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Abstract
Large-scale sea surface temperature (SST) patterns influence the interannual variability of burned area
inmany regions bymeans of climate controls on fuel continuity, amount, andmoisture content. Some
of the variability in burned area is predictable on seasonal timescales because fuel characteristics
respond to the cumulative effects of climate prior to the onset of thefire season.Herewe systematically
evaluated the degree towhich annual burned area from theGlobal Fire EmissionsDatabase version 4
with small fires (GFED4s) can be predicted using SSTs from14 different ocean regions.We found that
about 48%of global burned area can be forecast with a correlation coefficient that is significant at a
p<0.01 level using a single ocean climate index (OCI) 3 ormoremonths prior to themonth of peak
burning. Continental regions where burned area had a higher degree of predictability included
equatorial Asia, where 92%of the burned area exceeded the correlation threshold, andCentral
America, where 86%of the burned area exceeded this threshold. PacificOcean indices describing the
ElNiño-SouthernOscillationweremore important than indices fromother ocean basins, accounting
for about 1/3 of the total predictable global burned area. Amodel that combined two indices from
different oceans considerably improvedmodel performance, suggesting thatfires inmany regions
respond to forcing frommore than one ocean basin. UsingOCI—burned area relationships and a
clustering algorithm,we identified 12 hotspot regions inwhichfires had a consistent response to SST
patterns. Annual burned area in these regions can be predictedwithmoderate confidence levels,
suggesting operational forecastsmay be possible with the aimof improving ecosystemmanagement.

1. Introduction

Seasonal forecasting of landscape fire activity is a
relatively new endeavor that has become possible with
recent improvements in the quality of fire and climate
time series. Physically-based forecast models (e.g.
Roads et al 2005, 2010, Spessa et al 2015) predict the
evolution of local climate variables before and during
the fire season. Together with various human influ-
ences such as land-use change and fire suppression,
these climate variables are used to create a measurable
prediction of fire risk (Field et al 2015). Another type
of forecast model relies on statistical correlations
between fire and local or large-scale climate patterns
prior to the onset of the fire season (e.g. Westerling

et al 2002, Preisler and Westerling 2007, Riano
et al 2007, Field and Shen 2008, Dixon et al 2008, Chen
et al 2011, Preisler et al 2011, Shabbar et al 2011,
Gudmundsson et al 2014, Marcos et al 2015). Major
climate variables used in these models include pre-
cipitation, temperature, soil moisture, sea surface
temperature (SST), and composite indicators such as
the Palmer Drought Severity Index (Alley 1984).
Regional climate indices may yield some predictive
skill even in locations where local climate–fire associa-
tions are not strong (Westerling et al 2002).

Recent studies have shown that large-scale ocean-
climate teleconnection patterns can influence fire
occurrence inmany regions, highlighting the potential
of SSTs from threemajor oceans (Pacific, Atlantic, and
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Indian) to provide an ‘a priori’ estimate of fire season
severity. El Niño Southern-Oscillation (ENSO) and
Pacific Decadal Oscillation (PDO), for example, are
known to significantly influence wildfires in North
America (Duffy et al 2005, Schoennagel et al 2005,
Liu 2006, Macias Fauria and Johnson 2006, Kitzberger
et al 2007, Macias Fauria and Johnson 2008, Goodrick
and Hanley 2009, Shabbar et al 2011). Strong El Niño
conditions also alter precipitation and other fire
weather variables that control the magnitude of fire
activity in equatorial Asia (Field et al 2009, van der
Kaars et al 2010, Barbero et al 2011, Reid et al 2012,
Wooster et al 2012), Southeast Asia (Fuller and Mur-
phy 2006), the eastern Amazon basin (Alencar
et al 2011), andAfrica (Andela and van derWerf 2014).
In regions such as the Amazon (Chen et al 2011, Fer-
nandes et al 2011), southeastern US (Dixon et al 2008),
Canada (Skinner et al 2006), and Indonesia (Field and
Shen 2008), fires may be affected by teleconnections
initiated frommultiple oceans.

