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a b s t r a c t 

In the process of pollination, a pollen tube grows from a pollen grain that has fallen on the stigma of a flower. 

This tube grows towards the ovary of the flower where it will deliver male reproductive material. Knowledge 

of the dynamics of pollen tube growth will provide a basis for understanding more complex cells that ex- 

hibit similar growth behavior. Current pollen tube growth models are a collection of differential equations 

that represent the level of understanding that biologists have concerning apical growth. Due to their com- 

plex nature, these models are not used to verify observed behavior in living cells as seen under a microscope. 

We present a model that can be used to describe the behavior of growing pollen tube cells in actual experi- 

ments. We propose biologically relevant functions based on knowledge of the growth process to explain the 

dynamics of model parameters. Our model uses an affine transformation to propagate the tip of the cell and 

statistical parameter estimation to measure necessary parameters during growth. Using experimental videos 

of pollen tube growth, we show that our model can adapt to various growth scenarios while extracting growth 

parameters from the videos. 

© 2015 Elsevier B.V. All rights reserved. 
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1. Introduction 

Sexual reproduction in flowering plants produces seeds that en-

sure the continuation of the plant life cycle. This process is initiated

by pollination: the transfer of pollen grains from the male part of the

flower (anther) to the female part of the flower (stigma). The pollen

tube grows from the grain into the style of the flower, navigating fe-

male tissue to deliver sperm for fertilization ( Fig. 1 ). Unlike most cells,

the pollen tube grows through polar extension wherein cell mem-

brane and cell wall expansion is limited to the apical/tip region of the

cell. To prevent the cell from bursting, new cell wall material is de-

posited at the growth site. The cycle of growth/deposition continues

until the cell tip reaches the ovary where it bursts and fertilization

occurs. Biologists study these processes to identify key ingredients

and their functions. Mathematical models are an important tool in

this study because they are able to measure and make predictions on

how the shape of the cell evolves throughout the growth/deposition

cycles. In the development of these tools, engineers/mathematicians

require knowledge of the various pathways leading to cell growth as

understood by the biologists. 
✩ This paper has been recommended for acceptance by Anders Heyden. 
∗ Corresponding author. Tel.: +1 9518273954. 

E-mail address: atamb001@ucr.edu (A.L. Tambo). 
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Pollen tube growth oscillates between periods of activity and in-

ctivity. When plant cells grow, they absorb water and increase the

exibility of their cell walls, allowing for expansion followed by re-

nforcement of those same cell walls ( [22] ). Tip growth is the result

f two key systems: the first system provides a balance of forces be-

ween internal pressure (Turgor, Osmotic) and the stiffness of the cell

all resisting deformation. The second system deals with internal

rotein and ion dynamics that lead to the deposition of material at

he growth site ( [5,23] ) by vesicles. Callose is a cell wall component

hat adds structure and flexibility that is selectively deposited in the

hank providing rigidity to the cell wall while its absence in the tip

rovides a flexible domain that can flex and grow ( [8] ). In a slightly

ore complicated mechanism, pectin is deposited throughout all re-

ions of the tube, however it exists in a soft form at the apex and

ransitions to a hard form as the shank forms through the action of

nzymes that promote the pectin molecules to bind to each other.

his binding creates a dense matrix that provides both the rigidity

nd plasticity needed for proper pollen tube growth ( [16] ). The trans-

ortation of material is facilitated by a network of dynamic cable-like

bers (F-actin network) that act as tracks on which vesicles travel and

s highly responsive to the active cytosolic gradient of free calcium

oncentrated at the tip ( [24] ). Furthermore, the influx of intracellular

alcium oscillates with pollen tube growth showing a spike in influx a

ew seconds after the burst of growth most likely promoting the rest

hase ( [11] ). 

http://dx.doi.org/10.1016/j.patrec.2015.07.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.07.016&domain=pdf
mailto:atamb001@ucr.edu
http://dx.doi.org/10.1016/j.patrec.2015.07.016
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Fig. 1. (a) Fluorescence images of a growing pollen tube from an experimental video with accompanying 3D rendition. (b) Enhanced bright field image of a pollen tube cell turning 

towards the ovary. Arrows show changes in tip orientation over time. 
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These dynamic processes are highly regulated and connected to

ne another through signaling cross talk by way of known and un-

nown mechanisms. Fig. 2 shows an artist’s rendition of the compo-

ents involved in the regulation of tip growth in pollen tubes. These

nown biological phenomena can then be used to inform mathe-

atical models giving biologists a tool to predict the response to

hanges in the biological system and better design hypothesis and

xperiments. 

