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Abstract of the Dissertation

On the role of subglottal acoustics in height

estimation, and speech and speaker recognition

by

Harish Arsikere

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor Abeer Alwan, Chair

The subglottal system comprises the trachea, bronchi and their accompanying

airways. Its configuration changes very little compared to that of the supraglot-

tal vocal tract, as a result of which its acoustic properties are relatively more

stationary and speaker specific. In this dissertation, our knowledge of subglottal

acoustics—subglottal resonances (SGRs), most importantly—is leveraged to de-

velop novel solutions to three problems that involve using or estimating speaker-

specific characteristics: (1) body height estimation, (2) speaker normalization for

automatic speech recognition (ASR), and (3) speaker identification (SID) and

verification (SV). The focus is on scenarios where purely statistical methods may

be sub-optimal owing to limited and/or noisy speech data.

Simultaneous recordings of speech and subglottal acoustics are collected (using

a microphone and an accelerometer, respectively) from native American English

speakers (50 adults and 43 children) and 6 adult bilingual speakers of Mexican

Spanish (first language) and American English. The data are analyzed to un-

derstand the relationships between SGRs, and vocal-tract resonances (formants),

body height and native language. Results indicate that (1) phonological vowel fea-
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tures (tongue height and backness) can be characterized via acoustic measures

of formants and SGRs, (2) SGRs correlate well with body height, and (3) SGRs

are practically independent of language and phonetic content. Based on these

findings, algorithms are developed for the automatic estimation of SGRs from

speech signals (i.e., without using accelerometer information). The algorithms

are found to be effective for both adults and children, in quiet as well as noisy

environments; their performance is equally good for native English and bilingual

English/Spanish speakers, and does not degrade much with limited data.

Predictive models between body height and SGRs (in conjunction with SGR

estimation algorithms) are used to develop an automatic approach to speech-

based height estimation for adult speakers. The method is comparable in perfor-

mance to existing data-driven techniques, but requires less training data, offers

better generalization, and is more robust to noise. In the context of ASR for

children, SGRs are used for speaker normalization via piece-wise linear frequency

warping. On a digit-recognition task, the method achieves lower word error rates

than conventional vocal-tract length normalization, in clean as well as noisy en-

vironments. The benefit is particularly significant for young speakers (6–8 years

old) and short utterances (1 or 2 words). For SID and SV (with adults’ speech),

an algorithm is developed for deriving subglottal features that are more informa-

tive (than SGRs) with regard to speaker discriminability. When combined with

Mel-frequency cepstral coefficients (conventional speech features for SID and SV),

subglottal features provide significant performance improvements, especially for

short test utterances (5–10 seconds in duration).
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CHAPTER 1

Introduction

1.1 Overview and motivation

Speech production is a complex physiological process involving several organs and

a series of acoustic events. The speech-production system can be viewed as being

composed of three subsystems: (1) the subglottal system, (2) the larynx, and

(3) the supraglottal system (also known as the vocal tract); see Figure 1.1. The

subglottal system comprises the trachea, bronchi and lungs, and is responsible for

generating and driving the airflow required for speech production. The larynx, a

structure made of cartilage and muscle, is located at the top of the trachea, and is

the place where the airflow driven upwards by the subglottal system is modulated.

The vocal folds (or vocal cords), a pair of membranous structures situated within

the larynx, are responsible for converting the airflow to a source signal that acts

as the excitation input to the vocal tract. The source signal can be either a quasi-

periodic train of pulses or a noise-like excitation depending on whether or not the

vocal folds vibrate. The opening between the vocal folds is known as the glottis;

it acts as an acoustic link between the subglottal and supraglottal systems and

its area determines the degree of acoustic coupling. The vocal tract is composed

of the oral, nasal and pharyngeal cavities, and its configuration is determined by

the positions of the tongue, jaws, teeth, lips, and other articulators. The source

signal is spectrally shaped by the vocal tract and converted to a sound pressure
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Airways above 

the larynx 

Larynx 

Airways 

below the 

larynx 

Figure 1.1: A schematic representation of the three subsystems involved in speech

production: the subglottal system (airways below the larynx), the larynx, and the

supraglottal system (airways above the larynx); adapted from [KS11].

waveform via radiation from the lips, thus resulting in the speech signal as we

know it. The kind of sound produced depends on the nature of the source as well

as the vocal-tract configuration.
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Figure 1.2: Spectrogram of a speech signal (from a particular male speaker) su-

perimposed with tracks of the first three vocal-tract formants, and tracks of the

first three SGRs obtained from the corresponding time-synchronized accelerom-

eter recording of subglottal acoustics. Clearly, formants vary much more than

SGRs. Sg3 in this case was very weak compared to Sg1 and Sg2, and hence was

tracked less accurately.

Owing to absence of moving articulators and body parts, the acoustics of the

subglottal system are much more stationary over time compared to the acous-

tics of the source and the vocal tract. Subglottal acoustics are therefore expected

to characterize a speaker better, or at least provide information that is comple-

mentary to the characteristics of the source and the vocal tract. To substantiate

the above statements, Figure 1.2 illustrates the difference between subglottal and

supraglottal acoustics by comparing (for a particular male speaker) the first three

subglottal resonances (SGRs), Sg1, Sg2 and Sg3, with the first three vocal-tract

resonances (or formant frequencies), F1, F2 and F3. SGRs and their properties

will be explained in detail later in Section 1.2.

The acoustic properties of the source and the vocal tract have been studied

extensively in the past and have also found wide application is different areas

of speech technology. Automatic methods have been developed to estimate pa-
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rameters such as formant frequencies and the fundamental frequency (F0) of the

source, and to extract other kinds of spectral, temporal and spectro-temporal fea-

tures for tasks such as speech-activity detection, speech and speaker recognition,

speech synthesis and compression, language identification, extraction of para-

linguistic information, etc. In comparison, subglottal acoustics have found little

application in main-stream speech technology, although there has been consid-

erable effort to mathematically model the subglottal system and to understand

its linguistic and phonological significance in the context of speech production

and perception. The main goal of this dissertation, therefore, is to further our

understanding of subglottal acoustics and to apply some of their properties to

tasks that involve using or estimating speaker-specific characteristics.

The role of subglottal acoustics will be investigated in relevance to the fol-

lowing three problems: (1) body height estimation, (2) speaker normalization for

automatic speech recognition (ASR), and (3) speaker identification (SID) and

verification (SV). While these problems have been researched extensively in the

past, the methods proposed thus far have been largely statistical in nature. Sta-

tistical methods provide good performance in general, but their efficacy tends to

be lowered in limited-data conditions, and in scenarios where the test data are

noisy and/or acoustically mismatched with the data used for training. Therefore,

in this dissertation, the properties of subglottal acoustics are leveraged to develop

hybrid knowledge-based and statistical solutions to the above three problems.

Given a speech signal (recorded using a microphone), information about the

source and the vocal tract can be determined readily from it. However, to reli-

ably determine the properties of subglottal acoustics, other modalities—invasive

methods such as laryngectomy or noninvasive methods such as the use of an

accelerometer—are necessary. Therefore, one of the challenges in using subglot-
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Figure 1.3: The subglottal airways, including the trachea, main bronchi, and the

bronchial tree down to about 6 generations (adapted from [Gra18]).

tal acoustics for speech technology is to be able to extract subglottal information

from the speech signal itself. Addressing this challenge is one of the major goals of

this dissertation. Another goal is to collect a sizable corpus of time-synchronized

speech and subglottal acoustics that would enable the development of techniques

for meeting the above challenge.

1.2 The subglottal system and its resonances

Some of the material presented in this section is based on the studies by Lulich

[Lul06,Lul10], and Chi and Sonderegger [CS07].
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The subglottal airways comprise the trachea, the two main bronchi, and the

rest of the bronchial tree. Each airway typically divides into two smaller airways,

each of which divides further, and so on down to the level of the alveoli of the

lungs, where gas exchange takes place during breathing. The trachea is usually

referred to as the 0th generation of the tree, the main bronchi are referred to as the

1st generation, and so on (down to about 35 generations). Efficient gas exchange

requires a large surface area, and in order to fit such a large area inside the limited

volume of the chest cavity, there must be a large number of very narrow airways.

After 6 or 7 generations of the bronchial tree, the airways become so narrow

that acoustic fluctuations inside them turn out to be negligibly small, causing

any more peripheral airways to be effectively cutoff from the subglottal acoustic

system [Lul06]. Therefore, the terminal impedance below 6 or 7 generations has

virtually no impact on the acoustics of the subglottal system (except at very low

frequencies), and the airways can be modeled as being open at the periphery

[Lul06]. Figure 1.3 shows the subglottal system down to about 6 generations.

A few mathematical models (based on electrical transmission-line theory) have

been proposed to describe the acoustics of the subglottal airways [HKP01,HPK03,

Lul06]. The models of Harper et al. [HKP01, HPK03] make the simplifying as-

sumption that the bronchial tree branches symmetrically. The model proposed

in [Lul06] does not make such an assumption and hence is more accurate, al-

though it shares the typical assumption of binary branching. Figure 1.4 shows

the subglottal input impedance obtained using the model proposed in [Lul06], for

a certain combination of model parameters; SGRs are nothing but the natural

frequencies (or poles) of the subglottal input impedance.
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Figure 1.4: Subglottal input impedance obtained using the mathematical model

proposed in [Lul06], for a certain combination of model parameters. SGRs Sg1,

Sg2 and Sg3 are the poles (natural frequencies) of the input impedance. Each

pole is accompanied by a zero (or antiresonance).

1.2.1 Coupling between the subglottal and supraglottal systems

The subglottal and supraglottal systems are acoustically coupled via the glottis

when the vocal folds are open, and via the vocal-fold tissues themselves when

the folds are closed. As a result of this coupling, each natural frequency of the

uncoupled subglottal system contributes a pole-zero pair to the speech signal.

To understand the origin of zeros in the speech signal, consider the circuit

model [CS07, Ste98] of the vocal tract-glottis-subglottal system, shown in Fig-

ure 1.5(a). Zsg is the impedance of the subglottal system, Zvt is the impedance of

the vocal tract, Zg is the glottal impedance, and Us1 = Us2 are the twin (dipole)

volume-velocity sources on either side of the vocal folds. If the glottal impedance

is infinite (i.e., Zg = ∞), Zg is replaced by an open circuit and there are two

equal and independent volume-velocity waves moving in opposite directions: one

flowing into the vocal tract, and the other flowing into the subglottal system. On
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Figure 1.5: (a) Circuit diagram of the speech production system, including the

impedances of the vocal tract (Zvt), glottis (Zg), and subglottal airway (Zsg), and

the twin glottal volume velocity sources (Us1 = Us2) due to vocal fold vibration.

(b) Tube diagram of the speech production system, including the vocal tract, the

glottis, and the subglottal airway (adapted from [Lul10]).

the other hand, if the glottal impedance is finite, the volume velocity flowing into

the vocal tract is affected by the subglottal impedance.

Consider the node labeled ‘N’. The volume velocity flowing out of node N is

Us1. Volume velocity can flow into node N from the left, denoted by Ul, or from

the right, denoted by Ur (= Uvt). From Kirchhoffs Current Law:

Us1 = Ul + Ur. (1.1)

For frequencies at which the subglottal impedance is infinite (i.e. at the natural

frequencies of the subglottal system), the left side of the circuit is open so that Ul

= Us2. Since Us1 = Us2 and Ur = Uvt, Eq. (1.1) reduces to Us = Us + Uvt, or Uvt

= 0. No volume velocity flows into the vocal tract, so that in the speech signal

there is a zero at the same frequency as the frequency of a subglottal resonance.

To understand the origin of poles in the speech signal, consider two tubes

coupled by means of a narrow constriction; see Figure 1.5(b). The constriction
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represents the glottis, while the tubes on the left and right represent the subglottal

system and vocal tract, respectively. The poles of the speech signal are then at the

natural frequencies of the combined system. If the glottal impedance is infinite

so that there is no coupling between the two systems, the poles are simply the

natural frequencies of the vocal tract. When there is some coupling due to a

partially open glottis, the vocal-tract poles are shifted upward in frequency, and

additional poles are introduced from the subglottal system. The subglottal poles

are also shifted upward with respect to their uncoupled natural frequencies.

The subglottal system thus contributes zeros at its (uncoupled) natural fre-

quencies and poles at slightly higher frequencies. For each natural frequency of

the subglottal system, there is a pole-zero pair in the speech signal. This model

applies to the subglottal-vocal tract system when acoustic coupling is achieved

via the air column between the vocal folds. If the vocal folds are closed, it is possi-

ble that coupling could still be achieved across the vocal-fold tissues themselves.

In this case, the zeros would still be at the (uncoupled) natural frequencies of

the subglottal system, whereas the frequencies of the poles corresponding to the

subglottal system and the vocal tract would not necessarily be the same as in the

case of air-only coupling.

1.2.2 SGRs and phonological distinctive features

In the context of feature-based phonology (the science of speech sounds in regard

to their distribution and pronunciation), understanding the connection between

the acoustic properties of sounds and their phonological feature values has been

of considerable importance. The quantal theory of speech production [Ste89] has

been one of the most successful approaches to this problem, grounding the set of

phonological distinctive features in the set of nonlinear articulation-to-acoustic

9



Figure 1.6: Schematic of a quantal relation. Regions I and III are the ‘states’

corresponding to [+feature] and [-feature] values, and region II is the abrupt

transition or ‘boundary’ between them (adapted from [CS07]).

mappings. According to quantal theory, equal movements of speech articulators

(the tongue body, for example) do not produce equal changes in the acoustic

properties of speech sounds (formant frequencies, for example). In some regions of

the articulator space, small movements lead to large acoustic changes, and these

form what are known as landmarks [Ste02]; in other regions of the articulator

space, large movements lead to small acoustic changes, and these define the stable

regions which underlie distinctive features. Regions of the first type are called

‘boundaries’ and regions of the second type are called ‘states’. A boundary and

its two accompanying states define a single distinctive feature, where one state

corresponds to the positive value of the feature and the other state corresponds to

the negative value of the feature. The above ideas are summarized in Figure 1.6.

One set of boundaries and states arises from the acoustic coupling between the

subglottal system and the vocal tract. As described in Section 1.2.1, the natural

frequencies of the subglottal system introduce pole-zero pairs into the speech

10



spectrum. Each pole-zero pair affects a relatively narrow band of frequencies in

the spectrum, since the pole and zero largely cancel out (i.e., sum to zero, or close

to zero) as the frequency increases or decreases away from the resonance. Thus, if

a vocal-tract formant is far away from these narrow bands, it is not significantly

affected by the pole-zero pairs; if a formant is near or within one of these narrow

bands, however, its frequency and amplitude will be unstable.

It was first suggested in [Ste98] that such narrow, unstable regions might

define acoustic boundaries between ± values of certain distinctive features. Later,

several studies investigated the relationship between Sg2 (or more precisely, the

unstable region due to Sg2’s pole-zero pair) and the distinctive feature [back].

In [Son04], F2 values of 53 languages (reported in the literature) were analyzed,

and it was found that Sg2, on average, lies at the boundary between [-back] and

[+back] vowels. It was also found that individual adult speakers of English tend

to produce [-back] vowels with F2 higher than Sg2, and [+back] vowels with F2

lower than Sg2. This trend was subsequently observed in other languages such

as High German and Swabian German [DLM11], Standard Korean [Jun09], and

Standard Hungarian [CBG09,GLC11]. Analogously, a few studies [Jun09,GLC11]

have shown that speakers tend to produce [+low] vowels with F1 higher than Sg1,

and [-low] vowels with F1 lower than Sg1. Figure 1.7 illustrates these quantal

relationships with an example. In the forthcoming chapters, the quantal nature

of Sg1 and Sg2 will be used as the basis for automatic SGR estimation as well

as speaker normalization for ASR.

1.2.3 Acoustic effects of SGRs on the speech signal

Coupling between the vocal tract and the subglottal system can usually be ig-

nored while modeling the vocal-tract transfer function, but its effect becomes
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Figure 1.7: Vowel space (of a male speaker) in the F1-F2 plane demonstrating

the vowel-feature contrasts provided by Sg1 and Sg2. F1 is higher than Sg1

for [+low] vowels (empty symbols) and lower than Sg1 for [-low] vowels (filled

symbols). Similarly, F2 is higher than Sg2 for [-back] vowels (circles) and lower

than Sg2 for [+back] vowels (triangles).

non-negligible when a vocal-tract formant approaches a subglottal resonance in

frequency. Using a mathematical model of coupled resonators, Chi and Sondereg-

ger [CS07] demonstrated that (1) formant amplitudes experience attenuation,

and (2) formant frequencies appear to “jump”, when vocal-tract formants lie

in the vicinity of SGR-induced pole-zero pairs. Their model also suggested a

positive correlation between the degree of subglottal coupling—which depends

on the glottal area and impedance—and the magnitude of frequency-jump and

amplitude-attenuation effects.

The frequency-jump effect (or discontinuity effect) can be understood by
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indicates the subglottal zero (from the pole-zero pair). The dotted line indicates

the subglottal pole (from the pole-zero pair), and the thick solid line indicates

F2. F2 and the subglottal pole swap affiliations at about 100 ms, giving rise to

a discontinuity in the F2 trajectory (adapted from [Lul10]).

studying, as an example, the interaction between F2 and Sg2. Figure 1.8 shows a

schematic of the time-course of a rising F2 trajectory as it interacts with Sg2—

there are two poles defined by the coupled vocal tract-subglottal system, and

one zero defined by the subglottal system alone. Since the acoustics of the lower

airway do not change much over time, the frequency of the zero is relatively con-

stant. Early during the trajectory, the lower pole is defined by the vocal tract (it

is ‘affiliated’ with the vocal tract), and this is the second formant. The higher

pole is affiliated with the subglottal system, and this is the pole that is paired

with the zero. Late in the trajectory, however, the higher pole is affiliated with

13



the vocal tract and the lower pole is affiliated with the subglottal system. When

the two poles are close together, they are affiliated more equally with both the

vocal tract and the subglottal system. During this portion of the trajectory, the

two poles are individually continuous, but their affiliations are not, thus giving

rise to the perceived formant discontinuity.

Acoustic evidence of subglottal coupling has been found in back-to-front diph-

thongs such as [aI] and [OI], where F2 crosses Sg2, and in low-to-high diphthongs

such as [aU], where F1 crosses Sg1 [CS07, Jun09, Lul10]. By careful selection of

the analysis window length, shape and time spacing, it is often possible to discern

frequency jumps and/or amplitude attenuations in trajectories of vocal-tract for-

mants. An example of the coupling effects due to Sg2 is shown in Figure 1.9; note

that the frequency of Sg2 as measured in the accelerometer signal (bottom-right

panel) is identical to the frequency of the zero that is observed in the speech

signal (top and bottom-left panels).

1.3 Automatic estimation of SGRs

SGRs can be measured noninvasively using accelerometer recordings of subglottal

acoustics. When held against the skin of the neck at the location of the cricoid

cartilage (which is inferior to the thyroid cartilage), an accelerometer captures

the pressure fluctuations at the top of the trachea, thereby yielding a frequency

spectrum whose peaks occur near the SGR frequencies. However, since the use

of accelerometers in many real-life situations is unfeasible, it is important to be

able to automatically estimate SGRs from speech signals.

Existing literature suggests two possible approaches to automatically estimat-

ing SGRs from speech signals: (1) direct estimation based on detecting the subtle
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Figure 1.9: Top panel: Spectrogram of the utterance “What shall I say?” The

frequency of the subglottal zero is indicated by the horizontal dashed line. At

about 1000 ms (as indicated by the arrow), a frequency discontinuity and ampli-

tude attenuation can be observed in the second-formant trajectory; note that the

segment around 1000 ms corresponds to the diphthong [aI]. Bottom-left panel: An

enlarged version of the spectrographic segment around 1000 ms. Note that the

subglottal pole is clearly visible here. Bottom-right panel: Averaged spectrogram

of the accelerometer signal. This figure has been adapted from [Lul10].

effects of SGRs on vowel formants—frequency discontinuities and amplitude at-

tenuations observed in the formant contours of back-to-front ([aI], [OI]) and low-

to-high ([aU]) diphthongs [CS07,Jun09,Lul10]; and (2) indirect estimation based

on the potential correlations between SGRs and formant frequencies (especially

F3). Previous research efforts [WAL08,WLA08,WLA09a] have focused on Sg2
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and Sg3 estimation, using a combination of both approaches.

In [WAL08], an automatic algorithm was proposed for estimating Sg2 and

Sg3 in isolated American English (AE) vowels of adults as well as children. Es-

timation of Sg2 relied on detecting discontinuities (or jumps) in trajectories of

F2. Such discontinuities are usually observed in back-to-front diphthongs ([aI]

and [OI]) when F2 approaches and crosses Sg2 [CS07]. Given a vowel token,

F2 was first tracked frame-by-frame using the SNACK toolkit [Sjo97]. Then, the

track was inspected for frequency discontinuities by computing its smoothed first-

order difference and comparing it with an empirically-set threshold (in Hertz).

If a discontinuity was found, Sg2 was estimated as the average of the F2 values

constituting the jump (see Figure 1.10). If no discontinuity was detected, Sg2 was

estimated simply as the token’s average F2. Sg3 was estimated with the help of

Eq. (1.2), which was derived using a previously-proposed model of the subglottal

airways [Lul06].

Sg3 = Sg2{−0.3114[log10(Sg2)− 3.280]2 + 1.436} (1.2)

The algorithm was evaluated indirectly by applying it to speaker normalization

tasks and its performance was found to be vowel dependent. Specifically, the

estimation accuracy was high for diphthongs but much poorer for other vowels.

