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Abstract. The KIII model of the chaotic dynamics of the olfactory system was 
designed to simulate pattern classification required for odor perception. It was 
evaluated by simulating the patterns of action potentials and EEG waveforms 
observed in electrophysiological experiments. It differs from conventional arti-
ficial neural networks in relying on a landscape of chaotic attractors for its 
memory system and on a high-dimensional trajectory in state space for virtually 
instantaneous access to any low-dimensional attractor. Here we adapted this 
novel neural network as a diagnostic tool to classify normal and hypoxic EEGs. 

1   Introduction 

Biological neural systems are complex but rapid and reliable in pattern classification. 
We follow the architecture of the olfactory system to construct a high dimensional 
chaotic network,  the KIII model, in which the interactions of globally connected 
nodes are shaped by reinforcement learning to support a global landscape of high-
dimensional chaotic attractors. Each low-dimensional local basin of attraction corre-
sponds to a learned class of stimulus patterns. Convergence to an attractor constitutes 
abstraction and generalization from an example to the class.  KIII model has per-
formed well on several complex pattern recognition taskss [1], [2], [3]. 

Here we present a new application of the KIII network for recognition of normal 
and hypoxic EEGs based on the feature vectors of 30-60 Hz sub-band wavelet packet 
tree coefficients constructed using wavelet packet decomposition.  

2   KIII Model Description 

Biologically, the central olfactory neural system is composed of olfactory bulb (OB), 
anterior nucleus (AON) and prepyriform cortex (PC). In accordance with the anat-
omic architecture, KIII network is a multi-layer neural network model, which is com-
posed of several K0, KI, KII units [4]. Among the models, every node is described by 
a second order differential equation. The parameters in the KIII network are opti-
mized to fulfill some criteria that were deduced  in electrophysiological experiments 
[5]. 

In the KIII network, Gaussian noise is introduced to simulate the peripheral and 
central biological noise source, respectively; the peripheral noise is rectified to simu-
late the excitatory action of input axons. The additive noise eliminates numerical 
instability of the KIII model, and makes the system trajectory stable and robust under 



statistical measures. Because of this kind of stochastic chaos, the KIII network can 
approximate the real biological intelligence for pattern recognition [6], [7].  

3   Application to Normal and Hypoxic EEG Recognition 

3.1   Data Acquisition 

A mixture of nitrogen and oxygen at normal atmosphere pressure was used to simu-
late different altitudes in the atmosphere by adjusting oxygen partial pressure: It was 
provided to subjects via a pilot mask. In the first day, when the subjects stayed at 
normal atmosphere, they were tested for auditory digit span and serial addi-
tion/subtraction tests while the EEGs were recorded. In the second day, after the 
subjects stayed at environment simulating 3500 m altitude for 25 minutes, they re-
peated the aforementioned test procedure. The experiments were carried out during 
the same time period each day. Five healthy male volunteers around 22 years old 
were taken as subjects. Immediately after  thebehavioral evaluations 1.5 seconds 
EEGs were recorded for analysis under both normal oxygen partial pressure and 3500 
m altitude.  

EEG data were taken from 30 Channels including: FP1, FP2, F7, F3, FZ, F4, F8, 
FT7, FC3, FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7, CP3, CPZ, CP4, TP8, T5, P3, 
PZ, P4, T6, O1, OZ and O2 (10/20 system). The reference was (A1+A2)/2 (A1 = left 
mastoid, A2 = right mastoid). The EEG amplifier used was NuAmps Digital Ampli-
fier (Model 7181) purchased from Neuroscan Compumedics Limited, Texas, USA. 
Sampling rate was 250 S/s. All values are in µVolt. 

3.2   Evaluation of the severity of the effects of hypoxia by neurobehavioral (NE) 
testing 

NE is a sensitive and reliable tool for early detection of adverse effects of the envi-
ronmental hazards on central nervous system. In the normal and simulating 3500m 
altitude experiments, auditory digit span and serial addition and subtraction were 
utilized to evaluate the degree of hypoxia. The result of the test is shown in Table 1. 
T-tests were performed on the NE under normal and hypoxia conditions. As a result, 
the NE scores of normal and hypoxia were different observably (p<0.05). Further-
more, the scores under the hypoxia condition were lower distinctly, which means that 
subjects’ behavior capability became weaker under the hypoxia condition. 

Table 1. Performance of NES under normal and hypoxia states 

Auditory Digit Span 
Scores 

Serial Addition And 
Subtraction Scores 

Sub-
ject 

Normal Hypoxia Normal Hypoxia 
1 
2 
3 
4 
5 

30 
28 
25 
32 
19 

29 
24 
21 
23 
9 

28 
31 
20 
24 
18 

21 
16 
20 
15 
12 



3.3  Feature Vector Extraction 

 
Fig. 1. A feature vector topography of the normal and hypoxia EEG 

By wavelet packet decomposition, the original waveform can be reconstructed from a 
set of analysis coefficients that capture all of the time (or space) and frequency infor-
mation in the waveform [8]. In our analysis, we use the COIF5 wavelet. The number 
of levels of decomposition is chosen as two and wavelet packet tree coefficients of a 
30-60Hz sub-band are abstracted. The feature vector is a 30-dimensions vector due to 
30 EEG channels. For each channel, the square of the wavelet packet tree coefficients 
are summed up as one dimension of the feature vector. According to the topology of 
the EEG channel, feature vectors can be transformed as a feature topography. A typi-
cal feature topography sample of comparing normal and hypoxic EEGs collected 
from the same subject is illustrated in Fig. 1. 

