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Abstract

It has become increasingly clear that cytochromes P450 can cycle back and forth between two 

extreme conformational states termed the closed and open states. In the well-studied cytochrome 

P450cam, the binding of its redox partner, putidaredoxin (Pdx), shifts P450cam toward the open 

state. Shifting to the open state is thought to be important in the formation of a proton relay 

network essential for O–O bond cleavage and formation of the active Fe(IV)=O intermediate. 

Another important intermediate is the oxy–P450cam complex when bound to Pdx. Trapping 

this intermediate in crystallo is challenging owing to its instability, but the CN− complex is 

both stable and an excellent mimic of the O2 complex. Here we present the P450cam–Pdx 

structure complexed with CN−. CN− results in large conformational changes including cis/trans 
isomerization of proline residues. Changes include large rearrangements of active-site residues and 

the formation of new active-site access channel that we have termed channel 2. The formation 

of channel 2 has also been observed in our previous molecular dynamics simulations wherein 

substrate binding to an allosteric site remote from the active site opens up channel 2. This 

new structure supports an extensive amount of previous work showing that distant regions of 

the structure are dynamically coupled and underscores the potentially important role that large 

conformational changes and dynamics play in P450 catalysis.
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INTRODUCTION

Cytochrome P450cam (CYP101A1) is a bacterial heme monooxygenase that catalyzes the 

regio and stereoselective hydroxylation of D-camphor to form 5-exo-hydroxycamphor. This 

is the first step in the oxidative assimilation of camphor as an energy source for its host 

organism Pseudomonas putida. Since its discovery, P450cam has served as an important 

model for structure and function relationships in P450 enzymes.1–5

Figure 1 shows the P450 catalytic cycle. In P450cam, NADH reducing equivalents first 

are transferred from the FAD of putidaredoxin reductase (PdR) to the Fe2S2 ferredoxin, 

putidaredoxin (Pdx), and then, Pdx delivers electrons to P450cam. A hallmark of the 

P450cam system is that the second electron transfer step can be supported by only Pdx, 

so it has long been thought that Pdx plays an effector/allosteric role.6 This effector 

role has been demonstrated by numerous spectroscopic methods,7–13 but the underlying 

conformational dynamics that give rise to its specificity have only recently begun to emerge. 

Crystal structures of P450–redox partner complexes are challenging and rare with only 

three structures to date.14–16 The most recent are the covalent and noncovalent structures of 

P450cam–Pdx determined by both X-ray crystallography and NMR.16,17 These structures 

provided the first direct structural evidence of how allosteric effects of Pdx may be 

achieved. The binding of Pdx to substrate-bound P450 pushes P450cam toward the open 

conformation, consistent with earlier spectroscopic evidence that demonstrated Pdx binding 

shifted substrate-bound P450cam back toward the low-spin state.13 This was hypothesized 

to allow for the formation of a water-mediated proton relay network to enter the active-site 

channel and free active-site residue Asp251 from a strong ion pair with the F helix residue 

Arg186 to then participate in a proton delivery relay to the distal heme-bound oxygen for 

O–O bond scission.16,18

Related to both substrate and Pdx binding is perhaps the most important step of the 

P450 catalytic cycle, the binding and activation of molecular dioxygen. The synergistic 

timing of O2 binding, activation, and turnover is critical to ensure efficient coupling and 

prevent unproductive turnover and release of O2 as reactive oxygen species (ROS) such as 

superoxide or peroxide. While these interactions have been extensively investigated within 

the context of P450cam–camphor interactions,6,19 Pdx’s involvement with substrate and 
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O2 dynamics is not well-understood. While the structure of substrate-bound P450cam and 

dioxygen has been solved, determination of the analogous structure of the oxy-complex 

bound to Pdx is not as straightforward. It has been previously demonstrated that in the 

presence of substrate and Pdx, X-ray radiation alone can reduce either P450cam and/or Pdx 

to initiate substrate turnover and form product within the crystal.16 Beyond the challenges 

related to the instability of the oxy-complex, formation of the oxygenated intermediate 

within the crystallized complex would surely bring a similar result upon X-ray exposure.