The above Sg2 estimation algorithm was improved in [WLA08] and [WLA09a],

but was customized to suit children’s speech (unlike the above algorithm, which

was applicable to adults as well as children). In [WLA08], a rough estimate of

Sg2 was first obtained using the following empirical relation between Sg2 and

F3 [Lul10]:

Sg2 = 0.636× F3− 103.
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Figure 1.10: Estimating Sg2 based on the F2 discontinuity observed in a token

of [OI]—using the algorithm proposed in [WAL08]. The upper panel shows the

frame-by-frame F2 track. The dashed line passes through the average of the low

and high F2 values constituting the jump. The lower panel shows the absolute

first difference of the F2 track.

Then, a refined estimate was obtained by searching for an F2 jump within ±100

Hz of the initial estimate and computing a weighted average of the F2 values

constituting the discontinuity, if a discontinuity was found. This procedure en-

abled reliable detection of Sg2-induced F2 jumps, especially in the presence

of nearby, competing jumps that could be caused by other factors (e.g., inter-

dental spaces) [HTT10]. In [WLA09a], the initial Sg2 estimate was obtained

as in [WLA08], but its refinement relied on locating not only an F2 jump but

also an accompanying attenuation in the second formant’s energy prominence, a

phenomenon which has been shown to be more robust than F2 discontinuities in

indicating subglottal coupling effects [CS07]. The improved algorithms were more

reliable than the algorithm in [WAL08], but their performance was still found to

17



be vowel dependent.

The algorithms in [WAL08,WLA08,WLA09a] suffer from the following lim-

itations. (1) Their approach is not well suited to estimating Sg1 because auto-

matically detecting Sg1-induced coupling effects (in trajectories of F1) can be

challenging [Jun09]. (2) Their practical applicability is rather limited because (a)

their performance is data dependent, and (b) they can be applied only to iso-

lated vowels (and not continuous or natural speech). (3) Detection of subglottal

coupling effects requires very accurate formant tracking procedures. As the au-

thors of [WLA09a] point out, “Manual verification and/or correction is applied

through visually checking the tracking contours against spectrograms,” implying

that their algorithms are not completely automatic. The algorithms developed in

this dissertation are fully automatic and can estimate the first three SGRs from

continuous speech in a content- and language-independent manner.

1.4 Height estimation using speech signals

Automatic height estimation—estimating the height of an unknown speaker from

his/her speech sample—could have potential applications in forensics, automatic

analysis of telephone calls (e.g., 911 distress calls), and automatic speaker iden-

tification. In the past, researchers attempted to identify height-related features

of speech based on the assumption that an anatomical correlation exists between

speaker height and vocal-tract length (VTL). In fact, a study using magnetic

resonance imaging techniques [FG99]—over a wide range of speaker ages and

heights—provides some evidence in favor of this assumption. Motivated by a

fundamental premise of speech-production theory that formant frequencies are

inversely proportional to VTL, several studies have analyzed the correlation be-

tween speaker height and formant frequencies [DM95,Gon04,RKN05]; however,
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no strong correlations have been reported. A few studies have also investigated

the relation between height and F0, but have found no significant correlation

between the two [Gon04,Kun89]. More recently, [Dus05] has reported the corre-

lations between speaker height and commonly-used vocal-tract features such as

Mel-frequency cepstral coefficients (MFCCs) [DM80] and LPCs; the study shows

that 57% of the variance in height can be explained using 31 vocal-tract features:

the first 10 MFCCs, 16 LPCs and the first 5 formant frequencies.

A few studies have proposed automatic algorithms to estimate speaker height

using speech signals. In [PH97], speech signals were parameterized using the first

19 MFCCs, and 11 height-dependent Gaussian mixture models (GMMs) were

trained using data from all speakers in the TIMIT corpus [Gar88b]. The height

of a given speaker was then estimated using the maximum a posteriori classifi-

cation rule. With this approach, the height estimation error was found to be 5

cm or less for 72% of the speakers. However, it should be noted that the same

set of speakers was used for both training and evaluation. In [GMF10a], support

vector machine (SVM) regression was proposed for height estimation. The model

was trained and evaluated using data from 462 and 168 speakers, respectively,

in the TIMIT corpus. Training was accomplished by first extracting 6552 audio

features from each utterance, and then subjecting them to a feature ranking pro-

cedure to choose the most relevant subset. The subset consisting of the top 50

features resulted in the best performance, yielding a mean absolute error (MAE)

equal to 5.3 cm and a root mean squared error (RMSE) equal to 6.8 cm. The

features consisted mostly of means, standard deviations, percentiles and quartiles

of MFCCs, F0 and voicing probability. In [GMF10b], a similar algorithm using

Gaussian-process regression was proposed for real-world indoor and outdoor sce-

narios, and results identical to those of [GMF10a] were achieved. Although the

algorithms in [GMF10a] and [GMF10b] yield reasonably good results (MAE =
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5.3 cm) using statistical measures of speech features, it is not clear as to how

such features relate to speaker height.

Despite the correlation between VTL and speaker height, height estimation

using vocal-tract information is difficult because the configuration of the vo-

cal tract changes significantly during speech production. Specifically, as evident

from [Dus05], [GMF10a] and [GMF10b], a large number of vocal-tract features

are required to capture the correlation between height and VTL. In this disser-

tation, a novel approach to height estimation is proposed based on the observed

relationship between speaker height and SGRs. Since the configuration of the

subglottal system changes little over time, the proposed approach, in addition to

having a physiological basis, is likely to be more efficient than existing techniques

in terms of the number of features required for height estimation.

1.5 Speaker normalization for ASR

Automatic speech recognition (ASR) systems can be either speaker dependent

(SD) or speaker independent (SI) depending on the source of the training data.

An SD system can achieve high recognition accuracy, but requires a large amount

of training data from the target speaker. It may also not generalize well to new

speakers. On the other hand, SI systems are trained using data from a large

speaker population, and their performance is, in general, worse compared to that

of SD systems. However, SI systems are more commonly used in practice because

they offer more flexibility and can be easily adapted to new speakers.

Inter-speaker variability (with regard to speech acoustics) poses a challenge to

the design of SI-ASR systems. Inter-speaker acoustic variations are mostly caused

by morphological differences in the vocal tract—especially vocal-tract length.
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Figure 1.11: Comparing the steady-state magnitude spectra of the vowel [i] (as

in “heed”) as enunciated by a male adult and a male child speaker. Vowel data

were obtained from the database used in [HGC95].

Typically, adult females have shorter vocal tracts compared to adult males, and

children have shorter vocal tracts compared to adults [Wak77]. This implies,

according to linear speech-production theory [Fan60], that children tend to have

higher formant frequencies than adults, and adult females tend to have higher

formant frequencies than adult males—Figure 1.11 provides an example using

steady-state magnitude spectra of the vowel [i]. Consequently, the performance

of SI-ASR systems varies significantly across speakers.

The effects of inter-speaker variability can be mitigated using speaker nor-

malization and adaptation techniques. Speaker normalization employs frequency

warping in the front-end feature domain. A widely-used approach to frequency

warping involves a piece-wise linear function with a single parameter that con-

trols the degree of spectral compression or expansion [LR98]. This approach is
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known as conventional vocal-tract length normalization (VTLN), and will hence-

forth be referred to as VTLN for simplicity. Nonlinear frequency warping has also

been investigated in the past. Popular approaches include power-law transforma-

tion [EG96], all-pass transformation methods [McD00], and methods based on

spectral shifting in the Mel or Bark scale [SU08,WLA09a]. In speaker adapta-

tion, spectral variability is implicitly compensated for in the back-end acoustic-

model domain by statistically tuning the SI model parameters to a given tar-

get speaker. Popular approaches include maximum-likelihood linear regression

(MLLR) [LW95], constrained MLLR [Gal98], and maximum a posteriori (MAP)

adaptation [GL94]. Typically, the number of parameters to be estimated for

speaker adaptation is several orders of magnitude larger than the number of

parameters to be estimated for speaker normalization. Therefore, speaker nor-

malization techniques are generally preferred when the amount of data is limited.

In this dissertation, the focus is only on speaker normalization.

Frequency-warping parameters are typically estimated using the maximum-

likelihood (ML) criterion. When frequency warping is implemented directly in

the power-spectrum domain, the optimal parameters are determined via an ML

grid search over the parameter space [LR98,SU08]. On the other hand, when fre-

quency warping is implemented as a linear transformation of cepstral features, the

optimal parameters are determined via explicit maximization of the ML objec-

tive function (using the Expectation Maximization algorithm)—see [MSW04], for

example. Another approach to estimating warping parameters is to define them

as ratios (or differences) of formant frequencies (especially F3) and formant-like

spectral peaks [EG96,GS97,ZW97,CA06]. More recently, Sg2 has also been used

to compute warping factors (as ratios) and spectral shifts (as differences) for

speaker normalization [WAL08,WLA08,WLA09a].

22



ML approaches perform better than ratio-based methods in general (see [ZW97]

for comparison), but ratio-based methods tend to be more effective in limited-

data conditions. One drawback of all the above methods is their sensitivity to

noise. ML approaches are purely statistical in nature and hence likely to be less

effective in noise, especially when the training data are relatively clean. On the

other hand, ratio-based methods, including the Sg2-based methods of Wang et

al. [WAL08,WLA08,WLA09a], are likely to be ineffective in noise owing to their

stringent formant-tracking requirements (see Section 1.3 for a description of the

Sg2-estimation algorithms developed by Wang et al.). This dissertation proposes

a hybrid knowledge-based and statistical approach to normalization using the

first three SGRs. The method is shown to be effective in clean as well as noisy

environments, especially when data are limited.

1.6 Speaker identification and verification

The speech signal conveys several levels of information. Primarily, the speech

signal conveys the message (i.e., the sequence of words) being spoken, but on

a secondary level, the signal also conveys information about the identity of the

talker. While ASR is concerned with decoding the word sequence in a given

utterance, automatic speaker recognition is concerned with extracting the identity

of the talker. Speaker recognition has found wide application in telephone-based

financial transactions, information retrieval from speech databases, voice-based

user authentication, etc.

The general area of speaker recognition involves two specific, closely-related

tasks: speaker identification (SID) and speaker verification (SV). In SID, the

goal is to determine which one of a group of known voices best matches the

given voice sample. In SV, the goal is to verify, given a voice sample and an
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associated claim, if the talker is indeed the one he or she claims to be. In both

tasks, the speech input can be either totally unconstrained (text independent) or

constrained to be a known phrase (text dependent). This dissertation considers

the text-independent case only. The success of SID and SV systems depends

on extracting and modeling the speaker-dependent characteristics of the speech

signal which can effectively distinguish one talker from another.

Mel-frequency cepstral coefficients (MFCCs), which capture the acoustics of

the supraglottal vocal tract, have been widely used for both SID and SV. They

have been shown to provide good performance with a number of modeling schemes

such as simple Gaussian mixture models (GMMs) [RR95], GMMs adapted from

universal background models (UBMs) [RQD00], support vector machine (SVM)

supervectors [CSR06,YLL09], joint speaker and channel factors [KBO07,KOD08],

and total-variability i -vectors [DKD11]. Other features that have been proposed

and used in conjunction with MFCCs (via feature-level or score-level fusion)

include those based on voice-source parameters [MY06], spectro-temporal modu-

lation frequencies [Kin06], prosody [SFK05], word patterns and lexicon [Dod01],

and articulatory parameters [LKG13]. This dissertation investigates the utility

of subglottal features (capturing the acoustics of the tracheo-bronchial airways)

for both SID and SV. The focus is specifically on cepstral coefficients extracted

from subglottal acoustics (henceforth referred to as SGCCs) and their fusion with

MFCCs for improved speaker-recognition performance.

1.7 Dissertation outline

The rest of this dissertation is organized as follows.

Chapter 2 describes the new databases (comprising simultaneous recordings
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of speech and subglottal acoustics) that were collected for the purposes of this

dissertation. It also presents some important results of data analysis to motivate

the techniques and algorithms developed in the following chapters.

Chapter 3 presents automatic algorithms to estimate SGRs in speech signals of

adults and children. Algorithms are developed for natural speech, with emphasis

on language independence and robustness to noise and data limitedness.

Chapters 4, 5 and 6 form the core of this dissertation; each of them focuses

on a particular application of subglottal acoustics. Chapter 4 investigates body-

height estimation using speech-based estimates of SGRs. The method is evaluated

using a standard database of adults’ speech, and the results are analyzed in light

of physiological limits to height-estimation accuracy. Chapter 5 uses SGRs to

develop a hybrid statistical and knowledge-based approach to speaker normal-

ization. The emphasis is on speaker normalization for children, in clean as well

as noisy environments. Empirical results are presented for a standard connected-

digit ASR task. Chapter 6 proposes an automatic algorithm to estimate subglottal

cepstral coefficients using speech signals. Estimated subglottal cepstra are used

to provide complementary information to conventional MFCCs in SID and SV

tasks. Experimental results are reported for two standard databases of adults’

speech (one for SID and one for SV).

Chapter 7 summarizes the key results of this dissertation and provides direc-

tions for future work.

The material presented in this dissertation is based in part on the following

published articles:

Harish Arsikere, Gary K. F. Leung, Steven M. Lulich and Abeer Alwan, “Au-

tomatic estimation of the first three subglottal resonances from adults’ speech

signals with application to speaker height estimation,” Speech Communication,
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Vol. 55, pp. 51–70, 2013. (Chapters 2, 3 and 4)

Harish Arsikere, Steven M. Lulich and Abeer Alwan, “Non-linear frequency

warping for VTLN using subglottal resonances and the third formant frequency,”

Proceedings of ICASSP, pp. 7922–7926, 2013. (Chapter 5)
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CHAPTER 2

Data collection and analysis

Given the diverse roles of the subglottal input impedance and its resonances in

speech production, perception and, potentially, technology (see Chapter 1), it is

important that their properties be well understood for a large number of speakers.

The exact subglottal input impedance (and SGRs) can be measured only through

invasive procedures such as laryngectomy [IMK76], placing miniature pressure

transducers below the glottis [CB85], or using an endotracheal tube [HCS94].

Owing to the technically-challenging nature of these procedures, a popular, non-

invasive alternative has been the use of an accelerometer placed against the skin

of the neck [Che02, CS07,MLW08,WM09, CBG09, Lul10, GLC11]. In this case,

the phonation volume velocity acts as the source that drives the subglottal input

impedance, and the pressure at the top of the trachea relates to the motion of the

neck tissues (and hence the accelerometer). This results in a frequency spectrum

that is closely related to the input impedance, but one that is sampled by the

source harmonics, and partially shaped by the source spectral envelope and the

effects of acoustic coupling with the vocal tract. While the accelerometer-based

method is less accurate than the invasive methods mentioned above, it enables

easy and rapid data acquisition and is known to provide a reliable approximation

of the exact input impedance [Che02].

The above studies were all based on small data sets—only [Lul10] and [WM09]

analyzed data from more than 10 subjects (23 and 19, respectively). Also, none of
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the above studies, except [Lul10], involved children. Therefore, one of the goals of

this dissertation was to obtain and analyze data from a large number of adult and

child subjects. Speech and subglottal acoustics were recorded simultaneously, and

the data were analyzed to understand the relationships between SGRs, formant

frequencies, body height (or speaker height) and native language. The analyses

were intended to aid the development of automatic algorithms for SGR esti-

mation from speech signals, speech-based body height estimation, and speaker

normalization for ASR. This chapter describes the corpora that were collected

and presents some of the important analysis results.

2.1 The WashU-UCLA corpora

Data were collected in collaboration with the Washington University Psychology

Department. Time-synchronized recordings of speech and subglottal acoustics

were obtained from (1) 25 male and 25 female adult native speakers of American

English (AE)—the WashU-UCLA Adults corpus, (2) 4 male and 2 female adult

bilingual speakers of Mexican Spanish (MS), their first language, and AE—the

WashU-UCLA Bilingual Adults corpus, and (3) 31 male and 12 female native

AE-speaking children—the WashU-UCLA Kids corpus [LMA12, LAM11]. The

native AE speakers were recorded at Washington University, while the bilingual

speakers were recorded at UCLA. Adult speakers were aged between 18 and 24

years, while children were aged between 6 and 17 years.

2.1.1 Recording setup and material

Recordings of speech and subglottal acoustics were made with a SHURE PG27

microphone and a K&K Sound HotSpot accelerometer, respectively, while partic-

28



ipants sat in a double-walled, sound attenuating booth. All signals were recorded

at a sampling rate of 48 kHz and a resolution of 16 bits/sample. MATLAB was

used to acquire and save the data via an M-Audio MobilePre USB pre-amplifier.

The microphone was placed roughly 20 cm in front of the speaker and slightly

to the right to avoid distortion due to airflow during high-airflow sounds. The

speaker was instructed on how to hold the accelerometer against the skin of the

neck at the cricoid cartilage below the level of the glottis.

The subjects were made to sit in front of a computer monitor that displayed

sentences to be read aloud. Various consonant-vowel-consonant (CVC) words

were embedded in the carrier phrase “I said a again” (or “Dije una

otra vez” in the case of MS recordings) and displayed on the monitor in random

order. The CVC words were divided into two lists, and each list was recorded

in a separate session. For the native AE speakers, the first word list comprised

21 AE CVb words (‘V’ was one of 4 monophthongs or 3 diphthongs, and ‘C’

was one of [b], [d] or [g]), and the second word list comprised 14 AE hVd words

(‘V’ was one of 9 monophthongs, 4 diphthongs, or the approximant [ô]). Rows 1

and 2 of Table 2.1 show the list of vowels recorded along with the corresponding

values of the features [low] and [back]. For the bilingual speakers, the first word

list was identical to the one used for the native AE speakers, while the second

word list comprised 21 MS CVb words (‘V’ was one of 4 monophthongs or 3

diphthongs, and ‘C’ was one of [b], [d] or [g]). Row 3 of Table 2.1 shows the list of

vowels recorded (the MS vowels are indicated in parentheses; note that each MS

vowel is placed below an AE vowel that phonetically resembles it the most). Each

target word was recorded 10 times for the adult native AE speakers, 7 times for

the adult bilingual speakers, and up to 7 times for children. In addition to the

above word lists, two accelerometer recordings of the sustained vowel [A:] were

recorded for each speaker, in which there was special emphasis on obtaining a
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Table 2.1: List of vowels recorded in the WashU-UCLA corpora. The hVd words in

American English (AE) were recorded for the native English speakers only, while

the AE CVb words were recorded for all speakers. The CVb words in Mexican

Spanish (MS) were recorded for the bilingual speakers only. Note that each MS

vowel, indicated in parentheses, is placed below an AE vowel that phonetically

resembles it the most. For monophthongs, values of the phonological features

[low] and [back] are also indicated.

i I eI E æ A 2 o U u aI aU OI ô

AE (hVd) X X X X X X X X X X X X X X

AE (CVb) X X X X X X X

MS (CVb) X X X X X X X

(i) (e) (a) (u) (ai) (au) (oi)

feature [low] - - + + + + - - -

feature [back] - - - - + + + + +

clear resonance structure up to Sg3. These high quality accelerometer recordings

were obtained using WAVESURFER [SB00] by allowing the speaker and the

experimenter to interactively adjust the placement of the accelerometer until

the best quality signal was achieved. This was an important step because the

quality of the accelerometer signals during the list recordings was expected to be

somewhat variable. The age, height and gender of each speaker were also noted.

2.1.2 Manual annotation

To facilitate data analysis, vowel segments were manually annotated in all of the

microphone recordings. Separate annotations were not required for the accelerom-

eter recordings since they were time synchronized with the microphone signals.
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Using PRAAT [BW09], the beginning and end of the target vowel in each of

the microphone recordings were manually labeled by a single investigator (to en-

sure consistency). For monophthongs and the approximant [ô], the middle of the

steady-state portion of the vowel was also labeled. For diphthongs, the nucleus

was labeled either in the middle of the steady state, if a steady state existed, or

just before the onset of rapid formant movements. All label files (one correspond-

ing to each microphone recording) were saved in the PRAAT TextGrid format.

The beginning of each target vowel in the CVb word lists (AE and MS) was

labeled where the formants became visible immediately after the initial plosive

consonant. The beginning of each target vowel in the hVd word list was labeled

where the formants were visible and the waveform demonstrated a significant

deviation from previous aspirated pulses. For both lists, the end of the vowel was

labeled at the point of closure of the final stop consonant. In general, the place-

ment of each label was guided by inspection of the spectrogram and waveform,

and by listening.

2.2 Measurement methods

For the native AE speakers, only the hVd recordings were analyzed in this dis-

sertation. For the bilingual speakers, both the AE and MS CVb recordings were

analyzed (to investigate the effect of native language on SGRs). In all cases,

only the monophthong vowels were considered (see Table 2.1 for a list of vowels).

Several repetitions of each monophthong (microphone as well as accelerometer

signals)—5 in the case of adults and 3 in the case of children—were chosen at ran-

dom for measuring the first three formants, the fundamental frequency (F0), and

the first three SGRs. All measurements were made in the steady-state regions (in

accordance with the PRAAT TextGrid labels). While F0 and formants were mea-
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Figure 2.1: Spectrogram of a sample accelerometer signal (taken from the WashU-

UCLA Kids corpus) demonstrating the strong low-pass nature of subglottal acous-

tics. Note that the signal had a bandwidth of 24 kHz originally, but was down

sampled to 5 kHz (2.5 kHz bandwidth) for display purposes.

sured semi automatically (i.e., with manual tuning of parameters) using the pitch

and formant tracks provided by WAVESURFER, SGRs were measured manually

using a combination of FFT (fast Fourier transform) spectra, LPC (linear pre-

dictive coding) spectra, and autocorrelation-based smoothed spectral envelopes.

Manual procedures were required for measuring SGRs because the accelerometer

recordings were noisy and strongly low pass in nature owing to interference from

the neck skin and tissues (see Figure 2.1).

