 
lines are bandpassed signal in the 
theta range, while dark colored lines 
are the analytic amplitude of the 
signal.  (F) Analytic amplitudes are 
overlaid, and show high correlation 
(R=0.83, over approximately 5 
minutes of data) (G) Phase traces for 
the same electrodes show high 
correlation (R=0.65, also over 
approximately 5 minutes of data). 

	



	 21	

 

 

Figure 2 Raw signal correlation decreases with distance. The falloff of correlation coefficient for pairs of 
neural signals as distance between electrode pairs increases.  Blue outline represents the interquartile 
range of data.  Red lines are the median of each plot.  Black whisker lines represent the upper and lower 
quartiles of data.  Black dashed line shows the exponential fit, chosen as such because it has the highest 
R2 value of the functions that attempted to fit the data.  There are no observations below 4mm, the closest 
spacing of electrodes.   
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Figure 3 Comparison of ECoG spatial spread for low and high spectral frequency bands. The part of the 
brain that is represented in the insets is shown in the boxed portion of the full brain above.  In the inset to 
the left, correlations in analytic amplitude for the theta band are shown for one electrode. The same 
electrode is shown at right, along with correlations in the analytic amplitude of the high gamma frequency 
band. The theta band (left) shows higher correlations over a larger area than the high gamma band 
(right).  The electrode to which all pairwise correlations are made is shown in blue for each. 
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Figure 4 Distributions of high gamma correlations for rest versus activity.  Correlations decrease 
markedly in the high gamma frequency when the subject performs a task.  Distributions at each distance 
are shown for the high gamma analytic amplitude activity for active electrodes in STG of one patient 
during a listening task. The gray plots show the distributed values of correlations between electrodes at 
each distance during rest, while the green plots show this distribution during the task.  At each distance, 
the same number of data points are used to create the distributions in gray and green. 
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Figure 5 Best fit functions approximate representative data (theta band analytic amplitude) for a single 
subject. A distribution plot of pairwise correlations at each distance are shown in blue. The best fit line for 
this component is a Lorentzian fit, shown by the line in blue. The Lorentzian form is followed closely in 
goodness-of-fit by the exponential form, shown by a dashed line. The goodness-of-fit further decreases 
for the Gaussian fit, and finally for the Power Law.  
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Figure 6 Electrode pair correlations decrease predictably as a function of distance. A curve-fitting 
algorithm was used to fit four equations to the data. The fit with the highest R-squared value was chosen 
to represent the frequency band. Fit lines become steeper with increasing neural frequency for all 
patients, indicating a sharper falloff of shared variability for high frequency bands with distance.  The 
result is averaged over five patients for active electrode pairs over the STG. Dark lines indicate the mean 
fit across patients; lighter background fill indicates standard error across patients. The gray shaded region 
is the region of the fit in which there were no neighboring electrode pairs below 4mm. 
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Figure 7 The steepness of correlation falloff values are conserved across patients and cortical regions, 
but differ by frequency band. (A) The Lorentzian equation (see Methods, equation 2) is the equation of 
best fit to represent falloff of correlation with distance for all frequency bands.  The B value is 
representative of the steepness of the curve.  The mean and standard error of the B value across patients 
for each cortical area is represented with a center point and error bars at each frequency band.  The error 
bars and points are color coded by cortical area.  A representative curve is shown above for each 
frequency band to give an idea of the curve that is constructed with the average B value. (B) The 
exponential equation (see Methods, equation 1) is the equation of best fit to represent falloff of correlation 
with distance for theta and alpha frequency bands, while the Lorentzian fit best describes falloff of 
correlation with frequency for beta, gamma, and high gamma bands.  The B value is representative of the 
steepness of the curve.  The mean and standard error of the B value across patients for each cortical 
area is represented with a center point and error bars at each frequency band.  The error bars and points 
are color coded by cortical area.  A representative curve is shown above for each frequency band to give 
an idea of the curve that is constructed with the average B value. 
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Figure 8 Within gyrus, across sulcus, and across fissure correlation patterns for the theta band.  
Correlations within a gyrus trend higher than correlations across a sulcus or the Sylvian fissure.  Mean 
and standard error of correlations over patients are plotted for electrodes within the STG (blue solid line), 
STG to MTG (dotted line), and STG to IFG (dashed line).  This effect is more pronounced for amplitude 
correlations than phase correlations.  Statistical significance, determined with an ANOVA followed by 
paired t-tests at each distance, is denoted by markers above each distance.  An asterisk denotes a 
significance of p<0.05 between groups ‘Within STG’ and ‘STG to suprasylvian.’ A circle denotes 
significance of p<0.05 between groups ‘Within STG’ and ‘STG to MTG.’ 
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Abstract— High-density electrocorticography (ECoG) arrays are promising interfaces for high-resolution 

neural recording from the cortical surface. Commercial options for high-density arrays are limited, and 

historically tradeoffs must be made between spatial coverage and electrode density.  However, thin-film 

technology is a promising alternative for generating electrode arrays capable of large area coverage and 

high channel count, with resolution on the order of cortical columns in the functional surface unit of a human 

gyrus. Here, we evaluate the sensing performance of a high-density thin-film 128-electrode array designed 

specifically for recording the distributed neural activity of a single human cortical gyrus.  We found robust 

field potential responses throughout the superior temporal gyrus evoked by speech sounds, and clear 

phonetic feature selectivity at the resolution of 2 mm inter-electrode distance. Decoding accuracy improved 

with increasing density of electrodes over all three patients tested. Thin-film ECoG has significant potential 

for high-density neural interface applications at the scale of a human gyrus.  

