
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Integrating Vision Language Navigation with Autonomous Driving in Unmapped, Dynamic, 
Off-Road Environments

Permalink
https://escholarship.org/uc/item/2fs9w3mq

Author
Stefani, Eliana

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2fs9w3mq
https://escholarship.org
http://www.cdlib.org/


 

   

 

UNIVERSITY OF CALIFORNIA 
SANTA CRUZ 

 
INTEGRATING VISION LANGUAGE NAVIGATION WITH 
AUTONOMOUS DRIVING IN UNMAPPED, DYNAMIC,  

OFF-ROAD ENVIRONMENTS 
 

A dissertation submitted in partial satisfaction  
of the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
in  
 

COMPUTER SCIENCE AND ENGINEERING 
 

by 
 

Eliana Stefani 
 

December 2024 
 
 
 
 
 

This Dissertation of Eliana Stefani is approved: 
 
 
______________________________ 
Professor Gabriel Elkaim, PhD; chair 
 
 
______________________________ 
Professor Leilani Gilpin, PhD 
 
 
______________________________ 
Andrew Coats, PhD 

 
______________________________ 
Peter Biehl 
Vice Provost and Dean of Graduate Studies    



 

   

 

 
 
 
 
 
 
 

Copyright © by 
 

Eliana Stefani 
 

2024 
 
 
 



 

   

 

iii 

Table of Contents 

Table of Contents ................................................................................ iii 

List of Figures ..................................................................................... vii 

List of Tables ........................................................................................ x 

Abstract .............................................................................................. xi 

Dedication ........................................................................................ xiii 

1 Introduction ............................................................................... 1 

1.1 Overview .......................................................................................... 1 

1.2 Understanding the Challenge ............................................................ 3 

1.3 Building Blocks ................................................................................. 4 

1.4 Motivation ........................................................................................ 6 

1.4.1 Applications ............................................................................................. 7 

2 Background Literature ................................................................ 9 

2.1 What is VLN: Vision Language Navigation? ......................................... 9 

2.1.1 An Introduction to VLN .............................................................................. 9 

2.1.2 VLN Focus Area ...................................................................................... 11 

2.2 Previous Works in VLN ..................................................................... 12 

2.2.1 Navigations Graphs ................................................................................. 12 

2.2.2 Sim-to-Real Transfer ............................................................................... 14 



 

   

 

iv 

2.2.3 Dense Spatiotemporal Grounding ............................................................ 16 

2.2.4 Beyond the Navigation Graph .................................................................. 17 

2.2.5 Data Augmentations ............................................................................... 18 

2.3 What is Autonomous Driving? .......................................................... 20 

2.4 Past Works in Autonomous Driving .................................................. 20 

2.4.1 Mars Rovers ............................................................................................ 20 

2.4.2 DARPA Challenges .................................................................................. 21 

2.4.3 Differences in On-Road vs Off-Road Autonomy ........................................ 24 

3 Contributions ............................................................................ 26 

3.1 Deployed VLN: Overcoming Unrealistic Assumptions ....................... 26 

3.2 Decoupled Obstacle Avoidance ....................................................... 27 

3.3 Path Planning Without An A Priori Map ............................................. 29 

3.4 Initial Work in Off-Road Autonomy ................................................... 30 

4 Research: The VLN Agent ........................................................... 32 

4.1 VLN Problem Statement .................................................................. 32 

4.2 Reinforcement Learning .................................................................. 33 

4.2.1 Reinforcement Learning Fundamentals ................................................... 33 

4.2.2 Evaluation Criteria .................................................................................. 37 

4.3 Simulation Setup ............................................................................ 39 

4.4 VLN Agent Model & Training ............................................................. 39 

4.5 Porting to Real Sensors ................................................................... 41 



 

   

 

v 

4.6 VLN Results .................................................................................... 43 

4.6.1 VLN Example Run in Simulation ............................................................... 43 

4.6.2 VLN Results in Real-World Environments ................................................. 46 

4.7 VLN Conclusions & Commentary ..................................................... 48 

4.7.1 Improvements ........................................................................................ 48 

4.7.2 VLN Lessons Learned .............................................................................. 50 

4.7.3 VLN Future Work ..................................................................................... 51 

5 Research: Autonomous Driving .................................................. 55 

5.1 Autonomous Driving System Architecture ........................................ 55 

5.2 Autonomous Driving Sub-Modules ................................................... 58 

5.2.1 Simulation .............................................................................................. 58 

5.2.2 Robot Model ........................................................................................... 59 

5.2.3 Drive Control & Odometry Feedback ........................................................ 63 

5.2.4 Perception .............................................................................................. 66 

5.2.5 Mapping ................................................................................................. 68 

5.2.6 Localization ............................................................................................ 70 

5.2.7 SLAM ...................................................................................................... 75 

5.2.8 Traversability .......................................................................................... 78 

5.2.9 Mapping & Search Combinations ............................................................. 83 

5.2.10 Global Planning ...................................................................................... 86 

5.2.11 Local Planning ........................................................................................ 88 

5.3 Prior Architectures: Incremental Improvements ............................... 92 

5.3.1 Introduction of a Local Planner ................................................................ 92 

5.3.2 Complementary Assumptions for Exploration in Unmapped Environments 93 



 

   

 

vi 

5.3.3 Dynamic Global Costmap ....................................................................... 94 

5.3.4 Ray Tracing for Obstacle Removal in Dynamic Environments .................... 95 

5.3.5 Conditional Obstacle Removal ................................................................ 96 

5.3.6 Relaxed Path Adherence and Expanded Detour Area ................................ 97 

5.3.7 Relaxed Global Localization Tolerance ..................................................... 98 

5.4 Initial Development and Testing ....................................................... 99 

5.4.1 SLAM in Simulation ................................................................................. 99 

5.4.2 SLAM with Hardware in the Loop ............................................................ 100 

5.4.3 Iterative Waypoint Navigation in Unmapped Environments ..................... 101 

5.5 Results ......................................................................................... 102 

5.5.1 3D SLAM: Implementation & Results ...................................................... 102 

5.5.2 Iterative Waypoint Navigation in Unmapped Environments ..................... 106 

5.6 Conclusions in Autonomous Driving .............................................. 111 

5.6.1 Improvements & Contributions Recap ................................................... 111 

5.6.2 Lessons Learned ................................................................................... 112 

5.6.3 Future Work .......................................................................................... 113 

6 Appendix A: Transition to Industry ............................................ 116 

6.1 Fully Deployed Rover Mapping Environment ................................... 116 

6.2 Real-World Testing Path Planning & Dynamic Obstacle Avoidance .. 120 

6.3 Crawling Out of a Ditch with 3D SLAM in a Real Environment ........... 125 

7 Bibliography ............................................................................ 127 

 



 

   

 

vii 

List of Figures  

Figure 1.1 Building blocks of a VLN enabled autonomous driving robot .......................... 5 

Figure 1.2 Robot performing pick and place .................................................................. 8 

Figure 1.3 Concept design of NASA’s Lunar Terrain Vehicle [6] ....................................... 8 

Figure 2.1 Navigation Graph in blue; panoramic images at vertices; agent traverses 

edges ....................................................................................................... 12 

Figure 2.2 A scene in the R2R dataset; blue circles represent adjacent nodes .............. 13 

Figure 2.3 Sequence-2-Sequence LSTM ...................................................................... 13 

Figure 2.4 Results of Sequence-2-Sequence VLN agent on Navigation Graph ................ 14 

Figure 2.5 Software diagram showing the new “subgoal module” that gives the VLN 

agent candidate nodes .............................................................................. 15 

Figure 2.6 Instructions time-aligned to virtual poses ................................................... 16 

Figure 2.7 Scenes where agent chooses from Left/Right/Forward/Stop actions ............ 17 

Figure 2.8 Example of DAgger (Dataset Aggregation) where new trajectory data is 

aggregated into the dataset which is then trained on .................................. 19 

Figure 2.9 Stanley: Stanford’s race car and winner of DARPA Grand Challenge ............. 21 

Figure 2.10 System architecture of Carnegie Mellon’s Tartan Racing vehicle “Boss” 

[21] ........................................................................................................... 22 

Figure 2.11 Winning robot CERBERUS for DARPA Subterranean Challenge [27] .............. 23 

Figure 2.12 Example sensor configuration of on-road autonomous vehicles [29] ............ 25 

Figure 3.1 Deterministic planners and low-compute controllers aid obstacle 

avoidance [30] .......................................................................................... 27 

Figure 4.1 Reinforcement Learning can be represented with the above loop, showing 

the interaction between the agent and the environment [33] ....................... 34 



 

   

 

viii 

Figure 4.2 Example of an MDP with states (green circles), actions (orange circles), 

rewards (orange arrows), and transition probabilities (numbers listed) ....... 36 

Figure 4.3 Comparison of two paths related by Euclidean distance (left) and via 

Dynamic Time Warping (right) .................................................................... 38 

Figure 4.4 Simulation environment rendering a reconstructed building, with data 

streams showing RGB and depth images .................................................... 39 

Figure 4.5  “Waypoint Models” [2] VLN Architecture .................................................... 40 

Figure 4.6 System diagram of driving architecture with VLN agent ................................ 41 

Figure 4.7 Hardware components of VLN agent ........................................................... 42 

Figure 4.8 Resulting ground track of VLN example run ................................................. 45 

Figure 4.9 Multi camera panoramic array on Waymo self-driving car [54] ..................... 52 

Figure 4.10 Outdoor scene graph generation [55] .......................................................... 54 

Figure 5.1 System diagram of autonomous driving software architecture ..................... 55 

Figure 5.2 Gazebo Sim rendering gray robot chassis, and red cylinder representing 

depth range and horizontal FOV of RealSense D455 .................................... 61 

Figure 5.3 SLAM Processing Flow [75] ......................................................................... 75 

Figure 5.4 GraphSLAM illustration [79] showing four poses and two features. Solid 

edges link consecutive poses, and dashed edges link each pose to 

feature(s) observed from that pose. ........................................................... 77 

Figure 5.5 Graph showing lethal cost scaling to low cost as represented in inflation 

layers on a costmap [81] ........................................................................... 81 

Figure 5.6 This costmap shows lethal obstacles (red) with inflation layers around 

them (cyan and blue). Black and blue cells are traversable, grey cells are 

unknown. The yellow local planner tracks the green global path while 

deflecting around the obstacles. ............................................................... 83 

Figure 5.7 Potential fields and gradient descent [82] ................................................... 84 



 

   

 

ix 

Figure 5.8 Dynamic Programming for path through static flow field [83] ....................... 84 

Figure 5.9 RRT for a 3-DOF car; obstacles (black); chosen path and vehicle pose 

(yellow); possible paths (red/blue) [84] ...................................................... 85 

Figure 5.10 Voronoi diagram (green), obstacles (red), and sample path (blue) [85] .......... 85 

Figure 5.11 Sampled trajectories used by Dynamic Window Approach and Trajectory 

Rollout ..................................................................................................... 89 

Figure 5.12 a) snippet of global path; b) contraction and repulsion forces applied; c) 

and d): forces applied in presence of another obstacle [86] ........................ 90 

Figure 5.13 Illustration of obstacles deforming Elastic Band local path (red) as it 

follows global path (blue)  [87] [88] ............................................................ 91 

Figure 5.14 2D SLAM in simulation ................................................................................ 99 

Figure 5.15 Hardware in the loop test of SLAM. Left: SLAM map; Top right: depth; 

Bottom Right: RGB .................................................................................. 100 

Figure 5.16 Iterative waypoint navigation in simulation. Left: sensory data, in situ 

map, and planned paths; Right: simulation (blue: sensor FOV and range) .. 101 

Figure 5.17 Robot mapping bridge. Left: simulation; Right: in situ SLAM map ................ 102 

Figure 5.18 Robot mapping a subterranean cave environment ..................................... 106 

Figure 5.19 Robot performing SLAM and iterative waypoint navigation, enabling it to 

explore unmapped frontiers .................................................................... 110 

Figure 6.1 Rover performing 2D SLAM fused with wheel odometry in real, outdoor 

environment (PIRA # SSS2024091300) ...................................................... 119 

Figure 6.2 Rover performing path planning and dynamic obstacle avoidance in a real 

environment, as person jumps in front of the rover and blocks path (PIRA 

# SSS2024091300) ................................................................................... 124 

Figure 6.3 Rover performing 3D SLAM while pitching and rolling as it crawls out of a 

ditch (PIRA # SSS2024091300) .................................................................. 126 



 

   

 

x 

List of Tables  

Table 2.1 Improvements using different Data Augmentations in the new model .......... 19 

Table 4.1  Breakdown of hardware costs .................................................................... 49 

Table 5.1 Nodes in an autonomous driving software stack. ......................................... 58 

Table 5.2 Robot model’s subscriptions (from simulation and hardware) ..................... 60 

Table 5.3 Robot model’s publications (to simulation and hardware) ........................... 60 

Table 5.4 Different ways nodes use map data ............................................................ 68 

Table 5.5 Comparison of Local Localization versus Global Localization ...................... 71 

Table 5.6 Different costs in different areas of map ..................................................... 79 

Table 5.7 Table comparing search algorithms ............................................................ 87 

Table 5.8 Comparison of DWA to TR ........................................................................... 89 

 

  



 

   

 

xi 

Abstract 

Integrating Vision Language Navigation with Autonomous Driving 

 in Unmapped, Dynamic, Off-Road Environments 

Eliana Stefani 

Autonomous robots capable of navigating complex, unstructured environments 

based on natural language commands represent a significant advancement in 

useability and capability, yet this functionality is currently underdeveloped in the AI 

and Robotics world. Traditional autonomous robots are typically limited to navigating 

pre-mapped areas with relatively simple environmental topologies (eg: vehicle 

roadways). This dissertation addresses the challenge of integrating Vision Language 

Navigation (VLN) with autonomous driving technologies, enhancing robots’ ability 

to comprehend and execute natural language instructions in diverse, unstructured 

environments, while simultaneously performing mapping, navigation, and obstacle 

avoidance. 

While traditional autonomous vehicles excel at on-road waypoint navigation in 

structured environments, they struggle to interpret and act on natural language 

commands. Additionally, research on autonomous driving in unmapped, dynamic 

environments remains limited, creating a gap in the utility of autonomous systems for 

tasks requiring complex, multi-step instructions or navigation in novel settings.  

This research proposes a novel software stack that integrates VLN with 

autonomous driving technologies, including: SLAM (Simultaneous Localization and 
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Mapping) for mapping and localization; dynamic obstacle detection and avoidance; 

and path planning and execution. The VLN agent interprets natural language 

commands and generates waypoints for the autonomous driving system, which then 

performs real-time navigation, mapping, and obstacle avoidance. The approach is 

validated in 2D and 3D environments, using simulated and real-world scenarios. 

The proposed system demonstrates successful navigation and task execution 

across multiple settings. In both real and simulated settings, the autonomous driving 

system reached its goals in 100% of test cases despite dynamic obstacles. In uneven 

terrain, the agent effectively mapped and navigated through complex, obstacle-ridden 

environments, accurately tracking 6-DOF location and orientation. The integration of 

the VLN agent with the autonomous driving stack enabled real-time navigation and 

task completion based on natural language instructions.    
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1 Introduction 

1.1 Overview 

Recent advances in autonomous robotics have led to significant progress, with 

autonomous vehicles, for example, nearing the point where they can transport 

passengers to a set destination with little to no human oversight. Meanwhile, natural 

language processing (NLP) has advanced considerably, enabling systems to interpret 

increasingly complex language and allowing embodied agents to follow instructions. 

However, while autonomous systems such as self-driving cars excel in structured 

environments with predefined maps, the ability to interpret natural language 

commands for navigation in dynamic and unstructured environments remains a major 

challenge, particularly in unmapped and dynamic settings. 

This dissertation bridges this gap by developing a software stack that combines 

autonomous driving capabilities: Simultaneous Localization and Mapping (SLAM), 

path planning, and dynamic obstacle avoidance; with a VLN (Vision Language 

Navigation) agent that converts natural language commands into actionable 

waypoints. This integration allows the robot to autonomously navigate dynamic and 

unstructured environments while following natural language instructions. 