2.2.1 Measuring F0 and formants

Using WAVESURFER, microphone signals were down sampled to 10 kHz and

pre-emphasized using the frequency response: H(ω) = 1 − 0.97e−jω. F0 and the

first three formants were obtained at 5 ms intervals after dividing the given signal

into Hamming-windowed segments. For formant tracking, the window length was

varied between 30 and 50 ms, and the LPC order was varied between 12 and 16

until the tracking contours aligned satisfactorily with the signal’s spectrogram.

32



For F0 tracking, the ESPS (Entropic signal processing system) algorithm [Tal95]

(built into WAVESURFER) was used. The window length was set to 7.5 ms and

the minimum pitch parameter was set to 60 Hz. The maximum pitch parameter

was 400 and 450 Hz for adults and children, respectively. The values of F0, F1,

F2, and F3 near the labeled steady-state part of the vowel were averaged over

five frames centered around the label location. F0 measurements were not used

for the analysis presented in this chapter; their purpose will be made clear when

SGR estimation algorithms are discussed later in Chapter 3.

2.2.2 Measuring SGRs

Given a vowel token of an accelerometer recording, a steady-state segment with

length equal to 4 pitch periods was chosen for analysis. The segment was down

sampled to between 6 and 10 kHz depending on how noisy the signal was at high

frequencies, and then passed through a pre-emphasis filter as described in Sec-

tion 2.2.1. The FFT spectrum was computed after applying a Hamming window.

For LPC analysis, the LPC order was set to between 10 and 14 depending on

whether the first two harmonics dominated the spectrum at low frequencies, thus

requiring an increased number of poles to reveal Sg1. The smoothed spectral en-

velope was obtained by dividing the long analyis segment into smaller subframes,

computing the autocorrelation function for each subframe after applying a Ham-

ming window, and computing the FFT of the averaged autocorrelation function.

The subframe size was set to between 0.9 and 1.1 pitch periods depending on the

intended frequency resolution, and the overlap between successive subframes was

80% of the subframe size.

The FFT spectrum, the LPC spectrum, and the smoothed envelope were

plotted on a single graph (as illustrated with an example in Figure 2.2), and with
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Figure 2.2: FFT spectrum, LPC spectrum, and smoothed envelope for a sample

accelerometer signal taken from the WashU-UCLA Kids corpus. Note that the

first two harmonics are particularly high in energy, producing an additional peak

in both the LPC spectrum and the smoothed envelope.

the FFT spectrum as a guide, Sg1, Sg2, and Sg3 were measured from either the

LPC spectrum or the smoothed envelope, depending on which was judged to give

the more accurate result. If neither spectral representation was satisfactory for

a particular SGR, the SGR frequency was not measured. Hence it is important

to note that not all three SGRs were necessarily measured in every vowel token

chosen for analysis. In general, it was more difficult to measure Sg1 and Sg3

than to measure Sg2. While measuring Sg1 was sometimes difficult (especially

for high-pitched speakers) due to its proximity to strong low-frequency harmonics,

measuring Sg3 was always difficult owing to the attenuation of high frequencies

caused by the low-pass nature of the neck tissues and skin.
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2.3 Analysis results

This section presents a few important results based on the measurements of for-

mant and SGR frequencies. The discussion is focused towards motivating the

algorithms to be presented in the coming chapters. For details regarding other

analyses, the interested reader is referred to the study by Lulich et al. [LMA12].

2.3.1 Phonetic and language independence of SGRs

Owing to the stationary nature of subglottal acoustics (see Figure 2.1, for exam-

ple), the SGRs of a given speaker are expected to be constant, regardless of the

phonetic content or language spoken. This hypothesis was verified with the help

of the manual SGR measurements that were obtained from the WashU-UCLA

corpora (see Section 2.2.2). Several SGR measurements were available for each

speaker, but they were not equally distributed across the monophthong vowels

chosen for analysis. Sg1 and Sg2 measurements were available for all speakers,

while no measurements of Sg3 could be made for 1 speaker in the WashU-UCLA

Adults corpus and 12 speakers in the WashU-UCLA Kids corpus. For the bilin-

gual speakers, roughly equal numbers of measurements were obtained from AE

and MS vowels. The within-speaker coefficient of variation (COV)—defined as the

ratio of standard deviation to mean—was computed for Sg1, Sg2 and Sg3 for

each native AE speaker, and the within-speaker, cross-language COV (i.e., with

measurements from AE and MS vowels combined) was computed for each bilin-

gual speaker. For comparison, the within-speaker COVs of F3, which is known to

be the least variable of the first three formants [PB52], were similarly computed.

Table 2.2 shows the average within-speaker percentage COVs for each database.

The corresponding raw standard deviations are also shown. SGR COVs are on
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Table 2.2: Average within-speaker percentage coefficient of variation (COV) for

SGRs and F3 in the WashU-UCLA corpora, along with the corresponding raw

standard deviations (σ). For bilingual speakers, measurements from both AE and

MS data were combined (cross-language COV and σ).

Sg1 Sg2 Sg3 F3

%COV (σ/µ× 100)

WashU-UCLA Adults corpus 5.0 2.2 2.5 8.3

WashU-UCLA Bilingual Adults corpus 4.5 2.3 2.7 7.5

WashU-UCLA Kids corpus 4.8 3.1 2.5 8.8

σ (Hz)

WashU-UCLA Adults corpus 30 32 57 231

WashU-UCLA Bilingual Adults corpus 25 32 61 203

WashU-UCLA Kids corpus 35 55 69 278

the order of 2–5%, indicating that the measurements vary very little about their

mean values. In comparison, the average within-speaker COVs of F3 are about

2–3 times higher. These results confirm that SGRs can indeed be considered ‘con-

stant’ for a given speaker and that average values are sufficient to characterize

a speaker’s SGRs. Henceforth in this dissertation, the term ground truth SGRs

(or actual SGRs) will be used to refer to the mean SGR frequencies of a given

speaker. To evaluate SGR estimation algorithms, the ground truth SGRs will

be treated as reference values regardless of the phonetic content, language and

duration of the test utterance.

36



Table 2.3: Average ground truth SGRs for speakers in the WashU-UCLA corpora

along with the corresponding minimum and maximum values (in square brackets).

Sg1 (Hz ) Sg2 (Hz ) Sg3 (Hz )

WashU-UCLA Adults corpus

Males 542 [492, 622] 1327 [1217, 1492] 2198 [2039, 2449]

Females 659 [580, 722] 1511 [1382, 1610] 2410 [2273, 2575]

WashU-UCLA Bilingual Adults corpus

Males 533 [491, 556] 1314 [1198, 1405] 2160 [1931, 2343]

Females 642 [626, 658] 1503 [1493, 1513] 2462 [2420, 2505]

WashU-UCLA Kids corpus

Males 727 [532, 906] 1720 [1261, 2160] 2710 [2056, 3384]

Females 752 [672, 831] 1778 [1519, 2006] 2720 [2417, 2980]

2.3.2 Ground truth SGRs of adults and children

Table 2.3 shows the average (across speakers) ground truth SGRs along with the

corresponding minimum and maximum values (in square brackets) for the three

WashU-UCLA corpora. These values serve to indicate the typical ranges of SGRs

for young adults, and children between the age of 6 and 17 years. The ground

truth SGRs of children are significantly higher than those of adults, on average.

Within adults, the ground truth SGRs of females are significantly higher than

those of males, on average. Note that gender does not have a significant effect

in the case of children. These trends are largely the result of the dependence of

SGRs on body height, which will be discussed further in Section 2.3.5.
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2.3.3 Relationships between SGRs and formants

On the one hand, formant frequencies, especially F1 and F2, are known to vary

considerably with phonetic content [PB52]. On the other hand, SGRs are prac-

tically independent of phonetic content (as Table 2.2 shows). Given these con-

trasting behaviors, this section tries to answer the following question: Can the

two sets of resonances be combined in a way that would enable the automatic

estimation of SGRs when only formant frequencies are known?

As discussed in Section 1.2.2, Sg1 forms a natural acoustic boundary between

[+low] and [-low] vowels along the F1 dimension—F1 is typically below Sg1 for

[-low] vowels and above Sg1 for [+low] vowels, and Sg2 forms a natural acoustic

boundary between [+back] and [-back] vowels along the F2 dimension—F2 is

typically below Sg2 for [+back] vowels and above Sg2 for [-back] vowels. Also, as

discussed in Section 1.2.2, SGRs tend to play a role in the human perception of

vowel phonological features. Based on these ideas, SGRs and formants were com-

bined to define the following perceptually-motivated acoustic features of vowel

height and backness:

vowel height: Bf1,sg1 = F1(Bark)− Sg1(Bark), (2.1)

vowel backness: Bf2,sg2 = F2(Bark)− Sg2(Bark), (2.2)

where F1(Bark), F2(Bark), Sg1(Bark) and Sg2(Bark) denote the first two for-

mants and SGRs, respectively, on the Bark scale. The Bark scale is a psychoa-

coustical scale based on human hearing [Zwi61] and several definitions exist for

it. In this dissertation, the following definition based on [Tra90] was used:

z = [(26.81f)/(1960 + f)]− 0.53, (2.3)

38



−5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

B
f2, sg2

: F2 (Bark) − Sg2 (Bark)

n
o
rm

al
iz

ed
 c

o
u
n
t

(a)

 

 

−5 −4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

B
f1, sg1

: F1 (Bark) − Sg1 (Bark)

n
o
rm

al
iz

ed
 c

o
u
n
t

(b)

 

 

adults; [+back]

children; [+back]

adults; [−back]

children; [−back]

adults; [−low]

children; [−low]

adults; [+low]

children; [+low]

Figure 2.3: Distributions of (a) Bf2,sg2, and (b) Bf1,sg1, based on vowel formant

measurements and ground truth SGRs of native AE-speaking adults and children

in the WashU-UCLA corpora.

where z denotes the Bark value corresponding to a frequency f in Hertz. Equa-

tion (2.3) offers simplicity in terms of conversion between Hertz and Bark values,

in addition to being as accurate as the other definitions.

Figure 2.3(a) shows the distribution of Bf2,sg2 for [+back] and [-back] vow-

els, and Figure 2.3(b) shows the distribution of Bf1,sg1 for [+low] and [-low]

vowels. The distributions were obtained using vowel formant measurements (see

Section 2.2.1) and ground truth SGRs of all the native AE speakers in the

WashU-UCLA corpora. The clear separation between vowel classes ([+back] ver-
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Figure 2.4: Scatter plots of Sg2 versus Sg1, Sg3 versus Sg1, and Sg3 versus Sg2,

for the native AE-speaking adults and children in the WashU-UCLA corpora.

sus [-back], and [+low] versus [-low]) around 0 Bark indicates that Bf1,sg1 and

Bf2,sg2 are reliable acoustic measures of vowel height and vowel backness, re-

spectively. As will be shown in Chapter 3, these measures—involving both SGRs

and formants—correlate strongly with well-known formant-only measures, thus

enabling the automatic estimation of SGRs given only formant information.

2.3.4 Correlations among SGRs

It was shown in [LAA11] that SGRs conform fairly well to the uniform-tube

model of Eq. (2.4):

SgN =
(2N − 1)c

4l
N = 1, 2, 3, (2.4)
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Table 2.4: Correlations among the ground truth SGRs of native AE-speaking

adults and children in the WashU-UCLA corpora.

Adults Children

males females overall males females overall

Sg1 vs. Sg2 0.585 0.659 0.885 0.952 0.881 0.938

Sg2 vs. Sg3 0.936 0.727 0.929 0.976 0.937 0.965

Sg3 vs. Sg1 0.486 0.645 0.813 0.948 0.631 0.926

where c is the speed (wave propagation velocity) of sound in the subglottal airways

and l is the length of the uniform tube (closed at the glottal end and open at the

distal end) that approximates the subglottal system. If the uniform tube were an

exact model of the subglottal system, SGRs would be rational multiples of one

another and hence perfectly correlated (Sg2 = 3 × Sg1, Sg3 = 5 × Sg1, Sg3 =

5
3
× Sg2). However, since Eq. (2.4) is only an approximation, the correlations

among SGRs are expected to be less than 1.

Figure 2.4 shows the scatter plots of Sg2 versus Sg1, Sg3 versus Sg1, and

Sg3 versus Sg2, for the native AE-speaking adults and children in the WashU-

UCLA corpora. Each data point represents the ground truth SGRs of a particular

speaker. Table 2.4 shows the corresponding correlation coefficients (overall and by

gender). The correlations involving Sg1 are poorer than the correlation between

Sg2 and Sg3 (especially for adults). This is presumably due to low-frequency sub-

glottal tissue resonances (typically between 150 and 300 Hz), which have been

shown to affect the frequency of Sg1 (without altering the Sg2 and Sg3 frequen-

cies) in a speaker-specific manner depending on (1) their proximity to Sg1, and

(2) the mechanical properties of the wall tissue that gives rise to them [LAA11].

The strong correlations between Sg2 and Sg3 (both overall and by gender) are at-

41



500 1000 1500 2000 2500 3000 3500
100

110

120

130

140

150

160

170

180

190

200

SGR frequency (Hz)

sp
e
a
k

e
r 

h
e
ig

h
t 

(c
m

)

 

 

Sg1; adults

Sg2; adults

Sg3; adults

Sg1; children

Sg2; children

Sg3; children

Figure 2.5: Scatter plots of body height versus SGRs for the native AE-speaking

adults and children in the WashU-UCLA corpora.

tributable to the observation in [LAA11] that the uniform-tube model of Eq. (2.4)

becomes a good approximation of the subglottal system at frequencies far from

the tissue resonance. The correlation between Sg2 and Sg3 will be used in Chap-

ter 3 for automatic Sg3 estimation. Note that the overall correlations are, on

average, significantly higher than the within-gender correlations in the case of

adults. This is because the SGRs of adult females differ significantly from those

of adult males, on average (see Table 2.3).

2.3.5 SGRs versus body height

The trachea accounts for a significant portion of the overall subglottal-tract length

[IMK76]. In [SP93], spectral features of tracheal sounds were shown to correlate

strongly with body height (or speaker height). This, along with the fact that
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Table 2.5: Correlations between ground truth SGRs and height for the native

AE-speaking adults and children in the WashU-UCLA corpora.

Adults Children

males females overall males females overall

Sg1 vs. height -0.314 -0.297 -0.742 -0.929 -0.926 -0.922

Sg2 vs. height -0.558 -0.527 -0.810 -0.943 -0.865 -0.929

Sg3 vs. height -0.467 -0.338 -0.719 -0.950 -0.611 -0.927

Table 2.6: Minimum, maximum and average height (in cm) of the native AE-

speaking adults and children in the WashU-UCLA corpora.

Adults Children

(18–24 years old) (6–17 years old)

min. max. avg. min. max. avg.

males 165 201 178.4 107 182 145.7

females 152 175 163.6 127 169 143.8

SGRs conform to a uniform-tube model (see Section 2.3.4), led to the hypothesis

that SGRs might be correlated with body height.

Figure 2.5 shows the scatter plots of ground truth SGRs versus body height for

the native AE-speaking adults and children in the WashU-UCLA corpora. Each

data point corresponds to a particular speaker. Table 2.5 shows the corresponding

correlation coefficients (overall and by gender). Children clearly show stronger

correlations compared to adults, but this could be because the WashU-UCLA

Kids corpus spans a larger height range compared to the WashU-UCLA Adults

corpus (see Table 2.6). The overall correlations are significantly stronger than the
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within-gender correlations in the case of adults. This is because the average female

speaker is significantly shorter than the average male speaker (see Table 2.6). In

the case of children, on the other hand, the overall and within-gender correlations

are comparable since the average speaker height is practically independent of

gender. The correlations between SGRs and height will be used in Chapter 4 for

the purpose of automatic height estimation from speech signals.

2.4 Conclusion

Time-synchronized recordings of speech and subglottal acoustics were collected

from adult native AE speakers, adult bilingual AE and MS speakers, and na-

tive AE-speaking children. The first three formants and SGRs were measured in

the steady-state regions of monophthong vowels. SGRs were found to be practi-

cally independent of phonetic content and native language; their average within-

speaker COVs were on the order of 2–5%. The ground truth SGRs (averages

of SGR measurements on a per-speaker basis) were significantly higher for chil-

dren compared to adults, and for adult females compared to adult males. The

correlations among SGRs and the correlations between SGRs and body height

were found to be stronger (and less influenced by gender differences) for children

(0.92 ≤ |r| ≤ 0.97) than for adults (0.72 ≤ |r| ≤ 0.93), in general. The Bark

difference between F1 and Sg1 was found to be a reliable acoustic measure of

vowel height, and the Bark difference between F2 and Sg2 was found to be a

reliable acoustic measure of vowel backness. The above findings are important

for automatic SGR estimation, height estimation and speaker normalization, as

will be evident from the forthcoming chapters.
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CHAPTER 3

Automatic estimation of SGRs

Motivated by the practical utility of SGRs—for applications such as height es-

timation (Chapter 4) and speaker normalization (Chapter 5)—and the need to

estimate SGRs from speech signals in real time, this chapter develops automatic

estimation algorithms for adults and children. The goal is to develop algorithms

for natural speech, with an emphasis on language independence and on robust-

ness to noise and data limitedness. Adults’ speech (Sections 3.1 and 3.2) and

children’s speech (Section 3.3) will be dealt with separately.

3.1 SGR estimation for adults

The approach proposed for adults’ speech is based on the vowel-feature con-

trasts provided by SGRs. Specifically, Sg1 estimation relies on the distinction

it provides between [+low] and [-low] vowels, while Sg2 estimation relies on the

distinction it provides between [+back] and [-back] vowels. Although there has

been some research regarding the division of tense and lax [-back] vowels by

Sg3 [Lul10,CBG09], no strong evidence exists either for or against it. Therefore,

Sg3 estimation relies simply on its correlation with Sg2 (see Section 2.3.4 of

Chapter 2). Data from 30 speakers (15 males, 15 females) in the WashU-UCLA

Adults corpus were used to develop and train the SGR estimation algorithm.

The training speakers were chosen such that their actual SGR frequencies were
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uniformly distributed in the range of ground truth values shown in Table 2.3.

The key ideas behind estimating Sg1, Sg2 and Sg3 are described first followed

by a description of the proposed automatic algorithm for natural speech.

3.1.1 Estimating Sg1

Sg1 estimation relied on three ideas: (1) defining a vocal tract-based measure

of vowel height that can be computed using speech signals, (2) defining an Sg1-

based measure of vowel height that can be computed using speech and subglottal

(accelerometer) signals, and (3) developing a model to predict the Sg1-based

measure from the vocal tract-based measure. In [SG86], the Bark difference be-

tween F1 and F0 was shown to be a reliable indicator of vowel height. However,

an acoustic measure involving F1 and F0 may be problematic for two reasons:

(1) F1 and F0 can be controlled fairly independently of each other, and (2) re-

liable estimation of F1 and F0 can be difficult when they are very close to each

other (e.g., [-low] vowels produced by high-pitched speakers). Therefore, for the

purposes of this dissertation, the Bark difference between F3 and F1, denoted

henceforth as Bf3,f1, was used as the required vocal tract-based measure of vowel

height. The choice of Bf3,f1 was motivated by a similar acoustic feature, namely

the Bark difference between F3 and F2, denoted henceforth as Bf3,f2, which has

been shown to be a reliable indicator of vowel backness [SG86, Chi85]. Bf1,sg1

(Bark difference between F1 and Sg1), which was shown in Chapter 2 to be a

good indicator of vowel height, was used as the required Sg1-based measure.

A total of 1350 tokens were used to train a model between Bf1,sg1 and Bf3,f1—

5 repetitions of each of the 9 hVd monophthongs (see Table 2.1) from each of the

30 training speakers. The formant measurements and ground truth SGRs required

for modeling were available through the data analysis procedures described in
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Chapter 2. Note that the formant and SGR values were converted from Hertz to

Bark (using Eq. (2.3)) before modeling. Figure 3.1 shows normalized histograms of

Bf3,f1 for [-low] and [+low] vowels, and also a scatter plot of Bf1,sg1 versus Bf3,f1.

Bf3,f1 separates the two vowel categories at approximately 9.5 Bark confirming

that it is, like Bf1,sg1, a reliable measure of vowel height. More importantly,

as evident from Figure 3.1(b), the two measures are strongly correlated (r =

-0.9241), suggesting that Bf3,f1 provides most of the information required for

predicting Bf1,sg1.

A linear regression between Bf1,sg1 (dependent variable) and the first three

powers of Bf3,f1 (independent variables) resulted in the following model:

Bf1,sg1 = 0.011(Bf3,f1)
3 − 0.269(Bf3,f1)

2 + 1.322(Bf3,f1) + 2.455. (3.1)

Although this regression model had a reasonably high r-squared (r2) value (0.8702),

a non-negligible portion of the variance in Bf1,sg1 (13%) was still not accounted

for. The residual variance was observed to be due to individual speaker differences.

Specifically, when the regression was performed separately for each speaker in the

training set, the resulting model coefficients showed large spreads in their values:

the coefficients related to the linear term (Bf3,f1) and the intercept term—terms

with the two largest weights—were found to have COVs equal to 115 and 162%,

respectively. To reduce the inter-speaker variability involved in predicting Bf1,sg1,

two speaker-related features were used: F3 and F0 (both in Hertz). Note that

F0 measurements were available through the data analysis procedures described

in Chapter 2. When F3 and F0 (in that order) were added incrementally to the

above third-order regression model, r2 increased from 0.8702 to 0.9255 and from

0.9255 to 0.9724; the increase in each case was statistically significant (p < 0.001).
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Figure 3.1: (a) Normalized histograms of Bf3,f1 for [-low] and [+low] vowels; the

boundary between the two classes is around 9.5 Bark. (b) Scatter plot (1350 data

points) of Bf1,sg1 versus Bf3,f1 (r = -0.9241).