In this paper, we discuss a mathematical model for the growth

f pollen tubes as witnessed in experimental videos. We explicitly

odel those biological process that are observable in the videos, and

ake meaningful assumptions of other underlying processes that

re not observable. In the following sections, we summarize current

athematical models of tip growth in Section 2 . Section 3 covers the

heoretical development of the proposed method including assump-

ions made about the growth process. Section 4 covers experimen-

al results and discussion of these results, and Section 5 presents the

onclusions of the paper. 

. Related work and contributions 

.1. Related work 

There are many factors that affect the growth of pollen tubes,

ome of which are ion concentrations (e.g. K 

+ , Ca 2+ , H 

+ , Cl −), tur-
ig. 2. Artists rendition taken from [21] of the cytoplasm of a pollen tube including cytoplas

he cell tip via actin filaments. The filaments indicate direction of vesicle traffic. 
or pressure and osmotic pressure. The net result of the interactions

etween these agents is a change in the cell size (i.e. increase in

ell length and volume). The complex nature of apical growth has

een addressed by a few models in recent literature: ( [3,7,10,14,17] ).

ach model explains pollen tube growth by proposing differential

quations to represent what is known about some aspects of the

rowth process. These models can be divided into two classes based

n their area of focus: internal dynamics vs. cell wall dynamics. 

Hill et al. [10] approach cell growth as the result of changing

smotic pressure when water from the surrounding enters the cell

nd causes swelling. This influx is caused by changes in ion con-

entrations within the cell which establishes an osmotic pressure

radient. Simulations of their model show similar growth (change in

olume) patterns as those of in vitro pollen tubes. Since the pollen

ube can be divided into two main parts: a hemispherical tip and

 cylindrical shank ( Fig. 1 ), [17] develop an integrated and self-

egulatory two-compartment model whose ion dynamics lead to cell

rowth. Ion transporters connect these compartments to each other

nd the surrounding media. In this model, cell growth is the change in

ip and shank volumes which are related to the dynamics of K 

+ , Ca 2+ ,
 

+ and Cl −) through a power law formalization of the cell growth

ate. 

Unlike the previous two models that focused mainly on internal

ynamics, [3] present a model that focuses more on cell wall dynam-

cs. The cell wall is modeled as an inhomogeneous viscous fluid shell
mic contents. Vesicles are produced from the golgi bodies and then make their way to 
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Fig. 3. Block diagram of the video analysis method. Images from a video are ana- 

lyzed sequentially to get cell shape and tip fluorescence. When membrane fluorescence 

reaches a maximum, a new growth cycle begins. During each cycle, shape prediction is 

performed. Shape correction occurs when the error between predicted and measured 

shape exceeds a defined threshold. 
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that undergoes deformation due to internal turgor pressure. Material

deposition at the deformation site, which is the result of internal dy-

namics, maintains cell wall thickness. In similar fashion, [7] consider

the cell wall to be a thin shell of viscoplastic anisotropic composition.

The stress-strain relationship between the cell wall and turgor pres-

sure is expressed following the Lockahrt equation ( [18] ) for elastic

materials. 

2.2. Contributions of this paper 

While the above models account for cell growth using different

approaches, the common thread is the lack of experimental validation

of their models using video evidence. Furthermore, some of the key

parameters required by these models cannot be measured/observed

in experimental videos. In our previous work ( [25] ), we presented

a model for deforming the cell tip using an affine transformation.

Here, we advance that model by making the following contributions:

(1) an adaptive model for deforming the tip of a growing pollen tube

according to experimental evidence; (2) a statistical method for on-

line estimation of model parameters required to grow the observed

tip; (3) validation of our model using experimental data. Using bio-

logically relevant functions for the shape parameters, we show on-

line estimation of model parameters using the Unscented Kalman

Filter. The estimated parameter values, together with model assump-

tions, validate that the component of Turgor pressure in the growth

direction (elongation) is greater than the component that causes the

cell tip to expand. 

3. Technical approach 

In this section, we present the technical approach of our method.

