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ABSTRACT 8 

Machine Learning (ML) techniques have been used extensively in research within the field of 9 

structural engineering due to their high level of accuracy in predicting the behavior of different 10 

structural elements. In fact, the superior predictive performance relative to traditional statistical 11 

models is often suggested as the primary motivation for the adoption of ML models. However, the 12 

implications of such improvements in predictive accuracy in the design and performance of 13 

structural systems have not been studied. This paper presents a reliability-based investigation of 14 

the tangible benefits provided by ML models in terms of structural design and performance. To 15 

quantify these benefits, the increase in predictive accuracy is interpreted as a reduction in epistemic 16 

uncertainty. The specific focus is on a predictive model that estimates the drift capacity of 17 

reinforced concrete shear walls (RCSWs) with special boundary elements. The accuracy of an 18 

extreme gradient boosting (XGBoost) model relative to a basic linear regression equation is 19 

quantified in terms of reduced epistemic uncertainty. Then, using 36 RCSW archetype buildings, 20 

a Monte Carlo-based procedure is implemented to evaluate the implication of the improved 21 

predictive accuracy to seismic design and performance. The study provides insights into how much 22 

improvement in accuracy (i.e., ML relative to traditional model) is needed to have a tangible effect 23 

on the seismic design and performance. 24 
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1. INTRODUCTION 27 

1.1. Machine Learning in Structural Engineering 28 

Research on the application of machine learning (ML) in structural engineering (SE) has received 29 

significant attention in recent years. The potential of ML to capture complex nonlinear 30 

relationships between the different variables contained in the data coupled with the increased 31 

accuracy (relative to traditional statistical models) is one of the most cited reasons for their 32 

widespread use. Several studies showed the superiority of ML models in accurately predicting the 33 

behavior of different types of structural systems and components. Backbone curve parameters [1], 34 

deformation capacity [2,3], bearing capacity [4], and failure mode [4,5] of reinforced concrete 35 

(RC) columns have all been predicted using ML models. In addition, ML models for RC beams 36 

have been developed to estimate shear strength [6,7] and long-term deflection [8]. ML has also 37 

been used to predict shear strength [9,10], drift capacity [11], and failure modes [12] of RC walls. 38 

The behavior of RC slabs [8,13,14] and beam-column joints [15,16,17] has also been investigated 39 

using ML algorithms. Based on this limited review, there were several key findings that can be 40 

generalized across the various studies. For example, the improvement in predictive performance 41 

by the ML model relative to more traditional methods (e.g., analytical equations) was almost 42 

always highlighted. Most studies conducted a feature importance analysis, which elucidates the 43 

factors that have the greatest effect on predictive performance. Most (if not all) of the studies 44 

limited their evaluation of the predictive models to the feature ranges contained in the training 45 

data. This approach brings into question the ability (or lack thereof) of the ML models to generalize 46 
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(or extrapolate) beyond the observed data. Readers are directed to several review papers that have 47 

summarized the application of ML to structural engineering problems [18-21]. 48 

Despite their popularity, ML models are faced with the challenge of being difficult to explain i.e., 49 

they are generally viewed as “black-box” models. Explainable Artificial Intelligence (XAI) [22], 50 

a branch of study that concentrates research on ML interpretability and seeks to move toward a 51 

more transparent AI, is being developed in an effort to overcome this problem. Interpretability 52 

methods can be classified based on their purpose (e.g., explaining black-box models, creating 53 

white-box models, enhancing fairness of a model, and testing the sensitivity of predictions).  These 54 

methods can be further divided based on the type of ML algorithms that are considered. If the 55 

method is limited to a single model or a group of models, it is described as model-specific. On the 56 

other hand, if the method can be used with any ML model, it is deemed model-agnostic. The scale 57 

of interpretation is another essential factor that distinguishes different interpretability techniques. 58 

The technique is considered local if it only describes one particular instance, and it is considered 59 

a global method if it explains the entire model. Lastly, some XAI methods are more suitable to 60 

specific data types (e.g., tabular, images, and text) [23]. 61 

As previously indicated, the limitations of conventional data driven methods in terms of predictive 62 

accuracy are one of the main drivers of ML-SE applications. A review of ML-based regression 63 

models of different structural elements that were compared with other empirical models (e.g., 64 

linear regression, from a design code, other non-ML models reported in literature) was conducted 65 

to determine the improvements based on different evaluation metrics including root mean square 66 

error ሺ𝑅𝑀𝑆𝐸ሻ, coefficient of determination ሺ𝑅ଶሻ, mean absolute error ሺ𝑀𝐴𝐸ሻ, mean absolute 67 

percentage error ሺ𝑀𝐴𝑃𝐸ሻ, and the coefficient of variation ሺ𝐶𝑂𝑉ሻ of the ratio of predicted-to-68 

experimental target variable. Table 1 provides a comprehensive summary of the percentage 69 
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improvements in 𝑅𝑀𝑆𝐸, 𝑅ଶ, 𝑀𝐴𝐸, 𝑀𝐴𝑃𝐸, and 𝐶𝑂𝑉 achieved through the implementation of ML 70 

models [2-4,7,8,10,11,14,16, 24-58].  71 

An important observation from Table 1 is that the relative improvement in predictive performance 72 

varies significantly based on the considered metric and the type of component. For instance, when 73 

predicting wall shear strength, the average 𝐶𝑂𝑉 improvement is approximately 38%, which is 74 

significantly lower compared to the other metrics (𝑅ଶ, 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, and  75 

𝑀𝐴𝑃𝐸). Whereas for column axial strength, the average 𝐶𝑂𝑉 improvement is greater than the 76 

other metrics. There is also significant variance in the improvement as measured by the different 77 

metrics for beam deflection and rotation capacity. A similar conclusion can be drawn when 78 

examining the improvements provided when predicting the flexural and torsional strength of 79 

beams. Based on these observations, it is important to recognize that while some of these 80 

improvements may appear significant, this may be partly due to the chosen predictive performance 81 

metric. The studies that form the basis of the results in Table 1 have exclusively focused on 82 

improving the predictive power of their proposed models without discussing the tangible benefits 83 

of these improvements. This is particularly important because, for most ML models, there exists a 84 

trade-off between predictive accuracy, model complexity, and interpretability. While enhanced 85 

predictive accuracy is a valuable outcome, it is essential to explore how these improvements 86 

translate into practical benefits in engineering practice. Questions remain about whether increased 87 

accuracy leads to more informed design choices, enhances safety, or provides cost savings in real-88 

world applications. This paper aims to bridge this gap by investigating the practical implications 89 

of improved ML predictive models in the design and performance of structural systems within a 90 

reliability-based context. 91 
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Table 1. Percentage improvements in evaluation metrics for various structural element responses 92 

Structural Elements' 
Responses 

Evaluation Metric 
𝑅𝑀𝑆𝐸 𝑅ଶ 𝑀𝐴𝐸 𝑀𝐴𝑃𝐸 𝐶𝑂𝑉 

Shear 
Strength 

Beam 
[7,24-34] 