The updated regression model is given by Eq. (3.2):

Bf1,sg1 = 0.001(Bf3,f1)
3 − 0.024(Bf3,f1)

2 − 0.737(Bf3,f1)

+ 0.002(F3)− 0.007(F0) + 3.903.
(3.2)

With the updated model, the COVs of the coefficients related to the linear term
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and the intercept term reduced to 44 and 49%, respectively. It can thus be said

that F3 and F0 were successful in reducing inter-speaker variability. Given F0,

F1 and F3, Sg1 can be readily estimated using Eq. (3.2).

3.1.2 Estimating Sg2

Sg2 estimation was analogous to Sg1 estimation and relied on the following three

ideas: (1) defining a vocal tract-based measure of vowel backness, (2) defining an

Sg2-based measure of vowel backness, and (3) developing a model to predict

the Sg2-based measure from the vocal tract-based measure. While Bf3,f2 was

used as the required vocal tract-based measure (based on the findings in [SG86]

and [Chi85]), Bf2,sg2 (Bark difference between F2 and Sg2), which was shown

in Chapter 2 to be a good indicator of vowel backness, was used as the required

Sg2-based measure.

A model between Bf2,sg2 and Bf3,f2 was trained using the same 1350 tokens

that were used to develop the Sg1-estimation model. Figure 3.2 shows normalized

histograms of Bf3,f2 for [-back] and [+back] vowels, and also a scatter plot of

Bf2,sg2 versus Bf3,f2. Bf3,f2 separates the two vowel categories at approximately

3.5 Bark (which agrees well with the findings in [SG86] and [Chi85]) confirming

that it is, like Bf2,sg2, a reliable measure of vowel backness. More importantly,

as evident from Figure 3.2(b), the two measures are strongly correlated (r =

-0.9352), suggesting that Bf3,f2 provides most of the information required for

predicting Bf2,sg2.

A linear regression between Bf2,sg2 and the first three powers of Bf3,f2 resulted

in the following model (r2 = 0.8905):

Bf2,sg2 = −0.004(Bf3,f2)
3 + 0.134(Bf3,f2)

2 − 1.958(Bf3,f2) + 6.182. (3.3)
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Figure 3.2: (a) Normalized histograms of Bf3,f2 for [-back] and [+back] vowels;

the boundary between the two classes is around 3.5 Bark. (b) Scatter plot (1350

data points) of Bf2,sg2 versus Bf3,f2 (r = -0.9352).

As in the case of Sg1 estimation, the residual variance in the above model (11%)

was minimized by using F3 and F0. When F3 and F0 (in that order) were

added incrementally to the regression, r2 increased from 0.8905 to 0.9429 and from

0.9429 to 0.9713; the increase in each case was statistically significant (p < 0.001).

50



The updated regression model is given by Eq. (3.4):

Bf2,sg2 = 0.001(Bf3,f2)
3 + 0.009(Bf3,f2)

2 − 1.089(Bf3,f2)

+ 0.002(F3)− 0.007(F0)− 0.019.
(3.4)

Given F0, F2 and F3, Sg2 can be readily estimated using Eq. (3.4).

3.1.3 Estimating Sg3

Although there has been some research indicating that Sg3 may lie at the bound-

ary of tense and lax [-back] vowels [Lul10,CBG09], there is not enough evidence

to suggest that the phenomenon occurs consistently in all speakers and languages.

Therefore, Sg3 was simply estimated based on its strong correlation with Sg2 (as

observed in Chapter 2). With the actual SGRs of the 30 speakers in the training

set, a first-order linear regression between Sg3 and Sg2 resulted in Eq. (3.5) (r2

= 0.8427):

Sg3 = 1.079× Sg2 + 763.676, (3.5)

which provided an estimate of Sg3 once Sg2 was estimated using the procedure

described in Section 3.1.2. For the training set used here, the RMS error between

actual Sg3 and the Sg3 predicted using Eq. (3.5) (53 Hz) was much smaller

than the corresponding RMS error incurred using Eq. (1.2) (275 Hz). Therefore,

Eq. (3.5) is more reliable than Eq. (1.2) for estimating Sg3 from Sg2.

3.1.4 The automatic algorithm

One of the goals of this work was to estimate SGRs from continuous (and natural)

speech. Following are the steps involved in going from a given speech signal to

the estimates of the speaker’s SGRs.
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Table 3.1: SNACK toolkit parameters for automatic formant and pitch tracking

(as required by the SGR estimation algorithm for adults).

parameter value

window size 30 ms

window spacing 5 ms

window type Hamming

LPC order 10

LPC method autocovariance

F0 tracking algorithm ESPS

minimum pitch 60 Hz

maximum pitch 400 Hz

1. Downsample the signal to 7 kHz and pre-emphasize the high frequencies by

passing it through a filter with the following frequency response:

H(ω) = 1− 0.97e−jω.

Since the first three formants of adult speakers usually lie below 3.5 kHz

[PB52,HGC95], a sampling rate of 7 kHz suffices for formant tracking.

2. Track F0, F1, F2 and F3 automatically using the SNACK sound toolkit.

The values of the formant tracking parameters and pitch tracking parame-

ters are shown in Table 3.1. The chosen window size (30 ms) covers at least

2 to 3 pitch periods and the small window spacing (5 ms) ensures smooth

formant tracks. The minimum (60 Hz) and maximum (400 Hz) pitch values

accommodate the range of pitch frequencies observed in adults’ speech.

3. Select all voiced frames using SNACK’s binary voicing parameter: the prob-
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ability of voicing (PV). SNACK sets PV to 1 or 0 depending on whether a

given frame is voiced or unvoiced, respectively. Unvoiced frames need to be

discarded because the fundamental and formant frequencies (required for

SGR estimation) are not well defined for unvoiced speech.

4. Perform the following sequence of operations for each voiced frame in the

given speech signal. The superscript k in all the following operations indi-

cates the kth voiced frame.

• Obtain Bark values corresponding to F1k, F2k and F3k using Eq. (2.3).

• Compute Bk
f3,f1 and Bk

f3,f2.

• Predict Bk
f1,sg1 from {Bk

f3,f1, F3k, F0k} using Eq. (3.2), and Bk
f2,sg2

from {Bk
f3,f2, F3k, F0k} using Eq. (3.4).

• Recover Sg1k and Sg2k in Bark:

Sg1k(Bark) = F1k(Bark)− Bk
f1,sg1,

Sg2k(Bark) = F2k(Bark)− Bk
f2,sg2.

• Convert Sg1k and Sg2k from Bark to Hertz by inverting Eq. (2.3).

5. At the end of Step 4, every voiced frame in the signal is associated with an

estimate of Sg1 and Sg2. Then, estimate the speaker’s Sg1 and Sg2 as the

averages of the corresponding frame-level estimates:

Sg1 =
1

Nv

Nv
∑

k=1

Sg1k

Sg2 =
1

Nv

Nv
∑

k=1

Sg2k,

where Nv denotes the total number of voiced frames.
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Figure 3.3: Distributions of frame-level Sg1 estimates (left) and frame-level Sg2

estimates (right) obtained by applying the automatic SGR estimation algorithm

to a microphone recording of “I said a heed again” (not in the training set) in

the WashU-UCLA Adults corpus. In each case, the mean of the distribution is

close to the actual SGR value.

6. Estimate the speaker’s Sg3 by plugging the above Sg2 estimate into Eq. (3.5).

It must be noted that while the regression models for SGR estimation were

trained using formant frequencies and F0 measured in steady-state vowels, the

actual algorithm was designed to use all voiced frames irrespective of their ori-

gin: vowels (steady-state or otherwise), voiced consonants or transition regions

between voiced and unvoiced sounds. Although such an approach is expected to

yield a few ‘undesirable’ frame-level estimates, natural speech contains enough

vowel segments to skew the averages of frame-level estimates towards the actual

(‘desired’) SGR values. Figure 3.3 illustrates with an example that the proposed

frame-based approach is effective in estimating Sg1 and Sg2 from continuous

speech. However, it is important to note that the proposed algorithm cannot

estimate SGRs from purely unvoiced speech (e.g., whispered speech).
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3.1.5 Analysis of noise robustness

The efficacy of the proposed estimation algorithm depends on the performance

of SNACK (with regard to pitch and formant tracking). SNACK is a popular

tool and is known to be accurate in clean conditions for both pitch tracking

[TA13] and formant tracking [DCP06]. To assess its efficacy in noise (for the

purpose of SGR estimation), noisy speech files were created using a subset of

the WashU-UCLA Adults corpus, and the pitch and formant contours obtained

from them were visually analyzed. Babble noise, which is more realistic than

white noise, was added to the clean speech files using the Filtering and Noise-

adding Tool (FaNT) [Hir05]. The noise file was obtained from the NOISEX-

92 database [VS93], and the signal-to-noise ratio (SNR) was varied between 0

and 10 dB. The contours obtained from a given noisy utterance were considered

reliable if they closely matched the contours obtained from the corresponding

clean utterance. Note that pitch and formant tracking in noise are challenging

problems if accurate results are required at every time instant. However, since

the proposed SGR estimation algorithm uses only voiced segments and relies on

averaging the frame-level estimates, the pitch and formant tracking requirements

are not very stringent.

In general, SNACK’s estimates of pitch and formants were found to be reliable

in voiced regions with high local SNRs; an example is shown in Figure 3.4. These

high-SNR voiced regions belonged largely to vowels (which are important for SGR

estimation). Also, the unvoiced-to-voiced error (i.e., frames classified as unvoiced

in clean but voiced in noise) was less than 5%, on average. This is beneficial to

estimating SGRs because unvoiced segments must be discarded in the estimation

process. Note that voiced-to-unvoiced errors are relatively harmless as long as at

least a few voiced frames are correctly detected. In summary, therefore, SNACK
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Figure 3.4: Contours of F0 and formants obtained using SNACK for a sample ut-

terance (“I said a hod again”) in the WashU-UCLA Adults corpus. The contours

in red correspond to the original clean signal and the contours in blue correspond

to its noisy version (babble noise was added at an average SNR of 5 dB). The

bottom panel shows the frame-by-frame SNRs for the noisy signal (not in dB,

to better distinguish the high-SNR from the low-SNR regions). Note that the

contours and SNRs are shown for only voiced segments (which are used for SGR

estimation).

is reasonably accurate for the purpose of SGR estimation in noisy adults’ speech,

even at an SNR as low as 0 dB.

3.2 Experiments with adults’ speech

The proposed SGR estimation algorithm was evaluated using microphone record-

ings of 20 speakers (10 males, 10 females; different from the speakers in the train-

ing set) in the WashU-UCLA Adults corpus and all 6 speakers in the WashU-
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UCLA Bilingual Adults corpus. The algorithm was evaluated additionally on the

MIT tracheal resonance (TR) database [Son04].

The MIT TR database comprises time-synchronized recordings of speech and

subglottal acoustics from 14 adult (7 male, 7 female) native AE speakers aged

between 18 and 78 years. The recorded material comprises carrier phrases of the

form “ , say again,” where the blank is one of 16 dVd or 16 hVd words.

There are a total of 160 utterances per speaker (5 repetitions per word). Further

details regarding the database can be found in [Son04].

The SGR estimation algorithm was applied to both the carrier phrases in

the WashU-UCLA corpora and the vowel tokens isolated from them. These ex-

periments served to analyze the algorithm’s performance with regard to spoken

content, language (AE versus MS), and the amount of speech data used for es-

timation. Note that the algorithm was trained on AE vowels but applied to MS

data without any modification.

Noisy speech files were created using the MIT TR database and the algorithm

was applied to clean as well as noisy data. These experiments served to analyze the

algorithm’s robustness to noise and its efficacy under varying recording conditions

(note that the WashU-UCLA corpora and the MIT TR database were collected

with different equipment and in different recording conditions). The speech files

were corrupted with four different noise types (babble, white, factory and pink—

all from NOISEX-92) at three different SNRs (0, 5 and 10 dB). Ground truth

SGRs were obtained from accelerometer recordings as described in Section 2.2.2.

3.2.1 Performance metrics

For ease of representation, let actual SGR values be denoted as Sg1a, Sg2a and

Sg3a, and estimated SGR values be denoted as Sg1e, Sg2e and Sg3e. The SGR
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estimation algorithm was evaluated using two performance metrics: (1) average

root mean squared error (RMSE), and (2) average mean-relative standard devi-

ation (MSD). While RMSE quantifies estimation accuracy, MSD quantifies the

consistency of estimation. Denoting the number of test speakers as Ns and the

number of test utterances (isolated vowels or sentences) for the ith speaker as Mi,

the definitions of RMSE and MSD for the Kth SGR (K = 1, 2, 3) are as follows.

RMSE =
1

Ns

Ns
∑

i=1

RMSEi, RMSEi =

√

√

√

√

1

Mi

Mi
∑

j=1

(SgKij
e − SgKi

a)
2 (3.6)

MSD =
1

Ns

Ns
∑

i=1

(

σi
e

µi
e

× 100

)

,

µi
e =

1

Mi

Mi
∑

j=1

SgKij
e σi

e =

√

√

√

√

1

Mi

Mi
∑

j=1

(SgKij
e − µi

e)
2

(3.7)

In Eq. (3.6), SgKi
a denotes the actual value of the Kth SGR of the ith test

speaker. In Eqs. (3.6) and (3.7), SgKij
e denotes the estimated value of the Kth

SGR corresponding to the jth utterance of the ith test speaker. Note the resem-

blance between the RMSE definition of Eq. (3.6) and the average within-speaker

standard deviation of SGR measurements reported in Table 2.2—they are both

computed in reference to actual SGR values. Therefore, the numbers in Table 2.2

can be used as a rough guideline for interpreting the results of SGR estimation.

3.2.2 Results for the WashU-UCLA corpora

(a) Estimation using isolated vowels:

The algorithm was evaluated on (1) 13 AE vowels (10 tokens per vowel per

speaker) in the hVd word list of the WashU-UCLA Adults corpus (the approxi-

mant [ô] was not used), and (2) all 7 vowels (21 tokens per vowel per speaker) in
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Figure 3.5: SGR estimation using isolated vowels: overall RMSE and MSD cor-

responding to the monophthong and diphthong vowels recorded in the WashU-

UCLA Adults corpus. For practical purposes, the performance can be considered

to be vowel independent.

the AE CVb word list and the MS CVb word list of the WashU-UCLA Bilingual

Adults corpus.

Figure 3.5 shows the overall (males and females combined) RMSE and MSD

corresponding to each monophthong and diphthong vowel in the WashU-UCLA

Adults corpus. The following two observations can be made. (1) The algorithm’s

performance is slightly vowel dependent; this might be attributed, at least in

part, to differences in the accuracy of automatic formant tracking. Specifically,

it is easier to track formants when they are fairly ‘steady’ and well separated

from one another (e.g., [E], [æ] and [I]) than when two or more of them are very

closely spaced (e.g., [i] and [A]) or rapidly changing over time (e.g., [aI] and [OI]).

Nevertheless, the observed vowel dependence in performance is small enough to

be ignored for practical purposes: RMSE ranges from 24 Hz ([E]) to 32 Hz ([OI])
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Figure 3.6: SGR estimation using isolated vowels: overall RMSE and MSD corre-

sponding to the AE (left) and MS (right) vowels recorded in the WashU-UCLA

Bilingual Adults corpus. For practical purposes, the performance can be consid-

ered to be language independent.

for Sg1, from 61 Hz ([E]) to 75 Hz for Sg2 ([i]), and from 98 Hz ([u]) to 118 Hz

([OI]) for Sg3. (2) For all three SGRs, the RMSEs are on the order of (about 1

to 2 times) the average within-speaker standard deviations shown in Table 2.2,

and the MSDs are less than 3%. Therefore, the algorithm’s performance can be

considered accurate within the measurement error.

Figure 3.6 shows the overall RMSE and MSD corresponding to all the AE and

MS vowels in the WashU-UCLA Bilingual Adults corpus. As in the case of the na-

tive AE speakers (Figure 3.5), the algorithm’s performance is only slightly vowel

dependent. However, the more important observation here is that the algorithm

is equally accurate and consistent for AE and MS vowels (with the exception of

[au] and, particularly, [a]) despite being trained using AE data only. This lan-

guage independent nature of the algorithm can be attributed to two factors. (1)

Bark differences between vocal-tract formants (Bf3,f1 and Bf3,f2), which are es-
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Table 3.2: SGR estimation results using one utterance (less than 2 seconds) per

estimate: RMSEs and MSDs for the WashU-UCLA Adults corpus. For practical

purposes, the performance can be considered to be gender independent.

RMSE (Hz) MSD (%)

Sg1 Sg2 Sg3 Sg1 Sg2 Sg3

Males 22 64 97 1.9 1.4 0.9

Females 32 65 125 1.4 1.2 0.8

Overall 25 61 104 1.6 1.2 0.8

Table 3.3: SGR estimation results using one utterance (less than 2 seconds) per

estimate: RMSEs and MSDs for the WashU-UCLA Bilingual Adults corpus.

Sg1 Sg2 Sg3

AE MS AE MS AE MS

RMSE (Hz) 20 18 40 32 100 90

MSD (%) 1.2 1.2 0.9 0.9 0.6 0.6

sential to the SGR estimation algorithm, do not contain any language-specific

information about vowels; they are simply acoustic measures of vowel height and

backness. (2) Acoustic features such as F3 and F0, which provide auxiliary in-

formation for estimating SGRs, carry speaker-related information and hence do

not vary significantly with the language spoken.

(b) Estimation using continuous speech (carrier phrases):

The test set consisted of carrier phrases from the WashU-UCLA Adults corpus

(140 per speaker) and the WashU-UCLA Bilingual Adults corpus (147 in AE and

147 in MS, per speaker). All utterances were less than 2 seconds in duration.
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Figure 3.7: SGR estimation results using up to 10 utterances per estimate: overall

RMSE and MSD—corresponding to Sg1 (left) and Sg2 (right)—as a function of

the number of utterances used. Note that in the bottom two panels, the curves

for MS data overlap with the curves for AE data.

The first three SGRs were estimated from each utterance in the test set. Hence,

every SGR estimate was obtained using less than 2 seconds of speech. Table 3.2

shows the RMSE and MSD for the WashU-UCLA Adults corpus (separated by

gender), and Table 3.3 shows the results for the WashU-UCLA Bilingual Adults

corpus (separated by language). The following observations can be made from

Table 3.2. (1) Compared to males, females have larger RMSEs but smaller MSDs

(especially in the case of Sg3). The slightly larger values of females’ RMSEs might

be attributed, at least in part, to the fact that LPC-based formant estimation

(used in the SNACK toolkit) is less accurate for speakers with high-pitched voices

(usually females) as compared to speakers with low-pitched voices (usually males)

[Mak75]. However, this gender dependence in performance is small enough to

be ignored for practical purposes. (2) The overall RMSE for Sg3 estimation is
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∼100 Hz. In comparison, Sg3 estimation using Eq. (1.2) (which, like Eq. (3.5),

requires an estimate of Sg2) incurs an overall RMSE in excess of 300 Hz. This

reiterates that Eq. (3.5) is a more accurate model of the relation between Sg2

and Sg3. From Table 3.3, it can be observed once again that the algorithm is

language independent. Also, as observed earlier, the RMSEs for both the native

AE and bilingual speakers are comparable to the average within-speaker standard

deviations reported in Table 2.2; the MSDs are less than 2% (implying that the

variance in the estimates is very small).

The results in Tables 3.2 and 3.3 were obtained using one speech utterance

(less than 2 seconds) per estimate. To see if the algorithm performed better with

more data, the SGRs of the test speakers were estimated using up to 10 utterances

per estimate. Figure 3.7 shows the overall RMSE and MSD—corresponding to

Sg1 and Sg2—as a function of the number of utterances used for estimation (Sg3

shows the same trend as Sg2 since it is estimated from Sg2). As the number of

sentences increases from 1 to 10, RMSE decreases slightly (by 11% for Sg1 and

10% for Sg2, on average), but MSD decreases considerably (by 67% for both Sg1

and Sg2, on average). Therefore, the algorithm’s performance does improve as

more speech data becomes available. The more attractive feature of the algorithm,

however, is that it performs well even when data are limited.

3.2.3 Results for the MIT tracheal resonance database

The test set comprised 280 utterances (20 utterances chosen at random for each

of the 14 speakers in the database) in each evaluation condition: clean speech,

and speech corrputed with babble, white, factory and pink noise types (at SNRs

of 0, 5 and 10 dB). The utterances were 2–3 seconds long, on average, and SGR

estimates were obtained on a per-utterance basis. Babble noise was found to
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Table 3.4: SGR estimation results using one utterance (less than 3 seconds) per

estimate: overall RMSEs (Hz) for the MIT tracheal resonance database in clean

and babble noise (at different SNRs) conditions.

Clean 10 dB 5 dB 0 dB Average

Sg1 28 30 31 34 31

Sg2 63 64 63 67 64

Sg3 113 116 114 119 116

be the most challenging condition. Therefore, for brevity, Table 3.4 shows the

RMSEs for the case of babble noise only; results for the other noise types were

either similar or slightly better.

Two important observations can be made from Table 3.4. (1) The SGR estima-

tion algorithm is robust to noise, even at an SNR of 0 dB. This is attributable to

the fact that the SNACK toolkit provides reasonably-accurate voicing detection,

and pitch and formant estimation in voiced speech segments with high local SNR

(see Figure 3.4). Note that the algorithm’s performance is not severely affected

despite the fact that babble noise has a large portion of its energy in the low

frequencies (which might affect the estimation of F0 and the first two formants).