Index terms— electrocorticography, micro-ECoG, brain machine interface, neural device design, spatial 

resolution, neural decoding, thin film, high density 

 

I. INTRODUCTION 

Electrocorticography (ECoG) is a method of recording electrical neural signals from the cortical surface. 

Traditionally, ECoG has been used to localize the seizure focus in patients with refractory epilepsy for 
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surgical planning. Most currently available clinical electrode arrays have one centimeter center-to-center 

electrode spacing. There are many emerging applications, such as brain-computer interfaces (BCIs), in 

which sensing resolution on a much finer scale is required. In particular, there is a need for new neural 

interface devices that are capable of recording neural activity on the order of cortical columns, an important 

spatial unit of cortical organization.  

Micro-electrocorticography (µECoG) refers to ultra high-density recordings with spacing on the order of 

microns to millimeters. An important feature of µECoG is the potential to record high-density neural activity 

safely, while also conforming to a specific anatomic region-of-interest. The technology used to make these 

multi-electrode arrays must necessarily be different than that for hand-made, commercially available 

electrode arrays.  

We have utilized thin-film MEMS technology to fabricate a new µECoG multi-electrode array for human 

application.  The array was designed to leverage the safety and low impedance properties of disk-type 

electrodes for the cortical surface, while also increasing density.  The technological platform is a flexible 

one, so the same manufacturing technique can be applied to a variety of array configurations of surface 

area, electrode size, electrode shape, array pattern, electrode number, and density.  Here we show high-

resolution recording and discrimination of speech sounds using the thin-film array in human subjects as a 

demonstration of their potential for neural interface applications. 

II. EXPERIMENTAL METHODS 

A. µECoG design and fabrication 

The µECoG array consists of 128 electrodes (8x16), 1.2 mm in diameter with a center-to-center 

spacing of 2mm, designed specifically to span a human cortical gyrus. The thin film arrays were designed 

and fabricated in a similar manner as detailed in [1]. Polyimide layers provided insulation and structure 

between each metal layer, making the array a total thickness of approximately 20µm. Thin-film Ti/Au/Ti 

was sputter-deposited and patterned using contact lithography and wet etching to form conductive traces. 

Vias were etched in the polyimide using oxygen plasma to provide electrical contact between the electrode 

metal layer and the trace metal. The electrode metal layer was added by sputter depositing 250nm of Pt 

over a Ti adhesion layer and patterning the metal using contact lithography and reactive-ion etching. 
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Finally, oxygen plasma was used to etch openings on top of electrodes and connector pads. Each µECoG 

array was wire-bonded to a silicon interconnect board that was subsequently potted in medical grade 

epoxy. Electrode impedances at 1kHz were in the range of 800-900 kΩ. 

B. Experimental setup 

Experimental procedures were approved by the Committee for Human Research at the University of 

California, San Francisco and the Lawrence Livermore National Laboratory Institutional Review Board. All 

participants provided written informed consent. Three patients undergoing an awake craniotomy with 

language mapping prior to resection of epileptic foci volunteered to participate in this research study. In all 

three patients, the human auditory speech cortex, superior temporal gyrus (STG), was exposed as part of 

the clinical procedure. The sterilized thin-film µECoG device was placed on the STG, where cortical 

responses can be evoked in response to speech sounds[2], [3].  A needle electrode in the scalp served as 

the reference electrode and ground. The subjects listened to 51 pseudo-randomized consonant-vowel (CV) 

syllables played through free-field speakers.  The inter-stimulus interval was 2.25 seconds with a jitter of 

up to 250ms. Presentation of experimental stimuli was synchronized to neural recordings.  

 

C. Recording and data processing  

Signals were acquired at a sampling rate of 3051.8 Hz and were amplified and digitized using a Tucker-

Davis Technologies neural recording system.  Manual artifact and channel rejection was performed, 

followed by common average referencing (CAR) [4]. The CAR consists of the mean across 64-channel 

banks of non-rejected electrodes that are spatially arranged in four rows that span 3.5cm x 1.2cm. The 

CAR approximates the activity contributed by the original reference, so subtracting the CAR from each 

channel largely removes contributions of the original reference electrode and electrical artifacts that are 

often present in groups of 64 channels due to shared connectors and cabling (see Crone et al. 2001 for a 

discussion of CAR in ECoG recordings).  
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III. ANALYTICAL METHODS   

A. Signal processing 

 The signal from each electrode channel was filtered into 56 frequency bands using an FFT followed by 

a Hilbert transform with logarithmically increasing center frequencies (range of CF = 4.07 Hz – 944.83 Hz).  

The analytic amplitude, also known as the envelope, was calculated for each [5]. The filtered frequencies 

were then averaged over high gamma (70 – 150 Hz) bands.  The natural log of this signal was then z-

scored with respect to rest (no-task) epochs within the same recording.  

Electrodes were chosen for analysis using a bootstrap t-test to find electrodes that responded 

significantly to speech over silence.  The threshold p-value for inclusion was 0.001 over 10,000 bootstrap 

iterations. 

 

B. Decoding analysis 

To test decoding performance, the z-scored log of the high gamma analytic amplitude was used as the 

signal for significantly modulated electrodes (defined above). Classification was done using Linear 

Discriminant Analysis (LDA) and trained on four phonetic feature categories of sounds for which the STG 

neurons are known to express selectivity [2]: ‘fricatives’, ’nasals’, ’glides’, and ‘stops.’ A leave-one-out 

cross validation was employed to generate performance metrics. High gamma responses were taken for 

ten evenly spaced time points 200ms to 300ms after the onset of the syllable and associated with a 

phonetic category.  The average of the correct predicted categories for each ten-time-point representation 

of the CV was used as the percent correct for each CV syllable prediction.  These were averaged together 

to get a final metric of ‘percent correct.’ 