32.8% to 
80.5% 

0.4% to 
99.4% 

35.3% to 
81.3% 

80.3% 
12.1% to 

84.2% 
Slab 

[14,35-
38] 

54.7% to 
77.8% 

3.9% to 
21.6% 

- 
32.3% to 

38.6% 
52.2% to 

67.1% 

Column 
[4,39] 

48.4% to 
62.6% 

31.4% to 
261.4% 

71.7% 78.6% 67.6% 

Wall 
[10,40-

42] 

41.53% to 
80.87% 

6.5% to 
60.4% 

66.7% 
59.8% to 

79.8% 
38.2% 

Joint 
[16,43-

46] 

-2.9% to 
93.7% 

66.7% to 
120.3% 

63.2% to 
99.9% 

46.9% to 
98.9% 

0.2% to 
90.7% 

Axial 
Strength 

Column 
[47-53] 

27.3% to 
90.2% 

0.4% to 
26.8% 

57.2% to 
77.9% 

57.1% to 
89.3% 

75.9% to 
90.4% 

Flexural 
and 

Torsional 
Strength 

Beam 
[54-57] 

18.6% to 
90.1% 

-0.4% to 
14.9% 

-129.6% - 
21.2% to 

48.3% 

Deflection 
and 

rotational 
capacity 

Beam 
[8,58] 

73.9% 0.2% -0.5% 
0.9% to 
70.5% 

- 

Drift 
capacity 

Column 
[2,3] 

74.2% 207.3% - 83.7% 
46.7% to 

61.0% 
Wall 
[11] 

41.0% 38.1% - - 43.3% 

 93 

In other fields where ML has been adopted in practice, there have been studies that have evaluated 94 

their benefits in practical terms. Reis et al. [59] showed that the extent to which ML applications 95 

are used to support internal organizational activities has a positive effect on financial performance. 96 

Additionally, Jannach and Jugovac [60] showed that ML-based recommender systems such as the 97 

ones used in e-commerce websites, have a positive effect on various business performance metrics 98 

including sales numbers and user engagement. Furthermore, Google reported that their App 99 
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recommender system—a combination of neural networks and linear models—resulted in 3.9% 100 

increase in app acquisitions for Google Play compared to a linear model [61]. In SE, where safety 101 

and performance of infrastructure are the primary goals, the implications of improving the 102 

accuracy of predictive models can be investigated using reliability-based principles.  103 

1.2. Structural Reliability 104 

As a sub-discipline, structural reliability provides the language, tools, and models needed to 105 

evaluate and quantify the safety and overall performance of structures by explicitly accounting for 106 

various sources of uncertainty (e.g., [62,63]). In general, uncertainties can be categorized as 107 

aleatory or epistemic [64]. Aleatory uncertainty refers to the inherent randomness in a system that 108 

is irreducible. On the other hand, epistemic uncertainty represents the uncertainty due to the lack 109 

of knowledge which can be reduced if additional information is available. In seismic performance 110 

assessments, ground motion (record-to-record) and structural model (modeling) uncertainties are 111 

often considered. Record-to-record (RTR) uncertainty, which is a type of aleatory uncertainty, 112 

arises from the unique frequency characteristics of each ground motion. As a result, there is 113 

variance in the response of a structure subjected to a set of ground motions scaled to the same 114 

intensity. This uncertainty is typically considered in structural response estimation by utilizing a 115 

large number of records.  116 

Modeling uncertainty is a form of epistemic uncertainty that can be classified into four categories 117 

[65]. Type I refers to uncertainties in the measurement of physical quantities (e.g., soil shear 118 

stiffness which can be directly measured). Since not all constitutive models use physical 119 

parameters that can be directly measured, Type II uncertainties consider the difference between 120 

the measured quantities and constitutive model parameters. Type III is used to describe the 121 

uncertainty associated with the selected constitutive model, which is typically theoretically derived 122 
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based on various assumptions (e.g., [66,67]) or empirically constructed based on observations 123 

(e.g., [68,69]). Finally, Type IV uncertainty is related to system level idealization (e.g., one- versus 124 

two-dimension analysis, neglecting soil-structure interaction). 125 

Evaluating the effects of “low-level” uncertainties (Type I and Type II) is more common in prior 126 

research (e.g., [70-75]), whereas fewer studies have attempted to quantify the effects of “high-127 

level” uncertainties (Type III and Type IV) (e.g., [76-78]). This could be because the data needed 128 

to quantify low-level uncertainty is generated by component-level physical experiments which are 129 

fairly common. In contrast, high-level uncertainty characterization requires data from sub-system 130 

or system-level experiments. High-level uncertainties are also known to be problem and system 131 

specific and therefore less generalizable than low-level uncertainties. 132 

The reliability of a structural component can be defined as the probability that it meets one or more 133 

predefined requirements (e.g., strength capacity is not exceeded) over some specified time period. 134 

Structural component reliability is expressed in terms of a limit state function, 𝑔, which relates the 135 

resistance and load variables for specific state of interest. This limit state function is given by 𝑔 ൌ136 

𝑅 –𝑄, where 𝑅 is the resistance and 𝑄 is the load. In a general problem, 𝑅 and 𝑄 may be functions 137 

of multiple basic random variables 𝑿 ൌ ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ. In this case, the limit state function is 138 

defined as 𝑔ሺ𝑿ሻ ൌ 𝑓ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ, where 𝑓ሺ. ሻ is a function that relates 𝑅 and 𝑄 with the basic 139 

random variables. Member failure occurs in the region where 𝑔 is less than or equal to zero 140 

ሺ𝑔ሺ𝑿ሻ ൑ 0ሻ. The probability of member failure is expressed as: 141 

 𝑃௙ ൌ ℙሾ𝑔ሺ𝑿ሻ ൑ 0ሿ ൌ න 𝑓𝑿ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ𝑑𝑥ଵ𝑑𝑥ଶ …𝑑𝑥௡
஽

 (1) 

Where 𝑓𝑿ሺ𝑥ሻ is the joint probability density function of X (the basic random variables) and 𝐷 is 142 

the domain in which 𝑔ሺ𝑿ሻ ൑ 0. 143 
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To address the difficulties in evaluating the probability of failure analytically, various approximate 144 

methods are often used such as first order reliability method (FORM), second order reliability 145 

method (SORM), and Monte Carlo simulation (MCS). In a design context, once the probability of 146 

failure has been established, an appropriate set of modifications to the system or component is 147 

made to enhance the reliability which in turn minimizes the risk of failure. 148 

1.3. Objective 149 

Despite the numerous SE studies that demonstrated the superior predictive performance of ML 150 

models, the implications of this improved accuracy, especially in a reliability-focused context, 151 

have not been addressed. To fill this research gap, this study presents a reliability-based 152 

investigation of the benefits provided by ML models in terms of their ability to improve predictive 153 

performance. Specifically, the enhanced predictive performance is quantified as a reduction in the 154 

epistemic uncertainty that is associated with the model. Ultimately, the goal is to investigate and 155 

quantify the effect of this epistemic uncertainty reduction on the “failure” probability of the 156 

considered system or component. The investigation focuses on the drift capacity of RC shear walls 157 