Processes that link SSTs and fire behavior are com-
plex. Fires may respond to SST variations at or before
the onset of the fire season, and the climate influence
can occur by means of multiple pathways. Fuel con-
tinuity, amount, and the moisture content of live and
dead fuel are sensitive to climate regulation of net pri-
mary production (NPP) and soil moisture prior to the
fire season (Hessl 2011). NPP and soil moisture, in
turn, respond to the integrated effects of precipitation
anomalies and climate variables that regulate evapo-
transpiration, species composition, andmortality. Cli-
mate prior to the fire season also likely influences land
manager expectations and burning decisions in many
areas, although these types of interactions are not well
understood. In temperate and boreal ecosystems,
snow cover and depth may serve as a capacitor influ-
encing ecosystemmoisture levels during the following
fire season (Westerling et al 2006). In other areas, SSTs
may influence ecosystem moisture levels over such a
large area that land-atmosphere feedbacks are mod-
ified in subsequent seasons. For example, in the Ama-
zon, Chen et al (2013) found that lower cumulative
precipitation (which is linked to anomalously high
SSTs in the tropical North Atlantic and tropical east-
ern Pacific) reduces terrestrial water storage in forest
ecosystems by the end of the wet season. Reduced soil
moisture reserves subsequently limit evapotranspira-
tion during the following dry season, causing atmo-
spheric humidity to drop within the basin, and thus
enabling forest fires to spread more easily through the
understory (Morton et al 2013).

Althoughmany studies have explored the relation-
ship between SSTs and fire activity for specific land
regions, a global perspective on SST–fire relationships
has remained elusive due to the lack of consistent glo-
bal fire time series. With over 18 years of burned area
observations (1997–2015) (Giglio et al 2013) from the
Global Fire Emissions Database (GFED) (van derWerf
et al 2010), a systematic analysis of SST–fire

relationships across different continents and biomes is
now possible. For the first time, we evaluated the
degree to which seasonal burned area forecasts can be
developed in different regions using SSTs as statistical
predictors. We used 14 ocean climate indices (OCIs)
that represent the mean or spatial gradient of SSTs in
different ocean regions. TheseOCIs were produced on
a weekly or monthly basis by different centers at the
National Oceanic and Atmospheric Administration
(NOAA)—making them a suitable for operational
forecasts. In a first step, we explored the strength of the
coupling between individual OCIs and satellite-
observed burned area, and identify fire regions that are
significantly affected by each of these OCIs. We then
constructed statistical forecast models for burned area
in each grid cell using the optimal correlations
between OCIs and GFED burned area time series.
Using a clustering algorithm, we identified ‘hotspot’
regions where the sensitivities of burned area to differ-
ent OCIs were consistent and the seasonal predict-
ability was high. Our results highlight the significant
global influence of OCIs on interannual variability in
burned area, and identify specific regions where it may
be possible to develop operational fire forecasts using
OCI information. Uncertainties related to the data and
approach, as well as potential directions for future
research, are presented in the discussion.

2.Data andmethods

2.1. Burned area
To quantify interannual variability in global fires, we
used the fourth version of GFED burned area product
(Giglio et al 2013) updated to account for small fires
(GFED4s, Randerson et al 2012). We extended
GFED4s burned area estimates to the pre-MODIS era
using the relationship between GFED4s and Visible
and Infrared Scanner and European Space Agency
Advanced Along Track Scanning Radiometer active
fire detections. We used monthly GFED4s data to
calculate annual burned area at 1° resolution (figure 1)
in each fire year, a 12-month period centered on the
peak fire month (figure S1(A)). Drawing on monthly
observations from July 1996 through May 2015, the
total length of the full annual burned area time series
we analyzed was 18 years, from 1997 through 2014.
Important uncertainties in the burned area time series
originate from challenges in detecting and represent-
ing the statistics of burned area from fires that are
smaller from the 500 m resolution of the MODIS
surface reflectance product (Randerson et al 2012) and
from fusing fire records from the MODIS era
(2001–2015) with thermal anomaly time series from
the pre-MODIS era (1996–2000) (Giglio et al 2013).