Fig. 3 lists the main parts of our method in a block diagram. Given an

experimental video of a growing pollen tube, we extract the average

fluorescence ( f avg ) along the cell wall over time (cyclical growth dy-

namics). Maxima in f avg indicate the start of a new growth cycle, and

the current cell tip shape becomes the initial shape. The system then

enters a prediction-correction loop until either the video ends, or a

new maxima is detected in f avg . The system output is a list of model
arameters, shapes and shape accuracies for each detected growth

ycle. 

.1. Model building using biology of pollen tube growth 

The basic representation of the pollen tube consists of a cylindri-

al shank that is the main body of the cell, and a hemispherical tip

hat is the apical region. Cell growth is restricted to the apical region,

xcept in some cases of cell turning where part of the cylindrical body

s also extended. This turning is brought about by the weakening and

tretching of the cell wall at the growth region ( [9] ). This stretching

eads to thinning of the cell wall and cell membrane and would oth-

rwise lead to cell bursting without the deposition of growth mate-

ial by vesicles during exocytosis ( [19] ). This deposition is cyclical and

roduces cyclical growth patterns ( [11] ). To avoid an increase or de-

rease in cell wall thickness, the rate of deposition should be close to

he rate of wall thinning. A higher rate of deposition will increase wall

hickness while a lower rate would not keep up with wall thinning. As

uch, we consider that the rate of vesicle fusion (material deposition)

s equal to the rate of cell wall reconstruction during exocytosis. Vesi-

les are produced within the cytoplasm and conveyed to the growth

egion ( [2] ). Deposited vesicles form an inverted cone shape with the

ase being the region of growth. To best describe the amount of accu-

ulated vesicles in this zone, we use a Gaussian distribution centered

t the middle of the growth region (maximum) and tapers towards

he subapical region ( Fig. 2 ). 

Given the resolution of the experimental videos in this study, it is

ot possible to detect vesicles. Pollen tubes from the plant Arabidop-

is Thaliana have an average tube diameter of 5 μm ( [4] ) and mean

esicle diameter of 0.182 μm ( [13] ). Given an average image resolu-

ion of 0.0582 μm/pixel, the expected size of the pollen tube is 86

ixels and 3 pixels for a vesicle, which makes vesicle detection very

hallenging. Since individual vesicles cannot be tracked, we need a

econdary means to determine the location where vesicles will con-

regate. The active form of the protein ROP1 has been shown to be

n important regulator of tip growth ( [21,27] ) by promoting the con-

truction of the F-actin network used to convey vesicles to the growth

egion. By monitoring green fluorescence protein (GFP)-tagged RIP1

rotein, we can determine the localization of active ROP1 along the

ell membrane, and consequently the site of vesicle deposition. The

ombined volume of the deposited vesicles is the amount of new wall

aterial needed for growth. But it is not possible to determine the

umber of deposited vesicles due to the resolution of the images. As

uch, we consider the strength of the fluorescence signal to be pro-

ortional to the number of deposited vesicles, since this signal helps

o build the network on which these vesicles travel. 

.2. Detailed model development 

Consider X = { [ x i , y i ] T , i = 1 , . . . , N} as the set of N-2D points

long the tip of the tube in the image plane, and that the cell is elon-

ating vertically. For any two given sets of points: X ( t ) and X(t + �t),
he following relationship can be established: 

 (t + �t) = 

[
a(t) 0 

0 b(t)

][
1 c(t)
0 1 

]
X (t) (1)

here �t is the sampling time, a ( t ) and b ( t ) are scaling parame-

ers (strain) in the horizontal and vertical directions respectively,

nd c ( t ) is a shear parameter that controls tip turning and deter-

ines the growth direction and orientation of the cell tip ( Fig. 4 ). The

wo matrices in Eq. (1) are scale and shear matrices. Eq. (1) holds

or any two time points. Knowing a suitable equation for the dy-

amics of the affine parameters is crucial in predicting the shape of

he growing cell. We define each growth parameter according to the

unctions: 
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A B

C

Fig. 4. (A) 2D rendition of pollen tube cell with cell tip (dashed) and shank. (B) Cell tip 

deforming through elongation and expansion. Initial( θ i ) and final ( θ f ) tip orientations 

are the same. (C) Cell tip turning. Initial tip orientation is not the same as the final tip 

orientation. 
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(t) = 1 + a ′ �t (2a) 

(t) = 1 + b ′ �t (2b) 

(t) = f 
(
θ f , θi , u 

)
(2c) 

here a ′ and b ′ are the cell wall strain rates in the horizontal and

ertical directions respectively, ( θ i , θ f ) are the initial and final cell

rientations respectively, and u is the rate of cell turning. 