(RCSWs) with special boundary elements (SBEs). Section 2 provides an overview of the 158 

investigation methodology (Section 2.1) with a detailed explanation of each stage in the 159 

subsequent subsections. Section 2.2 provides a description of the ML-based drift capacity 160 

predictive model for RCSW-SBE that is used as the basis of the investigation. In Section 2.3, the 161 

RCSW-SBE automated design procedure is described.  Section 2.4 discusses the reliability-based 162 

assessment that is performed using MCS. Section 3 performs a case study that considers 36 163 

RCSW-SBE archetypes. The results, which are documented in Section 4, are separated based on 164 

performance assessment (Section 4.1) and design implications (Section 4.2). Section 5 summarizes 165 

the key findings, limitations, and suggestions for future related work. 166 
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2. METHODOLOGY 167 

2.1. Overview of the Methodology 168 

The methodology for investigating the implications of improved predictive performance provided 169 

by ML models is illustrated in Figure 1. The specific goal is to evaluate the effect of the reduction 170 

in epistemic uncertainty (due to increased predictive accuracy) that is provided by the ML models 171 

on seismic structural design and performance. The current study is focused on RCSWs with SBEs. 172 

However, the methodology is presented as being agnostic to the type of structural system and/or 173 

component. 174 

The context of the proposed framework is the development of the drift capacity code requirements 175 

for RCSW-SBE structures. As such, the design implication is quantified in terms of the required 176 

wall thickness that is needed to meet the target reliability objective. With this frame of reference, 177 

the methodology begins with defining a set of archetype buildings (RCSWs in this case) that will 178 

be used in the evaluation. The archetype space used in the current study considers variations in the 179 

number of stories, aspect ratio, and seismic design category. Since the proposed context is code 180 

development (and not on a single building), the goal is to generalize the findings across a broad 181 

class of RCSW-SBE buildings. The target performance is specified as the maximum acceptable 182 

probability of exceeding the limit state of interest, which in this study, is the drift capacity of the 183 

RCSW-SBE. 184 

For each archetype building, the lateral force resisting system is designed to satisfy the ACI 318-185 

19 [80] provisions for special structural walls. For the reliability-based assessment, the limit state 186 

function is  𝑔 ൌ 𝑅 െ 𝐷, where 𝐷 is the drift demand and 𝑅 is the drift capacity. The drift capacity 187 

predictive model is used with 𝑗 different 𝐶𝑂𝑉 values. Each 𝐶𝑂𝑉 represents a different level of 188 
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uncertainty in the predictions. Dispersion in drift demand due to RTR variability is quantified by 189 

performing nonlinear response history analyses (NRHA). Dispersion in drift demand due to 190 

modeling uncertainty is also considered in the assessment. MCS is implemented to determine the 191 

probability of failure (𝑃௙), which arises when the drift demand exceeds the drift capacity. For the 192 

reliability-based design, the archetypes are redesigned by incrementally increasing the wall 193 

thickness until the target probability of failure (𝑃௙,௧) is met. The effect of different drift capacity 194 

𝐶𝑂𝑉 values on the reliability-based wall designs are compared. This comparison is made based on 195 

the wall thickness for each design that is required to meet the target reliability. 196 

The wall thickness is a primary structural design variable due to its impact on both architectural 197 

and economic factors. Reducing wall thickness can provide benefits in space-sensitive projects. 198 

Thinner walls enhance aesthetics by allowing for more open spaces and more usable floor area. 199 

Additionally, reducing the wall thickness can lead to cost savings by decreasing material usage, 200 

lowering foundation requirements, and simplifying cladding installation, which further reduces 201 

labor costs. Overall, even small adjustments in wall thickness can impact both functionality and 202 

aesthetics. The extent to which these factors are influenced by changes in thickness depends on 203 

several variables, including the initial wall thickness, the building's intended use, the number of 204 

stories, and the specific functional requirements of the building. 205 
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 206 

Figure 1. Overview of the proposed methodology 207 

2.2. Drift Capacity Model 208 

As stated in the objective, this study aims to quantify the benefits of reduced uncertainty provided 209 

by ML models. The ML model considered in this study is the drift capacity prediction model for 210 

special structural walls based on the Extreme Gradient Boosting (XGBoost) algorithm [11]. The 211 

algorithm optimizes an objective function that combines loss and regularization terms: 212 

For each 𝐶𝑂𝑉௝ 

For each archetype 

Design a wall that satisfies the ACI 318-19 
provisions for special walls with SBEs  

Define archetype structures 

Perform reliability analysis and calculate the probability of failure 

(𝑃௙
௝ሻ using MCS 

Compute drift 
capacity using 

ML model 

Compute drift 
demand 
(NRHA) 

𝑃௙
௝ 

Find the wall thickness associated with the wall 
design that results in  𝑃௙ ൑ 𝑃௙,௧  
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              𝐿 ൌ෍𝑙ሺ𝑦௜ ,𝑦ො௜ሻ

௡

௜

൅෍Ωሺ𝑓௞ሻ 

௄

௞ୀଵ

                ሺ2ሻ 213 

Where ∑ 𝑙ሺ𝑦௜ ,𝑦ො௜ሻ
௡
௜  is the summation of the loss function value over the 𝑛 datapoints in the training 214 

set, Ωሺ𝑓௞ሻ is the regularization term, and 𝐾 is the number of trees. Decision trees sequentially 215 

constructed, with each correcting the errors of the previous ones. First- and second-order 216 

derivatives (gradients and Hessians) are used to minimize loss, and a greedy approach is used to 217 

identify optimal splits. Regularization is incorporated to prevent overfitting. 218 

Figure 2 depicts a schematic overview of the methodology used to develop and evaluate the model. 219 

The first step (feature selection) investigates the variables that affect wall drift capacity using 220 

statistical techniques, and the most influential features are chosen as inputs. The features included 221 

are (1) λୠ (ൌ 𝑙௪𝑐 𝑏ଶ⁄ ሻ, where 𝑙௪ is the wall length, 𝑐 is the depth of the compression zone and 𝑏 222 

is the wall thickness. The  λୠ parameter accounts for the slenderness of the cross section and the 223 

compression zone, (2) shear stress demand ቀv୫ୟ୶ ඥf′ୡ⁄ ቁ, where v୫ୟ୶ is the maximum shear stress 224 

and f′ୡ is the concrete compressive strength and (3) the configuration of boundary transverse 225 

reinforcement (CBTR), which is categorized into five types: overlapping hoops (OH), combination 226 

of a perimeter hoop and crossties with 90-135 degrees hooks (PH-90-135), combination of a 227 

perimeter hoop and crossties with 135-135 degrees hooks (PH-135-135), combination of a 228 

perimeter hoop and crossties with headed bars (PH-HB), and single hoop without intermediate 229 

legs of crossties (SH). Histograms for the input features and the drift capacity of the dataset are 230 

shown in Figure 3. The data is then split using nested cross-validation where the inner layer is used 231 

to tune the hyperparameters, while the outer layer is used to evaluate the model performance. 232 
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 233 

