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Abstract. Desert dust accounts for most of the atmosphere’s aerosol burden by mass and produces numer-
ous important impacts on the Earth system. However, current global climate models (GCMs) and land-surface
models (LSMs) struggle to accurately represent key dust emission processes, in part because of inadequate
representations of soil particle sizes that affect the dust emission threshold, surface roughness elements that ab-
sorb wind momentum, and boundary-layer characteristics that control wind fluctuations. Furthermore, because
dust emission is driven by small-scale (∼ 1 km or smaller) processes, simulating the global cycle of desert dust
in GCMs with coarse horizontal resolutions (∼ 100 km) presents a fundamental challenge. This representation
problem is exacerbated by dust emission fluxes scaling nonlinearly with wind speed above a threshold wind
speed that is sensitive to land-surface characteristics. Here, we address these fundamental problems underlying
the simulation of dust emissions in GCMs and LSMs by developing improved descriptions of (1) the effect of
soil texture on the dust emission threshold, (2) the effects of nonerodible roughness elements (both rocks and
green vegetation) on the surface wind stress, and (3) the effects of boundary-layer turbulence on driving inter-
mittent dust emissions. We then use the resulting revised dust emission parameterization to simulate global dust
emissions in a standalone model forced by reanalysis meteorology and land-surface fields. We further propose
(4) a simple methodology to rescale lower-resolution dust emission simulations to match the spatial variability of
higher-resolution emission simulations in GCMs. The resulting dust emission simulation shows substantially im-
proved agreement against regional dust emissions observationally constrained by inverse modeling. We thus find
that our revised dust emission parameterization can substantially improve dust emission simulations in GCMs
and LSMs.
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1 Introduction

Desert dust accounts for more than half of the atmospheric
mass loading of particulate matter (PM) (Kinne et al., 2006;
Kok et al., 2017) and produces a wide range of important
impacts on multiple components of the Earth system (Shao
et al., 2011a; Kok et al., 2023). Like other aerosols, dust
changes Earth’s radiative budget and atmospheric dynamics
directly by scattering and absorbing radiation (Sokolik and
Toon, 1996; Miller and Tegen, 1998) and indirectly by me-
diating cloud formation (Rosenfeld et al., 2001; Shi and Liu,
2019; McGraw et al., 2020; Froyd et al., 2022). These dust–
radiation interactions and dust–cloud interactions also drive
day-to-day variability in large-scale circulation patterns and
local weather events such as monsoons and rainfall (Jin et
al., 2021; Parajuli et al., 2022). Dust further impacts biogeo-
chemistry by delivering nutrients such as iron and phospho-
rus to ocean and land ecosystems (Mahowald et al., 2010;
Hamilton et al., 2020).

In recent decades, modelers have made substantial
progress in developing various parameterizations for the
main dust cycle processes including emission (e.g., Shao et
al., 1993; Marticorena and Bergametti, 1995; Marticorena et
al., 1997; Tegen and Fung, 1995; Klose and Shao, 2013), ad-
vection (e.g., Prospero, 1999; Lin, 2004; Van der Does et al.,
2018), deposition (e.g., Barth et al., 2000; Liu et al., 2001;
Zhang et al., 2001; Petroff and Zhang, 2010) and its bio-
geochemical effects (e.g., Jickells et al., 2005; Mahowald et
al., 2005, 2010; Hamilton et al., 2020), optics (e.g., Soko-
lik and Golitsyn, 1993; Linke et al., 2006; Adebiyi and Kok,
2020), and radiative effects (e.g., Di Biagio et al., 2020; Li
et al., 2021). Despite substantial progress in dust model-
ing, current global climate models (GCMs) and Earth sys-
tem models (ESMs) still struggle to adequately simulate the
dust cycle, which impedes an accurate assessment of dust
impacts (Huneeus et al., 2011; Wu et al., 2020; Zhao et al.,
2022). For instance, model simulations still show large dis-
crepancies when compared against observations of the spa-
tial and temporal characteristics of the dust cycle, including
dust emission (Kok et al., 2014a; Pierre et al., 2014a), dust
PM concentration (Wu et al., 2019; Pu et al., 2020; Li et al.,
2022), dust aerosol optical depth (DAOD or DOD) (Ridley et
al., 2012; Kok et al., 2014b; Pu and Ginoux, 2018; Parajuli et
al., 2019), dust deposition (Ginoux et al., 2001; Albani et al.,
2014; Kok et al., 2014b; Li et al., 2022), and dust size distri-
butions (Parajuli et al., 2019; Adebiyi and Kok, 2020; Li et
al., 2022). Also, models struggle to capture the observed in-
terannual and decadal variability of dust (Ridley et al., 2014;
Smith et al., 2017; Evan, 2018; Kok et al., 2018) and the
sensitivity of dust to climate changes (Evan, 2018; Kok et
al., 2018). An improved quantification of dust impacts on the
Earth system thus requires improvements on how dust is sim-
ulated in models.

One key piece of physics that models struggle to param-
eterize is the dust emission threshold. The dust emission
threshold u∗t is defined as the threshold wind stress/speed
above which winds initiate, or below which winds cease, the
lifting of sand particles whose impacts on the soil surface
emit dust aerosols (Kok et al., 2012; Comola et al., 2019b).
The dust emission threshold is a function of soil properties
and atmospheric conditions like particle size distribution, soil
moisture, and air density. There are various reasons for the
inadequate parameterization of the dust emission threshold.
First, many models assume a globally constant soil particle
size in calculating a spatially varying dust emission thresh-
old (Zender et al., 2003a; Darmenova et al., 2009; Kok et
al., 2014b), whereas the actual soil particle size is likely a
function of space and time and could depend on soil prop-
erties, such as texture, pH, and organic matter content, since
these variables modulate the cohesion between soil particles
(Webb et al., 2016). Some models proposed that soil particle
sizes are related to the soil texture and therefore represent
the soil particle size as a global map (Tegen et al., 2002;
Darmenova et al., 2009; Menut et al., 2013; Klose et al.,
2021), but these maps either have not yet been thoroughly
validated against observations or are based upon extrapola-
tion of a limited number of observations. Second, most cur-
rent models use the fluid threshold (also named static thresh-
old or initiation threshold) above which saltation is initiated
as the dust emission threshold, but it is well known that dust
emission is governed by both the larger fluid threshold and
the smaller impact threshold (also named dynamic thresh-
old or cessation threshold) below which saltation is termi-
nated (Bagnold, 1941; Shao, 2008; Martin and Kok, 2018;
Comola et al., 2019a, b; Pähtz et al., 2020). Moreover, dust
emission is a nonlinear process (i.e., it varies with the wind
speed to the second to fifth power, per Kok et al., 2014a),
and the emission flux is particularly sensitive to the magni-
tude of the emission threshold (Kawai et al., 2021). Thus,
land-surface models (LSMs) within GCMs and ESMs need
to parameterize the emission threshold correctly to get an ad-
equate spatiotemporal variability of the modeled atmospheric
dust.

The second key dust emission physics that LSMs struggle
to represent is the partitioning of the wind stress. Wind drag
is partitioned into the part absorbed by surface roughness
elements (mainly rocks and plants) and the part exerted on
the bare soil that drives dust emissions. This drag partition-
ing effect is modeled by several dynamical schemes (Rau-
pach et al., 1993; Marticorena and Bergametti, 1995; Okin,
2008), and it is accounted for in some models (LeGrand et
al., 2019; Klose et al., 2021; Tai et al., 2021) but not oth-
ers (e.g., Kok et al., 2014b; Evans et al., 2016). One major
challenge in modeling drag partition is to quantify the abun-
dance of rocks (which includes rocks, pebbles, and gravel in
this study) and their corresponding partition effect, because
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there are few measurements of rock roughness. To cope with
this issue, studies have used in situ and/or remote sensing
scatterometer measurements to quantify the small-scale land-
surface roughness (e.g., Greeley et al., 1997; Roujean et al.,
1997; Marticorena et al., 2004; Prigent et al., 2005, 2012),
especially over arid desert regions over which rocks, peb-
bles, and gravel dominate the roughness. However, with a
few recent notable exceptions that attempted to represent the
roughness effects of both rocks and vegetation (e.g., Darmen-
ova et al., 2009; Foroutan et al., 2017; Klose et al., 2021),
studies often omitted the drag partition effect either due to
vegetation (e.g., Menut et al., 2013) or due to rocks (e.g., Wu
et al., 2016; LeGrand et al., 2019; Tai et al., 2021). To re-
solve these issues, we propose a new approach that combines
the drag partition effects of both elements, leveraging satel-
lite scatterometer measurements to quantify the surface rock
roughness and using observable vegetation and land-surface
variables to quantify the surface vegetation roughness.

The third key piece of fundamental dust emission physics
not accounted for by many models is the effect of turbulence-
driven high-frequency wind variability on dust emissions.
Most current GCMs assume a constant wind speed (and thus
a constant emission flux) within the relatively large model
time step, e.g., 30 min (e.g., Rahimi et al., 2019; Dunne
et al., 2020). However, in reality, high-frequency turbulent
fluctuations cause the wind speed to fluctuate within a time
step (from seconds to minutes). Because dust emissions scale
nonlinearly with wind speed, this causes highly uneven and
fluctuating dust emission fluxes (Durán et al., 2011). Even
more importantly, turbulent wind fluctuations can sweep
across the dust emission threshold multiple times and shut
off dust emissions intermittently within one model time step,
resulting in strong dust emission intermittency (Comola et
al., 2019b). Even regional climate models (RCMs), which
typically use a smaller time step (e.g., < 1 min), do not re-
solve turbulence unless they are run in the computationally
expensive large-eddy-simulation (LES) mode (e.g., WRF–
LES). Omitting turbulence by GCMs and RCMs thus causes
either an overestimate or an underestimate of dust emissions,
especially over marginal source regions where winds fluctu-
ate around the high emission threshold, as models do not ac-
count for the cessations or initiations of dust emissions due to
turbulent fluctuations. To account for the instantaneous wind
fluctuations, a dynamical approach is to derive a probability
density function (PDF) for the instantaneous momentum flux
using LES, which is then used for quantifying instantaneous
dust emission fluctuations (Klose and Shao, 2012; Klose et
al., 2014). A parameterization approach is to use the Monin–
Obukhov similarity theory (MOST) to relate the standard de-
viation of the instantaneous wind to the boundary-layer dy-
namical variables (Comola et al., 2019b). In this study, we
will account for turbulent dust emissions by following Co-
mola et al. (2019b), which showed significant improvements
in representing the small-magnitude saltation and dust fluxes
that are particularly important over marginal source regions.

In addition to these issues of models missing some of the
fundamental physics of dust emission, a central issue in mod-
eling the global dust cycle is that dust emissions are grid-
resolution-dependent because of the nonlinear dependence
of dust emissions to meteorological fields and land-surface
variables. Since dust emission varies nonlinearly with wind
speed and has an even more complex relation to the soil
moisture (Gillette and Passi, 1988; Fécan et al., 1999; Shao,
2001; Kok et al., 2014a), the total regional and global emis-
sions can vary significantly with grid resolution (Ridley et al.,
2013; Meng et al., 2021). For instance, modeled emissions
were found to increase by ∼ 29 % from a 1◦× 1◦ to 0.25◦

× 0.25◦ resolution (Ridley et al., 2013; Feng et al., 2022).
As a consequence, GCMs and ESMs often need to tune
emissions separately for different grid resolutions to match
observational dust budgets (Ginoux et al., 2001; Zender et
al., 2003a; Albani et al., 2014; Kok et al., 2014b; Chappell
et al., 2021). This issue occurs because current GCM grid
sizes of ∼ 1◦ or 100 km cannot resolve the spatial scales of
∼ 1 m to ∼ 1 km over which soil properties and wind speeds
change (Ridley et al., 2013). When adopting coarse grid reso-
lutions, coarser modeled meteorological fields (for GCMs) or
spatially averaged input meteorological fields (for chemical
transport models or CTMs) will smooth out the local wind
extrema, possibly causing wind speeds to fall below the dust
emission threshold. As a result, the coarse modeled winds
usually result in strong GCM emissions underestimations
(Ridley et al., 2013). The same smoothing problem also oc-
curs for soil moisture for instance, with its maxima smoothed
out leading to an overestimation of dust emissions. Thus, al-
though some GCMs and ESMs recently implemented more
physical schemes (Zhao et al., 2022), their inability to re-
solve the small scales still causes challenges for capturing
the accurate spatial distributions of dust emissions (Meng et
al., 2021). For the same reason, GCMs tend to neglect small-
scale emissions over marginal source regions. In this study,
we will analyze the scale dependence of our dust emission
scheme given specific input datasets and propose a method
of upscaling the coarse dust emissions to alleviate the scale-
dependence problem.

To tackle the above problems and improve simulations of
the global dust cycle, we propose a new emission scheme for
global models that includes key dust emission physics miss-
ing from current models. Specifically, we (1) account for the
effects of the soil particle size distribution (PSD) on the dust
emission threshold, (2) draw on satellite data and physically
explicit models to account for wind momentum absorption
by both rocks and vegetation, and (3) account for turbulence-
driven intermittency in dust emission fluxes. After we review
current dust emission schemes in Sect. 2, we present our new
scheme in Sect. 3. In Sect. 4, we code the new dust emission
scheme as a standalone sandbox model (see Sect. 2.4) and
examine the resulting spatiotemporal variability of the new
dust emissions. We then examine the grid-scale dependence
of dust emissions and derive a correction map for coarser
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dust emission simulations to correct their spatial variabil-
ity to high-resolution simulations. Sections 5 and 6 discuss
and summarize the main findings of this paper. In our com-
panion paper (Leung et al., 2023b), we will implement this
new scheme in the state-of-the-art Community Earth Sys-
tem Model version 2 (CESM2) and evaluates its performance
against observations.

2 Current dust emission schemes and their input
variables

This section provides a basic review of current GCM’s dust
emission schemes and their required input meteorological
variables. Broadly speaking, dust emission schemes con-
sist of a parameterization of the dust emission threshold
(Sect. 2.1); a parameterization of the reduction of the wind
drag on the bare soil surface due to momentum absorption by
surface roughness elements (Sect. 2.2); and a parameteriza-
tion of dust emission flux given wind speed, threshold wind
speed, and drag absorption (Sect. 2.3). We will develop an
improved emission scheme for GCMs in Sect. 3 by improv-
ing upon each of these three core ingredients of dust emission
schemes. We also provide a brief description of meteorolog-
ical data used for computing the dust emission schemes in
Sect. 2.4.

2.1 Parameterization of the dust emission thresholds

There have been extensive studies on the dust emission
threshold u∗t, defined as the wind speed or drag that corre-
sponds to the initiation or cessation of dust emission. Dust
emission is caused by saltation, a process by which sand
particles (geometric diameter > 63 µm) on the surface are
lifted by wind drag into the airstream (known as aerodynamic
entrainment) and undergo ballistic trajectories (Anderson,
1989; Kok et al., 2012). The minimum wind friction veloc-
ity u∗ required for initiating saltation through aerodynamic
entrainment is called the fluid threshold u∗ft (McKenna Neu-
man and Sanderson, 2008). Once saltation is initiated, a
smaller u∗ is needed to maintain saltation because saltation
bombardment (saltating particles impacting on the granu-
lar bed) can create further saltation, which is more efficient
than creating saltation solely through the wind drag. Salta-
tion will be maintained at a slightly smaller u∗ called the im-
pact threshold u∗it (Bagnold, 1941; Martin and Kok, 2018).
The ratio u∗it/u∗ft is about 0.8–0.85 for loose dry sand and
less for soils with other sources of cohesion (e.g., moisture,
organic matter), because cohesion rapidly increases u∗ft, but
low-to-moderate levels of cohesion do not increase u∗it as
indicated by numerical simulations (Comola et al., 2019a;
Ralaiarisoa et al., 2022). It follows that dust emission can
occur below u∗ft, especially in marginal dust source regions
with high soil moisture for which u∗it can be much smaller
than u∗ft. u∗t is thus a general concept comprised of both u∗ft

and u∗it. However, u∗it is not currently accounted for in most
current GCMs, which simply use u∗ft as u∗t.