2.2.Ocean climate indices
We examined 14OCIs representing SST status in three
oceans: the Pacific, the Atlantic, and the Indian Ocean
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(figures 1(A), S2, and table S1). Eleven ‘magnitude’
OCIs are mean SST anomalies over specific regions
representing SST variability in the Pacific (PDO,
NINO4, NINO34, NINO3, and NINO12), Atlantic
(TNA, TSA, and AMO), and Indian Oceans (SWIO,
WTIO, and SETIO). Three ‘gradient’ OCIs (TNI,
TASI, and DMI) were calculated as the difference of
OCIs for two regions within the same ocean basin. We
downloaded monthly time series of the OCIs in
NetCDF format from NOAA’s State of the Ocean
website (http://stateoftheocean.osmc.noaa.gov/).
Evidence for a range of covariance relationships

among OCIs (figure S3) was used to restrict 2-OCI
models to indices fromdifferent ocean basins.

2.3. Cross correlation analyses and optimal
regressionmodels
For each 1°×1° grid cell where annual BA was non-
zero in at least 9 of the 18 years during our study
period, we examined the linear correlation between
burned area and each OCI, with the OCI leading the
peak fire month by a period of between 3 and 12
months. A minimum lead time of 3 months (ahead of
the peak fire month) was selected recognizing that

Figure 1. (A) Location of the 14 ocean climate index (OCI) regions used in this study. The full names and area coverage of the different
OCIs are described in table S1. Themean annual burned fraction (%/yr) over 1997–2014 is shown on land, and the SST interannual
variability (standard deviation, inK) during 1995–2014 is shown on the ocean, whichwas derived after removing a climatological
annualmean cycle. (B)Regions used for aggregated statistics reported in tables 1 and S2. Boundaries of the regions were derived from
theGlobal Fire EmissionsDatabase (GFED), after Giglio et al (2006), van derWerf et al (2006), and van derWerf et al (2010). (C)
Location of the 12 hotspot regionswhere burned area had a relatively high degree of predictability and had a coherent response to the
sameOCIs.
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forecasts are likely to be more useful to land managers
when there is adequate time to plan and adjust
resources prior to the onset of the fire season. The
largest positive or negative correlation values (and the
associated lead times) were recorded for each OCI.
Among different OCIs, we selected the regression
model with the highest absolute values of correlation
as our optimal 1-OCI model (BA=aOCI1+c). In
order to examine the ENSO contribution to fire
predictability, we derived a similar 1-OCI optimal
model that used only the fourNINO indices.

We also created a 2-OCI model
(BA=aOCI1+bOCI2+c) for each grid cell by
combining information from two OCIs representing
different ocean basins. The a, b, and c coefficients were
obtained from least squares linear regression. In con-
structing the 2-OCImodel, we forced the first OCI and
its lead time to be the same as the optimal 1-OCI
model, and then selected an additional OCI from
another ocean basin that, combined with the first OCI,
explained the largest amount of variability in the
observed burned area time series.

We calculated Pearson’s correlation coefficient (r)
between gridded burned area from historical observa-
tions and the burned area predicted using the optimal
models. The burned area in a grid cell was assumed to
be predictable if r>0.59 (corresponding to p<0.01,
n=18). For each of the 14 land regions used in GFED
(figure 1(B)), we quantified the average predictability
for the region as a whole by calculating the fraction of
regional burned area that occurred in grid cells where
burned area was predictable at a level of p<0.01
(fBA). As another indicator of predictability, we calcu-
lated the mean r2 value (weighted by burned area in
each grid cell) of the 1-OCI and 2-OCImodels for each
GFED region.

2.4. Clustering analysis andmodel evaluation in
hotspot regions
We used the k-means algorithm (Pena et al 1999) to
identify clusters of grid cells that exhibited a high
degree of predictability (p<0.01) and responded in
similar ways to the global set of OCIs. Inputs to the
clustering method included the optimal correlation
coefficients and the optimal lead times (in months)
from linear regression between burned area and each
of the single OCIs. The total number of clusters was set
to be 15, although sensitivity tests generated a similar
spatial pattern of clusters if we chose a different
parameter value. By performing ensemble runs of the
clustering algorithm (Text S1), we derived 12 hotspot
regions globally (figure 1(C)), which represented
spatially contiguous regions where it may be possible
to develop operational fire forecasts with moderate
levels of predictability.