The key contributions of this research include: (1) The deployment of a real-world 

VLN agent capable of processing natural language commands and navigating 

dynamic environments. (2) The decoupling of waypoint prediction from obstacle 
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avoidance, thereby improving navigation efficacy. (3) The development of a path-

planning system that operates without pre-existing maps, enabling navigation in 

unknown terrain. (4) Advancements in off-road autonomous driving, including the 

integration of real-time 6-DOF localization and mapping in complex 3D 

environments. 

This novel approach decouples high-level waypoint prediction from real-time 

obstacle avoidance, enabling more efficient navigation by relying on dedicated 

autonomous driving sub-modules for obstacle handling. Additionally, it supports 

map-less navigation, enabling the robot to navigate and execute tasks in unmapped 

and dynamically changing environments. 

Validated in both simulated and real-world tests, the system demonstrated 

successful waypoint navigation based on natural language commands, thereby 

bridging the gap between autonomous driving and natural language processing.  

This research paves the way for future robots, with applications in disaster 

response, indoor tasking, and extraterrestrial exploration. Additionally, the findings 

contribute to the broader field of Human-Machine Teaming, facilitating more 

intuitive communication and more effective collaboration between humans and 

robots.  
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1.2 Understanding the Challenge 

Imagine giving directions: “Drive past the two hills, then head west to where the 

forest meets the lake and drop off the bag at the medical tent.” An average driver or 

even a teenager navigating an ATV could likely execute that command with ease. But 

could an SAE Level 5 autonomous vehicle interpret and carry out such a natural 

language instruction? Not quite. 

Now consider a different scenario in a burning building: “Drive down the 

hallway, take the second corridor on the right, and rescue any survivors.” While 

straightforward for a firefighter in a controlled environment, this task remains beyond 

the reach of current indoor robots, especially in complex or emergency conditions. 

Why is this so challenging? Why is it that, for a human, simple instructions like 

“get the TV remote from the couch in the living room” are trivial, yet no autonomous 

vehicle or robot can perform even this simple task reliably? 

The answer lies in the gap between autonomous vehicles’ ability to follow pre-

defined waypoints and their inability to interpret and act upon natural language 

commands in dynamic, unstructured, unmapped environments. This dissertation 

addresses this gap by developing a novel system that integrates Vision Language 

Navigation (VLN) with autonomous driving technologies. By enabling robots to 

interpret natural language and navigate using autonomous driving capabilities, this 

research pushes the boundaries of autonomous systems – transforming how they can 

interact with and respond to complex, real-world tasks.  
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1.3 Building Blocks 

This research develops an autonomous driving software stack that enables robots 

to navigate terrain based on natural language commands. A Vision Language 

Navigation agent interprets the natural language command and issues the next 

incremental waypoint to which the robot autonomously drives to, thus completing the 

inferred task. The autonomous driving agent navigates to the waypoint by performing 

mapping, localization, obstacle detection, path planning, and path execution. 

The integration of VLN and autonomous driving combines the ability to navigate 

complex environments based on natural language instructions with the technological 

and safety advancements inherent in autonomous driving technology. 

Advances in conversational NLP, which enhance intent comprehension, are 

paralleled by improvements in computer vision’s ability to interpret images. The 

intersection of these two fields gives rise to Vision Language Navigation [1]: a type 

of cross-modal reinforcement learning (RL). 

An overview of Autonomous Driving and Vision Language Navigation is 

provided in Figure 1.1. Here the VLN agent [2] is given an instruction in natural 

language: “Walk to the right around the fireplace, through the doorway, and turn 

right. Wait in the hallway by the pocket door.” The agent observes its environment 

using RGB-D camera (Red, Green, Blue, and Depth channels), map, and pose 

(location and heading), and determines the next intermediate step for a collision-free 

route to the goal. 
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Figure 1.1 Building blocks of a VLN enabled autonomous driving robot 

As explored in this research, the VLN agent need not explicitly determine a 

collision-free path; it can utilize dedicated subsystems for hazard detection and local 

planning. For instance, in scenarios where the agent has a clear line of sight to its 

target beyond an obstacle, it would be more efficient for proven autonomous driving 

technologies to handle path planning, rather than dedicating additional training 

resources for the VLN agent to learn and execute obstacle avoidance in addition to its 

instruction-following capabilities. 

Autonomous vehicles perform the following to navigate through their 

environment (detailed in Section 5.2: Autonomous Driving Sub-Modules). 
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• SLAM: builds a representation of the environment while tracking position and 

orientation  

• Hazard Detection & Traversability: determines viable driving areas  

• Path Planning & Execution: plans a viable path through the environment, and 

executes said path while avoiding moving objects 

While self-driving vehicles are progressing towards SAE Level 5 autonomy, the 

integration of these two well-established research domains remains underexplored in 

deployed AI; this research aims to addresses that gap. 

 

1.4 Motivation 

Deployed in the real world, these autonomously driving VLN agents can assist 

people, businesses, governments, and emergency response, addressing aspects of 

modern technological and societal needs. 

Advancing the field of Human-Machine-Teaming, VLN allows a more seamless 

interaction between humans and robots by allowing users to communicate more 

intuitively in natural language. An autonomous agent operating in lockstep with a 

VLN agent can more efficiently navigate complex real-world environments (eg: 

disaster response, unmapped terrain, large-scale indoor environments). Autonomously 

driving VLN agents can provide disabled or limited-mobility individuals 

opportunities to operate independently, thereby allowing them to navigate public 

spaces independently, and live without an at-home assistant. 
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1.4.1 Applications  

As at-home assistants, autonomously driving VLN agents can help fetch 

medicine, food, or a fallen TV remote control: tasks that require both eyesight, 

autonomous navigation, and the ability to interpret natural language commands. 

Several companies are developing robots in this area; some that focus on just the 

robot manipulation, others that focus on the NLP (Natural Language Processing) side 

of embodied agents, some that perform both. Amazon’s Astro [3] can monitor the 

house (navigating to specific rooms to check on ingredients in the pantry or reporting 

a fire alarm); checking in on elderly relatives, and integrating with Amazon Alexa, 

but is limited to indoor environments and cannot operate independently from other 

equipment in new environments. Honda’s ASIMO [4] robot was developed to move 

in spaces shared with humans, perform tasks using its hands, and interact with people 

by understanding natural spoken language. Boston Dynamic’s Atlas [5], a humanoid 

robot, fluidly runs and jumps through complex environments, can manipulate objects 

with its hands, perceives the world in real-time, and understands its own dynamics to 

predict its motion over time.  

In outdoor environments, construction sites, and assembly lines, these embodied 

VLN agents and autonomous driving robots can perform tasks that are too dangerous 

for people to perform. These autonomous agents could also deliver aid to impacted 

regions, provide emergency response, or perform Search & Rescue more rapidly than 

a human-only crew could perform. 
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Figure 1.2 Robot performing pick and place 

This work also has applications that are “out of this world” – extraterrestrial 

exploration depends on autonomous driving in “off-road” terrain. This autonomy is 

critical to allow humans to explore unknown landscapes without the typical 

constraints of needing a driver onboard, or a continuous data link (as would be 

required for remote piloting). 

 

Figure 1.3 Concept design of NASA’s Lunar Terrain Vehicle [6]    
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2 Background Literature 

2.1 What is VLN: Vision Language Navigation? 

2.1.1 An Introduction to VLN 

Vision Language Navigation (VLN) is the task of navigating an embodied agent 

to carry out natural language instructions in real life 3D environments. It is the 

intersection of computer vision, Natural Language Processing (NLP, though 

sometimes known as NLU: Natural Language Understanding), and robotics. The goal 

of VLN is to enable autonomous robots (real and simulated) to navigate and interact 

with complex environments based on natural language instructions, and its perception 

of the environment.  

There are several key components of Vision Language Navigation:  

Natural Language Processing: VLN systems interpret natural language 

instructions from human users. These instructions can range from simple commands 

(“Go straight and turn left at the door”) to more complex spatial descriptions (“walk 

past the red chair and go up the stairs to the second floor”). 

Computer Vision: Visual perception is crucial for VLN systems to understand 

and navigate through their environments effectively and efficiently. This may involve 

object detection (a classification problem), semantic segmentation (labelling every 
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pixel of an image with a category or label), depth estimation, and scene 

understanding. 

Spatial Reasoning: VLN embodied agents must reason about spatial 

relationships within a given environment. This includes understanding distances, 

orientations, landmarks, and the layout of the environment based on visual and 

language cues. 

Path Planning and Navigation: Once the natural language instructions and 

visual inputs are processed, the VLN agent will plan a path and navigate through the 

environment while avoiding obstacles and adhering to the commanded mission. 

Given the complexity of this cross-modal task, VLN faces several key challenges: 

Ambiguity and uncertainty: Natural language instructions can be ambiguous 

and context-dependent, requiring robust interpretation mechanisms. 

Cross-modal vision-language reasoning: integrating visual perception with 

natural language understanding is non-trivial, as it involves performing inference on 

different modalities of data. 

Generalization: VLN systems need to generalize across different environments 

and user instructions that may vary in complexity, detail, and users. 

Real-time performance: For robotic applications, VLN agents must operate in 

real-time, which requires effective and efficient decision-making and navigation, 

under computational constraints. 
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Non-sequential instructions: VLN agents may have to understand and execute 

instructions that are not presented in chronological order 

2.1.2 VLN Focus Area 

This research focuses on the type of VLN agent that that receives a command in 

the form of 1-2 sentences (natural language text) which are instructions on how to 

proceed through an environment to get to a goal. Upon receiving the instruction, the 

agent continually observes its environment. The following sensors and data 

representations may be used:  

• panoramic RGB-D  (360° Red, Green, Blue, and Depth imagery) 

• Map   (occupancy grid) 

• Location   (offset with respect to starting location) 

• Orientation  (angle with respect to starting orientation) 

The agent interprets the mission (described in natural language) with context to 

what it sees in its environment to determine the next step to take. The VLN agent 

does this by breaking down the natural language instructions into intermediate 

waypoints that the autonomous robot drives towards.  

Section 4: Research: The VLN Agent describes how the VLN agent is designed as 

an embodied agent that interprets the world around it. Section 5: Research: 

Autonomous Driving describes how the autonomous driving agent is designed to 

execute the commands of the VLN agent by performing mapping in real-time, 

tracking location and heading, and executing waypoint navigation.   
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2.2 Previous Works in VLN 

2.2.1 Navigations Graphs 

Initial work in VLN traversed Navigation Graphs using the Room-to-Room (R2R) 

dataset. [7] This Navigation Graph in Figure 2.1 can be seen below in blue, 

superimposed on a top-down view of a building. 

 

Figure 2.1 Navigation Graph in blue; panoramic images at vertices; agent 
traverses edges 

The Navigation Graph is a graph of RGB-D panoramas at each vertex (node on 

graph), with collision-free edges connecting adjacent vertices. The robot traverses the 

simulated building by travelling along the connected vertices, node-to-node, across 

the Navigation Graph.  
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At a given node, a VLN agent in simulation observes the environment (eg: Figure 

2.2), and determines which adjacent node (denoted in blue circles) to travel to next. 

 

Figure 2.2 A scene in the R2R dataset; blue circles represent adjacent nodes 

The first model architecture trained on this Navigation Graph was a Sequence-2-

Sequence LSTM model (a Long Short-Term Memory recurrent neural network). [7] 

The first half encodes the natural language instruction into embedded space. The 

second half (decoder) receives the instruction embeddings from the encoder and 

receives sequential camera images of the environment embedded with ResNet-154, 

and infers action output. 

 

Figure 2.3 Sequence-2-Sequence LSTM 
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While this model did not execute anywhere near human performance, it still 

outperformed random actions, as shown in Figure 2.4. There is a loss of performance 

in new environments, which is further illustrated in Section 2.2.2: Sim-to-Real 

Transfer. 

 

Figure 2.4 Results of Sequence-2-Sequence VLN agent on Navigation Graph 

 

2.2.2 Sim-to-Real Transfer 

The authors of the initial VLN paper [7] then tried deploying their agent on a real 

robot. [8] (Note that up to this point, all other VLN research had been strictly in 

simulation.) They reused the same Sequence-2-Sequence VLN agent trained in 

simulation over discrete action spaces, where it needs to be given “oracle knowledge” 

(knowledge assumed to be available, and exact) on pose (location and orientation). 
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Figure 2.5 Software diagram showing the new “subgoal module” that gives the 
VLN agent candidate nodes 

To give the VLN agent the same “choice of candidate nodes,” a new subgoal 

module is trained to look at the RGB-D data and predict candidate nodes to select 

from. From here the agent turns to the goal and drives forward the specified distance. 

The above technique resulted in a 22% success rate with no prior map collected, 

and a 47% success rate when the occupancy map and Navigation Graph were 

collected in advance. This research demonstrates that knowing the occupancy map in 

advance is helpful. 

Section 5.5.2: Iterative Waypoint Navigation shows that the autonomous driving 

agent can create the map (and occupancy map) in real-time: a feature that is required 

for autonomous navigation, and is shown to help the VLN agent find better candidate 

nodes. 
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2.2.3 Dense Spatiotemporal Grounding 

The researchers at Google Brain introduced a new RxR dataset with an associated 

model and results, which leverages Dense Spatiotemporal Grounding [9], where 

“each word in an instruction is time-aligned to the virtual poses of instruction creators 

and validators.” 

 

Figure 2.6 Instructions time-aligned to virtual poses 

In the image above, we see the color-coded instructions matching with the 

different colored viewpoints in the pose trace (path of poses the agent took at each 

timestep). This alignment between pose and instruction fragment gives intuition to: 

• How to relate words in the sentence to objects in the scene 

• Gives continuous feedback to an agent as to how well it is following the 

target path 

• Helps track path completion  
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2.2.4 Beyond the Navigation Graph  

In the paper [10], the agent was forced to use only 90° FOV (Field of View) 

cameras, and had to decide on low-level actions {Left, Right, Forward, Stop}. To 

illustrate how much more complex this lower-level action space is, in one example it 

took 32 lower-level actions to complete a path that in the Nav Graph only took 3 hops 

(traveled along 3 edges). This is more complex because ill-picked lower-level actions 

may cause the agent to run into an obstacle or dead-end. Additionally, lower-level 

actions are less amenable to agents that tend to go straight, since if given a correct 

initial heading, agents have an advantage on the Navigation Graph, whereas an actual 

straight path in a continuous environment may result in a collision. 

 

Figure 2.7 Scenes where agent chooses from Left/Right/Forward/Stop actions 
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2.2.5 Data Augmentations 

Rather than just training on the correct paths, Data Augmentations [10] better 

utilize the limited data given. To improve the agent’s training, three data 

augmentations were examined: 

• “Aug.”: (Synthetic Data Augmentation) 

• “Dagger”: (Dataset Aggregation) 

• “PM”: (Progress Monitor) 

Synthetic Data Augmentation (Aug.) generates “new” labeled training data by 

learning the inverse-speaker model: it learns to describe its own trajectories, thus 

creating more instruction + trajectory pairs. During inference the agent can compare 

the verbalization of a potential path to the commanded instruction, allowing it to re-

rank possible trajectories. Furthermore, synthetic training data can be generated by 

having the agent drive arbitrary paths and describe said paths, creating more 

instruction-path pairs. This is important because there is a very limited amount of 

labeled data to train from.  

Dataset Aggregation (DAgger) [11] trains on both the expert trajectories and its 

own trajectories.   This allows it to add to the dataset its own deviations from the goal 

path, and thus learning what not to do as it learns from its own mistakes. It does this 

by training on the aggregated set of trajectories from all iterations 1 → 𝑛 . Thus, the 

resulting policy after iteration 𝑛 is optimized over all past experiences. 
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Figure 2.8 Example of DAgger (Dataset Aggregation) where new trajectory data 
is aggregated into the dataset which is then trained on 

A Progress Monitor (PM) is a model that learns percent-completion of a 

trajectory, by receiving oracle distance information at every timestep. This helps the 

robot know when to terminate its path rather than overshooting its goal. 

Table 2.1 Improvements using different Data Augmentations in the new model 

 

In the unseen validation data, the use of the new model alone improves Success 

weighted by Path Length (SPL) by 22%. With the data augmentations, the new model 

improves SPL by 36%, a significant improvement over previous works.  
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2.3 What is Autonomous Driving? 