One challenge in parameterizing u∗ft and u∗it lies in the
representation of the effect of the soil particle size Dp on
both thresholds. These two thresholds are mainly governed
by soil particle diameterDp, air density ρa , and soil moisture
w (Greeley et al., 1997; Shao and Lu, 2000). Although there
are multiple data sources of globally gridded products for
ρa and w, there are relatively few efforts on obtaining glob-
ally gridded Dp, since there are no methods for satellites to
observe and derive surface Dp observations. With few com-
prehensive field studies of saltation dynamics over polydis-
perse soils, past saltation studies either assumed that particles
of different sizes saltate independently of each other (Marti-
corena and Bergametti, 1995; Shao et al., 1996; Alfaro and
Gomes, 2001; Zender et al., 2003a) or assumed that a single
grain size (e.g., the median) could be used to represent the
whole PSD of the soil bed (Elbelrhiti et al., 2005; Andreotti
et al., 2010). The dispute of whether the assumption of “in-
dependent” saltation (Shao, 2008) or “representative” salta-
tion (Claudin and Andreotti, 2006) is more appropriate was
informed by Martin and Kok (2019), who showed that mod-
eling the threshold using a single particle size (representative
saltation) is more realistic than assuming no interactions be-
tween saltation of different particle sizes. They argued that
the median particle diameter Dp of the PSD should be used
for calculating the threshold of a mixed soil, and the emis-
sion should then be calculated for the whole soil bed using
the median instead of using a spectral/independent approach
of calculating emissions of different particle sizes separately.

To model u∗ft, current models assume that u∗ft is mainly
dependent on the soil PSD and soil moisture (Iversen and
White, 1982; Marticorena and Bergametti, 1995; Zender et
al., 2003a):

u∗ft = u∗ft0(Dp,ρa)fm(w), (1)

where u∗ft0 is the “dry” fluid threshold friction velocity
(in m s−1) on a smooth and bare surface as a function
of air density ρa(long, lat, t) (longitude, latitude, time) and
Dp(long, lat), which in this study will be the median diame-
ter Dp of a polydispersed, mixed soil PSD. fm is the correc-
tion factor for the presence of soil moisture w(long, lat, t);
fm ≥ 1, such that soil moisture protects soil particles from
being lifted. u∗ft is the “wet” fluid threshold accounting for
the moisture effect. Other factors can also affect u∗ft, such as
salt concentration, organic matter, electrostatic effects, and
surface crusts, but they are not included in most studies be-
cause they are not well understood and modeled (Shao et al.,
2011; Foroutan et al., 2017).
u∗ft0 is parameterized by considering the balance between

aerodynamic drag and lift against gravity and interparticle
cohesion on a soil particle. The Shao and Lu (2000) (here-
after S&L00) scheme derived a simple solution to the force
balance (also see Kok et al., 2012), assuming that the cohe-
sive force is proportional to particle size. Using wind tun-
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nel measurements (e.g., Greeley and Iversen, 1985), they ob-
tained the following equation with fitting parameters:

u∗ft0 =
√
A(ρpgDp+ γ /Dp)ρ−0.5

a , (2)

where g = 9.81 m s−2 is the gravitational acceleration,
ρp= 2650 kg m−3 is the typical soil particle density, ρa is
in kg m−3, and A= 0.0123 and γ = 1.65× 10−4 kg s−2 are
empirical constants accounting for the aerodynamic forces
and interparticle forces, respectively. Assuming an air den-
sity ρa = 1.225 kg m−3, Eq. (2) will yield the smallest u∗ft0
of 0.21 m s−1 at Dp = 80 µm. For larger sizes, the particles
are heavier to lift; for smaller sizes, the particles are more
strongly bound by interparticle forces.

An alternative parameterization for u∗ft0 is the Iversen
and White (1982) scheme (hereafter I&W82). They derived
a similar solution as S&L00 but further considered the ef-
fects of soil particle size to the airflows, characterized by
the particle Reynolds number Rep. I&W82 calculates u∗ft0 =
u∗ft0

(
ρp,ρa,g,Dp,Rep

)
in a similar form to S&L00 (see the

detailed solution in I&W82 or Kok et al., 2012), with

Rep = u∗ft0Dp/ν, (3)

where ν is the kinematic viscosity of air. Since u∗ft0 is a
function of Rep, which itself is a function of u∗ft0, u∗ft0 is
an implicit function of itself, and the calculation needs to be
iterated a few times given ρa and Dp in calculation.

Regardless of whether S&L00 or I&W82 is used, dif-
ferent models make different assumptions for soil particle
sizes Dp, including a globally constant value (e.g., Zen-
der et al., 2003a), a function of soil texture (e.g., Menut
et al., 2013), or other forms. For instance, the Commu-
nity Land Model (CLM), the land component of CESM,
uses a global optimal soil diameter of Dp = 75 µm for the
threshold calculation following Zender et al. (2003a) (Ole-
son et al., 2013; also see the latest version of CLM5.0 tech-
nical note on https://escomp.github.io/ctsm-docs/versions/
release-clm5.0/html/tech_note/index.html, last access: 3 Oc-
tober 2022). Thus u∗ft0 becomes solely a function of ρa
in CESM (e.g., u∗ft0 = 0.21ms−1 for ρa = 1.225 kg m−3 at
Dp = 75 µm).

Most models parameterize the effect of soil moisture fm
on u∗ft following Fécan et al. (1999):

fm =

√
1+ 1.21(w−wt)0.68 for w >wt (4a)

wt = a(17fclay+ 14f 2
clay)

= a
(

0.17(%clay)+ 0.0014(%clay)2
)
, (4b)

where w(long, lat, t) is the gravimetric soil moisture
(kg kg−1) in the shallowest soil layer (see Sect. S1 and
Fig. S1 for the relation between volumetric and gravimet-
ric moisture); wt (long, lat) is the threshold gravimetric wa-
ter content above which u∗ft increases; fclay(long, lat) is the

fraction of clay content in the topmost layer of soil between
zero and one; %clay= 100fclay is the corresponding clay
percentage; and a, a tunable constant usually of order 1, was
introduced by Zender et al. (2003a) to account for the mis-
match in the small scales for which Fécan et al. (1999) ob-
tained their parameterization and the large scales on which
it is used in climate models (e.g., Zender et al., 2003a;
Mokhtari et al., 2012; Kok et al., 2014b). wt increases with
soil clay content as water adsorbs onto clay such that more
moisture is needed to enhance u∗ft.

Another essential dust emission threshold for this study
is the dynamic or impact threshold u∗it, which is the lowest
wind speed or stress to maintain saltation (Kok et al., 2012;
Comola et al., 2019b):

u∗it = Bitu∗ft0, (5)

where Bit = 0.82 is approximately constant with soil prop-
erties and particle size (Bagnold, 1937; Kok et al., 2012).
Eqs. (2)–(5) imply that u∗ft ≥ u∗ft0 > u∗it and that u∗ft and
u∗it have different spatiotemporal variability. Also, the differ-
ence between u∗ft and u∗it could be much larger in nonarid
regions because fm is much larger than one. In this study, we
propose that dust emission models should use u∗it instead of
u∗ft for dust emission equations (e.g., Eqs. 10 and 13), which
will cause substantial changes in the simulated spatiotempo-
ral variability of dust emission (see Sect. 4.1). This is needed
to allow dust emission when the u∗ is intermediate between
u∗it and u∗ft, which is especially common in marginal dust
source regions. Additionally, this is more physically correct
as the dust emission threshold is the minimum friction ve-
locity at which the saltation and dust emission fluxes are
nonzero, which is true at u∗it but not true at u∗ft (Martin and
Kok, 2018; Comola et al., 2019b; Pähtz et al., 2020).

2.2 Parameterization of drag partition effects

Apart from the dust emission threshold, another essential pa-
rameter for determining the dust emission flux is the wind
drag partition effect, Feff, due to the existence of land-surface
roughness elements covering the desert surfaces (Raupach,
1992; Marticorena and Bergametti, 1995). It is crucial to
account for this effect for accurately simulating the magni-
tude and spatial pattern of dust emissions. Many past model-
ing studies treated this effect as increasing the dust emission
threshold u∗ft (e.g., Raupach, 1992; Marticorena and Berga-
metti, 1995; Darmenova et al., 2009; Menut et al., 2013),
such that the relation is expressed as (Raupach et al., 1993;
Marticorena and Bergametti, 1995; Marticorena et al., 1997,
2006; Foroutan et al., 2017; Webb et al., 2020)

u∗ft = u∗ft0(Dp,ρa)fm(w)/Feff, (6a)

where Feff < 1 when roughness elements are present, such
that roughness elements increase u∗ft and decrease the dust
emission. However, this approach is physically incorrect be-
cause roughness elements reduce the wind stress exerted on
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the bare soil and do not increase the forces resisting parti-
cle lifting that determine u∗ft (Kok et al., 2014a; Webb et al.,
2020). As a consequence, Webb et al. (2020) showed that
dust models using Eq. (6a) will overestimate the dust emis-
sion flux compared to those using Eq. (6b). A correct emis-
sion modeling approach should instead combine Eq. (1) for
u∗ft with the effect of drag partition Feff to u∗:

u∗s = u∗Feff, (6b)

where u∗s is called the soil surface friction velocity (Webb et
al., 2020). Dust emissions should thus be a function of u∗s
instead of u∗.

There are different schools of drag partition schemes.
A major school of drag partition parameterization origi-
nated from Arya (1975) and later Marticorena and Berga-
metti (1995) (hereafter M&B95), who primarily used the
roughness length z0 to quantify roughness. Because of the
large differences in the length scales between mountain-
s/orography, rocks, and plants, as well as down to soil par-
ticles, Menut et al. (2013) distinguished three distinct rough-
ness lengths describing different sizes of roughness. First, the
aerodynamic momentum roughness length z0m mainly repre-
sents roughness due to large-scale orography, forests, and/or
urbanization (with sizes of 10–103 m) with values ranging
from ∼ 1 cm to 1 m (Menut et al., 2013). Second, the ae-
olian roughness length z0a quantifies the roughness due to
smaller elements such as rocks and vegetation, with a typical
order of magnitude of 10−3 to 10 cm (Prigent et al., 2005;
Prigent et al., 2012). z0a is the relevant roughness length that
informs the partition of the wind stress when considering the
near-surface (∼ 1 m) flows in which saltation occurs. Third,
the smooth roughness length z0s quantifies the roughness of
a bed of fine soil particles in the absence of roughness el-
ements. z0s characterizes the roughness of mobile, erodible
soil particles over an exposed surface. z0s is directly related
to the particle diameter Dp by (Nikuradse, 1950; Sherman,
1992; Pierre et al., 2014b)

z0s = 2Dp/30. (7)

M&B95 proposed their drag partition scheme by arguing that
behind a roughness element (obstacle), an internal boundary
layer (IBL) grows, and the wind within the IBL follows the
log law of the wall as a function of u∗s and the local rough-
ness length z0s. They then pointed out that without the obsta-
cle, the planetary-boundary-layer (PBL) wind profile would
follow the log law as a function of u∗ and z0a. By arguing
that the two wind speeds must be equal at the IBL height δ,
they derived Feff as a function of z0a and z0s:

Feff = 1−
ln
(
z0a
z0s

)
ln
(
δ
z0s

) . (8)

Later studies improved this equation based on more obser-
vations for calibrating several parameters (MacKinnon et al.,

2004; King et al., 2005; Darmenova et al., 2009; see Eq. 15
in Sect. 3.2). Historically this scheme has been employed
by Marticorena and others to represent the roughness due to
rocks (e.g., Marticorena et al., 1997; Darmenova et al., 2009;
Menut et al., 2013).

Another major school of drag partition parameterization
originated from Raupach (1992) and Raupach et al. (1993)
(hereafter R93), which primarily used the roughness density
λ to quantify roughness. λ is defined as the total frontal area
of roughness elements divided by the area of land A : λ=
nhb/A, where h and b are the obstacle height and width, and
n is the number of obstacles within the area. Knowing the
geometric and aerodynamic properties of the roughness ele-
ments, R93 showed that the drag force of the exposed area
τ ′S is related to the total drag force τ , given λ, the roughness-
element basal area-to-frontal area ratio σ , and the ratio of the
roughness element-to-surface drag coefficient β:

τ ′S
τ
=

1
(1−mσλ)(1+mβλ)

, (9a)

where m is a geometric parameter to account for the spatial
variability of τ ′S on the erodible surface. Raupach then ap-
plied this ratio to the dust emission threshold (per Eq. 6a).

Many later studies used the R93 parameterization for
plants (specifically shrubs) with prescribed σ ,m, and β (Dar-
menova et al., 2009; Xi and Sokolik, 2015). λ, however, is
related to the abundance of obstacles and is thus spatially
variable, and thus far there are no globally gridded datasets
of λ available. Most studies thus related grid-scale λ to other
grid-scale properties; for instance, Shao et al. (1996) linked λ
to the vegetation cover fraction fv using in situ observations:

λ= cλln (1− fv) , (9b)

where cλ is a proportionality constant. Gridded λ could thus
be obtained from gridded satellite retrievals of vegetation
cover (Gutman and Ignatov, 1998; Wu et al., 2016; Foroutan
et al., 2017) or parameterized as a function of other gridded
land-surface variables such as the leaf area index (LAI) (e.g.,
Klose et al., 2021). Later studies have attempted to improve
Raupach’s parameterization, and newer schemes relating Feff
and λ have emerged (e.g., Okin, 2008).

Many previous modeling studies have not accounted for
the drag partition effects of both rocks and vegetation on dust
emissions (e.g., Ginoux et al., 2001; Tegen et al., 2002; Zen-
der et al., 2003a; Kok et al., 2014b). Many past studies either
accounted for only the drag partitioning by rocks (e.g., Mar-
ticorena et al., 2006; Menut et al., 2013) or by vegetation
(e.g., Shao et al., 2011b; Wu et al., 2016), mainly because it
is very challenging to use proxies of both rocks and vegeta-
tion in either the M&B95 or R93 scheme. For instance, R93
was historically mostly used for modeling vegetation but not
rock drag partitioning because there was no dataset of the λ
due to rocks. Similarly, vegetation roughness is historically
mostly represented by λ rather than z0a, so there is no glob-
ally gridded z0a observations for vegetation that can be fed
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into the M&B95 scheme. Some modeling studies (e.g., Klose
et al., 2021) generated globally gridded vegetation z0a by re-
lating plant λ with z0a (e.g., Minvielle et al., 2003; Shao and
Yang, 2005; Marticorena et al., 2006; Foroutan et al., 2017;
Klose et al., 2021), but these studies all found slightly differ-
ent relations between λwith z0a, and often the in situ obstacle
height h is required by the relation. It is thus very challeng-
ing to model vegetation drag partitioning using M&B95 by
converting λ to z0a when globally gridded h (short vegetation
height but not canopy height) is mostly unknown in GCMs
or possesses strong subgrid variability. A more recent ap-
proach quantifies surface roughness by detecting the shadow
(sheltered area) behind a roughness element using satellite-
derived albedo (Chappell and Webb, 2016). This approach
could potentially capture both rock and vegetation roughness
and was also employed by later dust modeling studies (e.g.,
LeGrand et al., 2023). To our knowledge, there are a few
studies that attempted to represent both rock and vegetation
roughness in one drag partition scheme (e.g., Darmenova et
al., 2009; Foroutan et al., 2017; Klose et al., 2021), but all
were affected by important limitations (see Sect. S2 for a
discussion on their approaches). In Sect. 3.2, we will pro-
pose a novel approach that incorporates roughnesses of both
rocks and plants and equally respects the z0a and λ from both
schools of drag partition parameterizations, quantifying the
drag partitions of rocks and plants into one hybrid drag par-
tition factor Feff.

2.3 Parameterization of dust emission flux

There are multiple available dust emission equations (e.g.,
Gillette and Passi, 1988; Shao et al., 1996; Alfaro and
Gomes, 2001; Ginoux et al., 2001; Tegen et al., 2002; Zen-
der et al., 2003a; Shao, 2004; Kok et al., 2014b; Evans et
al., 2016; and more) implemented in GCMs and ESMs to
calculate dust emission fluxes. For example, the Zender et
al. (2003a) scheme (hereafter Z03) is based on the Marti-
corena and Bergametti (1995) dust emission equation and is a
popular dust emission scheme adopted by many GCMs (e.g.,
Miller et al., 2004; Oleson et al., 2013; Meng et al., 2021).
Z03 calculates dust emission as follows:

Fd = STCMBϕfbare
ρa

g
u3
∗s

(
1−

u2
∗t

u2
∗s

)(
1+

u∗t

u∗s

)
for u∗s > u∗t , (10)

where Fd is the emission flux (in kg m2 s−1); CMB is a pro-
portionality constant for bridging the gap between local-scale
and large-scale dust fluxes; ϕ = 1013.4fclay−6 is the sandblast-
ing efficiency, the vertical dust emission flux produced per
unit of horizontal saltation flux as a function of soil clay
fraction fclay; u∗t is the dust emission threshold (in m s−1;
Z03 used u∗ft as u∗t); and fbare characterizes the fraction of
land not covered by vegetation. S(long, lat) is an empirical
“source function” (Ginoux et al., 2001; Zender et al., 2003a,

b; Koven and Fung, 2008) to characterize soil erodibility and
thus preferential source regions where fluvial sediment accu-
mulates and scale down emission flux out of desert regions.
For fbare, Mahowald et al. (2006) used a simple parameteri-
zation in which fbare is a pure function of LAI (neglecting the
effects of other objects such as snow, rocks, and buildings):

fbare = 1−LAI/LAIthr for LAI≤ LAIthr (11a)
fbare = 0 for LAI> LAIthr. (11b)

While Mahowald et al. (2006) took LAIthr = 0.3, we take
LAIthr= 1 in this study instead because (1) observations
show that there could be dust emitted from semiarid regions
with LAI> 0.3 (Okin, 2008); and (2) Mahowald et al. (2006)
did not account for wind drag partitioning due to plants, and
thus by setting a small LAIthr, emission (Fd ∝ fbare) drops
more rapidly with LAI such that the drag partition effect is
also incorporated in the fbare term. However, since we are
considering Feff in this study, we can set a more realistic
LAIthr value such that fbare becomes less sensitive to LAI.