For each of these hotspots, we created a single
merged burned area time series and then derived opti-
mal 1-OCI and 2-OCImodels, similar to the approach

described above for our gridded analysis. The skill of
the forecast model was evaluated using a cross-valida-
tion approach in which the data were divided into
‘learning’ and ‘validation’ data sets (von Storch and
Zwiers 2001). In the cross-validation, we constructed a
‘leave-one-out’model in which the model parameters
used to calculate the burned area in a target year were
derived from data in all other years. Given that fires in
some regions have a nonlinear response to precipita-
tion anomalies (van derWerf et al 2008), we also tested
whether a nonlinear model could improve the level of
fire predictability in these hotspots regions. The non-
linear model was similar to the optimal 2-OCI model
except with optimized parameters to fit the natural
logarithm of burned area:
ln(BA)=aOCI1+bOCI2+c.

3. Results

3.1. Influence of individualOCIs on global burned
area variability
Pacific OCIs, representing the ENSO and PDOmodes
of climate variability, influenced landscape fires across
multiple continents (table 1). Important regions of
positive influence included tropical and boreal Asia,
Central and South America, and East Africa (figure 2).
Regions where the Pacific OCIs had a negative
influence included Australia, India, southern Africa,
and southern SouthAmerica.

In boreal, temperate, and equatorial Asia, eastern
Pacific OCIs (e.g., NINO12) had a stronger positive
influence on burned area than western Pacific OCIs
(e.g., NINO4), implying that eastern Pacific El Niño
events (Kao and Yu 2009)may have a stronger regional
teleconnection with climate variables that influence
burned area. For fire prone savanna regions in western
and northern Australia, stronger negative correlations
with long lead times were found for western Pacific
OCIs. This pattern is consistent with ENSO-driven
reductions in precipitation and fuel build-up during
the growing season, thereby limiting rates of fire
spread in the following dry season.

Fires in Central and South America also were sen-
sitive to Pacific SSTs. Inmost of southern hemispheric
tropical South America, Pacific OCIs with 3–10
month lead times were positively correlated with
burned area, similar to previous reports of a positive
relationship between Ocean Niño Index and satellite-
derived active fire detections in the southern Amazon
(Chen et al 2011). Western Pacific OCIs had a stronger
positive influence on burned area in South America,
whereas central and eastern Pacific OCIs were more
important predictors for Central America.

In general, fires in extratropical regions were less
sensitive to Pacific OCIs than those in tropical forests
and savannas, with several notable exceptions. NINO4
had positive correlationwith burned area in grasslands
in Central Asia. In the agricultural belt across southern
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Table 1.The percentage of burned area in eachGFED region that can be predicted usingOCI-based statisticalmodels with a lead time�3months. At each 1°×1° grid cell within a region, burned area was denoted as ‘predictable’ if theOCI
—burned area correlationwas significant at a p<0.01 level (r>0.59). For each region, the highest OCI—burned area relationship is highlighted in bold. The 1-OCI, 1-OCININOs and 2-OCImodels used different OCI information in
each 1°×1° grid cell. TheNINOs fraction represents the ratio of the predictable burned area from the 1-OCININOs onlymodel to that from the full 1-OCImodel. Thismetric provides ameasure of the importance of ENSO in regulating
burned area variability.