The electrode array was spatially subsampled at 4mm and 8mm inter-electrode spacing for all possible 

subsample variations. The variation in performance between spatial shifts of the same decimation factor 

was small, and results are reported as an average over all possible spatial subsamples for 4 and 8mm.  

IV. RESULTS 

The goal of our study was to functionally validate the sensing performance of a novel thin-film µECoG 

device for human recordings. We verified that evoked responses can be successfully recorded in the 
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frequency range of interest for neural recordings.  We then compared decoding accuracy using all 

responsive electrodes and decimated subsets of those electrodes.  

In contrast to commercially available high-density grids for surface recordings, the thin-film µECoG has 

not only large surface area but also high density.  The surface area and density are highlighted in Fig. 1. 

The thin-film array covers approximately the width of a human gyrus. It is low profile and extremely flexible 

to be conformal to the brain’s surface.  

A schematic of the array on the surface of the STG is shown in Fig. 2.  Fig. 2B shows a typical single-

electrode response to an acoustic stimulus. Robust evoked neural responses are recorded across the 

array, as shown in Fig. 2C. Several electrodes did not record good responses, possibly due to placement 

over small cortical blood vessels or faulty electrodes. 

Single electrodes show selectivity for phonetic features. An example is shown in Fig. 3A, where one 

electrode’s mean responses to the four phonetic categories tested is plotted.  This electrode is selective for 

stops.  We wanted to determine if, for the same available surface area of the human STG, a higher density 

of electrodes increases decoding accuracy. Results of this analysis are shown in Fig. 4. With chance at 

25%, we see that neural activity for all center-to-center spacings boosts predictive performs over chance. 

Beyond this observation, decoding performance increases as spatial density increases.  

V. DISCUSSION 

Our goal was to evaluate the human-based physiological recording properties of a high-density ECoG 

device fabricated using MEMS-based thin-film technology. Here we show that thin-film µECoG can record 

robust human cortical signals. We showed that there are differences in phoneme feature selectivity at 

single electrodes.  Across all three patients, we see an improvement in decoding accuracy with increased 

spatial resolution in the same available area.  

In the last decade, thin-film MEMS-based electrode arrays have proven their utility in animal ECoG 

studies [6]–[12].  The technology is appealing because the arrays are highly conformal to the brain’s 

surface, and the fabrication platform allows for scalable, customizable designs. The micron-level precision 

enables the fabrication of extremely small electrodes and very dense center-to-center spacing. Some 

groups have capitalized on the flexibility of the thin-films, making arrays that can be bent to record within a 
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sulcus [7], [12].   A recent study used thin-film devices in humans intra-operatively to record spontaneous 

surface potentials [13].  However, to our knowledge, this represents the first validation of a thin-film array 

that demonstrates recording of functional evoked activity from human cortex.  Additionally, our array 

highlights the advantages of maintaining broad spatial coverage while increasing number of electrodes 

within an anatomical area. 

Our combination of large surface area and dense spacing of electrodes allows us to interrogate a 

functionally related area on a human gyrus at high resolution. Spatial resolution improvements are 

obviously meaningful, as increased density improves decoding performance. This could be due to boosting 

of the signal-to-noise ratio from pooled estimates of a signal over electrodes. Alternatively, it could mean 

that the brain actually represents information at the scale of 2mm or less, information that is not captured 

with low-density sampling.  We have evidence that higher density improves decoding, and with even higher 

density we may see further decoding benefits. 

VI. CONCLUSIONS 

We have concluded that the thin-film µECoG array is a viable technology for recording neural signals 

from the human cortical surface.  This technology is a good alternative to commercially available high-

density options, as the arrays are safe, conformal, and relatively low impedance. The thin-film arrays are 

capable of recording robust and discrete high gamma signals even at a spacing of 2mm center-to-center.  

Higher density recordings enhance neural decoding capability within single patients, and the limit to this 

improvement has not yet been reached. 
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Figure 1. LLNL-UCSF thin-film array for 
human cortical recordings.    (A) 
Schematic showing array layout.  (B) 
Magnified view of thin-film µECoG array.  
Center-to-center spacing of electrodes is 
2mm. Exposed electrode diameter is 1.2 
mm.  The array is thin and flexible, and the 
surface texture is smooth.  Electrode 
positioning is precise to the order of 
microns.  (C) Thin-film µECoG array on 
the surface of the human brain.   
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Figure 2. Thin-film array records robust evoked 
potentials.  (A) MRI reconstruction of one subject’s 
brain with µECoG array overlaid. Inset zooms in on 
µECoG on STG (B) Single electrode response to 
acoustic stimulus, time-locked to acoustic stimulus 
presentation. Dotted line marks stimulus onset. Top: 
Representative acoustic waveform of consonant-
vowel stimulus. Second: Average raw evoked 
potential of neural signal. Third: Event-related  
cortical spectrogram.  Each frequency band was 
individually z-scored on silence.  Bright yellow areas 
show time points with relatively high activity in 
comparison to silence. Fourth: Evoked potential 
traces in time for z-scored high gamma band. (C) 
Robust high gamma responses are shown for each 
electrode site on the array.  Each subplot 
represents the average high gamma response of 
the electrode at that location to the stimulus. 
Standard error is represented as a shaded area 
around each line and is very low. Dotted lines mark 
stimulus onset. Rejected channels are left blank. 
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Figure 3. Single electrode selectivity and population decoding. A. High gamma 
phonetic feature selectivity for a representative electrode. (Average evoked 
potential - solid line; standard error of the mean - shaded). ERPs are color 
coded by phonetic category. B. Population decoding accuracy increases with 
higher density electrode sampling within the same surface area. Example 
electrodes included in each variation of the spacing designated on the x-axis 
are shown above the graph in agreement with the x-axis labels.  Percent of 
correctly classified phonetic categories is presented as a function of electrode 
spacing. Chance performance is 25% and is plotted as a dotted line.  Mean is 
plotted with error bars for percent correct at each density, subsampled from the 
same array.  There is a significant increase in decoding accuracy as center-to-
center spacing decreases.  This is true for all three patients and is designated 
with a star at the top of the graph between the relevant center-to-center 
spacings. 
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Abstract 