In this study, we use the Kok et al. (2014b) dust emis-
sion equation (hereafter K14) which is increasingly adopted
by more GCMs (e.g., Evan et al., 2015; Ito and Kok, 2017;
Mailler et al., 2017; Tai et al., 2021; Li et al., 2021; Klose
et al., 2021; Li et al., 2022). One key advance of K14 over
Z03 is that K14 eliminated the need to use an empirical,
time-invariant source function S to tune the spatial variabil-
ity of dust emissions. K14 proposed that a dynamical and
time-varying soil erodibility (named Cd in K14) can be phys-
ically parameterized using the standardized fluid threshold
u∗st = u∗ft

√
ρa/ρa0, which is u∗ft scaled to the standard air

density of ρa0 = 1.22 kg m−3:

Cd = Cd0 exp
(
−Ce

u∗st− u∗st0

u∗st0

)
, (12)

where Cd(long, lat, t) is the time-varying dust emission coef-
ficient or soil erodibility coefficient,Cd0 = (4.4±0.5)×10−5,
Ce = 2.0±0.3, and u∗st0 = 0.16 m s−1. Furthermore, K14 de-
rived a new dust emission equation for Fd (kg m−2 s−1):

Fd = CtuneCdfbarefclay
ρa
(
u2
∗s− u

2
∗t
)

u∗st

(
u∗s

u∗t

)κ
for u∗s > u∗t (13a)

κ = Cκ
(u∗st− u∗st0)

u∗st0
, (13b)

where Cκ = 2.7± 1.0, Ctune = 0.05 is the proportionality
constant, fbare is modeled by Eq. (11), u∗s = u∗ in K14, and
u∗t is again the emission threshold (K14 assumed for sim-
plicity that u∗t = u∗it = u∗ft). κ is the fragmentation expo-
nent which quantifies the sensitivity of Fd to u∗s. Here we
limit the value of κ to 3 in order to prevent excessive sensi-
tivity of the model to wind speeds, which can be problematic
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around topography. From Eq. (12), Cd increases exponen-
tially with u∗st, and thus K14 dust emission is very sensitive
to u∗ft. K14 showed improvements compared with Z03 when
evaluated against ground-based DAOD measurements (Kok
et al., 2014a, b; Li et al., 2022).

2.4 Input required by dust emission schemes

Calculating the above dust emissions and aeolian processes
requires meteorological and land-surface variables as inputs.
We employ the required input data from the Modern-Era Ret-
rospective Analysis for Research and Applications version 2
(MERRA-2) (Gelaro et al., 2017). MERRA-2 is a reanalysis
dataset provided by NASA’s Global Modeling and Assim-
ilation Office (GMAO). MERRA-2 has a native resolution
of 0.5◦× 0.625◦ and hourly data assimilation. All MERRA-
2 modeled fields and other input variables in this study are
listed in Table 1. In this study, we code the dust emission
scheme with all new aeolian processes in the statistical pro-
gramming language R (v4.2.1) as an offline (outputs do not
feedback onto input forcings), standalone sandbox model. In
this study, we use the standalone model to read in all input
atmospheric and land surface forcings for the year 2006 and
employ equations in Sects. 2 and 3 to compute 2006 dust
emissions as outputs and results for Sects. 3 and 4.

3 Physics-based parameterization of dust emission
threshold

In this section, we propose additions and improvements to
several parameterizations of dust emission physics, which in-
clude (1) deriving a more realistic soil median diameter map
and including it in the u∗ft calculation, (2) proposing a new
hybrid approach to incorporate the drag partition parameter-
izations of both rocks and vegetation, and (3) implementing
a parameterization of the effects of turbulence on the inter-
mittency of dust emissions. We will use the improved model
from this section to compute hourly dust emissions in Sect. 4,
driven by meteorological and land-surface fields.

3.1 Improving the description of soil particle size
parameter

The PSD of the soil bed is a critical factor to determine the
dust emission threshold. In this section, we focus on deriving
a new global soil median diameter (a good proxy for the soil
PSD) (Martin and Kok, 2019) as a parameter for computing
the dust emission thresholds. Section 5 discusses the caveats
and limitations of this approach.

3.1.1 Motivation and literature compilation of soil
particle size distribution

As discussed in Sect. 2.1, Martin and Kok (2019) argued
that u∗ft of a mixed soil should be determined by the me-
dian diameter Dp of the soil PSD. Thus, we ideally need
a global gridded map of Dp to calculate u∗it and u∗ft over
the globe. However, there are only very limited in situ mea-
surements of soil PSDs (e.g., see Table S1) that are insuf-
ficient to compile a global Dp map. Meanwhile, extensive
studies have compiled global maps of many other soil prop-
erties, such as soil texture, soil bulk density, pH value, soil
organic carbon (SOC), and cation exchange capacity (e.g.,
FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012; Shangguan et al.,
2014; Hengl et al., 2017; Dai et al., 2019). Therefore, to de-
termine and predict Dp, we use a compilation of literature
measurements to explore and construct relationships between
Dp with other soil properties such as the clay and silt frac-
tions.

However, many past laboratory studies used the wet sedi-
mentation or wet sieving technique to measure the texture of
the soil samples. Wet sieving effectively breaks down soil mi-
croaggregates into disaggregated particles and can dissolve
soluble minerals (Chatenet et al., 1996), thereby disturbing
the estimations of the in situ soil median particle sizes. In
contrast, dry sieving causes a minimal disruption to soil mi-
croaggregates, and thus Chatenet et al. (1996) argued that the
dry-sieved soil PSDs are more representative of the in situ,
aggregated soil PSDs. Although the soil texture is a disag-
gregated soil property, Dp might depend on soil texture fa
and other soil properties because the strength of interparti-
cle forces is contingent upon soil texture (the clay and silt
content), which governs the extent of soil aggregation. Here,
we use measurements from past laboratory studies (see Ta-
ble S1), which contain site-scale, dry-sieved soil PSDs, wet-
sieved soil texture fa, and other soil properties to investigate
their statistical relations and infer a new global distribution
of Dp. All studies listed in Table S1 have dry-sieved soil
PSD measurements and the wet-sieved sand, silt, and clay
fractions. Many studies have recorded soil organic carbon
(SOC; %) and other properties such as calcite (CaCO3; %),
pH value, and bulk density (g cm−3). Figure 1a shows the
locations of the measurements of the employed soil studies,
and the colors show the aridity where the sites are located.
Some studies obtained measurements over a relatively large
spatial domain, and we plot only one symbol at the domain
centroid representing multiple measurements. Many studies
reported PSD measurements extending to diameters in ex-
cess of 6000 µm, but we used only PSD measurements in the
diameter range of 0 and 2000 µm that is relevant to dust emis-
sion (Zender et al., 2003a). For each dry-soil PSD measure-
ment, we obtain the aggregated Dp by calculating the 50th
percentile of the dry-soil PSD.
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Table 1. Input meteorological and land-surface variables employed for running the standalone dust emission model in this study.

Variable Meteorological parameter (SI unit)

u∗ MERRA-2 friction velocity (m s−1)
θ MERRA-2 volumetric soil moisture (m3 water m−3 soil)
LAI MERRA-2 leaf area index (m2 leaf m−2 land)
ρa MERRA-2 air density (kg m−3)
zi MERRA-2 planetary-boundary-layer height (m)
T MERRA-2 air temperature (K)
H MERRA-2 sensible heat flux over land (W m−2)
ϕ MERRA-2 porosity (dimensionless)
fclay SoilGrids clay fraction (fraction)
fsilt SoilGrids silt fraction (fraction)
z0a Prigent et al. (2005) aeolian roughness length (m)
Ar Rock and bare soil land cover derived from the European Space Agency land cover dataset (fraction)
Av Vegetation land cover derived from the European Space Agency land cover dataset (fraction)
S Ginoux et al. (2001) or Zender et al. (2003b) source function

3.1.2 Deriving a global soil median diameter map

We classify the datasets into arid and nonarid groups, since
we are primarily interested in Dp over desert regions (al-
though we also display the soil behaviors over nonarid re-
gions). We follow past studies (Mahowald et al., 2006, 2010;
Kok et al., 2014b) which defined arid (or dust emission) re-
gions using the criterion of LAI smaller than a threshold
LAIthr, which we take to be 1 (see Sect. 2.3). Section 3.2.2
also describes the MERRA-2 LAI we used in this study to
identify the world’s arid regions.

After dividing the data into median dry diameters for arid
and nonarid soils, we examine the statistical relationships be-
tweenDp and the soil properties (see Figs. 1b and S2). Figure
1b shows a scatterplot of Dp versus the sum of the soil com-
ponent that produces substantial cohesion, namely the silt
and clay fractions (fsilt+clay = fsilt+ fclay). The data exhibit
distinctly different trends for nonarid versus arid soils: for
nonarid soils, Dp increases from 100 µm to greater than
1000 µm with fsilt+clay (regression p value= 7.3× 10−6),
likely due to increasing cohesion with increasing clay and
silt content. In contrast, Dp for arid soils shows a small
and statistically insignificant increasing trend with fsilt+clay
(p value= 0.77) with a smaller Dp variability (50–250 µm).
This flat trend indicates that fsilt+clay does not effectively ex-
plain the median diameter of aggregated soil particles in arid
regions. We examined the relationships of Dp with the indi-
vidual fractions of sand, silt, and clay, as well as with other
soil properties including SOC, pH, and CaCO3 (Fig. S2), but
these relationships are not statistically significant. We ob-
tain a surprisingly simple finding from the available mea-
surements that there is limited variability in the aggregated
Dp over the arid regions across different soil textures. We
thus use a constantDp0 as an approximation for arid regions.
From Fig. 1b, we summarize the relationship between Dp

and fsilt+clay as

Dp =

{
90+91fsilt+clay
Dp0

,
for LAI> LAIthr

for LAI≤ LAIthr
, (14)

where 90 = 7.8± 3.7 µm, 91 = 124± 36 µm, Dp0 = 127±
47 µm, and LAIthr = 1 as specified in Eq. (11). This em-
pirical formula suggests that some models’ assumptions of
the relationship between Dp and soil texture were inaccu-
rate (e.g., Table 2 of Laurent et al. (2008) assumed Dp de-
creases with fsilt+clay), and this result could substantially
simplify model parameterizations. Additionally, our diam-
eter of 127 µm over arid regions is larger than Z03’s as-
sumption of a globally constant optimal diameter of 75 µm.
This translates to a modest increase of u∗ft0 from 0.204 to
0.216 m s−1 (given ρa = 1.225 kg m−3), which slightly de-
creases global dust emissions by 18 % (see Sect. 4.1). The
uncertainty inDp0 = 127±47 µm translates to an uncertainty
of u∗ft0 between 0.204 to 0.234 m s−1.

We then project our derived relation between Dp and
fsilt+clay on the available soil texture and properties database.
We employ global soil properties data from the SoilGrids
database (Hengl et al., 2014, 2015, 2017), a global soil map-
ping project that used machine learning (random forest) to
regress in situ measurements of soil variables (moisture, tem-
perature, nutrients, etc.). SoilGrids provides global maps of
soil texture and other soil properties with a horizontal reso-
lution of 250 m and eight soil depths down to 200 cm (Hengl
et al., 2017). We use SoilGrids instead of other available soil
databases as it shows better performance against observed
soil profiles than other soil databases (Dai et al., 2019). Fig-
ure S3 shows the SoilGrids relative fractions of sand, silt, and
clay with a 0.1◦× 0.1◦ horizontal resolution for the topmost
soil layer. Figure 1c shows our global 0.1◦× 0.1◦ soil median
diameter Dp map. Following Eq. (14), the arid and semiarid
regions are set to have a Dp0 of 127 µm, whereas for nonarid
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Figure 1. Constructing a global map of the median diameter Dp of aggregated soil particles using soil particle size and texture data. (a) The
locations of literature measurements, with symbols indicating the names of the studies and the color indicating the aridity of the locations;
a site is classified as arid (red color) if its location has MERRA-2 LAI< 1 and otherwise nonarid (blue color). (b) Literature measurements
of soil dry median diameter Dp versus silt + clay fraction (fsilt+clay). (c) The predicted soil median diameter Dp map (in µm) derived by
projecting our derived Dp–fsilt+clay relationship of Eq. (14) on the SoilGrids (Hengl et al., 2017) soil texture data (Fig. S3). The circles
represent the locations of the sites the same as panel (a), and their colors show the measured median diameter Dp at those sites. (d) The
predicted Dp using Eq. (14) versus measured Dp from past studies.

regions, Dp increases with fsilt+clay. Our derived Dp values
are largely consistent with the site Dp measurements from
past studies (overlaid points), showing a similar spatial dis-
tribution, with a fit-line slope of 0.98 (p value= 0.007) and
an R2 of 81 % (Fig. 1d). Note that, since the predictions for
arid regions (red points) are a constant without variability, the
agreement between the predictions and observations is es-
sentially dominated by the linear Dp–fsilt+clay relation over
nonarid regions (blue points). Figure 1d shows that Eq. (14)
gives satisfactory agreement in predicting globalDp, but dust
emission modeling will depend exclusively on the predicted
Dp over arid regions. We anticipate that as more measure-
ments emerge in the future, more statistical or machine learn-
ing modeling approaches can more robustly decipher the in-
tricate relationships between Dp and various soil properties
over arid regions.

Since nonarid regions of LAI> 1 will generate zero emis-
sions (Eq. 11), we simplify Eq. (14) and Fig. 1c by imposing
a globally constant Dp0 = 127 µm.

3.2 A wind drag partition scheme for decreasing wind
stress and erosion

We now present a methodology to account for the wind drag
partition effect due to nonerodible roughness elements in-

cluding vegetation and rocks that protect the bare soil by ab-
sorbing part of the surface wind stress. We calculate the rock
drag partition feff,r using z0a since global z0a observations
are available, and we calculate the vegetation drag partition
feff,v using vegetation cover which is a proxy of λ (e.g., Shao
et al., 1996; Okin, 2008), since gridded plant cover is often
parameterized in GCMs (e.g., Wu et al., 2016; Foroutan et
al., 2017; Meier et al., 2022). Here we use two separate drag
partition schemes (Marticorena and Bergametti, 1995; Okin,
2008) to quantify the roughness effect of rocks (Sect. 3.2.1)
and vegetation (Sect. 3.2.2), respectively. Then, we propose
a unifying approach to combine the two effects into a hybrid
factor Feff (Sect. 3.2.3).

3.2.1 Drag partition due to roughness of rocks

In this study, we use the aeolian roughness length z0a to
quantify the drag partition effect due to rocks. Whereas the
smooth z0s and the aerodynamic momentum z0m can be de-
rived from pre-existing datasets, it is more challenging to
quantify the aeolian z0a. Existing efforts employed satel-
lite and field measurements to quantify the roughness over
deserts (e.g., Greeley et al., 1997; Roujean et al., 1997; Mar-
ticorena et al., 2004; Laurent et al., 2005; Prigent et al., 2005;
Marticorena et al., 2006; Prigent et al., 2012). For instance,
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Marticorena et al. (1997) and Callot et al. (2000) developed
a 1◦× 1◦ z0a map over Africa and the Middle East by com-
bining topographic data, geological information, aerial pic-
tures, and in situ observations. Prigent et al. (2005) and Pri-
gent et al. (2012) further used radar measurements to yield
global maps of backscatter coefficient, which is a measure of
surface roughness because rougher surfaces generally scat-
ter more radar signals to different directions and reduce the
backscattering. Comparisons between satellite backscatter-
ing signals and field measurements of z0a yielded an empir-
ical formula for extrapolating a global dataset of backscat-
tering signal to global z0a. We use here the global aeolian
z0a dataset from Prigent et al. (2005) (hereafter Pr05), which
contains the climatological monthly mean z0a (12 monthly
values per grid) derived from the backscatter coefficient ob-
served by the scatterometer at 5.3 GHz on board the Euro-
pean Remote Sensing (ERS) satellite. Since satellite z0a mea-
surements could quantify the roughness of both rocks and
vegetation, we take the minimum value out of the 12 months
for all grids to obtain a static aeolian z0a map to eliminate as
much as possible the vegetation effect on the inferred rough-
ness. Furthermore, we apply this map over arid regions only
(LAI< 1), where the backscatter signal is mostly generated
by rocks with little contribution from vegetation roughness.
The resulting 2-D map of z0a (in centimeters) thus mostly
represents time-invariant rock roughness and is plotted in
Fig. 2a.