In order to study the effects of oxygenated intermediates of P450, both cyanide and carbon 

monoxide have been utilized as stable mimics of O2.20,21 However, binding of CO to P450 

does not confer many of the conformational changes that are known to occur upon dioxygen 

binding.8,21 This may be due to electronic changes that occur upon CO binding and a lack 

of charge on the distal oxygen. Oxy-complexes of heme proteins are best described as 

ferric-superoxide rather than ferrous-oxy so the distal O2 oxygen atom carries a negative 

charge.22,23. The ferric-superoxide complex is electronically similar to the ferriccyanide 

complex, as CN− has a negative charge on the distal nitrogen. Indeed, the P450cam–CN− 

complex results in the same changes in local protein and solvent structure, while CO and NO 

complexes do not.20,24–26

In this paper, we present a substrate-bound Pdx–P450cam complexed with cyanide as an 

axial ligand at a resolution of 2.15 Å. Quite unexpectedly, we found that cyanide induces 

large structural changes that result in the formation of a new opening to the active site 

we have termed channel 2. Our recent molecular dynamics (MD) simulations showed that 

binding of the substrate, camphor, to a site on the protein well-removed from the active 

site results in the formation of this same channel 2.27 Thus, the present work provides 

experimental verification of structural change predicted by MD simulations as well as 

defines a novel conformational state of P450cam that may have relevance to enzyme 

function.

MATERIALS AND METHODS

Crystallization.

P450cam–Pdx crystals were prepared by hanging drop method as previously described.16 

To prepare the CN−-bound complex, crystals were soaked in mother liquor containing 50 

mM KCN for 15 min. Mother liquor supplemented with 15% glycerol was used as a 

cryoprotectant, and crystals were flash frozen in liquid nitrogen before data collection.

Data Collection and Refinement.

Data were collected from single crystals at the Stanford Synchrotron Radiation Lightsource 

(SSRL). Diffraction images were indexed, integrated, and scaled using Mosflm and Scala 

in the CCP4 package.28 The P450cam–Pdx complex crystal structure (PDB ID: 4JWS)16 

without cofactor was used as a search model in molecular replacement using Phaser. 

The final structure contains two molecules of the P450cam–Pdx complex per asymmetric 

unit. The Phenix suite29 was used for structure refinement. All reflections were used for 

refinement except for 5% excluded for Rfree calculations.29 The structural model was revised 
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in real space with the program COOT30,31 based on sigma-A-weighted 2Fo-Fc and Fo-Fc 

electron density maps. The final refinement statistics are given in Table S1. The final 

structure was refined to 2.15 Å resolution with an Rfree of 25.6% and Rwork of 19.8%.

Structural Analysis.

The final refined model consists of two molecules of complex (P450cam A-chain + Pdx 

C-chain, P450cam B-chain + Pdx D-chain) in the asymmetric unit. All four chains are 

highly ordered, and more than 97.0% of the residues were located in the core region of 

Ramachandran plots as determined by MolProbity.32 We did not observe any significant 

change in Pdx, although during data collection, the Fe2S2 center in Pdx very likely gets 

reduced. When Pdx is reduced, the 45–46 peptide flips, allowing the peptide NH group 

to donate a hydrogen bond to the Fe2S2 center in the reduced state. In our structure, this 

peptide is in the reduced conformation.

RESULTS AND DISCUSSION

In recent work, we used MD simulations that demonstrated how allosteric control of 

P450cam by a second molecule of camphor may provide a mechanism of activation by 

opening a primary and secondary channel.27 To date, the formation of the second channel 

has never been verified experimentally. Owing to the limits of classical MD, the role of O2 

binding, product formation, and Pdx interaction were not demonstrated in our proposed 

model, but these processes are intricately governed by protein–substrate interactions. 

P450cam and Pdx were covalently cross-linked using a bismaleimide cross-linker between 

two non-native cysteines far from the protein–protein interface. The protein complex was 

crystallized and soaked with excess cyanide. To confirm the binding of CN−, a UV–vis 

spectrum of the crystal was taken using the microfocus beamline (Figure S1), and the Soret 

peak is significantly red-shifted, indicating the presence of bound CN−. The most significant 

changes between the complexes with and without CN− bound are the widening of the F/G 

loop and opening of the B′ channel (channel 2, Figure 2). This indicates that the binding of 

CN− to the heme induces large, ordered conformational rearrangements within the crystal.

In our previous work, we suggested how substrate binding to a second site may prime the 

opening of a second channel and how Pdx may preferentially bind to this open structure to 

contribute to product egress via mechanical coupling. Overlaying the CN−-bound complex 

structure with our prior simulation egress event reveals significant similarities (Figure S2). 

Unlike the other P450cam–Pdx complexes, the F/G helices have moved to a completely 

open conformation. This allows for breakage of the Arg186–Asp251 ion pair, which, in our 

structure, is present in two rotameric conformations revealing how binding of dioxygen and 

Pdx may break this pair, allowing for Asp251 to participate in proton delivery as suggested 

by Tripathi et al.16 Polder maps demonstrate the bifurcation of the Asp251 residue (Figure 

3). The rotamer where Asp251 is oriented in toward the active site is in an ideal position to 

mediate proton transfer to dioxygen.