Growth of the pollen tube is the result of stretching cell wall fibers

without breaking them). The relationship between the strain rate

˙ ε) and the stress on the cell wall due to internal turgor pressure,

:[Newton per sq. Meter], is not a novel problem in the study of cell

rowth mechanics ( [7,18] ). This relationship, ˙ ε = �(P − P osmotic ), says

hat cell growth can only occur if (P − P osmotic) = 0 (for a constant ex-

ensibility �). [15] have shown that there is very minimal change in

urgor pressure within the cell. We, therefore, adopt the premise that

rowth is the result of a weakening cell wall, not excess pressure: 

∂ 

∂t 
ε = P 

∂ 

∂t 
(ψ) (3) 

here �:[sq. Meters per Newton] is the inverse of the elastic modu-

us of the cell wall fibers. � is affected by the deposition of material

uring exocytosis. For a suitable function to capture cell wall weak-

ning, we suggest the use of the the Gompertz logistic function. 

∂ 

∂t 
ψ = rψ ln 

(
K 

ψ 

)
(4) 

here r :[per second] is the rate of vesicle fusion (material deposition)

nd K :[sq. Meters per Newton] is the maximum attainable weakness

n the cell wall (when the cell wall is weakest without bursting). 

This adoption is based on the understanding of the biological pro-

esses that lead to cell wall weakening ( Section 1 ), and a history of

odeling population growth. Just as the growth of a species depends

n available resources and the consumption rate, stable pollen tube

rowth can be described as the consumption of deposited material

o build new cell wall and ensure that the cell does not rupture. This

unction allows for asymptotic growth behavior observed at: 

1. Start of a growth cycle : This is the start of material deposition when

vesicles start fusing with the cell membrane. The cell wall is made

up of mostly hard pectin. As more material is deposited, the rate

of conversion of hard-to-soft pectin gradually increases. 
2. End of a growth cycle : This marks the end of exocytosis when a

majority of vesicles have already fused with the cell membrane.

During this phase, material deposition for wall reconstruction is

reducing. As such, the rate of conversion of soft-to-hard pectin

gradually reduces, and growth slows down since the cell tip is

hardening. 

ombining Eq. (2) –(4) gives: 

∂ 

∂t 
a = P a raln 

(
K 

a 

)
(5a) 

∂ 

∂t 
b = P b rbln 

(
K 

b 

)
(5b) 

here P ( •) denotes the component of turgor pressure in the specified

irection. 

The effects of the parameter c(t) are most noticeable when the

ell is turning. In such cases, the dynamics of c(t) determines how the

rientation of the cell changes over time. To the best of our knowledge,

here have been no previous quantitative studies on the mechanism(s) of

ell turning . Without sufficient data on pollen tube turning, it is not

ossible to assign a particular function that controls tube turning i.e.

s tube turning a linear, polynomial, exponential, etc. function, and

hat are its dependencies? To determine the dynamics of turning,

e use the generalized logistic function: 

(t) = θi + 

θ f − θi 

(1 + ν · exp{−u(t − t m 

)} )1 /ν
(6) 

here ( θ i , θ f : [ rads ]) are the initial and final orientations of the cell

espectively, u [ s −1 ] is the rate of cell turning, ν depends on the initial

rientation, and t m 

marks the time at which cell turning is maximum.

ur choice of this function is based on its flexibility to adapt to vari-

us cell turning scenarios. 

Eqs. (1) , (2), (5) and (6) are sufficient to explain the deformation

f the growth region for any two time points. The behavior of the

eformation depends on the parameters of the deformation func-

ions. Since no two growth cycles are similar, these growth parame-

ers are expected to change and must be determined for each growth

ycle. 

.3. Online estimation of model parameters 

Estimating the appropriate parameters for the growth equation

eads to correct predictions about the position of the cell tip over time

hile analyzing an experimental video. We employ two schemes

or estimating the affine transform parameters that determine shape

volution. For the shear parameter ( c ), we use a simple scheme to

stimate its values over time. At a given time t , the value of the trans-

orm parameters depend on the current value in the prediction ar-

ay and the previous 3 values in the measurement-array. The predic-

ion array ( ˆ c ) is a history of the values used in the transformation,

nd the measurement array ( ˜ c ) is a history of the transformation val-

es between two consecutive observations of the cell tip. The shear

arameter (c) is predicted using: 

ˆ 
 

′ (t + 1 ) = 0 . 5 

( 

ˆ c ′ (t ) + 

1 

3 

t ∑ 

i = max([0 , t−2] )

˜ c ′ (t )

) 

(7)

ost-fitting of Eq. (6) to the measured data supports the choice of a

ogistic equation for the transformation parameters. 