Marticorena and Bergametti (1995) derived a parameter-
ization to quantify the drag partition effect using both z0a
and z0s. They assumed that this equation is valid for rough-
ness elements that are not too closely spaced (small wake),
i.e., z0a < 1 cm (Darmenova et al., 2009). Here we use their
semiempirical equation to quantify the drag partition due to
rocks, feff,r (also see Eq. 8):

feff,r = 1−
ln
(
z0a
z0s

)
ln
[
b1

(
X
z0s

)b2
] , (15)

where X is the distance downstream the point of discontinu-
ity in roughness, a length parameter that scales with the IBL

height δ behind the obstacle in Eq. (8), i.e., δ
z0s
= b1

(
X
z0s

)b2

following Marticorena and Bergametti (1995), and b1 = 0.7
and b2 = 0.8 are empirical constants (King et al., 2005; Dar-
menova et al., 2009).X should be a function of land type and
implicitly space and time, but thus far most dust modeling
studies have used a global constant for X (e.g., Darmenova
et al. (2009) used a globally constant X = 0.1m). We use
a globally constant X = 10m in this study, which is differ-
ent from what the past studies suggested, because the scale
of the rocks and plants we focus on in deserts is larger and
is of the order of 100–101 m. Some studies considered even
larger roughness and used X ∼ 122m for vegetated deserts
(MacKinnon et al., 2004). We then obtain z0s from our de-

rived global dataset of Dp in Sect. 3.1 using Eq. (7). When
nonerodible roughness elements are abundant over a surface,
z0a� z0s and feff,r� 1, causing the sheltering of the bare
soil from the wind; when there are few roughness elements,
z0a is small and close to z0s, and thus feff,r approaches 1. In
Fig. 2a, the red areas with very small z0a are the most sus-
ceptible regions for dust emission. Figure 2a also shows that
most arid and semiarid regions have z0a < 0.2cm, such that
Eq. (15) can follow the criterion (z0a < 1cm) in Darmenova
et al. (2009) well. Figure 2b shows the global feff,r over arid
regions, which is dominated by the spatial pattern of z0a in
Fig. 2a given feff,r is governed purely by z0a.

3.2.2 Drag partition due to roughness of vegetation

Unlike the very static and slowly evolving rock roughness,
vegetation changes temporally. To include the effect of these
dynamic vegetation changes on the drag partition, we follow
the approach of Okin (2008) (hereafter O08), which uses un-
vegetated gap size (the distance between neighboring plants)
to characterize the variability of the reduced wind stress. O08
argued that his scheme represents an advancement over the
classical R93 scheme, since R93 uses the roughness density
(or lateral cover) λ, which only quantifies how much rough-
ness is on a surface but not how that roughness is spatially
distributed. O08 pointed out that, given the same λ, rough-
ness elements divided into small blocks spread over the soil
surface would be more effective than elements stacked up
like a telephone pole in partitioning wind stress (see Fig. 3
in Okin, 2008). Okin argued that since Raupach’s model
neglects the spatial variability of λ, the resulting simulated
emission flux using the R93 scheme in Okin’s paper de-
creased rapidly with increasing λ and unrealistically reached
zero at relatively low λ. To partially compensate for this er-
ror, R93 introduced a tuning parameter m (Eq. 9a), serving
to reduce the effective λ and thereby reducing the rapid de-
crease in dust flux. However, m is a tuning parameter not de-
rived from first principles, and it is not clear how m changes
over different surface conditions. Therefore, we use the O08
model here to better characterize the spatial variability of
wind stress and the resulting dust emissions.

Here we describe the O08 scheme and adapt it for use in
LSMs and GCMs. O08 assumes u∗ drops significantly when
encountering a roughness element (plant) and gradually re-
covers at the lee (downwind region) of the plant as a function
of distance x, following

u∗s(x/h)= u∗
[
f0+ (1− f0)

(
1− e−

x/h
c

)]
, (16a)

where x/h is the dimensionless downwind distance from an
obstacle normalized by vegetation height h (m), f0 =

u∗s
u∗
|x=0

is the friction velocity ratio immediately behind the obstacle,
and c is the dimensionless e-folding distance (normalized by
h) over which u∗s locally recovers to u∗. In this formulation,
the local drag partition factor due to vegetation as a function
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Figure 2. Global roughness length and rock drag partition factor maps at a horizontal resolution of 0.25◦× 0.25◦. (a) Global mesoscale
aeolian roughness length z0a (in centimeters) derived by Prigent et al. (2005). (b) Global static rock drag partition factor feff,r derived by
Eq. (15) following Marticorena and Bergametti (1995), derived over arid and semiarid regions defined as MERRA-2 LAI< 1 in this study.
The color schemes are set such that the most erodible regions appear red.

of distance x is

flocal

(x
h

)
=
u∗s

u∗
= f0+ (1− f0)(1− e−

x/h
c ). (16b)

Note that in the limit of x/h→∞,u∗s→ u∗. O08 used
measurements from Bradley and Mulhearn (1983) and fit-
ted f0 = 0.32 and c = 4.8 (i.e., the e-folding distance of u∗s
recovery to u∗ is 4.8 times the plant height h) for semiarid
regions.

In order to use Eq. (16b) to obtain the drag partition feff,v
relevant to a regionally vegetated area that is more applicable
to GCMs, one needs to calculate an integral for the averaged
and aggregated effect of drag partitioning feff,v (see Eq. 20a)
instead of a locally varying flocal (Eq. 16b). Therefore, Okin
employed a probability distribution function as a function
of distance x/h to indicate the importance (or weight) of
flocal at any x/h to the averaging of feff,v (McGlynn and
Okin, 2006; Okin, 2008). The PDF is an exponential decay
such that the weight of flocal decreases with distance x/h, so
flocal at the immediate lee of the obstacle (which is smaller
and close to f0) has more weight than the flocal farther away
(which is larger and tends to 1). From McGlynn and Okin
(2006), the PDF is a function of normalized distance x/h:

Pd(x/h)=
1
K
e−

x/h
K (17a)

K ≡ L/h, (17b)

where L (m) is the mean gap length between obstacles
(plants), which is conceptually related to fv; and K is the
normalized gap length, which is the gap length L scaled by
the plant height h. Physically, Pd is the probability that there
is not another obstacle present within a downwind distance
x/h. This exponential decay implies that the farther away
from a plant (larger x/h), the higher the likelihood that there
is another plant present within the downwind distance x/h,
with the normalized gap length K quantifying the e-folding
distance of the probability. This PDF governs the spatial do-
main over which u∗s recovers.

For O08, the mean gap length between obstacles K is the
only required input for calculating the drag partition, since
f0 and c are assumed to be invariant to surface conditions
and desert biome. K can be expressed as a function of fv
using some simple assumptions. First, O08 argued that the
vegetation cover fraction is simply fv ≡ W

L+W
, where L is

the mean gap length and W is the mean width of the plants
within that vegetated area. Rearranging gives

L=W (
1
fv
− 1). (18a)

Then we assume plants in arid regions (e.g., shrubs) are
approximately hemispheres with radius R. Then, the plant
height h= R and width W = 2R are related by W = 2h,
which can be substituted into Eq. (18a) to yield

K ≡
L

h
= 2

(
1
fv
− 1

)
, (18b)

and thus we related K to fv. fv could be measured at the lo-
cal level, and thus O08 was frequently applied in field studies
(e.g., Li et al., 2013; Pierre et al., 2014a). However, what is
novel in our study is that we are the first to propose the im-
plementation of O08 into LSMs, because Eq. (18b) shows us
that O08 could be formulated as a function of fv, which is
a grid-level parameter. Here we propose to follow the Ma-
howald et al. (2006) assumption in Eq. (11) and approximate
vegetation cover fraction as fv = 1− fbare = LAI/LAIthr.
Equation (18b) becomes

K ≡
L

h
= 2

(
1
fv
− 1

)
= 2(

1
LAI/LAIthr

− 1), (18c)

where we assume LAIthr = 1 (in Eq. 11). The assumption
of fv ∼ LAI is valid if we reasonably assume that leaf areas
over arid regions overlap relatively little with each other. We
note that by using LAI to quantify fv in Eq. (18c), we are
only accounting for the vegetation drag partitioning due to
green (photosynthetic) vegetation and miss that due to brown
(nonphotosynthetic) vegetation. In the future, it is warranted
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that Eq. (18b) includes other proxies of brown vegetation
drag partitioning, such as the vegetation cover quantified by
Guerschman et al. (2015), which was adopted by later dust
modeling studies such as Klose et al. (2021) and Huang and
Foroutan (2022).

To estimate the reduced emission flux, O08 uses an inte-
gration approach without quantifying feff,v. O08 calculates
the reduced dust emission flux Fred (kg m−2 s−1) by locally
integrating the emission Fd following the spatially varying
u∗s over the normalized distance x/h:

Fred =

∞∫
x/h=0

Pd

(x
h

)
Fd

[
u∗s

(x
h

)]
d
(x
h

)
, (19)

where Fd (kg m−2 s−1) is the local emission as a function
of u∗s which is itself a function of x/h. In the integration,
Fd needs to be weighted by Pd (which means Fd at large
x/h has proportionally less importance) because as x/h in-
creases, the likelihood of the presence of another obstacle
gets larger and larger, which will hinder the recovery of u∗s
to u∗. Integrating the emission flux Fd from zero to infin-
ity gives a reduced emission flux Fred, which will be smaller
than the emission flux without roughness elements, defined
as Fbare =

∫
∞

x/h=0Pd
(
x
h

)
Fd (u∗)d

(
x
h

)
= Fd (u∗), in which Fd

is a constant in space since u∗s = u∗ is a constant without
obstacles.

However, since we need to also combine the vegetation
drag partition with the rock partition effects, we need to
quantify feff,v in order to form a hybrid drag partition fac-
tor for LSMs. Instead of directly implementing Eq. (19a)
into LSMs, we require an alternative approach of quantify-
ing feff,v such that Fd

(
feff,vu∗

)
= Fred. Quantifying feff,v

for O08 can be useful for comparisons against feff,v from
other schemes such as R93 and Klose et al. (2021). In ad-
dition, quantifying feff,v for O08 makes it possible to gener-
ate a high-resolution, diagnostic feff,v dataset for mechanistic
models with different resolutions as a model input.

An approach of evaluating feff,v from O08 was proposed
by Pierre et al. (2014a). They obtained the expected value of
the shear stress ratio u∗s/u∗ (SSR in Okin, 2008) between
obstacles by evaluating the integral of u∗s/u∗ weighted by
Pd, which represents the averaged flocal (in Eq. 16b) across
the vegetated area and perfectly fits our purposes for imple-
menting feff,v into LSMs:

feff,v =

∞∫
x/h=0

Pd

(x
h

)[u∗s ( xh )
u∗

]
d
(x
h

)

=

∞∫
x/h=0

Pd

(x
h

)
flocal

(x
h

)
d
(x
h

)
. (20a)

Substituting Eq. (17) for Pd into Eq. (20a) and analytically
evaluating the integral gives a simple algebraic equation for

feff,v (Pierre et al., 2014a), representing the aggregated veg-
etation drag partition effect at the grid level:

feff,v =
K + f0c

K + c
. (20b)

This elegant formula conveys a clear physical intuition: if the
obstacle does not effectively dissipate momentum (f0→ 1),
feff,v→ 1; if land is densely covered by vegetation (gap
length K→ 0), feff,v→ f0(= 0.32), the shear stress ratio at
the immediate lee of the obstacle. An advantage of this ap-
proach is that it can be easily adopted by gridded models
since modelers only need to code an algebraic equation in-
stead of an integral.

We calculate 0.5◦× 0.625◦ global hourly feff,v data for
Okin’s model, using Eqs. (18c) and (20b) with hourly
MERRA-2 LAI. We note that MERRA-2 LAI is based on
the Advanced Very High Resolution Radiometer (AVHRR)
observations (Reichle et al., 2017). Figure 3a shows the an-
nually averaged MERRA-2 LAI for the year 2006 over arid
regions with LAI< 1 (seasonal LAI maps are also shown in
Fig. S4), and Fig. 3b shows the corresponding mean feff,v for
areas where LAI< 1. The LAI plot shows the most erodible
regions on Earth.

3.2.3 Combining drag partition factors of rocks and
vegetation

After obtaining both the static feff,r map of rocks and the
time-varying feff,v map of vegetation, we now propose a
methodology to combine the two drag partition sources to
capture and represent the total drag partition effect for dust
emission. LSMs need a single drag partition factor captur-
ing all roughness effects to estimate the total reduction of
the surface winds. Thus, we compute a hybrid drag partition
factor map Feff that can be used as input for dust modules
in GCMs. To achieve this, we need to know the fractions
of a grid that consists of areas dominated by rocks and ar-
eas dominated by plants, which can be obtained from sev-
eral recent studies (Lawrence et al., 2016; ESA, 2017; Klein
Goldewijk et al., 2017; Kobayashi et al., 2017). We obtained
these data from the European Space Agency Climate Change
Initiative (ESA CCI) dataset (https://www.esa-landcover-cci.
org/?q=node/164, last access: 21 June 2022). The land cover
product classifies the land cover of the whole globe into 37
categories (Li et al., 2018), with relevant land cover over arid
regions such as shrub, herbaceous, sparse vegetation, crop-
land, grassland, and consolidated (gravels and rocks) and un-
consolidated (soil) bare land. This dataset has a horizontal
resolution of 300 m, making the dataset capable of counting
the portion of the grid consisting of rocks and vegetation over
a larger MERRA-2 0.5◦× 0.625◦ grid box (a MERRA-2 grid
box consists of ∼ 35 000 grids of 300 m). This dataset gives
a representation of the annually varying land covers, so the
rock and vegetation area fractions we use are a function of
space only within the simulation year of 2006. We describe
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Figure 3. Vegetation drag partition factor feff,v derived from the Okin (2008) and Pierre et al. (2014) drag partition model for the year 2006
on a 0.5◦× 0.625◦ grid. (a) Annual mean MERRA-2 LAI, with color bar saturated at a value of 1. (b) Annually averaged feff,v derived using
the Okin (2008) and Pierre et al. (2014) drag partition model. White areas indicate water body, ice/snow, or LAI> 1.

our approach to synthesizing the ESA CCI land cover maps
and drag partition datasets in the following.

We incorporate the drag partition effects by identifying
two roughness regimes using the ESA CCI dataset. The first
regime is the rock regime (Fig. 4a), for which we combine
the consolidated (gravel and rocks) and unconsolidated (soil)
bare land types (types 34–36). This regime is subject to the
rock drag partition effect. The second regime is the vege-
tation regime (Fig. 4b), which includes different vegetation
types such as shrubland and herbaceous (types 19–23, 28–
29, 32), sparse vegetation (types 26–27), cropland (types 2–
5), grassland (type 24), mixed vegetation (type 18), and other
vegetation mosaic (types 6–7). Since O08 does not specify
the differences in drag partition for different plant functional
types (PFTs), here we assume all PFTs produce the same
drag partition effect. The overall drag partition effect Feff for
a grid is thus defined by the summation of emissions, with
emission Fd,r over the rock regime with a fractional area of
Ar, and emission Fd,v over the vegetation regime with an-
other fractional area Av:

Fd (u∗Feff)= ArFd,r+AvFd,v = ArFd(u∗feff,r)

+AvFd(u∗feff,v) . (21a)

Given that dust emissions approximately scale with the cube
of u∗s (Zender et al., 2003a; Kok et al., 2014b) and neglecting
the effect of the dust emission threshold, Eq. (21a) can be
simplified to

F 3
eff = Arf

3
eff,r+Av f

3
eff,v, (21b)

such that Feff is simply the weighted mean of drag par-
tition effects. The fractional areas are simply calculated
by counting the total occupied area of the ESA CCI land
cover corresponding to a certain regime and then divid-
ing by the total area of the grid box. We use Eq. (21b) to
obtain the spatiotemporally varying Feff(long, lat, t), given
feff,v(long, lat, t) and Ar, Av, and feff,r as functions of
(long, lat). We then apply the obtained Feff here to Eq. (6)
to yield u∗s for the dust emission equation. We discuss in
Sects. 5 and S6.2 the caveats and limitations of this hybrid
drag partition scheme.