Direct electrical stimulation (DES) is a clinical gold standard for human brain 

mapping, and readily evokes conscious percepts, yet the neurophysiological 

changes underlying these percepts are not well understood. To determine the 

neural correlates of DES, we stimulated the somatosensory cortex of ten human 

participants at stimulation frequency-amplitude combinations that both elicited 

and failed to elicit conscious percepts, meanwhile recording neural activity 

directly adjacent to and surrounding the stimulation site.  We then compared the 

neural activity of perceived trials to that of unperceived trials.  We found that 

stimulation evokes high gamma activation, and this neural activation correlates 

with conscious perception better than stimulation parameters alone. Our findings 

suggest that high gamma activity is a reliable biomarker for perception evoked by 

natural and electrical stimuli. 
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Direct electrical stimulation (DES)—the direct application of electrical current to 

the cortical surface—has been used clinically since the early 1900’s to map human 

functional anatomy.1–5 DES mapping is routinely used to guide surgical decisions by 

identifying patient-specific brain regions critical for perceptual or cognitive functions 

such as sensation, motor control, and speech.6–13 These inferences rely on the 

fundamental assumption that DES causes neural activity to change in a way that is 

consistent with that of natural stimuli. However, although recent work has provided 

strong evidence linking stimulation site and intensity to properties of a patient’s 

subjective experience of naturally and artificially evoked percepts14,15, the neural effects 

of DES remain unknown.16,17 The present study represents the first systematic 

investigation of the neurophysiological effects of DES at clinically relevant levels. 

Neural changes in response to DES have proven difficult to study, with most 

studies instead relying only on behavioral reports of overt percepts elicited by 

stimulation.14,18–20 This focus away from electrophysiology stems in part from the 

technical challenges associated with simultaneous stimulation and recording of neural 

activity. First, saturation of amplifiers makes it impossible to recover neural signals 

during stimulation and for a short period after. Second, broad cortical coverage by many 

electrodes is necessary to determine the extent of the cortical surface affected by 

stimulation, and this is rarely achieved. Our experimental setup overcomes these 

technical obstacles by employing a high dynamic range amplifier for recording neural 

data from a high-density, broad-coverage electrocorticography (ECoG) array 

surrounding the site of stimulation. 
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With these technical advances, we sought to document the electrophysiological 

changes associated with DES-induced percepts. Prior ECoG studies of the 

somatosensory cortex have shown that high gamma neural activity increases in relation 

to sensory perception.21 We therefore hypothesized that the artificial percepts induced 

by DES would share this underlying electrophysiological signature. Moreover, we 

hypothesized that high gamma activity was specifically related to the conscious 

perception of a stimulus and not just an artifact of electrically exciting tissue.  

To assess the effects of DES on neural activity, we tested 10 patients who were 

undergoing clinical mapping prior to neurosurgical resection. We recorded before, 

during, and after electrical stimulation in somatosensory cortex using high-density 

ECoG grids surrounding and extending centimeters from the stimulation site. We 

defined the relationship between stimulation parameters of frequency and amplitude 

and the perceptual threshold.  However, when examined on a trial-by-trial basis, we 

found in many cases in which above-threshold stimulation did not evoke a sensory 

percept.  Analysis of the neural activity demonstrated that reported perceptual 

sensations were better predicted by evoked high gamma power than by stimulation 

parameters. We then tested the hypothesis that high gamma activation was a marker of 

perception (independent of stimulus parameters) by testing perception at threshold, 

where stimulation parameters remained constant but perceptual outcomes differed on a 

trial-by-trial basis. We found that high gamma power was a consistent and specific 

biomarker of conscious perception evoked by artificial (electrical) stimuli.   

 

Results 
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For each participant, we chose a single cortical site that had been determined 

through clinical mapping to evoke a somatosensory percept. We stimulated using a 

bipolar pair of electrodes at that site spaced 8mm apart to closely replicate the typical 

clinical stimulation protocol (Fig1A).  To determine the effect of stimulation parameters 

on perception and on neural activity, we employed a 3x3 stimulation pulse train 

paradigm that included at least five trials each of low (1mA), medium (3-4mA), and high 

(7-10mA) current amplitudes at frequencies of 10, 50, and 100 Hz.  Stimulation pulse 

trains lasted one second and pulse width was 100us, and were presented in a pseudo-

random order. The participants were instructed to push a button with their ipsilateral 

thumb when and if they felt the stimulation. Electrodes that were responsive to button 

press in isolation were excluded from further analyses.  Across subjects, the proportion 

of trials that elicited a percept increased, as expected, with increasing charge delivered 

per unit time (frequency x current, Fig1B).  

