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ABSTRACT OF THE DISSERTATION

Variational and Scale Mixture Representations of Non-Gaussian Densities for

Estimation in the Bayesian Linear Model:

Sparse Coding, Independent Component Analysis, and

Minimum Entropy Segmentation

by

Jason Allan Palmer

Doctor of Philosophy in

Electrical Engineering (Intelligent Systems, Robotics, and Control)

University of California, San Diego, 2006

Professor Kenneth Kreutz-Delgado, Chair

This thesis considers representations of non-Gaussian probability densi-

ties for use in various estimation problems associated with the Bayesian Linear

Model. We define a class of densities that we call Strongly Super-Gaussian, and

show the relationship of these densities to Gaussian Scale Mixtures, and densities

with positive kurtosis. Such densities have been used to model “sparse” random

variables, with densities that are sharply peaked with heavy tails. We show that

strongly super-Gaussian densities are natural generalizations of Gaussian densi-

ties, and permit the derivation of monotonic iterative algorithms for parameter

estimation in sparse coding in overcomplete signal dictionaries, blind source sep-

aration, independent component analysis, and blind multichannel deconvolution.

Mixtures of strongly super-Gaussian densities can be used to model arbitrary den-

sities with greater economy that a Gaussian mixture model. The framework is

extended to multivariate dependency models for independent subspace analysis.

We apply the methods to the estimation of neural electro-magnetic sources from

electro-encephalogram recordings, and to sparse coding of images.

xv



1

Introduction

This thesis is concerned with representations of non-Gaussian probability

densities that lead to monotonic, closed-form update algorithms for parameter

estimation, with particular application to estimation in the context of the discrete-

time Bayesian Linear Model,

x(t) = As(t) + ν(t) (1.1)

Here x(t) ∈ Rm, t = 1, . . . , T , is an observed vector process, A ∈ Rm×n is a matrix

that may be thought of as a basis for the signal x(t), driven by the non-Gaussian,

and temporally independent and identically distributed source process s(t) ∈ Rn

and noise process, ν(t), which will generally be taken to be Gaussian.

A particular case where the non-Gaussian character of the source s(t) is

important is when s(t) is sparse, meaning that it has only a relatively small number

of non-zero elements. The non-zero elements in this case correspond to vectors in

the dictionary A, which may be thought of as features present in the observation

x(t). Sparse random variables are those with densities with high probability of

being close to zero, but with relatively large tails, allowing the random variable

to take on relatively large magnitudes as well. The density models we consider

are, in their basic form, particularly suited to the representation of sparse random

variables.

Sparsity is associated with the term super-Gaussian, which essentially

1



2

refers to their having a sparse character relative to the Gaussian density, which,

for fixed variance, is less sharply peaked at zero with more negligible probability

of taking on magnitudes far from zero. Sub-Gaussian densities are those which are

flatter, or more uniform at zero, with less probability of being outside this region,

relative to Gaussian. The most commonly used measure of this relationship to the

Gaussian density is the kurtosis, which is a function of the fourth moment, and is

zero for the Gaussian density, positive of super-Gaussian densities, and negative for

sub-Gaussian densities. The density representation we develop can also be thought

of as characterizing super-Gaussianity in a form that is useful for the derivation of

globally convergent algorithms for parameter estimation with these densities.

We consider in particular two forms of super-Gaussian density represen-

tations: Gaussian scale mixtures, and a more general representation based on

variational representation of concave functions. Scale mixtures have the general

form,

p(s) =

∫ ∞

0

K(s/ξ) dµ(ξ)/ξ

where µ is a non-decreasing and bounded function on (0,∞) [59] and K is a kernel

density. Gaussian scale mixtures are represented in the form,

p(s) =

∫ ∞

0

N (s; 0, ξ−1) dµ(ξ) (1.2)

where N (s; µ, σ2) denotes the Gaussian density with mean µ and variance σ2. In

the form (1.2), p(s) is represented as an integral over the inverse variance ξ−1. In

fact, a random variable with a Gaussian scale mixture density can be represented

as the product of a unit variance Gaussian random variable Z, and a non-negative

random variable Ξ,

S = ZΞ−1/2

The representation (1.2) is a type of scale convolution for the density of products as

ordinary convolution is used in the computation of the density of sums of random

variables. We shall concentrate in this thesis on the case were µ(ξ) is differentiable
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so that dµ(ξ) = p(ξ)dξ.1

A more general type of representation for super-Gaussian densities is

given by the pointwise supremum over Gaussian densities of varying scale,

p(s) = sup
ξ>0

N (s; 0, ξ−1) ϕ(ξ) (1.3)

Such a representation is the basis for many algorithms that have been proposed

recently. The analysis and application of such densities is the main topic of this

thesis.

Another case involving non-Gaussian sources is the problem of blind sep-

aration of source signals s(t) = [s1(t) · · · sn(t)]T , which are observed in linear super-

position at a set of m sensors as the processes xi(t) =
∑n

j=1 aijsj(t), i = 1, . . . , m,

or x(t) = As(t). Here the source signals may have arbitrary probability densi-

ties, and we are given only the assumption that the sources si(t), i = 1, . . . , n are

mutually independent with arbitrary and not necessarily identically distributed

densities pi(si). The representations we develop, while of sparse character in their

basic form, may be combined in mixture models to represent essentially arbitrary

densities, while still being amenable to the derivation of closed-form, monotonic

parameter estimation algorithms. This generalizes the Gaussian mixture model,

yielding a source model with greater flexibility than the Gaussian mixture model

with similar model and computational complexity.

In addition to the density representation theory, we develop a general

framework for estimation and modeling with linear mixture models which we call

the linear process mixture model. This model encompasses and generalizes cur-

rent state-of-the-art algorithms for multichannel, multidimensional blind source

separation and deconvolution, with non-stationary, non-minimum phase sources,

including models with dependent subspaces. The mixture model is derived by

approximating the probability of a signal segment using a known Toeplitz deter-

minant formula, and modeling the signal as stationary over individual segments,

1We shall often denote probability densities by p( · ), distinguishing them only by their argument when
the context is clear. Thus densities p(s) and p(ξ) here are entirely different probability densities.
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with different linear models active in different segments. The methods used here

are not new, but the application of the approximate segment probability to the

derivation of mixture models for representing non-stationary signals seems not to

have been proposed before.

In the following sections we further describe the problems considered

in this thesis with reference to previous developments and related models in the

literature.

1.1 Super-Gaussianity and Sparse coding

In this case we shall be interested in the problem of estimation of the

source vector s(t) for a given observation x(t) and a given signal dictionary A, and

in the problem of the estimation or learning of a signal dictionary A that yields

sparse representations of an observation process x(t), given the set of observations

x(t), t = 1, . . . , T .

1.1.1 Finding Sparse Representations in a Given Dictionary

The problem of finding sparse solutions to an underdetermined linear sys-

tem has been the investigated recently, largely as a result of research into signal

bases other than the Fourier basis, including wavelets, and more general dictio-

naries of signal “atoms” [25, 21, 75]. In the sparse representation problem, for

a given observation x, we may think of the number of non-zero elements in the

representation s as a cost function that is to be minimized subject to As ≈ x. How-

ever, representation of this problem by continuous functions such as
∑

i log |si|, or
∑

i |si|p, p < 1, which approximate the number of non-zero elements measure, leads

to non-convex optimization problems, which may not be differentiable or convex

at the optimum.

Various algorithms have been developed to solve these problems, includ-

ing sequential methods [75, 25, 27, 28], which sequentially select vectors from the
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dictionary, and global optimization methods such as Basis Pursuit [21], which opti-

mizes the convex function
∑

i |si|, which is concave in |si|, subject to the constraint

As = x.

In a series of papers [89, 90, 88], Gorodnitsky, Rao, and Kreutz-Delgado

developed an iteratively reweighted least squares (IRLS) algorithm called FOCUSS

for minimizing the concave functions,

∑
i

|si|p, p < 1

and the limiting function

lim
p→0

(1/p)
∑

i

(|si|p − 1) =
∑

i

log |si|

subject to the constraint As = x, or with an additional error term,

∑
i

|si|p + 1
2
‖x−As‖2

Σ−1

In [61], Kreutz-Delgado extended this proof to general concave functions. A con-

tribution of the research presented in this thesis is the further generalization of this

set of algorithms to its most natural context of functions that are concave in s2
i ,

and the corresponding probability densities which can be represented in the form

(1.3). We present in §4.2 proof of global convergence of this algorithm, which we

shall refer to as Generalized FOCUSS, using Zangwill’s global convergence theorem

[104], as in [90, 88]. We prove a general theorem on iteratively reweighted least

squares algorithms, including a novel convergence rate analysis.

An alternative sparse coding method called Sparse Bayesian Learning

(SBL) was developed by Tipping [98] using ideas of Type-II Maximum Likelihood

and automatic relevance determination from Mackay [72]. A particular form of

this algorithm involving an improper scale density was shown to be superior to

the FOCUSS algorithm with respect to its ability to avoid local optima by Wipf

[102]. The SBL type methods generally use a form of Gaussian scale mixture.

Gaussian scale mixtures (GSMs) were discussed in [59] and [3], and in the exam-

ples of Dempster, Laird, and Rubin’s original EM paper [31]. GSMs were treated
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more extensively and applied to the analysis of IRLS algorithms in [32]. Another

contribution of the research presented here is the analysis of the relationship be-

tween the Generalized FOCUSS algorithm and the SBL type algorithms, and the

super-Gaussian density representations on which they rely.

1.1.2 Dictionary Learning

The dictionary learning problem is inspired partly by the development of

wavelets and more general signal dictionaries, as well as neuro-biological considera-

tions of coding strategies used in the brains to code sensory information by Barlow

[6] and Field [36]. Particular emphasis was placed on the case of overcomplete

dictionaries, i.e. matrices A with more columns than rows, i.e. more basis vectors

than the dimension of the observation space, which is the maximum number of

linearly independent vectors in that space. Having large number of possible rep-

resentative vectors allows a more efficient, or sparse, representation of particular

observations, and seems to accord with the brains strategy of selective response

of neurons to a particular receptive field, found in the visual cortex by Hubel and

Wiesel [48, 49].

Algorithms for dictionary learning have proposed by Olshausen and Field

[79], and Lewicki and Olshausen [67] and Lewicki and Sejnowski [68] for image cod-

ing and denoising. The FOCUSS framework was applied by Kreutz-Delgado and

Rao to the dictionary learning problem in [63], and Kreutz-Delgado and Murray

[62]. Overcomplete dictionary learning algorithms were also developed using an by

Girolami [43]. Another contribution of this thesis is the generalization and anal-

ysis of the relationships among the dictionary learning methods using the density

representation framework developed.
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1.2 Blind Signal Processing and Independent Component

Analysis

Typically, in signal processing with a linear model, either the input signal

is assumed known and the linear system is to be estimated, as in equalization, or

the system is assumed known, and the input signal is to be estimated, as in some

communications models. In the blind context, both the input signal and the linear

system are assumed to be unknown, with either or both to be estimated. Of

course some assumptions must be made to guarantee identifiability of the model.

The assumption made here is that each input signal to the linear system is a linear

random process field, or field, which is defined as a linearly filtered independent

identically distributed (i.i.d.) random field [93, 47, 17]

Much of traditional signal processing has been based on the assumption

of Gaussianity of input signals. This makes the analysis tractable, and largely

serves the purposes of correlation and spectral analysis. However it has been

noted that in the case of Gaussian input, the actual linear mixing filters cannot be

determined, and thus cannot be inverted to determine the Gaussian input signals

themselves. If uncorrelated or “white” noise is used as a model for the input signal,

then the spectrum of the mixing filter can be determined, and white noise can be

generated by linearly filtering the mixed signal (the Wold representation [17],) but

the generated white noise signal is not unique, and thus is not guaranteed to be

identical to the input signal.

In the case of non-Gaussian inputs, however, the situation is different. It

has been shown that non-Gaussian signals can be recovered from linearly mixed

versions of them. The new operating assumption concerns the independence of the

generating signal. Each input signal is modeled as a non-Gaussian, i.i.d. sequence.

Such a signal can be recovered from a linearly filtered version of it, and n such

signals mixed by a multivariate linear filter can be recovered if observed by n

different sensors.
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In its most general statement, the model we consider has the form,

x(t1, . . . , td) =
∑
τ1

· · ·
∑
τd

A(τ1, . . . , τd)s(t1 − τ1, . . . , td − τd) (1.4)

where x is an m dimensional array of sensors, or channels, observed over a d di-

mensional field with coordinates t1, . . . , td, s is the set of n sources defined over the

same field and mixed by linear convolution with the field of matrices A(t1, . . . , tn).

The field in general is taken to be infinite, but it will be approximated by a finite

field in applications.

1.2.1 Non-identifiability of Gaussian Linear Process and

Identifiability of Non-Gaussian Processes

Consider the model (1.1) in the case of i.i.d. vectors s(t) ∼ N (s;0;Σ),

and a complete non-singular basis A = W−1. The the log probability density, or

log likelihood, of the set of observations x(t), t = 1, . . . , T is,

log p
({x(t)}T

t=1

)
=

T∑
t=1

log | detW| − 1
2
xTATΣ−1Ax

The gradient of this function with respect to W is,

TW−T −Σ−1WxxT

Thus, critical points of the likelihood must satisfy,

AΣAT =
1

T

T∑
t=1

xxT , S

This equation is satisfied by,

A = S1/2Σ−1/2

where S1/2 and Σ−1/2 are the unique symmetric square root matrices of the postive

definite symmetric matrices S and Σ respectively. However it is also satisfied by,

A = QS1/2Σ−1/2 (1.5)
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for all orthonormal matrices Q. In fact, in the case of i.i.d. s ∼ N (0,Σ), we have

x ∼ N (0,AΣAT ). The Gaussian density is completely determined by its mean

and covariance. Thus in the Gaussian case, without further constraints, we cannot

hope to identify A or s(t), even if we can determine exactly the density of the

observations. We can only identify the covariance of the observations, S.