(2) The RMSEs are comparable to those obtained for the WashU-UCLA corpora

(see Tables 3.2 and 3.3), implying that the proposed algorithm is effective under

varying recording conditions.

3.3 SGR estimation for children

For adults’ speech, Sg1 was estimated using a regression model of the relationship

between two vowel-height measures: Bf1,sg1 and Bf3,f1 (see Eq. (3.2)). Similarly,
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Sg2 was estimated using a model of the relationship between two vowel-backness

measures: Bf2,sg2 and Bf3,f2 (see Eq. (3.4)). F3 and F0 (in Hz) were used in

the above models as auxiliary, speaker-related features. Since the relationship

between Hertz and Bark frequencies is nonlinear—see Eq. (2.3), Eqs. (3.2) and

(3.4) result implicitly in nonlinear relationships between Sg1 or Sg2, and the

vocal tract parameters F0, F1, F2, and F3.

Similar regression models were trained for children (using a subset of the

WashU-UCLA Kids corpus), but their r2 values were found to be significantly

lower than the r2 values associated with Eqs. (3.2) and (3.4). This can be at-

tributed, at least in part, to the higher degree of acoustic variability (with regard

to the fundamental and formant frequencies) that children’s speech is known to

exhibit [LPN99]. One way of compensating for this large variability would be to

train an explicit nonlinear model of the relationships between SGRs and vocal-

tract parameters. In this dissertation, artificial neural networks (ANNs) were used

as the required nonlinear models. The key idea was to train an ANN with F0,

F1, F2 and F3 as inputs, and Sg1 and Sg2 as outputs. Sg3 was simply estimated

based on its strong correlation with Sg2 (see Section 2.3.4).

Data from 25 speakers—ground truth SGRs and measurements of F0 and

formant frequencies (see Chapter 2)—in the WashU-UCLA Kids corpus were

used for training. An ANN with one hidden layer and 20 nodes (each having

a sigmoid nonlinearity) was trained using MATLAB’s Neural Network Toolbox.

Raw measurements (not speaker-wise averages) of F0, F1, F2 and F3 formed

the ANN’s inputs, and the corresponding ground truth values of Sg1 and Sg2

formed the ANN’s outputs. A first-order linear model was trained to estimate

Sg3 from Sg2:

Sg3 = 1.47× Sg2 + 203. (3.8)
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Given a speech signal from a child speaker, the first three SGRs are estimated

as follows. (1) Downsample the signal to 8 kHz and pre-emphasize it with the

high-pass filter: H(ω) = 1 − 0.97e−jω. Since the first three formants of children

typically lie below 4 kHz [LPN99], a sampling rate of 8 kHz suffices for formant

tracking. (2) Obtain contours of F0, F1, F2 and F3 automatically using the

SNACK toolkit. Use the same parameters as in Table 3.1, except for an LPC

order of 12 (instead of 10) and a maximum pitch value of 450 Hz (instead of

400 Hz). A higher LPC order is necessary to account for the fact that children’s

voices, in general, are breathier than those of adults (resulting in a higher degree

of spectral tilt) [Shu10]. (3) Select voiced frames using SNACK’s binary voicing

parameter. (4) Estimate Sg1 and Sg2 for each voiced frame by feeding its pitch

and formant values as inputs to the pre-trained ANN. (5) Estimate Sg1 and Sg2

for the given utterance by averaging the corresponding frame-level estimates. (6)

Estimate Sg3 using Eq. (3.8) and the estimated value of Sg2 obtained in step

(5). Steps (1)–(6) are summarized in Figure 3.8. Note that the above algorithm

is similar to the estimation algorithm for adults, except that Sg1 and Sg2 are

estimated using an ANN instead of Eqs. (3.2) and (3.4).
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Table 3.5: RMSEs (in Hz) for SGR estimation from children’s speech at 5 dB

SNR. Data from 18 speakers (42 utterances per speaker) in the WashU-UCLA

Kids corpus were used for evaluation. Results for Sg3 are based on data from 6

speakers only.

Clean Babble Car Pink White Average

Sg1 64 74 63 64 64 66

Sg2 146 173 143 151 153 153

Sg3 111 196 111 150 146 143

The noise robustness of the above algorithm depends on the performance of

SNACK (as in the case of adults). The efficacy of SNACK, in noise, was analyzed

subjectively as per the procedure described in Section 3.1.5. In general, SNACK’s

F0 and formant estimates (in voiced speech) were found to be reliable at SNRs

of 5 dB or more. In the case of adults, on the other hand, SNACK was found to

be effective at SNRs as low as 0 dB. This suggests that improved F0 and formant

tracking might be required for children’s speech at low SNR levels, a topic beyond

the scope of this dissertation.

3.3.1 Experiments with children’s speech

To evaluate the SGR estimation algorithm for children, speech data from 18

speakers (not part of the training set) in the WashU-UCLA Kids corpus were

used. For each speaker, 42 utterances (3 utterances corresponding to each of

the 14 target words) were randomly chosen from the hVd recordings. The clean

speech data were corrputed with 4 different noise types—babble, car, pink, and

white—at an SNR of 5 dB (the lowest SNR level at which SNACK was found

to be effective with children’s speech, for the purpose of SGR estimation). Noise
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files were taken from the NOISEX-92 database, and FaNT was used to create

the noisy data sets. Ground truth values of Sg1 and Sg2 were available for all

18 speakers, but ground truth Sg3 values were available for only 6 of them.

RMSE, as defined by Eq. (3.6), was used as the performance metric. Note that

the above noise types were chosen to mimic situations where children are likely

to use speech-based applications; factory noise, which was used in the case of

adults, was therefore not used.

The results are shown in Table 3.5. The RMSEs are about 2 to 3 times the

average within-speaker standard deviations shown in Table 2.2—this is slightly

worse compared to the performance achieved for adults (see Section 3.2.2). Note

that the average RMSE for Sg3 is less than the average RMSE for Sg2. This is

probably because of the small test sample used for Sg3 estimation (RMSEs are

expected to be higher for Sg3 because its estimation depends on Sg2 through

Eq. (3.8)). The algorithm is robust to different noise conditions, except babble.

The larger performance drop (with respect to clean) in babble noise is attributable

to the fact that speech babble has a large portion of its energy in the low fre-

quencies (which affects the estimation of F0 and the first two formants). Note

that the effect of babble noise was less severe in the case of adults (see Table 3.4),

which again points to the fact that F0 and formant tracking are more challenging

with children’s speech (especially in noise).

3.4 Conclusion

In this chapter, automatic SGR-estimation algorithms for adults as well as chil-

dren were developed and evaluated. The emphasis was on phonetic and langauge

independence, noise robustness, and effectiveness with limited data.
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For adults, Sg1 and Sg2 are estimated based on the fact that they form natural

boundaries between [+low]/[-low] and [+back]/[-back] vowels, respectively. Sg3

is estimated based on its correlation with Sg2. The algorithm uses the SNACK

toolkit for automatic pitch and formant tracking, and provides utterance-level

SGR estimates by averaging the frame-level estimates obtained in voiced speech

segments. Data from 30 native AE speakers in the WashU-UCLA Adults cor-

pus are used for training, and the algorithm is evaluated using data from (1) 20

speakers in the WashU-UCLA Adults corpus, (2) 6 speakers in the WashU-UCLA

Bilingual Adults corpus, and (3) 14 speakers in the MIT TR database. The al-

gorithm’s performance—in terms of RMSE (a measure of accuracy) and MSD (a

measure of consistency)—is found to be practically independent of vowel content

and language (AE versus MS). In addition, the algorithm is robust to different

noise types (babble, factory, white and pink) at SNRs as low as 0 dB. Using

just 2–3 seconds of speech, Sg1, Sg2 and Sg3 can be estimated, on average, to

within 31, 64 and 116 Hz, respectively—these errors are 1 to 2 times the average

within-speaker standard deviations in measured SGR frequencies.

In the case of children, Sg1 and Sg2 are estimated using an ANN-based

nonlinear mapping between vocal-tract parameters (F0, F1, F2 and F3) and

ground truth SGRs. Sg3 is estimated as in the case of adults. The algorithm

is trained and evaluated using data from 25 and 18 speakers, respectively, in

the WashU-UCLA Kids corpus. The algorithm (based on the SNACK toolkit as

in the case of adults) is robust to different noise types (babble, car, white and

pink) at SNRs of 5 dB or more. Robustness at lower SNR levels could possibly

be achieved with more sophisticated pitch- and formant-tracking algorithms. The

average RMSEs incurred in estimating Sg1, Sg2 and Sg3 are 66, 153 and 143 Hz,

respectively—these errors are 2 to 3 times the average within-speaker standard

deviations in measured SGR frequencies.
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CHAPTER 4

Speaker height estimation using SGRs

This chapter presents a practical, physiologically-motivated approach to height

estimation based on the use of SGRs. The approach is based on the assumption

that the ‘acoustic length’ of the subglottal system is proportional to speaker

height. ‘Acoustic length’ is the length of an equivalent uniform tube (closed at

the glottal end and open at the distal end) whose input impedance approximates

the actual input impedance of the subglottal system. The above assumption is

supported by [LAA11], in which it was shown that the first three SGRs can be

modeled as the resonances of a simple uniform tube whose length is equal to the

height of the speaker divided by an empirically-determined scaling factor. The

assumption finds further evidence in the correlations observed between height

and SGR frequencies (see Chapter 2).

The proposed approach is essentially a combination of two key ideas: (1)

modeling the correlations between speaker height and ground truth SGRs, and

(2) estimating SGRs using speech signals (see Chapter 3). While the approach is

applicable to adults and children alike, this chapter presents empirical results for

adults only—speech databases with height information were unavailable in the

case of children. It will be shown that the proposed approach is effective with

limited data, requires very little training, and is robust to noise.
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Figure 4.1: Scatter plots of speaker height versus the first three SGRs (data cor-

respond to speakers in the WashU-UCLA Adults corpus and the WashU-UCLA

Bilingual Adults corpus). The solid lines represent first-order linear regression fits

to the data. Speaker height correlates more strongly with Sg2 (r = -0.8256) than

with Sg1 (r = -0.7586) or Sg3 (r = -0.7627).

4.1 Method

The relationships between speaker height and SGRs were modeled using the

ground truth SGRs and self-reported heights (in centimeters) of all speakers in

the WashU-UCLA Adults corpus and the WashU-UCLA Bilingual Adults corpus

(56 in total). Male speaker heights ranged from 165 to 201 cm while female

speaker heights ranged from 152 to 175 cm. All three SGRs correlated negatively

with height, but Sg2 accounted for more height variance (r2 = 0.68) than Sg1

(r2 = 0.58) or Sg3 (r2 = 0.58). In contrast, [Dus05] reported that 31 vocal tract-

based features (MFCCs, LPCs and formants) were necessary to explain 57% of

the variance in height. This reinforces the hypothesis that SGRs are more suitable

for height estimation than are vocal-tract features.
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Using first-order linear regression, the following empirical relations were ob-

tained between speaker height and SGR frequencies:

h = −0.124× Sg1 + 245.476 (4.1)

h = −0.078× Sg2 + 282.107 (4.2)

h = −0.054× Sg3 + 295.659, (4.3)

where h denotes speaker height (in centimeters). Figure 4.1 shows scatter plots of

speaker height versus ground truth SGRs, as well as the corresponding regression

fits to the data. Given a speech signal, speaker height was estimated by first

estimating Sg1, Sg2 and Sg3 using the algorithms developed in Chapter 3, and

then using Eqs. (4.1), (4.2) or 4.3, respectively. The scatter plots suggest that

the linear fits provided by Eqs. (4.1)–(4.3) are probably not the best models to

predict the height of an unknown speaker. However, given that there were only

56 data points in the training set, first-order linear regression was considered

the most appropriate solution. Regression relations were derived for the WashU-

UCLA Kids corpus as well (although height-estimation experiments were not

conducted); they were found to be very similar to Eqs. (4.1)–(4.3).

Although speaker height correlated most strongly with Sg2, all three linear

models were considered for height estimation since the accuracy of the proposed

method was affected not only by the correlations between height and SGRs,

but also by the accuracy of SGR estimation. Note, however, that the interaction

between height-estimation accuracy and SGR-estimation accuracy is nontrivial—

since the correlations between height and SGRs are all less than 1, a small SGR-

estimation error may not always result in a small height-estimation error. Fig-

ure 4.2 shows an example in support of this argument.
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Figure 4.2: An example to illustrate the fact that small SGR-estimation errors

may not always result in small height-estimation errors. The solid black triangle

corresponds to a training speaker with an actual Sg2 of 1260 Hz and height equal

to 201 cm. If this speaker’s Sg2 is overestimated by 60 Hz (blue circle), the error

in height estimation is 24 cm. On the other hand, if Sg2 is underestimated by

160 Hz (red circle), the error in height estimation is only 7 cm.

4.2 Experimental setup

The TIMIT database was used to evaluate the proposed height-estimation algo-

rithm. The database contains a total of 6300 sentences in American English, 10

sentences spoken by each of 630 speakers (438 males, 192 females) from 8 ma-

jor dialect regions of the United States. The average sentence duration is about

3 seconds. Data are sampled at 16 kHz and quantized at 16 bits/sample. The

database also contains the height of each speaker in feet and inches. Further

details regarding the database can be found in [Gar88b].

Data from 604 speakers (431 males, 173 females; a total of 6040 sentences)
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were used for evaluation. The remaining 26 speakers in the database were not

part of the evaluation because their heights were outside the range spanned by

the training data (used to derive Eqs. (4.1)–(4.3)). To see if the proposed method

could estimate height using narrowband telephone speech (which can potentially

benefit forensic applications—see [PH97]), a narrowband evaluation set was cre-

ated by filtering TIMIT data with the ITU-T G.712 filter, which has a flat fre-

quency response between 300 and 3400 Hz [ITU01]. Furthermore, to assess the

noise robustness of the proposed method, babble, white, pink and factory noise

(from the NOISEX-92 database) were added (using FaNT) to the narrowband

evaluation set at an SNR of 0 dB. Note that the SGR estimation algorithm for

adults, which forms the basis for height estimation, was found to be robust to

different noise types at SNRs as low as 0 dB (see Chapter 3).

The height-estimation algorithms of [GMF10a] and [GMF10b] are the most

accurate algorithms known to date—they yield an MAE (mean absolute error)

of 5.3 cm and an RMSE of 6.8 cm over 168 speakers in the TIMIT database. For

comparison purposes, MAE and RMSE were used as the performance metrics.

The following equations were used to calculate MAE and RMSE:

MAE =
1

Ns

Ns
∑

i=1

1

Mi

Mi
∑

j=1

∣

∣hi
a − hij

e

∣

∣ (4.4)

RMSE =

√

√

√

√

1

Ns

Ns
∑

i=1

1

Mi

Mi
∑

j=1

(hi
a − hij

e )2, (4.5)

where Ns, Mi, h
i
a and hij

e denote the number of test speakers, the number of test

utterances for the ith speaker, the actual height of the ith speaker, and the height

estimate corresponding to the jth utterance of the ith speaker, respectively.

Depending on the amount of data used for height estimation, MAE and RMSE
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Table 4.1: Sentence- and speaker-level MAEs and RMSEs for automatic height

estimation using Sg1, Sg2 and Sg3 (results are shown for clean, wideband TIMIT

data). In comparison, the algorithms in [GMF10a] and [GMF10b] were reported

to yield an overall MAE and RMSE of 5.3 cm and 6.8 cm, respectively.

Using Sg1 Using Sg2 Using Sg3

MAEst (cm) 5.4 (5.6, 5.0) 5.5 (5.6, 5.4) 5.7 (5.6, 5.9)

MAEsp (cm) 5.3 (5.5, 4.9) 5.4 (5.5, 5.2) 5.6 (5.5, 5.8)

RMSEst (cm) 6.8 (6.9, 6.4) 6.9 (6.9, 6.9) 7.1 (7.0, 7.4)

RMSEsp (cm) 6.6 (6.8, 6.2) 6.7 (6.8, 6.7) 7.0 (6.9, 7.3)

were calculated in two different ways. (1) When one sentence was used per height

estimate, MAE and RMSE were calculated at the sentence level. In other words,

Mi was equal to 10 (the number of sentences per speaker) in Eqs. (4.4) and (4.5).

The sentence-level metrics will henceforth be denoted as MAEst and RMSEst. (2)

When height was estimated using a single utterance formed by concatenating all

10 sentences of a given speaker, MAE and RMSE were calculated at the speaker

level (Mi was equal to 1 in Eqs. (4.4) and (4.5)). The speaker-level metrics will

henceforth be denoted as MAEsp and RMSEsp.

4.3 Results and discussion

This section presents the MAEs and RMSEs for height estimation in clean as

well as noisy conditions. Additionally, the correlations achieved between actual

height and estimated height are analyzed.

Table 4.1 lists the sentence- and speaker-level MAEs and RMSEs for the

clean, wideband evaluation set. The following observations can be made from
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Table 4.2: Sentence-level MAEs and RMSEs for automatic height estimation using

Sg1. Results are shown for narrowband TIMIT data in clean as well as noisy (0

dB SNR) conditions.

Clean Babble White Pink Factory

MAEst (cm) 5.4 5.5 5.7 5.6 5.4

RMSEst (cm) 6.8 6.9 7.2 7.0 6.8

Table 4.1. (1) Considering the overall (males and females combined) performance

metrics, Sg1 and Sg2 are almost equally good for height estimation using speech

signals. Despite a stronger correlation between speaker height and Sg2 (see Sec-

tion 4.1), Sg1-based height estimation is superior for female speakers. This result

is difficult to explain because (1) the actual SGRs of TIMIT speakers are un-

known, and (2) the effect that SGR-estimation errors have on height-estimation

accuracy is nontrivial. (2) Sg3 gives slightly poorer results than Sg1 and Sg2 (es-

pecially for female speakers). This is presumably because the estimation of Sg3

is indirect, requiring an intermediate estimate of Sg2. If estimated directly from

speech data, Sg3 might be able to predict height as accurately as the other two

SGRs. (3) The sentence-level metrics are slightly worse than the corresponding

speaker-level metrics, but are still quite acceptable. This means that the pro-

posed method is effective even when data are limited. (4) The overall MAEsp and

RMSEsp for Sg2-based height estimation—5.4 cm and 6.7 cm—are comparable

to the results in [GMF10a] and [GMF10b], while the overall MAEsp and RMSEsp

for Sg1-based estimation—5.3 cm and 6.6 cm—are marginally better. Although

the proposed method is not significantly better than the best existing algorithms,

it is more efficient in two respects. (1) Amount of training data and generaliz-

ability : [GMF10a] and [GMF10b] trained and evaluated their algorithms on 462
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and 168 TIMIT speakers, respectively (train-to-test ratio = 2.75), while the pro-

posed method was trained on just 56 speakers in the WashU-UCLA corpora and

evaluated on 604 speakers in the TIMIT corpus (train-to-test ratio < 0.1). (2)

Size of the feature set: [GMF10a] and [GMF10b] used a 50-dimensional feature

vector to estimate height, while the proposed method used just one feature (Sg1,

Sg2 or Sg3).

Table 4.2 lists the sentence-level MAEs and RMSEs (corresponding to Sg1)

for the narrowband evaluation set in clean as well as noisy conditions. Note

that [GMF10a] and [GMF10b] did not evaluate their algorithms in noise. It is

clear from the results for the clean condition that G.712 filtering has no effect

on the performance of the proposed algorithm. There is a slight performance

degradation in white and pink noise conditions, but the results are quite accept-

able considering that the algorithm was evaluated at 0 dB SNR. These results

enhance the utility of the proposed approach, especially given that the same

models (Eqs. (4.1)–(4.3)) can be used regardless of the evaluation condition. In

contrast, the algorithms proposed in [GMF10a], [GMF10b] and [PH97] are likely

to suffer a larger performance degradation with filtered and/or noisy speech owing

to their dependence on features derived from spectral envelopes (e.g., MFCCs).

In addition to MAE and RMSE, the correlation between actual height and

estimated height (or equivalently, between actual height and estimated SGR fre-

quencies) was considered important for the assessment of height-estimation per-

formance. The correlation was fairly strong when male and female data were

pooled together (r = 0.71 for all three SGRs), but not when they were treated

separately (r = 0.12 for males, and 0.21 for females, for all three SGRs)—see

Figure 4.3. In comparison, the within-gender correlations between ground truth

SGRs and height (for the training speakers in the WashU-UCLA corpora) were
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Figure 4.3: Scatter plot (604 data points) of estimated height (using Sg1) versus

actual height for wideband TIMIT data (clean speech). The correlation between

the two quantities is poor within gender, suggesting that the proposed method

requires further improvement.

significantly better: |r|= {0.43 (Sg1), 0.63 (Sg2), 0.57 (Sg3)} for males, and {0.23

(Sg1), 0.48 (Sg2), 0.37 (Sg3)} for females. Therefore, the proposed approach

needs improvement in terms of the within-gender correlations between estimated

height and actual height (despite satisfactory MAEs and RMSEs within gender).

Note that [GMF10a] and [GMF10b] did not report correlations for their algo-

rithms. One possible approach to achieving improved performance would be to

collect a larger database of subglottal acoustics (along with height information)

that would allow the development of more sophisticated (probably nonlinear)

models between SGRs and speaker height.

4.4 Existence of performance limits

This section tries to answer the question as to whether there exists a fundamental

limit to the accuracy of speech-based height estimation. The limits defined by

vocal tract-based and SGR-based approaches are assessed separately because
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these limits arise from different physiological constraints. From Section 4.3, it is

clear that the within-gender correlation between actual and estimated height is

an important indicator of height-estimation performance. The limit to height-

estimation accuracy will therefore be assessed with respect to this metric.

