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ABSTRACT

The low-energy levels of the odd-odd nucleus Y9O are calculated with
finite-range central and tensor forces to first order by means of the j;j
coupled odd-group model. The two-body matrix elements for the céhtral and
tensor forces are expressed in the j-j representation, from which a generali-
zation to off-diagonal matrix elements is obtained in the limit of the zero
range. A phenomenological Gaussian potential without a hard core, estimated
from the free two-nucleon potentials of Jackson-Blatt and Brueckner-Gammel-
Thaler, is used for the residual interaction. The effects of the tensor force

are analyzed in detaill as a function of the force range. The numerical results

of the calculation are in reasonably good agreement with available experimental

spectra.
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I. INTRODUCTION

Recently an isomeric state.in the odd-odd nucleus YQQ has been»foﬁnd.l
It is intereéting to see if this isomeric state can be explained in:terms of the
J=3 coupling shell modei. Furthermore, as several other low-energy states were
reported prex.riously,2 a theoretical calculation of these observed low-energy
states is worth-while, with the hope that it might provide useful information
on the.effective,interaction between proténs and neutrons iﬁ the nucleus.

We shall adopt thebodd—group modei with j-j coupling in which the
nuclear properties of the nucleus are assumed to be determined by the.properties
of the odd-group particles. In odd-odd nuclei, one assumes that the ?esidual
interaction between proton and neufron is sufficientiy weak 50 that it can be
considered as a perturbation on the central fiéld of the "nuclear core,"‘and
fufther that the wave fuﬁétion is‘a vector-coupled éroauct of the Wave functions
of two odd-group ﬁarticles.

To justify‘the theoretical basis of £he weli—known Nordheim's cpupling
rule,'3 de-Shalit in&eStigated the case of nucléi with one proton and neutron
outside ¢losed sheils. He used thebzero—range force betﬁeen them, and thained
expressions fbr tﬁe diagonél matrix el‘ements..4 Calculations for specific odd-

odd nuclei have been made by several workers for the finite-range force in

5,6

which central exchange forces are included.
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_ We shallvuse the céntral-and tensor parts of the nuclear farce,
neglecting the spin-orbit force entirely. This practice is probably reasonable,
as 1t appears that the existence of the spin-orbit force in the nuclear force
is still questionable. The residual interaction of nucleons outside the closed
shell is not well kﬁown, and there seem tr he no g priori réasoné for retain-
ing the same strength parameteré of the free two-nucleon problem for this
interaction. However, because of our ignorance of the exact form of the
résidual interaction, we.shall rely upon the free two-nucleon force parameters
in estimating the strengths of our force, which we hope simulates the residual

interaction.

II. ZEROTH-ORDER APPROXIMATION

Before discussing our qhoiée of the residual force betweeﬁ ﬁroton
and neutron outside cloéed shells, we describe the basic assumptions tha£
enter into our calculatiqn. In our odd-group model, we assume that the:
doubly closed shell caﬁ be treated as an inert core giving rise to the.centfai:
field in which nucleons outside the doubly closed shell move. . It is assumed
that 38 protbns and 50 neutrons fdrm closed~shell cores. The assumption that
50 neutrons form & closed sheil hés been established because Zr9O exhibits
typical properties of a closed-shell nucleu,s.7 The 38~pro£on subclosed shell
has been assumed by several workers_,8 and we make the seme assumption. fhese
-assumptions simplify the calculation, since there will be only one proton and
one neutroh outside the doubly closed-shell.core in Y9O. The wave functioh is
then the J-j-cdupled new basis véétor, which is a simple vec¢tor product of fhev
wave functions of the nonidentical nucleons 1 and 2 (proton and ﬁeutron):

la) = R'l(rl)Rz(fz) |3,d,9M),
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where Ri(rl)Rz(rz) is the radial part of the wave function and jlszM) is
art. Now we assume that the Hamiltonian describing this nucleus

at low energy may be written-as

H = Hl + H2 + Vlz’

where Hl and Hé are the single-particle shell-model Hamiltonians for particles

1 and 2, respectively, and‘Vl is the two-body interaction between particle 1

2
and 2. This implies that
i
Hila) =€ la)
for i =.l or- 2, where €;7is the single-particle energy for particle i. . In
the zeroth-order approximation, the level energies are given by the sum of
proton and neutron single-particle energies %egl Estimated single~-particle

9,10

levels have been reported_injseveral works, but one‘cannot avoild the
arbitrariness-in choosing the parameters involved. Instéead we rely on the
expefimental single-particle levels of neighboring nuclei to eliminate ambiguity.
For the proton single-particle levels, we choose ﬁhe average values betweén‘

Y89 and Y9l, and - for the neutron single—partiéle levels fhe average between

Sr89 and zr9l, The experimental’single-particle levels are presented in
Tables I and II, and the resulting zeroth-order energy levels are listed in