Fortunately, however, this situation is unique to the Gaussian density,

and a basic theorem of Cramér shows that the only source density that produces

Gaussian observations is another Gaussian. The following theorem [22] shows that

non-Gaussian sources can be identified. Consider the scalar fields a(t1, . . . , td) = at

and ξ(t1, . . . , td) = ξt, and denote,

(a ∗ ξ)t =
∑
τ1

· · ·
∑
τd

a(τ1, . . . , τd)ξ(t1 − τ1, . . . , td − τd) (1.6)

The following theorem [93, Thm. 1.3.1], [22], gives a basic result on the identifia-

bility of non-Gaussian linear processes.

Theorem 1. Let,

xt = (a ∗ ξ)t = (a′ ∗ ξ′)t, t ∈ Zd, 0 < Eξ2
0 , Eξ′20 < ∞

with {ξt} and {ξ′t} each independent and identically distributed and {at}, {a′t}
each square summable with almost everywhere non-zero Fourier transforms. If xt

is non-Gaussian, it follows that

ξ′t = α ξt−t0 , a′t = βat+t0

for non-zero constants α and β, and t0 ∈ Zd.

This theorem shows that the generating field of a non-Gaussian linear

random field is unique up to scaling and translation.

1.2.2 Blind Source Separation and Blind Deconvolution

Several approaches have been developed to identify the mixing matrices

A, or their inverses W = A−1. Early approaches of Comon and others used a



10

truncated Edgeworth or related expansion of the unknown source densities pi(si) to

approximate the density using only a finite number of moments of the observations

[26]. Another approach based on diagonalization of the fourth order cumulant

tensor, was proposed and developed by Cardoso [18].

A third approach, based on Maximum Likelihood estimation, we devel-

oped by Pham et al. [87, 86]. A similar approach based on entropy maximization,

called Infomax, was proposed by Bell and Sejnowski [9]. A more efficient and bet-

ter conditioned algorithm based on the same likelihood cost function was given by

Amari [1] based on what Amari calls the natural gradient, and a related algorithm

was proposed earlier by Cardoso and Laheld for the case of estimating an orthogo-

nal basis for whitened observations, using what they call the relative gradient [19].

They show that this algorithm is equivariant, i.e. its convergence rate is indepen-

dent of the solution to which it is converging. This approach, employing the global

system, WA, whose optimum is always identity, may be traced from the work of

Benveniste, Ruget, and Goursat [10] for single channel blind deconvolution. The

Maximum Likelihood approach was also considered by Hyvärinen [52].

The ML approach was extended to multichannel deconvolution by Amari,

Cichocki, and Douglas [34], and to mixture models by Lee [66]. More recently,

Variational Bayes [4], or ensemble learning [64] methods have been proposed based

on recent developments in Bayesian estimation algorithms [4, 71]. Related work

on variational mixture models was proposed by [42], Choudrey and Roberts [23],

and Chan and Lee [20].

ICA methods were recently extended to handle mutually independent

subspaces, with variance dependency inducing non-Gaussian radially symmetric

densities. Independent Subspace Analysis (ISA) and Topographic ICA algorithms

were proposed by Hyvärinen et al. [51], and Kim et al. [60]. Other algorithms

exploiting variance dependency were proposed by Park and Lee [84].

The model we propose is a general multichannel linear process mixture

model, encompassing the recent variational algorithms, as well as the dependent
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subspace algorithms. The existing variational algorithms either use mixtures of

Gaussian sources [4, 23], or they depend on particular cases of the super-Gaussian

representations (1.2) or (1.3). The dependent subspace models [60, 35] likewise

depend on a particular multivariate Gaussian scale mixture. A contribution of this

thesis in this area is the derivation in §3.7 of general forms of multivariate Gaussian

scale mixtures and their moments based on properties of Gaussian scale mixtures

used by Dempster, Laird, and Rubin in [32], but which have not been exploited in

the recent developments in independent subspace analysis, Topographic ICA [51],

or Indpendent Vector Analysis [60].

1.3 Linear Process Mixture Model Examples

The linear process mixture model is very general and applicable in many

signal processing areas. The difference between the model presented here and

traditional linear process models in signal processing is that the source densities

are presumed unknown, along with the filters, and the segmentation. All are

adapted to maximize the independence of the estimated sources. In the following,

we give some examples of real systems and possible linear process models. In each

case, each observation is modeled locally as a linearly filtered i.i.d. driving field.

1.3.1 Electro-encephalogram

EEG is as an example of the “instantaneous” model,

x = As

wherein there is no convolution of the sources. Current sources in the brain and

elsewhere in the body, e.g. heart and muscles, emit electromagnetic waves that

travel at the speed of light to the sensors (see Figure 1.1). The sensor sampling

rate cannot detect any delays so the mixing is instantaneous. The EEG source

signals themselves however will not generally be i.i.d., though using the i.i.d. model

is often sufficient for separation of temporally correlated sources.
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(a) (b)

Figure 1.1: (a) EEG sources cast characteristic voltage distributions on the sensors.

(b) A subject wearing an EEG sensor cap with 256 electrodes.

Voice and microphone

A speech signal s(t) recorded by a single microphone, as an i.i.d. process

η(t) passed through a linear filter with impulse response θ(τ), τ = 0, . . . ,∞,

s(t) =
∞∑

τ=0

θ(τ)η(t− τ) (1.7)

This is a causal moving average (MA) representation. Long enough fil-

ters can represent any causal stable linear process, including the commonly used

autoregressive (AR) model,

s(t) =

p∑
τ=1

φ(τ)s(t− τ) + η(t) (1.8)

Likewise, the room and microphone can be modeled by linear filters, as in Figure

1.2.

Blind deconvolution of audio sources

Suppose two speakers are talking in a room, and sensors, or microphones,

record the sound as in Figure 1.3. If they speak at the same time, the speakers can
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Figure 1.2: Speech as temporally independent driving signal passed through linear

filter representing the parts of the larynx and throat, the room, and the microphone

interface.

be distinguished by the independence of their speech signals. The observed vector,

x(t), will be the amplitude distribution on the sensors. The problem of separat-

ing the speech is decoupled from the problem of locating the speaker given the

amplitude distribution associated with the location. Orientation of the speaker’s

head will also change the distribution on the sensors. The blind signal processing

problem can generally be decomposed into a separation problem, and an inversion,

or localization problem. Recorded speech may also be convolved due to delays in

arrival of echoes bouncing off different walls as in Figure 1.4

1.3.2 Speech signal as mixture of linear processes

A speech signal is an example of a non-stationary process that exhibits

local stationarity. The unvoiced ‘s’ sound at the start and end of the syllable

“six” exhibit the same statistics. The voiced regions “i-i-i”, “e-e-e”, and “n-n-

n” have a characteristic stationary structure. Such models are used in speech
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Figure 1.3: Two speakers cast different amplitude distributions on the sensors

depending on where they are in relation to the sensors, and which way they are

facing.

processing, but the phoneme building blocks are constructed by experts. Blind

signal processing using a mixture of linear processes allows the automatic learning

of locally stationary signal features without segmenting and sorting segments by

hand.

1.3.3 Binocular Color Images

Binocular color images are an example of multichannel data, consisting

of a two dimensional field of six dimensional vectors. The field can be blocked and

modeled with learned image bases, or it can be modeled as a mixture of spatial

filters, which represent the correlation structure of homogeneous regions in the

image.
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Figure 1.4: In a room, the speech signal travels slow enough that there are delays

in the time of arrival of echoes bouncing off different walls. In this case, the source

signal is convolved as it arrives at the sensors at different times with different

amplitudes.

Figure 1.5: Speech signal at 16,000 Hz of a woman saying the word “sixteen”. The

signal is non-stationary, but localized regions are homogeneous.
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Figure 1.6: Binocular color images can be represented as a 2D field of 6D vectors,

three color components, e.g. red, green, and blue, for right and left channels.

1.4 Inverse modeling

Our goal is to derive a general system and an unsupervised adaptive

strategy that can be used to learn salient features in piecewise stationary environ-

ments. This system is intended to be useful for signal processing applications such

as EEG, audio separation, image and video processing. It is also intended to be

a model of neural processing systems for the purposes of investigations in neuro-

science and adaptive learning systems. As such, the algorithm derived models the

inverse system and avoids more complicated operations like matrix inverses. The

observed signal passes through a set of filters that are adapted to make the output

as independent as possible.

It is also possible to consider learning to reconstruct signals for the pur-

pose of planning and simulation in artificial intelligence systems.
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Figure 1.7: Sense organs are like sensors, channelling information to the brain,

where it is integrated, and mapped to representations and actions.

1.5 Rate Distortion Theory

Processing signals into “independent components” can also be motivated

on the basis of rate distortion theory using a theorem of R. Gray [46]. The rate

of a code is the average number of bits used per symbol encoded. For discrete

random variables, the minimum rate code is the minimum entropy code, and it

can be determined by the Huffman encoding procedure. For continuous random

variables, specifying values directly would take an infinite number of bits. Rate

distortion theory [96] provides a framework for the analysis of encoding systems

for continuous amplitude signals.

However, a difficulty arises now as to how to characterize the “distortion,

or the “differences that make a difference,” accurately. For example, sparse random

variables, or “on/off”, “active/inactive variables have high probability mass around

zero, the “off” state. If we were assigning code vectors based only on probability

mass, then we would spend the majority of our vectors coding the off state. Rate
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distortion theory addresses this by taking into account the metric structure of the

observation space as well as the probability distribution.

When coding a sequence of data samples, the average rate of the code will

decrease if we use vector quantization to encode blocks of samples by individual

symbols, rather than encoding each sample separately. A code is actually a set of

codebooks, or mappings of observations to code vectors, for each block length N ,

with N being arbitrarily large. A code is said to achieve the rate distortion pair

(R,D) if, for all ε > 0, there is a block length N such that the expected distortion

between an observation sample block and its code vector in the N -block codebook,

is less than D + ε. The rate distortion function R(D) is the infimum of the rates

R such that the pair (R,D) is achievable.

The following theorem [12, Thm. 6.3.6] provides a basic result concerning

the rate distortion function of linear processes with difference distortion measures,

i.e. distortion measures of the form d(x− y).

Theorem 2. Let {Xt, t = 1, . . .}, be a real autoregressive source with autore-

gression coefficients (a1, . . . , am), zero initial state, and i.i.d. generating sequence

{Zt, t = 1, 2, . . .}. Let d be a difference distortion measure, and let RX(D) and

RZ(D) denote the rate distortion functions of {Xt} and {Zt}, respectively, relative

to the single-letter fidelity criterion N−1
∑N

t=1 d(Xt − X̂t). Then,

RX(D) ≥ RZ(D)

for all D.

This theorem shows that when the source is an autoregressively filtered

i.i.d. sequence, then the best linear transform of the observed sequence {Xt} from

the rate distortion theory standpoint, is the inverse of the autoregressive filter

which reproduces the generating sequence {Zt} when the Zt are non-Gaussian.
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1.6 Summary of main contributions of this thesis

The main contribution of this thesis is the analysis of the structure of

certain classes of non-Gaussian signals, and the use of this analysis to derive new

algorithms for optimization of linear process mixture models non-Gaussian source

signals. Our analysis of non-Gaussian signals has led to the development of a very

flexible non-Gaussian mixture model that can be optimized in largely the same

way as the Gaussian model, but with improved flexibility due to the inclusion of

non-Gaussian components.

Chapter 2 develops the parameter estimation methods used in this thesis,

including Maximum Likelihood (ML), Maximum á posteriori (MAP), and Ensem-

ble Learning, or Variational Bayes (VB). These methods are illustrated in the

derivation of the basic mixture model equations for the various methods, which

are used in the main linear process mixture model algorithm.

Chapter 3 analyzes the Gaussian Scale Mixture and variational concave

representation of super-Gaussian Densities. We derive the criteria for these repre-

sentations and illuminate their relationship, which seems not to have been noted

previously. We also prove in §3.6 that the variational concave super-Gaussian rep-

resentation implies positive kurtosis. We use results of Karlin [58] in the proof. In

§3.7 we derive general forms of multivariate Gaussian scale mixture densities and

their moments in terms of derivatives of given univariate Gaussian scale mixture.

In Chapter 4 we investigate sparse coding algorithms. §4.1 describes the

representations and develops their relationships. In §4.2, we prove a theorem on

the convergence of Generalized FOCUSS algorithm, and its convergence rates. We

discuss the properties of dual programs involving function convex and concave

in x2, and give a Newton method to solve the dual problem when all sources

are strongly super-Gaussian. In §4.4 we show how these algorithms for given

dictionaries may be applied to derive monotonic algorithms for kernel regression.

Chapter 5 surveys dictionary learning algorithms, and proposes a Gen-
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eralized FOCUSS type algorithm based on a partial Newton method to find a

Lagrangian stationary point. We compare performance of the various algorithms

in a Monte Carlo experiment.

In Chapter 6, we apply the representations to propose a unifying frame-

work for Blind Source Separation (BSS) and Independent Component Analysis

(ICA). §6.1 develops the basic ML approach to ICA, and §6.2 derives the Hessian,

or Fisher Information matrix, as in [87, 2], which is used to derive the convexity

conditions, the Cramér-Rao lower bound for ML estimation, as well as a Newton

type method [87, 2] under the conditions of convexity. §6.3 applies the density rep-

resentation theory to derive an EM based algorithm for ICA which is stable for a

wider class of source densities than those that are stable for the direct optimization

of the cost function.

Chapter 7 develops the linear process mixture model. §7.1 describes the

convolutive ICA model and, §7.2 derives the approximate probability density of

signal segments. In §7.3 we derive the gradient and natural gradient of the segment

likelihood. §7.4 extends the model to mixtures of linear processes.