Figure 4a–b show the fractional areas of the two regimes.
The rock regime (Fig. 4a) is located mostly over the Sa-
hara, the Middle East, and the Asian deserts. The vegetation
regime (Fig. 4b) is concentrated mostly over Australia, the
United States, South America, and southern Africa. Figure 4c
shows the resulting annually averaged Feff using Eq. (21b).
The regions with the highest Feff are the Bodélé Depres-
sion, El Djouf, the Arabian Desert, and Taklamakan due to
high feff,r. The Strzelecki–Sturt Stony deserts in Australia,
the Kyzylkum, and Patagonia also have high Feff (∼ 0.7) due
to high feff,v. Regions with both high rock and vegetation
roughness are located in parts of the Middle East and North
America with low Feff values.

3.3 Parameterizing the dust emission intermittency

The above improvements enable a more accurate calcula-
tion of emission when wind speeds are sufficient to initi-
ate dust emission. Next, we will improve the calculation of
the resulting dust emission flux by accounting for the ef-
fects of boundary-layer turbulence on dust emission intermit-
tency. Dust emission intermittency exists because saltation
is driven by turbulent surface winds, which exhibit strong
spatiotemporal fluctuations in speed and direction. Instanta-
neous winds can thus pass within short timescales across the
emission thresholds for initiating or ceasing saltation (Martin
and Kok, 2018). Consequently, saltation can be highly inter-
mittent (Comola et al., 2019b), with pronounced variability
on timescales of seconds to hours (Dupont et al., 2013). In
contrast, existing dust emission parameterizations describe
saltation as uniform in time and space and driven by a con-
stant downward momentum flux within a model time step.
The disconnect between the reality of intermittent dust emis-
sions and uniform emissions in current theories is likely con-
tributing to the poor performance of dust emission simula-
tions (Barchyn et al., 2014; Todd et al., 2008). Comola et
al. (2019b) argued that the intermittency effect is more preva-
lent for regions with low-intensity dust emissions when u∗s
is regularly fluctuating around the threshold to turn on or shut
off dust emissions. Neglecting intermittent dust emissions
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Figure 4. The 0.5◦× 0.625◦ hybrid drag partition factor Feff incorporated using the European Space Agency Climate Change Initiative (ESA
CCI) dataset. (a–b) The fractional areas of (a) the rock regime (consolidated/unconsolidated land) and (b) the vegetation regime (shrubs,
herbaceous plants, croplands, grassland, and sparse vegetation) over arid regions. (c) The hybrid drag partition factor Feff by a combination
of rock drag partition feff,r and vegetation drag partition feff,v for the year 2006.

in current models thus likely degrades the accuracy of dust
emission simulations for arid regions during low-wind peri-
ods and for marginal dust source regions such as semiarid
areas (since soil cohesion increases u∗ft but does not affect
u∗it), which dominate in much of the Southern Hemisphere
(Ginoux et al., 2012; Ito and Kok, 2017).

Accounting for the intermittency effect on dust emission
fluxes is complicated by the hysteresis of dust emission
due to the existence of double thresholds for dust emis-
sion physics. The instantaneous wind at the saltation level
ũs (we use the tilde to denote instantaneous quantities and
take away the asterisk to denote winds at the saltation level
of zsal ∼ 0.1m using Eq. (S4a) instead of a velocity scale)
needs to exceed the fluid threshold uft (also defined at the
saltation level) to initiate saltation, but it only needs to ex-
ceed a smaller impact threshold uit to sustain it (Kok et al.,
2012; Martin and Kok, 2018; Comola et al., 2019b). When
ũs at a moment lies between both thresholds (uit < ũs < uft),
saltation is active if transport was more recently initiated
(ũs > uft) and inactive if transport was more recently termi-
nated (ũs < uit). This process is known as hysteresis (Kok,
2010; Martin and Kok, 2018; Comola et al., 2019b). As a re-
sult, if us (mean of ũs within a model time step) is between
uit and uft, there will be fluctuating emission fluxes in reality,
while models using a fluid threshold scheme would predict
zero emission within a model time step, thereby underesti-
mating the emissions. Meanwhile, models using an impact
threshold scheme without considering turbulence will have
uniform positive dust emission within the time interval. How-

ever, because in reality high-frequency winds can pass below
uit and shut off dust emissions, using average us in an impact
threshold scheme will overestimate dust emissions. It is thus
important for GCMs to account for the effects of turbulence
causing both intermittency and hysteresis of dust emission.

As GCMs have a relatively large time step and a coarse
horizontal resolution (e.g., ∼ 30 min for a 1◦ GCM), they
are not designed to resolve turbulence and cannot capture
high-frequency (∼ 0.1–5 min) turbulent wind speed fluctua-
tions. As a result, models cannot directly simulate the dust
emission intermittency. Therefore, accounting for intermit-
tent dust emission requires a parameterization that links the
low-frequency (∼ 30 min) variables of boundary-layer tur-
bulence that are resolved in GCMs to the high-frequency
intermittency dynamics. Comola et al. (2019b) formulated
a parameterization (hereafter the C19 scheme) of intermit-
tent saltation fluxes by quantifying wind fluctuations due to
both shear-driven and buoyancy-driven turbulence in terms
of resolved model parameters, including uit and the Monin–
Obukhov length L. C19 showed that when a dust emission
equation employs uit and accounts for the intermittency ef-
fect, it can successfully capture the magnitudes of small dust
fluxes otherwise missed by models using uft (Fig. 3 of Co-
mola et al., 2019b). The C19 scheme will thus moderate the
temporal variability of modeled dust emissions due to diurnal
wind cycles continuously crossing the thresholds. Addition-
ally, it will also capture more lower-intensity emissions over
marginal sources missed by many current models (Zhao et
al., 2022).
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In the C19 scheme, the dust emission flux Fd is calculated
using u∗it instead of u∗ft. We update K14 (Eq. 13) with u∗t =
u∗it as the threshold, giving

Fd = CtuneCdfbarefclay
ρa
(
u2
∗s− u

2
∗it
)

u∗it

(
u∗s

u∗it

)κ
for u∗s > u∗it, (22a)

where Cd is still a function of u∗st, and u∗st = u∗ft
√
ρa/ρa0 is

the same standardized fluid threshold as in the default K14,
and u∗it is computed using Eq. (5). Because u∗it <u∗ft, this
modified equation allows more small dust fluxes over the
marginal source regions that are otherwise missed by em-
ploying u∗ft as the threshold (see Figs. 7g–h).

Next, we account for the intermittency effect by introduc-
ing the intermittency factor η, which is the fraction of time
that saltation is active in a model time step (e.g., ∼ 30 min).
η corrects the horizontal sand saltation flux, which scales
with dust emission flux (Shao et al., 1993), thereby also rep-
resenting the fraction of time that dust emission is active in a
model time step. C19 accounts for the effect of intermittency
by multiplying dust emission by η as follows:

Fd,η = ηFd, (22b)

where η ∈ [0,1]. Note that C19 parameterizes η using wind
information at the typical saltation height of zsal = 0.1 m in-
stead of the velocity scales. η is thus formulated as a function
of the wind speeds us, uit, and uft at height zsal (see Sect. S3
Eqs. S3–S6) and the standard deviation σũs of the instanta-
neous ũs (Eq. 23):

η = η(us,σũs ,uit,uft). (22c)

σũs is defined given that ũs can be described by a normal dis-
tribution (Chu et al., 1996), with its mean being the model
time step mean (at 0.1 m) us and its standard deviation σũs .
From Eq. (22c), η→ 1 when us� uft (active emission for
the whole time step) and η→ 0 when us� uit (no emission
for the time step). The further away us is from the thresholds
uft and uit, the smaller the probability of the instantaneous
ũs sweeping across the thresholds and the more dichotomous
η behaves (either zero or 1). If us is very close to uft or uit,
or is indeed between them (uit < ũs < uft), the frequency of
crossing the threshold is determined by the magnitude of the
turbulent fluctuation σũs . σũs is parameterized using the sim-
ilarity theory (Panofsky et al., 1977):

σũs = u∗s

(
12− 0.5

zi

L

)1/3
for 12− 0.5

zi

L
≥ 0, (23)

where L is the Obukhov length, and zi is the modeled PBL
height. Note that MERRA-2 does not provide L output, and
in this study we computed L from the MERRA-2 outputs of
u∗, ρa, sensible heat flux H , and temperature T for our sim-
ulations (see Sect. S3). In boundary-layer dynamics, turbu-
lence is generated by mechanical shear and buoyancy (Stull,

1988). From Eq. (23), high-frequency wind fluctuations σũs

increase with shear (u∗s > 0) and buoyancy (L < 0). A larger
σũs makes it easier for ũs to sweep across uit and shut off dust
emission, leading to η < 1. In a time step, if us� uft+ σũs ,
ũs will be unlikely to sweep across uit, and η will approach 1.
If us is slightly larger than uft, the instantaneous ũs will be
likely to sweep across uit, leading to η < 1. In the hystere-
sis regime (uit < us < uft), η will be around 0.3–0.7, since
ũs will sweep across both thresholds given σũs , leading to a
reduced emission flux (meanwhile, other parameterizations
predict a zero emission flux since they use uft only). When
us < uit, η could also be greater than zero when σũs is large
enough so that the instantaneous ũs sweeps across uit. How-
ever, C19 would not generate any emission according to
Eq. (22a) (which is a technical flaw of C19; see a discus-
sion in Sect. S6.3). We note that Eq. (23) is not the tradi-
tional Monin–Obukhov similarity theory, as the zonal fluc-
tuation was shown to correlate poorly with z/L but relates
much better with zi/L (Panofsky et al., 1977). We also note
that Eq. (23) only applies to the convective PBL, but dust
emission often occurs during the daytime within the convec-
tive boundary layer (Yu et al., 2021). With the complete C19
scheme in Eqs. (S3)–(S6), we can compute η to yield the
dust emission with intermittency effect Fd,η as the final dust
emission for the LSM. The full C19 intermittency scheme
is described in Sect. S3 and also discussed in Comola et
al. (2019b). See a discussion of the limitations of this scheme
in Sects. 5 and S6.3.

Here we show some significant results from the inter-
mittency scheme. Figure 5 shows the global dust emission
thresholds in 2006 computed using MERRA-2 fields. Fig-
ure 5a shows u∗it, computed using a globally constantDp0 =

127µm. Its spatial variability is purely a function of ρa
(Eq. 2). u∗it is around∼ 0.16–0.24 m s−1, and higher u∗it im-
plies higher altitude. A lower u∗it leads to a smaller aero-
dynamic drag force from the airflows given the same wind
speed; conversely, there will be a large u∗it for soils over low
ρa regions. Figure 5b shows u∗ft (Eq. 1). It varies between
0.2 and 0.9 m s−1. Its spatial variability is dictated by the spa-
tial variability of soil moisture w (see Fig. S1). Regions with
the lowest u∗ft are the driest places in the world, which are
all deserts. Regions with the highest u∗ft are wet soils cov-
ered by rainforests, boreal forests, tundras/permafrosts, and
snow. Figure 5c shows the ratio of u∗ft/u∗it, for which the
spatial variability is again dictated by that of w. The mag-
nitude of the ratio conveys not only the strength of the soil
moisture effect on the threshold but also the width of the hys-
teresis regime. Deserts with u∗ft/u∗it ∼ 1/Bit have a narrow
hysteresis regime (u∗it < u∗s < u∗ft) and smaller thresholds
and thus tend to have more continuous dust emissions. Semi-
arid and nonarid regions with larger u∗ft/u∗it tend to have a
wide hysteresis regime, and thus dust emissions will be more
intermittent.

Figure 6a shows the 2006 annual mean intermittency ef-
fect over the Bodélé Depression as an example. Figure 6a
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Figure 5. The dust emission thresholds using the Shao and Lu (2000) scheme for the year 2006 on a 0.5◦× 0.625◦ grid. (a) The impact
threshold u∗it calculated usingDp0 = 127µm (Eq. 4), (b) the wet fluid threshold u∗ft (Eq. 1), and (c) the ratio between the wet fluid threshold
and impact threshold which is fm/0.81, where fm is the moisture effect on u∗ft (Eq. 3). The larger this ratio, the wider the range of wind
speeds for which hysteresis in dust emission occurs, and the more important it is to account for intermittency in dust emissions.

shows hourly mean η as a function of the hourly mean us. It
demonstrates the properties of η discussed above: e.g., when
us > uft, η→ 1 and when us < uit, η→ 0. In both regimes,
the behavior of the dust emission intermittency is asymp-
totic to dichotomous (0 or 1) activity which is the same as
that of the conventional emission schemes. Near the inter-
mittency or hysteresis regime uit < us < uft, η is intermedi-
ate between zero and 1, and thus a scheme using u∗it gives
a small finite emission flux while conventional schemes us-
ing u∗ft give a prediction of zero. The color code shows the
strength of convection −zi/L. −zi/L is positive (red) when
buoyant convection is active (L < 0) and is negative (blue)
when the PBL is statically stable (L > 0). The color shows
that there is a modest correlation between −zi/L and us,
but the correlation is not necessarily strong, and the strongest
buoyancy (dark red) often happens when us (or shear u∗s) is
moderate. The strongest buoyancy associates with moderate
η values of ∼ 0.5 only, and for the highest η values −zi/L
is mildly unstable (light red). This means that the turbulent
fluctuation is primarily governed by shear u∗s instead of con-
trolled by buoyancy −zi/L, and the intermittency behavior
is dictated by shear-driven instead of buoyancy-driven tur-
bulence. Equation (23) could essentially be simplified into
σũs ≈ 121/3u∗s.

Figure 6b shows the global spatial distribution of the an-
nual mean η for the year 2006, averaged across time steps
during which saltation and dust emissions are occurring over
the grid (and thus η during time steps when Fd = 0 is not
counted). Most marginal sources have small η < 0.3 (red

color), indicating dust emissions are fluctuating and inter-
mittent. These emissions may not be existent in other LSMs
employing u∗ft in the dust emission equation (but also depen-
dent on their threshold tuning). Over these regions, because
of the intermittent shut-offs of emissions, the emissions need
to be scaled down by the fraction of time η which is also
missed by other LSMs. Intermittency is thus critical in ac-
counting for emissions over semiarid regions. Regions with
high η (more continuous emission; light blue color) include
El Djouf; the Bodélé Depression; the Libyan–Nubian Desert
over Libya, Egypt, and Sudan; the Rub’ al Khali Desert
within the greater Arabian Desert; the Lut Desert in Iran; the
Taklamakan Desert; and the Strzelecki Desert in Australia.
During saltation, these regions tend to have wind episodes
further away from the thresholds, leading to a high η. How-
ever, regions with high η are not necessarily regions with the
highest dust emissions (Fig. 7a–b) because their saltation fre-
quency could be low, or the strength of their emission fluxes
is limited by other factors such as the fragmentation expo-
nent and soil moisture. In Fig. S5, we further show the factor
η averaged over all time steps of 2006, including periods of
no emissions over the grid. Since η is close to 0 when there
is no emission, Fig. S5 shows much smaller η compared to
Fig. 6b.

4 Results of our new dust emission scheme

In this section, we implement the three new parameteriza-
tions of key dust emissions processes with the K14 model
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Figure 6. Simulated dust emission intermittency effect for the year 2006. (a) The hourly mean intermittency factor η versus hour mean wind
speed us (m s−1) at 0.1 m height over the Bodélé Depression. The color indicates −zi/L, with red indicating −zi/L > 0 (unstable), blue
indicating −zi/L < 0 (stable), and gray indicating −zi/L∼ 0 (neutral). The two vertical dotted black lines indicate the annual mean impact
threshold (left) and the fluid threshold (right) wind speed (m s−1) at 0.1 m. (b) The annual mean intermittency factor η, or equivalently the
fraction of time within a time step that emission is active, averaged over times when emission is active (Fd > 0).

into R to investigate the resulting spatial variability of dust
emissions. The MERRA-2 data and ESA CCI land cover
data are for the year 2006. Other inputs in Table 1 (Soil-
Grids data, Prigent’s roughness, and source functions) are
2-D spatial datasets with no 2006 data available, but they
are slowly time-varying variables and are generally used for
present-day simulations in other years. In Sect. 4.1, we then
compute the dust emissions and analyze their spatial charac-
teristics. We examine the effects of each new modification
on the simulated dust emissions by conducting different sim-
ulations with different individual parameterizations added.
Then, in Sect. 4.2, we inspect the effects of the grid resolu-
tion of input data on simulating dust emissions and propose
a simple method to calibrate the spatial variability of low-
resolution dust emissions to match the spatial variability of
high-resolution emissions.