SGR-based approaches require estimates of SGRs in order to estimate speaker

height. Therefore, the maximum correlations that can be achieved between esti-

mated and actual height are governed largely by the correlations between ground

truth SGRs and actual height. The WashU-UCLA corpora suggest that these cor-

relations (in magnitude) are roughly between 0.3 and 0.6, with an average value

of 0.45 (statistically significant, p < 0.05). Therefore, it is probably correct to

say that the correlations achievable using SGR-based approaches have a limiting

value close to 0.5 (for the range of speaker heights encountered in this study).

Since this limit probably arises from physiological constraints, it would also be

interesting to see what those constraints are, and why the limit cannot possibly

be higher than what it appears to be.

As mentioned in the beginning of this chapter, SGRs are determined pri-

marily by the ‘acoustic length’ of the subglottal system. Physiologically, since

the ‘acoustic length’ is expected to be correlated with the size of the lungs and

the length of the trunk (or torso), SGRs are likely to be strongly correlated

with trunk length. However, according to physiological data reported in [Hrd25],

trunk length itself appears to be only moderately correlated with overall body

height. Specifically, [Hrd25] reports that the ratio of trunk length and height is

a function of height itself, and that short speakers (males as well as females)

have larger trunk length-to-height ratios than tall speakers. Such a relationship

between trunk length and height seems to be partly responsible for the weak

correlations observed in Figure 4.3, with height being overestimated for short
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speakers and underestimated for tall speakers (for both genders). In essence,

SGRs, when estimated well, may provide accurate estimates of trunk length but

only moderately-accurate estimates of speaker height. In light of these observa-

tions, a value of 0.5 (as mentioned above) appears to be a reasonable estimate of

the limiting correlation for SGR-based approaches.

In contrast to SGR-based methods, vocal tract-based approaches rely on the

correlation between VTL and height. Figure 5 of [FG99] shows VTL as a function

of height, and Table 5 of that paper reports the corresponding correlation coeffi-

cients separated by gender. Although the correlations are strong—roughly 0.8 for

both males and females, they result from the fact that the data span a wide range

of speaker heights within gender. To enable a comparison with the data used in

this chapter, a subset of the data plotted in Figure 5 of [FG99] was analyzed (i.e.,

considering male speaker heights between 165 and 201 cm, and female speaker

heights between 152 and 175 cm). The x- and y-coordinates of the data points

were obtained with the help of the program TRACER, v.1.7 [Kar], and the within-

gender correlation between VTL and height was found to be 0.3 for both males

and females (not significantly different from 0.0, p > 0.05). Similarly, [RKN05]

found the correlations between speaker height and the first four formants of schwa

vowels—which have relatively open vocal-tract configurations—to be less than or

equal to 0.3 for females (0.16 on average), and less than 0.59 for males (0.41 on

average). Note that in the above analyses, the number of speakers was compara-

ble to the size of the training data used in this chapter. For the range of speaker

heights encountered in this study, a value of 0.3 (approximately) appears to be the

limiting correlation for vocal tract-based approaches; this is considerably lower

than the corresponding limit for SGR-based methods.

From the above arguments, it appears that the correlations between SGRs
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and speaker height determine the limit of height-estimation accuracy, although

the limit itself can vary depending on the range of speaker heights under consid-

eration. Furthermore, it is probably easier to achieve the SGR-based limit owing

to the fact that the subglottal system of a given speaker, unlike his/her vocal

tract, is effectively time invariant.

4.5 Conclusion

In this chapter, an SGR-based approach was proposed for estimating the height

of an unknown speaker using his/her speech sample. The emphasis was on ro-

bustness to noise and data limitedness, and on achieving good performance with

narrowband telephone speech.

The proposed method is motivated by the physiological correlation between

overall body height and the effective length of the subglottal system, and is based

on the correlation observed between SGRs and height. Using the ground truth

SGRs and self-reported heights of speakers in the WashU-UCLA Adults cor-

pus and the WashU-UCLA Bilingual Adults corpus, first-order linear models are

trained to predict height given SGR frequencies. Given a speech signal, speaker

height is estimated by first estimating SGRs (see Chapter 3) and then using the

empirical relations between SGRs and height. The method is evaluated on 604

speakers in the TIMIT database. Three evaluation conditions are considered: (1)

clean wideband speech (0–8 kHz bandwidth), (2) clean narrowband speech (300–

3400 Hz bandwidth), and (3) noisy narrowband speech (babble, factory, white

and pink noise added at 0 dB SNR).

Using about 3 seconds of clean speech data (wideband or narrowband), Sg1,

Sg2 and Sg3 can estimate height, on average, to within 5.4, 5.5 and 5.7 cm,
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respectively. The degradation in height-estimation performance due to noise is

minimal—less than 0.3 cm, on average. Actual and estimated height correlate well

(r ∼ 0.7) when the results for male and female speakers are pooled together, but

not when they are considered separately (r ≤ 0.2). One reason for this could be

the simplistic nature of the first-order linear models used for prediction. It might

be possible to achieve better within-gender correlations (close to 0.5) with the help

of a larger training set that would allow the development of more sophisticated

(probably nonlinear) models between SGRs and speaker height.

The proposed height-estimation method is an improvement over existing al-

gorithms because (1) it achieves comparable performance while being more trans-

parent (well-motivated features), efficient (small feature set and limited training

data) and generalizable (test corpus much larger than the training corpus), (2)

it can perform equally well in wideband and narrowband conditions with little

degradation in the presence of noise, and (3) its optimal implementation is likely

to perform better than the optimal vocal tract-based approach (which is expected

to achieve within-gender correlations close to 0.3 or smaller).
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CHAPTER 5

Speaker normalization using SGRs

Speaker normalization is an important component of SI ASR systems. It is par-

ticularly important in the context of ASR for children owing to the follow-

ing reasons. (1) Despite a few efforts to collect databases of children’s speech

[MLU96,Esk96,SHC00,GG03,KYI05,BBD05], the majority of ASR systems (for

real-world applications) are still trained using adults’ speech. In other words,

ASR for children happens typically with a mismatched recognition setup. Owing

to the large acoustic differences between adults and children [LPN99, PN03], it

becomes important to compensate for this mismatch using speaker normalization

procedures. (2) Children’s speech exhibits a high degree of inter-speaker acoustic

variability (much higher compared to what is observed in adults’ speech) [LPN99].

Therefore, speaker normalization becomes important even in a matched ASR

setup (i.e., trained and tested on children).

Several speaker-normalization schemes have been proposed for children’s ASR

[PN03, SU08, WLA09b, WLA09a, GG03, EB05, GGB07]. However, the effect of

noise, which is inevitable in most real-world environments such as classrooms and

public kiosks, has not been accounted for. This chapter develops a novel, hybrid

(partly knowledge-based and partly statistical) approach to noise-robust normal-

ization by leveraging certain well-established properties of SGRs. Note that some

studies report speaker-normalization results using a severely-mismatched setup

that involves training only on adult males and testing on children [WLA09b,
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WLA09a,CA06]. Such a paradigm is not common in practice and hence is not

considered in this dissertation.

An important practical consideration in speaker normalization is whether to

apply it in enrollment mode, where a few words or utterances are used to esti-

mate the frequency-warping parameters before actual recognition, or in live mode,

where frequency warping and recognition happen on a per-utterance basis. The

live mode offers better performance in general [EB05] and is also better suited

to real-time recognition and recognition on multi-user systems (e.g., gaming con-

soles). For children’s ASR, another important aspect to consider is the bandwidth

of the speech signal. Since children’s speech has useful spectral information above

4 kHz, better normalization can be achieved (especially in mismatched training

conditions) when the bandwidth is 6 kHz or more [LR01, EB05]. However, for

compatibility with existing systems and greater utility across application do-

mains, most studies have proposed normalization schemes using a bandwidth of

4 kHz [WJ96,PN03,SU08,WLA09b,WLA09a]. In this dissertation, only the live

mode and the narrowband paradigm are considered.

5.1 Motivation for an SGR-based approach

There are several reasons why it was hypothesized that SGRs might be effective

for normalizing children’s speech.

• Being speaker specific and content independent (see Chapter 2), SGRs are

good candidates for removing speaker effects.

• Owing to their role as phonological vowel-feature boundaries, Sg1 and Sg2

can be used to implicitly normalize F1 and F2 (which are important carriers

of phonemic information). Figure 5.1 shows two examples of how Sg1 and Sg2
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Figure 5.1: Sg1 and Sg2 plotted in the F1-F2 plane for an adult male speaker

(in blue; Sg1m, Sg2m) in the WashU-UCLA Adults corpus and a child speaker

(in red; Sg1c, Sg2c; age = 11 years) in the WashU-UCLA Kids corpus. Note that

Sg1 lies roughly between [+low] and [-low] vowels along the F1 dimension and

Sg2 lies roughly between [+back] and [-back] vowels along the F2 dimension.

divide the F1-F2 plane. The plot in blue is for an adult male speaker (Sg1m,

Sg2m) in the WashU-UCLA Adults corpus and the plot in red is for a child

speaker (Sg1c, Sg2c; age = 11 years) in the WashU-UCLA Kids corpus. It is

evident from the figure that by mapping Sg1c to Sg1m and Sg2c to Sg2m, the

formant clusters of the child speaker can be aligned (roughly) with those of the

male speaker. While Sg3 may not provide any vowel-feature contrasts, it can still

be useful for normalizing F3 and higher formants.

• The performance of children’s ASR is known to be correlated with speaker

age and height—worse for the shorter, younger speakers compared to the taller,

older ones [EB05]. Table 5.1 shows that the SGRs of children are also correlated

with age and height, which implies that SGR-based normalization could poten-

tially equalize ASR performance across different age and height groups. Also,
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Table 5.1: Correlations of ground-truth SGRs and F3 (per-speaker average) with

speaker age and height based on data from 43 speakers, aged between 6 and 17

years, in the WashU-UCLA Kids corpus. Note that the correlations for Sg3 are

based on data from 31 speakers only.

Sg1 Sg2 Sg3 F3

correlation with age -0.89 -0.88 -0.91 -0.75

correlation with height -0.94 -0.93 -0.94 -0.84

as Table 5.1 shows, the correlations for SGRs are significantly stronger than

the correlations for F3. Since F3 is known to be closely related to vocal-tract

length [Fan75], these results also suggest that SGR-based normalization might

be more effective than VTLN.

• Statistical normalization schemes (like VTLN with an ML grid search) tend

to be less effective in noise owing to environmental mismatch between test utter-

ances and acoustic models (which are usually trained using relatively clean data).

SGR-based normalization is expected to be more noise robust since SGRs can be

estimated reliably even in the presence of noise (see Chapter 3).

5.2 The proposed approach

Based on the ideas described above, the proposed frequency-warping function was

designed to map the first three SGRs of a given target utterance to the first three

SGRs of a reference speaker. Figure 5.2 shows the proposed warping function in

red. Denoting the reference and target SGRs with subscripts r and t, respectively,
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Figure 5.2: The proposed warping function (shown in red) maps the SGRs of a

given target utterance (subscript t) to those of a reference speaker (subscript r).

The scalars m1 to m4 are the slopes of the lines constituting the warping function.

The conventional piece-wise linear warping function (for VTLN) is shown in blue

(α is the warping factor). Fn denotes Nyquist frequency.

the function can be defined as:
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m1f 0 ≤ f ≤ Sg1t

m2(f − Sg1t) + Sg1r Sg1t < f ≤ Sg2t

m3(f − Sg2t) + Sg2r Sg2t < f ≤ Sg3t

m4(f − Sg3t) + Sg3r Sg3t < f ≤ Fn,

(5.1)

where Fn denotes the Nyquist frequency, and f and f̂ denote the frequency scales

before and after warping, respectively. The scalars m1 to m4 are the slopes of the

lines constituting the warping function, and can be easily computed given the

reference and target SGRs. Figure 5.2 also shows the piece-wise linear warping
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Figure 5.3: (a) Estimating the optimal VTLN α. (b) Estimating target SGRs via

optimal refinement of initial (signal-based) estimates.

function used for VTLN—it is almost linear, with a slope of α, except for the

changeover frequency near Fn (typically chosen to be between 0.8 and 0.9 times

Fn) that ensures bandwidth preservation after warping. Both VTLN and SGR-

based warping were implemented by inversely scaling the center frequencies and

bandwidths of the feature-extraction filter bank. This implementation was first

proposed in [LR98] and has been widely used for its computational efficiency.
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5.2.1 Parameter estimation

Given an utterance, VTLN α is typically estimated using an ML grid search

[LR98]:

α∗ = argmax
α∈Gα

P (X α|λ,W), (5.2)

where X α, α∗, Gα, λ, and W denote the sequence of α-warped feature vectors,

the optimal α value, the search grid, the set of pre-trained hidden Markov mod-

els (HMMs), and the word-level transcription associated with the given utter-

ance, respectively. Note that the estimation of VTLN α via Eq. (5.2) is purely

statistical—it depends entirely on the parameters of λ.

SGR warping via Eq. (5.1) requires two sets of parameters—reference SGRs

Sg1r, Sg2r, and Sg3r, and target SGRs Sg1t, Sg2t, and Sg3t. Reference SGRs

were determined a priori, using manual SGR measurements obtained from ac-

celerometer recordings of monophthong vowels. Accelerometer recordings were

chosen based on the composition of the speech training data that were used for

ASR—the WashU-UCLA Adults corpus was used when the training data com-

prised adults’ speech, and the WashU-UCLA Kids corpus was used when the

training data comprised children’s speech. The reference value of each SGR was

computed by averaging all the measurements available in the chosen corpus.

The target SGRs, for a given utterance, were determined in two steps. (1) Ini-

tial estimates (Sg1it, Sg2
i
t, Sg3

i
t) were obtained using automatic SGR estimation

algorithms—the algorithm proposed in Section 3.1 was used for adults (during

acoustic model training), and the algorithm proposed in Section 3.3 was used for

children (during training and testing). (2) To compensate for SGR estimation er-

rors, and also to account for the small (yet non-negligible) within-speaker COVs
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of SGRs (see Chapter 2), the initial estimates were refined as per Eq. (5.3):

SgMt = k∗
M × SgM i

t M ∈ {1, 2, 3}, (5.3)

where {k∗
1, k

∗
2, k

∗
3} denotes the set of optimal refinement factors, determined using

an ML grid search:

{k∗
1, k

∗
2, k

∗
3} = argmax

{k1,k2,k3} ∈Gk

P (X {k1,k2,k3}|λ,W). (5.4)

In Eq. (5.4), Gk denotes the 3-dimensional search grid for the refinement factors,

and X {k1,k2,k3} denotes feature vectors corresponding to the parameters {k1 ×

Sg1it, k2 × Sg2it, k3 × Sg3it}. Note that the refinement factors define a frequency

range around the initial SGR estimates. For example, if the refinement factors

are chosen to lie between 0.95 and 1.05, the target SGRs would be determined

by searching within ±5% of the initial estimates. Figure 5.3 summarizes the

procedure used to estimate warping parameters for VTLN and the proposed

SGR-based approach. For convenience, K will henceforth be used to denote the

triplet {k1, k2, k3}.

While VTLN relies entirely on λ to estimate the best α, the ML grid search

in Eq. (5.4) is preceded by an initialization step that is independent of λ. Since

SGR estimation for children is fairly noise robust (down to an SNR of 5 dB),

SGR-based warping is expected to be less sensitive to noise than VTLN, thus

leading to better ASR performance in matched (training on children) as well as

mismatched (training on adults) conditions. For convenience, the acronym SGRN

will henceforth be used to refer to speaker normalization via SGR-based warping.
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1: Extract unwarped features from the training utterances.

2: Train the set of unwarped models λ0.

3: if <VTLN> then

4: for s = 1 to # training utterances do

5: Determine α(s)∗ with respect to λ0 and W(s) (the true transcription of

utterance s) as per Eq. (5.2).

6: Extract warped features using α(s)∗.

7: end for

8: Train the set of normalized models λα using the warped utterances.

9: else if <SGRN> then

10: Choose reference SGR values that are appropriate for the training popula-

tion (adults or children).

11: Choose an SGR estimation algorithm—the algorithm in Section 3.1 for

adults, and the algorithm in Section 3.3 for children.

12: for s = 1 to # training utterances do

13: Obtain initial SGR estimates.

14: Determine K(s)∗ with respect to λ0 and W(s) (the true transcription of

utterance s) as per Eq. (5.4).

15: Extract warped features using K(s)∗.

16: end for

17: Train the set of normalized models λK using the warped utterances.

18: end if

Figure 5.4: Pseudo-code of the training protocol for VTLN and SGRN.

5.2.2 Training and testing protocols

Normalization of training data was supervised—true transcriptions were used to

estimate the warping parameters. First, an initial set of models λ0 was trained
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1: for s = 1 to # testing utterances do

2: Estimate W(s) (the first-pass transcription of utterance s) using unwarped

features and models λ0.

3: if <VTLN> then

4: Determine α(s)∗ with respect to λα and W(s) as per Eq. (5.2).

5: Extract warped features for α(s)∗. Decode using λα.

6: else if <SGRN> then

7: Use the same reference SGRs as during training. Use the algorithm in

Section 3.3 for SGR estimation.

8: Obtain initial SGR estimates. Determine K(s)∗ with respect to λK and

W(s) as per Eq. (5.4).

9: Extract warped features for K(s)∗. Decode using λK.

10: end if

11: end for

Figure 5.5: Pseudo-code of the testing protocol for VTLN and SGRN.

using unwarped utterances. Then, for each training utterance, the optimal warp-

ing parameters (α∗ for VTLN, and K∗ for SGRN) were estimated with respect

to λ0 and the true word-level transcription. Finally, the warped utterances were

used to train a set of normalized models (λα for VTLN, and λK for SGRN). The

pseudo-code of the training protocol is summarized in Figure 5.4.

Normalization of testing data was unsupervised—first-pass transcriptions were

used to estimate the warping parameters. Given a test utterance, a word-level

transcription was first obtained using unwarped features and models λ0. Then,

the optimal warping parameters were estimated with respect to the normalized

models and the first-pass transcription. Finally, the utterance was decoded using

the warped features and the normalized models. The pseudo-code of the testing

93



protocol is summarized in Figure 5.5. The ML estimation of warping paramters

(for both training and testing) was implemented by force aligning the warped

features with respect to word-level transcriptions.

5.3 Experimental setup

So far, no database has been collected for the purpose of children’s ASR in

noise. Therefore, noisy data sets were created using the TIDIGITS corpus (which

has been used previously for children’s ASR in quiet [SU08, CA06, WLA09b,

WLA09a]). The TIDIGITS corpus contains training and testing sets for adults

as well as children. The training set for adults has 112 speakers (55 male; 57 fe-

male), while the training and testing sets for children have 51 (25 male; 26 female)

and 50 (25 male; 25 female) speakers, respectively. All children in the corpus are

between 6 and 15 years of age. The recorded material consists of connected-digit

sequences formed from a 11-word vocabulary—“one” to “nine”, “zero”, and “oh”.

The utterances have 1, 2, 3, 4, 5, or 7 digits each.

All signals were down sampled to 8 kHz (from the original sampling rate of

20 kHz). Two sets of acoustic models were trained—one using adults’ speech (for

mismatched ASR) and the other using children’s speech (for matched ASR). No

noise was added to the training data. Testing was done in both clean and noisy

conditions. Using FaNT, clean speech files (in the testing set for children) were

corrupted with babble, car, pink, and white noise types (from the NOISEX-92

corpus), at SNRs chosen randomly between 5 and 15 dB.

Experiments were conducted with two different front ends—MFCCs and power-

normalized cepstral coefficients (PNCCs) [KS12]. PNCCs have been shown to be

noise robust for adults’ ASR. Both front ends used a 26-channel filter bank hav-
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ing triangular filters of constant bandwidth on the Mel scale. Speech signals were

segmented into 25 ms frames spaced at 10 ms intervals. Each frame was pa-

rameterized by a 39-dimensional feature vector consisting of the first 13 cepstral

coefficients, and their first- and second-order derivatives. Mean and variance nor-

malization (MVN) was applied on a per-utterance basis. The recognizer was com-

posed of monophone hidden Markov models (HMMs). The HMMs had 3 emitting

states each, and each state had 6 diagonal-covariance Gaussian components.

For adults’ speech (used only as training data), VTLN α was estimated by

searching over [0.8,1.2] in steps of 0.02. For children’s speech, the search grid de-

pended on whether the ASR setup was matched or mismatched. For the matched

setup, the search grid was the same as that used with adults’ speech. For the

mismatched setup, on the other hand, the search range was [0.7,1.1] to account

for the fact that children’s speech, with respect to adults’ speech, is more likely

to undergo spectral compression than expansion.

The reference SGRs for the mismatched setup were {601, 1419, 2304} Hz (ob-

tained from the WashU-UCLA Adults corpus), while the reference SGRs for the

matched setup were {734, 1736, 2713} Hz (obtained from the WashU-UCLA Kids

corpus). In both cases, the SGR refinement factors were searched over [0.9,1.1]

in steps of 0.05, thus allowing the initial SGR estimates to be refined by up to

±10%. Therefore, the search grid for K was 3-dimensional with 125 points.

5.4 Results and discussion

In all of the experiments discussed in this chapter, the performance of SGRN is

compared with the performance of VTLN. Word error rate (WER) is used as the

metric for comparing recognition performance. Based on the current literature,
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only the shift-based approach of [SU08] is known to be better than VTLN for chil-

dren’s speech—the authors of [SU08] showed (using a mismatched setup for digit

recognition in clean conditions) that their approach reduced the WER by 7.5%

relative to VTLN. However, instead of using the usual filter-bank front end for

spectral smoothing, they used a periodogram averaging approach. When their

shift-based method was implemented with the conventional filter-bank MFCC

front end, no significant WER reduction was observed relative to VTLN. There-

fore, only VTLN was chosen as the algorithm for comparison.