In Chapter 8, we provide and in depth application of the methods to

analysis of EEG signals.
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Parameter Estimation

Our approach is to define a probabilistic model and optimize the param-

eters within an Expectation Maximization (EM) framework. The model is defined

by a probability density with parameters θ, over sets of independent and identically

distributed (i.i.d.) observations {X1, . . . ,Xt, . . . ,XT},

p(X1, . . . ,XT ; θ) =
T∏

k=1

p(Xt; θ) (2.1)

For the estimation of time series or random fields, each Xt will be a segment or a

block, over which the time series is supposed to be stationary. Non-stationarity of

the complete time series is modeled by taking p(Xt; θ) to be a mixture model,

p(Xt; θ) =
M∑

h=1

γh p(Xt; θh)

2.1 Estimation methods

We consider three types of estimation: Maximum Likelihood, Maximum

à Posteriori (MAP), and Ensemble Learning (also known as Variational Bayes.)

2.1.1 Maximum Likelihood and Kullback-Leibler Divergence

In the Maximum Likelihood (ML) approach, we simply maximize (2.1),

called the “likelihood” of the data, with respect to θ, or equivalently, since p is

21
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non-negative, and the Xt are i.i.d.,

θ̂ML = arg max
θ

log p(X1, . . . ,XT ; θ)

= arg min
θ

− 1

T

T∑
t=1

log p(Xt; θ) (2.2)

The model we use will not be identical to the true generating distribution of X,

say p∗. To see the relationship between optimizing the model density and the true

density, we can use the Law of Large Numbers, by which the expression in (2.2)

becomes,

lim
T→∞

− 1

T

T∑
t=1

log p(Xt; θ) = −E log p(X) = H(X) + D
(
p(X)|| p∗(X)

)

where H(X) = − ∫
p∗(X) log p∗(X) dX is the entropy of the true distribution p∗,

and D(p||p∗) is the Kullback-Leibler divergence (KL divergence) between p and p∗.

Since H(X) is constant, we have,

θ̂ML = arg min
θ

D
(
p(X; θ)|| p∗(X)

)

The KL divergence is non-negative and zero if and only if p = p∗ almost surely, so

it acts like a distance measure, although it is non-symmetric.

When X is a discrete random variable, the KL divergence of p from p∗, is

a measure of how many extra bits one must use when encoding X using p rather

than the optimal p∗ [29]. For continuous random variables, this intuitive picture

breaks down and the situation becomes more complicated, but it gives a rough

idea of what minimizing the KL divergence does.

2.1.2 MAP Estimation

In the MAP approach, the parameters θ are considered random variables

with prior distribution p(θ), and we attempt to maximize p(θ |X1, . . . ,XT ),

θ̂MAP = arg max
θ

log p(θ |X1, . . . ,XT ) (2.3)

= arg max
θ

log p(X1, . . . ,XT | θ) + log p(θ) (2.4)
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where we use Bayes’ rule: p(a|b) = p(b|a)p(a)/p(b). So we see that MAP estimation

is equivalent to ML estimation, with the addition of the prior term. The prior term

can help to “regularize” the estimation, preventing θ from taking arbitrary values

when the likelihood does not well determine θ, for example when there are few

observations.

2.1.3 The EM Algorithm

The EM algorithm is a method of solving a difficult ML or MAP problem

by replacing it with a sequence of easy problems, leading, it is hoped, to the

solution. The algorithm does not guarantee that the global optimum is found, nor

in general even that a local optimum is found. It does guarantee, however, that

the objective function, i.e. the likelihood of the data, is increased at each iteration.

This is accomplished by introducing auxiliary random variables.

Variational Free Energy

The EM algorithm can be derived from the a mean field perspective as

follows. We introduce the random variables z, and write the log likelihood as

follows,

log p(x; θ) =

∫
q(z|x) log

p(z,x; θ)

q(z|x)
dz + D

(
q(z|x)

∥∥ p(z|x; θ)
)

= −F (q; θ) + D(q‖pθ) (2.5)

where the integration is performed over the support1 of p(z|x), and q(z|x) is an

arbitrary density over the auxiliary random variables z having the same support

as p(z|x). The term F (q; θ) is commonly referred to as the variational free energy

[95, 78]. This representation is useful if F (q; θ) can be easily optimized with respect

to θ, whereas log p(x; θ) cannot.

Since the KL divergence is non-negative, and equal to 0 if q = pθ, and

1The support is the set of non-zero measure.
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the left hand side of (2.5) is constant with respect to the density q, it follows that,

− log p(x; θ) = min
q

F (q; θ)

where equality is obtained if and only if q(z|x) = p(z|x; θ) almost everywhere2.

The EM algorithm, at the lth iteration, given θl, proceeds as follows,

ql = p
(
z|x; θl

)
, θl+1 = arg min

θ
F

(
ql; θ

)
(2.6)

This algorithm is guaranteed to increase the likelihood since,

− log p(x; θl+1) = F (ql+1; θl+1) ≤ F (ql; θl+1) ≤ F (ql; θl) = − log p(x; θl)

Note that it is not necessary to find the actual minimum of F with respect to θ

in order to guarantee that the likelihood increases. It is enough to guarantee that

F (ql; θl+1) ≤ F (ql; θl), i.e. that F decreases as a result of updating θ. This leads

to the Generalized EM (GEM) algorithm [31].

If the optimization of F is also a difficult problem, it may still be possible

to guarantee a decrease in F (q; θ) with respect to θ. In this thesis we shall use

a convexity-based inequality to define a function F̃ (q; θ) that is easy to minimize

with respect to θ, and which satisfies, for all θ, θ′,

F (q; θ′)− F (q; θ) ≤ F̃ (q; θ′)− F̃ (q; θ)

Setting θl+1 to minimize F̃ (ql; θ) over θ then guarantees that,

F (ql; θl+1)− F (ql; θl) ≤ F̃ (ql; θl+1)− F̃ (ql; θl) ≤ 0

and thus that F (ql; θ) is decreased as required by the GEM algorithm.

The EM algorithm can be used for MAP estimation as well [31], since

arg max
θ

p(θ|x) = arg max
θ

p(x|θ)p(θ)

We can decompose p(x|θ) as before, so that we have,

log p(x|θ)p(θ) =

∫
q(z|x) log

p(z,x|θ)
q(z|x)

dz + log p(θ) + D
(
q(z|x)

∥∥ p(z|x, θ)
)

= −F (q, θ) + D(q‖pθ)

2 I.e., except on a set of measure zero.
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where the free energy now contains an additional term depending on the prior

density p(θ). The EM algorithm for MAP estimation of θ is then,

ql = p
(
z|x, θl

)
, θl+1 = arg min

θ
F

(
ql, θ

)
(2.7)

In general, the GEM algorithm is only guaranteed to converge to a sta-

tionary point of the likelihood with respect to the parameters θ. More assumptions

are needed to guarantee that the algorithm converges to a local maximum, and

further assumptions to guarantee that the sequence θl converges to a point θ∗.

Q and H functions

The EM/GEM algorithm was originally formulated in terms of the func-

tions,

Q(θ|θ′) =

∫
p(z|x; θ′) log p(z,x; θ)dz (2.8)

and,

H(θ|θ′) =

∫
p(z|x; θ′) log p(z|x; θ)dz

The function log p(z,x; θ) is called the complete log likelihood, since it is the likeli-

hood of the “complete” data (x, z) which includes the auxiliary random variables z.

The variables z are called the “hidden” data, and we iteratively integrate out the

hidden data using (2.8) with the parameters θ′, optimize (2.8) over the parameters

θ to get the new θ′, and repeat.

Denote the log likelihood by,

L(θ) = log p(X1, . . . ,XT ; θ)

The EM, or GEM, iterations are denoted θl+1 ∈ M(θl), where M(θ) is a point-to-

set mapping such that L(θl+1) ≥ L(θl). Let S be the set of stationary points, and

M the set of local maxima in the interior of the domain of θ. Then we have the

following theorem [103].
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Theorem 3. Let {θl} be a GEM sequence generated by θl+1 ∈ M(θl), and suppose

that (i) M is closed over the complement of S (respectively M,) (ii) L(θl+1) >

L(θ).

Then all limit points of {θl} are stationary points (resp. local maxima) of

L, and L(θl) converges monotonically to L∗ = L(θ∗) for some theta∗ ∈ S (resp.

M.)

A sufficient condition for M(θ) to be a closed mapping in the case of an

EM algorithm is that Q(θ′|θ) be continuous in θ′ and θ.

Theorem 4. Suppose Q(θ′|θ) is continuous in θ and θ′. Then all limit points of an

EM sequence {θl} are stationary points of L, and L(θl) converges monotonically

to L(θ∗) for some point θ∗.

2.1.4 Ensemble learning and Variational Bayes

In the ensemble learning approach (also Variational Bayes [8, 4, 13]),

rather than finding a point estimate of θ, we attempt to find the separable, or fac-

torial, posterior density that minimizes the KL divergence from the true posterior,

q̂V B(θ1, . . . , θn|x) = arg min
q1,...,qn

D
(
q1(θ1|x) · · · qn(θn|x) || p(θ1, . . . , θn|x)

)

For simplicity of exposition, suppose θ contains only two (random) parameters, φ

and ξ. Again we use the following decomposition of the log likelihood,

log p(x) =

∫
q(φ, ξ|x) log

p(φ, ξ,x)

q(φ, ξ|x)
dx + D

(
q(φ, ξ|x)

∣∣∣∣ p(φ, ξ|x)
)

= −F (q) + D(q||p)

The approximating posterior distribution is factorial,

q(φ, ξ|x) = q(φ|x) q(ξ|x)

The VB algorithm consists of alternately updating each approximating marginal

distribution, keeping the other approximating marginals fixed. For fixed q(ξ|x),



27

the free energy F is given by,

−
∫∫

q(φ|x)q(ξ|x) log
p(φ, ξ,x)

q(φ|x)q(ξ|x)
dξ dφ = D

(
q(φ|x) || e〈log p(φ,ξ,x)〉ξ

)
+ const.

where 〈·〉ξ denotes expectation with respect to q(ξ|x), and the constant is the

entropy, H
(
q(ξ|x)

)
. The minimum of the KL divergence, and thus of F , is attained

if and only if

q(φ|x) ∝ exp
〈
log p(φ, ξ,x)

〉
ξ

almost everywhere. An identical derivation yields the optimal q(ξ|x),

q(ξ|x) ∝ exp
〈
log p(φ, ξ,x)

〉
φ

when q(φ|x) is fixed. The generalization to more than two parameters is obvious.

2.2 Mixture Model Estimation

As an example of the use of the three estimation methods, ML, MAP,

and VB, consider the estimation of the mixing proportions α in a mixture model,

p(x |α1, . . . , αm) =
m∑

j=1

αj p(x; θj)

where αj ≥ 0,
∑

j αj = 1.

Suppose we are given data, x1, . . . ,xT . To use the EM algorithm, we de-

fine the discrete random vectors zt, t = 1, . . . , T , ranging over the set {e1, . . . , em},
where ej is the vector with 1 in the jth component and zeros elsewhere, such that,

Prob(zt = ej) = αj

Then we can write,

p
(
xt, zt

∣∣α) =
m∏

j=1

α
zjt

j p(xt; θj)
zjt

on the support of (xt, zt).
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For ML estimation, given the current estimate αl, we find p(zt|xt; α
l),

Prob(zt = ej|xt; α
l) =

p(xt|zt = ej; α
l) Prob(zt = ej; α

l)

p(xt; αl)

=
αl

j p(xt; θj)∑m
j′=1 αl

j′ p(xt; θj′)

We then minimize,

−
T∏

t=1

∫
p(zt|xt; α

l) log

(
T∏

τ=1

p(xτ , zτ ; α)

)
dzt

= −
T∑

t=1

m∑
j=1

ẑl
jt log αj + ẑl

jt log p(xt; θj) (2.9)

over α on the positive simplex, where ẑl
jt is given by,

ẑl
jt =

∫
zjt p(zt|xt; α

l) dzt =
αl

j p(xt; θj)∑m
j′=1 αl

j′ p(xt; θj′)
(2.10)

Using Lagrange multipliers, the minimum is readily found to be,

ML: αl+1
j =

1

T

T∑
t=1

ẑl
jt (2.11)

For MAP and VB we need to specify a prior distribution over α. The

distribution commonly used for this purpose is the Dirichlet distribution, defined

over the simplex αj ≥ 0,
∑

j αj = 1, by,

D(
α1, . . . , αm; ᾱ, N̄

)
=

Γ(N̄)∏
j Γ

(
ᾱjN̄

)
m∏

j=1

α
ᾱjN̄−1
j

where Γ( · ) is the Gamma function. The Dirichlet distribution has mean ᾱ, and

“concentration” parameter N̄ > 0. With two parameters α1 and α2 = 1− α1, the

Dirichlet is equivalent to the Beta distribution. We define the symmetric Dirichlet

distribution by taking ᾱj = 1/m, j = 1, . . . , m. The distribution then takes the

form,

SD(
α1, . . . , αm; Ñ

)
=

Γ(N̄)∏
j Γ

(
N̄/m

)
m∏

j=1

α
N̄/m−1
j =

Γ(mÑ + 1)∏
j Γ

(
Ñ + 1

)
m∏

j=1

αÑ
j
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Figure 2.1: The Dirichlet distribution for m = 2, ᾱ1 = ᾱ2 = 1/2, and N̄ = 1, 2,

and 10, or Ñ = −1/2, 0, and 4.

where we define Ñ = N̄/m− 1 > −1.

The MAP estimate is found by maximizing,

p
({xt}T

t=1|α
)
p(α; ᾱ, N̄)

The only difference in the EM algorithm for MAP estimation of α is in the free

energy minimization step, wherein there are now additional terms due to the prior.