We next examined the neural recordings associated with stimulation pulse trains 

in the 3x3 paradigm. To avoid examining data contaminated with stimulation artifact, we 

analyzed data 100ms following the offset of stimulation. We determined which 

components of the evoked spectrogram were significantly different from baseline neural 

data (Fig1C).22 Across subjects, the only consistent evoked activity in a spectral band 

that deviated from baseline was a statistically significant increase in the 65-200Hz 

range, typically referred to as the high gamma range. (z score with respect to baseline 

distribution, p<0.01). The neural frequency of excitation did not vary with stimulation 

frequency (t-test between average neural responses grouped by stimulation frequency). 

In a minority of sites, lower frequency bands showed significant deviations from 
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baseline, but these changes were not consistent across subjects in response to 

stimulation.  

Contrary to our expectations, focal bipolar stimulation was associated with high 

gamma activation of a relatively large cortical area surrounding the stimulation site. For 

sites that showed significant high gamma modulation in response to stimulation, the 

amplitude of their high gamma increase was on average related to their proximity to the 

stimulation site, but the variability in this relationship was high (Fig 1C, scatterplot). High 

gamma amplitude versus distance can be approximated by a linear relationship with a 

negative slope (R2=0.098). 

We quantified the time points of significant activity in the high gamma band 

across patients to determine the typical time course of neural effects following 

stimulation. Across subjects, two-thirds of significant high gamma increases occurred 

100-300ms following stimulation. We therefore defined the time period of 100-300ms as 

the time period of interest for further analyses. 

We used the same methods to quantify the neural response to natural touch in 

the absence of electrical stimulation (Fig1C, ‘Natural touch’). Similarly, natural touch 

reliably evokes activity above baseline in the high gamma range. 

We used a logistic regression across patients to quantify the separate effects of 

stimulation amplitude and frequency on the probability of causing a conscious percept 

(Figure 1D). Both increased amplitude and increased charge per time were associated 

with higher rates of reported perception (p<10-4 and 10-6, respectively). Some parameter 

combinations are likely to produce a threshold response, where the patient feels the 

stimulation on approximately half of the trials. Interestingly, at threshold parameter 
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combinations, we noted increased high gamma activity for perceived trials over non-

perceived trials (Fig1D inset). 

To test whether high gamma increase and conscious perception are consistently 

concurrent, we compared perceptual reports with average high gamma activity at sites 

that modulated their activity in response to stimulation (Fig2A). We found a pronounced 

co-occurrence of perceptual reports with increased high gamma, and a significant shift 

to higher high gamma activity for perceptual trials over non-perceptual trials in the 3x3 

paradigm (Fig2B).  

Perceptual trials co-occur with pulse trains of high stimulation amplitude, high 

stimulation frequency, or a combination of the two. We next wanted to understand 

whether the charge delivered, the stimulation frequency, or the stimulation amplitude 

best correlated with perception. We expanded our 3x3 table of stimulation frequencies 

and amplitudes so that there was more continuity in tested levels of frequency and 

amplitude, and so that there were matched pairs of charge per time for a single subject 

(e.g. 10 Hz at 7.5 mA and 50 Hz at 1.5 mA, both of which inject 75 Hz x mA of charge; 

matched pairs are outlined in black in Fig2C). In some cases, equal amounts of charge 

per time are injected, yet the perceptual outcomes are different. There are even 

examples of the inverse relationship, in which a higher charge per time resulted in fewer 

positive percepts. For instance, at 100Hz and 3mA ([300 Hz x mA]) the subject in Fig2C 

felt the stimulation in approximately 20% of the trials, yet at 30Hz and 6mA ([180 Hz x 

mA]), the subject felt the stimulation in 100% of trials. These differences in outcome 

from matched pairs of charge illustrate that it is not simply the amount of charge injected 

per time that leads to a percept. Nor is it solely the stimulation frequency or stimulation 



	 51	

amplitude. Increasing stimulation parameters boosts the chance of evoking a conscious 

percept, but the stimulation parameters themselves are not the sole determinants of the 

perceptual outcome of stimulation. 

We have shown that increasing stimulation parameters are correlated with high 

gamma activation. We have also shown that high gamma is associated with perception.  

As a result, we next wanted to determine whether conscious perception was more 

dependent on the stimulation parameters or the high gamma activation. We evaluated 

the best predictors of high gamma change, and whether they differed by cortical site. 

We employed a series of linear regressions for each cortical site that showed significant 

high gamma activity above baseline. We predicted high gamma activity following 

stimulation for each electrode on single trials using frequency, current, charge per time, 

or percept as sole predictors. We compared the model fits to each other and to a full 

model that incorporated all of the factors (Fig2D). With only one predictor, we found that 

for the majority of electrodes, whether or not the stimulus was perceived was the best 

indicator of high gamma activity. Furthermore, for most electrodes, the model based on 

percept alone did approximately as well as the full model that included the stimulation 

parameters and charge per time (mean increase in adjusted R2 was 0.018. Perception 

predicts high gamma with the same accuracy as perception with all other stimulation 

parameters (the full model was not significantly different from that of the percept model, 

p=0.56). Finally, we used an LDA classifier to predict whether the subject perceived the 

stimulation based on either charge per time or high gamma activity across all significant 

sites (Fig2E). We found that more trials were accurately classified using high gamma 

activity than charge per time (93% versus 78%). Across these different methods of 
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analysis, we determined that the cortical high gamma response to stimulation predicts 

perception more accurately than stimulation parameters alone.  