For parameters a and b , whose evolution is guided by Eq. (4) , we

se the Unscented Kalman Filter (UKF) developed by [12] . The Kalman

ilter is a statistical tool for determining the states of a dynamic sys-

em in the presence of noise. It employs a prediction-correction loop

o modify both the state predictions and the covariance matrix that

ndicates the “confidence” in the predictions. As more samples are
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Algorithm 1 Algorithm Pseudo-code. 

Require: F: fluorescent video of growing pollen tube 

Require: a thresh : accuracy threshold for shape update 

while videoTerminated == false do 

I ← getnextframe(F) 

C ← contour of segmented pollen tube 

S ← append{ S, mean (I(C))} 
Sm ← maxima turning points in S 

if isNotEmpty( Sm ) then 

if isNewMaxima( Sm(end) ) then 

Xi ← (x, y) : C(x, y) = brightest cell contour region 

Initialize parameter states: (x a , x b , c )
Initialize Covariance matrices: P a , P b 

Xpred ← predict next shape: (1), (2), (8) 

else 

A ← accuracy of prediction: (12) 

if A < a thresh then 

Update shape: (9)–(11) 

end if 

Update UKF states and matrices 

Xi ← Predict next shape: (1), (2), (8) 

end if 

end if 

end while 
observed, the filter states should converge to the actual states (gov-

erned by the state equations) and the variation in the covariance ma-

trix should stabilize. In our application, we wish to estimate both the

states and the parameters involved in the state transitions of Eq. (4) .

This type of estimation (of both the states and the parameters) is re-

ferred to as joint estimation ( [26] ). Since the first-order Taylor series

expansion of Eq. (4) is also nonlinear, the UKF is ideal for estimating

the dynamics of Eq. (4) . Note that a UKF-estimation is performed for

each of the affine parameters a and b with separate state vectors: x a 
and x b . 

Let x a = [ a, a ′ , r a , K a ] 
T and x b = [ b, b ′ , r b , K b ] 

T be the augmented

state vectors that define the affine parameters controlling expansion

and elongation, respectively. x ( •) evolves according to the following

state and measurement equations: 

x ζ (t + �t) = 

⎡ 

⎢ ⎣ 

1 �t 0 0 

f (ζ , r, K)
0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

x ζ (t) + v (t) (8a)

y(t + �t) = 

[
0 1 0 0 

]
x ζ (t) + w (t) (8b)

where ζ = (a, b), f (.) is defined in Eq. (4) , v , and w are zero-mean

Gaussian random variables denoting the system and measurement

variances, respectively. 

3.4. Online shape correction 

As with all prediction tasks, the expected shape does not always

match the observation. This section discusses techniques for recon-

ciling the predicted tip shape and the observed shape obtained via

image segmentation. These techniques are employed when the pre-

diction accuracy falls bellow a user-specified threshold. In our exper-

iments, this threshold is: acc thresh = 0 . 9 . Section 4.2 outlines the met-

ric used in determining shape accuracy. To best describe the process

of error correction, consider that at a given time, t = i with a given

shape P i , a prediction is made for the shape at the next time interval

 = j, j > i denoted by P j . At t = j the observed shape O j is recorded.

If the accuracy between the prediction P j and the observation O j falls

bellow the specified threshold, the following steps are taken to cor-

rect the prediction: 

1. Since we know the previous shape P i and the current observation

O j , we determine the affine parameters for deforming the shape

from P i → O j in the Least-squares sense: 

( ˆ a , ̂  b , ̂  c ) = arg min 

a,b,c 

N ∑ 

k =1 

|| O j (k) −
[

ˆ A 

ˆ T 
0 1 

]
P i (k)|| (9)

where ˆ A is a (2 × 2) matrix and 

ˆ T is a (2 × 1) translation vector,

and N is the number of 2D points in P i . 