The expression to be minimized over α in the positive simplex, similar to (2.9), is,

−
T∑

t=1

(
m∑

j=1

ẑl
jt log αj + ẑl

jt log p(xt; θj)

)
−

m∑
j=1

(ᾱjN̄ − 1) log αj

where ẑl
jt is again given by (2.10). For the optimum, we find,

MAP: αl+1
j =

∑T
t=1 ẑl

jt + ᾱjN̄ − 1

T + N̄ −m
(2.12)

or, for the symmetric Dirichlet distribution,

MAP: αl+1
j =

∑T
t=1 ẑl

jt + Ñ

T + mÑ
(2.13)

Finally, for the VB method, we find the factorial posterior over z and α

that minimizes the KL divergence from the true posterior. This involves taking
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expectations of,

log p
({xt, zt}T

t=1, α
)

=
T∑

t=1

(
m∑

j=1

zjt log αj + zjt log p(xt; θj)

)
+

m∑
j=1

(ᾱjN̄ − 1) log αj

(2.14)

Suppose we are given ql
({zt}T

t=1|{xt}T
t=1

)
, producing the expectations ẑl

jt, for j =

1, . . . , m, and t = 1, . . . , T . Then according to the VB update, we exponentiate

the expected value of (2.14). This produces another Dirichlet distribution for the

approximating posterior,

VB: ql+1
(
α | {xt}T

t=1

) ∼ D(
α; ᾱl, N̄ l

)

where,

ᾱl+1
j =

∑
t ẑ

l
jt + ᾱjN̄

T + N̄
, N̄ l+1 = T + N̄

Now, we fix ql+1
(
α | {xt}T

t=1

)
and find ql+1

({zt}T
t=1 | {xt}T

t=1

)
. For this, we need the

fact that, for the Dirichlet distribution, we have,

E log αj = Ψ(ᾱjN̄)−Ψ(N̄)

where Ψ is the digamma function3. If we define,

ψl+1
j , exp

(
Ψ(ᾱl+1

j N̄ l)−Ψ(N̄ l+1)
)

then the posterior over {zt}T
t=1 is determined by the expectations,

VB: ẑl+1
jt =

ψl+1
j p(xt; θj)∑m

j′=1 ψl+1
j′ p(xt; θj′)

(2.15)

2.3 Bayesian Linear Model – Gaussian case

Let A be an m× n real matrix. Consider the linear model,

x = As + ν

where ν ∼ N (0,Σν), and s ∼ N (0,Λ) with Λ = diag(ξ)−1 is diagonal with

diagonal components ξ−1
i , i = 1, . . . , n.

3Ψ(x) = (∂/∂x) Γ(x).
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The density of x is Gaussian,

p(x) = N (0,AΛAT + Σν)

and the posterior density of s given x is also Gaussian,

p(s|x) = N (µs,Σs)

where,

µs = ΛAT (AΛAT + Σν)
−1y

and,

Σs = Λ−ΛAT (AΛAT + Σν)
−1AΛ

Also, given data xk and sources sk, k = 1, . . . , N , the Maximum Likelihood esti-

mate of A is,

ÂML =
N∑

k=1

xks
T
k

(
N∑

k=1

sks
T
k

)−1
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Density Representations

In the linear process and piecewise linear process models, a field of vector

observations is modeled locally as linear convolutive mixture of a discrete i.i.d.

generating vector field. The scalar components of the vectors in the generating field

will generally be taken to be independent as well, but not identically distributed.

In adapting or optimizing the model, we adapt the component densities as well as

the linear filters. In this chapter we consider theory and methods of representing

densities the component densities. We shall also consider generalizations to vectors

with dependent components based on the univariate theory.

First we shall limit consideration to symmetric unimodal densities. Sub-

sequently we show how the theory can be applied to mixtures of such densities.

3.1 Super-Gaussianity and Sub-Gaussianity

The Gaussian density is fundamental in probability and statistics for

many reasons.

N (
x ; µ, σ2

)
= 1√

2πσ
e−

1
2(

x−µ
σ )

2

Linear functions of Gaussians are Gaussian, and the Central Limit Theorem states

that limits of sums of random variables with finite variance are Gaussian dis-

tributed. In fact, the Gaussian density is an extreme point in the set of α-Stable

32
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Figure 3.1: With unit variance, super-Gaussian densities have a sharper peak and

heavier tails, and sub-Gaussian densities have a flatter peak and shorter tails.

densities, which are the distributions of limits of sums of random variables with

finite moments of order α for 0 < α ≤ 2, and which also have the property of

being closed under linear operations [94]. The Gaussian density is also the density

corresponding to quadratic optimization and least squares, which are important in

practice due to their tractability.

Given the centrality of the Gaussian density it is natural to categorize

non-Gaussian densities by their properties relative to the Gaussian density. One

such categorization that has been found to be useful is that of sub-Gaussian and

super-Gaussian. These notions are commonly used without a formal definition, but

rather to refer to the qualitative characteristics of “peakedness” and “heaviness” of

the tail of the density, relative to Gaussian. Informally, super-Gaussian densities

are those with a sharper peak and heavier tails than Gaussian, and sub-Gaussian

densities are flatter at the mode, with shorter tails, or faster decay, than Gaussian.

One quantitative measure that has been used to characterize sub- and

super-Gaussianity if kurtosis. The kurtosis of a zero mean random variable X with

finite fourth moment can be defined as the difference between the fourth moment

of X and the fourth moment of a Gaussian random variable of equal variance, or

E(X4) − 3E(X2)2. If a density has positive kurtosis, then it is likely to be more
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Figure 3.2: Super-Gaussian densities tend to be closer to zero, with occasional

large magnitudes, while sub-Gaussian densities tend to be more uniform.

peaked about the mean, and have heavier tails than the Gaussian density.

In [76] the heaviness of tail criterion is addressed specifically, and the con-

cept of “over-gaussianity” is defined as a density’s having a tail that is asymptot-

ically heavier than than the Gaussian tail, with sub-gaussianity defined similarly.

A theorem is given that for a unimodal density having two points of intersection

with the normalized Gaussian density, the density is over-gaussian if and only if

the density has positive kurtosis. A similar theorem is given in Finucan [38] which

assumes four density crossings (both sharper peak and heavier tails) rather than

two crossings as in [76] (heavier tails only).

A random variable with a density that is more peaked with heavier tails

than Gaussian also has the property of being “sparse”, meaning that it is close

to zero most of the time, but occasionally takes relatively large values. This is in

contrast to the more uniform character of sub-Gaussian densities. These properties

can be seen in scatter plots as shown in Figure 3.2.

3.2 Variational representations of super-Gaussian densities

Given the eminent tractabilility of the Gaussian density, it is natural to

consider densities and random variables that are related to Gaussian in hopes of

exploiting some of its nice characteristics. Two such representations are described
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in this section: Gaussian scale mixture representations, and convexity-based ex-

tremum representations which we shall call strong super-Gaussian.

A Gaussian scale mixture density is represented as an integral over the

scale parameter of the density,

p(x) =

∫ ∞

0

N (x; 0, ξ−1) dµ(ξ) . (3.1)

where µ is a non-decreasing and bounded function on (0,∞). Such representations

with a general kernel are referred to as scale mixtures [59]. Gaussian scale mixtures

were discussed in the examples of Dempster, Laird, and Rubin’s original EM paper

[31], and treated more extensively in [32].

In the convex type of variational representation, the non-Gaussian density

is represented as a supremum over Gaussian functions of varying scale,

p(x) = sup
ξ>0

N (x; 0, ξ−1) ϕ(ξ) . (3.2)

In the following sections we determine criteria that densities must satisfy

in order to be represented in these forms.

3.2.1 Convex representation of strong super-Gaussians

A convex function can be represented as the pointwise supremum over a

set of affine functions.

f(x) = sup
φ

φx− b(φ)

The function b(φ) which is the intercept corresponding to the slope φ is called the

convex conjugate of f , and is denoted f ∗(φ). The convex conjugate satisfies the

dual relationship,

f ∗(φ) = sup
x

xφ− f(x)

Now we wish to determine when a symmetric, unimodal density p(x) can

be represented in the form (3.2) for some function ϕ(ξ). Equivalently, when,

− log p(x) = − sup
ξ>0

log N (
x ; 0, ξ−1

)
ϕ(ξ) = inf

ξ>0

1

2
x2ξ − log ξ

1
2 ϕ(ξ)
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for all x > 0. The last formula says that − log p(
√

x) is the concave conjugate

of (the closure of the convex hull of) the function, log ξ
1
2 ϕ(ξ) [92, §12]. This is

possible if and only if − log p(
√

x) is closed, increasing and concave on (0,∞).

Thus we have the following.

Theorem 5. A symmetric probability density p(x) = exp(−g(x2)) can be repre-

sented in the convex variational form,

p(x) = sup
ξ>0

N (x; 0, ξ−1) ϕ(ξ)

if and only if g(x) ≡ − log p(
√

x) is increasing and concave on (0,∞). In this case

we can use the function,

ϕ(ξ) =
√

2π/ξ exp
(
g∗(ξ/2)

)
,

where g∗ is the concave conjugate of g.

Examples of densities satisfying this criterion include: (i) Generalized

Gaussian ∝ exp(−γ|x|p) , p ≤ 2, (ii) Logistic, d
dx

(1 + exp(−x))−1, (iii) Student’s t,

and (iv) symmetric α-stable densities (with characteristic function exp(−|ω|α), 0 <

α ≤ 2).

The convex variational representation motivates the following definition.

Definition 1. A symmetric probability density p(x) is strongly super-gaussian

if p(
√

x) is log-convex on (0,∞), and strongly sub-gaussian if p(
√

x) is log-

concave on (0,∞).

An equivalent definition is given in [11, pp. 60-61], which defines p(x) =

exp(−f(x)) to be sub-gaussian (super-gaussian) if f ′(x)/x is increasing (decreas-

ing) on (0,∞). This condition is equivalent to f(x) = g(x2) with g concave, i.e. g′

decreasing. The property of being strongly sub- or super-gaussian is independent

of scale.

The essential property of “concavity in x2” leading to this representation

was used in [95, 55, 53, 56, 13] to represent the Logistic link function. A convex

type representation of the Laplace density was applied to learning overcomplete

representations in [43].
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3.2.2 Gaussian scale mixtures

We now wish to determine when a probability density p(x) can be repre-

sented in the form (3.1) for some µ(ξ) non-decreasing on (0,∞). A fundamental

result dealing with integral representations was given by Bernstein and Widder

(see [101]). It uses the following definition.

Definition 1. A function f(x) is completely monotonic on (a, b) if,

(−1)nf (n)(x) ≥ 0 , n = 0, 1, . . .

for every x ∈ (a, b).

That is, f(x) is completely monotonic if it is positive, decreasing, convex,

and so on. Bernstein’s theorem [101, Thm. 12b] states:

Theorem 6. A necessary and sufficient condition that p(x) should be completely

monotonic on (0,∞) is that,

p(x) =

∫ ∞

0

e−txdα(t) ,

where α(t) is non-decreasing on (0,∞).

Thus for p(x) to be a Gaussian scale mixture,

p(x) = e−f(x) = e−g(x2) =

∫ ∞

0

e−
1
2
tx2

dα(t) ,

a necessary and sufficient condition is that p(
√

x) = e−g(x) be completely monotonic

for 0 < x < ∞, and we have the following (see also [59, 3]),

Theorem 7. A function p(x) can be represented as a Gaussian scale mixture if

and only if p(
√

x) is completely monotonic on (0,∞).

3.2.3 Relationship between strong super-Gaussians and Gaussian scale

mixtures

We now consider the relationship between the convexity-based strong

super-Gaussianity and the integral-based Gaussian scale mixtures. Let p(x) =
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exp(−g(x2)). We have seen that p(x) can be represented in the form (3.2) if and

only if g(x) is symmetric and concave on (0,∞). And we have seen that p(x) can

be represented in the form (3.1) if and only if p(
√

x) = exp(−g(x)) is completely

monotonic. We now consider whether or not complete monotonicity of p(
√

x)

implies the concavity of g(x) = − log p(
√

x), that is whether the class of Gaussian

scale mixtures is a subset of the class of strong super-Gaussians.

Complete monotonicity of a function q(x) implies that q ≥ 0, q′ ≤ 0,

q′′ ≥ 0, etc. For example, if p(
√

x) is completely monotonic, then,

d2

dx2
p(
√

x) =
d2

dx2
e−g(x) = e−g(x)

(
g′(x)2 − g′′(x)

) ≥ 0 .

Thus if g′′ ≤ 0, then p(
√

x) is convex, but the converse does not necessarily hold.

That is, concavity of g does not follow from convexity of p(
√

x), as the latter only

requires that g′′ ≤ g′ 2.

Concavity of g does follow however from the complete monotonicity of

p(
√

x). For example, we can use the following result [16, §3.5.2].

Theorem 8. If the functions ft(x), t ∈ D, are convex, then
∫
D eft(x)dt is convex.

Thus, completely monotonic functions, being scale mixtures of the log

convex function e−x by Theorem 6, are also log convex. We thus see that any

function that can be represented in the scale mixture form (3.1) can also be repre-

sented in the convex variational form (3.2).

In fact, a stronger result holds. The following theorem [14, Thm. 4.1.5]

establishes the equivalence between q(x) and g′(x) = d/dx − log q(x) in terms of

complete monotonicity.

Theorem 9. If g(x) > 0, then e−ug(x) is completely monotonic for every u > 0, if

and only if g′(x) is completely monotonic.

In particular, it holds that q(x) ≡ p(
√

x) = exp(−g(x)) is convex only if

g′′(x) ≤ 0.

To summarize, let p(x) = e−g(x2). If g is increasing and concave for x > 0,

i.e. p is strongly super-Gaussian, then p(x) can be represented in the form (3.2).
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If, in addition, the higher derivatives satisfy g(3)(x) ≥ 0, g(4)(x) ≤ 0, g(5)(x) ≥ 0,

etc., then p(x) also admits the Gaussian scale mixture representation (3.1).