Table III. The assignment for the lowest state of the fifty-first neutron

configuration is evident from the fact that the observed ground-

1

as the d5/2

state spins and parities of Sr89 and.Zr9:L are 5/2-1—9l The 1Qwest‘state of

the thirty-ninth proton is assumed to be pl/z, since ‘both Y89 and Y9l~are
known to have ground-state spin l/2+nl:L Recently the atomic-beam measurement

of the ground-state spin has been made for Y9l, confirming the pl/Z configura-

90

. 12 ’
tion.™ The observed low-energy levels in Y are shown in Fig. 1. The

ground-state spin of Y9O has been determined recently by the atomic-beam

'

method to be two. o
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‘We treat Vlz as a perturbation of the central field of the shell-'"
model core, and evaluate the first-order perturbation term. The total'énergy
for the state of a given J is given approximately then by

i .
Exne + ¢ i=1,z2,
o

17
where the higher terms are neglected. Values for €;" are listed in Table IIT.
" It is clear that V12 removes the degeneracy of the state with various J° values

arising from a given configuration. The values of Gl, and consequently E, are

obtained from the eigenvalue equation

24[(a]Vlzla') - (E-€O )6a a,]@a'laJM) = 0.
a‘ a! J

For the numerical calculation, the summation is restricted to the configuration

listed in Table III.

Table L. ©Single-particle levels of the thirty-ninth proton.-

Energy (keV)

Configuration ' 5
a a
Y89 Y9l vY9o
pl/2 ‘ 0 0 ) 0
&9 /2 913 o51 _ 132

a Experimental data from reference 11.

bAverage between Y89 and Y9l°
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Table II. BSingle-particle levels of the fifty-first neutron.

Energy (keV)

Configuration
Sr89 a Zr9l 19 Y9O c
A o | 0 | 0
51/ 1050 1225 1138
d3/2 12020 2070 2045
&7 /2 . ———- 2205 2205

a Experimental data from B.. L. Cohen, Phys. Rev. 125, 1358 (1962).

bExperimental data from Cohen (cit. supra) and reference 2L4.

CAverage bétween-Sr89 ander9l°

Table ITI. The zeroth-order levels in Y9O

Configuration (proton-neutron) v Energy (keV)
Py /295 /2 0
89/2% /2 | 13
Py /25%1/2 | 1138
Py /287 /2 ' ' 2205
g9/2d3/2 ' 2777

89/2g7/2 ' 2937
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ITII. RESIDUAL INTERACTION

Now we assume an explicit form of the proton-rieutron residual
interaction, and proceed to evaluate the matrix element. The residual in-

teraction VlZ is chosen as

T
Vip = Volzyp) + Vizyp)8y,,
where the first term is the central force, and the second term is the tensor

force. The explicit forms of these forces are

c e C . C .2 > C 2y
Virp) = Wy Prg exp (Bpg” 1)+ Vgu~ Pgp exp (Brg r))
c . - ¢ 2 C . C 2\
+ Voo Ppo exp (-Brg” 2l) + Voo Bgg exp (-Bgy )],
and '
T T T 2 T g T 241
Vizyp) = Ypg Frg ©*P (g™ 2) * Vg0 Pro eXPV('BTo )l

where P P PTO’ and P

TE’ "SE’

qp are the projection operators for the triplet-even,

sihglet¥even,:triplet—odd, and singlet-odd staﬁés, reépeétivel&, éhle?é éfe.>

the corresponding strength parameters. The operator Slé is the tensor.foféé

operator defined as

ooy
1z r 2 -1 =2
12

The matrix element for the central force may be expressed as

(a]VC(gig)]a‘)= % [(VTEC+ VTOC)

P NS R - S T MV
- - ? : 1

+ (Vpg = Vg (1) PlZ-J {alU (z),)Pgla")

1 C . C . C . C

2 [(VT Vsg * Vo = Vg0 )

] 1 = 1 J -
cC . C c c dp T T ! c ,

Vg + Vg = Vg = Vg0 )(-1) PlZIJ (alU™(z)p)Pgla"d,



=T UCRL-10329
where-PS is the singlet projection operator, and Plz' is an exchange operator
whichfinterchanges ﬂl?e—éﬂz' and jl'e~>jzf~in the primed (interial) states.
The matrix elements (a]UC(ElZ)Ia’):and (a]UC(ElZ)PSla') are given by (see
Appendix A)

'+ .+ dJd
@ [0%(z;,) fa) J

; |
(-1)°¢ @ ([,jl][jz][jl'][jz'])l/2

il

A N
x 2R g 5y 7 [0, g dpm 20D

g +32+J~+l

(-1)° ([Jl][JZ][Jl

il

@0y B fa) "52151/2([éilgzzl[zilgzz'l)1/?

£ J)w(z'j,t;z'

z . J

191%2925

1 t i 1
X % F (2 04, 0]x0)( z 0, 0|x0) W (zl x> KT ),

and with the restriction that Xk + 2‘ + zl' and k + £2 + ﬂz' are both even. The
éymbol [é] stands for [Za + 11, and ( | ) and W are the usual Clebsch-Gordan

and Racah coefficients. The Slater integral Fk is defined as
[ee] (o8]
2 a '
F, = u/\drl ry RlRl'fdrzr2 R.R,
0] 0]

1
cos 612 c
X k/ﬁd_(———————) Pk(cos elZ)U (rlz),

2
-1
where U (rlz) takes the Gaussian form exp(—ﬁrz) with different values of B

for the corresponding states.