3.4 Learning Rule 

There are two main learning processes: Hebbian associative learning and habituation. 
Hebbian reinforcement learning is used for establishing the memory basins of certain 
patterns, while habituation is used to reduce the impact of environment noise or those 
non-informative signals input to the KIII network. The output of the KIII network at 
the mitral level (M) is taken as the activity measure of the system. The activity of the 
ith channel is represented by SDai, which is the mean standard deviation of the output 
of the ith mitral node (Mi) over the period of the presentation of input patterns, as 
Eq.(1). The response period with input patterns is divided into equal segments, and 
the standard deviation of the ith segment is calculated as SDaik, SDai is the mean value 
of these S segments. SDa

m is the mean activity measure over the whole OB layer with 
n nodes (Eq.(2)).                                       
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The modified Hebbian rule holds that each pair of M nodes that are co-activated by 
the stimulus have their lateral connections W(mml)ij strengthened. Here W(mml)ij 
stands for the connection weights both from Mi to Mj and from Mi to Mj. Those 
nodes whose activities are larger than the mean activity of the OB layer are consid-
ered activated; those whose activity levels are less than the mean are considered not 
to be activated. Also, to avoid the saturation of the weight space, a bias coefficient 

 is defined in the modified Hebbian learning rule, as in Eq.(3). W(mml)K ij is multi-
plied by a coefficient r (r>1) to represent the Hebbian reinforcement. 



IF                      (1 ) (1 )m m
ai a aj aSD K SD and SD K SD> + > +  

THEN        ( ) ( ) ( ) ( )high high
ij jiW mml W mml and W mml W mml= = (3) 

OR            ( ) ( ) ( ) ( )ij ij ji jiW mml r W mml and W mml r W mml= × = ×  

Two algorithms to increase the connection weight are presented, algorithm 1 is 
used to set the value to a fixed high value W(mml)high as in previous references and 
algorithm 2 is a new algorithm that will multiply an increasing rate to the original 
value. For the habituation learning, a continuous habituation strategy is used, which 
means that habituation occurs cumulatively at each time step [1]. 

At the end of a training session for two types of learning, the connection weights 
are fixed to perform pattern classification tests. During training, several samples for 
each class are given. The activity measure vector for every trail is calculated, and the 
mean activity of those trails, which belong to one class, is defined as the cluster cen-
ter of that class. Inputs of different classes that the system is trained to discriminate 
form multiple clusters, each with its center of gravity. When a test pattern is given, 
the Euclidean distances from the corresponding point to those training pattern cluster 
centers are calculated, and the minimum distance to a center determines the classifica-
tion. On the other hand, the concept of classification threshold was introduced into 
the classification rule. If the difference between the minimum Euclidean distance and 
the secondary minimum distance is less than the threshold value, it is regarded as a 
recognition failure. 

3.5 Classification of Normal and Hypoxia EEG 

We use the KIII model to distinguish hypoxic from normal EEGs. The KIII model 
learns the desired patterns --- the normal and hypoxic EEG patterns for three times in 
turn. The test data set contains 80 samples of normal and hypoxic EEG for individu-
als by 5 different subjects. We chose 40 samples in the odd position for training and 
used all the 80 samples for classification, and then we chose 40 samples in the even 
position for training and used all the 80 samples for classification. The final correc-
tion rate is from the mean of twice correction rate. In this application, a 30-channel 
KIII network is used with system parameters as the reference [5].  

The experimental results are shown in Fig. 2. Effectively, the mean of classifica-
tion rate for test data set is equal to 92%. Hypoxic EEGs can be distinguished from 
normal EEG by the KIII network. In other words, a new pattern in EEG, which is 
different from normal one, comes into being, induced by hypoxia. The conclusion of 
EEG classification is consonant with NE results.  

 



Fig. 2. Rate of correct classification of normal and hypoxic EEGs by the KIII network 

4   Discussion 

The lowest correction rate (85%) was observed from the subject No.3. When we 
compared this with the NE test results, we found that the auditory digit span scores of 
the subject No.3 changed less than other subjects under normal and hypoxic condi-
tions while the scores of serial addition and subtraction remain unchanged. The re-
sults of EEG analysis and NE conformed to indicate that the effect of hypoxia on 
subject No.3 was less than on other subjects. To some extend, rate of correct EEG 
pattern classification using KIII network represents the degree of hypoxia. It provides 
the possibility to measure the effect of hypoxia quantitatively.  
 
Derived directly from the biological neural system, the KIII network is more compli-
cated yet more effective in simulating the biological neural system in comparison 
with conventional ANN. The KIII model has good capability for pattern recognition 
as a form of the biological intelligence. It needs much fewer learning trials when 
solving problems of pattern recognition. In our study, it is extremely time consuming 
to use a digital computer to solve the numerous differential equations within KIII 
model. This problem restricts the application of the KIII network in real time.   The 
implementation of the KIII in analog VLSI [9] is surely a promising research for 
building more intelligent and powerful artificial neural network.  

By providing feature vectors for classification, the EEG might be made to serve as 
a quantitative indicator of hypoxia in real time, which might significantly improve the 
safety of those who work in high altitude.  
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