3.3 Posterior moments of Gaussian Scale Mixtures

Following [32], differentiating under the (absolutely convergent) integral

we get,

p′(s) =
d

ds

∫ ∞

0

p(s|ξ)p(ξ)dξ = −
∫ ∞

0

ξsp(s, ξ) dξ

= −sp(s)

∫ ∞

0

ξp(ξ|s) dξ

Thus, with p(s) = exp(−f(s)), we see that,

E(ξi|si) =

∫ ∞

0

ξip(ξi|si) dξi = − p′(si)

sip(si)
=

f ′(si)

si

. (3.3)

3.4 Example densities

In this section we give some examples of densities used in practice that

are Gaussian scale mixtures, and thus from the results of the previous section,

necessarily also strong super-Gaussians. All densities will be given in a standard

form. The form used for adaptation of the model will include location and scale

parameters as well, so the density p(x) refers to the family,

1

σ
p

(
x− µ

σ

)

Generalized Gaussian

The Generalized Gaussian density has the form,

G(x; ρ) =
1

2Γ(1 + 1
ρ
)
e−|x|

ρ

It is strongly super-Gaussian for 0 < ρ ≤ 2. The scale mixing density is related to

a positive alpha stable density of order ρ/2. Alpha stable densities are described

below.
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Generalized Cauchy

The generalized Cauchy density has the form,

αΓ(ν + 1/α)

2Γ(1/α)Γ(ν)

1

(1 + |x|α)ν+1/α

The Generalized Cauchy is strongly super-Gaussian for ν > 0 and 0 < α < 2. The

scale mixing density is related to the Gamma density.

Generalized Logistic

Also called the symmetric Fisher’s z distribution [7]. The generalized

logistic density has the form,

Γ(2α)

Γ(α)2

e−αx

(1 + e−x)2α

The Generalized Logistic is strongly super-Gaussian for all α > 0. The scale mixing

density is related to the Kolmogorov-Smirnov distance statistic [44].

Symmetric α-stable

α-Stable densities have characteristic function

ϕ(t) = e−|t|
α

They are known to be Gaussian scale mixtures [94, 44] with scale density

p(ξ) =
1

2
sα/2

(
ξ

2

)

where sα/2 is again a (one-sided) stable distribution of order α/2. Since the Gaus-

sian kernel is its own Fourier transform, taking Fourier transforms of both sides

of the scale mixture equation shows that the mixing density of a Gaussian scale

mixture has the same form as the mixing density of characteristic function, but

over the inverse scale. Thus the mixing density of the generalized Gaussian density

is also α-stable of order α/2.

Other Gaussian scale mixtures are discussed in [44] involving Bessel func-

tions and the incomplete gamma function.
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3.5 Duality of sub- and super-Gaussianity

In analysis and geometry, there is a duality between vectors and linear

functions, points and hyperplanes, and vertices and faces of polyhedra. In the

basic linear model,

x =
∑

i

siai

A useful intuitive understanding of sub- and super-Gaussianity can be gained from

the association of sub-Gaussian si densities with hyperplanes, or faces of the dis-

tribution of x in the direction ai, and super-Gaussian si densities with vertices in

the direction ai. The Gaussian density is distinguished by its having no inherent

“directional” structure modulo linear transformations.

The strong super-Gaussian and Gaussian scale mixture representation

theorems show that variational representations in terms of the Gaussian density ap-

ply only to super-Gaussian densities, ana cannot be used to represent sub-gaussian

densities. Thus, for example, there is no variational Gaussian representation for

the density p(x) ∝ exp(−x4). One can formulate representations of sub-gaussian

densities in terms of other functions, but the usefulness of variational representa-

tions derives mainly from the properties of the Gaussian density.

There is, however, and interesting relationship between the convexity

of strongly sub- and super-gaussian functions which we describe in this section.

Consider the MAP estimation problem,

x̂ = arg max
x

p(x|y) = arg max
x

p(y|x)p(x)

= arg max
x

log p(y|x) + log p(x)

Now define d(x) ≡ − log p(y|x) and f(x) ≡ − log p(x). If f and d are convex,

then the dual problem can be formulated involving d∗(φ) and f ∗(φ). It turns out

that if p(x) = exp(−f(x)) is strongly sub-gaussian, i.e. f(x) = g(x2) with g(x)

convex on (0,∞), then we have the non-trivial result that exp(−f ∗(φ)) is strongly

super-gaussian, i.e. f ∗(φ) = h(φ2) with h(φ) concave on (0,∞). We prove this in

the following.
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Theorem 10. If f is convex, then f is strictly concave in x2 on (0,∞) if and only

if f ∗ is strictly convex in x2 on (0,∞).

Proof. If f and f ∗ are differentiable on (0,∞). Then f is strictly square-concave

if and only if f ′(x)/x is strictly decreasing, i.e. if and only if x < y implies,

f ′(x)

x
<

f ′(y)

y
(3.4)

Let φx = f ′(x) and φy = f ′(y). Then φx < φy since f is strictly convex, and

x = f ∗′(φx) and y = f ∗′(φy), since f ′ and f∗′ are inverse functions. Substituting

these into (3.4), we get,

φx

f ∗′(φx)
=

f ′(x)

x
<

f ′(y)

y
=

φy

f ∗′(φy)

or, f ∗′(φx)/φx > f ∗′(φy)/φy, which implies that f ∗(φ)/φ is strictly increasing and

f ∗ is strictly convex in x2.

More generally, we have,

f ∗(φ) = sup
x

φx− f(x)

= sup
x

φx− inf
ξ

ξx2/2− g∗(ξ/2)

= sup
ξ

g∗(ξ/2) + sup
x

φx− ξx2/2

= sup
ξ

g∗(ξ/2) + 1
2
φ2/ξ

where g(x) = f(
√
|x|). This shows that f ∗(

√
φ) is the pointwise supremum of linear

functions on (0,∞), and thus f ∗ is convex in φ2.

As f ∗(φ) is convex in φ2 on (0,∞), and this is the defining property

of strongly sub-Gaussians, we have that exp(−f ∗(φ)) is strongly sub-Gaussian.

It is also apparent from the proof that exp(−f ∗(φ)) can be represented as the

pointwise infimum of functions proportional to Gaussian densities, in contrast to

strongly super-Gaussian densities, which are pointwise supremums of Gaussians.

The functions that are concave in x2, or strongly super-Gaussian, are

useful in deriving monotonic algorithms for optimization since the family of bounds
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is on the “right” side of the objective function. For example, minimization of f(x)

becomes minimization of F (x, ξ) over x and ξ. For f convex in x2, we would have

minx maxξ F (x, ξ), resulting in a more difficult minimax problem.

It should be noted that while strongly sub-Gaussian densities are not

supremums of Gaussians, mixtures of strong super-Gaussians are pointwise supre-

mums of mixtures of Gaussians, and mixtures of strong super-Gaussians may

be strongly sub-Gaussian. This is the case with a mixture of two unit vari-

ance Normal densities with means −1 and 1, which can be written in the form

exp(−x2/2) cosh(x). This density is strongly sub-Gaussian, and is the density

used as the sub-Gaussian model by Lee in [65] in the extended Infomax algorithm

for separating sub- and super-Gaussian sources. Strong super-Gaussian mixtures

are discussed in §6.3.3.

3.6 Kurtosis and strong super-Gaussianity

In this section we show that all strong super-Gaussian densities have

positive kurtosis. For the proof, we use the following version of a result of Karlin

[57, Lemmas A,B].

Theorem 11. If
∫ b

a
p(x) dx =

∫ b

a
q(x) dx,

∫ b

a
x2p(x) dx =

∫ b

a
x2q(x) dx, p(x) in-

tersects q(x) exactly two times on (a, b), and p(x) ≥ q(x) in a neighborhood of b,

then ∫ b

a

ϕ(x) p(x) dx ≥
∫ b

a

ϕ(x) q(x) dx

for all ϕ such that ϕ(
√

x) is convex.

Theorem 12. If − log p(
√

x) is concave on (0,∞), (i.e. p(x) is strongly super-

gaussian,) then p(x) has positive kurtosis.

Proof. Let p(x) be strongly super-gaussian, so that g(x) = − log p(
√

x) is concave

and increasing on (0,∞). Since g(x) is concave, it can intersect a linear function a

maximum of two times on (0,∞) [58, §1.4]. Thus g(x2) can intersect a quadratic
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function a maximum of two times, and e−g(x2) can intersect e−βx2
a maximum of

two times on (0,∞).

Now let X be distributed according to p(x), and let Y be Gaussian, with

EX = EY = 0, and EX2 = EY 2. Then p(x) must intersect the Gaussian density

exactly four times (twice on (0,∞), and Karlin’s theorem applies. In particular,

since x4 is convex with respect to x2, if X ∼ p(x), with p(x) = exp(−g(x2)) with

g concave, and Y is Gaussian, EX = EY , EX2 = EY 2, then EX4 ≥ EY 4. In

other words, X has a greater fourth moment than a Gaussian density with the

same variance, which is to say that the density p(x) has positive kurtosis.

3.7 Multivariate densities and representations of depen-

dent subspaces

The Gaussian scale mixture representation can be extended to vector

subspaces to yield a model of non-affine dependency. This has been used recently

by [60, 35] in a special case for independent component analysis. In this section

we show how more general dependent multivariate densities can be derived using

scale mixtures.

Suppose that we have a Gaussian scale mixture

x = ξ−1/2z

where z is a standard Normal random variable. We can construct a random vector

by multiplying the same scalar random variable ξ−1/2 by a Gaussian random vector,

x = ξ−1/2z

where z ∼ N (0, I). For the density of x we then have,

p(x) =
1

(2π)d/2

∫ ∞

0

ξd/2e−
1
2

ξ ‖x‖2p(ξ)dξ

If ξ is a Gamma random variable, then the density of x can be written in terms of

the modified Bessel function of the second kind [35].
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Now, if x is a Gaussian scale mixture with density p(x), then,

p(
√

x) =
1

(2π)1/2

∫ ∞

0

ξ1/2e−
1
2

ξ xp(ξ)dξ

Taking the kth derivative of both sides, we find,

dk

dxk
p(
√

x) =
(−2)−k

(2π)1/2

∫ ∞

0

ξk+1/2e−
1
2

ξ xp(ξ)dξ

Thus, if d is odd, then,

π−(d−1)/2D(d−1)/2p(
√

x) =
1

(2π)d/2

∫ ∞

0

ξd/2e−
1
2

ξ xp(ξ)dξ

and we can write the density of p(x)

d odd : p(x) = π−(d−1)/2(−D)(d−1)/2p(
√

x)
∣∣
x=‖x‖2 (3.5)

For even d, the density of p(x) can be written formally in terms of the Weyl

fractional derivative of order (d + 1)/2. However as the fractional derivative is is

not generally obtainable in closed form, we consider a modification of the original

univariate scale density p(ξ),

p̃(ξ) =
ξ−1/2p(ξ)∫∞

0
ξ−1/2p(ξ)

If p(ξ) is finite at 0, then E ξ−1/2 is finite. With this modified scale density, the

density of x evaluated at
√

x becomes,

p(
√

x) =
1

(2π)1/2Z
∫ ∞

0

e−
1
2

ξ xp̃(ξ)dξ

where,

Z =

∫ ∞

0

ξ−1/2p(ξ)dξ

Proceeding as we did for odd d, we find,

d even : p(x) = Z
√

2π−(d−1)/2(−D)d/2p(
√

x)
∣∣
x=‖x‖2 (3.6)
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Example: 3D Dependent Logistic

We consider an example. Suppose we wish to formulate a dependent

Logistic type density on R3. The scale mixing density in the Gaussian scale mixture

representation for the Logistic density has the density of the Kolmogorov-Smirnov

distance statistic [3], which only expressible in series form. However, we may

determine the multivariate density produced from the product,

s = ξ−1/2z

where s, z ∈ R3, and z ∼ N (0, I). Using the formula (3.5) for d = 3, we get,

p(s) =
1

8π

sinh
(

1
2
‖s‖ )

‖s‖ cosh3
(

1
2
‖s‖ )

Figure 3.3 illustrates the difference between the dependent and independent models

for the Laplacian density.

(a) (b)

Figure 3.3: (a) A two dimensional independent (factorial) Laplacian density. The

marginal densities are constant. (b) A two dimensional dependent Laplacian den-

sity. The marginal densities are not constant.

The material in this chapter, in part, was published in, Palmer, J. A.,

Wipf, D.P., Kreutz-Delgado, K., Rao, B.D., “Variational EM Algorithms for Non-

Gaussian Latent Variable Models,” Advances in Neural Information Processing

Systems, MIT Press, 2005.
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Sparse Coding

In this chapter and the next, we consider the problem of “sparse coding”,

or representation of data vectors x ∈ Rm in terms of a small number of “basis”

vectors from a set of n vectors in a “dictionary” A = [a1 · · · an]. If n > m, the

dictionary is called overcomplete. As noted in chapter 2, strongly super-Gaussian

densities are suitable for representing sparse random variables, i.e. random vari-

ables that are close to zero in most instances, but occasionally take on relatively

large magnitudes.

The model is given by,

x = As + ν (4.1)

We will take the noise to be Gaussian, ν ∼ N (0,Σν), or in the overcomplete case

we may take ν = 0 and enforce the constraint x = As.

In this chapter, we consider the problem in the context of a given dictio-

nary, where we are given A and x and we wish to find a sparse representation s

such that x ≈ As. The next chapter considers dictionary learning, where we are

given a set of data x1, . . . ,xT , and we wish to find a dictionary A such that the

data vectors are expected to have sparse representations in A.

47
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4.1 Estimation with a given dictionary

We consider two basic approaches to the sparse estimation problem, by

which we mean specifically estimation of strongly super-Gaussian s in the model

(4.1).

The first approach is to find the MAP estimate of s, i.e.,

ŝ = arg max
s

p(s|x;A)

This corresponds to a generalized version of the FOCUSS algorithm [89, 90], and

to a version of an EM algorithm derived by Dempster, Laird, and Rubin [32].

The generalized FOCUSS derivation exploits the convexity-based representation

of strongly super-Gaussian priors, using an inequality of the form,

f(t)− f(s) ≤ 1

2

f ′(s)
s

(t2 − s2) (4.2)

which holds for f concave in s2.

The EM algorithm uses the scale mixture representation, but leads to

the same algorithm as the strong super-Gaussian representation when the prior

density p(s) is a Gaussian scale mixture. This is due to the fact that for Gaussian

scale mixtures, p(s) =
∫ N (s; 0, ξ−1)p(ξ)dξ = exp(−f(s)), we have,

E(ξ|s) =
f ′(s)

s

as shown in §3.3. The expression on the right is the same as that which appears in

the convexity based inequality (4.2). A close relationship between monotonic algo-

rithms for strong super-Gaussians and Gaussian scale mixtures is not unexpected

given that the former class includes the latter as shown in Chapter 3.