For the tensor force, the matrix element can be expressed as
1 T T
| [ ——
(alv" (rlZ)SlZJ )= 3 Vg + Vg )
t s ! J
T dp e Ty T

and (see Appendix B)
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R Y i o V(Lo
(a|u (Eiz)SlEla y = kfgay<g|FXyﬁx YW(1x1y;K2)

(1)K, = (1)K,

X {399,M|Ty T2 |3 319" M,
where
@h&ypw-— ﬁﬁfﬂrr o )X, g B3 = 1,2
X, = (2/15) 72 [x2/2 (20%0 |x0) ,
= (2/15)Y? 1312 (2000(50),
, 1/2 ‘ o .
X, = ([xyD) (100 [x0) (10O [y0)W(11xy;2k) ,
and 0 0
» o - 2 5 n Jarr?RR
(alrirjEX ) = (2k + l)k/ﬁdrlrl RE; L/;rz Ty BoRp' ryr,
' ] . T( )
© cos 6. U'(r
, 12 12
X fd(—_Z_——)Pk(cos 912) 5
-1 , ) Y

Here the form of ﬁhe radial function for thé'triplét—evéﬁ state.ié

T T 2

U (I‘lz) - eXP("BTE r'l) b

and for the triplet-odd state,

T T 2
( = exp(-Bpy~ 1)

U rlz)

The angular part .in terms of 3-, 6-, and 9-j symbols is
VL
+ 3 +£l+ £2+ J

_ DR
(313, M[T, (lX)?_o T, K5 )= (1)

K3,%9,

3 3y 3 1
x 65JJ,_%M,{ .2..l}< 50,05, j27])l/2 AR TRV

ol . : . vl 1
AN ? ] H— ——
y <,el X.ﬂl)<,@2y,@2) 5 3 1
Q 00 0 00 ﬂi : ﬁl X

1
£

s ¥
Jo K
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In the zero range, the tensor force vanishes, and the central force

matrix eleément reduces to
(alV(zy,) forym (0™ (B2 [avg” + v )a oz, - 2) lar)

c c K : ,

where (see Appendix.A)

(alolz, - £, ) = 5 Tolls,1l,000, 105, DY

L. 1 !
. PR 7 . s . < 1
« [(-1)°L 2 rhrh L (T e __aar
W(J + 1)’
and
\ 1 1/2
e . 1\~ . . P P
(@ |8y - r,)a; - g5 ' )= 55T Folla 1l 0la, 15,0 T)
Ll luoys Ll
X (3] 5 3,7 519000451 5 3,'- 5190)
: BT TR P A N L+ £+ J
%-{l—l) et [1 vz (-1t @
N P . . 1
. <_1)J1+ Ju T d _an T
LJ(J+1) |°
with
. it Job d
A= [(z5) + 1) + (-1) Lore (23 + 1)1
The matrix element (a]VO(rlz)glr ‘Ezla') vanishes unless both £, + £, + J and

L'+ ﬂzF + J are even. .Similarily, (aWVO(r ) la'.) vanishes unless

1 1z

Y/ £ £ B ' i . i
LT A A £2 is even. The Slater ;ntegral FO is given by
[ee]

. 2

= R ! ! .

FO L/ﬁRl(r)Rz(r) 1 (r)R2 (r)r dr
0]

For the radial part of the wave function, we choose the harmonic-

oscillator ﬁgve function. It is generally believed that the harmonic-oscillator



-10- - UCRL-10329

wave function.is a fairly good approximation for light and medium nuclei,
whereas the square-well potential is a closer approximation for heavy nuclei.

14

The radial wave function has the explicit form

-(v/2)r2rﬁ v

Rﬁz(r) = N_,C nﬂ(r)

where an is a normalization constant chosen so that

U/\Rnﬂ*(r)an/(r)rzdr = 1.

The function vnz(r) is the associated ‘Laguerre polynomial defined as

£+1/2 (2 = kgo (_l)kzk(i) (24+1):! 2k

V'n,z(r) = Ln+£+l/2 (2ﬂ+k+l)!!, (VI‘

1/2

The nuclear size parameter v appearing in the wave function has to be
evaluated for the numerical calculation. The harmonic—oscillatbr'spacihg

is known to be roughly

2
B = hay = ulA_l/3'MeV,

from which v may be evaluated. The evaluation of the central-force radial
integral has been simplified analytically by Ford and Knnopinski.15 The
tensor-force radial integral (a[rirj]a') can not be evaluated directly,

since the integral has singularities due to the r E term appearing in the

1z
denominator. This difficulty is eliminated.by expanding the:integral.into a
linear combination of the Talmi integral.lu’lS(See Appendix Be). For the

delta-function force, the radial integral can be easily evaluated analytically,r
and the numerical values of the integral have been given by several workers

for the diagonal case.ll’16
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IV. ENERGY SPECTRUM

Before introducing the tensor force, the numerical calculations
are carried out extensively with various central force mixtures including
Serber, Ferrell-Visscher, and Rosenfeld forces and with various ranges.
Although the delta-function force may give the correct sequence of the observed