An autonomous vehicle operates independent of human intervention by sensing 

and navigating its environment through a sophisticated integration of perception, path 

planning, and control systems. It utilizes an array of sensors, which may include lidar, 

radar, and cameras, to gather comprehensive data about its surroundings, such as road 

conditions, obstacles, and other vehicles. This sensory data is then processed to 

construct an accurate and detailed representation of the environment. [12] Once the 

vehicle’s environment and its own position are understood, an onboard planning 

system devises a trajectory for the vehicle to reach its destination. Subsequently, the 

control system performs low-level actions to execute the planned trajectory. 

2.4 Past Works in Autonomous Driving 

There are a variety of autonomous vehicles, both terrestrial and extraterrestrial; 

both on-road and off-road. This work focuses predominantly on off-road rovers for 

terrestrial and extraterrestrial environments and building interiors. 

2.4.1 Mars Rovers 

The Mars rovers Spirit and Opportunity (operating 2003 – 2018) only had local 

obstacle avoidance with stereo vision cameras, but no global mapping, global path 

planning, or global localization. The rovers had to stop every 0.5 meters to process 

imagery of the environment to determine the next move. [13] [14] 
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The Perseverance Mars rover (beginning operation 2021) had faster cameras, and 

a computer dedicated to image processing, enabling it to perform navigation tasks 

while in motion. [15] [16] 

2.4.2 DARPA Challenges 

The DARPA Grand Challenge [17] was a race through the Mojave Desert from 

2004-2005. Stanford's race vehicle “Stanley” pioneered Reinforcement Learning and 

won the Grand Challenge. It received a pre-defined course where it would stay on dirt 

roads, and not have to perform global localization or planning since it just moved 

forward on dirt roads (road finding). Stanley utilized lasers for terrain mapping and 

labelling, while using computer vision (color cameras) for terrain analysis. Stanley 

implemented obstacle detection; recorded 2D maps showing drivable, occupied, or 

unknown terrain; and used the same 2D map for its navigation engine [18]. The work 

shown in Section 5: Research: Autonomous Driving similarly creates a 2D costmap 

with three possibilities cell types (traversable, lethal, or unknown), which is ingested 

by the path planner. This concept is used for both global and local planners. 

 
Figure 2.9 Stanley: Stanford’s race car and winner of DARPA Grand Challenge  
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The DARPA Urban Challenge [19] featured a city-based alternative in the year 2007. 

While Stanford competed again with Junior [20], Carnegie Mellon’s “Boss” won first 

place. As shown in Figure 2.10, the system architecture of Boss consists of five broad 

areas: Missions Planning, Motion Planning, Behavior Generation, Perception and 

World Modeling, and Mechatronics. [21] 

In Section 5.1: Autonomous Driving System Architecture, a similar system 

architecture is implemented with slightly different responsibilities to overcome the 

lack of a priori maps: Global Planning, Local (Motion) Planning, SLAM, and 

hardware interface (sensors and motor controllers).  

 

Figure 2.10 System architecture of Carnegie Mellon’s Tartan Racing vehicle 
“Boss” [21] 
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The DARPA Subterranean Challenge [22] [23] hosted multiple underground 

navigation competitions in unstructured environments between the years 2017-2024. 

The winner [24] of this challenge was Cerberus [25], a team of 4-legged dog robots 

and aerial robots, shown in Figure 2.11. The robot performed SLAM, object 

detection, path planning, and multi-agent reasoning autonomy. It implemented a stop 

and go behavior as it was path planning, looking at patches of surface norm and 

height difference to determine traversability. [26] 

 

Figure 2.11 Winning robot CERBERUS for DARPA Subterranean Challenge [27] 
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2.4.3 Differences in On-Road vs Off-Road Autonomy 

There are several on-road commercial autonomous vehicles, eg: Waymo, and 

several others that are seen out driving the streets of Silicon Valley. Even Jeep is now 

developing off-road autonomy [28]. While significant progress has been made for on-

road autonomy, there are significant aspects that differentiate it from off-road driving, 

offering both additional challenges and conveniences. 

On-road vehicles need to understand other aspects of its environment, eg: traffic 

signals, right of way, lane change and signaling, attention to pedestrians and cyclists, 

and “aggressions understanding.”  

Though here are several places where on-road autonomy enjoys convenience not 

found in most off-road applications, such as: 

• Assuming surface is flat and drivable 

• Speed limit defines upper limit of allowable speed  

• Area is pre-mapped 

• Area has GNSS (eg: GPS, differential GPS), and magnetometer 

• Area has lane-lines to help localize 

• Onboard processing power unconstrained by SWaP (Size, Weight, and 

Power) 
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Figure 2.12 Example sensor configuration of on-road autonomous vehicles [29] 
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3 Contributions 

3.1 Deployed VLN: Overcoming Unrealistic 

Assumptions 

To facilitate the shift from simulated VLN tasks to practical real-world 

applications, a VLN agent and autonomous rover system was deployed on real 

hardware, operating on a real-time embedded platform. The VLN-enabled 

autonomous robot was constructed utilizing foundational elements from both 

autonomous driving and VLN embodied agents, as illustrated Figure 1.1. 

First, (as discussed in Section 4:Research: The VLN Agent) a VLN agent was 

trained to interpret natural language commands, perceive the environment, and 

generate waypoints that progressively align with the provided natural language 

commands. To facilitate the transition from a simulated to a real-world environment, 

the VLN agent avoids reliance on unrealistic, simulation-specific assumptions 

prevalent in literature such as: a pre-defined obstacle-free navigation graph with a 

known topology, oracle navigation (“teleporting” node-to-node along each edge in 

one time-step), perfect localization (ground truth provided by simulation), or using a 

panoramic RGB-D sensor [10]. 

Subsequently, (as discussed in Section 5: Research: Autonomous Driving) an 

autonomous driving software stack was developed to support the VLN agent by 
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driving to the commanded waypoints. The autonomous driving stack generates an in 

situ map and continually tracks its position, overcoming the reliance of “known 

topology” – knowing the topology in advance, and “perfect localization” – receiving 

perfect location information during an episode. Furthermore, the autonomous driving 

stack also performs path planning, execution, and obstacle avoidance, providing the 

agent a way to navigate through a real environment without collision into other 

obstacles.  

 

3.2 Decoupled Obstacle Avoidance 

Decoupling waypoint prediction from obstacle avoidance enables a VLN agent to 

concentrate solely on high level waypoint estimation. 

 

Figure 3.1 Deterministic planners and low-compute controllers aid obstacle 
avoidance [30] 
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In existing research, VLN agents are tasked with simultaneously planning for 

proximate waypoints and avoiding obstacles. This dual responsibility complicates the 

training process since the VLN agent must learn to navigate at a granular level, 

generating a path through immediate waypoints while ensuring collision-free travel. 

This approach requires an understanding of both autonomous driving, and cross-

modal reasoning between natural language instructions and sensor images. 

In contrast, allowing the VLN agent to focus on higher-level waypoint selection is 

akin to being dictated directions in a parking lot where one is told to walk through the 

parking lot to the front door of a building. In this analogy, the detailed navigation 

through intermediate obstacles, such as cars and trees, is managed independently by 

the individual, with the preference being for the directions to address the broader 

waypoint goal.  

To implement this, waypoint prediction is decoupled from obstacle avoidance by 

employing deterministic, low-computation planners and controllers that operate in 

real-time without the need for extensive training. Specifically, the A* algorithm is 

implemented for the global path planner as outlined in Section 5.2.10: Global 

Planning. An Elastic Band planner is used for the motion/local planner outlined in 

Section 5.2.11: Local Planning. For the velocity controller, a straightforward PID 

(Proportional-Integral-Derivative) controller is implemented, as outlined in Section 

5.2.3: Drive Control & Odometry Feedback.  
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3.3 Path Planning Without An A Priori Map 

The autonomous driving stack is extended to navigate to waypoints in novel 

environments without a pre-existing map. Rather than localizing relative to an a priori 

map, the agent employes SLAM to both track its location and construct a map relative 

to its initial reference frame or any predetermined coordinate system. This approach 

allows waypoints to be issued in either a relative or global coordinate system, even if 

the map is incomplete or has not yet been created for that specific waypoint, thereby 

enabling path planning into previously unmapped areas. This capability is showcased 

in Section 5.5.1: 3D SLAM: Implementation & Results, and Section 5.5.2: Iterative 

Waypoint Navigation in Unmapped Environments.  

To do this, the planners make opposite and complementary assumptions: the 

global planner is optimistic in assuming an unmapped area is traversable, whereas the 

local planner is cautious and assumes an unmapped area is not traversable.  

The global planner operates under the assumption that unmapped areas are 

traversable and free of obstacles. This optimistic approach enables the planner to 

navigate towards waypoints even in regions where the map is incomplete. As the 

vehicle progresses, SLAM incrementally fills in the map. If the global planner were 

to assume unknown areas were hazardous, it would never venture into unmapped 

regions altogether, limiting exploration. 

Conversely, the local planner adopts a cautious stance, assuming that unmapped 

areas are potentially hazardous and not traversable due to the risk of encountering 
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obstacles, either confirmed or undetermined. The local planner’s cautious strategy 

(assuming unmapped areas are hazardous) requires real-time confirmation of 

traversability within its sensor field of view. As it follows the global path, the local 

planner ensures that no hazards are present and that the ground plane is present before 

proceeding. 

This real-time validation aligns with the human intuition of an explorer who, 

while moving towards an out-of-sight destination, verifies the safety of each step 

along the way.  

 

3.4 Initial Work in Off-Road Autonomy 

This section outlines progress made in advancing off-road autonomous driving 

technologies for mapping and navigating complex, unstructured 3D terrains. This 

work encompasses several key areas: 

Firstly, real-time 3D 6-DOF SLAM (Simultaneous Localization and Mapping) 

system is integrated with navigation capabilities, enabling the autonomous vehicle to 

continuously map and localize itself within dynamic environments. The SLAM is 

considered “3D” since it maps in a 3-dimensional point cloud of its environment, and 

is considered “6-DOF” because tracks pose within six degrees of freedom: three 

spatial dimensions (X,Y,Z, or Latitude, Longitude, Altitude), and three orientation 

dimensions (roll, pitch yaw, though this is represented using a unit quaternion). This 
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is demonstrated in Section 5.5.1.1: 3D Mapping and 6-DOF Localization in Cave 

Environment.  

Additionally, groundwork for future work is explored by initiating research into 

6-DOF localization in GPS-denied environments. This effort aims to develop 

techniques for precisely estimating position and orientation in a global reference 

frame, which is crucial for effective navigation through challenging terrains. This is 

discussed in Section 5.2.6.1: Methods for Global Localization in GPS denied 

environments. 

These advancements represent a significant improvement over previous 

methodologies: unlike earlier approaches, the system operates continuously in real-

time, eliminating time consuming stop-and-go behavior. It is developed in a physics-

based simulation, accounting for vehicle rollover, traction, and inertia, which 

enhances both realism in simulation, and reliability when transferring to a real 

environment. It uses realistic sensors models that factor in sensor noise and field of 

view constraints, offering a more accurate representation of environmental 

conditions, and easing the transition to real-world deployment and testing. Notably, it 

functions effectively in new, unmapped environments without relying on pre-existing 

maps, and operates in GPS-denied settings, overcoming limitations of past 

approaches that depend on a priori map information. Potential applications of this 

system include search and rescue operations in disaster areas, subterranean 

environments, or extraterrestrial exploration.    
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4 Research: The VLN Agent 

This chapter discusses the development and deployment of the VLN agent. The 

agent was initially trained using RL in a simulated environment with simulated sensor 

streams. The agent then transitioned to utilizing real hardware sensors and an 

Autonomous Driving stack for real-time path execution, location and orientation 

estimation, and map creation. The Autonomous Driving stack is later detailed in 

Section 5: Research: Autonomous Driving. The transition validates the agent’s 

capability, and highlights the challenges of real-world navigation, including issues of 

sensor alignment, localization accuracy, and environmental variability. 

The subsequent sections will detail the architecture of the VLN agent, the 

methodologies employed in its training, and the integration of its components within 

the autonomous driving framework. The successes and limitations encountered during 

deployment provide insights into the ongoing development of embodied, autonomous 

VLN agents that bridge the gap between simulation and real-world applications. 

 

4.1 VLN Problem Statement  

In a VLN task, the agent follows natural language instructions 𝑋 = {𝑥!, 𝑥", … , 𝑥#} 

to follow a trajectory through its environment, stopping at a target location. A total of 

length 𝑙 word tokens 𝑥$ make up each instruction. Initial simulated environments 

were represented by undirected graphs consisting of panoramic RGB-D images at the 
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nodes 𝑣 ∈ 𝕍, and edges (𝑣, 𝑢) ∈ 	𝔼 that the agent travels along in one timestep. [31] 

In this work however, the agent is relieved of the navigation graph and moves in a 

continuous environment. Actions are low level velocity commands, movement is not 

deterministic, and location estimation is approximate but not perfect. The agent’s 

state at time 𝑡 is 𝑠% = (𝑣% , 𝑃% , 𝑀%) where 𝑣% is the current state’s view, 𝑃% is the current 

pose (location and heading), and 𝑀% is the map. Given the instructions 𝑋, the agent 

determines a waypoint 𝑊 = (𝑑, 𝜃) defined by relative polar coordinates: 𝑑 is the 

distance from the rover, 𝜃 is the change in heading from current position. As it 

traverses the environment, the agent produces a sequence of state-action pairs 

⟨(𝑠!, 𝑎!), (𝑠", 𝑎"), … , (𝑠&, 𝑎&)⟩, where the final action is a stop command implying 

that the agent has reached its goal. 

 

4.2 Reinforcement Learning 

4.2.1 Reinforcement Learning Fundamentals 

Reinforcement Learning (RL) is a type of machine learning where the agent 

learns to make decisions by interacting with an environment to maximize the 

cumulative reward. [32] This learning framework is characterized by several critical 

components which play a role in shaping the agent’s behavior in the learning process. 

These components include: 
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• Environment: Where the agent operates 

• State:  Where the agent is in within environment 

• Reward:  Feedback from environment  

• Policy:  Maps the agent’s states to actions 

• Value:  Future reward the agent would receive by taking action 

 

Figure 4.1 Reinforcement Learning can be represented with the above loop, 
showing the interaction between the agent and the environment [33] 

The environment in an RL system represents the external system in which the 

agent interacts. The environment can be acted upon by the agent, and may be 

dynamic or static, and stochastic or deterministic. The environment allows the agent 

to interact with it through a series of states and rewards based on the agent’s actions, 

allowing the agent to learn optimal strategies.  

The state represents the current configuration or status of the agent in the 

environment, representing all relevant information necessary to make an informed 

decision, or all information available to a real, deployed instance of the agent. The 

state space is the set of all possible states which can be finite or continuous. When 



 

   

 

35 

programmed, the state is a tuple that represents all the variables to describe the 

environment and agent’s status at a given time.  

The reward function quantifies the benefit or cost associated with the agent’s 

action in a particular state; it is a scalar value that provides feedback to the agent 

about the advantageousness of the action selected for a given state. The reward 

structure guides the agent’s learning thereby influencing the optimization of the 

policy. In RL, the objective is to maximize the cumulative reward over time by 

maximizing the expected return.  

The policy maps states to actions: for a given state, the agent must determine the 

next action. The goal of an agent is to learn the optimal policy to dictate its behavior. 

An agent may learn a policy as a function of a state, or it can have a policy that 

determines an action based on a probability distribution. There are several policy 

optimization techniques, including value-based methods, policy-gradient methods, 

actor-critic, and DD-PPO [34] which is used in this work.  

The value estimates the expected cumulative reward that may be obtained from an 

action taken from a given state. The state value function 𝑉(𝑠) represents the expected 

return starting from state 𝑠 and acting based on its policy. In contrast, the action value 

function 𝑄(𝑠, 𝑎) represents the expected return if we start from a state and take an 

arbitrary action, and then act according to the policy.  
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Illustrated in Figure 4.2, the relationship between the agent and the environment 

can be modeled with a Markov Decision Process (MDP): a mathematical framework 

for modelling decision making, which is a 4-tuple of (𝑆, 𝐴, 𝑃', 𝑅') where: 

• S is a set of states called the state space 

• A is a set of actions called the action space available from state S 

• 𝑃'(𝑠, 𝑠() = Pr(𝑠%)! = 𝑠(	|𝑠% = 𝑠, 𝑎% = 𝑎) is the probability that action 𝑎 

in state 𝑠 at time 𝑡 will lead to state 𝑠( at time 𝑡 + 1 

• 𝑅'(𝑠, 𝑠() is the immediate (or expected) reward received after 

transitioning from state 𝑠 to state 𝑠( after action 𝑎  

 

Figure 4.2 Example of an MDP with states (green circles), actions (orange 
circles), rewards (orange arrows), and transition probabilities (numbers listed) 
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4.2.2 Evaluation Criteria 

There is now a need to evaluate how well the agent performed. Even though the 

objective is challenging: receiving a string of text, and incrementally observing and 

navigating until the goal is reached; the evaluation is relatively easy: how closely did 

the robot follow the instructed path? To properly deliver a reward for the RL agent, 

we look at evaluation criteria, of which there are two broad categories: goal-oriented 

metrics and path-fidelity metrics. VLN agents are not only be evaluated on whether 

they reach their goal, but also how well they follow the instructed path. 