The second approach attempts in a certain sense to model the posterior

source density itself, as opposed to finding a point estimate of its maximum as

in the MAP approach. Specifically the algorithm attempts to minimize an upper

bound on the Kullback-Leibler divergence between p(s|x) and an approximating
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Gaussian density. Note that the prior on s is not assumed to be Gaussian in the

approximation. Rather a Gaussian approximation is used for the posterior p(s|x).

We consider first the MAP EM algorithms for strong super-Gaussian and

the Gaussian scale mixture, showing that they are equivalent. We then consider

the VB and MAP estimate of hyperparameter algorithms, showing that the strong

super-Gaussian based convex bounding method is equivalent to the Gaussian scale

mixture VB method.

4.1.1 MAP Estimation of Sources: Generalized FOCUSS

Consider first the MAP estimate of the sources.

Gaussian scale mixture case

Consider an EM algorithm to estimate s when the si are independent

Gaussian scale mixtures. The EM algorithm alternates setting ξ̂i to the posterior

mean, E(ξi|sl
i) = f ′i(s

l
i)/s

l
i, and setting s to minimize,

Q(s|sl) = − log p(x|s)p(s|ξ̂) = 1
2
sTATΣ−1

ν As − xTΣ−1
ν As + 1

2
sTΛs + const. (4.3)

where Λ = diag(ξ̂)−1. At iteration l, we put λl
i = sl

i/f
′(sl

i), and Λl = diag(λl), and

sl+1 = ΛlAT (AΛlAT + Σν)
−1x (4.4)

In [32], the si in are estimated as non-random parameters, with the noise ν being

non-gaussian, but the derivation of the algorithm is the same.

Strong super-Gaussian case

Now consider the MAP estimate of s given x, assuming only strong super-

gaussianity of the si. Then we have,

arg max
s

p(s|x) = arg max
s

p(x|s)p(s) = arg max
s

max
ξ

p(x|s)p(s; ξ)h(ξ)
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Now since,

− log p(x|s)p(s; ξ)h(ξ) = 1
2
sTATΣ−1

ν As − xTΣ−1
ν As +

n∑
i=1

s2
i ξi/2− g∗i (ξi/2)

the MAP estimate can be improved iteratively by alternately maximizing s and ξ,

ξl
i = 2 g∗′i

−1
(
sl

i

2
)

= 2 g′i
(
sl

i

2
)

=
f ′i(s

l
i)

sl
i

(4.5)

with s updated as in (4.4). We thus see that this algorithm is equivalent to the

MAP algorithm derived in the previous section for Gaussian scale mixtures. That

is, for direct MAP estimation of latent variable s, the EM Gaussian scale mixture

method and the variational bounding method yield the same algorithm.

This algorithm has also been derived in the image restoration literature

[41] as the “half-quadratic” algorithm, and it is the basis for the FOCUSS al-

gorithms derived in [89, 90, 88]. The regression algorithm given in [37] for the

particular cases of Laplacian and Jeffrey’s priors is based on the derivation in

§4.1.1, and is in fact equivalent to the FOCUSS algorithm derived in [89].

4.1.2 Minimizing KL Divergence

There are three ways to derive this family of algorithms: (1) a variational

bounding approach using strong super-Gaussianity, which finds the Gaussian den-

sity that minimizes and upper bound on the KL divergence from the true posterior

[43, 13], (2) a MAP estimate of the “hyperparameters”, ξ, in the Gaussian scale

mixture representation of the sources, s = z ξ−
1
2 , where z is standard Normal, and

(3) a Variational Bayes approach relying on the Gaussian scale mixture represen-

tation [4].

Convex Bounding with Strong Super-Gaussians

We again use the following variational free energy formulation,

log p(x) =

∫
q(s) log

p(x, s)

q(s)
ds + D

(
q(s)||p(s|x)

)
(4.6)
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Since the left hand side does not depend on q(s), we have,

arg min
q(s)∈C

D
(
q(s)||p(s|x)

)
= arg max

q(s)∈C

∫
q(s) log

p(x, s)

q(s)
ds

where C is some class of probability densities. So minimizing the KL divergence

with respect to q(s) ∈ C is equivalent to maximizing the negative free energy.

Also, maximizing a lower bound on the negative free energy is equivalent

to minimizing an upper bound on the KL divergence. If we write (4.6) for simplicity

as, L = −F + D, and suppose that F̃ is an upper bound on F . Then D̃ = L + F̃

is an upper bound on D, and minimizing F̃ is equivalent to minimizing D̃.

Now, we have,

log p(x, s) = −1
2
‖x−As‖2

Σ−1
ν

+ log p(s) + const.

And since the si are assumed to be independent and symmetric about 0,

p(s) =
n∑

i=1

log pi(si) = −
n∑

i=1

fi(si) = −
n∑

i=1

gi(s
2
i )

where gi(si) = fi(
√

(si)) = − log pi(
√
|si|). Strong super-Gaussianity of pi(si)

means that gi is concave on (0,∞), which then implies,

Egi(s
2
i ) ≤ gi(Es2

i )

where E is the expectation operator. Let Eq denote expectation with respect to

the density q(s). Then

−Eq log p(x, s) = 1
2
Eq ‖x−As‖2

Σ−1
ν

+
∑

i

Eq gi(s
2
i ) + const.

≤ 1
2
Eq ‖x−As‖Σ−1

ν
+

∑
i

gi(Eqs
2
i ) + const.

Now if q(s) is Gaussian with mean µs|x and covariance Σs|x, then

F = −
∫

q(s) log
p(x, s)

q(s)
ds ≤ xTΣ−1

ν µs|x + 1
2
tr

(
ATΣ−1

ν A
(
µs|xµ

T
s|x + Σs|x

))

+
n∑

i=1

gi

(
µ2

si|x + [Σs|x]ii
)

+ 1
2
log detΣs|x + const. = F̃
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Now since the gi are concave on (0,∞),

g(t2) = min
ξ

ξt2/2− g∗(ξ/2)

and the infimum is attained at ξ = 2g′(t2), where

g′(t2) =
f ′(t)
2t

Thus we have

F̃ = min
ξ

xTΣ−1
ν µs|x + 1

2
tr

(
ATΣ−1

ν A
(
µs|xµ

T
s|x + Σs|x

))

+ 1
2
µT

s|xdiag(ξ)µs|x + 1
2

n∑
i=1

ξi[Σs|x]ii − g∗(ξi/2) + 1
2
log detΣs|x + const.

This can be minimized with respect to µs|x, Σs|x, and ξ by coordinate descent. Let

Λl = diag(ξl)−1. Then the algorithm,

µl+1
s|x = ΛlAT (AΛlA + Σν)

−1x

Σl+1
s|x ← Λl −ΛlAT (AΛlA + Σν)

−1AΛl

ξl+1
i ← f ′(σl

i)

σl
i

, σl
i =

√
µ2

si|x + [Σs|x]ii, i = 1, . . . , n

monotonically decreases F̃ .

The algorithm is thus equivalent to that in §4.1.1 except that the expec-

tation is taken of s2 and ξ is minimized, rather than taking the expectation of ξ

and maximizing s as in §4.1.1. Here, instead of f ′(sl)/sl, the diagonal weighting

matrix becomes,

ξi =
f ′(σl

i)

σl
i

where σi =
√

E (s2
i |y; ξi). Although p̃ is not a probability density function, the

proof of convergence for EM does not assume unit normalization. This theory is

the basis for the algorithm presented in [43] for the particular case of a Laplacian

prior (where in addition A in the model (5.2) is updated according to the standard

EM update.)
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MAP Estimation of Hyperparameters

If the density of s is a Gaussian scale mixture, then s can be represented

as a product of a standard Normal, z, and a non-negative random variable ξ, as

s = zξ−
1
2 . This leads to the Gaussian scale mixture representation (3.1) of the

density of s. Furthermore, x is non-Gaussian, but conditionally Gaussian given ξ,

p(x|ξ) = N (
0, diag(ξ)−1

)

In this representation, the ξi are sometimes referred to as “hyperparameters” [98].

Now consider an EM algorithm to find the MAP estimate of ξ,

ξ̂ = arg max
ξ

p(ξ|x)

For the complete likelihood, we have,

p(ξ, s|x) ∝ p(x|s, ξ)p(s|ξ)p(ξ) = p(x|s)p(s|ξ)p(ξ)

The function to be minimized over ξ is then,

〈− log p(s|ξ)p(ξ)
〉
s

=
∑

i

1
2
〈s2

i 〉 ξi − log
√

ξip(ξi) + const. (4.7)

If we define h(ξ) = log
√

ξi p(ξi), and assume that this function is concave, then

the optimal value of ξ is given by,

ξi = h∗′
(

1
2
〈s2

i 〉
)

This algorithm monotonically increases of p(ξ|s), yielding ξ̂, which then yields an

estimate of s by taking ŝ = E(s|x, ξ̂). Alternative algorithms result from using

this method to find the MAP estimate of different functions of the scale random

variable ξ.

Variational Bayes Algorithm

Now consider using the VB method as in §2.1.4. In the linear model with

Gaussian scale mixture latent variables, the complete likelihood is again,

p(x, s, ξ) = p(x|s)p(s|ξ)p(ξ)
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The optimal approximate posteriors are given by,

q(s|x) = N (s; µs|x, Σs|x) , q(ξi|x) = p
(
ξi

∣∣ si = 〈s2
i 〉1/2

)

where, letting Λ = diag(〈ξ〉)−1, the posterior moments are given by,

µs|x = ΛAT (AΛAT + Σν)
−1x

Σs|x = (ATΣ−1
ν A + Λ−1)−1 = Λ−ΛAT (AΛAT + Σν)

−1AΛ .

The only relevant fact about q(ξ|y) that we need is 〈ξ〉, for which we have, using

(3.3),

〈ξi〉 =

∫
ξiq(ξi|y) dξi =

∫
ξip

(
ξi | si = 〈s2

i 〉1/2
)

dξi =
f ′(σi)

σi

where σi =
√

E (s2
i |x; ξi). We thus see that the VB algorithm is equivalent to the

algorithm which found the Gaussian posterior minimizing a convexity based upper

bound on the KL divergence. Here we find the factorial density minimizing the

KL divergence assuming that p(s) is a Gaussian scale mixture.

The algorithms of this section differ from those in §4.1.1 in that they

all use the conditional expectation of s2
i given x and ξ as the diagonal weighting

matrix, whereas the algorithms in §4.1.1 use the posterior maximum over s. The

diagonal weighting matrix in §4.1.1 is a function of sl only, and each diagonal

component ξi is a function of si only. In this section, the elements of the diagonal

weighting matrix are functions the entire vector sl through the term [Σs|x]ii. In

fact, [Σs|x]ii cannot be written as a function of any sl−1 either, and is actually a

function of all of the previous sl.

In the MAP algorithms of the previous section, and the VB type algo-

rithms of this section, the functional form of the diagonal weighting matrix involves

the function f ′(t)/t. This function is given in Table 4.1 for some commonly used

strongly super-Gaussian densities.
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Table 4.1: Variational weight parameter for common strongly super-gaussian den-

sities.

Density Name Density Form ξ = f ′(y)/y
Generalized Gaussian, 0 < ρ ≤ 2 exp(−|y|ρ) ρ |y|ρ−2

Student’s t, ν > 0 (1 + y2/ν)−(ν+1)/2 (ν + 1)/(ν + y2)
Jeffrey’s prior 1/y 1/y2

Logistic 1/ cosh2(y/2) tanh(y/2)/y
Symmetric α-stable no closed form no closed form

4.1.3 Illustration of the Difference between MAP and VB

We illustrate the difference intuitively with an example that shows that

the VB approach does not necessarily lead to sparse solutions when “proper” priors,

i.e. densities p(s) that are integrable, are used. This is due to the whole posterior

density modeling nature of the VB approach. Only when an improper prior is used

is the VB approximating density able to concentrate all of its mass on a sparse

solution with zero variance estimates for some dimensions.

Figure 4.1: Example of a sparse coding problem. The solution space is for the

given linear system is plotted. The sparse solutions occur where the solution space

breaks the orthant boundaries.
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The example problem is depicted graphically in Figure 4.1. The null

space of the 2 × 3 matrix is one dimensional and passes through the minimum

norm solution. The line in the figure is a plot of the one dimensional space of

solutions. The sparse solutions are those with one or more zeros. In the figure, the

sparse solutions are found where the solution line breaks the orthant boundaries.

For the system shown, there are three sparse solutions. If the solution line passed

through one of the axes, then there would be two sparse solutions, one of which

would have only one non-zero element.

Figure 4.2: Plot of the posterior source density on the line solution space in Figure

4.1 for three values of Generalized Gaussian shape parameter. For the Laplacian

prior (ρ = 1.0), the maximum of the posterior is the global maximum. For ρ < 1

there is a maximum for each sparse solution. In the latter case, the MAP estimate

may converge to any of the sparse solutions, depending on starting point. The VB

method has fewer local optima, but is only sparse as ρ → 0, and even for ρ = 0.2

the posterior maximum is not sparse.

Since the null space in this example is one dimensional, we can make a
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two dimensional plot of the posterior density in the low noise limit by evaluating

p(s) as t varies in s = s̄ + tv, where s̄ is the minimum norm solution and vbf is

the vector of the null space. This is shown in Figure 4.1.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Source Posterior
in the Null space

VB approximation

MAP estimate

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Source Posterior
in the Null space

VB approximation

MAP estimate

(b)

Figure 4.3: Plot of the posterior in the null space for the example in Figure 4.1

for (a) Laplacian prior and (b) Generalized Gaussian with ρ = 0.2. The MAP

estimate goes to the maximum of the posterior, while the VB finds the mean and

variance of the Gaussian that minimizes an upper bound on the KL divergence.

In this case, the Laplacian VB algorithm converges to the sparse solution.

