
UC Irvine
UC Irvine Previously Published Works

Title
Fitting procedural yarn models for realistic cloth rendering

Permalink
https://escholarship.org/uc/item/2fw2w3gs

Journal
ACM Transactions on Graphics, 35(4)

ISSN
0730-0301

Authors
Zhao, Shuang
Luan, Fujun
Bala, Kavita

Publication Date
2016-07-11

DOI
10.1145/2897824.2925932

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2fw2w3gs
https://escholarship.org
http://www.cdlib.org/

Appears in the SIGGRAPH 2016 Proceedings.

Fitting Procedural Yarn Models for Realistic Cloth Rendering

Shuang Zhao Fujun Luan Kavita Bala
University of California, Irvine Cornell University Cornell University

(a) CT Measurements (b) Fitted procedural yarns (c) Rendered full textiles

Figure 1: We present a new technique to automatically generate procedural representations of yarn geometry. Based on geometric measure-
ments of physical yarn samples (a), our approach fits statistical representations of fiber geometry that closely match reality (b). The four yarns
in (a, b) from top to bottom are cotton, rayon, silk, and polyester. Our fitted models can populate realistic fiber-level details into yarn-based
fabric models (generated using textile design software or physically-based yarn simulation) to significantly improve the quality of the rendered
fabrics (c-top vs. c-middle (ours)). Our procedural models carry high-level synthetic information (e.g., twisting and hairiness) which offers
easy editability (c-bottom).

Abstract

Fabrics play a significant role in many applications in design, pro-
totyping, and entertainment. Recent fiber-based models capture the
rich visual appearance of fabrics, but are too onerous to design and
edit. Yarn-based procedural models are powerful and convenient,
but too regular and not realistic enough in appearance. In this paper,
we introduce an automatic fitting approach to create high-quality
procedural yarn models of fabrics with fiber-level details. We fit
CT data to procedural models to automatically recover a full range
of parameters, and augment the models with a measurement-based
model of flyaway fibers. We validate our fabric models against CT
measurements and photographs, and demonstrate the utility of this
approach for fabric modeling and editing.

Keywords: appearance modeling, procedural geometry, textile

Concepts: •Computing methodologies→ Rendering;

1 Introduction

Fabrics are essential to our daily lives. Designing and modeling
them virtually is important for many applications such as online
retail, textile design, and in entertainment applications like games
and movies. Despite a rich history in computer graphics, accurately
modeling fabrics remains challenging; fabrics are structurally and
optically very complex, resulting in dramatic variation in their ap-
pearance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper, July 24 - 28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925932

Representing the richness of fabrics in virtual models has actively
driven research in a variety of fabric appearance models. Recently,
micro-appearance based fabric models [Zhao et al. 2011; Zhao
et al. 2012; Khungurn et al. 2015; Schröder et al. 2015] that explic-
itly capture a fabric’s micro-scale geometry have been introduced.
Compared to traditional methods, these models describe fabrics at
unprecedented detail, and thus offer superior generality as the com-
plex appearance of a fabric is largely a direct consequence of its
small-scale structures.

Since fiber-level details greatly affect large-scale fabric appearance,
accurately capturing them is critical for predictive applications such
as textile design. Previously, these detailed structures were mea-
sured through volume imaging (e.g., computed microtomography),
leading to high-resolution 3D volumes [Zhao et al. 2011; Zhao et al.
2012] or large numbers of unorganized fiber curves [Khungurn et al.
2015]. Neither of these representations is easy to manipulate. On
the other hand are yarn-based models [Kaldor et al. 2008; Cirio
et al. 2014] which are much more amenable to editing and simu-
lation [Yuksel et al. 2012], but do not capture the richly detailed
fiber-level structures that are needed to achieve realism. See Fig-
ure 1-c (top), where the yarns appear to be made of plastic because
they miss many detailed highlights generated by fiber-level struc-
tures. Bridging the gap between convenience and easy modeling on
the one hand, and complex appearance on the other, is critical for
the adoption of richly detailed fabric models.

This paper introduces an automated modeling process which takes
physical CT measurements (Figure 1-a) and computes procedural
descriptions for fabric yarns (Figure 1-b). The output can be used
to populate realistic fiber-level details into yarn-based models (Fig-
ure 1-c, middle), significantly improving the realism of the final
output. Further, the parameterized models are easy to edit, produc-
ing significant variations of appearance that match the real-world
behavior of yarns (Figure 1-c, bottom).

Micro-geometry of fabrics has been studied extensively in textile
research. Recently, Schröder et al. [2015] introduced a procedu-
ral yarn model to computer graphics leveraging state-of-the-art re-
sults from this field [Morris et al. 1999; Tao 1996; Keefe 1994].
Their model represents fabric yarns based on statistical distributions

1

http://dx.doi.org/10.1145/2897824.2925932

Appears in the SIGGRAPH 2016 Proceedings.

(a) (b)

(c) (d)

Figure 2: Rendered fabrics with identical yarn-level geometry
but varying fiber-level properties: (a) original; (b) modified fiber
twisting; (c) modified fiber distribution; (d) increased flyaway vari-
ance. These fiber-level variations change appearance at much
larger scales.

which can be edited easily. However, how to set parameter values
for this model to closely match real fabrics remains a significant
challenge. In [Schröder et al. 2015], creating procedural yarns was
a manual process. But this fitting can be tricky. As demonstrated
in Figure 2, changes in fiber-level properties, from twisting to level
of hairiness, can greatly affect a fabric’s overall appearance. Thus,
properly fitting these parameters is essential to correctly reproduce
the visual characteristics of real-world fabrics. But this is very chal-
lenging to do manually as fiber-level structures are too small to
observe, and setting corresponding parameters properly requires
careful analysis of 3D micro-geometries that are difficult to obtain
without volumetric measurements.

In this paper, we present a novel technique to create procedural
yarn models automatically based on physical measurements of real-
world yarns. Our contributions include:

• An end-to-end pipeline to automatically build our model from
physical measurements acquired using micro CT imaging (§4).

• An improved flyaway fiber model which is not only statistically
more meaningful, but also easier to fit to (§5).

• Validation of our fitted results by comparing with CT measure-
ments as well as photographs (§6).

We are releasing our implementation, measured data, and fitted
parameters (Table 2). Our tool and data allow fiber-level details
to be added to yarn-based cloth designs produced by textile soft-
ware [Pointcarré 2016] and simulation tools [Kaldor et al. 2008;
Cirio et al. 2014]. The added details can lead to significantly higher
rendering quality (Figures 1 and 17) and greatly benefit the design
applications.

2 Related Work

Fabric appearance. Fabric appearance has been an active re-
search topic in computer graphics for decades. Traditionally, fabrics
are treated as infinitely thin 2D sheets. Many surface reflectance
models have been proposed to model fabric appearance [Irawan and
Marschner 2012; Sadeghi et al. 2013]. Although these models pro-
vide high-quality renderings for fabrics viewed from a distance, they
lack the power to closely reproduce the appearance of fabrics with
thick yarns or fuzzy silhouettes, or the generality to handle different
fabrics with wildly varying appearances.