4.1 Effects of different new physics on global dust
emissions

In this subsection, we show the effects of different modifi-
cations on the resulting dust emissions (in kg m−2 yr−1) in
Fig. 7. We demonstrate the effect of each modification by cre-
ating a suite of sensitivity experiments as follows: (I) first we
simulate emissions using the default K14 scheme, (II) then
we use the K14 scheme with our proposed globally constant
soil diameter of Dp0 ∼ 127 µm for simulation, (III) we fur-
ther add in the hybrid drag partition physics on top of (II),
(IV) we switch from using the fluid threshold to the impact
threshold in (III), and finally (V) we include the intermittency
effect on top of (IV) for simulation. We note that past studies
derived the approximate magnitude of the global total emis-
sion (e.g., Tegen and Fung, 1995; Zender et al., 2004; Evan
et al., 2014; Kok et al., 2021), but there are no global obser-
vations of dust emissions. In the field of dust modeling, there
are currently no first principles that can derive the essential

dust emission proportionality constants to constrain modeled
emissions at a correct order of magnitude, which means sci-
entists still have insufficient knowledge in aeolian physics to
generate emissions predictions in the correct order of magni-
tude. Recognizing that the spatiotemporal characteristics of
the predictions are more credible, it is very common for dust
modelers to rescale the emissions according to the known
constraints of observed atmospheric dust mass or the global
DAOD. For instance, Li et al. (2022) scaled all their simu-
lations to achieve a global mean DAOD of 0.03, based on
Ridley et al. (2016). Thus, what matters the most is how each
modification changes the spatial variability and the relative
magnitudes of dust emitted from one region compared to the
others, and the absolute magnitude changes are of secondary
importance. In our experiments, we normalize all simulations
to a global total of 5000 Tg yr−1, which is around the current
constraint of global PM20 dust emission flux from past stud-
ies (Evan et al., 2014; Kok et al., 2021a, b). Figure 7 shows
the normalized emissions of K14 and our scheme (Fig. 7a–b)
and differences between the normalized emissions from one
modification to another (Fig. 7c–j). The left panels (Fig. 7c,
e, g, i) show the normalized emission differences, and the
right panels (Fig. 7d, f, h, j) show the normalized emission
ratios. The left columns show the regions with the greatest
changes in absolute magnitude, which would mostly be dom-
inated by hyper-arid regions and primary sources, whereas
the right columns show the regions with the biggest percent-
age changes with respect to their own order of magnitude.
Figure S6 shows the original, unnormalized emission maps
for all experiments, and Fig. S7 shows the differences in
unnormalized emissions between different experiments. Fig-
ure S8 shows the normalized emission maps for all experi-
ments. Table S2 summarizes the global total changes in the
normalized emissions done by all modifications.
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Figure 7a shows the normalized emissions from the de-
fault K14 scheme (experiment I) using MERRA-2 inputs.
The emission map shows a similar spatial pattern compared
with the K14 simulations in Kok et al. (2014b) and Li et
al. (2022) despite differences in the data used for different
land-surface fields (e.g., for LAI and soil moisture) and a
larger LAI limit of 1 used in this study. The most signifi-
cant emissions are over the Bodélé Depression in Chad, the
Nubian Desert in Sudan and Egypt, the whole Arabian Penin-
sula, most of Iran, the Taklamakan Desert in China, and the
Strzelecki Desert in Australia. Over regions with emissions,
the spatial variability of the emissions is dictated by the mois-
turew (see Figs. S1 and 5b), which fundamentally shapes the
threshold u∗ft, the soil erodibilityCd, and the intermittency η.
Smaller emissions occur over southern Africa, South Amer-
ica, and the western United States. Without normalization,
the simulated emissions in Fig. S6a gives a global total of
∼ 29 300 Tg yr−1 using the inputs in Table 1.

Figure 7c–d show the effect of changing the global soil di-
ameter from the current standard of 75 µm to our new con-
straint of Dp0 = 127 µm (experiment II). As described in
Sect. 3.1, a globally larger Dp leads to heavier particles, re-
sulting in higher thresholds and lower emissions across the
globe. Figure 7c shows that the normalized emission tends
to redistribute from semiarid regions to hyper-arid regions,
but the changes are small overall. The color bar in Fig. 7c
shows that the effect of employing a new global Dp0 is rela-
tively mild (of the largest order of 0.001 kg m−2 yr−1) com-
pared to the drag partition effect and intermittency (Fig. 7e
and g; of the largest order of ∼ 0.1 kg m−2 yr−1). Figure 7d
shows the ratio map of the normalized emissions of exper-
iment II to those of experiment I. Employing a new glob-
ally constant D̄p0 does not strongly impact the spatial pat-
tern of the emissions, so the ratio map is of order 1 around
the globe. While Fig. 7c more clearly shows that the largest
emission changes in magnitude occur over the major sources,
Fig. 7d shows that, after rescaling, there are some stronger
emissions reductions in percentage (in blue) over marginal
regions (e.g., the Arctic) compared to the minimal increases
over the major sources (in white and light red, e.g., over
the Bodélé Depression). The major sources are less affected,
since in the high u∗s regime Fd becomes more sensitive to
u∗s than to u∗ft. Thus, a uniform increase in u∗ft around the
globe tends to eliminate small emissions more than large
ones. The main effect of employing a larger Dp is therefore
a very modest shift of emissions from the marginal regions
toward the arid areas. Summing up the absolute magnitude of
changes in Fig. 7c, out of 5000 Tg yr−1 there are 250 Tg yr−1

of dust redistributed within source regions. Figure S6b shows
the unnormalized global emission flux of ∼ 23 900 Tg yr−1,
which is 18 % less than the unnormalized emission flux of
experiment I as a result of globally increased thresholds. We
note that the difference maps of unnormalized emissions in
Fig. S7a show that larger emissions reductions occur over

the major sources just because the emission magnitudes are
larger there.

Figure 7e–f show the effect of including the hybrid drag
partition effect Feff (experiment III). The clear contrast be-
tween major and marginal sources is shown in Fig. 7e and f,
which mirrors the spatial pattern of Feff in Fig. 4c. Com-
pared with experiment II, experiment III has emissions redis-
tributed from semiarid to hyper-arid regions, since the drag
partition effect leads to stronger inhibitions of emissions over
the nonarid regions than the arid regions. For example, nor-
malized emissions increase (in red) over major sources such
as the Bodélé Depression, El Djouf, and the Rub’ al Khali
Desert; normalized emissions over the western United States
and western Australia are significantly reduced. El Djouf is
a significant dust source over Africa (Yu et al., 2018), yet
K14 fails to represent its high emissions because of the strong
moisture effect (see Fig. 5c) compared to other major sources
such as the Bodélé Depression. However, Feff highlights El
Djouf as a highly erodible surface and helps mitigate the low
emission issue over there. Similarly, the underrepresented
emissions over the Taklamakan and the Arabian Desert by
K14 are partially mitigated by accounting for the drag parti-
tioning (light red in Fig. 7f). Summing up the absolute mag-
nitude of changes in Fig. 7e, out of 5000 Tg yr−1 there is
3611 Tg yr−1 of dust redistributed within the source regions.
This shows that the drag partition effect has a much bigger
influence on the spatial variability of dust emissions than
changing Dp in Fig. 7c. For unnormalized emissions, the
global total emission in experiment III decreases drastically
by 85 % to ∼ 2880 Tg yr−1 relative to that of experiment II.
In Fig. S7b, many significant emissions reductions (in dark
blue) occur over the Sahara where Feff < 0.7, such as Egypt,
Sudan, and the western Sahara. K14 struggles to distinguish
major sources (e.g., the Bodélé) from less significant sources
(e.g., Sudan) and predicts similar levels of emissions. Feff
effectively introduces the effect of surface roughness on mit-
igating emissions over secondary sources, reducing the emis-
sions by at least 1 order of magnitude compared to Fig. S6b.

Figure 7g–h show the effects of implementing the C19
intermittency scheme. It consists of employing u∗it in K14
(experiment IV) and further multiplying the dust emission
flux by the intermittency factor η (experiment V). Figure 7g–
h show their combined effects by comparing experiment V
with experiment III. As seen from Fig. 7g and h, emis-
sion schemes employing u∗it will have much stronger emis-
sions over marginal sources. This is because not only is
u∗ft/u∗it bigger but the fragmentation exponent κ (which
scales with u∗ft) is also greater over marginal sources. As
a result, the main feature in the spatial pattern of Fig. 7h
is that the marginal sources (in red color) now have more
emissions than experiments II and III. The most appar-
ent emissions increases are over Patagonia, the Horn of
Africa (HOA), and western US deserts. Another observable
change is that there are many more high-latitude dust emis-
sions, such as over the Arctic, Canada, and Alaska. Stud-
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ies reported that many models greatly underestimate high-
latitude dust emissions (Bullard et al., 2016; Meinander et
al., 2022), and the use of u∗it will mitigate this issue. Fig-
ure 7g shows that although the changes over nonarid re-
gions are high in ratios (e.g., > 1000 times over Canada in
Fig. 7h), the emission redistributions in magnitude are still
small (e.g., ∼ 10−5 kg m−2 yr−1 in Canada) compared to the
major sources (e.g., > 10−3 kg m−2 yr−1 in the Sahara) be-
cause the magnitudes in experiment III are too small over
nonarid regions. The unnormalized total emissions (Fig. S6d)
vastly increase to ∼ 13 200 Tg yr−1 when employing u∗it in-
stead of u∗ft, more than 4 times that of experiment III.

On the other hand, the effect of multiplying the emission
flux with the intermittency factor η is less dramatic than the
effect of using u∗it. η tends to scale down small emissions
(Fig. 5b), so fluxes from major sources are only moderately
reduced. In contrast, fluxes from marginal source regions
(e.g., high-latitude boreal forests) are typically reduced by
∼ 1–3 orders of magnitude (blue areas in Fig. S6e). However,
experiment V has a global total of ∼ 11 700 Tg yr−1, which
is only 11 % smaller than experiment IV, because those re-
mote regions as such already have small emissions. All in
all, accounting for both the impact threshold and the inter-
mittency factor will increase the global total emission from
∼ 2880 Tg yr−1 in experiment III to ∼ 11 700 Tg yr−1 in ex-
periment V, which is about a 4-fold increase. Figure 7h shows
that C19 mainly increases marginal emissions; the overall ef-
fect of C19 is thus to move emissions from the hyper-arid
regions to semiarid regions. Summing up the absolute mag-
nitude of changes in Fig. 7g, out of 5000 Tg yr−1 there is
3163 Tg yr−1 of dust redistributed within the source regions,
indicating that the intermittency scheme induces a similar
magnitude of changes compared to employing Feff. Both the
hybrid drag partition scheme and the intermittency scheme
lead to > 60 % of dust emissions redistributed, showing that
both effects modify the modeled emission behavior much
more strongly compared to the effect of changing the value
of Dp (experiment II).

Figure 7b shows the final emission map of our new dust
emission scheme with all new physics, and Fig. 7i–j shows
the resulting emission changes and ratios from K14 (exper-
iment I) to our scheme (experiment V). Figure 7i–j show
that compared to K14, our scheme’s emission fluxes over
densely vegetated regions (e.g., equatorial Africa and north-
ern Australia) are reduced due to the drag partition effect,
while there are increases in marginal sources like the Arctic
and mid-latitude boreal forests due to the intermittency ef-
fect. The figures show essentially a combination of drag par-
tition (Fig. 7e–f) and intermittency (Fig. 7g–h) effects. Ma-
jor sources are more affected by the drag partition effect (e.g.,
the Bodélé Depression and El Djouf), while marginal sources
are more dominated by turbulence and intermittency (e.g.,
the Arctic). For regions where both effects take place, more
vegetated semiarid regions are more affected by the drag
partition (e.g., western United States), while less vegetated

semiarid regions are more affected by the intermittency (e.g.,
Patagonia, the Great Plains of the United States, and southern
Australia). For unnormalized emissions, our scheme’s global
total of 11 700 Tg yr−1 is ∼ 60 % smaller than the K14 emis-
sion. A notable feature is that the new mechanisms favor the
emissions over the Horn of Africa (HOA) the most, with an
emission increase of ∼ 2 kg m−2 yr−1 (as seen in Figs. 7g
and S7f). This is because in C19, the HOA has low u∗it, high
summertime u∗, low roughness element cover (and thus high
Feff), and moderate soil moisture (and thus high dust emis-
sion coefficient Cd). This issue could be problematic, since
it could introduce too much dust in the GCM over the HOA,
which is further discussed in Sect. 5.

4.2 The grid-scale dependence of our new dust
emission scheme

The spatial resolution of a GCM strongly affects the bud-
get and spatiotemporal variability of dust emissions because
modeled emissions scale nonlinearly with input meteorolog-
ical fields (Ridley et al., 2013; Meng et al., 2021). Many
current GCMs have a horizontal resolution of ∼ 1–2◦ (Zhao
et al., 2022). Most of the datasets employed in this paper,
such as the 0.5◦ MERRA-2 fields and the even finer aeo-
lian roughness length z0a, are datasets of higher horizontal
resolutions. Thus, GCMs need to regrid the datasets to the
model native grid resolution as model input. Since dust emis-
sion has nonlinear dependences on multiple variables such
as u∗ and w, using a simple, area-weighted spatial average
of u∗ to calculate dust emission would be inaccurate, as it is
different from an area-weighted average of high-resolution
dust emissions per se, i.e., for any n > 1 un∗s < un∗s leads to
Fd
(
un∗s
)
< Fd(un∗s) (Ridley et al., 2013) (here we use the bar

as a spatial average from a finer to a coarser grid). This in-
equality applies to our model and datasets as well: simply
taking the area-weighted mean of high-resolution u∗s or w
in a model grid box will omit the locally high u∗s (or low
w) values that can produce locally extremely high emissions,
resulting in an underestimation of emissions relative to di-
rect area-weighted averaging of the emissions. Additionally,
the presence of thresholds in dust emission parameterizations
further intensifies the scale dependence, because spatially av-
eraging u∗s might cause u∗s < u∗it which leads to zero emis-
sion over a coarse grid box, whereas fine emissions could be
large than zero when u∗s > u∗it in any fine grid. Dust emis-
sion flux will thus be strongly dependent on model resolution
more than other linear processes (Zender et al., 2003a; Ridley
et al., 2013; Meng et al., 2021), which is undesirable. There
is a need to better upscale low-resolution dust emissions to
match the variability of high-resolution emissions such that
dust emissions tend to be less resolution dependent. To ad-
dress the problem of missing emissions due to the smoothing
of the subgrid wind maxima, a common approach is to em-
ploy a grid-by-grid Weibull distribution to the GCM winds to
represent the subgrid wind maxima and thus obtain the sub-
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Figure 7. The effects of the proposed improvements to the parameterization of dust emissions on the default Kok et al. (2014a, b) dust
emission scheme. (a, b) Globally normalized dust emission fluxes simulated by (a) the default K14 scheme (expt. (experiment) I) and (b) our
new scheme (expt. V). (c–j) Maps of normalized emission (c, e, g, i) differences and (d, f, h, j) ratios, with individual improvements added
on top of the default K14 scheme. The individual improvements are respectively (c, d) changing the soil median diameter to 127 µm (expt.
II), (e, f) including the drag partition effect (expt. III), and (g, h) employing the Comola et al. (2019) intermittency scheme (expt. V). (i, j)
Maps of (i) normalized emission differences and (j) emission ratios for our new scheme and the K14 scheme. The color bars of the maps of
differences are drawn to log10 scale.
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grid emission peaks (Cakmur et al., 2004; Grini et al., 2005;
Cowie et al., 2015; Zhang et al., 2016; Menut, 2018; Tai et
al., 2021). However, the shape factor of the distribution needs
to be empirically determined and thus might not capture the
interannual variability and changes in climate. In this subsec-
tion, we examine the scale dependence of our dust emission
scheme and then propose an alternative approach, which is
to derive a simple spatial map and upscale the spatial vari-
ability of dust emissions from low-resolution ones to high-
resolution ones. A discussion about our proposed approach
versus the more common Weibull distribution approach is
detailed in Sect. S6.4.

We first examine the scale dependence of our dust emis-
sion scheme. We achieve this by performing an area-
weighted mean of all input meteorological and land-surface
variables to various coarser resolutions. Starting from the na-
tive 0.5◦× 0.625◦ resolution of MERRA-2, we regrid fields
to 0.9◦× 1.25◦, 1.9◦× 2.5◦, and 4◦× 5◦. Then we use these
input fields with our new scheme to compute hourly dust
emissions for 2006 across these four resolutions. We then
compare the emission outputs across these resolutions.