In Figure 4.4 another null space plot is shown with A of dimension 1× 2,

with two sparse solutions. It is clear in this example that the VB solution tries to

match the entire posterior density, not necessarily leading to a sparse estimate for

the source, even for negative log concave priors.

The distinction between MAP estimation of components and estimation

of hyperparameters has been discussed in [72] and [98] for the case of Gamma

distributed inverse variance.
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Figure 4.4: Plot of the posterior in the null space for A of dimension 1× 2 for (a)

Laplacian prior and (b) Generalized Gaussian with ρ = 0.1. The MAP estimate

goes to the maximum of the posterior, while the VB finds the mean and variance

of the Gaussian that minimizes an upper bound on the KL divergence. Since the

Generalized Gaussian has finite mass, even though for ρ = 0.2 it is considered

highly sparse, the mean of the VB approximation does not necessarily converge to

a sparse solution.

4.2 Iteratively Re-weighted Least Squares and

Convergence of MAP estimate

To prove convergence, we use the Global Convergence Theorem of Zang-

will [104, 70], which is stated in the following theorem.

Theorem 13 (Global Convergence Theorem [70]). Let M be an algorithm on

Ω, and suppose that, given x0, the sequence
{
xl

}
, l = 0, 1, ... is generated satisfying

xl+1 ∈ M(xl) (4.8)

Let a solution set Γ ⊂ Ω be given, and suppose

1. All points xl are contained in a compact subset of Ω.

2. There is a continuous function f on Ω such that
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(a) if x /∈ Γ, then f(y) < f(x) for all y ∈ M(x)

(b) if x ∈ Γ, then f(y) ≤ f(x) for all y ∈ M(x)

3. The mapping M is closed at points outside Γ

Then the limit of any convergent subsequence of
{
xl

}
is a solution.

Lemma 1. Let W ⊂ Rn×n be the set of diagonal and positive definite matrices.

Let S be the set of all s ∈ Rn such that s = arg mins
1
2
sT W s subject to As = x, for

some W ∈ W. Then S is bounded.

Proof. Denote the constraint space C = {s : As = x}, and let Oj, j = 1, . . . , 2n,

be the jth orthant in Rn. The intersections Cj = C⋂Oj are either bounded or

unbounded. Clearly each Cj is the intersection of a finite number of half-spaces,

and thus by the theorem of Minkowski and Weyl [92, Thm. 19.1], Cj is a finitely

generated convex set. This means that for a finite set of points vj, j = 1, . . . , n1,

and directions dk, k = 1, . . . , n2, we have

Cj =

{
s : s =

n1∑
r=1

αrvr +

n2∑

k=1

λkdk,

n1∑
r=1

αr = 1, αr ≥ 0, λk ≥ 0

}
.

Now suppose that sl is the minimizer of 1
2
sT W−1s subject to As = x, and suppose

sl ∈ Cj with Cj unbounded. Clearly the directions dk are in Oj. Now, if λk > 0 for

some k then,

sl = s̃l + λkdk

where s̃l ∈ Oj, and,

1
2
slW sl = 1

2
(s̃l)T W s̃l + λkd

T
k W s̃l + 1

2
λkd

T
k Wdk > 1

2
(s̃l)T W s̃l

where dT
k W s̃l is positive because s̃l and dk are in the same orthant Oj and W

is diagonal and positive definite. But this contradicts the assumption that sl =

arg mins∈C 1
2
sT W−1s. Thus sl must lie in the bounded convex hull of the points vj,

j = 1, . . . , n1. Thus sl either lies in a bounded Cj = C⋂Oj, or if Cj is unbounded,

then sl lies in a bounded subset of Cj. Hence sl lies in the union of all the “bounded

parts” of the orthant intersections Cj, which is bounded.
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Lemma 2. Let A ∈ Rm×n be such that every subset of m columns of A is linearly

independent, and let x ∈ Rm be linearly independent of every subset of m − 1

columns of A. Let w : Rn → Rn be continuous on Rn. Then the mapping,

M(s) = diag(w(s))AT (A diag(w(s))AT )−1x

is continuous.

Proof. We show that for any positive definite matrix B,

(B + E)AT
(
A(B + E)AT

)−1
x = BAT (ABAT )−1x + o(‖E‖)

where o(‖E‖) is a matrix whose elements tend to 0 as ‖E‖ tends to 0.

We have,

(B + E)AT
(
A(B + E)AT

)−1
x−BAT

(
ABAT

)−1
x

=
(
BAT

)((
ABAT + Ẽ

)−1 − (
ABAT

)−1
)
x + o(‖E‖)

and thus,

∥∥∥(B + E)AT
(
A(B + E)AT

)−1
x−BAT

(
ABAT

)−1
x
∥∥∥

≤
∥∥BAT

∥∥
∥∥∥
(
ABAT + Ẽ

)−1 − (
ABAT

)−1
∥∥∥ ‖x‖+ o(‖E‖)

= o(‖E‖)

where Ẽ = AEAT . The last step follows from the continuity of the matrix inverse

[45, p. 58]. For the lemma we use the particular case where E is diagonal.

Lemma 3. Let A and x satisfy the assumptions of Lemma 2, let s ∈ Rn, and let

W l be the diagonal, positive semidefinite matrix with diagonal elements sl
i/f

′
i(s

l
i),

where f ′i(si) is a function that is anti-symmetric and positive on (0,∞). If,

lim
si→0

si/f
′
i(si) > 0

then sl is a fixed point of the mapping,

sl+1 = W lAT (AW lAT )−1x (4.9)
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if and only if,

∇f(sl) ∈ R(
AT

)
.

If

lim
si→0

si/f
′
i(si) = 0

then sl+1
i = 0 if sl

i = 0. Let s̃l be the vector containing the non-zero elements of

sl, let ∇̃f(s̃l) be the corresponding sub-vector of ∇f(sl), and let Ãl be the matrix

containing the columns of A corresponding to the non-zero elements of sl, so that

Ãls̃l = x. Then sl is a fixed point of the mapping (4.9) if and only if,

∇̃f(s̃l) ∈ R(
(Ãl)T

)
.

Proof. If limsi→0 si/f
′
i(si) > 0, then [W l]ii > 0, ∀ i. Note that AW l∇f(sl) = x,

and,

sl+1 = W lAT
(
AW lAT

)−1
AW l∇f(sl)

Suppose ∇f(sl) ∈ R(AT ) so that ∇f(sl) = AT λ for some λ ∈ Rm. Then,

sl+1 = W lAT λ = sl (4.10)

and sl is a fixed point of the mapping (4.9). Now suppose sl is a fixed point of

(4.9). Then,

∇f(sl) = (W l)−1sl+1 = AT (AW lAT )−1x

and thus ∇f(sl) ∈ R(AT ).

If limsi→0 si/f
′
i(si) = 0, let W̃ l be the diagonal matrix with diagonal

elements s̃l
i/f

′
i(s̃

l
i). Note that ÃlW̃ l∇̃f(s̃l) = x, and,

s̃l+1 = W̃ l(Ãl)T
(
ÃlW̃ l(Ãl)T

)−1
ÃlW̃ l∇̃f(s̃l)

Suppose ∇̃f(s̃l) ∈ R(
(Ãl)T

)
so that ∇̃f(s̃l) = (Ãl)T λ for some λ ∈ Rm. Then,

s̃l+1 = W̃ l(Ãl)T λ = s̃l (4.11)
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Since the zeros of sl are also fixed, we have that sl is a fixed point of the mapping

(4.9). Now suppose sl is a fixed point of (4.9). Then,

∇̃f(s̃l) = (W̃ l)−1s̃l+1 = (Ãl)T (ÃlW̃ l(Ãl)T )−1x

and thus ∇̃f(s̃l) ∈ R(
(Ãl)T

)
.

We now state the main theorem on iteratively reweighted least squares.

Theorem 14. Let A ∈ Rm×n be such that every submatrix of m columns of A

is full rank, and let x ∈ Rm be linearly independent of every subset of m − 1

columns of A. Let wi(si), i = 1, . . . , n, be symmetric, continuous, non-negative,

and strictly increasing on [0,∞), and let W l be the diagonal matrix with diagonal

elements wi(s
l
i). Then starting from any point s0 ∈ Rn, the algorithm,

sl+1 = W lAT (AW lAT )−1x (4.12)

converges to a fixed point.

If for all i, wi(si)/si is strictly decreasing on (0,∞), then the algorithm

converges to the unique minimizer, s∗, of the function,
∑

i fi(si), subject to the

constraint As = x, where,

fi(si) =

∫ si

0

t/wi(t) dt (4.13)

The convergence rate is at least linear with rate, r = maxi s
∗
i w

′(s∗i )/w(s∗i ).

If for all i, wi(si)/si is strictly increasing, then the algorithm converges to

a discrete, finite set of stationary points, and only those points with n−m zeros are

stable. In this case the algorithm monotonically decreases the function
∑

i f
(ε)
i (si),

where

f
(ε)
i (si) =

∫ si

ε

t/wi(t) dt (4.14)

for all 0 < ε < si, i = 1, . . . , n. If limsi→0 wi(si)/si = 0, then when converging to a

stable fixed point, the convergence is superlinear. If limsi→0 wi(si)/|si|q < ∞, then

the convergence rate is at least Q-order q.
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Proof. To use Zangwill’s theorem, we define the solution set to be the set of fixed

points of the mapping, and show that the mapping is continuous and bounded,

and provide a descent function that is strictly decreased outside the solution set.

The boundedness and continuity of the mapping follow from Lemmas 1 and 2

respectively.

To show that
∑

i fi(si) is a descent function for (4.12), with the fi defined

by (4.13), we first show that the function gi(t) = fi(
√

t) is strictly concave for t > 0.

Since fi(t) = gi(t
2), we have

f ′i(t) =
t

wi(t)
= 2tg′i(t

2)

so that,

g′i(t
2) =

1

2wi(t)

Since wi(t) is strictly increasing for t > 0 by assumption, g′(t) is strictly decreasing

for t > 0 and thus g is strictly concave for t > 0. This implies that,

gi(t
2)− gi(s

2) = fi(t)− fi(s) < g′i(s
2)(t2 − s2) =

1

2wi(s)
(t2 − s2), ∀ i

for all t 6= s, t 6= 0, s 6= 0. Thus, with W = diag(w(s)),

∑
i

fi(ti)−
∑

i

fi(si) < 1
2
tT W−1t− 1

2
sT W−1s

for all t 6= s, ti 6= 0, si 6= 0. If sl is not a fixed point, then,

f(sl+1)− f(sl) < 1
2
sl+1(W l)−1sl+1 − 1

2
(sl)T (W l)−1sl

By Lemma 3, we have that sl is a fixed point if and only if ∇f(sl) ∈
R(

AT
)
. If wi(si)/si = 1/f ′i(si) is strictly decreasing on (0,∞), then fi(si) is

strictly convex on (0,∞), and the condition for optimality is that ∇f(s) ∈ R(AT ),

so we see that the only fixed point is the minimum of
∑

i fi(si) subject to As = x.

To determine the convergence rate in the case where wi(si)/si is strictly

decreasing for every i, consider the function,

Q(s, sl) = 1
2
sT (W l)−1s + 1

2σ2 ‖x−As‖2
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which is a function of two vectors s and sl. The gradient of this function with

respect to s is,

∇sQ(s, sl) =
(
(W l)−1 + σ−2ATA

)
s− σ−2ATx

Now we perform a Taylor series expansion of this vector valued function about the

point (s∗, s∗),

∇sQ(s, sl)−∇sQ(s∗, s∗) =

(
(W ∗)−1 + σ−2AAT

)
(s− s∗) + V ∗(sl − s∗) + o(

∥∥sl − s∗
∥∥) (4.15)

Where V ∗ is the diagonal matrix with diagonal elements,

[V ∗]ii = −s∗i w
′
i(s

∗
i )

wi(s∗i )2

If we put,

s = sl+1 = W lAT (AW lAT + σ2I)−1x

then the left hand side of (4.15) is zero, since,

∇sQ(sl+1, sl) = 0

and

∇sQ(s∗, s∗) = 0

Thus we have,

sl+1 − s∗ =
(
(W ∗)−1 + σ−2AAT

)−1
V ∗(sl − s∗) + o(

∥∥sl − s∗
∥∥)

=
(
W ∗ −W ∗AT (AW ∗AT + σ2I)−1AW ∗

)
V ∗(sl − s∗) + o(

∥∥sl − s∗
∥∥)

= (W ∗)
1
2P∗(W ∗)−

1
2 W ∗V ∗(sl − s∗) + o(

∥∥sl − s∗
∥∥) (4.16)

where,

P∗ = I− (W ∗)
1
2AT (AW ∗AT + σ2I)−1A(W ∗)

1
2

If we let σ → 0, then P∗ is a projection matrix onto the null space of A(W ∗)
1
2 , and

thus limσ→0 ‖P∗‖ = 1. Thus, taking norms of both sides of (4.16) and dividing by
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∥∥sl − s∗
∥∥, we get,

lim
l→∞

∥∥sl+1 − s∗
∥∥

‖sl − s∗‖ ≤
∥∥∥(W ∗)

1
2

∥∥∥
∥∥∥(W ∗)−

1
2

∥∥∥ ‖W ∗V ∗‖ = ‖W ∗V ∗‖ = max
i

s∗i w
′
i(s

∗
i )

wi(s∗i )

If wi(si)/si is strictly increasing for every i, then fi defined by (4.14) is

strictly concave on (ε,∞) for all ε > 0, and thus
∑

fi(s̃i) subject to As̃ = x and

s̃ ∈ Õj for some reduced orthant Õj has a unique maximum on the bounded part

of C̃j, the intersection of Õj and C̃ defined in Lemma 1. This point is characterized

by the condition, ∇̃f(s̃l) ∈ R(
(Ãl)T

)
. Since f is strictly concave on the interior of

each orthant, the stationary point is a local maximum in the reduced space, and

perturbations show that it is unstable under the mapping (4.12), which causes f

to strictly decrease. If s has only m non-zero elements, then ∇̃f(s̃l) ∈ R(
(Ãl)T

)

since (Ãl)T is square and non-singular by assumption. In the case of concave

fi, all other stationary points are in the strict interior of their reduced orthant,

and a “basic feasible” solution with only m non-zero values cannot jump into the

reduced orthant interior, but must follow a continuous path. Hence, the basic

feasible solutions are local minima of the

To determine the convergence rate in the case where wi(si)/si is strictly

increasing, first note that when n − m elements of s converge to zero, the con-

vergence rate is determined by the convergence rate of the elements converging to

zero. Specifically, if s1 denotes the elements of s converging to non-zero values,

and s2 denotes the elements converging to zero, then

A1s1 + A2s2 = x

and,

s1 = A−1
1 (x−A2s2) = s∗1 −A−1

1 A2s2

so that,

‖s1 − s∗1‖ =
∥∥A−1

1 A2s2

∥∥ ≤
∥∥A−1

1 A2

∥∥ ‖s2‖ =
∥∥A−1

1 A2

∥∥ ‖s2 − s∗2‖
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Thus s1 converges to s∗1 at the same rate that s2 converges to s∗2 = 0. Now note

that,

sl+1
i = wi(s

l
i) a

T
i (AW lAT )−1x

where ai is the ith column of A. If s∗i = 0, then,

|sl+1
i − s∗i | = wi(s

l
i − s∗i )

∣∣aT
i (AW lAT )−1x

∣∣

Since lims→0 wi(si)/si = 0 in the case we are considering, we have,

lim
l→∞

|sl+1
i − s∗i |
|sl

i − s∗i |
= 0

and the zeros converge superlinearly. If wi(s) is o(|s|qi), qi > 1, then

lim
l→∞

|sl+1
i − s∗i |
|sl

i − s∗i |qi
= 0

for all si converging to 0, and the zeros converge superlinearly with Q-order at

least mini qi.