2. Using a combination of QR-decomposition and factorization, Ā is

decomposed into rotation, scale, and shear matrices: 

ˆ A = 

[
p −q 
q p 

][
ˆ a 0 

0 

ˆ b 

][
1 

ˆ c 
0 1 

]
(10)

where ( ˆ a , ̂  b , ̂  c ) are the update values for the affine matrix param-

eters. Since the type of shape deformation involved in tip growth

does not require rotations, the influence of the rotation matrix is

considered as noise and not used in updating the shape. 

3. The updated shear parameter and predicted shape P i become: 

c(i − 1 ) ← 

ˆ c (11a)

P j ← 

ˆ A O i + 

ˆ T , (11b)

ˆ A and 

ˆ T are obtained in Eq. (9) . Affine parameters a and b are up-

dated separately in UKF update process. 
Algorithm 1 outlines the steps for online analysis of a fluorescent

ideo of a growing pollen tube. 

. Experiments 

.1. Experimental setup and data collection 

In this study, pollen tubes were grown from pollen grains taken

rom the plant Arabidopsis Thalinia. This plant serves as a model or-

anism for the study of pollen tube growth because its entire genome

s known. Green fluorescent protein (GFP) was fused to Arabidopsis

IP1 (AT1G17140, also named ICR1) on the C-terminus. This served

s a marker of active ROP1. The RIP1-GFP fragment was fused into a

inary vector pLat52::NOS, which contains a pollen tube specific pro-

oter, to generate the binary construct pLat52::RIP1-GFP construct.

sing Agrobacterium mediated flower dip method, pLat52::RIP1-GFP

as introduced into Arabidopsis wild-type Col0 background. Ara-

idopsis thaliana plants were grown at 22 °C in growth rooms un-

er a light regime of 16 h of light and 8 h of dark. Pollen grains

ere germinated on a solid medium (18% sucrose, 0.01% boric acid,

 mM (milli Molar) CaCl2, 1 mM Ca(NO3)2, 1 mM MgSO4, pH 6.4

nd 0.5% agar) for 3 hours before observation under a microscope.

ollen tubes expressing GFP-ROP1, GFP-RIC1, GFP-RIC4 or RLK-GFP

ere observed using a Leica SP2 confocal microscope (488nm ex-

itation, 500–540 nm emission). Images of the median plane of

he pollen tube were obtained as time-lapse images using a con-

ocal microscope. The response of pollen tubes to external stimu-

us was observed using a modified semi in-vitro assay as described

y [20] . 

For each video used in this study, Table 1 shows the microscope

cquisition rate, the number of images in the video, the spacing be-

ween successive analyzed images, and the total number of analyzed

mages. The first few frames [3–6] of each sequence are used to es-

ablish the first growth cycle, and no predictions are recorded for

he fist frame in each growth cycle (initialization). For example, in

ig. 5 , the first 6 frames are used to establish the first cycle, and

here are a total of 6 growth cycles. Hence 119 − 6 − 6 = 107 analyzed

mages. 
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Fig. 5. Results of tip tracking in a video showing straight growth with 6 detected growth cycles. (A) The proposed method (blue) as deformed from the starting position (yellow) to 

match the observed tip. (B) Standard method of adding cylinders at the base of the tip (red). (C) Results of AAM (green) in tip localization. (D) Accuracy of the three methods over 

time. Shaded circles indicate when model was corrected and shaded squares indicate when the AAM was updated. (E) Variance in parameters for elongation reduces during online 

parameter estimation with UKF. (F) Cumulative sum of variation in the shear parameter ( c ) over time. Fit not shown when the R-squared-value is below 0.85. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 6. Results of tip tracking on a video showing tube turning with 5 detected growth cycles. (A) The proposed method (blue) as deformed from the starting position (yellow) to 

match the observed tip. (B) Adding cylinders at the base of the tip (red) is not sufficient to explain tip turning. (C) Results of AAM (green) in tip localization. (D) Accuracy of the 

three methods over time. Shaded circles indicate when model was corrected and shaded triangles indicate when the AAM was updated. (E) Variance in parameters for elongation 

reduce during online parameter estimation with UKF. (F) Cumulative sum of variation in the shear parameter over time. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article). 

Table 1 

Acquisition rate ( χ ), video length ( l ), analysis spacing ( �t ) and number of images 

analyzed for each experimental video. 