We now have shown that high gamma activation is a better predictor of 

stimulation outcome than the stimulation parameters. The ultimate test of this point is 

the case of threshold stimulation, a paradigm in which stimulation parameters are held 

constant at a level for which the subject sometimes perceives the stimulation and 

sometimes does not. Because the stimulation current and frequency are held at the 

same value for all trials, any consistent differences in the recorded neural signal are 

necessarily differences in the underlying neural activity and are not from external factors 

such as stimulation parameters or stimulation artifact. 

Up to this point, we have limited our analysis to evoked neural signals following 

electrical stimulation, to avoid the concern of stimulation artifact during stimulation 

pulses. Threshold trials enable us to confidently estimate the differences in high gamma 

signal between perceptual and non-perceived trials during stimulation, since once again 

the electrical stimulus is identical for both conditions. We employed two complementary 

techniques to examine high gamma activity during stimulation. The Lomb-Scargle 

algorithm23,24 estimates power of a series with missing data points and was used to 

compare the mean high gamma activity during stimulation at each electrode. The 

second method, blanking with interpolation, allowed us to examine the time course of 

the high gamma activity during stimulation at each electrode. The results of the two 

methods corroborate each other to show that high gamma activity increases during 

stimulation for perceived trials versus non-perceived trials (Fig3 inset).  
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Many more electrodes in the vicinity of the stimulation site show increased HG 

during perceived trials as compared to non-perceived trials at threshold stimulation 

parameters (Fig 3B). The time course of high gamma activity for perceived versus non-

perceived trials shows an increase in the high gamma activation immediately at the start 

of stimulation that persists during stimulation (Fig3C, p<0.05). There is a trend toward 

higher high gamma in the time period of 100-300ms following stimulation, as we have 

examined before, but it is not particularly robust for this subset of electrodes. This 

suggests that some sites respond with high gamma increase during stimulation but not 

after, while some respond with increased high gamma both during and after the 

stimulation pulse train. Across patients, normalized high gamma amplitude during 

stimulation is higher in perceived trials over non-perceived trials (Fig3D, paired t-test, 

p=0.0098). 

 

Discussion 

 

Understanding the effects of epicortical stimulation is instrumental to the 

interpretation of both clinical and scientific studies that employ stimulation in assigning 

functions to cortical areas.  In this study, we used clinically relevant stimulation 

parameters to evoke sensory perception while measuring the neural response at sites 

surrounding the stimulation site. Several experimental features enabled us to draw 

conclusions about effective cortical stimulation on the macro scale. In contrast to other 

cortical stimulation studies, we were able not only to record neural activity throughout 

stimulation using a high dynamic range amplifier, but also to densely sample this activity 
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over centimeters of cortex directly adjacent to the stimulation site. This broad coverage 

at high density permitted us to determine that there are indeed widespread neural 

effects of stimulation, while the ability to record through and directly following stimulation 

allowed us to parse stimulation artifact from real neural modulation. The 3x3 

experimental design facilitated our drawing conclusions about the effects of stimulation 

parameters on both behavioral outcome and neural correlates. Finally, the threshold 

level stimulation experiments made it possible for us to confidently estimate neural 

differences during stimulation. 

We have shown that: 1) DES evokes neural activity primarily in the high gamma 

frequency range, 2) high gamma increases in response to stimulation are found beyond 

the focal site of stimulation to include surrounding cortical regions, 3) high gamma 

activation above baseline occurs for stimulation that evokes conscious perception, and 

4) high gamma increases during stimulation predict conscious sensory perception at 

threshold stimulation levels. These responses were evident across participants and over 

many different sites in somatosensory cortex.  

The characteristic increase in high gamma following stimulation that we found here 

is consistent with animal work describing increased neural firing in reaction to electrical 

microstimulation using pulse trains.25 Activity in the high gamma range in response to 

natural stimuli has been observed in sensory cortices dating back decades26–35, and it 

was explicitly distinguished from lower frequency bands in studies of human subjects 

using ECoG.36,37 It has since proven to be a strong correlate of sensory, motor, and 

cognitive events.21,22,36,38–41 High gamma activity correlates well not only with the 

functional magnetic resonance imaging blood-oxygen level-dependent signal42–44, but 
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also with multi-unit firing rate45, making it a reasonable proxy for evoked neural firing in 

response to stimulation. 

Although the high gamma increase in response to stimulation may be expected in 

light of these associations, it is important to note the novelty and importance of 

performing this study using DES. Microstimulation and DES are often incorrectly 

assumed to induce similar effects and to have comparable behavioral consequences, 

when in fact, the stimulation parameters, the electrode type, the depth of stimulation into 

the cortex, and particularly the scale of stimulation differ drastically between the two 

methods.17 Because of the clinical relevance of DES and how little we currently 

understand about its neural effects, it is premature to assume that the same neural 

mechanisms observed using microstimulation translate to DES. 

In a similar way, this work should be distinguished from other studies that use DES 

electrodes to examine functional connectivity.46,47 These studies use very low frequency 

pulses to evoke cortico-cortical evoked potentials (CCEPs). CCEPs provide information 

solely on network connectivity and are not related to function; they are generated 

whether or not the stimulation elicits a percept. In contrast, a train of pulses, as used in 

this study, drives the network, presumably eliciting an integrated response.17 

The high level of connectivity of the cortex is evident in the responses generated by 

pulse trains, as evidenced by the broad spatial spread of high gamma responses 

following stimulation. Other studies have noted CCEPs centimeters away from the 

stimulation site46,47, so it is not surprising that in driving cortical activity with DES we 

observe responses both near and far from the origin of stimulation. The spatial 

localization of DES has been reported to be 5mm based on function alone.48 Resulting 
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neural activation may appear to cover a broader expanse (centimeters as opposed to 

millimeters) due to the interconnectivity of the stimulated site with other sites in the 

surrounding area.  