We examine the global, regional, and grid-level scale de-
pendence of our dust emission scheme in Fig. 8. At the re-
gional level, Fig. 8a shows the unnormalized annual total
emissions (in Tg yr−1) of nine major dust source regions. The
source regions are defined following Kok et al. (2021a) (see
Figs. S9 and 8c–d). The regional dust abundance in Fig. 8a
is mainly consistent with the regional dust emissions in Kok
et al. (2021b; see their Fig. 2). The highest emissions occur
over the Middle East/Central Asia, followed by the Sahel and
northern Africa. Smaller emissions are over East Asia, North
and South America, Australia, and southern Africa. The dust
emission scheme also shows scale dependence across differ-
ent resolutions. Some regions may have a sharper decrease
in emissions from 0.9◦× 1.25◦ to 1.9◦× 2.5◦ (e.g., north-
eastern Africa), and some regions may have a sharper de-
crease from 1.9◦× 2.5◦ to 4◦× 5◦ (e.g., Sahel). This differ-
ence is contingent upon the degree of smoothing of the in-
put fields such as u∗s at a particular resolution. The emis-
sions will drastically drop when the local extrema of u∗s are
smoothed out and no longer can be represented at a particular
resolution, and over different regions this cutoff may occur
at different resolutions depending on the spatial heterogene-
ity of the local-scale meteorological fields. Nevertheless, in
general, the coarser the resolution, the worse the model can
represent the local variability of u∗s and other input fields
and subsequently the emissions, and thus the magnitudes of
the emissions decrease with resolution. Figure 8a shows that
the relative differences in regional emissions can be different
in different resolutions (e.g., Sahel can have larger emissions
than the Middle East/Central Asia in the 4◦× 5◦ simulation),
which will subsequently affect the spatial variability of other
major dust cycle variables (such as DAOD or deposition).
Therefore, it is always preferential for GCMs to simulate the
dust cycle in high resolutions. Figure 8b shows the scale de-

pendence of the global emissions, which also shows the same
decrease in emissions from fine to coarse grid resolutions.

We also examine the scale dependence of dust emissions
at the grid level. Figure 8c–d show the spatial distributions of
0.5◦× 0.625◦ and 1.9◦× 2.5◦ unnormalized emissions (with
a global total of 11 700 and 5450 Tg yr−1, respectively). The
0.5◦× 0.625◦ simulation shows a more detailed local spa-
tial variability compared to the coarser 1.9◦× 2.5◦ simu-
lation. The 1.9◦× 2.5◦ simulation fails to capture some of
the high emission regimes in the 0.5◦× 0.625◦ simulation
such as over the Taklamakan, and it fails to simulate the lo-
cal emission peaks over marginal sources such as the Chi-
huahuan Desert and Patagonia. Coarse-gridded simulations
lose emissions in both major and marginal dust sources. We
calculate in Fig. 8e the grid-by-grid ratio of unnormalized
0.5◦× 0.625◦ emissions to 1.9◦× 2.5◦ emissions to show the
emissions missed by the 1.9◦× 2.5◦ simulation in each grid.
Both the coarse (y axis) and fine (x axis) emissions are plot-
ted in the log10 scale to show the emission ratios in terms
of the order of magnitude only. It can be seen that most
of the points are above the 1 : 1 line (dashed black line),
meaning the coarse emissions are underestimating some lo-
cal dust fluxes accounted for by the fine emissions. The low-
resolution simulation can capture the largest emissions well
(top righthand corner), as predicted by the high-resolution
simulation. However, the smaller the emission, the more sig-
nificant the difference in emissions, and for minimal emis-
sions (< 10−5 kg m−2 yr−1), the difference can be up to 3
orders of magnitude. There are very few grids with low-
resolution emissions higher than high-resolution emissions.
Those are exceptional cases due to the spatial variability of
moisture w more heterogeneous than that of u∗s, leading to
the smoothing of local maxima of u∗ft instead of u∗s and thus
the overestimation of Fd in the coarser simulation. In conclu-
sion, the coarse-resolution models omit many local input fea-
tures and thus fail to represent the correct spatial variability
of dust emissions.

To mitigate the scale dependence of our dust emission
simulations, here we propose a simple approach to upscale
the simulated low-resolution emissions to match the high-
resolution emissions. This approach assumes that the fine
emissions have a more adequate magnitude and spatiotem-
poral variability than the coarse emissions so that the coarse
emissions are calibrated to match the fine emissions. Our
approach is that, by dividing the normalized fine-resolution
emission map Fd,f by the coarse-resolution emission map
Fd,c, we obtain a map of scaling factors K̃c to account for
the differences in the spatial variability of dust emissions be-
tween high- and low-resolution simulations:

K̃c (long, lat)= Fd,f (long, lat)/Fd,c (long, lat) . (24)

We obtain a global map of correction factors K̃c and apply
this map to all simulated coarse emissions from both histori-
cal and future simulations, correcting their spatial variability
to match that of the high-resolution emissions. We show the
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Figure 8. The dependence on horizontal resolution of dust emissions simulated with our new dust emission scheme. (a, b) Bar plots of
dust emissions as a function of grid resolutions for (a) nine major dust emission regions and (b) the globe. (c) Unnormalized emissions of
0.5◦× 0.625◦ and (d) 1.9◦× 2.5◦. (e) A scatterplot of 0.5◦× 0.625◦ versus 1.9◦× 2.5◦ unnormalized dust emissions. The rectangular boxes
show the nine source regions in (a) defined as in Fig. S9.

seasonal variability of K̃c in Fig. S10. This map of scaling
factors contains some temporal and seasonal variability, so
it would be preferable to apply a seasonally varying dataset
of K̃c. However, K̃c varies modestly across season because
the subgrid variability of the meteorological and land-surface
fields is partly determined by spatial structures such as orog-
raphy or land use/land cover, which change across a rel-
atively long enough timescale (decadal to multidecadal or
longer). We note that theoretically this approach will fail to
work if, over the remote regions, the low-resolution emis-
sion is zero throughout the entire simulation period while the
high-resolution emission is a small positive definite, since
K̃c will go to infinity. We also note that employing differ-
ent input fields or different emission schemes will change
the subgrid variability and thus the spatial representation of
this correction map. For instance, one will obtain a slightly
different correction map if one uses ERA-Interim meteorol-
ogy instead of MERRA-2 or a moderately different map if
one employs the Z03 or any other dust emission equations
instead of K14 or our new scheme. Therefore, although here
we present a standard correction map which is likely accu-
rate and realistic, we suggest each model should make their
own correction maps for their specific model configurations.
We discuss more caveats of this approach in Sect. 5.4.

Figure 9 shows the ratio maps normalized fine emissions
to coarse emissions. Figure 9a shows the ratio of normalized
0.5◦× 0.625◦ emissions (Fd,0.5) to constrained 1.9◦× 2.5◦

emissions (Fd,2), and Fig. 9b shows the ratio of constrained
Fd,0.5 to constrained 0.9◦× 1.25◦ emissions (Fd,1). Since all

emissions are constrained to match the global dust budget,
the correction maps display the relative changes in spatial
variability between two resolutions. From Fig. 9a–b, it can
be seen that 0.5◦× 0.625◦ emissions tend to generate rela-
tively fewer emissions (blue color) over the major sources,
such as the Sahara, the Arabian Desert, and the Taklamakan
Desert. Emissions of 0.5◦× 0.625◦ also tend to have rela-
tively more emissions (red color) over the peripheries of the
major sources, such as Algeria, Yemen, and the Taklamakan.
This is in line with the above discussion, because the high-
resolution simulations tend to be more capable of represent-
ing the local peaks of u∗s and therefore can more likely pass
the thresholds and produce Fd; the low-resolution simula-
tions would miss a lot of marginal emissions because the
low-resolution wind will be smaller than the low-resolution
threshold and yield a zero Fd. The ratios over the marginal
sources can be up to 100 or even more because of the much
smaller emissions in low-resolution simulations. The con-
trast is smaller (with ratios of 0.5–0.9) over major sources
where coarser simulations are more capable of representing
the large-scale emission fluxes. For this reason, the correc-
tion values in Fig. 9a for 1.9◦× 2.5◦ (K̃c,2) generally have
bigger magnitudes than those in Fig. 9a for 0.9◦× 1.25◦

(K̃c,1). These maps indicate that in coarse-gridded simu-
lations, dust emissions are overall underrepresented over
marginal sources and overrepresented over major sources.
Therefore, we propose implementing these maps into GCMs
of∼ 1◦ or coarser resolution to correct the dust emission spa-
tial variability accordingly. Scaling all simulations across dif-
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ferent spatial resolutions to the finest spatial resolution will
move our dust emission scheme toward a scale-aware and
grid-independent formulation.

4.3 Comparison of our dust emission scheme against
other dust estimates

To validate the emissions produced by our new scheme, this
subsection focuses on comparing the resulting 0.5◦× 0.625◦

emissions from our new scheme against other existing emis-
sion data. Since there are no globally gridded observations
of dust emissions, GCMs and ESMs mostly evaluate their
schemes using observable atmospheric dust products such
as satellite and ground-based DAOD data, as well as dust
surface concentrations and dust deposition flux measure-
ments (Ridley et al., 2012; Kok et al., 2014b; Pu and Gi-
noux, 2018; Parajuli et al., 2019; Klose et al., 2021). Since
this study focuses on simulating dust emissions, not their
subsequent transport and deposition, we compare our re-
sults against constraints on the fraction of annual dust emis-
sion contributed by nine major source regions (Table 1 in
Kok et al., 2021b). These constraints on regional emis-
sion fluxes were obtained from the Dust Constraints from
joint Observational-Modelling-experiMental analysis (Dust-
COMM) dataset (Kok et al., 2021a, b), which used inverse
modeling to combine an ensemble of model simulations of
the global dust cycle with constraints on the regional DAOD
near major dust source regions (Ridley et al., 2016), the dust
size distribution (Adebiyi and Kok, 2020), and dust extinc-
tion efficiency (Kok et al., 2017). The DustCOMM con-
straints on regional dust emissions include error estimates
that account for the spread in model results and the uncer-
tainties in the constraints on dust properties and abundance.
Comparisons against independent measurements of dust sur-
face concentrations and deposition fluxes indicated that the
DustCOMM product is more accurate than GCM simula-
tions and the MERRA-2 dust reanalysis and that uncertain-
ties are realistic (Kok et al., 2021a, b). The total emissions
from all nine source regions obtained by the DustCOMM
dataset were 4.7 (3.4–9.1)× 103 Tg yr−1 for dust PM20. The
global total of ∼ 4700 Tg yr−1 is close to the 5000 Tg yr−1

we adopted in this study for normalization, and we again nor-
malized the DustCOMM global emissions to 5000 Tg yr−1.
Note that Kok et al. (2021a, b) only constrained the emis-
sions and other dust variables for each broad region, but its
subregional spatial distribution of dust is a multimodel mean
and thus unconstrained. Therefore, in Fig. 10b, we sum up
the emissions of DustCOMM to regional total emissions,
which are constrained by the regional DAOD from Ridley et
al. (2016). We also sum up the emissions of all other schemes
to regional levels to evaluate each scheme’s regional spatial
variability against DustCOMM. Tables S3 and S4 summarize
the global total emissions and regional emissions of Dust-
COMM and all other schemes.

We first compare the global emission maps between Dust-
COMM and different schemes. Figure 10a shows the grid-
ded global spatial distribution of DustCOMM dust emissions
(Kok et al., 2021a). Here we compare the gridded simulations
of K14 (Fig. 7a) and our scheme (Fig. 7b) against the gridded
K21 DustCOMM emissions. Our new scheme’s simulation
successfully captures most of the major peaks in DustCOMM
emissions, except that there are more northern US and high-
latitude emissions in our new scheme which were not rep-
resented and constrained in DustCOMM’s inverse analysis.
Our scheme and DustCOMM emissions have a gridded spa-
tial correlation coefficient of r = 0.71, showing the resem-
blance of the two emission maps and our scheme’s ability in
physically capturing the emission peaks. On the other hand,
K14 emissions also share a similar spatial distribution with
DustCOMM emissions but show more emissions over cen-
tral Africa, central India, and northern Australia. Its gridded
spatial correlation coefficient with DustCOMM is r = 0.61,
indicating it does not match DustCOMM emissions in spatial
variability as well as our scheme does.

We also conducted simulations using the Z03 scheme
(Eq. 10) for comparison with our scheme’s simulation. The
Z03 scheme requires a source function S, and in this study we
adopted two popular source functions: one is the Zender et
al. (2003b) geomorphological source function (e.g., used in
CESM; Oleson et al., 2013) and the other one is the Ginoux
et al. (2001) source function (e.g., used in GEOS-Chem; Fair-
lie et al., 2007). Both source functions are plotted in Fig. 2
in Kok et al. (2014b). Figure S11a shows the simulations of
the Z03 scheme with Ginoux et al. (2001) S (Z03–G), which
shows almost an identical pattern with the Z03–G scheme
in the GEOS-Chem simulations (e.g., top panel of Fig. 1 in
Meng et al., 2021). The Z03–G scheme is mostly consis-
tent with the DustCOMM multimodel emissions (r = 0.57)
but captures more African emissions in the northwest Africa
such as Algeria, Morocco, and the western Sahara. On the
other hand, the Z03–Z scheme employs a geomorphic S that
possesses a spatial distribution of the upstream area where
surface runoff is collected, from Zender et al. (2003b). Fig-
ure S11b shows the simulations of the Z03–Z scheme, which
shows a highly similar pattern with the Z03–Z scheme in the
CESM simulations (e.g., Fig. 2a in Li et al., 2022). It cap-
tures the emission peaks across the globe but is quite spa-
tially heterogenous, yielding a relatively low r = 0.35 with
DustCOMM.

We further obtained MERRA-2-simulated dust emissions
for comparison. MERRA-2 simulates the dust cycle using
the global ozone chemistry aerosol radiation and transport
(GOCART) model, which employs the Ginoux et al. (2001)
scheme (hereafter G01). We thus use MERRA-2-simulated
dust emissions here for a comparison between G01, Z03,
K14, our scheme, and DustCOMM. However, since Dust-
COMM employs GOCART dust as one of the six models
for inverse analysis and assimilation (see Table 1 of Kok et
al., 2021a), and because both DustCOMM and MERRA-2
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Figure 9. Gridded maps of a 0.9◦× 1.25◦, 1.9◦× 2.5◦, and 4◦× 5◦ scaling factor to rescale the coarse dust emission simulations to match the
spatial variability of high-resolution dust emissions. This is achieved by calculating the ratios of (a) 0.5◦× 0.625◦ to 1.9◦× 2.5◦ emissions,
(b) 0.5◦× 0.625◦ to 0.9◦× 1.25◦ emissions, and (c) 0.5◦× 0.625◦ to 4◦× 5◦ emissions. Emissions of all resolutions are constrained and
normalized to have a global total of 5000 Tg yr−1 before calculating the ratios.

use remotely sensed aerosol optical depth, DustCOMM and
MERRA-2 emissions show relatively similar spatial distribu-
tions. Figure S12a shows MERRA-2 annual mean emissions,
which show very similar features of grid-by-grid variability
especially over Australia, East Asia, and the Middle East. For
the same reason, MERRA-2 emissions have a high correla-
tion of r = 0.86 with DustCOMM.

Next, we aggregate the emission maps to regional total
emissions to examine their regional variability. In Fig. 10b,
we compare the simulated dust emissions summed over
each of nine source regions against the regional DustCOMM
emissions. We also summed the emissions outside all rectan-
gular boxes as the high-latitude emissions, to yield the 10
data points in Fig. 10b. High-latitude emissions from our
scheme (Fig. 7b) mainly include emissions from Alaska,
Canada, Greenland, and Iceland, and there are no emissions
from Antarctica because of the lack of necessary input data
there (e.g., soil texture and roughness due to rocks). How-
ever, since K21 does not provide emission estimates out-
side of the nine defined source regions, we compare against
the estimate of high-latitude dust emissions from Bullard et
al. (2016) (hereafter B16) obtained from GCM results. Their
definition of high-latitude emission not only includes emis-
sions from the abovementioned regions but also from Patag-
onia, so we add Patagonia (39◦–56◦ S of S. America) emis-
sions as part of the high-latitude emissions in Fig. 10b. B16
estimated that high-latitude emissions (without error esti-
mates) accounted for 4 %–5 % of their assumed 2000 Tg yr−1

of global total emissions. We normalized their estimate to

match our global total of 5000 Tg yr−1, yielding a high-
latitude emission range of 200–250 Tg yr−1. We take the av-
erage, which is 225 Tg yr−1. For all schemes and datasets
discussed here, Table S4 provides a list of regional emission
contributions to the global total emission.