Normalization experiments were first performed with MFCCs, in matched as

well as mismatched training conditions. The results are shown in Table 5.2, from

which the following observations can be made.

• As expected, WERs for the matched case are much lower.

• Baseline (MVN) performance in clean is quite satisfactory for both matched

and mismatched conditions. With the addition of noise, however, the WERs in-

crease dramatically (except for the case of car noise, which is fairly stationary in

nature). The increase in baseline WER, due to noise, is about 3.5–6 times in the

mismatched condition, and about 11–17 times in the matched condition.

• For the mismatched case, VTLN provides large WER reductions relative

to the baseline in both clean and noisy conditions (∼33%, on average). This can

be attributed to the large acoustic differences between adults and children, and

shows the importance of speaker normalization in mismatched training, regard-

less of the environmental conditions. For the matched case, VTLN provides a 13%

WER reduction (relative to the baseline) in clean, but only moderate performance

improvements in noise. This indicates that in matched training conditions, com-

pensating for the effects of noise is probably more important than normalizing

the acoustic differences among speakers.
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Table 5.2: WERs for children’s speech recognition using MFCCs (TIDIGITS

database; children’s testing set corrputed with different noise types; SNRs be-

tween 5 and 15 dB). Numbers in paranthesis are the WER reductions achieved

by SGRN, relative to VTLN.

Clean Babble Car Pink White Average

Training on adults (mismatched condition)

MVN 7.85 49.27 12.36 37.26 28.21 26.99

MVN + VTLN 2.64 33.97 4.00 27.92 21.87 18.08

MVN + SGRN 1.80 29.12 2.99 25.10 19.85 15.77

(31.8%) (14.3%) (25.3%) (10.1%) (9.2%) (12.8%)

Training on children (matched condition)

MVN 1.52 24.98 1.88 21.31 17.08 13.35

MVN + VTLN 1.33 23.66 1.70 21.32 15.99 12.80

MVN + SGRN 1.32 23.25 1.63 19.66 15.36 12.24

(0.8%) (1.7%) (4.1%) (7.8%) (3.9%) (4.4%)

Table 5.3: WERs for children’s speech recognition using PNCCs in a mismatched

setup (same test data as for Table 5.2). Numbers in paranthesis are the WER

reductions achieved by SGRN, relative to VTLN.

Clean Babble Car Pink White Average

MVN 10.37 36.28 12.59 28.57 24.78 22.52

MVN + VTLN 3.33 19.38 3.62 17.08 16.74 12.03

MVN + SGRN 2.67 17.11 2.99 14.97 15.50 10.65

(19.8%) (11.7%) (17.4%) (12.4%) (7.4%) (11.5%)

• For the mismatched case, SGRN yields significant WER reductions relative

to VTLN in clean as well as noisy conditions (especially car and babble noise).
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The performance improvements provided by SGRN are attributable to (1) strong

correlation between SGRs, and speaker age and height (which helps in mitigat-

ing the age- and height-induced acoustic mismatch between adults and children),

and (2) noise robustness imparted by the semi-statistical estimation of warping

parameters. For the matched case, SGRN is only marginally better than VTLN,

which in turn is only marginally better than the baseline. This reiterates that

in matched training conditions, noise compensation is probably more important

than speaker normalization. However, as will be shown later in Section 5.4.1,

SGRN, even in matched conditions, provides a significant performance improve-

ment for the younger speakers.

Further experiments were performed in the mismatched case, using PNCCs.

The results are shown in Table 5.3. PNCCs provide a much better baseline than

MFCCs in noise, although there is some performance degradation in clean—this is

in agreement with the results published previously on adults’ ASR [KS12]. VTLN

provides large WER reductions relative to the baseline (∼47%, on average), but

SGRN is significantly better than VTLN in clean as well as noisy conditions.

These results suggest that the performance gains offered by SGRN could possibly

generalize to other filter bank-based features.

5.4.1 Results by speaker age

As previous studies have shown, recognition of children’s speech becomes harder

with decreasing speaker age, especially in mismatched training conditions [PN03,

EB05]. Therefore, SGRN and VTLN were compared in terms of their normaliza-

tion performance for different age groups. The utterances in the testing sets (both

clean and noisy) were divided into 3 speaker groups: 6–8, 9–11, and 12–15 years,

and WERs were computed separately for each of them. The results are shown in
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Table 5.4 (averaged across clean and the four noise types) for both mismatched

and matched training conditions.

For the youngest speaker group (6–8 years), SGRN yields large performance

gains (relative to VTLN) in the mismatched condition—note that SGRN leads to

better WER equalization across age groups. The performance gain is significant in

the matched condition as well. Again, this is attributable to the strong correlation

between SGRs, and speaker age and height. These results suggest that SGRN can

be highly effective in ASR applications that are targeted towards young speakers

(language learning, reading assessment, etc.).
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5.4.2 Results by utterance length

In ASR-driven applications such as pronunciation assessment and interactive

gaming, incoming utterances (from child users) are expected to be short in

duration—typically a few words or less. In other applications such as automatic

assessment of reading and comprehension abilities, the utterances can be a little

longer. Therefore, it is important that the chosen normalization scheme (1) is

effective with limited data, and (2) can take advantage of longer utterances when

available. SGRN and VTLN were compared in terms of their performance for

different utterance lengths. The utterances in the testing sets (both clean and

noisy) were divided into 3 groups: short (1 or 2 digits), medium (3–5 digits), and

long (7 digits). The results are shown in Table 5.5 (averaged across clean and the

four noise types) for both mismatched and matched training conditions.

In both matched and mismatched conditions, SGRN performs significantly

better than VTLN for short utterances. For medium-duration and long utter-

ances, SGRN is either better than (in the mismatched case) or comparable (in

the matched case) to VTLN. SGRN is effective for both short and long utter-

ances because (1) SGRs can be estimated with reasonable accuracy using small

amounts of speech data, and (2) the proposed approach for estimating warping

parameters is both knowledge based and statistical. Owing to its semi-statistical

nature, SGRN, even for short utterances, is able to estimate three parameters

with reasonable efficacy despite using a search grid of coarse resolution (spacing

of 0.05 between successive points, versus 0.02 for VTLN).

5.4.3 Analysis of model compaction

Compact acoustic models are obtained by minimizing the inter-speaker variabil-

ity in the training data via some form of speaker normalization and/or speaker-
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adaptive training [AMS96]. Model compaction not only leads to better normaliza-

tion of test data, but also provides better target-speaker models when adaptation

techniques such as MLLR and constrained MLLR are used (especially in con-

junction with speaker normalization) [GGB07]. Although model adaptation was

not investigated in this study, SGRN and VTLN were compared with regard to

their ability to provide compact acoustic models for ASR.

Model compaction can be measured in terms of the separability (or discrim-

inability) of acoustic units (monophone HMMs in the present case) in the fea-

ture space. The Bhattacharyya distance [Fuk90] was used as a measure of the

separation between two given monophone HMMs (the Bhattacharyya distance

has been used before to measure phone separability [GGB07]). Given two multi-

dimensional Gaussian densities N (x;µi,Σi) and N (x;µj,Σj) (µi and µj denote

the mean vectors; Σi and Σj denote the covariance matrices), the Bhattacharyya

distance between them—denoted by D(i, j)—is given by Eq. (5.5).

D(i, j) =
1

8
(µi − µj)

T

(

Σi + Σj

2

)−1

(µi − µj)

+
1

2
log

∣

∣

∣

Σi+Σj

2

∣

∣

∣

√

|Σi||Σj|
(5.5)

To compute Eq. (5.5) for a given pair of monophone HMMs, the Gaussian den-

sities associated with their center states were used (note that the center state

better reflects the acoustic characteristics of a phone, as compared to the initial

and final states). As mentioned in Section 5.3, the recognizer used 6-component

Gaussian mixtures to model the emitting densities of HMMs. For analyzing model

compaction, however, all HMM densities were modeled using single-component

Gaussians. The average Bhattacharyya distance (averaged over all monophone

HMM pairs; denoted by D) was computed as per Eq. (5.6), where N denotes the
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Table 5.6: Average Bhattacharyya distance (computed by averaging over all

monophone HMM pairs as per Eq. (5.6)) for different training conditions and

front ends. The average Bhattacharyya distance is indicative of the degree of

model compaction and separability.

MVN
MVN MVN

+VTLN +SGRN

Training on adults (MFCC) 7.21 7.50 7.64

Training on adults (PNCC) 6.46 6.81 7.05

Training on children (MFCC) 7.35 7.78 7.90

number of HMMs used in the recognizer.

D =
2

N(N − 1)

N−1
∑

i=1

N
∑

j=i+1

D(i, j) (5.6)

Table 5.6 shows the value of D for different training conditions and front ends.

Clearly, speaker normalization (using VTLN or SGRN) provides more compact

models compared to the baseline (MVN). More importantly, SGRN leads to bet-

ter model compaction compared to VTLN, in both matched and mismatched

training conditions. The efficacy of SGRN can therefore be attributed, in part,

to its ability to provide compact acoustic models. Also, MLLR and constrained

MLLR are expected to be more effective when applied in conjunction with SGRN

than when applied in conjunction with VTLN.

5.4.4 Analysis of Robustness to Noise

It was shown earlier that SGRN performs significantly better than VTLN (in

terms of WERs) in various noise conditions—see Tables 5.2 and 5.3. Here, the
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robustness of SGRN is analyzed by assessing as to how well the normalization

parameters are estimated and, also, as to how close the observed performance

is to the optimal performance. For this analysis, results corresponding to the

mismatched training condition and the MFCC front end are used.

Table 5.7 shows the correlation coefficients between parameters estimated

from clean utterances and parameters estimated from the corresponding noisy

utterances. For VTLN, α is the only parameter that is estimated. For SGRN,

on the other hand, the estimated parameters comprise the first three SGRs (ob-

tained after the ML refinement step of Eq. (5.4)). It is clear from Table 5.7 that

the correlations for SGRs (Sg1, in particular) are significantly higher than the

correlations for α, especially in the more severe noise types (babble, pink and

white). This can be attributed to the noise robustness of SGR estimation and to

the semi-statistical nature of SGRN.

Table 5.8 shows the actual and oracle (or optimal) WERs for VTLN and

SGRN. The oracle WERs were obtained by warping noisy utterances using pa-

rameters estimated from the corresponding clean utterances. The difference be-

tween the actual and oracle WERs is higher for VTLN (especially in the more se-

vere noise types), indicating that SGRN is the more robust normalization scheme.

5.5 Relation to prior work

The present work is novel in several ways compared to previous studies on speaker

normalization for children’s ASR.

• This is the first known investigation of children’s ASR in noise.

• Previous studies have used either purely statistical [LR98, SU08] or purely

knowledge-based methods [EG96, WLA09b,WLA09a] to estimate the warping
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Table 5.7: Correlation coefficients between parameters estimated from clean utter-

ances and parameters estimated from the corresponding noisy utterances (same

test data as for Table 5.2; MFCC front end; models trained on adults).

Babble Car Pink White Average

α 0.28 0.64 0.34 0.39 0.41

Sg1 0.55 0.71 0.61 0.67 0.64

Sg2 0.47 0.74 0.44 0.43 0.52

Sg3 0.45 0.74 0.40 0.38 0.49

Table 5.8: Actual and oracle WERs for children’s speech recognition (same test

data as for Table 5.2; MFCC front end; models trained on adults). The oracle

WERs were obtained by warping noisy speech using parameters estimated from

the corresponding clean data.

Clean Babble Car Pink White Average

MVN + VTLN 2.64 33.97 4.00 27.92 21.87 18.08

MVN + VTLN (Oracle) 2.64 29.05 3.63 24.47 19.55 15.87

MVN + SGRN 1.80 29.12 2.99 25.10 19.85 15.77

MVN + SGRN (Oracle) 1.80 28.31 2.55 22.90 18.44 14.80

parameters. This study resulted in a hybrid approach that is not only effective

with limited data (like knowledge-based methods) but can also take advantage

of longer utterances (like statistical methods).

• In [WLA09b] and [WLA09a], Sg2 was simply used in place of a maximum-

likelihood grid search to estimate the piece-wise linear warping factor or the

Bark-scale shift factor. In contrast, this study employed an entirely new warping

scheme based on the use of Sg1, Sg2 and Sg3.
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• To estimate Sg2 from speech, [WLA09b] and [WLA09a] proposed algorithms

that were based on detecting frequency discontinuities and amplitude attenua-

tions of the second formant in diphthongs. Therefore, isolated vowels or words

were used for estimating Sg2. Such an approach limits the practical utility of

SGR-based normalization, especially in the presence of noise. The approach pro-

posed here is based on SGR estimation algorithms that are applicable to natural

speech, in clean as well as noisy conditions.

5.6 Conclusion

This study represents the first known effort to account for the effects of addi-

tive noise in the context of acoustic speaker normalization for children’s ASR.

Analysis of the WashU-UCLA Kids data revealed that SGRs (basis for SGRN)

have stronger correlations with speaker age and height than does F3 (related

to vocal-tract length). It was therefore hypothesized that SGRN might be more

effective than VTLN, especially with regard to equalizing the effect of speaker

age on ASR performance.

SGRN was based on a warping function that mapped the first three SGRs

of a given target utterance to the first three SGRs of a reference speaker. The

reference SGRs were chosen a priori based on the speaker population used for

training ASR models. The target SGRs for a given utterance were first determined

using the proposed SGR estimation algorithm and then refined by up to ±10%

using a maximum-likelihood grid search. Normalization was applied to train as

well as test data, and the optimal warping parameters (SGRs) were estimated

using a two-pass approach involving forced alignment.

SGRN and VTLN were evaluated and compared via ASR experiments on
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the TIDIGITS database (noisy data sets were created by adding babble, car,

pink and white noise types at SNRs ranging between 5 and 15 dB). Children’s

speech was recognized in both matched and mismatched training conditions. Two

front ends were considered—standard MFCCs, and the recently-proposed, noise-

robust PNCCs (which have been used successfully for adults’ ASR in noise). On

average, SGRN was found to be significantly better than VTLN in mismatched

training (up to 32% relative reduction in WER) and slightly better than VTLN

in matched training. Regardless of the training condition, SGRN offered signif-

icant WER reductions (relative to VTLN) for 6–8 year old speakers and 1 or

2 word utterances. These results suggest that SGRN can be highly effective in

ASR applications involving young speakers and short responses (e.g., automatic

pronunciation assessment and high-end gaming). It was also found that SGRN

provided more compact models than VTLN, meaning that model adaptation (e.g.,

MLLR) can be expected to be more effective with SGRN-compacted models.

The efficacy of SGRN for children’s ASR can be attributed to (1) speaker

specificity and content independence of SGRs, (2) strong correlations between

SGRs, and speaker age and height, (3) noise robustness of the proposed SGR es-

timation algorithm and its ability to provide reliable estimates with limited data,

and (4) semi-statistical approach to estimating the optimal warping parameters.

One limitation of SGRN in its current form is the use of a large 3-dimensional

search grid—such an approach could be prohibitive for large vocabulary ASR.

The grid search can be replaced by gradient search methods for higher efficiency

as well as accuracy (see [PA06], for example).
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CHAPTER 6

Speaker recognition using subglottal acoustics

6.1 Introduction

Previous chapters studied the properties of SGRs—by manually analyzing ac-

celerometer recordings—and also developed automatic algorithms to estimate

SGRs from speech signals. Although speech-based SGR estimates were found to

be effective for speaker height estimation and adaptation (especially in limited-

data conditions), pilot experiments on the TIMIT database showed that they

were not discriminative enough for speaker recognition. Therefore, this chapter

employs more informative spectral features in the form of subglottal cepstral co-

efficients (SGCCs)—they are computed just like MFCCs, except that they are

based on subglottal acoustics instead of speech.

Subglottal features could benefit speaker recognition for two reasons. First,

subglottal acoustics are speaker specific to some extent owing to their dependence

on body height [SP93]. Second, the spectral characteristics of subglottal acoustics

(for a given speaker) are much less variable than the spectral characteristics

of speech. Figure 6.1 exemplifies this using vowel spectrograms of speech and

their corresponding recordings of subglottal acoustics (data were obtained from

the WashU-UCLA Adults corpus). The stationary nature of subglottal acoustics

can be particularly beneficial when the amount of speech data (for enrollment

and/or evaluation) is limited. One of the challenges, however, is to be able to
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Figure 6.1: Vowel spectrograms comparing the within-speaker variability of

speech (top panel) and subglottal acoustics (bottom panel). Data are sampled

from the recordings of a female speaker in the WashU-UCLA Adults corpus.

estimate subglottal features (SGCCs) using speech, thus obviating the need for

an accelerometer in real-world scenarios.

The proposed approach to estimating SGCCs from MFCCs is inspired by

previous studies on speech-to-articulatory inversion [TBT08,GN11,LKG13]. The

method proposed in these studies was to train joint statistical models from

simultaneously-recorded speech and articulatory data, and then use those mod-

els to estimate articulatory trajectories from unseen utterances. The proposed

approach to SGCC estimation is similar, except that simultaneous recordings of

speech and subglottal acoustics are used.

In [LKG13], articulatory parameters (estimated from speech signals) were

combined with MFCCs in an SV task. Using the classical UBM-GMM setup, it

was shown that the combined system improved verification performance by 9–

14% relative to the MFCC-only baseline. This chapter uses a feature-combination
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approach like [LKG13], but with two important differences. (1) The production-

based features used here (SGCCs) are those of the subglottal, not supraglottal,

system. (2) In [LKG13], a subset of the Wisconsin X-Ray Microbeam (XRMB)

database (46 speakers) was used for SV experiments. In contrast, the proposed

approach is evaluated on databases that are larger and also more commonly used

for speaker recognition. Using the TIMIT database for SID and the NIST 2008

database for SV, SGCCs are shown to offer complementary information to the

MFCC-only system.

6.2 Proposed framework

A score-level framework is proposed to fuse the information provided by MFCCs

and SGCCs (it will be explained later why feature concatenation is difficult). An

overview of the proposed framework is presented here (see Figure 6.2) and the

implementation details are provided in Section 6.4.

Let the number of speakers to be enrolled for SID or SV be N . Enrollment

data are used to train two sets of acoustic models: {λ(1)
M , ..., λ

(N)
M } for MFCCs, and

{λ(1)
S , ..., λ

(N)
S } for estimated SGCCs (details about the SGCC estimator are pro-

vided in Section 6.3). Given an unseen test utterance, MFCC and SGCC scores

({ℓ(1)M , ..., ℓ
(N)
M }, {ℓ(1)S , ..., ℓ

(N)
S }) are computed with respect to the pre-trained mod-

els and then combined in a weighted fashion. The combined scores {ℓ(1), ..., ℓ(N)}

are used to make a decision (binary for SV, and 1-of-N for SID).
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6.3 Estimating SGCCs using MFCCs

In [TBT08], a Bayesian minimum mean squared error (MMSE) estimator was

proposed for estimating articulatory parameters from speech acoustics. That ap-

proach is adopted here for SGCC estimation and is evaluated using the WashU-

UCLA Adults corpus (which contains time-synchronized recordings of speech and

subglottal acoustics). The basic mathematical framework for MMSE estimation

is provided below (see [TBT08] for a detailed derivation) and the implementation

details are deferred to Section 6.3.1.

LetX = [X1,X2, ...,XM ]⊤ andY = [Y1,Y2, ...,YS]
⊤ beM- and S-dimensional

random vectors denoting MFCCs and the corresponding time-synchronized SGCCs,

respectively. Let Z = [X⊤Y⊤]⊤ denote the joint random vector. Since the dis-

tribution of Z is usually unknown, the simplest way to model it would be via a

K-component GMM λ(Z):

p(z|λ(Z)) =

K
∑

k=1

ν
(Z)
k N (z;µ

(Z)
k ,Σ

(Z)
k ), (6.1)

where νkN (·;µk,Σk) denotes the probability density function of the kth mixture

component, with mean µk, covariance Σk and weight νk. Once λ(Z) is available

(from joint training data), the marginal and joint statistics of X and Y can be

obtained using Eq. (6.2). Note that Z must be modeled using full covariances in

order to extract the joint statistics of X and Y.

µ
(Z)
k =













µ
(X)
k

µ
(Y)
k













, Σ
(Z)
k =













Σ
(XX)
k Σ

(XY)
k

Σ
(YX)
k Σ

(YY)
k













(6.2)
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Given an unseen test utterance, a sequence of MFCC vectors {x1,x2, ...,xT}

is first extracted from it. Then, for a given MFCC vector xt (1 ≤ t ≤ T ), the

SGCC vector is computed as the conditional mean (or MMSE estimate) of Y:

ŷt = E[Y|xt] =

K
∑

k=1

P (k|xt, λ
(Z))ζ

(Y)
k,t , (6.3)

where E[·] denotes the expectation operator, and P (k|xt, λ
(Z)) and ζ

(Y)
k,t are de-

fined as in Eqs. (6.4) and (6.5), respectively.

P (k|xt, λ
(Z)) =

ν
(Z)
k N (xt;µ

(X)
k ,Σ

(XX)
k )

∑K

k′=1 ν
(Z)
k′ N (xt;µ

(X)
k′ ,Σ

(XX)
k′ )

(6.4)

ζ
(Y)
k,t = µ

(Y)
k + Σ

(YX)
k Σ

(XX)
k

−1
(xt − µ

(X)
k ) (6.5)

In the present study, the MMSE estimator of Eq. (6.3) provides a mapping

from the more-variable MFCC space to the less-variable SGCC space (can be

viewed in some sense as a many-to-one mapping). On the other hand, in [TBT08],

the same MMSE estimator provides a one-to-many mapping from speech acous-

tics to articulatory parameters.