Property Figure number 

5 6 7 a 7 b 7 c 7 d 7 e 

Acquisition rate 0.1 1.0 0.5 1.0 1.0 0.1 1.0 

Video length 119 372 93 252 79 119 294 

Spacing 1 5 3 5 2 2 5 

Number of analyzed images 107 69 26 46 66 107 55 
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.2. Accuracy metric 

The accuracy of the predicted shape of the cell tip is determined

n a pixel-by-pixel basis. An accurate pixel is one that is within a dis-

ance of n -pixels from the observed tip contour ( O ). The accuracy

f the predicted tip contour ( P ) is determined using the following

etric: 

ccuracy pixel (P, O) = 

sum(d)

length(P )
(12) 
where 

(i) = 

{
1 if min(|| P i − O || ) ≤ n 

0 Otherwise 
(13) 

or i = 1 , . . . , length(P ), and ||.|| is the L 2 norm. We use a distance of

 = 3 pixels in our analysis. 

.3. Experimental results 

In this section, we show the results of our method (this paper) and

ompare it with the standard method of adding cylinders to the base

f the tip for pollen tube growth as well as adaptive active appearance

odel (AAM)( [1,6] ) on experimental videos. The AAM was trained by

anually indicating the tip region on the training images. When de-

ection accuracy fell bellow 0.85, the AAM was updated by using the

anually-drawn tip on the current image as a new training example.

Fig. 5 shows the results of the proposed method in analyzing a

ideo of a pollen tube exhibiting straight growth. There are 119 im-

ges in the sequence with a 10-second gap between each image. This

pacing provides sufficient gap between consecutive images. 107 out
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Fig. 7. Results of the proposed method on different videos of pollen tube growth vs. the standard approach and AAM for tip detection. [Blue]: proposed method, [Red]: standard 

method, [Green]: AAM, [Yellow]: observed tip. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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Fig. 8. Mean (bars) and standard deviation (error bars) of accuracy and runtime of the three methods used in the experiments shown in Fig. 7 . In (a), the numbers indicate the 

mean accuracy for each method. 
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of 119 images were analyzed. 6 growth cycles were detected, as rep-

resented by the 6 rows of images show in A, B, and C. Fig. 5 A shows

the deformation of the initial shape (yellow) at the end of the growth

cycle (blue) according to the proposed method, Fig. 5 B shows the re-

sult of the standard approach of adding cylinders to the base of the tip

(red), and Fig. 5 C shows the result of tip detection using AAM (green).

Fig. 5 D shows the accuracy of the three methods over time for each

of the 6 growth cycles. Growth cycles are separated by vertical lines.

During the entire experiment, 5 shape corrections were performed

for the proposed model compared to 4 for AAM. These correction

times are indicated by filled circle and triangle-markers on the ac-

curacy curves respectively and were performed when accuracy fell

bellow 85%. Fig. 5 E indicates that during the course UKF-estimation,

the variance of the states (not showing the first state: position) de-

creases over time. This signals a convergence of the estimated param-

eters. The last plot shows a fit of Eq. (7) to the cumulative sum of the

shear parameter ( c ) during each growth cycle. The fit is not shown if

the accuracy falls below 85%. 

Similarly, Fig. 6 shows the results on a video of a pollen tube that

is turning towards the ovary. The microscope acquisition rate was

1 image / s . To allow for significant variation between two consecutive

shapes, we select every 5 th image in the sequence for a total of 69

analyzed images out of 372. Unlike in the previous case, this example

has a lot of variation in the shape of the tip during the course of the
xperiment. Fig. 6 A indicates that the proposed method can adapt to

he observations as the tip first turns down, then slightly to the right

n the last cycle. This rich dynamic is missed by the standard method

 Fig. 6 B) because of its rigid nature. AAM-based detection is not al-

ays able to detect the tip in the image. This is more evident in the

orresponding accuracy plot (green) of Fig. 6 D, compared with the

ccuracy of the proposed method (blue). Similar to Figs. 5 E, 5 F, 6 E, 6 F

how the decrease in variance over time, and the fit of Eq. (7) to the

ynamics of the shear parameter over each growth cycle. 

The above two experiments are presented as examples to show

he flexibility of the proposed method in adapting to changing tip

eformations. Even though Eqs. (4) and (7) are not used in the ex-

erimental analysis, they are capable of explaining the observed data

nd can, therefore, be used in theoretical studies. These experiments

lso show that with proper training, AAMs can be used for tip detec-

ion but not as a predictor of tip localization, which is what the pro-

osed method does. The strength of our method is evident in that it is

ble to adapt to various tip representations (turning, bulging, straight

rowth), as well as cases with some registration problems between

he start and end of the growth cycle. 