Yarn

Ply #1
Ply #2
Ply #3Yarn Ply

}Fibers

Figure 3: Fabric structure: a yarn normally consists of multiple
sub-stands called plies. Each ply in turn contains tens to hundreds
of micron-diameter fibers.

Recent advances in cloth appearance modeling have led to the devel-
opment of volumetric [Xu et al. 2001; Jakob et al. 2010; Zhao et al.
2011; Zhao et al. 2012; Zhao et al. 2013] and fiber-based [Schröder
et al. 2015; Khungurn et al. 2015] cloth models. Unlike traditional
methods, they describe fabrics at 3D volumes with varying densi-
ties (volumetric) or collections of fiber curves (fiber-based). Com-
pared to traditional surface-based methods, these models are better
at capturing the thickness and fuzziness of fabrics, which add sig-
nificantly to their visual realism, and thus have brought the quality
of computed rendered cloth to the next level. However, these tech-
niques either provide automated creation of highly realistic models
(achieved by measuring real-world samples) but carry little high-
level synthetic information (e.g., yarn twisting) [Zhao et al. 2011;
Khungurn et al. 2015], or offer compact procedural representations
but rely on manually configured models which require nontrivial
parameter tweaking to match reality closely [Schröder et al. 2015].
We introduce a technique that takes the strength of both approaches
while avoiding their weaknesses.

Fabric geometry. The geometric structure of fabrics have been
studied by the textile research community for decades. State-of-the-
art results from this field [Morris et al. 1999; Tao 1996; Keefe 1994;
Shinohara et al. 2010] have resulted in the introduction of some
aforementioned micro-appearance modeling techniques [Zhao et al.
2011; Schröder et al. 2015].

Yarn-based fabrics. Yarn-based representations describe fabrics
at the yarn-level and are used almost exclusively in textile de-
sign [Pointcarré 2016]. Recently, yarn-based simulation [Kaldor
et al. 2008; Cirio et al. 2014] and editing [Yuksel et al. 2012] have
been developed in computer graphics. These models, however, usu-
ally offer limited rendering quality as they lack fiber-level details
that contribute significantly to a fabric’s overall appearance. Pro-
cedural models generated by our method bridge this gap: they can
be used to populate fiber-level structure in the yarn models, signifi-
cantly improving the virtual realism of their appearance.

3 Background

We discuss prior work in fabric micro-appearance modeling tech-
niques (§3.1) and procedural yarn models (§3.2).

3.1 Fabric Micro-Appearance Modeling

Fabrics are constructed by combining multiple yarns via manufactur-
ing technologies such as weaving and knitting. Each yarn, in turn, is
created by twisting hundreds of micron-diameter fibers. Real-world
yarns usually consist of multiple sub-strands or plies (Figure 3). Re-
cent fiber-based models achieve visual accuracy by representing the
real structure of yarns and plies explicitly. These models can be
classified into two major categories: volumetric and fiber-based.

Volumetric models. Volumetric models describe a fabric’s
micro-geometry using high-resolution 3D volumes obtained by pro-
cessing micro CT measurements [Zhao et al. 2011]. At each point
in the volume, local fiber density and orientation are stored.

Fiber-based models. Fiber-based models treat fabrics as collec-
tions of individual fibers described as 1D curves [Khungurn et al.
2015; Schröder et al. 2015]. These fiber curves are then combined

2

Appears in the SIGGRAPH 2016 Proceedings.

Algorithm 1 procedural yarn generation

1: for each ply i do
2: generate regular fibers using Eq. (1), Eq. (2), Eq. (3)
3: add flyaway fibers
4: scale all fibers in the ply to obtain elliptical cross-sections
5: end for
6: twist all plies together around the yarn center

with bidirectional curve scattering distribution functions (BCSDFs)
to generate rendered images.

Compared to volumetric models, fiber-based models offer a similar
level of realism [Khungurn et al. 2015] while being more compact
and providing more synthetic information. Therefore, in this paper,
we choose to generate fiber-based representations procedurally.

3.2 Procedural Modeling of Yarn Geometry

In this paper, we build on a procedural yarn model proposed by
Schröder et al. [2015] based on state-of-the-art results from textile
research [Morris et al. 1999; Tao 1996; Keefe 1994]. This model sta-
tistically describes how individual yarns are formed by underlying
fibers. The key parameters are:

• For fibers: cross-sectional fiber distribution, fiber twisting, and
fiber migration.

• For plies: ply cross section, ply twisting, and fiber count.

Additionally, this model has a separated step, which we improve
upon in §5, that handles the important-for-realism effect of flyaway
fibers. See [Schröder et al. 2015] for more details.

Cross-sectional fiber distribution. A key component of the
procedural yarn model is a cross-sectional fiber distribution that
captures the likelihood of a fiber’s existence given its distance
R ∈ [0, 1) from the ply center. This distribution uses the following
(unnormalized) density function:

p(R) = (1− 2ε)

(
e− eR

e− 1

)β
+ ε, (1)

which is used with rejection sampling (Algorithm 2) to draw cross-
sectional fiber locations. Given a sampled location for the i-th fiber
(xi, yi), the fiber curve (as a circular helix parameterized by θ) can
be generated as follows, assuming the ply center to be the Z-axis:

x(θ) = Ri cos(θ+θi), y(θ) = Ri sin(θ+θi), z(θ) =
αθ

2π
, (2)

where Ri := ‖(xi, yi)‖2, θi := atan2(yi, xi), and α is a constant
determining the fiber’s twist (i.e., the helix’s pitch).

Fiber migration. In Eq. (2), the distance between a generated
fiber and the ply center stays constant. But this is unnatural: fibers
typically migrate from such a fixed distance. This fiber migration is
modeled by allowing the distance to change continuously between
two given constants Rmin and Rmax. That is, by replacing Ri in
Eq. (2) with:

Ri(θ) := RminRi+
(Rmax −Rmin)Ri

2
[cos(sθ+θ

(0)
i)+1], (3)

where s is a constant controlling the length of a rotation, and θ(0)i is
a per-fiber parameter indicating the rotation’s initial “phase”.

Ply cross section. Plies generated with Eq. (1) and Eq. (3) al-
ways have circular cross-sections. A simple generalization is to
support elliptical cross-sections by scaling a ply along the X- and
Y-directions by factors of eX and eY respectively.

Algorithm 2 Sampling cross-sectional fiber location

Require: cross-sectional fiber distribution parameters ε, β
1: procedure SAMPLEFIBERLOCATION(ε, β)
2: repeat
3: draw (x, y) uniformly in a unit disc
4: draw ξ from U [0, 1]
5: until ξ < p (‖(x, y)‖2) . p defined in Eq. (1)
6: return (x, y)
7: end procedure

Flyaway fibers. Real yarns usually contain flyaway fibers that
do not follow the flow of normal fibers. These irregularities not
only contribute greatly to the realism of yarn appearance, but are
also crucial for reproducing fuzzy silhouettes of real-world fabrics.
Previous work generated flyaway fibers in a somewhat simplified
manner using 3D perlin noise [Schröder et al. 2015]. We introduce
an improved flyaway model (§5) which is statistically more mean-
ingful and easier to fit to.