Goal-Oriented metrics mainly consider the agent’s proximity to the goal. 

Examples of this measure include success rate and path length. However, goal-

oriented metrics do not judge how well the described path was followed. Also, there 

is no incremental reward given during an episode, only at the end of each episode, 

making it harder to train. While Success rate weighted by Path Length is a common 

metric for embodied agent evaluation [35], it is a bad measure if the instruction does 

not describe the shortest path to the goal. Examples of goal-oriented metrics include: 

• Path Length: length of agent’s path 

• Goal Progress: measures reduction in remaining distance to goal 

• Navigation Error: distance between agent’s final position and goal 

• Success Rate: frequency agent’s final position is within threshold of goal 

• Oracle Success: measures whether the path is within a threshold from the 

target location. 
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• Success rate weighted by (normalized inverse) Path Length (SPL): scales the 

success rate with respect to the Path Length – Values both shortest path and 

success rate while penalizing circuitous routing.  

• Success weighted by Edit Distance (SED): Compares expert vs agent 

actions/trajectory, balancing SR and PL. 

In contrast, path fidelity metrics evaluate how closely an agent follows a reference 

path. This is important for tasks that require the agent to not only find the goal 

location, but also to follow a specific path. Normalized Dynamic Time Warping 

(nDTW) [36] better evaluates path fidelity; it judges the agent’s ability to follow the 

specified path (which may not be the fastest path) rather than its ability to simply 

arrive at the end goal. NDTW is a “similarity function for time-series” which softly 

penalizes deviations from reference path to calculate match between two paths. 

Normalized Dynamic Time Warping also feeds back incremental rewards during an 

episode which speeds up training. 

 

Figure 4.3 Comparison of two paths related by Euclidean distance (left) and via 
Dynamic Time Warping (right)  
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4.3 Simulation Setup 

The VLN agent trained in Habitat Sim [37] [38]: an environment which simulated 

reconstructed buildings as shown in Figure 4.4. The training data included paths 

through buildings, and ~5 human-annotated descriptions of each path. 

 

Figure 4.4 Simulation environment rendering a reconstructed building, with data 
streams showing RGB and depth images 

When the VLN agent is in the observation step, it perceives a depth image, an 

RGB image, a map, and a heading. During the action step, it follows the policy it has 

learned to determine the next location to travel to (either the next subgoal, or it 

determines the goal has been reached and it stops). 

 

4.4 VLN Agent Model & Training 

The VLN agent is built on the waypoint models paper [2]; whose architecture is 

shown in Figure 4.5. Here, the RGB-D inputs are encoded with pretrained ResNet 

[39] models: the RGB images are encoded with ResNet-18 pretrained on ImageNet 
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[40], and the depth images are encoded with ResNet-50 pretrained on a VLN task: 

PointGoal Navigation [34].  

 

Figure 4.5  “Waypoint Models” [2] VLN Architecture 

The VLN model operating with the autonomous driving stack leveraged the 

pretrained weights of “Waypoint Models” [2] model #2: the waypoint navigation 

model with discrete distance and continuous offset. This model gives the VLN agent 

more flexibility to choose waypoints up to 4 meters away, decreasing the estimated 

execution time, and allowing the autonomous driving agent more opportunities to 

navigate around obstacles, saving the VLN agent from potential collisions which may 

have caused other agents using a similar model to fail. The continuous offset was 

required because in a 90° FOV, no offset would have resulted in only three possible 

rough headings.  

While this model was originally built for a panoramic RGB-D sensor, it was 

adapted to work with a 90° FOV camera, thus only the center frames four frames of 

the 12 total frames contained data, the remainder were zero-padded. The model was 

then fine-tuned using DDPPO (Decentralized Distributed Proximal Policy 

Optimization) [41]. Performance dropped to a 22% success rate, which may be 
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related to the fact that with just a 90°FOV, the agent cannot look directly left or right 

in any given frame. The Gated Recurrent Unit dedicated to tracking visual history 

may partially relieve, but not fully alleviate the agent’s peripheral blindness.  

 

4.5 Porting to Real Sensors 

Outside of simulation, the VLN agent and autonomous driving stack ran on a 

NVIDIA Jetson Xavier NX [42] – an embedded computer. An iRobot Create 2 [43] 

was used for mobility: executing wheel commands and reporting wheel encoder 

values via serial. An Intel RealSense D455 [44] camera streamed both IMU (Inertial 

Measurement Unit) and RGB-D (Red Green Blue Depth) which informed both the 

autonomous driving stack, and fed directly to the VLN agent. While use of a Ricoh 

Theta V [45] was explored, the VLN agent performed better in simulation on 

90°FOV RGB-D data than 360° RGB data that lacked the depth signal.  

 

Figure 4.6 System diagram of driving architecture with VLN agent 
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Figure 4.6 represents how the Autonomous Driving Agent (developed in Section 

5 Research: Autonomous Driving) ingests the waypoint from the VLN agent, and 

how they interact with the hardware. The autonomous driving agent performs 

mapping, localization, hazard detection, path planning, and path execution to make it 

to the waypoint in a collision free manner.  

 

Figure 4.7 Hardware components of VLN agent 

As shown in Figure 4.7, the Jetson connects via USB to the two camera sensors 

(Intel RealSense D455 and Ricoh Theta V [46]), and the robot chassis I/O for wheel 

commands and odometry feedback. The sensors and Jetson are powered by either a 

3S 11.1V or 4S 14.8V LiPo battery. (“LiPo” is a common abbreviation for a Lithium 

Polymer battery. The “3S” and “4S” notation refers to the number of 3.7[V] cells in 

series in the battery.)  



 

   

 

43 

4.6 VLN Results 

The images in Figure 4.8 show the trained VLN agent tested on unseen validation 

data: navigating an environment it has never seen before, following an instruction it 

has never received before. The following results are shown with a series of video 

frames. On the left half of each image is the RGB image and depth image in the 90° x 

90° FOV that the agent observes at each timestep.  

On the right half of each image is a top-down view of the map where: dark gray 

shows traversable area; light gray: area observed within sensor range; blue box: start 

location; red box: goal location described in instruction; blue line: traversed path; 

white arrow: agent’s current location; green boxes: panorama points from the original 

navigation graph. 

4.6.1 VLN Example Run in Simulation 

In this example, shown by the series of images in Figure 4.8, the instruction given 

is: “Exit the bedroom and turn left. Walk straight passing the gray couch and stop 

near the rug.” 
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Figure 4.8 Resulting ground track of VLN example run  
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4.6.2 VLN Results in Real-World Environments 

The performance of the VLN agent in the real-world environment was notably 

lower than in simulation, with a success rate of 22%. Several factors contributed to 

this reduced performance: 

Discrepancy in Sensor Alignment: A disparity in sensor FOV and resolution 

between the depth and color cameras may have led to an imperfect mapping between 

depth pixels and color pixels. This discrepancy may affect the accuracy of the sensor 

data interpretation. 

Field of View Limitations: The RGB-D camera used in the real-world setting had 

a significantly smaller horizontal FOV (approximately 90°) compared to the 

panoramic (360°) FOV utilized in the “Waypoint Models” [2] benchmark. This 

reduction in effective sensor coverage contributed to diminished performance. 

Localization Accuracy: The agent’s location was determined using SLAM, with 

the depth channel of the Intel RealSense D455 camera. Although the location 

estimates generally had an error margin of no more than 5cm, it was still less precise 

than the ground truth values available in simulation. This reduction in localization 

accuracy likely impacted overall performance. 

Non-Deterministic Motion: Unlike the deterministic movement in the simulation, 

the real-world environment introduced inherent variability in motion. The 

autonomous drive agent drove the vehicle to within ±5[cm] and 10° of its target goal. 

Motion was also non-deterministic due to it traveling from hardwood flooring over 
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lips to carpeted flooring in an industrial environment. This contrasts with the 

“teleportation” abilities available in the simulated training environments. 

Real-world obstacles and environmental challenges: the real-world environment 

presented additional challenges not encountered in simulation. For example, there 

was an increase in ground-based obstacles (eg: chairs, desks, boxes, backpacks, 

books), which did not show up as frequently in simulation. In simulation, the floors 

were typically free of objects laying on the ground, and it’s likely that the VLN agent 

“lost focus” on the goal with all the other objects to look at on the ground. In contrast, 

glass walls presented challenges due to their transparency. The depth camera 

struggled to detect glass surfaces and boundaries because the infrared projection 

passed through the glass, rendering the obstacles nearly invisible to the sensor. This 

limitation reduced the VLN agent’s ability to recognize glass walls as “walls.” The 

autonomous drive agent, while not seeing a glass wall as an obstacle from far away, 

would identify it as an obstacle once it was within closer range (less than 1 meter).  

These environmental challenges, both seen and unseen, demonstrate the 

complexity of real-world navigation compared to simulation. Despite this, the 

autonomous system demonstrated its capability to avoid collisions, ensuring safe 

navigation throughout the testing phase. This performance underscores the robustness 

of the autonomous driving stack in mitigating collision risks, even when the VLN 

agent faced performance limitations as deployed to a real environment. 
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4.7 VLN Conclusions & Commentary 

4.7.1 Improvements 

4.7.1.1 Decouples Obstacle Avoidance 

Previous work did not incorporate obstacle avoidance, and the robot relied 

entirely on the VLN agent to predict a clear path. The work outlined in this paper 

maps in real-time, creating a costmap, upon which it performs obstacle avoidance. 

Relieving the VLN agent of obstacle avoidance allows the agent to focus on the 

broader goal rather than the incremental steps to get there. 

4.7.1.2 Drops unrealistic assumptions 

The VLN agent does not rely on unrealistic assumptions like known topology, 

perfect localization, teleportation, and use of impossible sensors. SLAM is used to 

map and localize, iterative waypoint navigation to drive, and sensor models that have 

realistic FOVs and noise models.  

4.7.1.3 Low Cost and Deployed  

This research demonstrates the practical deployment of a VLN agent on a real 

robot platform with onboard computing, achieving a total hardware cost of under 

$900 at the time of purchasing, as outlined in Table 4.1. In contrast, previous studies 

[8] that deployed a VLN agent in real environments relied on high-cost hardware 

solutions exceeding $5000, including expensive laser scanners systems, prefabricated 



 

   

 

49 

robot chassis, and offboard computing. This substantial cost reduction highlights the 

advancements presented in this study. 

Table 4.1  Breakdown of hardware costs 

Hardware used Cost 

Computer:   NVIDIA Jetson Xavier NX $399 

Sensor:  Intel RealSense D455 $256 

Chassis:  iRobot Create 2 $199 

Power supply:  LiPo battery ~$35 

Total $889 

 

This reduction in deployment cost enhances accessibility and promotes wider 

adoption of VLN technology in real-world applications. By utilizing affordable yet 

effective components, this study establishes a viable model for deploying advanced 

VLN agents, paving the way for future advancements in autonomous navigation 

systems. The results highlight the potential for practical integration of VLN agents 

into robotic systems at a fraction of the previous investment. 
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4.7.2 VLN Lessons Learned 

Certain failures of the VLN agent can be attributed to what might be termed as 

“ambiguity related errors,” where the agent failed according to the ground truth data, 

yet these failures were not due to any error on the agent’s part. For instance, the agent 

struggled with vague instructions that lacked sufficient contextual cues – an issue that 

might similarly challenge a reasonable human. Additionally, some instructions 

presented multiple valid but noticeably different paths, despite only one path being 

“correct” in the training data. For example, the instruction “continue down the 

hallway” leaves ambiguity regarding the initial direction to take if oriented arbitrarily. 

While these reasonable faults contributed to lower accuracy, they are not considered a 

shortcoming of the VLN agent itself since it still followed a reasonable interpretation 

of the instruction as a human might.  

In contrast, some faults were deemed “agent performance errors,” where the 

agent's performance deviated from expected behavior in ways a human could clearly 

identify; these failures stemmed from shortcomings on the agent’s part. For example, 

the agent struggled with out-of-order instructions, such as “fetch the cup on the table 

next to the couch in the living room; it is down the hallway.” It additionally 

encountered difficulties in processing longer sentences effectively; both issues are 

likely due to the limitations of the bi-directional LSTM architecture used at the time.  

Lastly, grammatical and syntactical errors in the path descriptions of the training data 

may have negatively impacted overall training quality.  
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4.7.3 VLN Future Work 

This section explores promising directions for advancing VLN agents. Integrating 

transformer-based instruction embeddings, incorporating a multi-camera setup for 

panoramic RGB-D data, and leveraging 3D scene graphs with Logic Tensor 

Networks (LTNs) can enhance VLN agents’ capabilities. Additionally, focusing on 

adaptation to outdoor environments and improving training data quality will further 

contribute to the robustness and effectiveness of VLN systems. 

4.7.3.1 Integrating LLMs for Instruction Embeddings 

Future research directions may involve applying LLM embeddings as instruction 

encoding for VLN agents navigating in continuous environments. 

Transformer-based LLMs such as BERT [47] [48] and GPT [49] are trained on 

extensive corpora beyond the VLN training data, facilitating an understanding of the 

English language and comprehension. This relieves the agent from having to learn the 

English language and specific distinctions – such as between “couch” and “sofa” 

during training. This head start on language and context understanding allows the 

agent to spend its training time learning how to navigate, rather than learning word 

relations. 

Transformer-based LLMs can “pay attention” [50] [51]: they can effectively 

manage longer sentences and maintain context. This characteristic can lead to 

improved performance by mitigating challenges associated with processing lengthy or 

out-of-order instructions [52]. 
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Additionally, exploring embedding models that are pretrained on both visual and 

textual data could further enhance the agent’s contextual understanding and 

navigational capabilities.  

4.7.3.2 Multi-cam for panoramic RGB-D  

While a panoramic RGB-D camera would be ideal deployed on a VLN agent, 

commercial options capable of real-time operation while in motion are currently 

unavailable; while some existing solutions rely on a scan to create a panoramic 

image, they must be stationary to scan the panoramic image. Although some 

panoramic color-only cameras such as the Ricoh Theta [53] exist, they lack depth 

measurement. An effective alternative may be to use an array of multiple 90°FOV 

RGB-D cameras to cover the full 360°FOV, as illustrated in Figure 4.9. This setup 

not only aligns more closely with the FOV used in several VLN agents trained in 

simulation, but also provides the VLN agent and autonomous driving agent more 

peripheral information, allowing it to look directly (90°) to its left or right, or even 

behind itself. This is helpful if it is told to “go into the office with the chandelier” as it 

may not see the chandelier unless it was looking directly to its left when driving past 

the door. 

 

Figure 4.9 Multi camera panoramic array on Waymo self-driving car [54] 
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4.7.3.3 Improve Training Data 

A VLN agent’s performance would improve with the improvement of the training 

data in multiple manners. Primarily, there are several language typos, syntax errors, 

and spelling errors which could be fixed. Secondly, clarifying instructions that may 

refer to multiple possible and valid paths either by having two valid target paths per 

instruction, or having each instruction only describing one possible path. Thirdly, add 

new training data that contains out-of-order instructions so that the agent does not 

rely on chronological instructions. 

4.7.3.4 3D Semantic Graphs 

Future work should integrate two key concepts [55]: the development of a spatial 

ontology and the construction of 3D scene graphs using Logic Tensor Networks 

(LTN).  

A spatial ontology (Figure 4.10) describes hierarchies of concepts in complex 

environments can provide a VLN agent richer contextual frameworks, enhancing its 

ability to interpret navigation instructions that reference spatial relationships and 

environmental features. This integration would enable VLN agents to navigate 

diverse settings, improving waypoint prediction and reasoning. 

