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We study non-equilibrium effects in the conductance of a recently introduced molecular junction for which the 

gate acts as an on/off switch for an intra-junction electron-transfer between localized donor and acceptor sites. 

Using insights and parameters provided by DFT calculations, we build a double quantum-dot model that mim-

ics the behavior of the molecular junction frontier orbitals. We employed the Redfield quantum master equa-

tion for calculating the steady-state populations, current and conductance channels; we show that the non-

equilibrium population distribution has a significant effect on the conductance channels. While in some cases 

both equilibrium and non-equilibrium conductance channels coincide, in non-equilibrium additional channels 

appear.  
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I. INTRODUCTION 

In a recent paper,1 two of us presented a molecular junc-

tion in which confinement and Coulomb effects are pro-

nounced and controlled by well understood physical princi-

ples. A schematic depiction of the system is given in Figure 

1, describing a Benzene-malononitrile (MN) acceptor dis-

placed by a vertical distance  ̅ with respect to the trans-

polyacetylene (PA) donor. The energy gap    for intramolec-

ular electron transfer thus becomes dependent on the gate 

field   :   (  )         ̅  , where   is the electron 

charge and   and   are the ionization and affinity energies 

respectively (see caption of Figure 1). A sufficiently strong 

gate field will induce electron transfer from donor to accep-

tor, allowing sensitive control over the electronic properties 

of the junction. The gate effects on differential conductance 

channels have been studied extensively with respect to level 

alignment effects2-16 when it controls electron transfer from a 

metal electrode to the molecule.17-19 The present junction is 

unique in that the charge transfer is an intra-junction process 

and represents a reorganization of the electrons, leaving the 

junction largely uncharged. 

Our previous analysis of this junction1 was carried out using 

the generalized Kohn-Sham approach to density functional 

theory (DFT), employing a range-separated hybrid with first 

principles tuning of the range parameter, where the orbital 

energies have a meaning as quasiparticle energies.20-22 We 

studied the differential conductance channels of this junction 

under bias and gate voltages using Landauer’s theory,23 based 

on the ground-state DFT Hamiltonian. We found that the 

conductance of this junction is controlled by an interplay of 
quantum interference, charging, Coulomb blockade, and 

electron−hole binding energy effects. 
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Figure 1: Schematic depiction of the molecular junction in ref. 1: two 

thiol- terminated trans-polyacetylene PA segments (   
(     )  ) acting as meta substituents on the aromatic ring of a 

Benzene-molononitrile (MN) molecule. The gate potential   , the 

gate bias    and the source drain bias     are adjustable. The PAs 

are electron donors determining the ionization potential of the mole-

cule (        ). The MN is an electron acceptor, endowing the 

molecule with electron affinity         . DFT calculations showed 

that a gate field beyond a critical value of   
           inspires 

spontaneous electron transfer from donor (PA) to acceptor (MN). 

In this paper, we continue to study this system focusing 

on non-equilibrium effects, neglected in Landauer’s ap-

proach, important because of the large bias voltages used. 

The most natural choice for this task would be to use a DFT-

nonequilibrium Green function methodology,24 successful in 

characterizing transport properties of molecular junctions in 

the off-resonant tunneling regime.25-31 However, at resonance 

the approach is less successful, mainly because of the spuri-

ous orbital energies of KS-DFT.22,32 Thus we turn instead to 

an approach of building a many-body model for the junction 

and treat transport in terms of many-body states of an isolated 

molecule. Such a formulation has the advantage of taking into 

account all the on-the-molecule correlations exactly, and 

simplifies consideration of resonant tunneling regime when 

the molecule is weakly coupled to the contacts. Within this 
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approach we mention real-time perturbation theories,33-36 

generalized quantum master equation schemes,37-41 nonequi-

librium pseudoparticles 42-48 and Hubbard Green 

functions.15,49-52.  

The present paper will also make use of the molecular 

state-based approach to study conductance switching and 

identify transport channels in the molecular junction far from 

equilibrium. For this, we build a model that captures the es-

sential physics of the molecular junction, described in sec-

tion ‎0. The conductance of the system, based on this model is 

studied first at equilibrium (section ‎0) followed by a non-

equilibrium treatment (section ‎III). Of the many approaches 

developed for studying non-equilibrium conductance (see 

books and review Refs. 53-56) we use the Redfield and Lind-

blad  QME formulations,57-62 which are appropriate when the 

conductor is weakly coupled to the leads. This level of theory 

is enough for our demonstration purposes. Further discussion 

of these theories, their weaknesses and strengths appears in 

section ‎I‎III. We summarize and discuss the main conclusions 

in section ‎V.   