Ply twisting. The final step to build a procedural yarn model is
twisting the component plies. For a yarn centered at the Z-axis, each
ply is twisted to follow a circularly helical curve

S(z) := (Sx(z), Sy(z), z)

with its pitch controlled by αply:

Sx(z) = Rply cos(2πz/αply + θply),

Sy(z) = Rply sin(2πz/αply + θply).
(4)

Besides the cross section and twisting information, each ply has an
integer m associated with it that specifies the number of compo-
nent fibers. The entire pipeline for procedural generation of yarn
geometry is summarized in Algorithm 1.

Challenges in parameter fitting. Although the fiber generation
process (Algorithm 1) is straight-forward given the model parame-
ters, its inverse problem of parameter fitting is far from trivial. Many
fiber-level parameters, such as cross-sectional fiber distribution and
fiber migration, are based on the statistical properties of a yarn’s
micro-geometry. These properties are difficult to acquire due to
their small scale, and challenging to fit to because of their naturally
existing irregularities.

In this paper, we address these challenges by acquiring a yarn’s
micro-geometry using micro CT imaging, and introducing an end-
to-end pipeline to automatically and robustly fit procedural repre-
sentations to the measured data (§4). In addition, we introduce a
new model for capturing flyaway fibers (§5) which contributes sig-
nificantly to photorealism.

4 Model Fitting

We present our end-to-end pipeline for fitting procedural yarns to
physical measurements of micro-geometries. he parameters needed
to be fit are summarized in Table 1. The challenge is converting
volumetric CT data with no synthetic information to a procedural
yarn model with correct ply-level and fiber-level properties. Many
parameters must be identified properly to match the appearance
of physical yarns. Ultimately this approach yields a compact and
editable representation capturing the rich irregularities of real-world
yarns.

Our pipeline, from a high level, is analogous to executing Algo-
rithm 1 in reverse order (Figure 4). In particular, given measured
yarn micro-geometry (§4.1):

3

Appears in the SIGGRAPH 2016 Proceedings.

Measured Fiber Curves

Tracked Ply Centers
Untied plies

...

Ply twisting
& cross section

(§4.2)

...

Regular fibers

...

Flyaway fibers

Fiber
classification

(§4.3)

S(t), eX , eY , m

Fiber distrib.
& migration

(§4.4)

β, ε
Ri , α, θi
...

Flyaway
fitting
(§5.2)

ρhair , ρloop
...Input (Sec 4.1)

Figure 4: Our parameter fitting pipeline. This pipeline is approximately in the opposite order of the procedural yarn generation algo-
rithm (Algorithm 1) since it is fitting parameters.

Parameter Type Parameter Name Defined Fitted
Cross-Sectional

β, ε Eq. (1) §4.4
Fiber Distribution

Fiber Twisting
α

Eq. (2) §4.4
Ri, θi

Fiber Migration
Rmin, Rmax, s Eq. (3) §4.4
θ
(0)
i

Ply Cross Section eX , eY §3.2 §4.2
Ply Twisting Rply, αply Eq. (4) §4.2
Per-ply Fiber Count m §3.2 §4.2

Improved Flyaway
Fiber Distribution

ρloop, ρhair, Rloop
max,

Eq. (11) §5.2Rhair
min, R

hair
span, z

hair
min,

zhair
span, θ

hair
min, θ

hair
span

Table 1: List of parameters used by the procedural yarn model.
Parameters shown in purple are per-ply attributes. Those shown in
blue are specified for every fiber by independently sampling the cor-
responding statistical distributions. In particular, per-fiber flyaway
parameters (i.e., Rloop

max, Rhair
min, Rhair

span, and θhair
span) are sampled from

normal distributions (see §5 and Table 2) while others (i.e., Ri, θi,
and θ(0)i) are drawn uniformly (§3.2).

• First, we estimate ply twisting as well as the component plies’
cross-sectional shapes (§4.2). Using this information, we ‘untie’
and deform all component plies so that they are centered on the
Z-axis and have circular cross-sections.

• Then, we analyze each untied ply and classify the constituent
fibers into two categories: flyaway and regular (§4.3).

• Next, based on the obtained flyaway fibers, we determine the
parameter values required by our improved model (§5.2).

• Lastly, we fit the cross-sectional fiber distribution and migration
parameters using the previously obtained regular fibers (§4.4).

In the rest of this section, we first describe our CT imaging process
stage leveraging state-of-the-art techniques [Zhao et al. 2012; Khun-
gurn et al. 2015] to obtain clean input geometry to our main fitting
pipeline (§4.1). Then, we explain our pipeline following the flow of
Algorithm 1 (i.e., from right to left in Figure 4).

4.1 Input

We acquire micro geometries of physical yarns using micro CT
imaging. As shown in Figure 5-a, multiple yarns are packed to-
gether for faster acquisition since they can be scanned simultane-
ously. Given micro CT measurements with volumetric fiber densi-
ties (Figure 5-b), we process them using the approach developed
by Khungurn et al. [2015] to extract fiber curves (Figure 5-c). In
addition, we perform yarn tracking [Zhao et al. 2012] to extract the
center curve for each component ply (Figure 5-d). The recovered

fiber curves and ply centers (Figure 5-cd) act as input to our main
parameter fitting pipeline.

4.2 Ply Twisting and Cross Section Estimation

The first step of our parameter fitting pipeline is to recover the input
yarn’s plying (i.e., ply twisting and cross-sectional shape) so that
we can separate individual plies and perform later per-ply analysis.
In this paper, we assume all plies in a yarn are identical and evenly
distributed around the yarn center.

Ply twisting. For each given ply center i (represented as a poly-
line), we fit a helical curve Si in the form of Eq. (4) which requires
estimating the ply radius Rply

i , the pitch αply
i , and initial angle θply

i .
Given our assumption of identical and evenly distributed plies, this
boils down to finding:

• One set of Rply and αply shared by all piles;

• θply
1 , the initial angle of the first ply, which can be used to deter-

mine those of all other plies by setting θply
i = θply

1 + 2π i−1
K

.

To determine these parameters, we optimize the L2 distance between
the given and fitted ply centers by minimizing:

Eply(Rply, αply, θply
1)

:=

K∑
i=1

∫ z1

z0

∥∥∥Si (z ∣∣ Rply, αply, θply
i

)
− Stracked

i (z)
∥∥∥2
2
dz,

(5)

where K is the number of plies, Si is given by Eq. (4), and Stracked
i

is the i-th input ply center (Figure 5-d) whose two endpoints give
z0 and z1.

To minimize Eq. (5), we use an open source implementation [Hutt
2011] of the Nelder-Mead Simplex Method [1965]. One could also
leverage more advanced optimization methods such as the floating
tangent algorithm [Derouet-Jourdan et al. 2013], possibly leading
to better accuracy and performance. However, since our acquisition
setup keeps yarn samples straight (Figure 5-a), the input curves

(a) Acquisition setup (b) Micro CT scan

(c) Extracted fiber curves (d) Tracked ply centers

Figure 5: Acquisition of yarn geometries. (a) We stack multiple
yarns and CT scan them. (b) Volumetric density information for one
of the scanned yarns. (c) Extracted fiber-based representation of
the yarn. (d) Tracked ply centers.