Incorporating logical rules (axioms) such as “a forest contains trees” into the 3D 

scene graph using LTNs allows the VLN agent to perform deductive reasoning based 

on inferred knowledge, reducing reliance on labeled data. The ability to predict 

unseen concepts during training suggests that VLN agents could adapt more flexibly 
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to novel environments or unexpected situations, which is crucial for real-world 

applications where agents may encounter unfamiliar settings. [55] 

 

Figure 4.10 Outdoor scene graph generation [55]  

4.7.3.5 Adaptation to Outdoor Environments 

Adapting this research to perform in outdoor environments would be valuable to 

search and rescue missions. Scene graphs [55] trained in outdoor environments may 

aid in navigating large environments. However, while little research has been done in 

“natural” environments away from human civilization and construction, some works 

[56] [57] are exploring outdoor urban environments. VLN-Video [58] creates VLN 

style training data from videos, which provides groundwork for training VLN agents 

in outdoor environments.  
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5 Research: Autonomous Driving 

This chapter discusses the design and build of the autonomous driving system. 

The autonomy stack uses a combination of SLAM, path planning, and obstacle 

avoidance to drive in unmapped environments to user-defined or VLN-specified 

waypoints. The subsequent sections outline system diagram of the autonomous 

driving software architecture, the detail the sub-modules in the autonomy stack, 

review prior architectures, and illustrate results. 

5.1 Autonomous Driving System Architecture 

 
Figure 5.1 System diagram of autonomous driving software architecture 
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Figure 5.1 above shows the system architecture for the autonomous driving 

software stack. Subsystems are reviewed below, detailed in later sections, and are 

colored as follows: 

• Yellow boxes: hardware (or simulated) interface to sensors and motor drivers.  

• Blue boxes: nodes within the autonomy stack that perform independent tasks.  

• Green boxes: external inputs, in this case, user-defined waypoints or VLN-

agent determined waypoints. 

 

SLAM node: The SLAM (Simultaneous Localization and Mapping) node 

processes data from the IMU, depth sensors, and optionally GPS/GNSS, to build a 

real-time map of the robot’s environment while simultaneously tracking its position. 

This enables the system to create and update a local map as it moves through the 

environment, allowing for accurate localization even in unmapped areas. 

Global Traversability: The Global Traversability node evaluates the entire 

global map to assess the traversability of each region. It outputs a global costmap, 

where each cell is assigned a cost representing the feasibility of traversing that area, 

factoring in obstacles, terrain difficulty, and other relevant considerations. 

Global Planner: The Global Planner utilizes the global costmap to plan an 

optimal path from the robot’s current location to the target waypoint. It determines 

the global path while accounting for static and dynamic obstacles within the global 

map, generating the most efficient path while avoiding non-traversable regions. 
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Local Traversability Node: The Local Traversability Node processes the global 

costmap, but focuses on a subset of it centered around the robot’s current position. It 

dynamically updates the local costmap by incorporating new obstacle data from 

onboard sensors (eg: LiDAR, camera, etc.). This local costmap reflects the robot’s 

immediate surroundings, enabling the system to react to obstacles in real-time and 

plan accordingly. 

Local Planner: The Local Planner is responsible for navigating the robot along 

the global path within the local costmap. Based on the robot’s current position and the 

updated local costmap, it computes the best path through the local environment. The 

planner generates target wheel velocities to move the robot along the path while 

avoiding obstacles and ensuring safe navigation. 

Wheel Velocity Control: Wheel velocity control is achieved through feedback from 

wheel odometry, where quadrature encoders track the rotation of each wheel. The 

current wheel speeds are compared to the target velocities generated by the local 

planner, and a PID control loop is used to minimize the error and ensure precise 

wheel speed control, thus maintaining the robot’s desired movement trajectory.   
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5.2 Autonomous Driving Sub-Modules 

The autonomous driving system operates through a range of capabilities 

categorized into perception and planning roles, as shown in Table 5.1 with analogies 

to put them in context.  

Table 5.1 Nodes in an autonomous driving software stack. 

Sensing Receive raw data streams from sensors 

Mapping What is the world around me? 

Localization 

• Global Localization 

• Local Localization 

Where in the world am I now? 

• Roughly, where am I on the map? 

• Precisely, where am I with respect to obstacles 

near my path? 

Traversability Where can I go? 

Path (Global) Planning  Determines the high-level route like Google Maps 

Motion (Local) Planning Follows the route like a taxi driver, detouring as 

necessary 

Controllers Use gas/brake pedals and steering wheel to control 

vehicle speed and heading. 

 

5.2.1 Simulation 

Because complex robots may be expensive (eg: expensive to test, expensive to 

run, expensive to fix when broken, and time consuming), these robots are usually 

tested in simulation first to increase run frequency, decrease cost, and more easily 

“pause time” to debug and look at environment variables. Furthermore, simulations 

help quickly and repeatably set up and test cases, edge cases, and corner cases, in a 
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variety of different environments. Thus, building a good simulation representative of 

the robot environment is nearly as important as the autonomy software itself.  

The simulation environments, rendered in Gazebo [59], consist of several indoor 

and outdoor worlds, with complex features and obstacles. Gravity was set equal to 

Earth gravity (9.8[m/s2]). Collision calculations were enabled for the rover and all 

objects that the rover may run into near ground height. To reduce resource utilization 

for the simulation, the geometry of some objects’ collision boundaries was simplified. 

For example, while a car’s visual representation was rendered, collisions were 

calculated for a box of a similar footprint and height. Visual rendering was enabled 

for all objects, obstacles, and textures. The wheels, rendered with treads, were 

simplified to cylinders of a similar radius and depth for the collision detection and 

friction calculation. These simplifications still represented the real system and 

example environments with sufficient fidelity, as shown by negligible performance 

degradation from simulation to real. 

 

5.2.2 Robot Model 

The autonomous drive agent performs SLAM and path planning in simulation 

which subscribes to (reads data from) sensor inputs and publishes (writes data to) 

motor controllers as seen in Table 5.2 and Table 5.3 respectively.  
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Table 5.2 Robot model’s subscriptions (from simulation and hardware) 

Sensor name: Sensor type: 

Intel RealSense D455 

 

With integrated Bosch BMI055 

Depth sensor 

RGB camera 

6-axis IMU 

Quadrature wheel encoders Wheel odometry 

 

Table 5.3 Robot model’s publications (to simulation and hardware) 

Output type Data format 

Body velocity command 

(to simulation) 

Target linear velocity 

Target angular velocity 

Wheel velocity command 

(to hardware) 

Target angular velocity for left wheel(s) 

Target angular velocity for right wheel(s) 

 

To do this, a custom URDF (Unified Robot Description Format) robot model was 

developed, defining the robot’s body (visuals, inertia, and collision boundaries), joints 

(type, and limits), sensors, and Gazebo simulation plugins. The Gazebo plugins 

define how the sensor data is simulated and how the wheels are controlled while the 

robot is running in Gazebo. When the robot is deployed in a real environment, neither 

Gazebo nor these plugins are utilized, since the hardware motor controllers are used 

instead. Figure 5.2 shows an iRobot Create robot with a red cylinder representing a 

lidar (an interim depth sensor), and silver bar representing the RealSense. The Gazebo 
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plugin for the lidar streams point cloud data, as would a real lidar or RealSense 

camera. The blue area shows a horizontal slice of the depth range and horizontal 

FOV. 

 

Figure 5.2 Gazebo Sim rendering gray robot chassis, and red cylinder 
representing depth range and horizontal FOV of RealSense D455 

Simulated sensor models mimic real life sensors in terms of FOV, range, 

accuracy, resolution, and noise. The sensor model is the gray Intel RealSense D455 

[60] camera which streams the RGB image and point cloud from both the camera 

hardware and the Gazebo simulation. The simulated sensor model uses a similar 

resolution, FOV, depth, and noise as the RealSense D455 hardware. To reduce 

computational resources required in simulation, the sensor hardware hovers over the 

robot chassis by a fixed transform; and the structural support and wiring is not 

modeled or rendered because it has no impact on SLAM or path planning, and has 

negligible impact on vehicle kinematics and dynamics. 
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PID velocity control models on the wheels of the simulated robot model 

mimicked how the chassis would accelerate in response to commands from the local 

planner. Simulating the physics dynamics response from the PID controller was 

important because both too slow of a PID and too fast of a local planner update will 

cause the robot to follow a sinusoidal “zig-zagging” trajectory path caused by the 

local planner overcompensating for the delay from the controller.  

The physics-based simulation also identified scenarios where the robot may 

accelerate too quickly on steep or low friction surfaces, resulting in “burnouts” or loss 

of traction. The physics-based simulation identified where sharp turns or high 

acceleration would cause “rollover” or loss of stability. These findings were used to 

implement acceleration and velocity limits. Thus, ceiling limits were set for both the 

simulated PID controller and the hardware motor controllers for safety during 

hardware testing, and to avoid excessive current through the motors. These include: 

max linear velocity: 2[𝑚 𝑠⁄ ], max acceleration: 2[𝑚 𝑠"⁄ ], max rotational velocity 

2[𝑟𝑎𝑑 𝑠⁄ ].  
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5.2.3 Drive Control & Odometry Feedback 

The controllers in the simulation execute PID velocity control. The drive control 

node receives linear velocity [m/s] and angular velocity [rad/s] commands, calculates 

individual left and right target wheel rotational velocities, and uses theose target 

wheel rotational velocities for each PID controller. The code for drive control used in 

simulation is the same as that used in the real robot; this allowed for lessons to be 

learned in simulation before testing in real-world environments. Some early fixes 

included PID tuning to stop overshoot caused by integral wind-up, zeroing out the 

PID’s integral-component upon receiving a stop-command, and setting acceleration 

limits to prevent vehicle from flipping over if braking too quickly. 

In the simulation the wheel velocity is published at 50Hz, and on the real robot 

the encoders for the left and right wheels are read as 16-bit values at 50 Hz. The same 

software interfaces with the wheel encoders and simulation alike, integrating and 

calculating the incremental angular and position offsets every loop, and calculates the 

following odometry: 

• 𝑥 distance from starting location, along X-axis (forward facing) 

• 𝑦 distance from starting location, along Y-axis (left of robot) 

• 𝜃 angular offset from x-axis, around z-axis (up) 

• 𝑣 instantaneous linear forward velocity 

• 𝜔 instantaneous rotational velocity around z-axis 
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The PID velocity control was single-threaded, and performed wheel control 

asynchronously using ISRs (Interrupt Service Routines) to track quadrature channels. 

The motor controllers used an H-bridge to control each motor. While Lock Anti-

Phase drive [61] was explored, it resulted in a loud humming when at low speeds or a 

stop. This humming was caused by the drive mechanism where the current supplied 

to the motors is near constant, and motor speed is controlled by the PWM (Pulse 

Width Modulation) signal determining what percent of the time to drive the motor in 

a particular direction, causing the motor to “quiver” (hum) in place at a stop due to 

the current alternating direction rather than turning off.  

Sign-Magnitude drive [62] was chosen for its power efficiency, where the PWM 

pin controlled the voltage duty cycle (average voltage, and ultimately power), and the 

direction pin controlled the wheel direction (forward driving versus reverse). There is 

negligible computational difference between the two drive control methods. Lock 

Anti-Phase only requires the PWM signal, while Sign-Magnitude requires both PWM 

and direction signals. Sign-Magnitude is more power efficient, but less linear at low 

speeds.  

A brake override function checks whether the target velocity is zero. If so, the 

function would zero out the “I-term” (integrated error) in each wheel’s PID controller 

to remove any integral windup, turn off a flag that allowed velocity control, and apply 

the brake signal to the motor controllers. The PID I-term was zeroed so that if the 

rover was lagging behind the target velocity, it wouldn’t continue driving to catch up 
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before slowing down, nor would it try “making up lost distance” when PID velocity 

control resumed.  

The Sign-Magnitude braking command sets the PWM’s magnitude output to a 0% 

duty cycle (PWM’s direction channel does not matter because there is no current 

going to the motors), which on an H-Bridge effectively short circuits the two motor 

terminals to either the supply voltage or ground, resulting in dynamic braking. This 

short circuit between the motor terminals may have current recirculating through the 

motor and H-Bridge, but no current will flow through the H-Bridge from the supply 

voltage to ground. Mechanical friction in motor gearboxes further aids in 

deceleration.  

While regenerative braking is possible with Sign Magnitude control, there are 

several considerations. Torque generated during regenerative braking decreases as 

velocity decreases, resulting in non-linear braking power and weak braking at low 

speeds. Furthermore, there is a tradeoff between the efficiency of energy regeneration 

and overall braking power. Lastly, the back-converted energy needs to be stored 

safely, avoiding the risk of over-charging a battery, and preventing attempts to “back 

charge” an AC to DC power supply if applicable. [62] Because of these concerns, 

regenerative braking was not implemented.    
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5.2.4 Perception 

Autonomous robots and vehicles must perceive their environment and their state 

by turning sensor data into useful representations of the environment. This most 

significantly includes mapping, localization, traversability, sensor interface, and 

coordinate transforms. 

Mapping is detailed in Section 5.2.5: Mapping.  

Localization is detailed in Section 5.2.6: Localization. 

Traversability is detailed in Section 5.2.8: Traversability. 

Several sensors interfaced with the NVIDIA Jetson Nano, and later a Jetson 

Xavier NX. To use the full capabilities of the RealSense D455, UVC (USB Video 

Class) was chosen despite requiring more technical expertise to modify the kernel 

since native Linux kernel drivers are recommended, UVC results in higher 

performance, and allows for advanced hardware control. The alternative RSUSB (a 

user-space implementation of UVC), while cross-platform compatible and easier to 

implement, results in some performance and functional limitations such as limited 

hardware control and slower data speeds. To stream the RealSense D455 depth 

camera using UVC on the Jetson ARM64 architecture, modifications to the Linux 

kernel and modules were required, followed by a re-build and re-install. [63] The 

Intel RealSense SDK librealsense [64] was then built from source and successfully 

streamed the images and point clouds from the RealSense D455 sensor.  



 

   

 

67 

A series of transformations defined in the robot model relate locations of sensors 

on the robot to the base frame of the robot. Thus, a static extrinsic matrix is used to 

transform the point cloud from the sensor frame to the body frame. The 

transformation between the map frame and the body frame may be calculated in a 

variety of ways: 

• The localization component of the SLAM module (see Section 5.2.6: 

Localization) 

• Absolute localization updates (eg: GPS / GNSS) may help either correct 

the localization estimate, or update the SLAM pose graph. Non GNSS 

methods are explored in Section 5.2.6.1 Methods for Global Localization 

in GPS denied environments 

• Dead reckoning from either IMU or wheel odometry (see Section 5.2.3 

Drive Control & Odometry Feedback) 

  



 

   

 

68 

5.2.5 Mapping 

Mapping, in different forms, is important for autonomous vehicles because it 

represents the world around the robot. Maps allow the robot to perform other tasks as 

outlined in Table 5.4. 

Table 5.4 Different ways nodes use map data 

Used for: Implemented by: 

Global Localization in GPS-denied 

environments 

ICP (Iterative Closest Point) comparing an in 

situ map to a priori maps 

Hazard detection and traversability Identify slopes, elevation differences, and 

breakover angle 

Path Planning Perform search over traversable area towards 

goal 

Information gathering / data 

collection 

Aside from driving purposes, the map data is 

valuable for remote inspection in remote 

areas, science missions, future missions, 

determining where to place roads and utility 

lines 

 

There are two important map representation types that the rover uses: a 3D point 

clouds show voxels (volumetric pixels) which represent the shape of the environment, 

while 2D maps use pixels to represent properties including occupancy (presence of 

obstacles), cost to traverse, or elevation.  
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The rover uses a 3D point cloud from the depth sensor for SLAM, which results 

in a map of the environment in the form of a 3D point cloud. That point cloud is 

analyzed to detect obstacles, creating a 2D occupancy map, and then a 2D costmap, 

as explained in Section 5.2.8.1. This abstraction to a 2D map increases path planning 

efficiency since the area searched reduces from a 3D space to a 2D manifold, which 

consequently lowers the computational complexity from 𝒪(𝑛*) to 𝒪(𝑛"). An 

example of this is a human driver looking at Google Maps while they drive: the driver 

can be agnostic to the elevation and slope of the paths, so long as the 2D map 

accurately predicts the shortest allowable path. However, the cost of traversing an 

area may be increased for many reasons, including mountainous terrain if energy 

efficiency is a concern, or predicted traffic if time is a concern.  