Figure 10b shows that our scheme’s emissions are in over-
all better agreement with DustCOMM emissions than the
K14 scheme. Some of the most significant differences in
emissions between our scheme and K14 are over regions
including Australia, North America, and southern Africa,
where the vegetation drag partitioning causes strong reduc-
tions in winds and emission fluxes (Fig. 7f) from K14 to
our scheme. Our scheme’s East Asian emission is signifi-
cantly higher than K14’s (also shown in Fig. 7j), primar-
ily due to the switch from using u∗ft to u∗it in the dust
emission equation (Figs. 7h and S8d). Emissions over South
America, the Middle East, and the three regions of northern
Africa have relatively small and negligible differences be-
tween K14 and our scheme. This occurs because both the
drag partitioning and intermittency effects create only min-
imal changes to the emissions over these regions (Fig. 7j).
The results with our scheme (blue color) better match the
DustCOMM regional emissions than results with the K14
scheme, lying substantially closer to the 1 : 1 (black) line
over most regions including Africa, Asia, and Australia.
There are two notable exceptions where our scheme has less
agreement than K14 with DustCOMM, namely North Amer-
ica and the high-latitude emissions. Our scheme generates
fewer dust emissions over the Mojave–Sonoran–Chihuahuan
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deserts over the United States–Mexico border compared to
the K14 emissions (Fig. 7a), because of the high LAI (an-
nual mean > 0.4) over the western United States that leads
to the strong wind drag partitioning. Meanwhile, our scheme
generates significant high-latitude emissions over the Arc-
tic, which were not captured by K14 emissions due to the
very high u∗ft. Using the emission intermittency parameteri-
zation, our scheme represents one of the earliest attempts to
successfully capture significant levels of high-latitude emis-
sions. Our high-latitude emissions account for 262 Tg yr−1

(without Patagonia) and 308 Tg yr−1 (with Patagonia), in to-
tal accounting for 5 %–6 % of a global sum of 5000 Tg yr−1,
which is very close to the percentage B16 suggested. Our
scheme has an R2 of 89 % and a root mean squared error
(RMSE) of 141 Tg yr−1. We note in Fig. 10b the normalized
RMSE (NRMSE) of 28 %, which is the RMSE divided by the
mean of the DustCOMM emissions (5000 Tg yr−1/10 data
points= 500 Tg yr−1). Our scheme’s performance is substan-
tially better than K14’s performance with an R2 of 65 % and
an RMSE = 259 Tg yr−1 (NRMSE= 52 %).

On the other hand, the Z03–Z scheme (Fig. 10c in green)
has a similar level of performance compared with K14, with
a higher RMSE of 317 Tg yr−1 (NRMSE= 63 %) and an R2

of 64 %. The Z03–G simulation (Fig. 10c in violet) has a
higher R2 of 83 % and also a smaller RMSE of 237 Tg yr−1

(NRMSE= 43 %) against DustCOMM compared with K14
and Z03–Z. Meanwhile, MERRA-2 (Fig. 10d) has a high re-
gional correlation of R2 of 88 % and RMSE of 187 Tg yr−1

(NRMSE= 37 %) against DustCOMM regional variability.
In conclusion, our scheme outperforms all the aforemen-
tioned simulations in matching against the DustCOMM es-
timates of regional dust emissions.

To evaluate our simulations of the dust emission thresh-
olds, we also compare our simulations of dust emission
thresholds against observationally based threshold estimates
from Pu et al. (2020). They compared reanalyzed wind speed
distributions against observationally derived DAOD distri-
butions to obtain a threshold wind speed for each grid box
that corresponds to a threshold DAOD value (e.g., 0.5 over
arid regions and 0.05 over semiarid regions), above which
is defined as a dust emission event. We show that our sim-
ulations of dust emission threshold overall match their de-
rived threshold wind speed in magnitude and spatial variabil-
ity (see Sect. S5 and Fig. S13).

5 Discussion of the caveats and limitations of the
new parameterization

Because of the complexities of simulating the fine-scale pro-
cess of dust emission in a large-scale gridded model, the
parameterizations of dust emission processes presented in
Sect. 4 and the dust schemes employed from all past stud-
ies necessarily made a number of assumptions. Below, we
highlight one important caveat or limitation for each modifi-

cation made in this paper. We provide discussions on further
limitations for each modification in Sect. S6.

For the new dry-soil median diameter Dp representation,
we used a globally constantDp0 = 127±47 µm for calculat-
ing dust emission thresholds. In theory,Dp should be a func-
tion of soil properties (Hillel, 1980) and therefore implicitly
a function of space and time, but we obtained a simple re-
lationship for Dp over arid regions because (1) there were
no statistically significant correlations between Dp and stan-
dard soil properties like soil texture (Fig. S2), (2) data are
insufficient for a detailed statistical analysis against a wider
range of soil properties, (3) the uncertainties of soil data are
moderately large, and (4) most Dp measurements over arid
regions found Dp within 40–250 µm (Fig. 1c), which limited
u∗ft0 to vary within the relatively small range of ∼ 0.204–
0.268 m s−1 (from Eq. 2 assuming ρa = 1.225 kg m−3). Our
analysis of a compilation of Dp measurements also suggests
that the spatial variability of Dp over deserts is relatively
small compared to Dp over nonarid regions. Our results thus
surprisingly suggest that the Dp parameterization can rea-
sonably be much simplified by using a constant value over
arid regions. We also compared our approach in deriving Dp
against some other derived Dp maps (e.g., Fig. S14) from
previous dust modeling studies in Sect. S6.1.

For our hybrid drag partition scheme (Sect. 3.2), we have
proposed to combine the rock and vegetation drag partition
effects using a weighted mean approach (Eq. 21). This ap-
proach assumed that there is a rock regime and a vegetated
regime of certain fractions for every grid box, which has the
advantage of smoothing the transitions of roughness from
very exposed regions (e.g., the Sahara) to semiarid regions
with more vegetation (e.g., the Sahel). By using the weighted
mean approach, we separate the treatments of rock and veg-
etation drag partition effects and avoid dealing with the need
of adding z0a of rocks and z0a of plants, which is challeng-
ing because roughness length is not an additive quantity. For
simplicity, Eq. (21) neglects regimes where the roughness of
rocks and plants both contribute substantially to the total aeo-
lian roughness. We also note that ESA CCI vegetation cover
fractions are annual values and do not exhibit seasonality.
The seasonal variability of the simulated Feff in this study is
caused by the temporal variability of the LAI input.

For the intermittency scheme (C19 in Sect. 3.3), we note
that it has exponential dependences on u∗s, σũs , u∗it, and u∗ft
(see Sect. S2) and is thus very sensitive to the accuracy of
the GCM simulations of these four variables. For instance,
if the thresholds are overestimated by the employed thresh-
old schemes, not only will emissions be underestimated but
η from C19 will also be close to zero and further worsen the
low bias of the simulated dust emissions. Therefore, a prereq-
uisite of employing the C19 scheme is that the wind friction
velocity u∗s and the thresholds u∗it and u∗ft should be ade-
quately simulated and have reasonable ranges of variability
throughout the year. We also note that C19 was designed to
be used in climate models that run in the Reynolds-averaged
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Figure 10. Dust emissions simulated using different schemes compared against DustCOMM (K21) and Bullard et al. (2016) constraints on
regional dust emissions. (a) Globally gridded DustCOMM emissions (kg m−2 yr−1) based on emissions from six different models that were
adjusted using inverse modeling to match constraints on particle size distribution, extinction efficiency, and regional dust aerosol optical
depth. The rectangular regions specify the nine source regions defined by Kok et al. (2021a) as also shown in Fig. 8c–d. (b) DustCOMM
regional emissions (based on fractional emissions reported in the fifth column of Table 1 in K21b scaled to a global total of 5000 Tg yr−1)
versus the regional emissions computed by the K14 scheme and our new scheme. (c, d) Comparison of the DustCOMM regional emissions
with the regional emissions computed by the (c) Z03–Z and Z03–G schemes and with (d) MERRA-2 dust emissions. The regional emissions
of all simulations are obtained from DustCOMM following the nine source regions in panel (a), with one extra data point representing the
high-latitude emissions estimated by Bullard et al. (2016). The error bars show 1 standard error, except that the B16 high-latitude emission
does not include an error estimate. The black line shows the 1 : 1 line.

Navier–Stokes (RANS) mode. If climate models are resolv-
ing turbulence (i.e., in the LES mode), there is minimal need
to use C19 to account for intermittent emissions.

For the dust emission scaling method (Sect. 4.3), we note
that the scaling factors neglect seasonal variability, which
Fig. S10 indicates is moderate. However, employing an an-
nual scaling map like Fig. 9 will already address a large part
of the scale-dependence problem. Although we suggested the
use of an annual scaling map, ESMs and CTMs that focus
on present-day simulations can also perform multiyear sim-
ulations in both high and native (coarser) grid resolutions
to obtain their own monthly climatological maps of scaling
factors. Afterwards, ESMs only need to read in the climato-
logical monthly scaling maps to rescale the native grid dust
emissions every month before passing the dust emissions to
the atmospheric model component. We further discussed our
scaling approach versus some other existent approaches (e.g.,
using a Weibull distribution for the winds) in Sect. S6.4.

Finally, all emission maps produced in this paper depend
on the accuracy of the representations of the input meteoro-

logical fields and land-surface variables in various datasets.
Our results are particularly sensitive to the soil moisture
simulated by MERRA-2, mainly because dust schemes are
very sensitive to soil moisture. As a result, although the fi-
nal simulation of our scheme outperforms other dust emis-
sion schemes employed in this paper (Fig. 10), some fea-
tures in the dust emissions map are unrealistic. First, for in-
stance, the Australian dust emissions are of a comparable
order of magnitude to the East Asian emissions (and even
larger than East Asian dust emissions in coarser resolutions,
per Fig. 8a), which might be because the soil moisture over
Australia is slightly underestimated by MERRA-2. Second,
northeastern China has larger emissions than northwestern
Chinese deserts (Fig. 7b), and similar spatial variability is
also seen in other past studies (e.g, Kok et al., 2014b), which
might be due to the stronger friction velocity over northeast-
ern China (annual mean> 0.3 m s−1 in MERRA-2) than over
northwestern China (annual mean ∼ 0.2 m s−1 in MERRA-
2) in the GCMs or input MERRA-2 fields (see Fig. S15
for the spatial distribution of MERRA-2 u∗ over northeast-
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ern vs. northwestern China). Third, our scheme generates
very high summertime emissions over Sudan and the Horn
of Africa because of the very high MERRA-2 u∗ (∼ 1 m s−1

in the summer), low soil moisture, and aeolian roughness
(see Fig. 7i). However, this emission peak is not consistent
with dust aerosol optical depth (DAOD) observations. There
might be several reasons for the HOA emissions peak, in-
cluding that (i) the input fields are biased over the HOA,
(ii) some unknown mechanisms are responsible for suppress-
ing the HOA dust, and (iii) normalized emissions outside of
the HOA are overly suppressed relative to the HOA by the
drag partitioning and the intermittency effect.

6 Conclusions and significance of our new
parameterization

This study presented a new desert dust emission scheme for
GCMs and CTMs. The major advances of our scheme com-
pared with existing schemes are the following: (1) we ob-
tained improved parameterizations for several key aspects of
dust emission, (2) these improved parameterizations were in-
formed by multiple observations that constrained critical pa-
rameters, and (3) we proposed a method to reduce the grid-
resolution dependence of the emission scheme that is a com-
mon problem to many other existing schemes.

To achieve these advances, we have implemented the fol-
lowing modifications to the existing dust emission scheme of
Kok et al. (2014a, b): our first improvement involved the use
of soil particle size distributions from multiple past studies
to estimate and constrain the soil median diameter Dp as a
critical parameter that determines the dust emission thresh-
olds u∗it (impact) and u∗ft (fluid). We found that over the
arid desert regions (LAI< 1), Dp can be approximated as
a global constant of 127± 47 µm, and over nonarid regions
Dp increases linearly with silt and clay content. This finding
indicates that past dust modeling approaches which parame-
terized Dp as a function of soil types can be simplified.

Second, we presented a parameterization of the effects of
surface rocks and vegetation on the wind drag partition ef-
fects, which is not included by many of the current GCMs
and CTMs. In particular, a major advance of our drag parti-
tion scheme is that we propose a novel method to combine
the effects of rocks and vegetation by getting a weighted
mean of both effects according to the globally gridded rock
and vegetation land-cover area fractions from land-cover
datasets (e.g., Klein Goldewijk et al., 2017; ESA, 2017;
Kobayashi et al., 2017). Many dust modeling studies only
attempted to include the drag partition effect of either one
of these roughness elements, and this study represents one
of the earliest attempts along with a few other papers (e.g.,
Darmenova et al., 2009; Foroutan et al., 2017; Klose et al.,
2021) to combine and unify the effects on the wind partition
of both kinds of roughness elements. Future work should also
account for the time-varying vegetation drag partition effect

to further enhance the realistic coupling of dust emissions to
vegetation dynamics and variability.

Third, we incorporated the boundary-layer turbulence ef-
fects on dust emission intermittency by coupling the inter-
mittency scheme formulated by Comola et al. (2019b) to
our Kok et al. (2014b) dust emission schemes. The C19
scheme is formulated based on field measurements of simul-
taneous high-frequency measurements of sand transport and
the turbulent wind. This is one of the first studies to have
included the turbulence effects on dust emissions, amongst
others which focused more on the turbulence effects on con-
vective dust emissions (e.g., Klose et al., 2014; Li et al.,
2014). Including the turbulence-driven intermittency effect
is important for marginal dust emission sources where the
wind speed is normally below the fluid threshold, e.g., dust
emissions from high-latitude regions. The C19 scheme also
allows dust emission physics to couple better with boundary-
layer dynamics and variability, such that simulated dust will
have a day-to-day and seasonal variability that is physically
linked to the characteristics of the turbulent boundary layer.

Fourth, we proposed a simple scaling method to re-
duce the inconsistencies in the spatial distributions of the
high-resolution and low-resolution dust emission simulations
within an LSM. We propose to rescale the low-resolution
dust emissions to match the spatial variability of the high-
resolution emissions by comparing the spatial distributions
of the high- and low-resolution dust emission maps, thereby
obtaining a climatological map of scaling factors. The cor-
rection maps can thus be applied to other simulations of sim-
ilar settings, e.g., experiments with the same meteorologi-
cal and land-surface inputs but different sea/land ice, ocean,
stratospheric, or plant physiological forcings. This approach
can alleviate the long-standing problem of grid-resolution
dependence and spatial distribution inconsistencies of dust
emissions across grid sizes among a GCM (e.g., Ridley et
al., 2013). Although grid-scale dependence exists in most
physical variables in the GCMs, dust emission is exception-
ally vulnerable to the grid-resolution-dependence problem
because of the very strong nonlinearity (a power of 3–5 or
more) of dust emissions to the meteorological fields.

These new approaches act synergistically to improve dust
emission modeling. Our new scheme’s dust emission sim-
ulation, driven by the MERRA-2 meteorological and land-
surface fields, shows higher consistency with the Kok et
al. (2021a, b) DustCOMM multimodel mean emissions
(Fig. 10), which were observationally constrained by an in-
verse modeling approach and thus contain a realistic re-
gional distribution of dust emissions. Our scheme shows the
best agreement against the multimodel mean dust emissions
in terms of regional characteristics with R2

= 89 %, mean-
while other schemes, such as Kok et al. (2014a, b) and Zen-
der et al. (2003a, b) respectively yielded R2

= 65 % and
R2
= 64 %. This indicates that adding the missing aeolian

physics to the existing emission schemes is critical to cor-
rectly capturing the dust emission spatial variability and that
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our scheme displayed almost identical regional characteris-
tics as the inverted multimodel emissions. Our emission map
also shows more distinctively the major dust sources includ-
ing the Bodélé Depression, El Djouf, the Arabian Desert, the
Australian Desert, and Patagonia. In our companion paper
(Leung et al., 2023b), we will examine the dust cycle simula-
tions of this newly proposed dust emission scheme in CESM
and evaluate its performance with other dust cycle variables
such as dust PM concentration, dust AOD, lifetime, and de-
position flux.

Finally, we note that although our scheme employs a spe-
cific emission threshold scheme (i.e., Shao and Lu, 2000) and
a specific dust emission equation from Kok et al. (2014b),
the modifications we proposed could be applied to different
dust emission schemes. For instance, one could use Iversen
and White (1982) as a threshold scheme with our newly pro-
posed soil median diameter Dp. One could also use Ginoux
et al. (2001), Tegen et al. (2002), or any other dust emission
equation to combine with the Comola et al. (2019b) intermit-
tency scheme and our hybrid drag partition scheme. There-
fore, our formulation in this paper is highly versatile and
adaptable to most of the existing GCMs and CTMs. As such,
the new dust emission parameterization presented here can
improve the global dust cycle in most GCMs, ESMs, RCMs,
and CTMs.

Code availability. The source code of the dust emission model (in
R) is available at https://doi.org/10.5281/zenodo.7811426 (Leung,
2023a).

Data availability. MERRA-2 meteorological fields, land-surface
fields, and dust emissions are available at https://disc.gsfc.nasa.
gov/datasets?project=MERRA-2 (Earthdata, 2023; last access: 12
August 2022). SoilGrids soil texture and properties can be ob-
tained from https://soilgrids.org/ (Soilgrids, 2023; last access: 20
December 2021). ESA CCI land cover can be obtained from https:
//www.esa-landcover-cci.org/?q=node/164 (ESA, 2023; last access:
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