Fixed-OCImodel

Pacific Atlantic Indian Combinedmodels

Region NINO4 NINO34 NINO3 NINO12 PDO TNI TNA TSA AMO TASI SWIO WTIO SETIO DMI 1-OCI 2-OCI NINOs fraction

BONA 14 17 20 22 21 21 20 21 17 18 23 20 20 22 47 83 0.49

TENA 4 1 1 4 3 2 20 3 9 3 9 2 5 10 52 96 0.17

CEAM 3 28 47 58 32 44 6 58 1 9 14 29 52 53 86 99 0.71

NHSA 7 12 9 10 15 4 14 6 9 9 3 1 5 5 43 96 0.40

SHSA 9 15 11 8 14 1 14 4 19 8 5 24 8 9 58 97 0.34

EURO 2 0 1 1 7 1 5 1 3 5 8 2 9 4 29 97 0.10

MIDE 9 11 10 8 19 8 9 7 10 7 7 15 10 9 50 98 0.38

NHAF 2 2 6 15 6 18 4 4 6 6 5 7 6 8 51 97 0.35

SHAF 3 4 7 9 7 13 4 7 4 6 2 11 7 5 45 96 0.31

BOAS 3 3 9 12 16 10 9 8 3 5 11 6 12 12 41 92 0.34

CEAS 3 1 3 3 7 4 5 3 3 7 7 4 4 6 33 93 0.18

SEAS 7 9 10 14 8 11 7 4 4 5 6 5 3 14 54 97 0.35

EQAS 14 65 65 20 68 7 0 52 1 54 61 56 9 6 92 99 0.79

AUST 7 4 1 1 8 1 12 5 4 4 4 4 9 3 41 98 0.22

GLOBE 4 5 7 11 8 13 6 6 6 6 4 9 7 7 48 97 0.33
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Figure 2.Maximumcorrelation between burned area and eachOCI, grouped according to ocean basin. The correlation coefficient
with the largest absolute value is shown, with lead times varying between 3 and 12months. Red and blue colors indicate positive and
negative correlations, respectively. Figure S4 provides amap of the corresponding lead times.
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Canada, OCIs in the central and eastern Pacific
(NINO3 and NINO12)were positively correlated with
burned area.

Atlantic OCIs were important in explaining
burned area across North and South America and in
several more remote areas. A positive relationship was
found between North Atlantic OCIs (AMO and TNA)
and fires in tropical South America (figure 2). TNA
was also a strong positive driver of burned area in the
southeastern US, whereas TSA had a moderate nega-
tive impact on burned area in Central America. Tropi-
cal Atlantic OCIs (TNA and TSA) also had a moderate
role in influencing burned area in several remote
regions within northern Asia, Southeast Asia, and
Australia.

All three magnitude OCIs in the Indian Ocean had
a negative influence on burned area in Indonesia
(figure 2), but with different lead times (figure S4). The
two components of the Indian Ocean dipole, WTIO
and SETIO, had opposing impacts on burned areas in
East Africa. Positive phases ofWTIO increased burned
area, whereas positive phases of SETIO had the oppo-
site effect. Likely because some OCIs in the Indian
Ocean co-varied (and lagged behind) Pacific OCIs,
they also had high levels of correlation with burned
areas in several other remote regions, including South
America.

3.2. Using statisticalmodels to predict regional and
global burned area
Globally, about 48% of burned area was predictable
with a lead time of 3 or more months (with r>0.59
and p<0.01) (table 1 and figure S5(C)). Equatorial
Asia had the largest fractions of predictable burned
area using an optimized 1-OCImodel (92%), followed
by Central America (86%). In contrast, Europe and
Central Asia had the lowest fractions of predictable
burned area at 29% and 33%, respectively. The
fraction of predictable burned area in other regions
varied between 41% and 58%. The 1-OCI model
separately selected the optimalOCI in each 1° grid cell,
capturing heterogeneous regional patterns inOCI–fire
relationships (figure S5), thereby predicting a greater
fraction of burned area in each GFED region than a
regionally invariantOCImodel (table 1).

At a global scale, about a third of predictable
burned area can be directly linked with ENSO dynam-
ics (figure S6 and table 1). Equatorial Asia and Central
America were the two regions with the highest ENSO
influence, whereas temperate North America and Eur-
ope had relatively low levels of influence, based on the
ratio of models using only the four NINO OCIs to
optimized 1-OCI model using all 14 OCIs (table 1).
Considering a burned area-weighted global mean r2

value as a separate metric of predictability, we found
that the NINO-only model accounted for 63% of the
predictable variance obtained from a baseline model
constructed fromall of theOCIs (table S2).

Using a 2-OCI model, the correlation between
observed burned area and predicted burned increased
substantially in many grid cells (figure S5), and the
fraction of predictable burned area increased at a glo-
bal scale to 97% (table 1). This suggests that fires in
many regions respond to forcing from more than one
ocean basin. While this has been demonstrated in
prior work for specific regions (e.g. Skinner et al 2006,
Dixon et al 2008, Chen et al 2011, Fernandes
et al 2011), this is the first analysis that shows dual for-
cing of burned area is prevalent at a global scale.

The fraction of predictable burned area was sensi-
tive to the threshold used to define a significant rela-
tionship and the lead time. Figure 3 shows that fBA
values in most regions were over 80% for a threshold
of r>0.47 (corresponding to p<0.05) for the single
OCI model, and above 95% for the 2-OCI model.
Considering a more stringent criterion of r>0.71
(p<0.001), the fractions of predictable burned area
remained high for equatorial Asia and Central Amer-
ica, but were considerably reduced in other regions.
Predictable fractions of burned area also were reduced
as lead times increased, a key consideration for fire
forecasting applications.