4

Appears in the SIGGRAPH 2016 Proceedings.

Ply center

Ply center

Ply center

(a) (b)Figure 6: Fitting ply cross-sections (3-ply example). (left) We
place an ellipse at each ply center. The short axis of this ellipse
points toward the center of a polygon (shown in gray with dashed
boundaries) formed by all ply centers. (right) We then rotate and
translate all plies (in plane) with the corresponding fiber points.
These transformed 2D fiber locations will then be used to fit the ply
cross-sections (Figure 7).

(i.e., Stracked
i) are already close to circular helices. We found that

our simple approach was fast, well-behaved (i.e., there were no
convergence issues), and produced high-quality results for rendering
purposes.

Cross-section estimation. As in [Schröder et al. 2015], we
model the cross-sections of the plies as ellipses that are allowed to
intersect, to mimic ply compression. Given a cross-sectional plane,
we place an ellipse at the center of each ply with its short axis point-
ing towards the center of a polygon formed by all the ply centers
(see Figure 6 for a 3-ply example). These ellipses are used to deter-
mine the lengths of the ellipse axes (i.e., eX and eY). We assume
identical plies, and therefore obtain one set of eX and eY values
based on information from all plies. In particular, we rotate and
translate each ply (with all its constituent fiber centers) in the plane,
making it axis-aligned and centered at the origin (Figure 6, right).
By stacking all transformed plies from all cross-sectional planes,1

we obtain an accumulated 2D point cloud consisting of fiber centers
(Figure 7). Then, we set eX and eY to twice the standard deviation
of the X- and Y-coordinates of all these points, respectively. The
resulting ellipse covers approximately 95% of the fiber centers. We
rely on our flyaway fiber model to capture the remaining, mostly
irregular, fibers.

Besides ply twisting and cross-section parameters, we estimate the
number of fibers per ply as m = bLtotal/(Lply K)c, where Ltotal
indicates the total length of fibers in the measured geometry (Fig-
ure 5-c), Lply denotes the length of a fitted ply center (all Si curves
have identical lengths), and K is the number of plies.

4.3 Fiber Classification

Using the plying information obtained in §4.2, we untie the plies so
that they are all centered around the Z-axis. All fibers in these piles
then form a ‘fiber soup’ which will be analyzed by the following
steps of our pipeline. In this step, we classify these fibers into
regular versus flyaway.

To classify each fiber into one of the two categories, we consider
its minimal and maximal distances denoted as dmin and dmax

to the ply center (i.e., Z-axis). Given a fiber with n vertices
(x1, y1, z1), . . . , (xn, yn, zn), we have

dmin := min
1≤i≤n

‖(xi, yi)‖2, dmax := max
1≤i≤n

‖(xi, yi)‖2.

CT measurements of real yarns usually contain alien components
(e.g., dust) that do not belong to the yarn. They can be distinguished
by large dmin values since alien materials tend to stay far from the

1In practice, we take around 1000 cross-sectional planes for each yarn,
similar to the resolution of micro CT measurements.

−0.10 −0.05 0.00 0.05 0.10−0.08

−0.04

0.00

0.04

0.08

eX
eY

Low
density

High
density

Figure 7: Fitting ply cross-sections (cont’d). A density visual-
ization of transformed fiber centers (Figure 6) from a sequence of
cross-sectional planes. We use this density information to determine
the shape of ply cross-sections.

ply center. In practice, we consider all fibers with dmin beyond
some threshold as alien and simply ignore them. We then categorize
the remaining fibers into regular and flyaway based on their dmax

values. Intuitively, fibers with small dmax values stay close to the
ply center and are likely to be regular. On the other hand, those with
large dmax values are at some point far from the center. Thus, they
are considered flyaway.

To robustly obtain the thresholds for respectively identifying alien
and flyaway fibers, we consider the means (denoted as µmin, µmax)
and standard deviations (denoted as σmin, σmax) of all dmin and
dmax values respectively. Precisely, we treat all fibers satisfying
dmin > µmin + cminσmin as alien, and the remaining ones with

dmax > µmax + cmaxσmax (6)

as flyaway (where cmin and cmax are user-specified constants). In
practice, we use cmin = cmax = 2 and perform fiber classifica-
tion separately for each (untied) ply. Figure 8 shows an example
classification.

4.4 Fitting Fiber Distribution and Migration

Given the set of regular fibers obtained in §4.3, we now present the
last step of our pipeline which fits the fiber distribution Eq. (1) and
migration Eq. (3) parameters. Recall that all these fibers belong to
untied plies, meaning that they are all centered around the Z-axis.

In theory, fiber migration parameters Rmin, Rmax, and s, can be re-
covered from a single regular fiber. However, due to irregularities in
real data, using only one fiber generally yields highly unreliable re-
sults. Furthermore, many fibers in the input geometry are short due
to limitations of the CT imaging processing step [Khungurn et al.
2015], making migration parameter estimation even more challeng-
ing.

We tackle this problem by minimizing a reconstruction error defined
as:

Emig(Rmin, Rmax, s)

:=
∑
i

min
Ri, θ

(0)
i

Ei
(
Ri, θ

(0)
i

∣∣ Rmin, Rmax, s
)
, (7)

where the summation is over all regular fibers, and Ei indicates
the squared L2 difference between fiber i (represented as a polyline)
and the helix generated withRi, θ

(0)
i ,Rmin,Rmax, and s via Eq. (1)

and Eq. (3). Namely,

Ei
(
Ri, θ

(0)
i

∣∣ Rmin, Rmax, s
)
:=

∫
z

‖Fi(z)−F̃i(z)‖22 dz, (8)

where Fi and F̃i respectively denote the input and generated fibers,
both of which are parameterized by z. The limits of this 1D integral

5

Appears in the SIGGRAPH 2016 Proceedings.

0.00 0.05 0.10
dmin

0.00
0.05
0.10
0.15
0.20

d m
ax

alien
(ignored)

regular

flyaway
(a) Fiber classification

−0.4 −0.2 0.0 0.2 0.4
zi

0.00

0.08

0.16

√
x2 i

+y
2 i

(b) All fibers

−0.4 −0.2 0.0 0.2 0.4
zi

0.00

0.08

0.16

√
x2 i

+y
2 i

(c) Regular fibers

−0.4 −0.2 0.0 0.2 0.4
zi

0.00

0.08

0.16

√
x2 i

+y
2 i

(d) Flyaway fibers

Figure 8: Fiber classification: we classify all input fibers into
two categories: regular and flyaway (with alien ones removed). (a)
Scatter plot of (dmin, dmax) for each fiber. (b, c, d) 2D fiber vi-
sualizations where the horizontal and vertical axes show zi and
‖(xi, yi)‖2 for each fiber vertex, respectively. The dashed line indi-
cates the threshold beyond which a fiber is considered flyaway.

are given by the Z-coordinates of Fi’s two endpoints. Then, we set
(R∗

min, R
∗
max, s

∗) = argminEmig(Rmin, Rmax, s).