Figure 2. Overview of the methodology used to develop the ML model 234 

Model 
Evaluation 

Testing Set 

Feature 
Selection 

Data 
Splitting 

Inner Cross-Validation 

Outer Cross-Validation 

Model comparison 
with the Abdullah-

Wallace model 

Model Explanation 

Model Development 
using Entire Data 

Training Set Hyperparameters 
Tuning 

Optimal Model 
Selection 
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 235 

Figure 3. Histograms of the input variables and drift capacity from the dataset 236 

 237 

After creating and independently evaluating the proposed model, its predictive performance is 238 

compared with that of the Abdullah and Wallace model [81,82]. This comparison is made by 239 

developing two distinct models based on the CBTR. These two models were developed solely for 240 

the purpose of an “all-else-equal” comparison with the Abdullah and Wallace model. 241 

Subsequently, the original XGBoost model, in which the CBTR is included as an input feature, 242 

was compared with the results obtained from the two distinct models. The comparison showed that 243 

the original model produced similar results to the separate models. The models were constructed 244 

using the same dataset as that used by Abdullah and Wallace [81,82]. 245 
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The predictive performance of the XGBoost model, which includes the CBTR as an input feature, 246 

and the empirical equation developed by Abdullah and Wallace, were comparatively evaluated 247 

based on their accuracy. The 𝐶𝑂𝑉 of experimental-to-predicted drift capacity ratio resulting from 248 

the XGBoost and Abdullah and Wallace models is 0.085 and 0.15, respectively (an improvement 249 

of 43.3%). Furthermore, the proposed model improved the 𝑅𝑀𝑆𝐸 by 41% and 𝑅ଶ by 38%. Figure 250 

4 shows the experimental versus predicted drift capacity of the RC walls using the XGBoost model. 251 

Additional details regarding the development and performance evaluation of the drift capacity ML 252 

model can be found in Aladsani et al. [11]. 253 

 254 

Figure 4. Actual versus predicted drift capacity for the XGBoost model 255 

 256 

In Figure 5, the error—defined as the difference between experimental and predicted drift 257 

capacity—is plotted against each feature in the XGBoost model. Higher errors are primarily found 258 

at lower values of 𝜆௕ and 𝑣௠௔௫ ඥ𝑓′௖⁄ . Also, higher errors are observed in walls with OH, PH-90-259 

135, and SH. Data points with absolute errors exceeding 0.5% were further analyzed, revealing 260 



16 
 

that overestimation of the observed value often occurred when the wall features produced higher 261 

experimental drift capacities. On the other hand, underestimation of the observed value mostly 262 

occurred in walls features that exhibit lower capacities. This suggests that additional factors, 263 

beyond the adopted input features, may influence the variations in the measured drift capacities. 264 

 265 

Figure 5. Variation of the error relative to each feature in the XGBoost model: (a) 𝜆௕, (b) 𝑣௠௔௫ ඥ𝑓′௖⁄ , and 266 
(c) configuration of boundary transverse reinforcement 267 

 268 

These findings highlight the trade-offs involved in drift capacity predictions. Overestimating the 269 

drift capacity can lead to designs with greater safety margins, potentially preventing structural 270 

failures. However, it may also result in unnecessary material usage and increased construction 271 

costs. Conversely, consistent underestimation can yield unsafe designs that fail to meet essential 272 

performance criteria, thereby elevating the risk of structural failure. 273 

Given these considerations, it is crucial to prioritize the enhancement of the drift capacity 274 

prediction model by focusing on ranges that are near established failure thresholds. Specifically, 275 

attention should be directed toward drift capacities approaching the limits of acceptable 276 

performance, as these represent critical points where structural integrity is crucial. By identifying 277 

archetypes with drift capacities near these thresholds, it becomes possible to pinpoint the values 278 
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most likely to influence failure probabilities. This targeted approach ensures that model 279 

improvements are concentrated where they can have the most significant impact on safety and 280 

overall structural performance. 281 

2.3. Wall Design 282 

Because a large number of designs and analyses for the archetype space are required, a Python-283 

based platform is developed based on the object-oriented programing paradigm and used to 284 

automate the design and NRHAs. Dubbed RCWall-SDA (Reinforced Concrete Wall Seismic 285 

Design and Analysis), the tool helped minimize the time and manual effort required to generate 286 

code-compliant wall designs and analyses. 287 

The overall framework of the RCWall-SDA automated design process is shown in Figure 6. The 288 

initial input parameters specified by the user include building arguments (floor plan dimensions, 289 

number of stories, story heights, number of walls, and wall location), loads (floor dead and live 290 

loads), site conditions (mapped spectral response acceleration parameter at a period of 1-s (𝑆ଵ) and 291 

at short periods (𝑆௦), site class, and long-period transition period (𝑇௅)), concrete and steel 292 

parameters (concrete compressive strength (𝑓௖ᇱ), concrete type, reinforcement yield strength (𝑓௬), 293 

and areas of reinforcement bars), initial wall cross section dimensions, configuration of the 294 

boundary transverse reinforcement, and other miscellaneous parameters (redundancy factor, 295 

response modification coefficient, importance factor, and deflection amplification factor). 296 

The design process starts with calculating the design spectral acceleration parameters at the short 297 

period (𝑆஽ௌ) and at 1 second period (𝑆஽ଵ) using the AccParam class. Then, the ELF class 298 

implements the ASCE 7-16 [79] equivalent lateral force (ELF) procedure and the vertical 299 

distribution of seismic forces along the height of the structure is determined based on the 300 
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approximate fundamental period. The RCWall-SDA also includes a response spectrum analysis 301 

(RSA) class which can be used as an alternative to the ELF procedure. However, the ELF 302 

procedure is used in the current study. The ElasticAnaylsis class constructs an OpenSees [83] 303 

model of the wall and performs a linear elastic analysis to obtain the story drifts. The drifts are 304 

then scaled using the deflection amplification and importance factors, and compared with the drift 305 

limit specified in Table 12.12-1 of ASCE 7-16. 306 

Using the outputs from the aforementioned three classes, the WallDesign class performs the design 307 

and analysis calculations specified in section 18.10 of ACI 318-19 to obtain an initial wall design. 308 