Other features that may be represented on a map may include human-annotated 

keep-out-zones and landmark labels. Autonomous on-road vehicles may choose to 

represent sections of map that have toll-roads, allowing re-weighting costmap by 

features such as traversal time, fuel expenditure, and toll costs. On-road vehicles 

would have an advantage from mapping traffic signs, signals, speed limits, and 

crosswalks for future reference, as a redundancy to the computer vision (if, for 

example, a tree or snow obscures a stop sign one day). Vehicles operating in more 

austere environments may track areas with better solar coverage if they use 

photovoltaic panels to charge when en route; eg: routing them in an open area rather 

than through a forest. Similar vehicles may opt to drive slightly out of the way to pass 
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by a mobile data tower if needed to uplink or downlink data to a base command 

center. 

Mapping is performed in lockstep with Localization in the SLAM module (as 

explained in Section 5.2.7). 

 

5.2.6 Localization 

Localization estimates the robot’s global location in the world, and local location 

with proximity to obstacles. Each is calculated differently, used for different planners, 

requires different fidelities, is updated at different rates, and resides in different 

coordinate systems. Table 5.5 illustrates the differences between Global Localization 

and Local Localization. 

Tracking global and local location at different accuracies enables the rover to be 

computationally more efficient and faster on constrained hardware, as further detailed 

in  (Section 5.2.6.2: Differing Localization Accuracy Requirements). 

Localization is performed in lockstep with Mapping in the SLAM module 

(Section 5.2.7). Location can be tracked in different degrees of freedom. 3-DOF 

(Degree of Freedom) estimation is sufficient for flat environments, but 6-DOF is 

required for any terrain that is not level: 

• 3-DOF localization tracks: x, y, yaw (heading) 

• 6-DOF localization tracks: x, y, z, roll, pitch, yaw (orientation represented 

by quaternions)    
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Table 5.5 Comparison of Local Localization versus Global Localization 

Aspect Global Localization Local Localization 

Purpose Where am I in a global reference 

frame? 

How far did I just move in a 

local reference frame? 

Description Provides current LLA (latitude, 

longitude, altitude), and 

orientation 

Provides movement details, such 

as rolling 0.1 [m] forward and 

rotating 0.02 radians in the last 

second, while currently moving 

at 0.12[m/s] 

Sensors Absolute reference sensors: 

• GNSS [65] (eg: GPS [66], 

GLONASS, Galileo) 

• Magnetometer * 

• Star-Tracker * 

*May be used for local 

localization 

Relative referencing sensors: 

• IMU 

• Odometry 

• Lidar 

• RGB-D Camera 

Uses • Determining global position 

on a map 

• Calculating path to destination 

• Assessing obstacle 

proximity 

• Informing motion planner 

about path progress 

Calculation Any absolute sensors can be used. 

Can compare an in situ map to an 

a priori map 

SLAM (May be done in 

lockstep with mapping) 
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5.2.6.1 Methods for Global Localization in GPS denied environments 

Global localization involves estimating a robot’s position within a global 

reference frame using absolute measurements. Unlike relative measurements, which 

are relative to the robot’s prior position, absolute measurements are independent of 

previous locations. Absolute measurements provide direct positioning information 

relative to a global frame, helping correct any drift in relative positioning (local 

localization), improving the robot’s location estimate on the map. 

GNSS (Global Navigation Satellite Systems) such as GPS (Global Positioning 

System, owned and operated by United States Space Force) is one of the easiest, most 

readily available absolute referencing sensors since it is free and available all over the 

surface of the earth. With the right equipment, one can also leverage other countries’ 

GNSS systems such as the European Union’s Galileo, and Russia’s GLONASS. 

There are a few drawbacks, however: GNSS only works between the surface of the 

Earth and the satellites (ground vehicles and aircraft), and is unavailable for 

underwater, underground, or extraterrestrial missions. Furthermore, GNSS can easily 

be jammed [67]. Thus, it is valuable to be able to track absolute location in GNSS-

denied environments.  

Tracking a pose (that doesn’t require knowledge of previous poses) requires 

knowing orientation and location. On Earth, where there is a magnetosphere, a 3-axis 

magnetometer may be used (commonly found in 9-axis IMUs). When the stars are 

observable (night sky, or locations with no atmosphere such as the Moon), Star 

Trackers may be used to determine ephemeris attitude (orientation).  
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A sensitive 6-axis IMU can perform 3-axis orientation determination (also known 

TRIAD [68]) calculating the robot’s geographic latitude based on the rotation of the 

Earth (or other celestial body). The gyroscope triads measure the Earth’s rate vector, 

while the accelerometer triads measure the local gravity acceleration vector. [69] [70]  

In the daytime, a sun tracker or solar compass may additionally be used to 

determine latitude [71]. Combined with a chronometer or clock, longitude can be 

determined by comparing the time of local high noon to GMT noon.  

When the sun isn’t visible, the angle of the North Star above the horizon can 

determine latitude [72]. Star Trackers can determine latitude, longitude, and the North 

direction [73], resulting in accuracies are better than 200[m], but still insufficient for 

path planning. 

Point cloud registration may also be used to localize. [74] 

 

5.2.6.2 Differing Localization Accuracy Requirements 

Different types of localization run at different frequencies and accuracies. For 

example, the vehicle’s global location certainty can be flexible – it does not need to 

know its global location to centimeter level accuracy with update rates nearing 20Hz. 

For global routes (even hundreds of kilometers long), the vehicle may only need to 

know its absolute location to within 10 meters, with update rates closer to once per 

minute, depending on the accuracy of the (relative) local localization estimate, and 

size of detour possible by the local planner. 
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An intuitive human example of this is if one were to be driving along a freeway to 

work. You may not know exactly how many meters (or kilometers) away your next 

exit is, which is fine so long as you know is coming up in the next few minutes. For 

humans, even without our phones dictating driving directions, a nearly 2000-meter 

uncertainty is perfectly acceptable for our commute if we know our next maneuver 

(freeway exit) is significantly further than the bounds of our location estimate’s 

uncertainty, since when we recognize a landmark (eg: overpass or exit sign saying the 

exit is 0.5[km] away), we can update our location certainty sufficiently to take the 

correct exit in time. As applied to autonomous vehicles, this flexible localization 

certainty on the global level allows the vehicle to run faster without requiring more 

power and compute, while not sacrificing performance. 

It should be noted that the local planner still requires local localization to be at the 

centimeter level in the local frame. This is critical in estimating motion for SLAM 

and estimating distance from obstacles so that the rover can pass through narrow 

passageways with 5cm of clearance. Similarly, a human driver may not need to know 

exactly how many meters it is to the next exit, but they know where they are between 

the lane-lines and surrounding cars to within less than a meter.  
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5.2.7 SLAM 

SLAM (Simultaneous Localization and Mapping) is any algorithm that builds a 

map and localizes a vehicle in that map at the same time, allowing the vehicle to map 

new environments. SLAM works by processing sensor signal on the front-end, and 

optimizing a pose-graph on the back end as illustrated in Figure 5.3. 

 

Figure 5.3 SLAM Processing Flow [75] 

Visual SLAM uses imaging sensors (eg: RGB cameras, stereo vision cameras, 

wide angle cameras), which are frequently lower cost. Depth-based SLAM uses 

ranging sensors such as depth camera, lidar, and radar. Depth data provides better 

depth accuracy and is more efficient for map construction in SLAM algorithms. The 

autonomous driving software stack constructed in this paper explored different types 

of depth-based SLAM.  
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5.2.7.1 SLAM Using Particle Filters 

Initially, a particle filter SLAM approach was used: Grid-Based SLAM with Rao-

Blackwellized Particle Filters [76] [77]. The SLAM module used depth readings for 

the mapping step, and odometry and depth readings for the localization step. The 

particle filter estimates potential trajectories 𝑥!:% of the robot by calculating its 

posterior 𝑝(𝑥!:%	|		𝑧!:% , 𝑢,:%) based on depth observations 𝑧!:% and odometry 

measurements 𝑢,:% . The joint posterior about the map and trajectory is: 

𝑝(𝑥!:%	, 𝑚	|		𝑧!:% , 𝑢,:%) = 𝑝(𝑚|		𝑥!:% , 𝑧!:%) ∙ 	𝑝(𝑥!:%	|		𝑧!:% , 𝑢,:%) 

This estimates the trajectory of the robot, and then computes the map based on the 

trajectory. The posterior 𝑝(𝑥!:%	|		𝑧!:% , 𝑢,:%) is calculated using SIR (Sampling 

Importance Resampling) [78], and updates the map by sampling the next generation 

of particles, assigning an importance weight to each particle based on how well they 

align with new observations, particles are resampled based on their weight, and for 

each pose sample the map estimate is computed. 

In simulated environments, 80 particles were used to generate a topologically 

correct map when using a simulated 16-channel lidar, though closer to 100 particles 

were required when using the more noisy, narrower FOV Intel RealSense D455. As 

applied to real-world environments where the vehicle was tested on ~50[m] 

trajectories, 120 particles were needed to accurately localize and map using the Intel 

RealSense D455. 
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5.2.7.2 SLAM Using Factor Graphs 

Factor graph SLAM approaches proved better adaptable in larger, more complex 

environments while using less memory allocation, and still running real-time. 

Sebastian Thrun’s factor graph SLAM [79] was explored and is illustrated in Figure 

5.4.  

GT-SAM (Georgia Tech Smoothing And Mapping) [80] was later used. To 

enhance frame alignment and computational speed, the RANSAC (Random Sample 

Consensus) was employed for ground-plane detection. 

 

Figure 5.4 GraphSLAM illustration [79] showing four poses and two features. 
Solid edges link consecutive poses, and dashed edges link each pose to feature(s) 

observed from that pose. 
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5.2.8 Traversability 

When processing both the local and global maps, traversable areas and obstacles 

are represented on a costmap. Pixels with a lethal cost are placed in the costmap when 

an untraversable obstacle is detected. For instance, an object is classified as a lethal 

obstacle if it is within the robot’s driving height range – specifically, when it is 

located more than half the radius of the wheel above the ground, and below the 

robot’s maximum height.  

5.2.8.1 Costmaps 

Lethal obstacles are projected onto a 2D costmap to both reduce the spatial 

complexity (memory allocation) of storing the obstacles, but also to reduce the time 

complexity (algorithm runtime) in the path planning step. A 2D traversability 

costmap allows path planners to quickly perform a search over a 2D map for the 

lowest cost path. This is far more efficient than executing searches over a 3D 

environment where one would have to use, for example RRT (Rapidly exploring 

Random Trees). If path planning were to be performed once at the beginning and only 

once ever, there may be an argument to perform path planning in the 3D space 

(searching through a 3D point cloud) instead of making an intermediary 2D costmap.  

While the local costmap continuously updates to account for new obstacles or 

changes in the vehicle's environment, there are situations where an obstacle is too 

large to be avoided within the local costmap's range. In such cases, recalculating the 

global path on the global 2D costmap is more efficient than recalculating the path on 
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the global map represented by a 3D point cloud. The smaller, simplified 2D 

representation allows for faster re-planning, whereas path planning through the full 

3D point cloud map is computationally more demanding and slower to process.  

5.2.8.2 Types of Obstacles and Costs 

The costmap assigns different costs to different areas depending on whether it is 

used for local or global path planning, and whether an area has been observed or not.  

Table 5.6 Different costs in different areas of map 

Known area 

(mapped) 

Low cost: traversable area that is easy to traverse 

Medium/high cost: traversable area that is more difficult to 

traverse 

Max cost: lethal obstacles which will result in a collision if 

driven into 

Unknown area 

(unmapped) 

Global Costmap: assigns little to no cost to unmapped areas, 

allowing the global planner to explore beyond the mapped areas 

Local Costmap: assigns an extremely high cost (or lethal cost) 

to unmapped areas since the local crop of the map should not 

typically contain unknown (unmapped) areas, and an unknown 

area may be due to a lack of signal return caused by sensor 

obstruction, sensor fault, or the vehicle is near a cliff and there 

is nothing for the sensor to measure 
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5.2.8.3 Inflation Layers 

Once lethal obstacles are identified, inflation layers are added around each lethal 

obstacle; these layers are also considered lethal. This first lethal inflation layer 

increases the width of all obstacles by roughly half the width of the robot. This gives 

the path planner the advantage of only needing to search for an “infinitely narrow” 

path, rather than one that would fit the width of the rover. In an algorithm such as A*, 

one may represent a lethal obstacle either as unavailable nodes, or nodes of infinite 

cost. In this work, locations that are lethal are represented with the max cell cost of 

254 as shown in Figure 5.5. 

The second inflation layer – the safety layer – is defined by a log-barrier decay 

function, the red line in Figure 5.5, which transitions from a lethal obstacle to no-cost. 

This safety layer encourages the path to detour slightly further from the obstacle 

given the higher cost of traversing this non-lethal but non-ideal area. However, since 

the safety inflation layer is non-lethal, the path planner may still choose to pass 

through areas marked by this safety inflation layer (eg: to pass between narrow 

obstacles) if doing so results in a lower cost (shorter/faster) path compared to a longer 

path through lower-cost areas.  
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Figure 5.5 Graph showing lethal cost scaling to low cost as represented in 
inflation layers on a costmap [81] 

In this work, instead of planning a path the width of the robot, the obstacles on the 

costmap are inflated to just over 50% of the robot’s width. This simplifies path 

planning to search for the shortest path where path clearance does not need to be 

verified at every point, since the inflated obstacles (on the lethal inflation layer) 

account for the required vehicle clearance. The width of the lethal layer is further 

increased, if necessary, to just over the minimum depth sensor range; this ensures the 

obstacles stay within the sensors’ detection range, even when passing through the 

safety layer. The safety layer is associated with a higher traversal cost, encouraging 

the rover to stay further away from obstacles.  
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5.2.8.4 Live Local Updates versus Intermittent Global Updates 

Two costmaps are used: one for global planning, and one for local planning. The 

global costmap inherits obstacles identified from the global map, which is being 

mapped in situ. The global path planner performs search on the global costmap.  

The local costmap, in the robot coordinate frame, is a subsection of the global 

costmap, and inherits obstacles from the global costmap and the live sensor streams. 

This allows the local costmap to include real-time data of moving obstacles, which is 

important in scenarios where fast-moving obstacles are impeding the path faster than 

SLAM can update the global map. 

5.2.8.5 Obstacle Clearing 

Stale obstacles are objects marked on a map which have since moved or been 

removed from the environment. Stale obstacles can be as simple as a mark indicating 

an object which is no longer present, or as complex as a moving object leaving a trail 

of obstacle markings behind it, as a train would. Stale obstacles are removed by 

raytracing through their previous location. For lidars and cameras, ray traces begin at 

the sensor’s origin and pass through the marked obstacle. An obstacle is cleared when 

no obstruction is detected along this ray. To prevent false clearing due to missing 

depth data, a depth return ray from behind the old obstacle location is required to 

fully clear the stale obstacle marker.  
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5.2.9 Mapping & Search Combinations 

There are several map and search combinations considered and discussed below; 

costmaps and A* searches (as shown in Figure 5.6) were ultimately implemented for 

their performance in dynamic environments and guaranteed shortest path.  

Costmaps and heuristic informed search can search a large area in a 

computationally efficient and memory efficient manner. In the worst-case scenario, 

the entire map must be searched, but this is unlikely in non-constrained outdoor 

environments since the heuristic guides the expansion of the search in the direction of 

the goal. A*, an informed search algorithm, guarantees an optimal solution, and is 

used in the global planner as described in 5.2.10 Global Planning. 

 

Figure 5.6 This costmap shows lethal obstacles (red) with inflation layers around 
them (cyan and blue). Black and blue cells are traversable, grey cells are unknown. 
The yellow local planner tracks the green global path while deflecting around the 

obstacles. 
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Potential Fields with gradient following is shown in Figure 5.7. A potential field 

consists of a low (attractive) potential at the goal, drawing the robot toward it, and a 

high (repulsive) potential around obstacles, pushing the robot away. A robot moves 

toward a lower energy state by following the negative gradient of the potential field 

toward the goal, and away from obstacles. However, there are some drawbacks: the 

robot may become trapped in local minima such as narrow corridors, and 

performance can degrade in dynamic environments. 