Minimizing this reconstruction error Eq. (7), however, is non-trivial
since the error metric itself includes minimization over Ri and θ(0)i .
Thus, we enumerate a densely sampled set of Rmin, Rmax, and
s values. For each combination, we solve the inner optimization
problem (i.e., RHS of Eq. (7)). Similar to minimizing Eq. (5), we
found it easy to find optimizers for this inner problem and used the
same implementation.

After determining the fiber migration parameters, only the cross-
sectional fiber distribution remains unknown. Let R∗

i and θ(0)∗i be

the minimizers of Ei
(
Ri, θ

(0)
i

∣∣ R∗
min, R

∗
max, s

∗
)

for each fiber
i. We then apply Maximum-Likelihood Estimation (MLE) over all
R∗
i values to obtain the fiber distribution parameters ε and β. Notice

that the density function Eq. (1) is essentially conditional since it is
used within a rejection sampling framework (Algorithm 2) where R
is not uniformly distributed. The unconditional density for the MLE
should be:

pMLE(R) = 2R p(R) = 2R

[
(1− 2ε)

(
e− eR

e− 1

)β
+ ε

]
. (9)

Let q(ε, β) be the normalization term for Eq. (9)

q(ε, β) :=

∫ 1

0

pMLE(R) dR, (10)

we have the normalized density function pMLE
norm(R | ε, β) :=

pMLE(R)/q(ε, β), which can be used in MLE. In practice, we use
Matlab’s mle() function with q evaluated numerically which can
sometimes be prone to (numerically similar) local optima. However,
this has caused no visual difference in our experiments.

At this point, we have obtained a set of ply-based and fiber-based
parameters which can be used to procedurally generate regular fiber
curves. With only regular fibers, however, yarns look unrealistic
because they lack irregularities. In the next section, we present our
improved flyaway fiber model in §5.1, and in §5.2, we describe how
to fit the model parameters given real flyaway fibers obtained in
§4.3.

5 Our Flyaway Fiber Model

Natural cloth yarns normally contain flyaway fibers which devi-
ate from most other fibers, causing great irregularity in a yarn’s

Ply

(b) hair-type

Ply

(a) loop-type

Figure 9: The two types of flyaway fibers in our model.

micro-geometry. Although there are much fewer flyaways fibers
comparing to regular ones, they contribute significantly to a fabric’s
fuzziness. Thus, to accurately reproduce the appearance and struc-
ture of real-world fabrics, these fibers need to be properly modeled.

5.1 Model Description

Flyaway fibers have been studied by textile researchers. In particu-
lar, Voborova et al. [2004] categorize flyaway fibers into five types.
Inspired by their work, we introduce an improved flyaway fiber
model over the one developed by Schröder et al. [2015] based on
Perlin noise.

Our model classifies flyaway fibers into two categories: loop and
hair (Figure 9). Our hair-type fibers correspond to the first two
flyaway classes in [Voborova et al. 2004], while our loop-type to
their third class.

Loop-type. Loop-type flyaway fibers have both endpoints inside
the main ply body. Each of these fibers was originally regular but
part of it has been accidentally pulled out during the manufacturing
process (Figure 9-a). The density of these fibers and the distance
each loop deviates from the ply center provide an important visual
cue on how tight the fibers are twisted.

Schröder et al. [2015] do not explicitly model these type of fibers.
Instead, they use very strong fiber migrations to achieve similar
effects. Unfortunately, this approach cannot easily capture occasion-
ally occurring loop-type fibers, which are the common case in reality.
The resulting geometry normally contains regularly appearing loops
(Figure 10-a).

We generate loop-type flyaway fibers by modifying the regular ones
built previously (Line 2 of Algorithm 1). When turning a regular
fiber into a loop-type flyaway, we randomly pick one of its vertices
with Eq. (3) maximized and raise its radius to Rloop

max (by scaling its
X- and Y- coordinates). We also scale up the radii of neighboring
vertices belonging to the same migration period (i.e., one period
of Ri(θ) in Eq. (3), see Figure 11). To create a set of loop-type
flyaway fibers (based on existing regular ones), we drawRloop

max from
a normal distribution for each of them.

For each ply, we use ρloop to capture the density of loop-type fibers.
Given an untied ply centered around Z0Z1 with Z0 = (0, 0, z0)
and Z1 = (0, 0, z1), we repeat the aforementioned process to gen-
erate bρloop(z1 − z0)c loop-type flyaway fibers.

Hair-type. As shown in Figure 9-b, each hair-type flyaway fiber
has one endpoint outside the body of its hosting ply. This type of
fiber contributes most significantly to a yarn’s hairy appearance. We
create a hair-type fiber (for Line 3 of Algorithm 1) by adding its

(a) Migration-based (b) Ours

Figure 10: Comparison of loop-type flyaway fiber models:
(a) the migration-based approach [Schröder et al. 2015] lacks the
generality to represent occasionally occurring loops; (b) our model
has sufficient representative power to capture such fiber geometry.

6

Appears in the SIGGRAPH 2016 Proceedings.

Rmax

Rmin
z

||(x,y)||2

Rmax

Rmin
z

||(x,y)||2

(a) Regular fiber (b) Created loop-type flyaway

Rmax
loop

Selected vertex

Selected vertex
(scaled)

Figure 11: Generation of loop-type flyaway fibers. (a) We ran-
domly pick a vertex maximizing the distance to the ply center (indi-
cated with an orange circle). (b) We then select all vertices belong-
ing to the same migration cycle (shown in green) and scale their
radii so that the selected vertex has radius Rloop

max afterwards.

visible (flyaway) part explicitly. That is, we generate an ‘arc’ de-
termined by its starting and ending radii Rhair

min, R
hair
max (i.e., distance

to the ply center), azimuthal angles θhair
min, θ

hair
max, as well as locations

zhair
min, z

hair
max. Let Rhair

span := Rhair
max−Rhair

min, θhair
span := θhair

max− θhair
min, and

zhair
span := zhair

max − zhair
min, a hair-type flyaway fiber parameterized by

t ∈ [0, 1] can be represented as

xhair(t) = Rhair(t) cos
[
θhair(t)

]
,

yhair(t) = Rhair(t) sin
[
θhair(t)

]
,

zhair(t) = zhair
min + zhair

span t,

(11)

with Rhair(t) = Rhair
min +Rhair

span t and θhair(t) = θhair
min + θhair

span t.

To generate a set of hair-type fibers around a common center with
endpoints z0 and z1, we draw zhair

min from U [z0, z1] and θhair
min from

U [0, 2π) for each of them. The other parameters Rhair
min, Rhair

span, θhair
span,

and zhair
span are sampled from separate normal distributions. Similar to

loop-type, we use ρhair to describe the density of hair-type fibers.

In [Schröder et al. 2015], hair-type fibers are generated by randomly
adding short curves with tangent directions disturbed by 3D Perlin
noise (Figure 12-c). Although able to generate hair-like fibers, the
oversimplified nature of this approach makes it tricky to match re-
ality and, more importantly, difficult to fit to given measured yarn
geometries. Our model, on the other hand, carries clear statistical
meaning and is easy to fit to (see §5.2).