Charge delivered per unit time was thought to be the most relevant factor in whether 

stimulation exceeds threshold for a sensory percept.  One example of this comes from 

microstimulation studies in rats, where it was shown that higher frequency and lower 

current may be used to achieve a similar sensation as lower frequency and higher 

current.49,50 Equivalent charge per time elicited different likelihoods of perception in our 

subjects, showing that frequency and amplitude may be tuned to deliver the same 

charge per time but affect perception differently. For instance, a high frequency, low 

current stimulus may safely achieve the desired outcome without causing the damage 

to neural tissue that is associated with high currents. This knowledge is useful for 

achieving adequate stimulation levels while preserving the integrity of neural tissue in 

long-term devices.51–53 

Initial experiments revealed activation above baseline following perceived trials, but 

it was originally unclear whether this reflected perception alone or simply increasing 

network excitation due to higher stimulation frequency and current. By employing highly 

controlled threshold stimulation trials, we were able to separate the neural correlates of 

perception from the correlates of stimulation parameters. We found that both at 

individual sites and on average, high gamma amplitude is increased during perceived 

trials over non-perceived trials.  Interestingly, the distinction begins at the very start of 

stimulation, suggesting that the trial is almost immediately classified as one that will be 

consciously perceived or not.  This rapid response is consistent with high gamma being 
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the intermediary neural signal by which DES causes conscious perception.54 In addition, 

it was not previously known whether pulse trains induce or inhibit activity16; this study 

shows that high gamma activity is increased during stimulation at sites surrounding the 

stimulation site. 

Reliable biomarkers of effective stimulation are critical for neural devices that rely on 

a biofeedback loop. We found that high gamma activation is a reliable biomarker of 

stimulation that produces a percept in sensory cortex. It is possible and even probable 

that DES induces high gamma activation irrespective to which brain region it is applied. 

If this were the case, high gamma could be the biomarker of choice for effective 

stimulation levels. This would be especially useful for disorders in which there is no 

expected immediate behavioral outcome, such as mood disorders or learning disorders. 

Future work can determine whether high gamma as a biomarker is as robust in other 

areas of cortex, and more specific studies can reveal whether the neural subpopulations 

that generate the high gamma signal are excitatory, inhibitory, or a mixture of the two. 
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Online Methods 

Participants. Experimental procedures were approved by the Committee for Human 

Research at the University of California, San Francisco, and all participants provided 

written informed consent. Patients undergoing ECoG grid implantation for epilepsy 

focus localization (N=10, 6M/4F, 20 – 55 years old) volunteered to participate in this 
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research study (Supplementary Table 1). Patients were implanted with 256 channel 

high-density subdural electrode arrays (AdTech, Racine, WI or Integra, Plainsboro, NJ) 

with 4mm center-to-center spacing (1.17mm exposed diameter). Electrode arrays were 

positioned purely according to clinical indications.  Participants were included whose 

coverage included the ventral sensorimotor cortex (pre- and post-central gyri). An 

electrode in the sub-galeal space served as the reference electrode and ground for 

recording. 

 

Tasks and stimuli. A neurologist (VR or RCK) operated a clinical bipolar stimulator  

(Natus, XXXX) while monitoring ECoG signal for electrical abnormalities throughout 

testing. Stimulation pulse train parameters were as follows: biphasic, cathode-leading, 

pulse width=100 µs,  duration = 1sec. In a typical experimental session, the clinician 

tested several bipolar pairs individually by stimulating with typical clinical parameters 

and asking the subject to report any sensations evoked by electrical stimulation. The 

site that produced the most discrete sensory percept was chosen as the test site for the 

rest of the experimental session. Most of these sites produced percepts in the hand or 

lower face areas. The subject was instructed to press a button when they felt the 

percept and to not move otherwise.  The subject did not know when stimulation was 

occurring, as they could not see the operator and there was no sound associated with 

stimulation. The typical 3x3 table of parameters was then tested with at least five 

repetitions of stimulation pulse trains for each current and frequency combination. 

Because the testing would have taken too long if the clinician had changed the 

parameters for each trial, the five repetitions were always completed back to back. 

However, each patient had a pseudorandom order of presentation of the current and 



	 59	

frequency combinations. Pulse trains were presented by the operator with several 

seconds between pulse trains. Across patients, the timing of button press was well-

correlated with timing of stimulation pulse trains, and false positives were rare.  For the 

fifty-fifty paradigm, the subject was again instructed to press the button when he or she 

felt the percept. A mid-range level of current delivered at 50Hz was chosen for testing 

and titrated until the experimenter determined that the patient was perceiving the stimuli 

approximately half of the time.   

 

Button press control 

The subjects were instructed to press the button using their ipsilateral thumb. A button 

press control task was performed by the subject in the absence of electrical stimuli. The 

subject was cued by the researcher to press and hold the button. The same statistical 

analysis that was used to test for increased high gamma following stimulation pulse 

trains was used to test for high gamma activity over baseline corresponding with the 

button press. These electrodes were then excluded from further analyses (n=107 of 

1824 total electrodes across patients).  

 

Sensory control 

The sensory control task was performed in the absence of electrical stimuli. In 

anatomical locations for which it was feasible, the researcher applied light tactile 

pressure to the anatomical area in which the subject reported feeling paresthesias. The 

sensory control was time aligned using a corresponding button press by an observing 

researcher. Because this control was used only to identify the location of neural 
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representation of the sensory area in question, the exact pressure applied was not 

analyzed. The same statistical analysis that was used to test for increased high gamma 

following stimulation pulse trains was used to test for high gamma activity over baseline 

corresponding with the sensory stimulus. Electrodes that displayed high gamma activity 

above baseline were then designated as part of the natural sensory network.  