17

levels in Y9O as shown by Pollak et al., the calculations with realistic
finite—raﬁge forces indicate that we must introduce a fairly strong attractive
odd force to fit the experimental data if we were to retain the singlet-even
to triplet—even ratio (~0.5) of the free two-nucleon potential. A calculation
with one set of central force parameters with rather strong attractive odd
forces; which is chosen so as to £it both the doublet spacings of J = 2-, 3-
and J = 2+, T+, is shoﬁn‘in Fig. 2. Aithough the fit with the experiment is
good, there is no justification for assuming the central force mixture of
strong attractive odd force. Furthermore, this is-not the'only set of
parameters which gives rise to a good fit with the experiment, since ;here
‘are other sets of the-péramefers which yield equally good fits. -From the

free two.nucleon potential, it is known that the triplet-odd force is weak,
and the singlet-odd is even repulsive.

To include the tensor fqrce in the residual interaction, we must
decide the strength ofvthe tensor force. Since the relative weight of the
central and tensor forc¢ is not well known in the residual force, we use the
free two-nucleon potential to estimate the tensor-force parameters. -Recent
success of O18 calculations by Dawson, Talmi, and'Waleckal8 encourages us to
try the-Brueckﬁer—Gammel-Thaler potential hereafter abbreviated BGT°l9
Because of the computational complexity involved, we take a form of the
potential different from the BGT. We modify the Yukawa radial dependence

with a hard core of the BGT potential by replacing it with the Gaussian

radial fuhction neglecting the hard core.
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In estimating the strengths and ranges of our Gaussian potential
without a hard core, we use the detailed analysis of Jackson and Blatt for
the free proton-neutfon system in the shape-independent approximationazo :
If one considers a nuclear potential of V(r) = sV'(r) so that V'(r) .is the
potential that gives rise to zero binding energy for the ground state of- the
proton-neutron system, then V(r) fors>1 allows bound states, Whereés
V(r) for s<1 gives rise to virtual states. The intrinsic range b of V(r)
is then defined as the effective range of V'(r); and s is called the well- '

depth parameter. The Yukawa and Gaussian potentials in the shape-independent

approximation are expressed by Jackson and Blatt in terms of s and b as

-V(r) = s(l%7.585 MeV)b_z(b/r)exp[—2,1196(r/b)]

for the Yukawa potential, and

-V(r) = s(229.208 MeV)’b—2 exp[-2°0604(r/b)2]

for the Gaussian potential, where b is in units Qf lO_l3cm.
The introduction of a hard core always makes the force range shorter
and the well deeper. However, we retain the intrinsic ranges of the BGT
potential for our simulated potential of the Guassian form, and adjust the
well-depth. parameters so as Lo be consistent with the low-energy propérties
of the deuteron. The well-depth parameters are normalized to the triplét-
even part of the centfal potential, Whiéh has been reduced from s = 2.88 of
the BGT potential to s = 1. Then the triplet-even part of the simulated BGT
thus obtained fits approximately the ground-state and low-energy properties”
of the deuteron (the binding energy, quadrupole moment, percentage of D Stéﬁé,‘ 
and triplet scattering length).Zl The values of the parameters s and b for

the BGT and simulated BGT are listed in Table IV.
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|a)

_ : .
The diagonal tensor-force matrix elements (l/3)(alPTOU (r..)s

127712

and (l/3)(a|PTOUT(rlZ)S |a) are plotted as a function of the range in Figs:

12
3 th;oughNB. As‘we can éee;frdm these figureé;-the tensor—force méfrix
elements are not always a monotonically increasing function of the faﬁge, and
may be either positive or negativé. This is to be contrasted with the fact
that the central force matrix elements are positive and monotonically
increasing functions with increasing range and constant depth. The results
of the calculation with the simulated BGT potential are compared with the
experiment in Fig. 6. In diagonalizing the matrix, the off-diagonal tensor-
force matrix elements are neglected, since they are small compared to the

diagonal tensor-force matrix elements. The numerical results are also

presented in Table V, and are shown schematically in Fig. 7. In Fig. 7,

notice that the lowest and highest J states (2+ and 7+) are separated from

the other J states arising from the same configuration, g9/2 d5/2. This is

consistent with the revised "weak" coupling rule of Brennan and Bernst_einu22

Table IV. Values of the intrinsic range and well-depth parameters, s and D,
for the BGT and simulated BGT potentials. The intrinsic ranges for the
simulated BGT .potential are assumed to be same as the BGT potential and are
not shown. The corresponding strength and force range parameters for the
simulated BGT are also shown.