 

Figure 5.7 Potential fields and gradient descent [82] 

Dynamic programming, shown in Figure 5.8, decomposes a search problem into 

smaller sub-problems, solving each and storing the intermediate solutions for future 

reference. While it guarantees an optimal solution, dynamic programming requires 

substantial memory to store these intermediate solutions, and increases computational 

cost by searching the entire state space.  

 

Figure 5.8 Dynamic Programming for path through static flow field [83] 
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Rapidly exploring Random Trees (RRTs), as shown in Figure 5.9, explore rapidly 

in high-dimensional space, but do not guarantee the optimal solution; sometimes 

paths between two points can be very circuitous. RRTs do not adapt well to dynamic 

environments. 

 

Figure 5.9 RRT for a 3-DOF car; obstacles (black); chosen path and vehicle pose 
(yellow); possible paths (red/blue) [84] 

A Voronoi diagram turns a map into a simpler, memory efficient graph shown in 

Figure 5.10, but does not adapt well to new terrain, and does not always result in the 

shortest path. 

 

Figure 5.10 Voronoi diagram (green), obstacles (red), and sample path (blue) [85]   
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5.2.10 Global Planning 

The global planner finds a path from the robot’s current location to the waypoint 

goal. While the global costmap may not immediately reflect all obstacles when 

driving in new (unmapped) environments, it updates dynamically as the sensor 

horizon progresses. If the current path becomes unviable (eg: when the global path 

intersects an obstacle in global costmap), the global planner recalculates a new path 

based on the updated global costmap.  

The global planner operates under the assumption that unmapped areas are 

traversable and free of obstacles. This optimistic approach enables the planner to 

navigate towards waypoints even in regions where the map is incomplete. As the 

vehicle progresses, SLAM incrementally fills in the map. If the global planner were 

to assume unknown areas were hazardous, it would never venture into unmapped 

regions altogether, limiting exploration. 

Table 5.7 examines search algorithms: Dijkstra’s, A*, and BFS (best first search). 

The illustrations in the table are color coded with: grey obstacles, cyan (closed / 

explored) nodes, green (open / edge) nodes, white (unexplored) nodes, dark green 

starting location, red ending location, and the yellow line representing the path 

calculated by each respective search algorithm.  
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Table 5.7 Table comparing search algorithms 

Dijkstra’s A* Best-First Search 

   
Guaranteed optimal path:  

18.24 steps 

Guaranteed optimal path:  

18.24 steps 

Sub-optimal path:  

23.46 steps 

Computationally slow:  

573 operations 

Computationally fast:  

186 operations 

Computationally fastest: 

92 operations 

𝑓(𝑛) = 𝑔(𝑛) 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 𝑓(𝑛) = ℎ(𝑛) 

Only considers 

g(n): distance traversed. 

Not efficient. 

 

Considers both g(n): 

distance traversed; and 

heuristic h(n): estimated 

remaining distance. 

Efficient, focused search. 

Only considers heuristic 

h(n): estimated 

remaining distance. 

Fast, but too greedy. 

 

A* was selected for global path planning due to its low computational complexity 

and ability to guarantee the shortest path. A* focuses on the most promising paths, 

leading to faster solutions, especially in larger or more complex environments. When 

combined with costmaps, A* provides a balanced approach that optimizes both 

performance and efficiency, particularly in dynamic environments. While alternatives 

like Potential Fields, Dynamic Programming, Voronoi Diagrams, and RRTs have 

specific applications, they often suffer from high computational costs, lack 

adaptability, or fail to ensure optimal paths. In contrast, the combination of costmaps 

and A* provides a robust, efficient approach to dynamic path planning.     
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5.2.11 Local Planning 

The local planner attempts to follow the crop of the global path that is within the 

local costmap. The local costmap inherits the previously mapped obstacles from the 

global costmap, and superimposes new, higher-resolution obstacles from live sensor 

readings. The local planner uses the real-time local costmap, which shows new and 

dynamic obstacles, and plans a detour path around said obstacles, roughly following 

the global path, deviating where necessary.  

The local planner adopts a cautious stance, assuming that unmapped areas are 

potentially hazardous and not traversable due to the risk of encountering obstacles: 

either confirmed or undetermined. The local planner’s cautious strategy (assuming 

unmapped areas are hazardous) requires real-time confirmation of traversability 

within its sensor field of view. As it follows the global path, the local planner ensures 

that no hazards are present and that the ground plane is present before proceeding. 

The simplest way to implement a local planner is by sampling curved trajectories; 

either Trajectory Rollout (TR) or Dynamic Window Approach (DWA). While DWA 

and TR run very fast, they cannot detour around dynamic or new obstacles, as would 

be present in un-explored environments, resulting in the global path updating very 

frequently, which is inefficient. Thus more complex motion planners, specifically 

elastic band planners, were required, as discussed later in this section. 
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The diagram in Figure 5.11 below shows obstacles in red, sampled trajectories 

with dotted lines, robot pose as blue squares, and a potential collision of the robot 

with an obstacle on the forward simulated trajectory with a black splotch. 

 
Figure 5.11 Sampled trajectories used by Dynamic Window Approach and 

Trajectory Rollout 

 

Table 5.8 Comparison of DWA to TR 

 Dynamic Window Approach 

(DWA) 

Trajectory Rollout (TR) 

Step 1: Sample Velocities in one timestep Sample form all achievable 

velocities 

Step 2: 

Step 3: 

Step 4: 

Forward Simulate 

Reject illegal trajectories that cause collisions with obstacles 

Rank and pick best path 

Pros: Lowest compute Low compute, more optimal than 

DWA  

Cons: Cannot detour around dynamic 

obstacles 

May be outperformed by TR 

Cannot detour around dynamic 

obstacles 

Slightly slower than DWA 
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Elastically deforming path planners [86] can deform their path within the local 

costmap (or sensor FOV), so a new obstacle will not cause the global planner to re-

search. The Elastic Band attempts to follow a local snippet of the global path, 

deforming based on obstacles around it. The initial path is the original crop of the 

global path within the local costmap (eg: the next 10 meters of path). It is then 

subjected to internal forces which “contract” the path, and external forces repel the 

path from obstacles. These deformations result in shorter, smoother paths around 

mapped and new obstacles.  

 

Figure 5.12 a) snippet of global path; b) contraction and repulsion forces applied; 
c) and d): forces applied in presence of another obstacle [86] 

The contraction and repulsion forces mimic those in a rubber band. The 

contraction force represents the tension in a rubber band stretched around an obstacle, 

removing any slack in the path. The repulsive force comes from the obstacles 

deforming the elastic path to guarantee clearance from an obstacle.  



 

   

 

91 

If the local planner finds itself in a dead-end or against an obstacle too big to 

detour around, that obstacle will be added to the global costmap, and the global 

planner searches for a new global path. While slower than DWA or TR, the Elastic 

Band planner runs real-time. 

 

Figure 5.13 Illustration of obstacles deforming Elastic Band local path (red) as it 
follows global path (blue)  [87] [88] 

A Timed Elastic Band [89] local planner was considered: it is the time-optimal 

version of Elastic Band, convenient for modulating velocity through turns as one 

would around a racetrack. It provides the fastest path rather than the shortest path. 

However, with the computational load of the other autonomy nodes running 

simultaneously, Timed Elastic Band did not run real-time on the NVIDIA Jetson 

Xavier NX which it was tested on.  

Since time-trial laps on a raceway are not within scope of this project, and seeking 

the shortest path was more important than the fastest path, the Elastic Band is used as 

the Local Planner for its runtime efficiency and safe detouring capability.  
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5.3 Prior Architectures: Incremental Improvements 

Each prior architecture faced specific challenges that led to inefficiencies or 

inaccuracies in autonomous navigation. By addressing these issues through the 

introduction of dynamic costmaps, improved obstacle handling, and better local 

planning strategies, the current system architecture offers a more responsive and 

effective approach to autonomous driving. 

 

5.3.1 Introduction of a Local Planner 

To solve a slow path planning response, a local planner was introduced. 

The initial architecture only included a global costmap and planner, and not a 

local costmap and planner. Any deviation from the target path due to stochastic 

movement or new obstacles necessitated a re-assessment of the entire global costmap, 

requiring a full re-plan of the global path. This resulted in slow path finding in 

dynamic environments. 

A local costmap and planner were added to handle local deviations. This approach 

allowed the system to recalculate collisions and paths exclusively in the local 

costmap, only updating the global costmap and re-planning the global path when no 

feasible detour was available. This reduced the frequency of global re-planning, and 

improved responsiveness to dynamic obstacles. 
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5.3.2 Complementary Assumptions for Exploration in 

Unmapped Environments 

To enable autonomous navigation into previously unmapped areas, the global and 

local planners were designed to make opposite assumptions about unknown terrain, 

balancing exploration with safety. 

Initially, both the local and global planners were configured to be too cautious, 

assigning lethal costs to unmapped areas in the costmap. This assumption that all 

unmapped regions were unsafe prevented the global planner from venturing into areas 

where the map was incomplete. This cautious stance restricted the rover to only 

navigating within mapped regions, effectively preventing exploration. Later, when the 

cost to traverse unmapped areas was reduced (making both planners more optimistic), 

the rover faced an increased risk of the local planner leading the vehicle into an 

obstacle, as the local planner had not yet verified the safety of the unmapped area. 

To overcome this limitation, the planners were modified to make complementary 

assumptions. The global planner was made optimistic by reducing the cost assigned 

to unmapped areas, assuming that unmapped areas were traversable and free of 

obstacles. This optimism enabled the system to navigate toward waypoints in regions 

that had not yet been mapped, thus facilitating exploration. In contrast, the local 

planner was designed to be cautious by assigning lethal costs to unmapped areas, 

assuming that unmapped areas were potentially dangerous and requiring real-time 

validation of their traversability. The local planner would only proceed once the area 
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had been confirmed safe upon being mapped by the onboard sensors, ensuring that 

the rover did not drive into obstacles or hazardous terrain. 

By making complementary assumptions: optimism in the global planner and 

caution in the local planner, the system was able to strike a balance between 

exploration and safety. The global planner encouraged the rover to venture into new 

terrain, while the local planner ensured that each new step (segment of the route) was 

validated, allowing the rover to explore unknown environments, thus greatly reducing 

the risk of encountering unpredicted obstacles. 

 

5.3.3 Dynamic Global Costmap 

To prevent the robot from getting stuck in a dead end, the static global costmap 

became dynamic, allowing new obstacles to be added. 

Using a static global map caused issues when the robot encountered dead ends not 

represented in the pre-mapped global map. This caused a “cul-de-sac” problem where 

the robot would find itself in a dead end that was not shown on the global map, try 

exiting the dead end based on the live sensor stream in the local map, and then re-

attempt the dead end. The global planner would then re-route straight through the 

dead end, because the new obstacles causing the dead end were not being copied onto 

the global costmap. 
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The static global costmap was made dynamic to incorporate new obstacles 

detected. This resulted in better adaptation to new obstacles, and improved path 

planning out of dead ends that were previously unmapped. 

 

5.3.4 Ray Tracing for Obstacle Removal in Dynamic 

Environments 

Blockades caused by stale obstacles were cleared with raytracing for obstacle 

removal. 

The newly introduced dynamic global costmap incorporated new obstacles, 

allowing the robot to get out of dead ends. However, it did not clear stale obstacles 

that were no longer present. When new obstacles were moving, the costmap added 

lethal costs where the obstacle was observed (but never removing them), effectively 

creating a barricade trailing behind the obstacle. For example, if a person were 

walking past the robot, the global map would mark each location that the person was 

in as lethal, leaving a “barricade” across the costmap. 

Ray tracing for obstacle removal was implemented to clear obstacles from the 

costmap. By checking if points on the costmap could be ray-traced through, obstacles 

no longer present were removed, preventing the creation of barricades and improving 

map fidelity. For the global costmap to be dynamic, it needs to not only add obstacles, 

but also clear them as well. 
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5.3.5 Conditional Obstacle Removal 

False obstacle clearance caused by raytracing out previous obstacles necessitated 

conditional obstacle removal, where clearing of obstacles requires both a ray-trace 

through the previous obstacle and an intersect of the ray with a new object beyond the 

location of the original obstacle. 

Obstacles near the robot or obscured by debris on the sensor sometimes did not 

produce depth returns, nor did cliffs or drop-offs. While the lack of a depth 

measurement initially cleared obstacles, this also led to incorrect assumptions that 

obstacles moved or were not present, causing over-optimism in path traversability. 

Thus, no depth reading could mean any of the following: 

• Path is clear: There is no depth return since there is no obstacle.  

• Unseen obstacle: There is no depth return for a “negative obstacle”, eg: a 

cliff or drop-off, which is not traversable.  

• Unseen obstacle: There is no depth return since the lethal obstacle is too 

close to the sensor for it to reconstruct the point cloud of the obstacle. 

• Unseen obstacle: There is no depth return since there is debris on the 

sensor preventing point cloud reconstruction of the obstacle. 

In an updated approach, obstacles were only removed from the costmap if there 

was a depth return ray traced through a marked obstacle’s location. This accounted 

for the sensors’ minimum range limitations, sensor debris, and cliffs (negative 

obstacles), improving obstacle clearing accuracy. While this conservative approach 
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occasionally caused lingering artifacts of overhead obstacles (since overhead 

obstacles only have open sky behind them), this may be improved with other sensors 

such as sonar, radar, or a multi-camera array performing obstacle learning. 

 

5.3.6 Relaxed Path Adherence and Expanded Detour Area 

To increase the efficiency of the local planner when making a detour, the 

allowable detour area was expanded, and the adherence to following the global path 

was reduced. 

When detouring around obstacles, the local planner prioritized immediately 

returning to the next traversable section of the global path (once past the obstacles), 

frequently resulting in inefficient backtracking and longer paths. This caused the local 

planner to curve around the back end of obstacles and backtrack down to an earlier 

point in the global path, rather than taking a “short cut” to rendezvous with the global 

path at a later point. 

To decrease total path length, the allowable detour area was increased from 

1[m]x1[m] to 10[m]x10[m], increasing the local planner’s capability to detour around 

larger obstacles without necessitating a replan of the global path. Additionally, the 

local planner prioritized progress along the global path (re-joining the path at a later 

point) rather than fidelity to the global path (returning to earliest segment of global 

path as quick as possible). This allowed the rover to “cut corners” and “take 

shortcuts” where safe to do so, resulting in more efficient paths.    
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5.3.7 Relaxed Global Localization Tolerance 

To reduce exceedingly high computational demands, the tolerance on the global 

location estimate was relaxed. 

Both the global and local planners initially required 1[cm] precision at 20Hz, 

which was demanding on processing power and sometimes led to failures in feature-

sparse environments where the location uncertainty was out of tolerance, or 

computational lag if the map was too large to process at that update rate. 

Relaxing the global location tolerance from 0.01[m] at 20Hz to 0.50[m] at 1Hz 

reduced the computational burden without negatively impacting the global planner or 

any other autonomous driving capabilities. While this resulted in slightly delayed 

global location updates, this did not impede the global planner since:  

• Obstacles were observed from tens of meters away, so all obstacles in the 

robot’s proximity were already mapped into the global costmap, for which the 

global planner had already determined a path. 

• The local planner maintained high precision 20Hz, allowing for the detection 

and avoidance of new dynamic obstacles.  

This balance between location accuracy and update frequency versus 

computational load improved system performance without compromising path 

execution. Further detail in 5.2.6.2: Differing Localization Accuracy Requirements.  
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5.4 Initial Development and Testing 

For the VLN agent to execute waypoint navigation, the autonomous driving stack 

must map new environments, track its location, plan an obstacle-free path the goal, 

execute the path, and detour around new obstacles  

To do this, the autonomous driving stack was first tested in simulation, in 

simplified environments, followed by HIL (Hardware in the Loop) testing. This 

included testing SLAM separately from path planning and dynamic obstacle 

avoidance. During these iterations in simulation, several edge and corner cases caused 

the robot to fail in reaching its goal, as detailed in Section: 5.3: Prior Architectures: 

Incremental Improvements. 

5.4.1 SLAM in Simulation 

 

Figure 5.14 2D SLAM in simulation 
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In Figure 5.14, the robot is performing SLAM using the 90° sweep of the lidar 

sensor. On the right is the “ground truth” Gazebo simulation running, showing the 

environment, robot, and visualized lidar FOV and range in blue. On the left is a visual 

representation of the robot’s resulting map and location estimate, with the following 

color coding: {red line: collapsed point cloud from lidar sensor; black line: mapped 

obstacles; light grey area: mapped clear area; dark grey area: unmapped area}. 