However, the substrate access channel (channel 1) is not completely exposed in either of 

the molecules, as the B′ helix has lost nearly all secondary structure but remains hydrogen-

bonded to the F/G loop. The movement of the F/G loop and the unfolding of the B′ helix 
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leads to channel 2 formation, while channel 1 remains closed. This new channel provides 

an egress path for product and is associated with dynamic movement of Tyr96. This is 

important, since in the closed state, Tyr96 provides an H-bond to the camphor carbonyl 

oxygen. However, when CN− binds to the P450cam–Pdx complex, Tyr96 flips out of the 

active site (Figure 4C). To demonstrate the dynamics of this channel, we previously utilized 

the Ser83 to Ser102 Cα distance as a measure of channel 2 formation, which in all crystal 

structures where the B loop is ordered, is ~5 Å.27 In the CN− complex structure, however, 

the S83 to S102 distance is ~9.5 Å, which is in good agreement with our simulations that in 

order for substrate egress to occur channel 2 opens to beyond 7 Å.

NMR studies hypothesized that conformational switching in P450cam is dictated by an 

X-Pro cis–trans isomerization, but this has never been observed in a crystal structure. 

Specifically, OuYang et al. identified Pro89 as the most likely candidate for controlling this 

process.33 They observed two distinct camphor orientations when substrate-bound P450cam 

was reduced and bound to carbon monoxide (CYP-S-CO) and was then titrated with reduced 

Pdx (Pdxr). The time scales of the observed chemical shifts were in good agreement with 

reported time scales of catalyzed proline cis–trans isomerization. The binding of CN− to 

P450cam–Pdx results in the cis to trans isomerization of the Ile88–Pro89 bond, which 

breaks a bifurcated hydrogen bond from the carbonyl of Pro89 to the NH groups of Ala92 

and Gly93 that allows the B′ helix to lose secondary structure but remain hydrogen-bonded 

to the F/G loop. NMR-directed molecular dynamics suggested that the barrier of this 

isomerization is lowered by a distortion of the ideally planar Ile88–Pro89 O–C–N–C∂ (ω) 

dihedral from 180 to ~166° in the trans form. The conclusions of those simulations are 

supported by the Ile88–Pro89 ω dihedral angles in our structure, which are distorted to 167 

and 169°. Tyr29 was also hypothesized to be important in the controlling the isomerization 

process and, when compared to the closed structure, has moved from a distance of ~2.7 

to 3.6 Å, nearly out of hydrogen bonding range (Figure 4A). Pro106 also undergoes cis to 

trans isomerization assisting in the opening of channel 2 and forces greater alignment of 

the backbone carbonyls effectively increasing the stability of the C-helix (Figure 4B). The 

Pro–Pro motif at the end of the B–C loop is conserved in a number of bacterial P450s and 

suggests that this mechanism may not be unique to P450cam.34

One surprising observation from the structure is the orientation of the 7-propionate group. 

In every crystallographic structure of P450cam deposited in the Protein Data Bank, the 

propionates take on identical conformations, with a 7-propionate C1A–C2A–CAA–CBA 

dihedral between −100 and −110°. In the cyanide structure presented here, the 7-propionate 

dihedral has rotated by ~180° to 89.9 and 85.3°, respectively (Figure 5). Hayashi et al. 

reconstituted P450cam with a “one-legged” heme to demonstrate how the 7-propionate 

along with Asp297, Arg299, and Gln322 act to protect the active site from solvent entry.35 

Asp297 is believed to be protonated (H++ server: http://biophysics.cs.vt.edu/) and involved 

in hydrogen bonding with heme 7-propionate. In the CN− complex, Asp297 breaks this 

hydrogen bond with the propionate, revealing how Asp297 may participate in hydrogen 

bonding to camphor after binding O2 allowing for retained regio-stereoselectivity. In our 

unrestrained MD simulations, this same H-bond breakage of 7-propionate is associated with 

substrate egress. (One NMR structure exhibits a similar geometry, but the heme structure 

was determined by molecular dynamics.)
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We previously postulated that the dihedral rotation of the Leu358 side chain had relevance 

in Pdx binding and product formation.27 Once again, Leu358 N–Cα–Cβ–Cγ rotates ~130° 

from the open–closed structure (2CPP) and ~−70° to a dihedral angle of 59.3° and 56.9° in 

each monomer, respectively. This rotation allows for Pdx to create a tighter interface with 

P450cam and has been associated with the “push” effect coupled to changes on the distal 

side of the heme that favors the open form of P450cam.8,9,36 Here, we can see how Leu358 

rotates upon CN− and Pdx binding and induces changes on the distal side of the heme as 

well as the heme itself that favor an open state.