BGT ‘ - Simulated: BGT

rases s @ R same ()
Central triplet-even 2.882 | 1.013 1.0 -223.02 0.706
Central singlet-even 2.96k4 1.461 1.028 -110.03 1.018
Central triplet-odd 0.201 2.119 0.070 -3.57 1.476
Central singlet-odd -1.867 2.119 -0.648 +33.06 1.476
Tensor triplet-even 2.078 2.019 0.721 -40.50 1.407

Tensor tripiet—odd -0.493 j 2.649  -0.171 +5.58 - 1.845
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Table V. Calculated energy levels in Y90, The results before and after
diagonalization are shown in columns A and B, respectively. In column C, the
energy scale is shifted so that the ground state liés at zero energy. In
diagonalizing, the matrix the tensor-force o:t‘f-—d.iag‘ohal matrix elements are
neglected. ' ‘ '

Proton-neutron In Energy (MeV:
configurations _ A ' B , C
pl/2d5/2 2- -0.515 -0.516 0.0
3- -0.480 -0.487 0.029
' 0. 0. 0.8
89/2d5/2 | L2t | 382 377 93
' - 3+ 0.622 0.600 1.116
bt , 0.624 0.610 1.126
5+ 0.583 0.551 1.067
6+ 0.679 0.679 1.195
T+ 0.359 0.357 - 0.873
pl/zsl/z- - o- 0.672 0.672 1.188
, 1- 0.734 0.734 1.250
g9/zsl/2 | bt 1.736 1.745 2.261
~ ‘ 5+ 1.655 1.671 2.187
- . . .332 .
pl/2d3/2 1 1.815 1.816 2.33
: 2- 1.650 1.650 2.166
pl/2g7/2 3= 2.047 - 2.054 2.570
bm 1.927 1.927 2.443
- .372 2.326 2.842
®9/2%3/2 5 231 3
. Y+ - 2.609 2.686 3.202
5+ 2.677 2.671 3,187
‘ - 6+ 2.487 2.663 3.179
) g9/2g7/2 1+ 1.669 | 1.669 20185
2+ 2.269 2.274 1.758.
3+ 2.615 2.683 3.199
b 2.491 2.420 2.936
5+ 2.769 2.790 3.306
b+ 2.470 2.295 . 2.811
T+ 2.841 .2.842 3.358
8+ 2.129 2.129 2.645
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The results of other configurgtions presented in Fig. 7 and Table
V .are also consistent with coupling rules of Nordheims, and de-Shalit and
Walecka.23 The eigenfunctions are élso computed, and the results are shown
in Tables VI and.VII; Aé we can see from these tables, the configuration
mixing -is not very important for most of the observed states. The almost
pure configuration of the ground state(pl/zds/z)J:Z— is consistent with the
measured magnetic moment. ' The ‘measured magnetic momeﬁt of the ground state
of Y9O-is -1.629 mnm, whereas the calculated magnetic moment with the empirical
g factors evaluated from neighboring nuclei is -1.609 nm if we assume that the
configufation-is pure.l3 A level at 0.247 MeV has been suggested by
Bartholomew et‘al;z to be the J=3- state arising from the pl/2g7/2 configura-
tion. They have indicated that this assignment 1s consistent with their data

90

and with the .observed beta decay of Sr (total disintegration .energy of

0.535 MeV) only to the ground state, thus eliminating the possibility of this
stéte béihg J;=t0,.;#, or 2-<. Howevér? the g%/z neutron single—partigle level
has béen fou.ndl.zlL to be 2.2 MeV above the ground state 4 in Zr9l, ahd it is
)73

5/2
very difficult to understand the (pl/2g7/2 state being near the ground
state. This would require an extremely large matrix element to overcome this
initial neutroh single-pgrticle spacing of 2.2 MeV. The low energy of 0.247
MeV suggests that this lefel-is-probably'not attributablé to the configuration
(pl/2g9/2) nor other configurations caused by the core excitation of the 38-

proton core. It remains to be seen if the experiment can definitely assign the

spin and parity to this state.
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Table VI, Célculatéd eiéénfunctiohs for odd-parity stafes in Ygou

Eigenvalues . Eigenfuncfiohé
Jxt ' d' T o T . a L : '
(MeV) P1/2%/2 Py /2%1/2 P1/2%3/2 Py /287/2

1- 0.73k4 _ _ 0.9997 0,0246

1.816 0.0246 - =0.9997
2~ - -0.516 ”0»9998 7079158

1.650 -0.0158 _ -919995_ _
3- -0.487 0.9987 ‘ - , 10.0500

2.054 - 0.0500 . _ - -0.9987
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Table VII. Calculated eigenfunctions for even-parity states in Y9O.

Eigenvalues Eigenfunctions

I (MeV) ' | ’ |
Sofe%s/e  _B9/eP1/z 89/e%3/e  _B9/eB1/e
2+ 0.377 0.9987 0.0k91
2.274 0.0491 -0.9987
3+ 0.600 -0.9937 0.1070 0.0332
2.326 -0.1108 -0.8962 -0.4294
2.683 -0.0161 ~-0.4304 0.9024
by 0.610 0.9938 0.1100 0.0079 ~0.0040
1.745 0.1101 -0.9906 -0.0736 -0.031k4
2.420 | 0.0064 ~-0.0648 0.517h4 0.8532
2.686 0.0037 0.0472 -0.8524 0.5206
S5+ 0.551 0.9860 0.1578 -0.0L466 -0.0248
1.671 0.1623 -0.9871 0.0949 6.0295
2.671 0.0361 0.1060 0.9105 0.3980
2.790 0.0058  -0.0100 ~0.3997 0.9165
6+ 0.679 0.9997 -0.0115 -0.017h4
2.295 - 0.0206 0.6906 0.7229
2.663_ 0.0037 -0.7231 0.6907
T+ 0.357 -0.9996 0.0263
2.842 -0.0263 -0.9996
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The spin and parity of the state at a.q MeV have not been
determined experimentally, and there are several calculated lévels around