 

Recording and data processing  

Signals were acquired at a sampling rate of 3051.8 Hz and were amplified and digitized 

using a Tucker-Davis Technologies (Alachua, FL, USA) neural recording system (RZ2 

DSP combined with a 256-channel PZ2 amplifier).  Manual artifact and channel 

rejection was performed, followed by common median referencing. 

 

The signal from each electrode channel was filtered into 40 frequency bands using an 

FFT followed by a Hilbert transform with logarithmically increasing center frequencies 

(range of CF = 4.07 Hz – 193.8 Hz).  The analytic amplitude, also known as the 

envelope, and the phase were calculated for each 55. The high gamma analytic 

amplitude was calculated by averaging filtered frequencies between 70 and 150 Hz.  A 

z-score of the filtered frequencies was calculated with respect to a rest block recorded 

during the same session by following the method of Canolty, et al.22 The anatomical 

location of electrodes was determined with the aid of co-registered brain CT and MRI 

images.  

 

Analytical methods   
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To avoid contamination by stimulation artifact, we excluded 100ms of data on either 

side of the stimulation pulse train. Due to forward and reverse filtering, any artifact from 

the stimulation is symmetrical at the onset and offset of stimulation. This interval was 

adequate for artifact rejection for all parameters used, as determined by comparison of 

z-scored signals prior to stimulation and following stimulation across stimulation 

parameters, and was corroborated by visual inspection. 

The stimulating channel pair was excluded from analyses. Z scored signals were tested 

for significance from baseline and corrected for false discovery rate using the method of 

Canolty et al.22 It was found that the only consistent signal across subjects that differed 

from baseline was the increased amplitude of the high gamma band following 

stimulation. The time course of high gamma increase was determined by counting the 

number of significant timepoints in the high gamma range of the neural spectrogram 

from 0.1 to 2 seconds post pulse train. In the typical case of high gamma activation 

across all electrodes, over two thirds of the significant time points occurred in the time 

period between 0.1 and 0.3 s following stimulation. Thus, the average high gamma 

power during this time frame is used for following analyses.  

 

Logistic regression on behavior 

A logistic regression with interactions and random effects by subject was performed with 

inputs of stimulation frequency and amplitude to predict perception as a binary value. 

The random effects grouped by subject allowed the subjects to have different intercepts, 

relating to varying thresholds for perception.  
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Linear regression on HG amplitude 

A linear regression was performed for each electrode for the single subject that was 

able to complete most of a 5x4 matrix of stimulation parameter values (current values of 

1.5, 3, 4.5, 6, 7.5mA and frequencies of 10, 30, 50, and 100Hz). This extended matrix of 

parameters was tested because in this rare case the team had more time to collect data 

prior to the patient’s surgery. This afforded an opportunity to determine what factors 

best predict increases in high gamma amplitude, and whether there exist 

subpopulations of electrodes that respond to some parameters and not others. 

Parameters that went into the regression were frequency, current, charge per time 

defined as frequency multiplied by current, percept as a 0 or 1, and a full model with all 

predictors included. Electrodes that never displayed an adjusted R2 of 0.1 or over were 

discarded from the analysis. Two additional outliers with abnormally high R2 values 

were identified and removed. 

 

LDA classification of perceived trials 

For each stimulation parameter pair, a classifier was used to predict whether a 

conscious percept was elicited with those parameters. In one model, the stimulation 

frequency, amplitude, and charge per time were the predictors. In the other model, the 

mean high gamma z score from 100 to 300ms post pulse train for all significant 

electrodes were the predictors. The classifier was trained on data from all parameter 

sets except two, and attempted to predict the percept on held out data. The same 

paradigm was then repeated over 100 iterations to define distributions for the accuracy 

of stimulation parameters and of high gamma in predicting perception. The result of 
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each model was a percent correct over all predictions, obtained by dividing the number 

correct by the total number of predictions. 

 

Testing for differences between HG traces at threshold 

For data during stimulation, a student’s T test was performed on power estimates of 

high gamma amplitude for each trial obtained with the Lomb-Scargle algorithm. 

Electrodes with p-values <0.05 were noted as significantly different and their T-statistic 

is shown in Fig3B.  

 

Code availability. Custom Matlab scripts were used for analyses in this study. These 

are available upon reasonable request. 
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Conclusion 

 

In this work we have tackled key aspects of the two major topics that are crucial to 

building closed loop neural devices: signal recording and electrical stimulation. Using 

human subjects, we studied the spatial resolution at the cortical surface to decide the 

necessary and sufficient density of electrodes in different brain regions and for various 

neural frequency bands. We then designed, fabricated, and tested a device that records 

signals at even higher density from the surface of a single gyrus, and we found that 

decoding of brain signals improves with increased density. Finally, we discovered that 

effective electrical pulse trains are associated with increased high gamma activity during 

and after stimulation, suggesting that eliciting high gamma activity is the primary 

mechanism by which stimulation affects neural circuits.  

 The work presented here will lead to the design of better neural devices, devices 

that record from large brain areas at sufficient resolution and stimulate one or many 

nodes in the neural circuitry to reap therapeutic effects. Devices of this sort can provide 

novel therapies for neuropsychiatric disorders, motor disorders, sensory disorders, and 

epilepsy.  
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