The PMInteraction class generates the axial-flexure interaction diagram, which is used to ensure 309 

that the combined axial and moment demands (𝑃௨,𝑀௨) for all load combinations do not exceed the 310 

axial and moment capacities (𝜙𝑃௡,𝜙𝑀௡). The need for special boundary elements at the ends of 311 

the structural wall can be evaluated using either a displacement-based design or stress-based design 312 

approach. The displacement-based approach can only be used for effectively continuous slender 313 

walls with a single critical section. Whereas the stress-based approach can be applied to any wall 314 

configuration. The RCWall-SDA tool implements the displacement-based approach to assess the 315 

need for SBEs. To optimize the design, the quantities of longitudinal and transverse reinforcement 316 

are reduced over the wall height (every two stories) as the demands decrease. To facilitate the 317 

automated design process, the total number of longitudinal reinforcement bars are chosen such that 318 

all layers have the same number of bars.  319 
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 320 

Figure 6. Framework of the automated design process 321 

For all archetypes, the initial wall thickness is set to 12 𝑖𝑛𝑐ℎ. The design is evaluated to determine 322 

if it satisfies the provisions of ASCE 7-16 and ACI 318-19 for Special Structural Walls. If not, the 323 

thickness is increased by 1 𝑖𝑛𝑐ℎ and the design process is repeated until an adequate design is 324 

accomplished. 325 
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3.  CASE STUDY 326 

A case study is presented to quantify the implications of the reduced epistemic uncertainty in the  327 

drift capacity prediction model to the design and performance assessment of RCSW-SBEs. The 328 

RCWall-SDA tool is used to design a predefined set of archetypes and perform NRHA to 329 

determine the probability distribution of the drift demand. Using the relevant wall design variables, 330 

the XGBoost model is then used to estimate the drift capacity. By performing MCS, the 331 

performance and design of the RCSWs considering different drift capacity prediction accuracies 332 

are evaluated. 333 

In the context of reliability-based design of RCSWs with SBEs, Abdullah and Wallace [82] 334 

introduced a drift demand-to-capacity ratio check based on the following equation: 𝜙ௗ ቀ
ఋഥ೎
௛ೢ
ቁ ൒335 

ቀ1.5 ఋഥೠ
௛ೢ
ቁ, where 𝜙ௗ is a reduction factor, ቀఋ

ഥ೎
௛ೢ
ቁ is the mean wall lateral drift capacity estimated 336 

using their predictive equation developed in (Abdullah and Wallace 2019) [81], and ቀఋ
ഥೠ
௛ೢ
ቁ is the 337 

mean roof drift demand. The 1.5 multiplier is used to convert the design earthquake (DE) drift 338 

demands to maximum considered earthquake (MCE) demands. The authors suggested using a 10% 339 

probability of strength loss for DE-level shaking as a minimum criterion for collapse. Then, by 340 

assuming lognormal distributions and 𝐶𝑂𝑉 of 0.30 and 0.15 for the drift demand and capacity, 341 

respectively, a 𝜙ௗ ൌ 1 is selected. 342 

3.1. Archetypes  343 

The floor plan selected for the archetypes (as shown in Figure 7) is 150 ft x 75 ft with typical bay 344 

spans of 25 ft and story heights of 12 ft [82]. The developed archetypes have 2, 4, 8, and 12 stories. 345 

For a given number of stories, wall aspect ratios ranging from 2 to 4 are considered. The minimum 346 
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wall length is taken to be 6 ft and only walls with length/thickness ratio ቀ௟ೢ
௕
ቁ greater than 6 are 347 

included. The walls are designed for the maximum and minimum spectral acceleration intensities 348 

(𝐷௠௔௫ and 𝐷௠௜௡) associated with Seismic Design Category (SDC) 𝐷. Considering the 349 

aforementioned variations, a total of 36 archetypes were developed (Table 2). 350 

 351 

 352 

Figure 7. Floor plan 353 

 354 

Table 2. Shear wall archetypes 355 

Archetype ID No. of Stories SDC Aspect Ratio 

1 
2 

𝐷௠௔௫ 

2 
2 2.5 
3 

4 

2 
4 2.5 
5 3 
6 3.5 
7 

8 

2 
8 2.5 
9 3 
10 3.5 
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11 4 
12 

12 

2 
13 2.5 
14 3 
15 3.5 
16 4 
17 

2 

𝐷௠௜௡ 

2 
18 2.5 
19 3 
20 3.5 
21 4 
22 

4 

2 
23 2.5 
24 3 
25 3.5 
26 4 
27 

8 

2 
28 2.5 
29 3 
30 3.5 
31 4 
32 

12 

2 
33 2.5 
34 3 
35 3.5 
36 4 

 356 

Assuming residential occupancy for all buildings, risk category II is used, resulting in an 357 

importance factor 𝐼௘ = 1.0. The response modification factor 𝑅 = 5 and the drift amplification 358 

factor 𝐶ௗ = 5. The typical floor dead load is specified as 125 psf and 40 psf live load is considered. 359 

The design concrete compression strength is taken to be 6 ksi and the reinforcement yield stress is 360 

60 ksi. 361 

3.2. Ground Motion Selection: 362 

Two sites, one in Los Angeles (33.7917, -118.1927) and the other in Fresno (36.7357, -119.6784), 363 

are used for the ground motion selection, which correspond to the 𝐷௠௔௫ and 𝐷௠௜௡ SDCs, 364 
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respectively. The sites were selected so that the spectral acceleration at short periods (𝑆ௌ) and at a 365 

period of one second (𝑆ଵ) were consistent with those specified in FEMA P-695 [84].  366 

For each site, seismic hazard deaggregation is performed using the Unified Hazard Tool provided 367 

by the United States Geological Survey (USGS) [85] to obtain the expected characteristics (mean 368 

magnitude, source-to-site distance, and epsilon) of the ground motions for the DE (10% probability 369 

of exceedance in 50 years) hazard level. With the goal of using the same set of ground motions for 370 

all archetypes associated with a given SDC, the deaggregation is conducted at the mean ASCE 7-371 

16 fundamental period of the buildings (0.7 seconds). Once the target spectrum and its standard 372 

deviation are calculated using the Campbell and Bozorgnia model [86], a set of 40 ground motions 373 

is selected from the NGA-West2 database and scaled such that the mean spectra and standard 374 

deviation follow those of the target. 375 

Figures 8a and 8b show the individual and mean spectra of the selected ground motions along with 376 

the target spectrum and the 95% confidence intervals for SDC 𝐷௠௔௫ and 𝐷௠௜௡, respectively. The 377 

standard deviations of the spectral values for the target and selected records for SDC 𝐷௠௔௫ and 378 

𝐷௠௜௡ are compared in Figures 9a and 9b, respectively.  379 
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 380 

Figure 8. Spectra for selected suites of ground motions and their respective targets for a)𝐷௠௔௫ and b)𝐷௠௜௡ 381 

 382 

 383 

 384 

Figure 9. Standard deviations of the spectral values for the target and selected ground motions for a)𝐷௠௔௫ 385 

and b)𝐷௠௜௡ 386 

 387 

(a) (b) 

(a) (b) 
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3.3. Nonlinear Modeling:  388 