Figs. 7 and 8 summarize the results of 5 experiments comparing

he proposed method (Column A) to standard pollen tube growth

Column B) and AAM (Column C). These experiments contain a

otal of 317 analyzed images. Since AAMs capture both shape and



A.L. Tambo et al. / Pattern Recognition Letters 72 (2016) 100–108 107 

Table 2 

Mean and standard deviation of the results from parameter estimation during curve evolution shown in the indicated figures. 

Figure number Expansion (a) Elongation (b) P b r 
P a r 

P a r K ×10 −3 P b r K ×10 −3 

5 0.0611 ± 0.0127 0.1263 ± 0.0934 0.1042 ± 0.0218 0.1986 ± 0.2104 1.7047 

6 0.0296 ± 0.0077 0.1932 ± 0.0706 0.0328 ± 0.0092 0.2678 ± 0.0943 1.1073 

7 a 0.0619 ± 0.0057 0.0632 ± 0.0452 0.0938 ± 0.0115 0.20918 ± 0.0338 1.5147 

7 b 0.0288 ± 0.0081 0.1515 ± 0.0348 0.0279 ± 0.0149 0.2528 ± 0.0879 0.9643 

7 c 0.0536 ± 0.0133 0.2097 ± 0.0956 0.0809 ± 0.0310 0.2334 ± 0.1244 1.5094 

7 d 0.0339 ± 0.0140 0.2212 ± 0.1635 0.0519 ± 0.0348 0.6304 ± 0.6896 1.5315 

7 e 0.0150 ± 0.0022 0.1330 ± 0.0176 0.0238 ± 0.0080 0.3074 ± 0.0563 1.5898 
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ppearance information, they work best when neither the shape

or the appearance (pixel intensity distribution) of the tip changes

ramatically. There are some exceptions as shown in column C of

ig. 7 (d) where the appearance of the intensity distribution at the tip

rops and contributes to false tip localization. AAMs were set to run

or 25 iterations, which had an average runtime of 2.92 seconds. The

roposed method is approximately 4-times faster with a higher aver-

ge accuracy as indicated in Fig. 8 . 

Table 2 shows the mean and standard deviation of the param-

ters estimated using UKF for the indicated experiments. Since

ollen tubes grow principally through elongation and we make no

istinction between cell wall fibers stretching in both direction, we

xpect the value of P b r to be higher than that of P a r ( Table 2 , Col-

mn 6). This is because P a is expanding pressure while P b is the elon-

ating pressure. In Fig. 7 (b), the tip of the cell becomes wider towards

he end of the second cycle, indicating a higher than normal expand-

ng pressure ( P a ) during this cycle. 

. Conclusions 

We have presented a method for growing a pollen tube cell that

s based on an interpretation of the underlying biological activity, as

ell as a deformation of the growth region that is located around the

ip of the cell. Cell deformation is a mechanical process governed by

he balance between internal pressure and wall stiffness. We model

ell growth as result of the reduction in wall stiffness (reduction in

all viscosity) caused by the deposition of material during exocyto-

is. We use the periodic nature of exocytosis, linked to oscillations of

ytosolic Ca 2+ , to initialize our model at the start of each growth pe-

iod. We have shown that the dynamics of cell wall weakening can

e explained using a Gompertz logistic function. Since this function

s nonlinear, we employed the Unscented Kalman Filter in estimating

unction parameters during each growth cycle. Our experimental re-

ults showed that affine transformations can be used to grow the cell

ip to the desired shape, and that the dynamics of the affine parame-

ers satisfy the proposed logistic growth model. 

The adaptive model presented works both in cases of straight

rowth as well as during tube turning. In each case, the model is able

o detect the beginning of each growth cycle, enabling it to reinitial-

ze model parameters to reflect this biological signal. Statistical on-

ine parameter estimation is used to determine the parameters of the

odel during each growth cycle, with no training involved. To the

est of our knowledge, the authors are not aware of any work that

pplies a model for apical pollen tube growth directly to an experi-

ental video. As such, this work would be instrumental as the first

tep in quantifying the many parameters involved in apical growth. 
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