3.3. Fire predictability in hotspot regions
We identified 12 hotspot regions where operational
fire forecasts may be possible using OCIs (figure 1(C)
and table 2). For these regions, a 2-OCI model
explained between 57% and 85% of the burned area
variance. The 2-OCImodel was a substantial improve-
ment over a 1-OCImodel in all hotspot regions except
southern hemispheric equatorial Asia (SH_EQAS) and
northeastern Asia (NE_Asia), likely because a single
climate mode (ENSO) has a dominant influence on
interannual burned area variability in these regions.

A cross validation analysis confirmed that the
2-OCI model was robust in many hotspot regions,
including the Amazon, western Africa, Southeast Asia,
and Australia (figure 4). However, where a single peak
dominated burned area time series (such as
1997–1998 El Niño impacts on burned area in Central
America and northeastern Asia), the cross-validation
model was not able to capture these events, resulting in
lower correlationmetrics (table 2).

Nonlinear (exponential) models considerably
improvedmodel performance in about half of the hot-
spot regions, with the same degrees of freedom
(table 2). The largest improvement was observed in
southern hemisphere equatorial Asia (r increases from
0.86 to 0.94), consistent with the strong nonlinearity
between fire emissions and drought described in van
derWerf et al (2008). The cross validation exponential
model also had better predictive ability in the southern
US, northeastern Asia, and southern hemisphere
equatorial Asia.
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4.Discussion

Globally, 48% of burned area can be predicted with
3–12 month lead times using a single OCI. ENSO was
the strongest single predictor of interannual variability
in global burned area, yet a 2-OCI model doubled the
amount of predictable global burned area compared
with the 1-OCI approach. The sensitivity of burned
area dynamics inmost GFED regions toOCI dynamics
in two ocean basins suggests that a range of mechan-
isms link climate modes and fire activity in the Earth
system, including teleconnections with different lead
times, synchronizing burned area anomalies across
large areas. Analysis of burned area variability also
revealed specific hotspot regions with strong and
consistent responses to specific OCIs. These hotspot
regions may be suitable for further development of
operational fire forecasts and related investigations of
themechanisms that link OCI and fire activity. Several

important burning regions were notably absent from
the hotspot analysis, however, including frequently
burning areas of sub-Saharan Africa. Regions with
substantial burned area but low interannual variability
(see figure S1) constitute a challenge for fire forecast
systems based solely onOCI data.

4.1.Hotspots of burned area predictability
Several of the hotspots we identified in our global
analysis overlap spatially with existing efforts to
develop operational fire forecasts. For example, Spessa
et al (2015) recently developed a seasonal fire and haze
forecasting system in southern Kalimantan of Indone-
sia using model predictions of rainfall. An early
warning system is particularly important for the
Indonesian peatland fires because of their impacts on
the air quality of densely populated neighboring areas
(Marlier et al 2013, Aouizerats et al 2015). Our analysis
suggests that it may be possible to develop seasonal fire

Figure 3.The percentage of predictable burned area in eachGFED region as a function of the correlation threshold (left panels, with
lead time of 3months) or as a function of the lead time (right panels, with a correlation threshold of r>0.59, or p<0.01).
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Table 2.Model parameters (optimalOCIs and associated lead times, lt) and evaluationmetrics (Pearson’s correlation, r, and theAkaike information criterion, AIC) in different hotspot regions. Themodels were optimized from linear
regressions between total annual burned area in each region and different combinations ofOCIs and lead times. The first OCI and its lead time in 2-OCImodels were the same as the optimalOCI used in the 1-OCImodel.WeusedAIC
(Akaike 1974) to assess tradeoffs between performance and complexity of the 1-OCI and the 2-OCImodels. The preferablemodel is the onewith smallest AIC value. For the 2-OCImodel, we also report results from a nonlinear
(exponential)model. In the cross-validation analysis, the target yearwas not used in developing themodel parameters used to predict burned area in that year.