A numerical model of each archetype is generated in OpenSees. Considering the symmetry of the 389 

archetypal structure, a two-dimensional model is created consisting of one wall. An illustration of 390 

the model is presented in Figure 10. The seismic mass is lumped at the wall nodes at each story 391 

level, and gravity loads are assigned according to the corresponding tributary areas at the same 392 

nodes. P-delta effects that consider loads from the gravity system, which is not explicitly modeled, 393 

are considered by including a leaning column. A linear elastic bar with zero lateral stiffness is used 394 

to represent the leaning column. Horizontal and axially rigid truss elements are used to connect 395 

the leaning column to the wall. Rayleigh damping at 2% is specified at the first and third modes 396 

of vibration. 397 

The behavior of the wall is simulated using the Shear-Flexural Interaction Multi-Vertical Line 398 

Element Model (SFI-MVLEM) element [87,88]. Each wall is modeled using two equal-length 399 

elements per story along the building height, as shown in Figure 10. Under cyclic loads, the SFI-400 

MVLEM captures the interaction between axial/flexural and shear responses in RC structural 401 

walls. The Fixed-Strut-Angle-Model (FSAM) is used to describe a two-dimensional constitutive 402 

RC panel behavior at each macro-fiber of the Multiple-Vertical Line-Element-Model (MVLEM) 403 

in the SFI-MVLEM element. Eight macro-fibers are used to represent the wall cross section in the 404 

horizontal direction, with four outer macro-fibers representing the confined wall boundaries and 405 

the other four representing the unconfined wall web. 406 
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 407 

Figure 10. Elevation view of the structure and SFI-MVLEM element (adapted from Kolozvari et al. [89]) 408 

The uniaxial hysteretic constitutive model for concrete (Concrete02 in OpenSees) proposed by 409 

Yassin [90] is used to simulate the hysteretic behavior of confined and unconfined concrete.   The 410 

Concrete02 material model was chosen because it is computationally efficient, numerically robust, 411 

and comparatively simple. It also captures important concrete behavioral characteristics such as 412 

tension stiffening and hysteretic stiffness degradation. 413 

To simulate the behavior of the reinforcement, the uniaxial constitutive nonlinear hysteretic 414 

material model for steel (SteelMPF in OpenSees) proposed by Menegotto and Pinto [91] and 415 

extended by Filippou et al. [92] is used. The SteelMPF material model includes isotropic strain 416 

hardening effects. The material model also permits different yield stresses and strain hardening 417 

ratios for compression and tension, and considers the degradation of the cyclic curvature parameter 418 

R for strain reversals in both pre- and post-yielding regions of the hysteretic stress-strain behavior 419 

for better yield capacity predictions. It is worth noting that the stress overshooting effect upon 420 

partial unloading has been corrected in SteelMPF.  421 
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3.4. Uncertainty Characterization for Structural Model Parameters:  422 

As previously stated, the objective of this study is to investigate the ramifications of the reduction 423 

in epistemic uncertainty in the RCSW drift capacity prediction, in terms of reliability. To account 424 

for the uncertainty in the predictive model, an error factor (experimental-to-predicted ratio) is used. 425 

The error factor is a scaling factor that is applied to the estimated capacity to incorporate the 426 

potential deviation between the model prediction and the actual capacity. A histogram of the error 427 

associated with the XGBoost model is shown in Figure 11 along with the density curve of normal 428 

distribution having mean and standard error values computed from the empirical data. The 429 

Shapiro-Wilk test is conducted to assess the normality of the error factor. The null hypothesis for 430 

the Shapiro-Wilk test is that the data is normally distributed, therefore, if the p-value associated 431 

with the test is greater than a predefined significance level (e.g., 0.05), the data can be considered 432 

normally distributed. The p-value obtained = 0.65, therefore, the model error is assumed to follow 433 

a normal distribution with mean = 0.999 and 𝐶𝑂𝑉 values = {0.085,0.15,0.2,0.25,0.3}. The 0.085 434 

and 0.15 correspond to the XGBoost and linear models, respectively, whereas the other values are 435 

included to evaluate the effect of more significant accuracy improvements (e.g., through further 436 

enhancements of the ML model). For context, the improvement in 𝐶𝑂𝑉 resulting from the 437 

XGBoost model is 43.3%, which falls within the middle of the range reported in Table 1 (0.22% - 438 

90.7%). Additionally, the highest improvement considered (from 0.3 to 0.085) is 71.7%, which 439 

also falls within that range. The 43.3% improvement in 𝐶𝑂𝑉 corresponds to a 38% improvement 440 

in 𝑅ଶ and a 41% improvement in 𝑅𝑀𝑆𝐸. 441 

The drift demand can be obtained using either linear static analysis (e.g., ELF) (with the 442 

appropriate amplification factors) or NRHA. Since NRHA is the more reliable of the two, it is used 443 

in this paper. First, for simplicity and to reduce the computational expense, the drift demand 444 
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probability distribution is computed by considering only RTR uncertainty. For each archetype, the 445 

drift demand is assumed to follow a lognormal distribution with the dispersion resulting from 446 

NRHAs using the 40 ground motions. Next, both RTR and modeling uncertainties are considered 447 

by using results from Kim [93] that reports RCSW roof drift dispersion values at DE hazard level. 448 

In Kim [93], the total 𝐶𝑂𝑉 of roof drift which incorporates RTR and model parameter/design 449 

uncertainties (includes concrete compressive strengths, reinforcing steel yield strength, mass, dead 450 

and live loads, damping, and shear wall boundary element design) is 0.39, while the RTR 𝐶𝑂𝑉 of 451 

roof drift is 0.36. The percentage increase in 𝐶𝑂𝑉 (8.33%) is used to amplify the RTR dispersion 452 

of the drift demand to get the total dispersion for each archetype. 453 

 454 

 455 

Figure 11. Histogram showing the distribution of the XGBoost model prediction error 456 

 457 
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3.5. Number of Monte Carlo Simulations 458 

In order to determine the probability of failure, 15000 simulations are performed. An iterative 459 

assessment showed that this number of simulations was adequate to reduce the variance in the  𝑃௙ 460 

estimate to an acceptably low level. 461 

The obtained probability of failure is compared to a preselected target probability of failure to 462 

assess the performance. Furthermore, the effect of improved model accuracy on the design is 463 

quantified by comparing the required wall thicknesses corresponding to designs that yield a 464 

probability of failure less than that of the specified target. 465 

 466 

4. RESULTS & DISCUSSION 467 

4.1. Effect of Increased Accuracy on Performance 468 

The reliability assessment was conducted for two scenarios: one considering only the RTR 469 

uncertainty in drift demand (shown in Figure 12), and the other incorporating the total dispersion 470 