Fiber perturbations. Until this point, all regular and flyaway
fibers were perfectly smooth curves. This level of smoothness rarely
exists in reality: real fibers generally contain many small but irreg-
ular turns. To mimic this effect, we add small perturbations to all
fibers by randomly scaling the radius (i.e., X- and Y-coordinates) of
each vertex.

Discussion. Our flyaway fiber models make two notable simpli-
fications. In particular, our loop-type flyaway fibers always “span”

(a) Reference (b) No flyaway

(c) Perlin noise-based (d) Ours

Figure 12: Comparison of flyaway fiber models (hair-type): (a)
measured yarn geometry (ground truth); (b) procedural yarn with
no flyaway fibers; (c) procedural yarn with Perlin noise-based fly-
aways [Schröder et al. 2015]; (d) procedural with flyaways gener-
ated with our model. Fiber migration is increased in (c) for simulat-
ing loop-type effects.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
zi

0.00

0.08

0.16

√
x2 i

+y
2 i

Ours: side

−0.16 0.00 0.16
xi

−0.16

0.00

0.16

y i

Ours: top

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
zi

0.00

0.08

0.16

√
x2 i

+y
2 i

Real: side

−0.16 0.00 0.16
xi

−0.16

0.00

0.16

y i

Real: top

Figure 13: Simplifications made by our hair-type flyaway fiber
model: (top) our hair-type flyaways all have arc shapes; (bottom)
real hair-type fibers have more complex trajectories.

exactly one migration cycle (as demonstrated in Figure 11), which
is generally not the case in reality. Moreover, our hair-type fly-
aways all have “arc” shapes due to Eq. (11), while real hair-type
fibers normally have more complex trajectories (Figure 13). De-
spite these simplifications we match overall yarn appearance well
(see Figure 15). They are introduced to ensure that our model can
be reliably fitted from measurements containing limited number of
flyaway fibers (e.g., Figure 5-b). In the future, with greater amount
of measurements, flyaway fiber models based on more complex sta-
tistical distributions could be designed.

5.2 Model Fitting

Recall that in §4.3, fibers from untied plies are classified as regular
and flyaway. Given our flyaway fiber model (§5.1), we now describe
how to fit model parameters, i.e., ρhair, Rhair

min, Rhair
span, zhair

span, and θhair
span

for hair-type ones, as well as ρloop andRloop
max for loop-type ones. No-

tice that zhair
min and θhair

min are not fitted as we sampled them uniformly
in the generation process.

After obtaining flyaway fibers for each untied ply, we start the fitting
process by identifying the loop and hair components of each fiber.
As illustrated in Figure 14-a, one flyaway fiber can contain both
components. Thus, for each of them, we start by checking if any
of its endpoints has a radius (i.e., ‖(x, y)‖2) above the flyaway
threshold Eq. (6). If so, we cut off the corresponding end of the fiber
at vertices where the radius is both at a local minimum and below
the threshold and add it to the collection of hair-type flyaway fibers.
The remaining part (if any) is then added to the set of loop-type
fibers. This fiber-splitting operation is illustrated in Figure 14-b.

After all fibers have been processed, we obtain the flyaway densities
ρloop and ρhair using the number of corresponding fibers divided by
the length of the untied ply (i.e., z1− z0). Then, for every loop-type
fiber, we compute the radii of all its vertices and set Rloop

max as the
maximum. Similarly, Rhair

min, Rhair
span, θhair

span, zhair
span can be evaluated for

Ply

(a) (b)

LoopHair Hair LoopHair Hair

Break Break

Figure 14: Processing Flyaway Fiber. (a) One fiber can contain
both hair and loop components. (b) We split each flyaway fiber into
multiple hair and loop segments.

7

Appears in the SIGGRAPH 2016 Proceedings.

each hair-type fiber by examining its vertices. We then compute
the sample mean and standard deviation for each of these quantities,
which can be used to generate hair-type fibers via Eq. (11).

With flyaway fiber parameters fitted, we finally have recovered the
values of all parameters in Table 1. Using Algorithm 1, realistic yarn
geometries can now be generated without the need for cumbersome
CT measurement.

6 Results

We measured the micro-geometries of nine real-world yarns through
three micro CT scans. These yarns are made from cotton, rayon,
silk, and polyester, a good sampling of commonly used yarn ma-
terials. Our acquisition setup is shown in Figure 5-a. All yarns
were scanned in an XRadia MicroXCT scanner under a resolution
of 2.5 µm, and each scan took approximately three hours. All ren-
dered images are created using a modified version of the Mitsuba
physically based renderer [Jakob 2013].

Performance. Our fitting algorithm is fast: given the processed
CT data (Figure 5-cd), it takes fewer than ten CPU core minutes
to fit each yarn. Compared to the CT data processing step (§4.1)
which normally takes several core hours, our fitting cost is negligi-
ble. Our method is generally well-behaved: despite the presence of
non-convex optimization (e.g., §4.4), we did not observe any visual
difference caused by local minima.

Validation. Figure 15 shows all our measured yarn geometries
(a) and our fitting results (b). Procedural yarns generated with our
method closely capture the statistics of the measured geometries,
conveying a convincing impression of the corresponding yarn types.
To validate this, we compare full renderings of our models (d) with
photographs of those yarns (c). To describe the optical properties of
our procedurally generated yarns, we use the fiber scattering model
introduced in [Khungurn et al. 2015]. See Table 3 for corresponding
parameter values. Notice that our models can sometimes appear
slightly less hairy since our measured geometries (a), which come
from small (around 0.5 cm in length) yarn segments, might not
capture all irregularities the photos have. This is not a limitation
of our approach though, since one can scan multiple copies of the
same type of yarn for variety and feed all the information to our
parameter fitting algorithm.

Non-repetitive yarns. Figure 16 shows long yarns generated
with our approach. Compared to many existing micro-appearance
models [Zhao et al. 2011; Khungurn et al. 2015], our approach does
not rely on replicating (i.e., tiling) small pieces of fabrics. Thus, we
produce realistic, non-repetitive details.