2.7 MeV. The probable states within the energy limit of 2.7+*0.2 MeV are

J=3,4 , J=3 | J=2,6,8

V. DISCUSSION

-Some shell—model and nuclear-matter calculations héve indicated
that fhe nuclear force inside the nucleus is not very much different from
the free two-nucleon potential. Our approach was that the residual
interaction could be approximated by the free two-nucleon potential.
Because of enormous complexity arising from the introduction of a hard core,
we have neglected the hard core and used a phenomenological Gauséian potential
which is deduced from the free two-nucleon potentials of Jackson-Blatt and
Brueckner-Gammel~Thaler. .Although the experimental spectrum is not
sufficiently resolved to indicafe that our ch6ice of the residual force is
good, there is a remarkable agreement between the calculated spectrum and
experiment if one notes that several shell-model approximatiohs have been
made and the force parameters are not all adjusted arbitrarily. A slight
increase -of the triplet-even part of the central and tensor. forces is
sufficient to increase the doublet spacings of J = 2-, 3-, and J = 2+, T+ soO
as fo improve agreement with experiment. Furthermore, by introducing the
tensor force, we can eliminate the unrealistic strong attractive odd central
forces. ‘Concurrently, the simulated’ BGT potential is used for BiZlO, 25
where most levels of the ground-state multiplet (total of nine levels out of

possible ten) are resolved by the high resolution (d,p) reaction on Bi209 at

Massachusetts Institute of Technologyo26 The analysis of those multiplets

. .2 . o .
in Bi 10 along with PoZ:LO also indicates that the triplet-even part of the
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simulated BGT potential is slightly too weak to account for the overall
spacings of the BiZIO ground-state multiplet. A slight increase of the
triplet-even part of the simulated BGT potential improves the spacing of
.J = 2-, 3-states. It would be very interesting to see if one can resolve
g9/2d5/2 énd pl/zsl/z configurationé by using the high-resolution
Y89(d,p) Y9O, Zr9l(a,t) Nb92, or Zr90(a,d) Nb?? reactions.

Finally we should comment on the shell-model residual interaction.
From the analysis of various shell-model calculations, the central force alone
seems to approximate the residual force very well in most cases, though many
of these cases involve like nucleons, where‘the Pauli principle makes the
tensor-evén force inoperative. However, the tensor-force contributions are
not always négligible, and must be taken seriously in some cases such as
in Y9O presented here. The characteristic of the tensor-force matrix- element
is that.it may be either positive or negative, so that in some cases the
tensof force éffects can not be exactly simulated by'a linear combination
of'four.centrél forée components. Also it should be noted that it is very
difficult td_éimulate the finite-shorter-range tensor force by adjusting the
strength pérameteré of the infinite-range tensor‘force and that thé infinite-

range approximation for the tensor force is. quite unreliable.
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APPENDIX A
Our interest here is to evaluate the spin—dependeht pert of the
- = ' o
)oi° 02|a . It is convenient to con-

central- force matrix element (a]V 12

sider the singlet projection Operator PS apd write the matrlx element of

(aIV(r )Psla’) = u(alV 2)(1 -9 2” ') N (1)
Here, V(;l--gz) can be expanded in terms of the angle y between r and Iyt
-r ) = zjv ( l; rZ)Pk(cosmn);

where’Pk(c08d>) is the Legendre polynomial of order k. We write (a,V(rlZ)PS]a'}

as o
vy L
24 .
where . . o
£ o= (-1)%(2k + 1)(3.5.9M.g (n), 5 ()p (cosa)| 3, '3, 0™ ) (3)
nk A NEE T dpe gy A SRR A NS B - R :
_ 1 * * 1 i
Py = 2k+lh/1/;l (2 )R, (r vy (rp 5w )Ry (2 OR, (rz)rl 2 drldrz ()
By’addition theorem for spherical'harmonies, we meyiﬁrite,Pk(cesuﬂ
as o
P (cosaﬁ > ( -1)%c (k)( )C _K(k)(z):
K .
where
(k) un} 2 (k)
CK: (el) - 2k+l Y/C (ei)¢l))
so that
3 nHCHY
£ 5 (-1) (2k+1)
Ky