(RTR and modeling) in drift demand (shown in Figure 15). Recall that the improvement in 471 

predictive performance obtained from the ML model is interpreted as a reduction in epistemic 472 

uncertainty associated with the drift capacity. By comparing the results for the two cases (RTR 473 

versus RTR + modeling uncertainty), we hope to gain insight into whether the implications of 474 

improved predictive performance on the structural design and performance is affected by the 475 

type(s) of uncertainty that is considered.  Figures 12a and 12b display boxplots that visualize the 476 

distribution of the probability of failure when only the RTR uncertainty in the drift demand is 477 

considered for the different archetypes, and SDC 𝐷௠௔௫ and 𝐷௠௜௡, respectively. Each boxplot 478 

corresponds to a 𝐶𝑂𝑉 value. The boxplot is a visual representation of a given data set using five 479 
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summary metrics. The metrics include the minimum, first quartile (Q1), median, third quartile 480 

(Q3), and maximum. The median is the middle value of the data set. Q1 is the middle value 481 

between the lowest value and the median, and Q3 is the middle value between the median and the 482 

highest value. The minimum and maximum are calculated as Q1-1.5*IQR and Q3+1.5*IQR, 483 

respectively, where IQR (interquartile range) is the distance between the Q1 and Q3. The outliers 484 

are the datapoints located outside the whiskers of the boxplot. 485 

For SDC 𝐷௠௔௫, the probability of failure increases with increased 𝐶𝑂𝑉, as expected. The target 486 

probability of failure is taken as 10% as recommended by Abdullah and Wallace (2020) [82]. 487 

Archetypes at the higher end of the 𝑃௙ range typically have fewer stories, as illustrated in Figure 488 

13. Additionally, there is a weak negative correlation between the 𝑃௙ and wall thickness, as shown 489 

in Figure 13a. Moreover, these archetypes at the higher end of the 𝑃௙ range are characterized by 490 

shorter wall lengths and lower  
௟ೢ
௕

 values, as depicted in Figures 13b and 13c. The reduction in 491 

length leads to lower wall stiffness, consequently increasing the drift demand. Furthermore, lower 492 

௟ೢ
௕

 values result in higher drift capacity. This association is driven by the fact that higher λୠ ൌ493 

𝑙௪𝑐 𝑏ଶ⁄  values contribute to increased drift capacity. Despite the higher drift capacity exhibited by 494 

these archetypes, their drift demand dispersion is higher which leads to an increased probability of 495 

failure. 496 

For SDC 𝐷௠௜௡, the probability of failure also increases with higher 𝐶𝑂𝑉 values. However, the 497 

variation in the 𝑃௙ is comparatively smaller. Furthermore, the 𝑃௙ is below 10% across all 𝐶𝑂𝑉 498 

values, suggesting that the improved accuracy of the ML model is more likely to yield tangible 499 

benefits in regions of very high seismicity. The outlier is identified as the archetype with the 500 

smallest difference between capacity and demand. The majority of archetypes under SDC 𝐷௠௜௡ 501 



31 
 

have equal wall thickness. This equality makes it challenging to directly observe its impact on the 502 

𝑃௙, as shown in Figure 14a. Additionally, as seen in Figure 14b, there is no discernible relationship 503 

between the wall length and the 𝑃௙. Consequently, 
௟ೢ
௕

 also does not exhibit a correlation with the 504 

𝑃௙, as depicted in Figure 14c. Note that the results shown in Figures 13 and 14 were obtained using 505 

𝐶𝑂𝑉 ൌ 0.085, however, similar conclusions were drawn for the remaining 𝐶𝑂𝑉 values. 506 

The findings for the case where the total dispersion (RTR and modeling uncertainty) in the drift 507 

demand is considered (Figures 15a and 15b for SDC 𝐷௠௔௫ and 𝐷௠௜௡, respectively) are comparable 508 

to when only RTR uncertainty is included.  The probability of failure increases slightly compared 509 

with the ones resulting from RTR variability only, however the increase is insignificant. More 510 

importantly, the rate at which 𝑃௙ increases with an increase in 𝐶𝑂𝑉 is comparable for the two 511 

uncertainty cases. Note that the outlier in Figure 15a corresponds to the archetype characterized 512 

by the thinnest wall and shortest length. 513 

For most archetypes, the inclusion of modeling uncertainty does not significantly alter the 514 

influence of improved predictive accuracy on reliability. However, for two archetypes, relative to 515 

when only RTR uncertainty is considered, the added presence of modeling uncertainty increases 516 

the tangible effect of improved ML model accuracy on reliability. This suggests that the inclusion 517 

of modeling uncertainty could amplify the impact of ML model accuracy improvements on the 518 

reliability of structures. 519 

In Figure 16a, the ratio of the median probability of failure with and without modeling uncertainty 520 

ሺ𝑃෨௙,்௢௧௔௟ 𝑃෨௙,ோ்ோሻൗ  for each 𝐶𝑂𝑉 value is depicted. Correspondingly, Figure 16b illustrates the ratio 521 

of the 𝐶𝑂𝑉 of probability of failure with and without modeling uncertainty 522 

ሺ𝐶𝑂𝑉௉೑,೅೚೟ೌ೗
𝐶𝑂𝑉௉೑,ೃ೅ೃ

ሻൗ . In general, the impact of modeling uncertainty decreases as the 523 
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predictive model uncertainty increases. Additionally, modeling uncertainty has a more pronounced 524 

effect on the median 𝑃௙ in regions of lower seismicity, while its impact on the dispersion of the 𝑃௙ 525 

is stronger in regions of higher seismicity. 526 

As mentioned in Section 2.2, the 𝐶𝑂𝑉 of the ML model and the linear model are 0.085 and 0.15, 527 

respectively. Based on this work, it appears that the XGBoost drift capacity model would not have 528 

a tangible impact on the reliability of the structure. The median and dispersion of the probability 529 

of failure for both 𝐶𝑂𝑉 values are similar. For the ML model to have a tangible impact, reduction 530 

in 𝐶𝑂𝑉 value by 60-68% or higher is needed.  While Table 1 indicates that the maximum 531 

improvement in 𝐶𝑂𝑉 provided by an ML model for drift capacity is 61%, it is evident that for 532 

other types of components and structural responses, ML models have demonstrated the capability 533 

to enhance the 𝐶𝑂𝑉 beyond this threshold. Thus, there could be a potential to further improve ML 534 

models for predicting drift capacity beyond the observed level. 535 

The results in Figures 12 and 15 indicate that the accuracy of the prediction model has direct 536 

implications to structural reliability. Specifically, a less accurate predictive model has a higher 537 

level of uncertainty, which overestimates the probabilities of failure, and thus leads to more 538 

conservative designs. The next subsection seeks to quantify the impact on the shear wall design. 539 