Full textiles. To describe full textiles, existing micro-appearance
models usually take tens of megabytes (fiber-based) or several gi-
gabytes (volumetric) of data. Our procedural model representation,
on the other hand, is extremely compact: before instantiating fibers
using Algorithm 1, only 22 numbers (see Table 2) need to be stored
for each type of yarn. By combining these distributional parame-
ters with a sparse set of yarn center curves, highly detailed textile
models can be generated. This is demonstrated in Figure 17 where
column (a) shows yarn curves that we use to populate fiber-level
structures.2 Without these small-scale details, the renderings offer
limited quality. With added micro-geometry, on the other hand, the
textiles appear much more realistic (b). The model constructed by
our approach is fully procedural, offering easy editability. This is

2We generated the yarn curves by uniformly sampling in the UV space
of a given base mesh, and shifting the vertices along local normal directions
following the weave pattern. In the future, one can leverage yarn-based
simulation methods [Kaldor et al. 2008; Cirio et al. 2014] to obtain more
physically accurate curves.

demonstrated in column (c) of Figure 17. For the silk scene, in
particular, we adjusted fiber twisting so that the fibers are better
aligned. Such a fiber-level modification not only results in signifi-
cantly stronger anisotropic highlights, but also causes the fabric to
become less transparent (which one can tell from the darker shadow
on the ground). This is because when the fibers are better aligned,
they tend to block light more effectively by having fewer ‘gaps’. The
second example in Figure 17 shows how changing the flyaway distri-
bution affects overall appearance of a fabric globally. By increasing
the density of flyaway fibers, the entire cloth becomes significantly
fuzzier, resulting in less structured highlights but more small random
ones or ‘glints’. The last result in Figure 17 is a homogeneous bas-
ket weave. We use the procedural geometry of “Polyester 1” with
altered optical parameters. When making the shape of ply cross-
sections more elliptical (c), the underlying fiber structure changes
dramatically, which leads to reduced overall glossiness. This further
demonstrates the versatility of our approach and the significance of
precise fitting of model parameters.

Limitations and future work. Our fitting pipeline requires solv-
ing several non-convex optimization problems (§4.4). In the future,
advanced solution techniques could be explored for better numer-
ical accuracy and performance. Currently, rendering textiles with
yarns represented by our model requires realizing all fibers (using
Algorithm 1). We intend to develop efficient rendering algorithms
that directly work on our procedural geometry. In addition, our yarn
model makes some simplifying assumptions:

• Ply cross-sections are assumed to be elliptical and spatially in-
variant, causing small geometric mismatches for Rayon 3, Silk 1,
and Silk 2 in Figure 15-ab;

• Flyaway fibers have relatively simplified shapes (discussed in
§5.1).

Thus, further generalizations of the yarn model and developing cor-
responding fitting techniques will be valuable. Finally, the level of
geometric variance our method can capture is limited by the maxi-
mal sample size a micro CT scanner can take. Thus, large yarn-level
variations that are difficult to measure are missing from our model.

7 Conclusion

Accurately modeling the appearance of fabrics is important for many
design, prototyping, and entertainment applications. To accurately
match reality, prior micro-appearance models either rely on data-
intensive data sets or require tricky, manual parameter tweaking.
We introduce a technique which bridges this gap, and thus enjoys
advantages of both worlds while avoiding their weaknesses. Our
method automatically fits procedural yarn models to accurate phys-
ical measurements obtained using volume imaging. The resulting
models, which involve only 22 floating numbers for each yarn type,
can be used to synthesize large textiles with high visual quality and
without repetitive patterns. The statistical meaningfulness of these
models also allow intuitive editing.

Acknowledgments

We are grateful to Pramook Khungurn for sharing his fiber extrac-
tion tool (§4.1). We thank Kai Schröder for helpful discussions and
for sharing his implementation of procedural yarn generation (Al-
gorithm 1). Funding for this work was provided by the National
Science Foundation (IIS 1513967).

References

CIRIO, G., LOPEZ-MORENO, J., MIRAUT, D., AND OTADUY,
M. A. 2014. Yarn-level simulation of woven cloth. ACM Trans.
Graph. 33, 6, 207:1–207:11.

8

Appears in the SIGGRAPH 2016 Proceedings.

(a) Measured geometry (b) Fitted procedural (c) Photograph (d) Renderinggeometry

Cotton 1
(3-ply)

Cotton 2
(3-ply)

Rayon 1
(2-ply)

Rayon 2
(2-ply)

Rayon 3
(2-ply)

Rayon 4
(2-ply)

Silk 1
(3-ply)

Silk 2
(3-ply)

Polyester 1
(2-ply)

Figure 15: Parameter fitting results. (a) CT-measured yarn geometries. (b) Procedural yarn geometries fitted using our approach.
(c) Photographs of real-world yarns. (d) Full renderings of our procedural yarns under similar lighting/viewing conditions. Our fitted
parameter values are shown in Table 2.

Figure 16: Long fabric yarns generated procedurally with our fitted parameters. From top to bottom are “Cotton 2” (original parameters),
“Rayon 1” (original parameters), and “Rayon 4” (increased hairiness). Unlike many prior micro-appearance modeling techniques, our model
does not rely on tiling and thus can offer high-quality, non-repetitive yarn geometries.

DEROUET-JOURDAN, A., BERTAILS-DESCOUBES, F., AND
THOLLOT, J. 2013. Floating tangents for approximating spatial
curves with G1 piecewise helices. Computer Aided Geometric
Design 30, 5, 490–520.

HUTT, M., 2011. C++ implementation of the Nelder-Mead simplex
method. http://www.mikehutt.com/neldermead.html.

IRAWAN, P., AND MARSCHNER, S. 2012. Specular reflection from
woven cloth. ACM Trans. Graph. 31, 1, 11:1–11:20.

JAKOB, W., ARBREE, A., MOON, J. T., BALA, K., AND
MARSCHNER, S. 2010. A radiative transfer framework for ren-
dering materials with anisotropic structure. ACM Trans. Graph.
29, 4, 53:1–53:13.

JAKOB, W., 2013. Mitsuba renderer. http://www.mitsuba-
renderer.org.

KALDOR, J. M., JAMES, D. L., AND MARSCHNER, S. 2008.
Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27,
3, 65:1–65:9.

KEEFE, M. 1994. Solid modeling applied to fibrous assemblies.
Part I: Twisted yarns. Journal of the Textile Institute 85, 3, 338–
349.

KHUNGURN, P., SCHROEDER, D., ZHAO, S., BALA, K., AND
MARSCHNER, S. 2015. Matching real fabrics with micro-
appearance models. ACM Trans. Graph. 35, 1, 1:1–1:26.

MORRIS, P., MERKIN, J., AND RENNELL, R. 1999. Modelling
of yarn properties from fibre properties. Journal of the Textile
Institute. Part 1, Fibre science and textile technology 90, 3, 322–
335.

NELDER, J. A., AND MEAD, R. 1965. A simplex method for
function minimization. The computer journal 7, 4, 308–313.

9

http://www.mikehutt.com/neldermead.html

Appears in the SIGGRAPH 2016 Proceedings.

Si
lk

︷
︸︸

︷

Modified
twisting

R
ay

on
︷

︸︸
︷

Modified
flyaway distribution

Po
ly

es
te

r
︷

︸︸
︷

Modified ply
cross-section

(a) Yarn curves only (b) Original parameters (c) Edited parameters

Figure 17: Full textiles with fiber-level geometries added procedurally using our method. The original parameters used in the three rows are:
“Silk 1” + “Silk 2” (first), “Rayon 3” + “Rayon 4” (second) and “Polyester 1” (third). The edited silk example is obtained by multiplying ply
and fiber twisting (i.e., αply and α) by 10×. The modified rayon model results from tripling flyaway densities ρloop and ρhair as well as doubling
Rloop

max and Rhair
span. The altered polyester example is created by halving eY (the short axis of the ellipse) while doubling eX (the long axis).

10

Appears in the SIGGRAPH 2016 Proceedings.