X <3132JM10 (?)(1)c;<k)(1>-o_Y‘n)(zjc_K(?)(z)ljl?ﬁzvqﬁM'>o

(5)
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The angular part fn can be evaluated by using the tensor-operator algebra

k
developed by Racah,27 and de-Shalit has obtained the expression of fﬁk for the
diagonal case . in the zero-range limit.,u The similar expression including the

off-diagonal case can be calculated easily and is given in terms of the usual

6-j and 9-j symbols by -
'+ J

Iyt d
- 1 2 N
£, = (-1) By 30y (BkF1)03,37]
1, (n) 12 (k) (k) 2, (6)
X (G o lIg) " el £ ) et e )
(. . ( (
Jy s d n k r n k r
x3 (-1)T(era) (55 L, L,
. 291 (2 "1d1)(2 "2d2),
1 st 1 t st
! Jlj 2 £3 3z }
where
Y 1 .___ s s 1 . . ]
(3,301 = Wagr D)zgy+ 1)(25,+ 1)(23,'+ 1)1,
and (%”o(n)“%) and (z'HC(k)”Z') are the usual reduced matrix elements. Here

the summation over r is restricted by |k-n|<{r< k+n. Obviously we have

(a|V(zy- xp)]a) = 2 Loy

(alV(zy-ry)o " gylat) = - 2 £),Fy, (7)
and |
a[v(z )R lat) = {l(alviz,- £) &) - (alv(z - o - o,le)],

where (a]V(;lz)la‘) is just the matrix element for the Wigner force (n = 0),

whereas (a]V(g gzla') is the contribution from the spin-dependent

5oy
force (n = 1). Instead of evaluating (alV(rlZ)gl- gzla') directly, we shall

find it easier to evaluate (al|V(r

lz)fé]a') first and then obtain

(a|v(r

R t . . .
_12)g1 9213 ) by subtracting the contribution due to (a]V(ElZ)]a')

from (alV(;lz)Eé]ar>.
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Because n can take only two values, O and 1, we find it convenient

to sum over n first. We may sum over n in Eg. (6) by using
(dqge) (hr el

o _ abx) fcdx] efx (é h x
%}(2y+l)ﬂ pecbysgb)= §1(2x+l) capl lerq ig_h B} za o sl 2 (8)
2 f yj (@& g yj

which is easy to verify. Summation over r can also be easily performed,

yielding a simpler expression involving the 3-j symbol:

SIS B s |
st.o= (1)t Tt 2(2k+l)[j,j' ) z*]l/z
n nk
. zﬂi s 1 ﬂ’z
y <£1 1 k) ( 2 %' Ky Jah 2 }2 Y 3, )Ifk 2 (9)
o o o\o o of Ly 3, J; %J S —} IEREA
J
Here we have
[3,3%58,2'] = [(23,+ 1)( 23"+ 1)(25,+ 1)(2j,'+ 1)
? t
X (2£l+ 1)(2£l + 1)(2£2+ l)(2£2 + 1)]
The final expression for (a [V(r I, )Pg |a' )is
I 34T+ 1
' i 2 2 ..
<alV(£lz)PS,a'> = E % Fk(-l) [J;JY: ﬂ,gl]
1
X (£.04_1 (£ ﬂ i i =
( 104, O]kO 50 'O |kO)W( 1312232, > J) (10)
g-l 1
X W{( N 2,355 5 J)w(zlzl £,2, 3kT ),
where the symbols ( ] ) and W are the usual Clebsch-Gordan and Racah

coefficients.
Now we evaluate (ajyjrlz)]a')c Noting

Okr s
) kts+j+4' - 3t
s 4 J = ('l) StJF [2(2k+l)] 1/2 {ﬂ ot } 6k o
2

[

‘slﬂlj.
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we can easily verify

|+ +J
(a|v(z, )la ) = z F,( 1) Iz [3,0'] 1/2

X W33, "33, 5KT), | I (11)

with the restriction that it vanishes unless both ﬂl+ 21'+ X and £2+ £2'+ k
are even. From Egs. (7), (10), and (11), we get

. . -
(alV(z o la)fe 2 mF (-1)2 U2 TR £'1(4,04, '0[k0)(£,04,"0[k0)
12 AR § }% k Jsd 5%, 1771 MY

X W(4 Lr)w (z jl'z vLo)w (£, L:78_4 ',kJ)+(a|V )]a),

191%325 3 2 93 171 %2%

where (a]V(;lz)]a') is given by Eq. (11).
Now that we have obtained the explicit forms of the spih#dependent
matrix element for the flnlte-range case, we obtain the correspondlng express1ons

in the limlt of zero range. For the zero-range force, we have F =F for every

0

k, S0 that the summation over k can be ea51ly carried out analytically. The

final results for the zero- range force are

' 0 o\ L 1 . 1/2
(2 [V2(xy ) lo') = grtogy Foldd 1200, 3 3 9z =150)
." 1 .:1' 1 S A A ' jl+j1ﬁﬂ%f32' AA
x (3;" 5 35" 5 130)0(-1) +(-1) ISTErSO.
and ' v f o - - (13)
' ) T 1 . 1/2 ‘ \ 7
(alv £)p)e le') = 2(z781) Toldsd' (31 2 Jg” 'JO)
: SR P PR 2T S A S A 2
X (3" 5 3, %IJ0>£(-1) DOt ey b E )

+(-1) (14)

. C oyl .
dit Iyt It dpn  aar
0 I (J+1
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where the superscript zero refers to the zero-range limit, and

: - vjl+ 32+ J o~
A = (231+ 1)+ (-1) (232+ 1)

In Eq. (13) (a]VO( 2){a§ vanishes unless £l+ b+ £2+ ﬁz' is even. Likewise

5

Qa|VO(£lz)gl°_g21a'> vanishes unless both ﬂl+ £2+ J and £_'+ £2'+ J are even.