II. HUBBARD MODEL OF THE JUNCTION 

Our model assumes that all non-frontier electrons in the 

molecule are frozen in low-lying orbitals and we need to con-

sider only two frontier orbitals. For this, we employ a double 

quantum-dot Hubbard model, where the first quantum dot 

(QD1) represents the LUMO of the acceptor and the second 

(QD2) the HOMO of the conjugated donor (see Figure 2). 

This model captures the essential characteristics of the mole-

cule as determined by the DFT calculations. Under zero bias 

and gate the donor site QD2 is electrically neutral and since it 

represents the molecular HOMO it holds two active electrons 

and thus also has a static (“nuclear”) charge of     . The 

acceptor site QD1 is also electrically neutral and since it rep-

resents the molecular LUMO it holds no active electrons and 

thus has a static charge of     .   

 

Figure 2: A schematic diagram of the double quantum-dot model, 

QD1 represents the LUMO (localized on the MN acceptor) and QD2 

the HOMO (localized on the PA donor) of the molecule. The two 

quantum dots couple to each other but only QD1 is directly coupled 

to the source and drain, because of a destructive interference effect.  

The Hubbard Hamiltonian describing the junction is: 

 ̂    ∑  (  ) ̂ 
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(1)  

where  ̂  
 

 ( ̂  ) and ĉks
†

( ĉks ) are the electron creation (an-

nihilation) operators for each QD and states in the contacts, 

respectively.  ̂    ̂  
  ̂   is the spin dependent occupations 

of QD   (      and      ), and  ̂   ̂    ̂   is the 

number of electrons on the QD. For future reference we also 

introduce operator of the total molecular occupation,  ̂  
∑  ̂ 
 
   . The first term in  ̂      describes the single particle 

site energies, where    is the orbital energy of an electron in 

QD  ; the second term is the on-site Hubbard repulsion   , 
while the third term couples QD1 to QD2 with the hopping 

parameter  . The orbital energies are gate-field dependent: 

  (  )    
         (2)  

where    is the gate field in direction   and    is the vertical 

position of QD  .   
  is taken as the LUMO energy of the 

molecule. Since QD2 holds in the molecular ground state 2 

electrons   
  is the energy to put the first electron on QD2, i.e. 

it is the HOMO energy of the molecular cation. Then, the on-

site repulsion    for the QD2 is determined such that the en-

ergy of the second electron in QD2 is the HOMO energy of 

the neutral molecule: 

         
      (3)  

Due to the vertical displacement of the acceptor relative to 

the donor, the gate field controls the orbital energy difference 

     . It is possible to fix the energy of    so that only    is 

gate-field dependent (in the model we do this by taking 

     in Eq. ‎(2)).  Achieving this in a laboratory setup (as in 

Figure 1) requires careful tuning of the metallic potentials.  

Table 1: Energetic parameters of the many-body model, Eq. ‎(4). 

Parameter Value (eV) Explanation 

  -5.1 Fermi level of gold 

      -6.2 From DFT calculation 

      -1.2 From DFT calculation 

  
  -7.8       of     (from DFT calcula-

tion) 

  
  -1.2        

   4.5     splitting in DFT calculation 

after charge transfer 

   1.6         
  

    1.8 Exciton binding energy from DFT 

calculation. 

        0.005 Assumed electron escape rates 

    0.001  

   0 See text for explanation. 

   2 See text for explanation. 

   

In ref. 1 we found that the long-range attraction between 

the electron on QD1 and the hole on QD2 formed by intramo-

lecular charge transfer is an important energy scale. To con-

sider this effect, we add to the Hubbard Hamiltonian inter-site 
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Coulomb interactions terms, forming the molecular junction 

Hamiltonian: 

 ̂   ̂   (  )     (    ̂ )(    ̂ )    ̂  (4)  

An essential feature of the junction is that the current 

transport through the molecular LUMO but not through its 

HOMO. This is due to destructive interference appearing 

when the PA segments are meta-connected to the benzene 

ring.1 In the model this is  reflected by coupling only QD1 

directly to the contacts, whereas QD2, while coupled to QD1, 

is not directly coupled to source and drain (see bottom part of 

Figure 2). The left and right contacts are treated as reservoirs 

of electrons at adjustable chemical potentials obeying the 

Fermi-Dirac distribution. The coupling of QD1 to the contact 

is symmetric and assumes a single coupling parameter 

        (wide band approximation). We give the values of 

the model parameters in Table 1.  