5.4.2 SLAM with Hardware in the Loop 

To verify that SLAM works on the RealSense D455 camera hardware, the same 

SLAM node was tested using the RealSense D455 point cloud (instead of the 

simulated point cloud). The RealSense D455 was rotated by hand at 0.2 [rad/s] while 

a spoofed odometry signal reported the same odometry. The SLAM model properly 

mapped new areas with inputs from the D455 camera. This is shown in Figure 5.15. 

 
Figure 5.15 Hardware in the loop test of SLAM. Left: SLAM map; Top right: 

depth; Bottom Right: RGB 
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5.4.3 Iterative Waypoint Navigation in Unmapped 

Environments 

The autonomous driving stack performs incremental waypoint navigation over 

unmapped terrain, allowing the robot to drive to new waypoints, while mapping and 

localizing in new unexplored environments. This is utilized by the VLN agent which 

iteratively issues waypoint goals. 

 
Figure 5.16 Iterative waypoint navigation in simulation. Left: sensory data, in situ 

map, and planned paths; Right: simulation (blue: sensor FOV and range) 

Once the simulation is started, the robot is spawned with sensor models and 

transmission models. Figure 5.16 shows initial testing and implementation of: SLAM 

(creates map in grey, and performs localization); Global Costmap (adds opaque blue 

inflation layer over obstacles on map); Local Costmap (copies local crop of global 

costmap, adds additional solid blue inflation layer to obstacles currently visible by 

sensors); Global path (in yellow, determined by A* searching on Global Costmap); 

Local path (in green, determined by Elastic Band local planner).   
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5.5 Results  

The implementation of autonomous driving demonstrated effective SLAM in both 

simulated and real environments, validating the system’s ability to map and localize 

accurately. Figure 5.17 and Figure 5.18 highlight the mapping and localization 

capabilities in underground and GNSS-denied settings. 

Path planning and dynamic obstacle avoidance were tested with various local 

planners, with the Elastic Band Planner showing robust performance in handling 

dynamic obstacles in cluttered environments, as shown in Figure 5.19. The real-world 

testing confirmed the system’s capability to adapt to dynamic changes and follow a 

global path efficiently. 

5.5.1 3D SLAM: Implementation & Results 

The robot was adapted to for use in unstructured “off-road” environments which 

are more complex, involving changes in elevation and terrain structure. The robot 

performed SLAM in a simulated outdoor (and underground environment). Figure 

5.17 shows the robot on a bridge in the simulation, and the associated 3D elevation-

color-coded point cloud map.  

 
Figure 5.17 Robot mapping bridge. Left: simulation; Right: in situ SLAM map 
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5.5.1.1 3D Mapping and 6-DOF Localization in Cave Environment 

In a series of pictures, Figure 5.18 shows the robot crossing a bridge, entering a 

cave, and mapping the subterranean environment. On the left side of the images: 

white voxels show live sensor (point cloud) data, and the colored voxels show the 

color-coded elevation map. The right side of the below images show the live streamed 

images as given by the simulated RGB camera on the rover. 

 

 
In situ map shows cave entrance.  
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In situ map (left) matches outline of cave (right). 
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Candidate nodes available for loop closure when returning to previously mapped area. 

 
Loop closure corrects odometry drift. Blue areas signify higher elevation in the cave. 
The robot finishes mapping the cave, and begins driving back to the bridge 

 
Map depicts full cave system, bridge, and solar panels. 



 

   

 

106 

 
Completion of in situ map (left) compared to top-down view of simulation (right). 

Figure 5.18 Robot mapping a subterranean cave environment 

 

5.5.2 Iterative Waypoint Navigation in Unmapped 

Environments 

The images in Figure 5.19 show the rover performing iterative waypoint 

navigation in unobserved (and unmapped) environments. It does this by performing 

3D 6-DOF SLAM (mapping a 3D environment while tracking 6-DOF pose), and 

navigating to waypoints in an unmapped environment, allowing it to perform frontier 

exploration.  

On the global costmap, unmapped areas have a 3 times higher cost to traverse 

than mapped traversable areas. This encourages the global planner to stay in mapped 

terrain, while still allowing it to venture into new territory as necessary to find a 

viable path.  
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As a precaution, the local costmap assigns lethal costs to unmapped areas, forcing 

it to verify whether the terrain is traversable as it approaches, before driving over it. 

In rare cases, as the robot approaches an unmapped area, the robot may be unable to 

fill in the map, either due to the presence of a cliff (resulting in no point cloud return), 

or debris on the sensor (similarly resulting in no point cloud return). These two 

dangerous scenarios result in the local costmap conservatively assuming the worst-

case scenario and representing the area as non-traversable. 

 
Robot starts with no previous map; initializes map with first reading from depth 
sensor. 

 
Waypoint is specified in the top-left corner of the environment, green global path is 
created, and yellow local path contracts the path around corners where possible. 
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A traffic cone is placed in the robot’s path, forcing it to detour. 

 

 
Robot reaches first waypoint, and is then directed to bottom right of environment. 
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Another traffic cone is placed in the path of the robot. 

 
Robot detours without collision 
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Robot reaches second waypoint destination, despite dynamic obstacles obstructing its 

path. 

Figure 5.19 Robot performing SLAM and iterative waypoint navigation, enabling 
it to explore unmapped frontiers  

  



 

   

 

111 

5.6 Conclusions in Autonomous Driving  

5.6.1 Improvements & Contributions Recap 

This research outlines the creation of an autonomous driving stack and VLN agent 

that can simultaneously, and in real-time: map, localize, path plan, execute, and 

detour. Dynamic obstacle avoidance is implemented by referencing the in situ SLAM 

map (which has a slow update rate but larger spatial scope), and live data (which has 

a fast update rate, but smaller spatial scope). Waypoint navigation is performed in 

unmapped environments by creating different assumptions for unmapped areas in the 

global map versus the local map. The autonomous driving stack, capable of path 

planning, localization, and mapping, supports the VLN agent which relies on 

obstacle-free path execution to the waypoints it specifies. 

In work on 2D autonomous driving (driving on a plane), the autonomous driving 

agent saw a 100% success rate in 100-200 simulated runs, and 50-100 real life 

hardware demos. The definition of success is that the agent always reached its goal 

(or got as close as possible to the goal if the goal was impossible to reach), and never 

crashed into an obstacle. 

When driving in 3D terrain (rough, sloped, rocky environments), the autonomy 

stack was able to create maps of sparse environments that were representative of the 

terrain, tested over 50 meter stretches in both simulated and real environments, while 

accurately tracking the 6-DOF pose. 
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5.6.2 Lessons Learned 

Through the design, build, and test phases of the autonomous driving stack, there 

are several important takeaways from this work:  

Each iteration of autonomy architectures as outlined in Section 5.3: Prior 

Architectures: Incremental Improvements highlight different lessons learned and 

opportunities for improvement. This includes using a local planner in conjunction 

with a global planner, allowing for dynamic updates to the global map, conditional 

obstacle clearing, expanded detour areas, and relaxed global localization tolerance.  

The Local Planner must integrate information from both the global map to fill in 

blanks from live sensor data, and the live sensor stream in case a new obstacle 

appeared between map updates. Fast and safe navigation requires the local planner to 

adapt based on the most recent sensor data, while also referencing the global map for 

overall context. 

Planners have opposite assumptions for frontier exploration. The global planner 

must assume that unmapped areas are clear of lethal obstacles, allowing the planner to 

explore new territories and update the global map as new areas are discovered. In 

contrast, the local planner must assume unmapped areas contain lethal obstacles. This 

precautionary approach ensures that the local planner can avoid potential hazards 

when the traversability of new areas cannot be confirmed through sensor data. For 

example, if a local planner cannot verify a map’s traversability because there is no 
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point cloud representation of that area, it may be because that area is above a drop-off 

or cliff, or the depth sensor cannot register a depth value if an obstacle is too close. 

Side-facing visual sensors, such as wide FOV lidars and fish-eye cameras, are 

effective for capturing odometry and improving positioning estimates; and detecting 

obstacles from the sides which is helpful when passing closely between obstacles. 

However, higher-resolution and more accurate forward-facing sensors (eg lidar and 

depth cameras) provide better depth registration, improving both map accuracy and 

path planning efficacy. 

These lessons underscore the importance of integrating global and local 

information, the need for careful handling of assumptions during exploration, and the 

critical role of high-quality sensors in achieving accurate and efficient autonomous 

navigation. 

 

5.6.3 Future Work 

Future work in autonomous driving could greatly benefit from exploring 

alternative global planning algorithms like LPA*, D* Lite, and θ* to enhance 

dynamic obstacle handling and path efficiency. Additionally, advanced localization 

techniques that leverage elevation maps and sensor data could address challenges in 

GPS-denied environments, improving overall navigation accuracy and robustness. 

These advancements will push the boundaries of autonomous driving systems, 

making them more adaptable and capable in diverse and dynamic environments.  
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5.6.3.1 Exploring Different Global Planners 

Currently, the global planner uses A*, a heuristic-guided informed search 

algorithm. There are some drawbacks to A*, for example if the global path needs to 

be replanned (if a new obstacle obstructs it), the entire path needs to be recalculated. 

Thus it is worth exploring other informed search algorithms for global planning such 

as LPA* (Lifelong-Planning-A*) [90] and D*Lite [91] [92] which are more efficient 

at re-planning. It would be valuable to benchmark θ* as well for large, open 

environments. 

D*  is a dynamic version of A* in that it can handle dynamic obstacles without 

having to perform an entirely new search. This would be helpful for more quickly 

reevaluating the global path if a new obstacle required a detour outside the spatial 

bounds of the local planner. D*Lite is a faster and simpler version of D*, based on 

LPA*.  

In contrast to A*, D* searches backwards from the goal node, effectively 

computing the A* optimal path for any possible location on the map, which is helpful 

for re-routing a portion of the path, or restarting the search from a new location. D* 

adapts to new (dynamic) obstacles by simply adjusting the weights of the affected 

edges along the intended path in real-time. 

It would be worth exploring θ* [93] (pronounced “theta-star”) – an any-angle 

planner which is relieved of the 8-way connected limitation that A* (and other grid-

based searches) are bound to. This algorithm may find the path more quickly in 

landscapes with sparse obstacles but may need to be adjusted for working on 
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costmaps where there are different costs associated with different preferences of 

traversable area. While a post-smoothed A* can shorten the path after search has 

completed, θ* effectively searches and smooths at the same time. 

 

5.6.3.2 GPS-Denied Global Localization 

This work could be extended to replace GPS signals with other global-localization 

capabilities in GPS-denied environments. This can be done by implementing IMU-

based global localization, eg: TRIAD, point cloud registration, and other approaches 

outlined in section 5.2.6.1: Methods for Global Localization in GPS denied 

environments.  

 

5.6.3.3 Motion Planning for High-Speed Off-Road Driving 

It would be valuable to create a kino-dynamically feasible motion planner for 

high-speed autonomous driving, where the vehicle is going sufficiently fast to be 

concerned about rollover and traction control. Future work may consider fastest path 

rather than shortest path, stability control and traction control, and braking in advance 

before anti-banked turns or on a downhill. 
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6 Appendix A: Transition to Industry 

All preceding sections have been approved for public release, under Public 
Information Release Authorization (PIRA) # SSS2024111443. 

This following section has been approved for public release, under Public 
Information Release Authorization (PIRA) # SSS2024091300. 

 
The figures in this section showcase the transition of academic research to 

industry applications, where it was adapted to different hardware, with faster onboard 

compute and higher accuracy sensors. 

6.1 Fully Deployed Rover Mapping Environment 

The video frames in Figure 6.1 show a live hardware demonstration of 2D SLAM 

in an outdoor environment using a Velodyne lidar with 16 channels and panoramic 

FOV. The rover can be seen mapping its surroundings and localizing within the map 

it creates. 

On the right of the images in Figure 6.1 is the view the rover-mounted webcam. 

The webcam’s livestream gives the operator context into what part of the 

environment the rover is in, and how it relates to the SLAM performance, but is not 

itself used for autonomous driving, solely for user insight.  

Images on the left side of Figure 6.1 show the rover model (blue chassis and black 

wheels) and what the robot perceives: rainbow colored pixels show the intensity of 

the lidar return off local obstacles; black pixels show lidar returns on obstacles within 

the sensor’s depth range; light grey pixels show unobstructed areas as defined by a 
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ray being traced through that location to an obstacle behind it; dark grey pixels show 

unknown areas: unknown either because there was no lidar return from that ray, or 

because the ray was stopped by a closer obstacle. 

 
In a new environment, the initial frame of the map is the first frame from the sensors. 

 
Rover drives forward and makes left turn down a sidewalk. 

Rover progresses down sidewalk, filling in the map and localizing as it goes. 
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Rover makes U-turn and backtracks. 

 
Rover passes original starting location. 

 
Rover begins turn onto river stones 
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Rover continues along river stones, with wheel slip causing the odometry to drift. 

 
Rover returns to starting location, showing the correct position on the map utilizing 

loop closure, with lidar returns matching mapped obstacles. 

Figure 6.1 Rover performing 2D SLAM fused with wheel odometry in real, 
outdoor environment (PIRA # SSS2024091300)  
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6.2 Real-World Testing Path Planning & Dynamic 

Obstacle Avoidance 

Figure 6.2 shows path planning and dynamic obstacle avoidance as tested in an 

indoor environment.  

The right side of the images shows the rover’s view via a webcam; this purely 

provided context to the operator and was not used for autonomous driving. The left of 

the images illustrates what the rover is perceiving and how it is planning in its 

environment as represented by: 

• Green path: Global path which gets rover to its goal; may traverse entire 

global costmap, which is shown as the larger opaque map in the background 

• Yellow path: Local planner which follows global path, while detouring around 

dynamic obstacles 

• Rainbow colored pixels: color coded intensities of lidar laser returns 

• Black pixels: lethal obstacles 

• Cyan inflation layer with red outline: lethal inflation layer just wider than half 

the width of the rover, allowing the planned path to be agnostic to the rover’s 

width 

• Blue inflation layer: safety layer which adds a low (but not lethal) cost to the 

costmap. This encourages the planners to give more breadth around an 

obstacle, but still allows the rover to pass though if necessary (when the 
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alternative is a significantly larger detour which would result in a larger total 

path cost). 

• Large opaque map in background: global costmap 

• Smaller, more brightly colored map in foreground: local costmap, which 

inherits obstacles from global costmap and live sensor stream 

 
The rover in its starting location; the global planner plans a new path to the goal at the 

top left of the map, as indicated by the end of the green line. The yellow local path 

follows the green global path since there are no obstacles in the way. 
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As seen in the webcam view, a (human) obstacle steps in front of rover where it was 

planning to drive, and a lidar point cloud appear where the person stands on the 

(green) global path. The yellow local path detours around the person while 

rendezvousing with the global path later. 

 
Person steps even further into the local path, and the red lidar points show mark the 

new the boot as a new obstacle… 
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… And 0.05[s] later the local planner deems the detour unsafe and the global path 

untraversable. The global planner determines a new path (in green), and the local 

planner (in yellow) follows the new path. 

 
The obstacle (person) moves in front of the rover again, and the yellow local path 

deflects again. 
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Person continues moving up and to the right in the map, making the last detour 

untraversable, so the global planner re-routes yet again. 

 
Person moves out of the way of the rover, allowing the local planner to contract its 

(yellow) path and drive straight to the furthest point on the global path, which is the 

end destination. 

 

Figure 6.2 Rover performing path planning and dynamic obstacle avoidance in a 
real environment, as person jumps in front of the rover and blocks path (PIRA # 

SSS2024091300)  
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6.3 Crawling Out of a Ditch with 3D SLAM in a 

Real Environment 

Figure 6.3 shows the rover pitching and rolling as it climbs out of a ditch, while 

performing SLAM, showcasing the rover’s ability to track pose (location and 

orientation) while mapping. 

 

In a new environment, the first frame of the map is the first point cloud received.  

 

Rover is pitching up as it crawls over a piece of wood. 
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Rover uses features on the building to help align point clouds as it is crawling up a 

cement curb. 

 

 

Figure 6.3 Rover performing 3D SLAM while pitching and rolling as it crawls 
out of a ditch (PIRA # SSS2024091300)  
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