2-OCImodel

Standard Cross-validation

1-OCI linearmodel Linear Nonlinear Linear Nonlinear

Hotspot region OCI lt r AIC OCI(2) lt(2) r(2) r AIC r r r

S_US TNA 10 0.68 34.7 WTIO 10 −0.55 0.86 26.8 0.82 0.39 0.55

C_America NINO12 4 0.81 62.8 SWIO 9 0.41 0.87 60.1 0.90 0.33 0.30

SW_Amazon AMO 4 0.76 66.3 SWIO 10 −0.13 0.88 59.8 0.85 0.84 0.79

E_Amazon PDO 3 0.77 25.1 SWIO 8 −0.47 0.85 20.1 0.90 0.63 0.87

SE_Amazon WTIO 9 0.69 119.9 TSA 12 0.17 0.79 110.3 0.82 0.64 0.71

W_Africa TNI 3 0.81 67.7 TASI 6 −0.31 0.87 65.0 0.87 0.75 0.78

SW_Africa SETIO 8 −0.65 65.0 TSA 11 0.13 0.76 51.7 0.75 0.62 0.66

C_Asia DMI 6 −0.60 89.9 TASI 7 −0.63 0.80 73.1 0.81 0.45 0.55

NE_Asia NINO12 5 0.89 44.5 SETIO 7 −0.58 0.92 44.7 0.95 0.52 0.73

SE_Asia NINO12 4 0.81 53.6 TSA 6 0.30 0.90 50.0 0.88 0.86 0.77

SH_EQAS NINO34 3 0.82 65.4 WTIO 11 −0.68 0.86 63.7 0.94 0.54 0.83

Australia NINO4 10 −0.69 159.3 SWIO 6 0.37 0.80 149.9 0.79 0.70 0.68
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outlooks for a broader continental-scale region
encompassing most of the southern hemisphere
equatorial Asia. Similarly, in South America our
analysis suggests that it may be possible to develop fire
forecasts for savannas and seasonally dry forests in
southeastern Brazil, outside of the current domain of
the UC Irvine fire outlook system developed for the
Amazon (http://www.ess.uci.edu/~amazonfirerisk/
ForecastWeb/SAMFSS.html).

Other hotspots we uncovered may present new
opportunities to manage ecosystem processes and air
quality. For example, the hotspot in northeastern Asia
(NE_Asia) overlaps with Siberian forests that provide
habitat for the endangered Amur tiger (Carroll and
Miquelle 2006). A long lead time for the regression
model this region (table 2)may enable land managers
to more effectively manage fire risk in important con-
servation areas. In the southern US (SE_US), pre-
scribed andwildland fires contribute to elevated ozone
and particulate matter levels during spring, summer,
and fall (Zhang et al 2014). Understanding the fire
danger exerted by climate before the onset of the fire
season may help state air quality agencies optimize

mitigation strategies and adjust emissions from other
sectors to meet the newly lowered US National Ambi-
ent Air Quality Standards for ground-level ozone. In
Central America, expansion and intensification of
agriculture has increased anthropogenic pressure on
protected areas and national parks (e.g. Fagan
et al 2013). The development of an early warning fire
system in this region may allow managers to allocate
fire suppression resources more efficiently and to cre-
ate incentive programs to limit anthropogenic fire use
during periods of extreme risk.

The hotspot regions in this study capture impor-
tant coherence in fire–climate relationships, but the
spatial scale of our analysis may be too coarse for some
applications. Some areas where the climate–fire rela-
tionships have been extensively explored, such as in
the western US and tropical Africa, were not classified
as hotspot regions in this study because they are small
or exhibit a heterogeneous response toOCI variability.
With respect to the development of operational fore-
casts in hotspot regions, another important step is to
tailor the regions of SST influence to optimize model
performance (figure S7).

Figure 4.Comparison of observed and predicted annual burned area in 12 globally distributed hotspot regions. The predicted results
from threemodels, the 1-OCImodel, the 2-OCImodel, the 2-OCI cross validation (c-v)model, are shown.
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4.2. ENSOas a global driver of burned area
dynamics
ENSO is the primary large-scale climate mode that
influences global fire activity and provides the founda-
tion for predictability in the global fire system.
Previous studies have highlighted some aspects of the
ENSO influence on global fires (e.g. van der Werf
et al 2004, Marlier et al 2013), but this study is the first
comprehensive assessment of OCI–fire relationships
overmultiple ENSO cycles. ENSO is phase lockedwith
the seasonal cycle (McPhaden et al 2006), intensifies in
predictable ways from northern hemisphere summer
through fall and early winter, and forces ocean-
atmosphere dynamics (with time delays) in other
regions (figure S3). Subsequent changes in regional
climate in fire prone regions, and the influence of this
climate variability on fuel characteristics serves as the
physical basis for the statistical relationships we
identified here.