 

Figure 3: Top panel: Low-lying “diabatic” (   ) eigenenergies of 

the model Hamiltonian in Eq. ‎(4) as function of gate field   . The 

states are designated as (    ). Bottom panel: Selected diabatic 

energy differences (multiplied by 2) from ground state to the nearest 

hole/electron states as a function of   . These can be considered as 

transition channels in the        plane. The blue (pink) shaded 

area designates      
  (     

 ) where (  ) ((  )) is the ground 

state.  The red lines are the transition channels that should be active 

under assumption of equilibrium population distribution. The black 

doted portion of each line is the regime where this transition channel 

should not be active due to lack of population of the relevant state. 

The solid black lines are transition channels that should not be active 

in the diabatic limit (   ) since in this limit QD2 is decoupled 

from the leads (see text below for details). 

We now discuss the energy levels of the Hamiltonian of Eq. 

‎(4) assuming    , henceforth called the “diabatic” limit. 

The state occupations    and    are good quantum numbers 

and the energies can be labeled as (     ) and some are 

shown in the top panel of Figure 3 as function of the gate-

field   . At low gate fields the ground-state is (  ) but as    
grows, the charge-transfer state (  ) descends in energy (due 

to the dependence of    on   , see Eq. ‎(2)) and crosses (  ) 
to become the ground-state of the system once      

  

where   
          , is the critical field mentioned in the 

introduction. Two other low-lying states are plotted, one is 

the positively charged (  ) state, with energy not dependent 

on    (since     ) and the second is the negatively charged 

state (  ) with energy descending with   . 

Stating all the relevant energy states we are now in a good 

starting point to analyze conductance under assumption of 

equilibrium population in the junction (section III ) followed 

by a non-equilibrium analysis taking into account non-

equilibrium effects (section IV).  

 

Figure 4: Expected position of the differential conductance peaks as 

a function of gate field    and source-drain bias     assuming equi-

librium population and    . There are two conducting channels,63 

which can be assigned to the transitions (     ) and (     ).  
At gate fields below   

  the active channel (     ) is electron 

conducting, while for      
   the active channel (     ) is hole 

conducting. The intersection of the red line (     ) with the 

extrapolated (dotted) line (     ) is marked by the point   while 

points   and   denote, respectively, the ending and the beginning of 

those channels which occur at the critical gate field    
  .  

III. CONDUCTANCE UNDER EQUILIBRIUM AS-
SUMPTION 

In equilibrium, the junction is assumed to be in its ground 

state. The conductance channels are formed by a transition to 

low-lying states which differ from the ground state by an 

electron or by a hole. Assuming a symmetric potential drop 

across the junction, the source-drain potential difference     

required for causing a transition (    )  (    ) is  

       (         )    (5)  

In Figure 3 (bottom) we plot the lines (called “transition 

channels”) obeying this relation as a function of the gate field 
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  . At      
 , the blue shaded region, the ground state is 

(  ) and the possible transitions are to states (12) requiring 

energy    (     ) and to (  ) requiring    (     ) 
(see red and black solid lines in the blue shaded region of 

Figure 3 (bottom)). For      
 , the pink shaded region, the 

ground state becomes (  ) and the possible transitions are to 

state (01) requiring energy    (     ) or to state (12) 

requiring    (     ) (see red and black solid lines in the 

pink shaded region of Figure 3 (bottom)). The two remaining 

transition channels, (     ) and (     ) are not con-

sidered since they appear at much higher energies.  

In the diabatic limit (   ), the transport of charge through 

QD2 is not possible since this dot is decoupled from the 

leads. Therefore, of the four channels described above, only 

two, those involving a change in   , actually conduct. When 

     
  the electron conductance channel (     ) is op-

erative as (  ) is the ground state. Similarly, when      
  

only (     ) is active as (  ) is the ground state. These 

considerations allow us to deduce the position of the expected 

differential conductance peaks as a function of gate field    
and source-drain bias     shown in Figure 4.  