Why CN− binding induces such large changes illustrates the intricate coupling of distant 

regions of P450cam with one another, which have been well-documented by NMR 

studies.33,36–43 To make room for CN−, the I helix must move. Since the F and G helices 

contact the I helix and the F/G loop region contacts the B′ helix, all of these regions move 

in concert. These large changes are possible because Pdx is holding P450cam in the partially 

open state. In the closed state, O2 and CN− binding, where P450cam is locked down, these 

large changes cannot take place. Even so, O2 and CN− binding to closed P450cam results in 

local change in the I helix, which is in the direction toward the open state.20,25 Pdx binding 

releases these restraints, thereby enabling the protein to undergo these large conformational 

rearrangements.

CONCLUSIONS

The P450cam–Pdx–CN− structure illustrates the magnitude of conformational changes that 

P450s can undergo and defines a new conformational state of P450cam. We were quite 

surprised that these large changes including cis–trans proline isomerization can occur within 

the confines of a crystal lattice. Although CN− is a good mimic of O2, the current structure 

cannot represent an active complex owing to the location of the camphor in channel 1. In 

our original structure of the P450cam–Pdx complex, the product, 5-exo-hydroxycamphor, 

is positioned in the substrate binding site, but a second camphor molecule is bound just 

above the product in channel 1 (PDB ID: 4JX1). In the CN−-complex, camphor is positioned 

about 2 Å up the channel away from the productive binding site and thus cannot represent 

the structure just prior to O–O bond cleavage and substrate hydroxylation. We postulate 

that opening of channel 2 has allowed productively bound substrate to escape, while 

rearrangements of the F/G and B′ regions trap the second camphor molecule in channel 

1. It is unlikely that O2 alone can result in the same changes we observe with CN−, primarily 

because the oxy–P450cam complex is very unstable when bound to oxidized Pdx, while 

clearly, the CN− complex is quite stable. This is probably because Pdx shifting P450cam 

to the open state in the absence of electron transfer promotes rapid autoxidation of the 

oxy-complex. It thus seems more likely that the stability of the CN− complex has enabled 

trapping of P450cam in this new open conformational state. One could argue that this is 

simply an artifact of crystallization/soaking, although it can also be argued that proteins 

cannot adopt conformational states in crystallo that are not also accessible in solution. 

What provides an additional level of confidence that the CN−-induced structural changes 

are functionally relevant is the consistency with our previous MD simulations that show 

an allosterically regulated change in structure resulting in the formation of channel 2, 

very similar to what happens when CN− binds. This is reasonable, since the regions in 
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the immediate vicinity of CN− binding in the I helix and those of the proposed allosteric 

substrate binding site ~16 Å away are mechanically coupled. Perturbing one perturbs the 

other. Therefore, the CN− complex provides a snapshot along the reaction coordinate after 

substrate hydroxylation and product egress through channel 2, while the substrate molecule 

in channel 1 is poised for movement to the productive binding site once Pdx dissociates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
P450cam reaction cycle.
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Figure 2. 
(A) P450cam (white) with the B–C loop (red) forming channel 2 in complex with Pdx 

(orange). (B) Rotated by 90° counterclockwise to show the allosteric site (green). (C) A 

cross section of the complex (PDB ID: 6NBL)
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Figure 3. 
Polder map of Asp251 in two rotameric conformations. 2Fo-Fc at 1 σ (blue) and polder map 

at 4 σ (green).
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Figure 4. 
Several changes occur in the B–C loop of P450cam. In the structure, two prolines undergo 

cis–trans isomerization including (A) Pro89, which also moves to a distance of 3.6 Å from 

Tyr29, as well as (B) Pro105. (C) Tyr96 also rotates out of the active site where it H-bonds 

with the camphor carbonyl oxygen. Camphor (yellow); heme (red). 2Fo-Fc maps at 1 σ 
(blue).
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Figure 5. 
Two different views of the active site of P450cam with camphor (yellow) and CN (gray) 

bound to heme (red). Leu358 (green) has rotated to accommodate Pdx and pushes on the 

heme, where the 7-propionate has rotated and broken its interactions with Asp297. 2Fo-Fc 

contoured at 1 σ (blue, right).
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