1
The diagonal cases of both Egs. (13) 'and (14) agree with the results obtained
by de-—Shalit.,4 An almost identical expression for (13) is given by Newby and

- 6 : : .
Konopinski, and a sinilar expression by Noya et al.to Equations (10) and (11)

are also given by Newby and Konopinski.
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- APPENDIX B

The tensor-force matrix element will be evaluated here in the jej
representation. We may express the tensor force in terms of the orbital and

- spin tensors as ,
| Lvir sy, = 1) 1)
(2)

where S is- the irreducible tensor operator of rank 2 constructed from the

spin operators 0. and O (2) is a product of the scaler V(r ) and the

Sl ,, end L

irreducible operator of rank 2 constructed from the unit vector r The

28

spin and orbital tensors may be obtained from

12/r12
s (2) . (8n/15)l/2(o . V)(gz- v)g - (z..)
m | g L gen Ve
L () L (s L —L Y, )
12
where %LZ (r) = r Y (9,¢) and Y(6, ¢) is the spherical- harmonlcs

The tensor force have been evaluated 1nto spherlcal tensors by

Talmi.29 Expanding V(rlz)/rlz in terms of spherical harmonics,
V(r..) '
M1l
z = % Vk(rl,rz)Pk(COS(Dlz)
12

[¢<]

Zl v, (

=) (1 Mie, M),

We:obtainzfor:thegtensorcforce;instbrmscofgﬁpherical=tensors

- ' o7 (K, 7 (y)K
) V(r )8, = 3‘K’§,y nyw(lxly,Kz)Tl T, )
where
Py -5 2w, (r),r,) {(2/15) Y/ 21x12/2 (20k0] x0)r 2

+

(2/15)1%2[y11/2(20k0|yO)rzz

+

([x] y])l/z(lOkO]xO)(lOkOlyO)W'(llxy,Zk)rl 2 ;
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and

Ei(lZ)K = [E(l)(i)xa(zzi)] for i = 1 or 2.

The symbols ( | ) and W are the usual Clebsch-Gordan and Racah coefficients,

and [a] stands for [2a+l]° Now the evaluation of the matrix element for

V(rlz)S12 is straightforward by using the similar method of Appendix A.

final result is

(a|v(r T1p )8, lat) =3 K}%y(a [Py 1 )W (1x1y K2)
Jpdge™ Ity 2 J1 dg ’
Wwhere
(OC|FXy|OL") = -5 k,ziJJ (oclr s Ia')x for i,j = 1, 2,
X = (2/15;)21/2[x]l/Z(ZOkOIXO),
Ky = (2/15)*21y1*/2 (2010 y0),

X, =([X][y])1/2(10kolxo)(loko]yo)w(llxy;ZK),'

and

o ary = .
(@ ]ryr jor) (2k+l)d/‘drlrl R R L/drzrz RyR,'zy7,
1

; . . cos “iz P (cos w ) V(rlz)
) 2 k 12 2 °

-1 - T2

The angular part is given in terms of 3-, 6~, and 9-j symbols as

L+4 4+
o (XK = (WKL . \ Iyt dpth A
(3p3,M[T T, 15y3,00mh) = @)

SURERICIR IS IRE(ERI SR ISILI s

11
1 z__.
hox b / By BYVlE g 1
" \ o oy
LI/ A |
0 0 0 0 0 0 84 x
.
i’ 4 K

The

- 60510
1 L
2 2

voog
£ 4
.
Joo o
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An almost identical result for the diagonal case only is given by de-Shalit

23

and Walecka. The radial integral (alrirj]a') can be evaluated by expanding

it into a linear combination of Talmi integrals:
-(m+m) -
)1/22l(rr‘1 ) 3

(d[r.r.Jay = = £ (mm') = 3 (1/2xn > 5 (mm'~2041) 11T 2% (m,m)3
i m,m' K m,m' o

k 20’

where fk is the double integral of the form
_ m_ m' 2 2y 2 2
fk —L/i/ﬁxl X, vk(rl,rz)exp( Xy Xy )Xl dxlx2 dx2
-1/2
the variable Xs is defined here as ri/‘J;.and (v) is the length parameter
appearing in the harmonic oscillator radial wave functions, and
S cos V(rlz)
vk(rl,rz) = (2k+l)u/\d<—“7;——> Bk (cosd%LZ) — .
-1

T2

The Talmi integral J_ is the single integral defined as

20
(o]

A 2 v X 2
=»k/ xzcexp(-g') T2 x dx.

JZO X
0

The expansion coefficient T is the Talmi coefficient defined by Ford and
1 . .

Konopinski, 6 and the explicit expressions along with several recursion

relations for the Talmi coefficients are given in detail by Ford and

Konopinski.
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Fig. 1. Experimentally observed low-energy levels in Y9 .
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Fig. 7. Calculated energy levels in Y99, For each spin, the
left~hand column gives the odd-parity states and right-hand
column the even-parity states. Various J states arising from
the same configuration are comnected by thin lines.
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report, or that the use of any information, appa-
ratus, method, or process disclesed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
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