IV. NON-EQUILIBRIUM  ANALYSIS 

The considerations above relied on a simplifying assumption, 

namely that the bias does not disturb the equilibrium popula-

tion on the molecule. We now lift this assumption since we 

use quite large bias voltages and non-equilibrium effects are 

likely to be important. We employ the Redfield QME, where 

the weak coupling to the leads is treated as a perturbation. A 

standard closure procedure allows us to obtain an effective 

Liouvillian in the molecular subspace. The right eigenvector 

corresponding to an eigenvalue with zero imaginary part is 

the steady-state density matrix (SSDM). From the SSDM we 

compute the steady-state populations, average non-

equilibrium current  (   ) and the differential conductance 

          as a function of     for each gate-field.  

One well-known shortcoming of Redfield theory is that its 

SSDM is not guaranteed to be positive definite, as a physical 

DM should always be. Indeed, in our calculations we do find 

certain voltage regimes where Redfield QME fails. However, 

these are not the regimes of interest for this work. Note that 

we have also used the Lindblad approach57,58 to compute the 

conductance and populations and obtained nearly identical 

results to those of the Redfield theory in the regimes of inter-

est shown below. The Lindblad approach, guarantees posi-

tivity of the DM, although it has other basic shortcomings 59. 

It is comforting that in the regime of interest both methods 

gave identical predictions.  

We now discuss the results we obtained for the populations 

 , the steady-state currents  , and the differential conductance 

peaks   as functions of    and     (see Figure 5).

 

Figure 5: Contour plots of the Redfield prediction for the steady-state distribution of populations  (  ),  (  )  (  ) and  (  ) (left panel), 

current   (middle panel), and the differential conductance peaks   (right panel) as functions of    and    . The colors of the different popula-

tion distribution regimes  (left panel) are chosen arbitrarily while the color coding for the current and differential conductance peaks (middle 

and right panels) have a meaning of intensity (red, orange, yellow, green, blue and purple where red is the highest and purple is zero). 

A. Population distribution 

The population distribution among the four states, depicted in 

the left panel of Figure 5, displays a variety of domains, each 

with its own color and characterized with a different combi-

nation of states (in each domain the most populated state ap-

pears in large bold letters). This picture is markedly different 

from the equilibrium population distribution where only two 

domains, blue and pink, exist (see Figure 3). Furthermore, in 

equilibrium the line      
  is the boundary while in non-

equilibrium the boundaries of the different domains are the 

transition channels discussed in section ‎0.  

The transition channels form the boundary domains because 

they designate the threshold conditions for insertion of an 

electron or a hole into the junction. Such an injected charge 

carrier brings with it excess energy of    
    

 
 which can be 

used to populate higher energy states. 

It is important to note that the population redistribution 
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among states with the same number of electrons requires 

concurrent population change in states of different charge. 

For example, let us revert Figure 3(top) and consider the 

transfer of population from (  ) to (  ) at           . 

The energy for this process is   (     )       . Naïve-

ly, one would expect that a source-drain bias of          

will be the threshold voltage for population of (  ). In reality 

however, the threshold is determined by a totally different 

process, namely the injection of an electron from the leads, 
(     ), which occurs at       . The reason for this odd-

looking dependence is simply that at 0K one must rely on 

injected charge carriers to transfer the available energy in the 

leads into the junction.  

B. Steady-state current 

The non-zero steady-state current shown in the middle panel 

of Figure 5, appears in several distinct domains bounded by 

the transition channels of the junction: 

a) The purple domains designate regimes of zero cur-

rent.  

b) The red triangle defined by the transition channels 
(     ) and (     ) indicates a high current 

regime which has strong contributions both from 

electron and hole currents due to the relatively high 

population of (  ) and (  ) seen in the left panel. 

c) The green colored area on the right is bounded by 

the four transition channels (     )  (   
  ) (     ) and (     ). Dominant contribu-

tion to the current comes from the (     ) elec-

tronic transition and it is weak due to the low popu-

lation of the (  ) state. In this regime, the hole con-

ducting channel (     ) is closed.  

d) The yellow triangular region located at the upper left 

corner is bounded by the transition channels 
(     ) and (     ). The current is solely due 

to holes passing through the (     ) conducting 

channel. The current is intense due to the relatively 

high population of the (  ) state. Interestingly, the 

current is not due to any of the transitions defining 

the domain boundaries. These transitions do not con-

tribute, either because they are energetically inacces-

sible ((     )) or they change    ((     )), a 

process that is weak because QD2 is not directly 

coupled to the leads.  