 540 
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 541 

Figure 12. Boxplots depicting the 𝑃௙ considering RTR dispersion of drift demand under varying 𝐶𝑂𝑉 542 

values for a) 𝐷௠௔௫ and b) 𝐷௠௜௡ 543 

 544 

 545 
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 546 

Figure 13. Effect of archetype characteristics on the probability of failure for 𝐷௠௔௫: a) wall thickness, b) 547 

wall length, and c) 
௟ೢ
௕

 ratio 548 
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 549 

Figure 14. Effect of archetype characteristics on the probability of failure for 𝐷௠௜௡: a) wall thickness, b) 550 

wall length, and c) 
௟ೢ
௕

 ratio 551 
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 552 

Figure 15. Boxplots depicting the 𝑃௙ considering total dispersion of drift demand under varying 𝐶𝑂𝑉 553 

values for a) 𝐷௠௔௫ and b) 𝐷௠௜௡ 554 

 555 

 556 

 557 

Figure 16. Bar charts showing effect of modeling uncertainty in terms of a) ratio of median 𝑃௙ and b) ratio 558 

of 𝐶𝑂𝑉 of 𝑃௙ 559 
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 560 

4.2. Effect of Increased Accuracy on Design 561 

To quantify the effect of increased predictive model accuracy on reliability-based design, a target 562 

probability of failure is first established. Then, for each structure, the minimum wall thickness that 563 

results in a probability of failure that is less than or equal to the target is obtained. The impact of 564 

improved model accuracy is examined by comparing the required wall thicknesses for designs that 565 

meet the target. 566 

The effect of predictive model accuracy on design is assessed and the results are shown in Table 567 

3 for the case where only the RTR uncertainty in the drift demands is considered. The target 568 

probability of failure used to demonstrate the methodology is 10%. Out of the 36 archetypes, 31 569 

have a probability of failure less than 10% for all COV values. On the other hand, 5 archetypes 570 

were redesigned to reach the target reliability. The results from these 5 archetypes showed that a 571 

change in COV from 0.15 to 0.085 did not impact wall thicknesses, while a change from 0.2 or 572 

0.25 to 0.085 resulted in a 0-1 inch change of wall thicknesses. A more significant COV change 573 

from 0.3 to 0.085 led to 1-3 inch change in wall thickness.  574 

 575 

Table 3. Required wall thickness to reach target reliability considering only RTR dispersion of drift 576 

demand 577 

Archetype 
Required wall thickness (𝑖𝑛𝑐ℎ) 

𝐶𝑂𝑉 ൌ  0.085 𝐶𝑂𝑉 ൌ  0.15 𝐶𝑂𝑉 ൌ  0.2 𝐶𝑂𝑉 ൌ  0.25 𝐶𝑂𝑉 ൌ  0.3 

1 13 13 13 13 14 
2 16 16 17 17 19 
3 15 15 15 15 16 
4 16 16 16 16 17 
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11 21 21 21 21 23 
 578 

In the case where both RTR and modeling uncertainty are considered for the drift demand 579 

dispersion, six archetypes needed to be redesigned to meet the target probability, as shown in Table 580 

4. Among these six archetypes, the wall thickness remained consistent for 𝐶𝑂𝑉 values of 0.085 581 

and 0.15, except for archetype 2, which required an increased thickness of 1 𝑖𝑛𝑐ℎ. Changing the 582 

𝐶𝑂𝑉 from 0.2 or 0.25 to 0.085 resulted in a 0-1 𝑖𝑛𝑐ℎ change in wall thickness, while a 𝐶𝑂𝑉 change 583 

from 0.3 to 0.085 led to a 1-3 𝑖𝑛𝑐ℎ change in wall thickness. With the exception of two archetypes, 584 

the results from both cases are similar. For the aforementioned two archetypes, incorporating 585 

modeling uncertainty results in a small increase in the extent to which ML model accuracy affects 586 

in the structural design. This stands in contrast to the case where only RTR uncertainty is 587 

considered, where a more substantial improvement in ML model accuracy is required to induce a 588 

change in the design. It is important to note that this does not imply that a small change in 𝐶𝑂𝑉 589 

always results in similar target reliability-compliant designs.  590 

Table 4. Required wall thickness to reach target reliability considering total dispersion of drift demand 591 

Archetype 
Required wall thickness (𝑖𝑛𝑐ℎ) 

𝐶𝑂𝑉 ൌ  0.085 𝐶𝑂𝑉 ൌ  0.15 𝐶𝑂𝑉 ൌ  0.2 𝐶𝑂𝑉 ൌ  0.25 𝐶𝑂𝑉 ൌ  0.3 

1 13 13 13 13 14 
2 16 17 17 17 19 
3 15 15 15 16 16 
4 16 16 16 16 17 
6 18 18 18 18 19 
11 21 21 21 21 23 

 592 



39 
 

5. CONCLUSION 593 

This study used a reliability-based approach to assess the benefits of reduced epistemic uncertainty 594 

provided by machine learning (ML) models in terms of seismic design and performance. 595 

Specifically, an extreme gradient boosting (XGBoost) based drift capacity model for reinforced 596 

concrete shear walls (RCSWs) with special boundary elements (SBEs) was employed to 597 

investigate its advantages in a structural reliability context. However, the framework could be 598 

easily adjusted to include any ML-based model and other structural response parameters. The 599 

methodology was applied to a set of 36 archetype structures. The wall design process is automated 600 

using a python-based design tool that satisfies ACI 318-19 provisions for special structural walls. 601 

Monte Carlo Simulation (MCS) was utilized for the reliability analysis. The uncertainties in the 602 

drift demand and drift capacity were considered in the current study. Five 𝐶𝑂𝑉 values, indicative 603 

of the predictive accuracy of the drift capacity model, were included, with the lower two 604 

corresponding to the XGBoost and linear models. 605 

The results of the reliability-based assessment showed that prediction models with different 606 

uncertainty levels generate different structural reliability outcomes. An increase in the error or 607 

uncertainty in a predictive model leads to overestimation of the probability of failure. However, 608 

both the linear and XGBoost models demonstrate similar levels of reliability, emphasizing the 609 

requirement for a more significant improvement in predictive accuracy to have an impact on 610 

reliability. The results also showed that enhanced accuracy of the predictive model is more likely 611 

to provide tangible advantages in areas characterized by extremely high seismic activity. The effect 612 

of improved accuracy on reliability-based design was also evaluated. In archetypes requiring 613 

redesign to achieve the target reliability, differences in wall thickness were primarily observed 614 

between the highest (0.3) and lowest (0.085) values of 𝐶𝑂𝑉. Since a reduction in the error or 615 
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uncertainty of a predictive model reduces overestimation of the probability of failure, exceedingly 616 

conservative designs can be avoided. 617 

It is essential to emphasize that the findings derived from this study cannot be generalized beyond 618 

the specific archetypes under consideration. The nuances of structural behavior, uncertainty, and 619 

design are inherently influenced by the unique characteristics of each archetype. Consequently, 620 

further studies across a more extensive spectrum of structures are recommended to enhance the 621 

reliability and applicability of the findings. 622 

The source code for the nonlinear modeling of RCSWs established using OpenSees is publicly 623 

available in a GitHub repository. [94] 624 
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