Yarn ID
Fiber-level parameters Ply-level parameters

Flyaway fiber distribution
Distrb & twisting Mig. Cross sec. Twisting Fiber #
β ε α Rmin s eX eY Rply αply m ρloop ρhair Rloop

max Rhair
min Rhair

span zhair
span θhair

span

Cotton 1 0.148 0.000 -0.369 0.80 1.1 0.026 0.020 0.038 0.453 75 22.17 33.77 (0.024, 0.005) (0.020, 0.006) (0.016, 0.009) (-0.003, 0.057) (0.377, 0.326)
Cotton 2 0.430 0.033 -0.436 0.95 1.9 0.025 0.018 0.033 0.336 37 13.34 19.50 (0.026, 0.007) (0.021, 0.005) (0.014, 0.006) (0.019, 0.048) (0.480, 0.404)
Rayon 1 0.682 0.139 0.710 0.85 1.9 0.053 0.036 0.051 -0.639 150 62.40 52.52 (0.050, 0.009) (0.041, 0.007) (0.020, 0.018) (0.016, 0.059) (0.403, 0.437)
Rayon 2 0.293 0.052 -0.381 0.85 1.6 0.028 0.021 0.029 0.372 80 39.08 50.39 (0.026, 0.006) (0.018, 0.005) (0.012, 0.007) (0.001, 0.025) (0.439, 0.498)
Rayon 3 0.640 0.000 0.609 0.95 1.9 0.044 0.034 0.042 -0.638 143 44.51 53.72 (0.041, 0.015) (0.030, 0.005) (0.028, 0.017) (-0.014, 0.110) (0.821, 0.707)
Rayon 4 0.671 0.361 0.560 0.70 1.7 0.048 0.034 0.045 -0.498 122 59.40 65.23 (0.043, 0.008) (0.038, 0.007) (0.021, 0.016) (0.009, 0.048) (0.326, 0.287)
Silk 1 0.462 0.000 -0.458 0.95 1.8 0.025 0.022 0.038 0.526 33 20.32 23.82 (0.024, 0.004) (0.021, 0.004) (0.014, 0.011) (0.010, 0.050) (0.407, 0.390)
Silk 2 0.554 0.405 -0.556 0.70 1.2 0.031 0.025 0.045 0.702 47 18.89 23.09 (0.029, 0.004) (0.024, 0.005) (0.010, 0.008) (0.008, 0.038) (0.417, 0.446)

Polyester 1 0.258 0.202 -0.379 0.75 1.5 0.029 0.021 0.029 0.370 60 35.69 30.44 (0.027, 0.004) (0.021, 0.005) (0.011, 0.009) (-0.003, 0.036) (0.356, 0.400)

Table 2: Our fitted parameter values for all results shown in Figure 15. Positive and negative α values indicate counter-clockwise and
clockwise (ply/fiber) twisting, respectively. We assume, without loss of generality, that Rmax = 1. For flyaway distribution parameters, paired
numbers in parentheses indicate the mean and standard deviation of the corresponding normal distributions. When generating yarns using
Algorithm 1, all parameters not mentioned here (e.g., Ri, θi, θ

(0)
i) are drawn uniformly from their domains.

Yarn ID Colors Long. & azi. widths
CR CTT βR βTT γTT

Cotton 1 (0.90, 0.90, 0.93) (0.90, 0.90, 0.93) 1.0 27.0 38.0
Cotton 2 (0.10, 0.10, 0.05) (0.93, 0.53, 0.01) 1.0 27.0 38.0
Rayon 1 (0.15, 0.25, 0.25) (0.45, 0.82, 0.95) 1.2 10.0 26.0
Rayon 2 (0.25, 0.25, 0.30) (0.45, 0.86, 0.95) 1.2 10.0 26.0
Rayon 3 (0.20, 0.20, 0.20) (0.05, 0.05, 0.05) 1.0 10.0 26.0
Rayon 4 (0.05, 0.05, 0.10) (0.95, 0.91, 0.60) 1.5 10.0 26.0
Silk 1 (0.10, 0.10, 0.10) (0.73, 0.50, 0.67) 1.0 10.0 20.0
Silk 2 (0.10, 0.10, 0.10) (0.05, 0.55, 0.70) 1.0 10.0 20.0

Polyester 1 (0.10, 0.10, 0.05) (0.88, 0.83, 0.01) 4.0 10.0 20.0

Table 3: Fiber scattering parameters using the model introduced by Khungurn et al. [2015] for generating all renderings in Figure 15. We
manually adjusted the parameter values since finding optimal ones automatically is orthogonal to our current work. For better appearance
matching, we recommended using advanced inverse rendering techniques such as [Khungurn et al. 2015].

POINTCARRÉ, 2016. Pointcarré textile software. http://www.
pointcarre.com.

SADEGHI, I., BISKER, O., DE DEKEN, J., AND JENSEN, H. W.
2013. A practical microcylinder appearance model for cloth ren-
dering. ACM Trans. Graph. 32, 2, 14:1–14:12.

SCHRÖDER, K., ZINKE, A., AND KLEIN, R. 2015. Image-based
reverse engineering and visual prototyping of woven cloth. Visu-
alization and Computer Graphics, IEEE Transactions on 21, 2,
188–200.

SHINOHARA, T., TAKAYAMA, J.-Y., OHYAMA, S., AND
KOBAYASHI, A. 2010. Extraction of yarn positional informa-
tion from a three-dimensional CT Image of textile fabric using
yarn tracing with a filament model for structure analysis. Textile
Research Journal 80, 7, 623–630.

TAO, X. 1996. Mechanical properties of a migrating fiber. Textile
research journal 66, 12, 754–762.

VOBOROVA, J., GARG, A., NECKAR, B., AND IBRAHIM, S. 2004.
Yarn properties measurement: an optical approach. In 2nd Inter-
national textile, clothing and design conference, 1–6.

XU, Y.-Q., CHEN, Y., LIN, S., ZHONG, H., WU, E., GUO, B.,
AND SHUM, H.-Y. 2001. Photorealistic rendering of knitwear
using the lumislice. In Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ACM,
391–398.

YUKSEL, C., KALDOR, J. M., JAMES, D. L., AND MARSCHNER,
S. 2012. Stitch meshes for modeling knitted clothing with yarn-
level detail. ACM Trans. Graph. 31, 3, 37:1–37:12.

ZHAO, S., JAKOB, W., MARSCHNER, S., AND BALA, K. 2011.
Building volumetric appearance models of fabric using micro CT
imaging. ACM Trans. Graph. 30, 4, 44:1–44:10.

ZHAO, S., JAKOB, W., MARSCHNER, S., AND BALA, K. 2012.
Structure-aware synthesis for predictive woven fabric appearance.
ACM Trans. Graph. 31, 4, 75:1–75:10.

ZHAO, S., HAŠAN, M., RAMAMOORTHI, R., AND BALA, K. 2013.
Modular flux transfer: Efficient rendering of high-resolution vol-
umes with repeated structures. ACM Trans. Graph. 32, 4, 131:1–
131:12.

11

http://www.pointcarre.com
http://www.pointcarre.com