6.3.1 Implementation details and evaluation setup

The databases used by studies on speech-to-articulatory inversion consist of read

speech utterances (and time-synchronized articulatory trajectories) with good

phonetic and lexical coverage. The WashU-UCLA Adults corpus, in contrast,

consists only of short phrases of the form “I said a h[V]d again,” where [V] is

one of 9 monophthongs, 4 diphthongs, or the approximant [ô] (the corpus has

10 repetitions of each phrase from 50 adult speakers of American English—25
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male and 25 female). To avoid redundancy in the training data that are used to

estimate λ(Z) (note that all phrases have the same content except for the vowel

[V]), only the vowel segments are isolated and used. However, since vowels form

only a part of the speakers’ phonetic space, there needs to be a way to deal with

non-vowel segments while estimating SGCCs for speaker recognition. Section 6.4

explains how this is done.

The MMSE estimator (described above through Eqs. (6.1)–(6.5)) is evalu-

ated using 5-fold cross validation. The available vowel samples (7000 in total:

50 speakers, 14 vowels, 10 repetitions) are split into 5 sets such that the data

from any given speaker belong to exactly one set. All signals are down sampled

to 8 kHz (from their original sampling rate of 48 kHz). MFCCs and SGCCs are

extracted at 5 ms intervals using a 20 ms Hamming window and a 26-channel

Mel filter bank. The zeroth cepstral coefficient is discarded; MFCCs x1–x25 and

SGCCs y1–y25 are used to train λ(Z). The number of components K is set to 16—

roughly one component per vowel (no significant improvements in performance

were observed by increasing K beyond 16).

6.3.2 Results

SGCC estimates from all 5 test sets are pooled together for analysis. The utility

of the estimates (for speaker recognition) is assessed in two ways: (1) by com-

puting the correlation between actual and estimated SGCCs on a per-segment

basis (i.e., correlations between actual and estimated time trajectories), and (2)

by comparing actual and estimated SGCCs with regard to their ability to dis-

criminate between speakers.

Figure 6.3(a) shows the average segment-level correlations (with error bars)

for SGCCs y1 to y25—the values lie between 0.12 and 0.55, and are comparable to
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Figure 6.3: (a) Means (circles) and standard deviations (error bars) of the

segment-level correlations (segment = vowel token) between actual and esti-

mated SGCCs. Results from all 50 speakers in the WashU-UCLA Adults corpus

are pooled together. (b) Distribution of speaker-level correlation (i.e., average

segment-level correlation on a per-speaker basis) for three different cepstral coef-

ficients (y1, y14, y22).
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Feature set J-Ratio

MFCCs (x1–x25) 5.32

Actual SGCCs (y1–y25) 5.89

Estimated SGCCs 5.79

MFCCs + actual SGCCs 9.04

MFCCs + estimated SGCCs 8.79

Table 6.1: J-ratio, a measure of class separation (class = speaker), for different

features (+ denotes concatenation). Features were extracted from isolated vowel

recordings of speech and subglottal acoustics, for all 50 speakers in the WashU-

UCLA Adults corpus.

the correlations achieved for speech-to-articulatory inversion [GN11]. An impor-

tant observation from Figure 6.3(a) is that the error bars are significantly large,

suggesting a high degree of speaker variability in the estimator’s performance.

Figure 6.3(b) verifies this further via distributions of the speaker-level correla-

tion (i.e., average segment-level correlation on a per-speaker basis). In essence,

the discriminatory power of estimated SGCCs can be attributed, in part, to the

speaker-dependent nature of the MMSE estimator.

The J-Ratio [Fuk90], a popular measure of class separation, is used to com-

pare the actual and estimated SGCCs in terms of speaker discriminability. Given

feature vectors for N speakers, the J-Ratio can be computed using Eqs. (6.6) and

(6.7):

Sw =
1

N

N
∑

i=1

Ri Sb =
1

N

N
∑

i=1

(Mi −Mo)(Mi −Mo)
⊤ (6.6)

J = trace{(Sb + Sw)
−1Sb}, (6.7)

where Sw is the within-class scatter matrix, Sb is the between-class scatter ma-
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trix, Mi is the mean vector for the ith speaker, Mo is the mean of all Mis, and

Ri is the covariance matrix for the ith speaker (a higher J-Ratio means better

separation). Table 6.1 shows the J-Ratio for different feature sets; it leads to two

important observations. (1) SGCCs offer better separation than MFCCs. This is

partly attributable to the stationarity of subglottal acoustics and the low within-

class scatter that results from it. Despite the moderate correlations achieved by

the MMSE estimator (Figure 6.3(a)), estimated SGCCs are comparable in per-

formance to actual SGCCs. This suggests again that the discriminatory power

of estimated SGCCs is partly due to the speaker-dependent nature of the esti-

mator (Figure 6.3(b)). (2) SGCCs are complementary to MFCCs, as reflected by

the significantly higher J-Ratios for the combined feature sets. Note that SGCCs

are simply concatenated with MFCCs for this analysis; for speaker recognition

experiments, the score-combination framework described in Section 6.2 will be

followed (see Figure 6.2).

6.4 Speaker recognition experiments

The acoustic models for SID and SV are simple GMMs (as in [RR95]) and UBM-

adapted GMMs (as in [RQD00]), respectively. Given enrollment data, speech

segments are first detected using the algorithm proposed in [SKS99]. MFCCs

x0–x25 are extracted from the detected speech segments using a 20 ms Hamming

window, a 10 ms frame shift, and a 26-channel Mel filter bank. Non-vowel speech

frames must be discarded for SGCC estimation since the MMSE estimator is

trained on isolated vowels only. Instead of using a vowel detector (which is difficult

to implement and also computationally expensive), all strongly-voiced speech

frames are retained. A normalized autocorrelation peak value of 0.6 is chosen as

the threshold to select strongly-voiced frames (see [ALA14] for further details
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Figure 6.4: Percent identification error (Ie) as a function of SGCC weight (0

weight = MFCCs only) for the TIMIT database.

about the voicing detector). Using MFCCs x1–x25, SGCCs y1–y25 are estimated

and used to train the GMMs of the SGCC system. To train the MFCC GMMs,

x0–x12 and their first- and second-order derivatives are used. Note that feature

concatenation is not possible here—MFCCs are computed for all speech frames

whereas SGCCs are computed for strongly-voiced frames, only.

Given a test utterance, MFCCs and SGCCs are computed as described above.

The features are scored with their respective models to obtain two sets of scores

(see Figure 6.2). The scores are log likelihoods for SID and log likelihood ratios

for SV. Each set of scores is normalized to the range [0,1]; this is essential before

score combination since MFCC and SGCC scores are generally observed to have

different dynamic ranges. The scores from the two systems are combined in a

weighted fashion such that the weights (non-negative) sum to 1. The combined

scores are used to make a decision. Note that the score-combination procedure is

not rigorously optimized here; the focus is more on answering the question as to

whether or not SGCCs are beneficial to SID and SV.
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Data
Baseline Best combined Best SGCC

system system weight

16 kHz 3.09 1.51 (51.1%) 0.25

8 kHz 15.56 9.37 (37.8%) 0.55

8 kHz; G.712 19.21 16.19 (15.7%) 0.30

Table 6.2: Percent identification errors for the TIMIT database in three different

conditions, for the baseline (MFCC-only) and the best combined systems (relative

reductions in paranthesis).

6.4.1 Speaker identification: TIMIT database

TIMIT consists of data (sampled at 16 kHz) from 630 speakers. Each speaker has

10 utterances: 2 “shibboleth” sa sentences, 5 phonetically-compact sx sentences,

and 3 phonetically-diverse si sentences [Gar88a]. The average utterance length is

around 3 seconds. The sa sentences are used individually as test trials and the

remaining 8 sentences are used for acoustic modeling (as in [RR95]). MFCCs are

modeled with 32-component GMMs and SGCCs are modeled with 16-component

GMMs.

SID performance is evaluated in three different conditions: (1) wideband (16

kHz sampling rate), (2) narrowband (8 kHz sampling rate), and (3) filtered nar-

rowband (8 kHz sampling rate; data are band-pass filtered using the ITU-T G.712

characteristic [ITU01], which has a flat frequency response from 300 to 3400

Hz). Note that for the filtered narrowband condition, the MMSE estimator is

retrained after applying the G.712 characteristic to the vowel segments in the

WashU-UCLA Adults corpus.

Figure 6.4 shows the percent identification error (Ie) as a function of the

weight assigned to SGCCs, for the three evaluation conditions described above.
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Figure 6.5: Detection error tradeoff (DET) curves corresponding to different

SGCC weights (0 weight = MFCCs only) for the 5 second test trials in the

NIST 2008 database.

Table 6.2 summarizes the results for the best combined systems along with the

Ie reductions relative to their respective baselines. SGCCs are clearly effective

and complementary (the optimal SGCC weight is less than 0.5, on average) to

MFCCs, and one of the reasons for this is the short duration of the test utterances.

6.4.2 Speaker verification: NIST 2008 database

NIST 2008 data (used widely for evaluating SV algorithms) are similar to the

filtered narrowband speech of TIMIT, but with significantly higher speaker and

channel variability [MG09]. Segments from the “10-sec” condition (which has

10 second utterances from 1336 speakers) are used for this experiment. Data

from 892 speakers (having just one utterance each) are used for UBM training.

Data from the remaining 444 speakers (having at least two utterances each) are

used for enrollment (one utterance) and evaluation (one utterance). The test
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trials are set up such that each test segment is claimed to belong to each of

the 444 speakers, with only one of them being the target speaker. Hence, there

are 197136 trials in total. A 128-component UBM is trained for both MFCC

and SGCC systems, and speaker models are obtained via maximum a posteriori

(MAP) adaptation of the UBMs. A relevance factor of 10 is chosen to adapt the

means, covariances and component weights. The MSR Identity Toolbox is used

for all experiments [SSH13].

Note that the above experimental setup is not a standard one. Typically,

UBMs are trained on other corpora (Switchboard, Fisher, NIST 2006, etc.), and

NIST 2008 data are used for enrollment and evaluation [KBO07,KOD08,DKD11].

Nevertheless, the above framework serves as a proof-of-concept to demonstrate

the efficacy of SGCCs in the presence of speaker and channel variability.

Equal error rate (EER) is used as the performance metric. Evaluation on the

10 second test utterances results in a 4.3% EER reduction for the best combined

system (SGCC weight = 0.35), relative to the MFCC-only baseline of 10.59%.

The effect of SGCCs is stronger when the test utterances are truncated to 5

seconds each: the best combined system (SGCC weight = 0.35) shows a 10.5%

reduction relative to the baseline EER of 12.84%. Detection error tradeoff (DET)

curves for the 5 second test trials are shown in Figure 6.5.

6.4.3 Discussion

In both SID and SV tasks, the performance of the combined system drops below

the baseline as the SGCC weight tends to 1. However, the J-Ratio analysis of

Section 6.3.2 shows that estimated SGCCs, by themselves, can provide better

speaker separation than MFCCs. This discrepancy could be arising due to (1)

acoustic mismatch between the WashU-UCLA Adults corpus and the speaker
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recognition corpora, or (2) the simplistic approach used for selecting vowel-like

frames for SGCC estimation. The above hypotheses could possibly be verified

if the proposed fusion approach can be evaluated using a large, phonetically-

balanced database (like TIMIT) of speech and subglottal acoustics.

6.5 Conclusion

Motivated by the speaker-specificity and stationarity of subglottal acoustics, this

chapter investigated the utility of subglottal cepstral coefficients (SGCCs) for

speaker identification (SID) and verification (SV). SGCCs can be computed

using accelerometer recordings of subglottal acoustics, but such an approach

is unfeasible in real-world scenarios. To estimate SGCCs from speech signals,

the Bayesian minimum mean squared error (MMSE) estimator proposed in the

speech-to-articulatory inversion literature was adopted. The joint distribution of

SGCCs and speech MFCCs was modeled using the WashU-UCLA Adults cor-

pus (containing simultaneous recordings of speech and subglottal acoustics), and

the resulting model was used to obtain an MMSE estimate of SGCCs from un-

seen (test) MFCCs. Cross-validation experiments on the WashU-UCLA Adults

corpus showed that the estimation efficacy, on average, was speaker dependent.

A score-level fusion of MFCC and SGCC systems was found to outperform the

MFCC-only baseline in both SID and SV tasks. On the TIMIT database (SID),

the relative reduction in identification error was 16, 40 and 51% for G.712-filtered

(300–3400 Hz), narrowband (0–4000 Hz) and wideband (0–8000 Hz) speech, re-

spectively. On the NIST 2008 database (SV), the relative reduction in equal error

rate was 4 and 11% for 10 and 5 second utterances, respectively. Results on the

NIST 2008 database suggest that SGCCs could also be potentially effective with

more sophisticated modeling schemes such as i -vectors.
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CHAPTER 7

Summary and future work

This dissertation represents the first detailed investigation of subglottal acoustics

from a speech-technology perspective. New databases of time-synchronized speech

and subglottal acoustics were collected and analyzed to aid the development of

automatic SGR estimation algorithms and novel, hybrid (partly knowledge-based

and partly statistical) approaches to body-height estimation, speaker normaliza-

tion for ASR, and speaker recognition. The emphasis, in general, was on language

independence, noise robustness, and efficacy in limited-data conditions.

• Data collection and analysis

Three new databases were collected—the WashU-UCLA Adults corpus (50 na-

tive speakers of American English), the WashU-UCLA Bilingual Adults corpus (6

bilingual speakers of American English and Mexican Spanish), and the WashU-

UCLA Kids corpus (43 native speakers of American English). The recorded ma-

terial, in all three databases, consisted of CVC words embedded in neutral carrier

phrases. Formants and SGRs were measured—using microphone and accelerom-

eter signals, respectively—in the steady-state regions of monophthong vowels.

SGRs were found to be practically independent of phonetic content and native

language; their average within-speaker coefficients of variation were on the order

of 2–5%. The ground truth SGRs (averages of SGR measurements on a per-

speaker basis) were significantly higher for children compared to adults, and for
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adult females compared to adult males. In general, the correlations among SGRs

and the correlations between SGRs and body height were found to be stronger

(and less influenced by gender differences) for children (r values on the order

of 0.9) than for adults (r values on the order of 0.7–0.9). The Bark difference

between F1 and Sg1 was found to be a reliable acoustic measure of vowel height,

and the Bark difference between F2 and Sg2 was found to be a reliable acoustic

measure of vowel backness.

The databases collected in the present work as well as in previous studies have

all been in nontonal languages (i.e., languages in which pitch is not used to con-

vey lexical or grammatical information). To understand the potential interactions

among SGRs, formants and tones, data must be collected in tonal languages such

as Mandarin and Gujarati. Preliminary work in this direction had begun at the

time this dissertation was written.

• Automatic estimation of SGRs

Automatic SGR-estimation algorithms were developed for both adults and chil-

dren. For adults, Sg1 and Sg2 were estimated based on the fact that they

form natural boundaries between [+low]/[-low] and [+back]/[-back] vowels, re-

spectively. Sg3 was estimated based on its correlation with Sg2. The algorithm

used the SNACK toolkit for automatic pitch and formant tracking, and provided

utterance-level SGR estimates by averaging the frame-level estimates obtained

in voiced speech segments. Based on experiments with the WashU-UCLA cor-

pora and the MIT Tracheal Resonance database, the algorithm’s performance, in

terms of RMSE, was found to be practically independent of phonetic content and

language. In addition, the algorithm was found to be robust to different noise

types at SNRs as low as 0 dB. Using just 2–3 seconds of speech, Sg1, Sg2 and

Sg3 were estimated, on average, to within 31, 64 and 116 Hz, respectively; these
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errors were 1 to 2 times the average within-speaker standard deviations in mea-

sured SGR frequencies. In the case of children, Sg1 and Sg2 were estimated using

an ANN-based nonlinear mapping between vocal-tract parameters (F0, F1, F2

and F3) and ground truth SGRs. Sg3 was estimated as in the case of adults.

The algorithm (based on the SNACK toolkit) was robust to different noise types

at SNRs of 5 dB or more. The average RMSEs incurred in estimating Sg1, Sg2

and Sg3 were 66, 153 and 143 Hz, respectively; these errors were 2 to 3 times the

average within-speaker standard deviations in measured SGR frequencies.

The proposed algorithms were based on empirically-derived relationships in-

volving SGRs, formants and F0. Such an approach was adopted to make the

algorithms simple, fast, noise robust and accurate enough for the applications

considered in this dissertation. To achieve more accurate estimation of SGRs,

one approach could be to jointly estimate the subglottal and supraglottal trans-

fer functions such that, in conjunction, they best explain the given speech sig-

nal. Mathematical models of sound propagation in the subglottal tract (e.g.,

see [HKP01]) and vocal tract (e.g., see [SLT00]) could potentially be used to de-

velop such an approach.

• Body height estimation using SGRs

The proposed method was motivated by the physiological correlation between

overall body height and the effective length of the subglottal system, and was

based on the correlation observed between SGRs and height. Using the ground

truth SGRs and self-reported heights of speakers in the WashU-UCLA Adults

corpus and the WashU-UCLA Bilingual Adults corpus, first-order linear mod-

els were trained to predict height given SGR frequencies. Given a speech signal,

speaker height was estimated by first estimating SGRs and then using the empir-

ical relations between SGRs and height. The method was evaluated on 604 speak-
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ers in the TIMIT database, in three evaluation conditions: (1) clean wideband

speech, (2) clean narrowband speech, and (3) noisy narrowband speech. Using

about 3 seconds of clean speech data (wideband or narrowband), speaker height

could be estimated, on average, to within 5.4 cm. The degradation in height-

estimation performance due to noise was minimal—less than 0.3 cm, on average.

The proposed method was found to be comparable to state-of-the-art approaches

in performance while being more transparent (well-motivated features), efficient

(small feature set and limited training data) and generalizable (test corpus much

larger than the training corpus).

Actual and estimated height correlated well (r ∼ 0.7) when the results for

male and female speakers were pooled together, but not when they were consid-

ered separately (r ≤ 0.2). One reason for this could be the simplistic nature of

the first-order linear models used for prediction. It might be possible to achieve

better within-gender correlations (close to 0.5, as predicted using physiological

data reported in this dissertation and in other studies) with the help of a larger

training set that would allow the development of more sophisticated (probably

nonlinear) models between SGRs and speaker height.

• Speaker normalization using SGRs

The proposed SGR-based normalization scheme (SGRN) was implemented using

a warping function that mapped the first three SGRs of a given target utter-

ance to the first three SGRs of a reference speaker. The reference SGRs were

chosen a priori based on the speaker population used for training ASR models.

The target SGRs for a given utterance were first determined using the proposed

SGR-estimation algorithms and then refined by up to ±10% using a maximum-

likelihood grid search. SGRN and conventional VTLN were evaluated on chil-

dren’s speech using the TIDIGITS database (noisy data sets were created by
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adding babble, car, pink and white noise types at SNRs ranging between 5 and

15 dB). Two front ends were considered—standard MFCCs, and the recently-

proposed, noise-robust PNCCs (which have been used successfully for adults’ ASR

in noise). On average, SGRN was found to be significantly better than VTLN in

mismatched training (up to 32% relative reduction in WER) and slightly better

than VTLN in matched training. Regardless of the training condition, SGRN

offered significant WER reductions (relative to VTLN) for 6–8 year old speakers

and 1 or 2 word utterances. The efficacy of SGRN can be attributed to (1) speaker

specificity and content independence of SGRs, (2) noise robustness of the pro-

posed SGR-estimation algorithms and their ability to provide reliable estimates

with limited data, and (3) semi-statistical approach to estimating the optimal

warping parameters.

One limitation of SGRN in its current form is the use of a large 3-dimensional

search grid—such an approach could be prohibitive for large vocabulary ASR.

The grid search could potentially be replaced by gradient search methods for

higher efficiency as well as accuracy, although deriving closed-form expressions

of the cost function (for gradient search) would be a challenging task. Another

direction for future work would be to evaluate SGRN in conjunction with stan-

dard speaker-adaptation schemes like MLLR and CMLLR.

• Speaker recognition using subglottal cepstral coefficients

Preliminary experiments on the TIMIT database showed that SGRs estimated

from speech signals were not discriminative enough from a speaker-recognition

perspective. Therefore, subglottal cepstral coefficients (SGCCs) were used for

speaker identification (SID) and verification (SV). To estimate SGCCs from

speech signals, the Bayesian minimum mean squared error (MMSE) estima-

tor proposed in the speech-to-articulatory inversion literature was adopted. The
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joint distribution of SGCCs and speech MFCCs was modeled using the WashU-

UCLA Adults corpus (containing simultaneous recordings of speech and subglot-

tal acoustics), and the resulting model was used to obtain an MMSE estimate of

SGCCs from unseen (test) MFCCs. Cross-validation experiments on the WashU-

UCLA Adults corpus showed that the estimation efficacy, on average, was speaker

dependent. A score-level fusion of MFCC and SGCC systems was found to out-

perform the MFCC-only baseline in both SID and SV tasks. On the TIMIT

database (used for SID), the relative reduction in identification error was 16, 40

and 51% for G.712-filtered, narrowband and wideband speech, respectively. On

the NIST 2008 database (used for SV), the relative reduction in equal error rate

was 4 and 11% for 10 and 5 second utterances, respectively. SGCCs therefore

were complementary to MFCCs, especially when speech data were limited.

Since the WashU-UCLA Adults corpus comprises carrier phrases of the form

“I said a CVC again,” the Bayesian MMSE estimator was trained using just the

vowel segments extracted from the recordings. The estimator can possibly be

trained better if a large, phonetically-balanced database (like TIMIT) of speech

and subglottal acoustics were available; this is something that can be pursued in

the future. Another direction for further investigation would be to evaluate the

utility of SGCCs in SV systems based on state-of-the-art i -vectors.
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