Fire is a critical component of the Earth system
response to ENSO-driven changes in tropical temper-
ature and precipitation (Keppel-Aleks et al 2014).
Although ENSO is the dominant mode of climate
variability for the growth rate of atmospheric CO2 and
global burned area, this study highlights the broad
influence of OCIs from all three ocean basins as a dri-
ver of terrestrial ecosystem processes. Atlantic and
Indian OCI variability also contributed directly to
burned area dynamics in North and South America
and western Africa, and most regions exhibited a dual
sensitivity to OCI variability from different ocean
basins. Both of these findings suggest improved repre-
sentation and evaluation of OCI–fire linkages is nee-
ded in Earth system models used to assess climate-
carbon cycle feedbacks.

4.3. Uncertainties and future directions
Fire–climate interactions vary considerably across
biomes and continents, complicating efforts to derive
consistent predictive relationships. In some areas, fire
activity may be negatively influenced by precipitation
during the fire season, yet positively affected by
precipitation during the preceding wet season (Archi-
bald et al 2009). The simultaneous influence of
precipitation on fuel moisture and fuel amount may
reduce fire predictability using the approach described
here, which relied uponOCI information with a single
fixed lead time. Development of more sophisticated
modeling approaches, such as regression models
representing both positive and negative correlations
between burned area and OCIs, models that integrate
information from OCIs in the same basin across a
period of several months, or nonlinear models that
capture the non-monotonic fire responses to climate,
are important next steps that will require the use of
longer and higher resolution burned area time series
formodel development and validation. Longer burned
area time series spanning strong El Niño years

(including the ongoing 2015–2016 El Niño) may also
help simulate fire extremes more accurately by avoid-
ing the dominance of a single event in the time series
(see section 3.3). We note that anthropogenic forcing
of the climate systemmay create new climatemodes or
modify the strength of many existing teleconnections
that are important for the fire prediction models
described here. This changing baseline necessitates the
development of an adaptive forecasting approach that
allows for periodic refinements tomodel structure and
parameters, and the exploration of approaches that
predict fire and ecosystem variables using meteorolo-
gical variables from coupled dynamical forecasting
systems.

It is also critical to recognize that climate is not the
sole factor determining the spatiotemporal variability
of the burned area (Archibald et al 2013, Lehmann
et al 2014). Fire regimes, as defined by the processes
regulating ignition, intensity, spread rate, size, and
severity, are influenced by many forms of human
activity (Archibald et al 2010, Le Page et al 2010). Land
management may considerably amplify the climate
sensitivity of fire activity (e.g. Field et al 2009, Morton
et al 2013), or contribute to trends and variability that
are not closely coupled with the climate system
(Andela and van der Werf 2014). In the latter case,
changes in land use that are not closely coupled with
the climate system could significantly contribute to
trends and variability. To better represent the influ-
ence of humans on global fire dynamics, greater
investment is needed with respect to the development
of long-term, internally consistent annual time series
of human system variables, including population den-
sity, cropland areas and yields, and road networks.

5. Conclusions

Previous studies have demonstrated that robust seaso-
nal predictions of fire activity can be made in specific
regions. For the first time, we explored the degree to
which SSTs in different ocean basins can explain year
to year variations in burned area at a global scale, with
lead times enabling the development of operational
fire forecasts. We found about half of global burned
area can be predicted with a lead time of 3 or more
months. Central America and equatorial Asia had the
highest levels of predictability, in part from the strong
sensitivity of fires in these regions to forcing from
ENSO. Use of two OCIs from different ocean basins
considerably improved model performance in many
regions. Twelve hotspot regions were identified glob-
ally where fires may be predicted with moderate
confidence levels. Several of these hotspots were in
areas that have not been targeted in past work for
forecast development, suggesting that new opportu-
nities may exist for improving fire and ecosystem
management. Collectively, the strong influence ofOCI
variability on global burned area highlights the
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diversity of climate–fire teleconnections on seasonal
timescales and the opportunity to investigate mechan-
isms that couple climate and fire in the Earth system.
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