C. Equilibrium vs. non-equilibrium conductance 

The current domains depicted above give rise to sharp differ-

ential conductance peaks called “conductance channels” 

which are displayed in Figure 5 (right). These peaks reveal a 

richer picture than predicted by the equilibrium theory of 

Figure 4. In some cases both equilibrium and non-equilibrium 

conductance channels coincide: for example the electron con-

ducting channel (     ) and the hole conducting channel 
(     ), for      

 . But under non-equilibrium condi-

tions additional channels appear. One such case is the hole 

conducting channel (     ) when      
  (the segment 

connecting points   and   in Figure 5 (right)). To activate this 

channel one should have a significant population of the (  ) 

state. In equilibrium (11) is not populated at all because 

     
  (blue domain in Figure 3) while in non-equilibrium 

it carries a significant population (grey domain in Figure 

5(left)) for reasons discussed above.  

Additional non-equilibrium conductance channels, absent 

from the equilibrium picture, appear as horizontal lines in 

Figure 5 (right) at          and         . These are 

attributed to the transitions (     ) and (     ) re-

spectively. Their presence is somewhat surprising since the 

underlying transitions involve a change in the population of 

QD2, which is not directly coupled to the leads. Obviously 

the population of (  ) or (  ) must involve indirect mecha-

nisms. For example,          or          re-

spectively, both involve an internal charge reorganization 

step. Once the population of QD2 changes, a redistribution of 

population is enforced on all other states as well (because the 

sum of all populations is always unity) and this indirectly 

affects the current in all the current-carrying channels. 

V. SUMMARY 

We have studied the conductance of the molecular junction 

depicted in Figure 1, under an external gate field and source-

drain bias. This junction was considered in our previous pa-

per where we studied the conductance using a ground-state 

Hamiltonian, based on a DFT for which the orbital energies 
are close to the quasiparticle energies and employing Lan-

dauer’s formula 1 which describes the conductance of non-

interacting particles. In this paper, we have focused on inter-

action-induced non-equilibrium effects, neglected in our pre-

vious treatment, which are likely to be important due to the 

large bias voltages used. Using the data and insights provided 

by the DFT calculations we built a double quantum-dot Hub-

bard Hamiltonian to describe this junction. We then em-

ployed a non-equilibrium many-body approach based on the 

Redfield theory to calculate the steady-state populations, cur-

rent and conductance channels of this junction. We used the 

same model Hamiltonian to construct the conductance chan-

nels of this junction at equilibrium.  

We found that in some cases both equilibrium and non-

equilibrium conductance channels coincide; for example the 

electron conducting channel (     ) and the hole conduct-

ing channel (     ), for      
 . But in non-equilibrium 

additional channels appear, for example (     ) and 
(     ). Another example is the appearance of a “missing 

segment” in the conductance channel, as (     ) between 

points   and   (see Figure 5 (right)). At equilibrium, the line 

     
  is the boundary separating the regimes of population 

distribution (Figure 3(bottom)) and thus, determines the acti-

vation\deactivation of the conducting channels. At non-

equilibrium the boundaries of the different population do-

mains are very different in shape (Figure 5 (left)), determined 

by the transition channels. 

In this system, the non-equilibrium population distribution is 

the most important factor determining the activa-

tion/deactivation of conducting channels. This effect is not 

related to the strength of the coupling between the two quan-

tum dots. A change in the population of one of the charged 
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states (induced by changing    or    ) will necessarily in-

voke a redistribution of populations (and mutual coherences) 

of other states and thus will affect the current in other chan-

nels. It is for this reason that in non-equilibrium the conduct-

ance channels are coincident with transition channels, regard-

less of the ability of this transition by itself to conduct cur-

rent. As an example, see the explanation above of why the 

transition (     ), not expected to be conducting in the 

diabatic limit, is coincident with a conductance channel.  

One of the attractive features of the junction is the small 

number of conductance channels and the sharp response to 

the gate field. This was predicted by the equilibrium theory, 

finding only two conductance channels (see Figure 4). The 

non-equilibrium theory predicts that additional conductance 

channels form, making the picture somewhat more intricate. 

However, the number of such channels is still very small and 

the high tunability properties and sharp switching behavior of 

this junction (Figure 5 (right)) are preserved. 

Future research directions are needed to be studied for this 

junction. First, we have not yet considered the effect of mo-

lecular vibrations, which may be important because their ten-

dency to disrupt the destructive interference through the ben-

zene ring.64 In addition, the intra-junction charge transfer can 

also be induced by light instead of by the gate field, allowing 

opto-electronic switching control. 
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