4.2.1 Examples

1. Generalized Gaussian: For wi(si) = |si|2−pi with 1 < pi < 2, i = 1, . . . , n, we

have wi(si)/si strictly decreasing on (0,∞). Thus the convergence is linear

with convergence rate at least maxi(2− pi).

If 0 < pi < 1, i = 1, . . . , n, then wi(si)/si is strictly increasing on (0,∞), and

wi(si) is at least o(|si|2−pmax), so the convergence is superlinear with Q-order

at least maxi(2− pi), as determined in [89].

Note that in both cases the convergence rate is independent of the particular

solution to which the algorithm is converging.

2. Logistic: For wi(si) = si/ tanh(si), we have wi(si)/si strictly decreasing

on (0,∞), so the convergence is linear. The convergence rate is at least

maxi s
∗
i / sinh(s∗i ).

Dempster, Laird, and Rubin [31] also developed the theory of convergence

rate of EM, and applied this to the ML estimation of the regression vector in the

linear model with Gaussian scale mixture errors [32].
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4.3 Newton’s Method and the Dual MAP Problem

We have seen that when the descent function f(s) is convex as well as

concave in s2, the convergence rate ot the IRLS algorithm of §4.2 is linear. In

the case of the ρ-norms, 1 < ρ < 2, which are associated with the Generalized

Gaussian density, the convergence rate is 2−ρ. The motivation for developing this

IRLS algorithm was the fact that the ρ-norms are not twice differentiable at the

origin, and thus Newton’s method is unstable when the solution has components

near zero.

It is possible, however, in the case of convex descent functions f(s), to

formulate the dual optimization problem, which involves the conjugate function,

f ∗(φ) = sup
s

φs− f(s)

Assume the f(s) is differentiable at the origin, and f ′′(s) tends continuously toward

infinity at s → 0. Since,

d2

ds2
f(s) =

(
d2

dφ2
f ∗(φ(s))

)−1

where φ(s) = f ′(s), the conjugate function will have a bounded continuous second

derivative at the origin, and thus will be amenable to Newton’s method. This idea

was proposed for the ρ-norms by Fischer in [39].

Newton’s theorem is given in the following, taken from Ortega and Rhein-

boldt [80].

Theorem 15. Assume that ∇f is Gateaux differentiable in an open neighborhood

of s∗, where ∇f(s∗) = 0, and that the Hessian matrix Hf (s) is nonsingular and

continuous at s∗. Then s∗ is a point of attraction for the Newton iteration,

sl+1 = sl −Hf (s
l)−1∇f(sl)

and the convergence is superlinear. If in addition there are constants α < ∞ and

p ∈ (0, 1] such that,

‖Hf (s)−Hf (s
∗)‖ ≤ α ‖s− s∗‖p
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the the convergence rate is at least Q-order 1 + p. If ∇F is continuously differen-

tiable in an open neighborhood of s∗, and the second Frechet derivative of ∇f exists

at s∗ and the Hessians of the components of ∇f are non-singular at s∗, then the

convergence is Q-order 2 (quadratic).

The dual problem to the MAP estimation problem,

min
s

f(s) s.t. As = x

is readily formulated using Fenchel duality [92, 15]. Specifically, we have,

min
As=x

f(s) = max
λ

λTx− f ∗(AT λ)

The Newton iteration for the dual problem is,

λl+1 = λl − (
AHf∗(A

T λ)AT
)−1(

A∇f ∗(AT λl − x
)

where we have Hf∗(φ) = H−1
f (φ), and f ∗′(φ) = f ′−1(φ), i.e. the Hessians of

conjugate functions are inverse matrices, and the gradients are inverse functions

(they are univalent since f and f ∗ are convex.) Given the solution to the dual

problem λ∗, the primal solution s∗ is given by,

s∗ = ∇f ∗
(
AT λ∗

)

The dual algorithm will have superlinear convergence, which is certainly

more desirable than the linear convergence of the IRLS algorithm of §4.2. However,

our ultimate goal is to derive algorithms for optimizing bases A given a set of

observations x1, . . . ,xN . In this case, if we want, say, the MAP estimate of A

and s1, . . . , sN given x1, . . . ,xN , then formulating the dual with respect to the sk

makes the problem minimization over the sk and maximization over A, and there

is no descent function that can be used to control convergence. Ideally we could

formulate the dual problem with respect to A as well, but this does not seem to be

expressible in a simple form for general non-Gaussian priors on s. Hence, despite

its relatively slow convergence rate, the IRLS iteration on §4.2 will prove useful in

dictionary learning and Independent Component Analysis in subsequent chapters.
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4.4 Kernel Regression

In this section we show how the algorithm for estimation in the linear

model can be used for estimation in the kernel non-linear regression. The develop-

ment is similar to that in [54], where generalized kernel machines are defined, and

an algorithm is developed to solve the primal classification problem for the case of

the logistic link function.

Let (x1, y1), . . . , (xN , yN) be point and function value pairs observed from

a nonlinear function y(x) : Rn → R. Consider a linear approximation of y given

by,

wTx + b = y , wTw ≤ A2

Let Φ be the matrix with xi in column i, and let zi = wTxi + b − yi denote the

residuals. In kernel methods, the xi are possibly infinite dimensional “feature”

vectors residing in feature space, but whose inner products with each other can be

calculated in observation space using the kernel.

We define a probabilistic model in which z is random with symmetric

density p(z), and attempt to find parameters w and b that minimize the negative

log likelihood −∑
log p(zi) ≡ d(z) of the samples,

min
z,w,b

d(z) s.t. z = ΦTw + b e− y , wTw ≤ A2

where e is the vector of all 1’s. This is a concave program. For the Lagrangian,

we have,

L(z,w, b, λ, µ) = d(z) + λT
(
ΦTw + b e− y − z

)
+ µ (wTw − A2)

Minimizing over w and z and treating b as a Lagrange multiplier, we get the dual

problem,

min
λ∈ ∂f

min
µ≥0

1

4µ
λTKλ − yTλ + d∗(λ) + A2µ s.t. eT λ = 0 (4.17)

where K = ΦTΦ. Substituting the optimal µmin = 1
2A
‖λ‖K, we get,

min
λ∈ ∂f

A ‖λ‖K − yTλ + d∗(λ) s.t. eT λ = 0
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The requirement for formulation of the dual problem is that d(z) be convex.

4.4.1 General algorithm for kernel regression.

The dual of the general regression problem in terms of λ and µ is,

min
λ∈ ∂f

min
µ≥0

1

4µ
λTKλ − yTλ + d∗(λ) + A2µ s.t. eT λ = 0 (4.18)

From §3.5, we know that when d(z) is convex in z2, d∗(λ) is concave in λ2, and the

following algorithm can be used to minimize (4.18). Given µl, let Ql = 1
2µlK +

Π(λl), and set,

λl+1 = arg min
λ∈∂f

1
2
λTQl λ + yT λ s.t. eT λ = 0

and,

µl = 1
2
‖λk‖K

When range ∂f = R, the algorithm reduces to,

λl =

(
(Ql)−1 − (Ql)−1eeT (Ql)−1

eT (Ql)−1e

)
y = r− eT r

eTp
r

where r and p are defined by the equations Qlr = y and Qlp = e respectively.

For robust regression (in the primal space), however, we want d(z) to

concave in z2, so that d∗(λ) is convex in λ2. In this case we can update λ with a

standard Newton step, replacing Π(λl) by Hf∗(λ
l), however we must in principle

impose safeguards in the optimization to ensure decrease of the objective.

4.4.2 Examples

1. The indicator function d(z) = 0, |z| ≤ δ, d(z) = ∞, |z| > δ, has,

d∗(λ) = δ|λ| λ ∈ R

2. Vapnik’s ε-insensitive loss function d(z) = 0, |z| <= ε, d(z) = C(|z| −
ε), |z| > ε, has,

d∗(λ) =





δλ |λ| ≤ C

∞ |λ| > C
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3. The ε-insensitive quadratic loss function d(z) = 0, |z| <= ε, d(z) = 1
2σ2 (|z| −

ε)2, |z| > ε, has,

d∗(λ) =
1

2
σ2λ2 + δ |λ| λ ∈ R

For this function, range ∂f = domf ∗ = R, and (4.17) can be optimized for λ

using a relatively simple iterative reweighted least squares algorithm. As in

the similar classification example, this function is less robust to outliers than

the asymptotically linear functions.

4. In general, if d(z) is symmetric with d(0) = 0, and d̃(z) is defined by,

d̃(z) =





0 |z| ≤ ε

d(|z| − ε) |z| > ε

then the conjugate is given by,

d̃∗(λ) = d∗(λ) + ε|λ|

5. The loss function d(z) corresponding to the negative logarithm of the lo-

gistic derivate, given by d(z) = − log s − log(1 − s) − log 4, where s =

(1 + exp(−z))−1, has,

d∗(λ) =




− log(1− |λ|) |λ| ≤ 1

∞ |λ| > 1

Since d(z) is asymptotically linear, it is robust to outliers.

6. Huber’s loss function, d(z) = 1
2
z2, |z| ≤ c, d(z) = c|z| − c2/2, |z| > c, has,

d∗(λ) =





1
2
λ2 |λ| ≤ c

∞ |λ| > c

This function is also robust to outliers.



5

Dictionary Learning

This chapter considers learning overcomplete data representations based

on a linear generative model [36, 79, 67, 68, 50, 24, 63, 43]. Given observations

X = [x1 . . . xN ], the problem is to estimate the parameters A ∈ Rm×n and S =

[s1 . . . sN ] in the Bayesian linear model,

xk = Ask + νk, k = 1, . . . , N (5.1)

assuming that the sources xk are independent. The low noise limit is equivalent

to the case in which the noise random variables νk are not present. Since Field

[36], much consideration has been given to representations that assume sparse

and distributed sources, i.e. many source components with relatively few of the

components having significant magnitude, or “active”, at any given time. One

way to ensure a sparse representation is to take A to be “overcomplete”, or have

more columns than rows. However, sparse coding can also be carried out when the

matrix A is not overcomplete, for example when the data is high dimensional but

occupies a relatively low dimensional manifold [69].

72
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5.1 The model

We assume the standard Bayesian linear model, with a set of observations

X = [x1 · · ·xN ], xk ∈ Rm, generated according to,

x = As + ν (5.2)

where A = [a1· · · an] contains the basis vectors, s is the random vector of co-

efficients, and ν is a random noise vector. Results from the standard Gaussian

case should be familiar and will be used repeatedly in the development of the

non-gaussian algorithms. In particular, if s ∼ N (0,Σs) and ν ∼ N (0,Σν) are

uncorrelated, then for the likelihood of A we have,

p(x;A) =

∫
p(x|s;A) p(s) ds = N (

0,Σν + AΣsA
T
)

(5.3)

and for the posterior of s given x, we have

p(s|x;A) =
p(x|s;A) p(s)

p(x;A)
= N (µs|x,Σs|x) (5.4)

where,

µs|x = ΣsA
T (AΣsA

T + Σν)
−1x , Σs|x = (ATΣ−1

ν A + Σ−1
s )−1 (5.5)

The standard EM update for A is,

A =

(
N∑

k=1

yµT
sk|xk

)(
N∑

k=1

µsk|xk
µT

sk|xk
+ Σsk|xk

)−1

(5.6)

We shall be interested primarily in the batch estimation problem: given N indepen-

dent observations X = [x1· · ·xN] from the model (5.2), determine the Maximum

Likelihood estimate of A. We take A to be non-random, possibly constrained to

a compact set. Letting S = [s1· · · sN], the likelihood can be written,

p(X;A) =

∫
p(X|S;A) p(S) dS =

N∏

k=1

∫
p(xk|sk;A) p(sk) dsk (5.7)

For non-gaussian component or noise priors, the integral does not exist in closed

form. The algorithms described in this paper approach this problem in different
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ways. We shall assume for simplicity of exposition that the noise is distributed

N (0,Σν), and only the component priors are non-gaussian, though the more gen-

eral case is easily handled.

5.2 Laplace approximations and super-gaussian priors

The first order Laplace approximation [68], [91, p. 103] of an integral
∫

F (x) dx on Rn is given by,

∫
F (s) ds ≈ (2π)

n
2 F (ŝ)

∣∣ det Hf (ŝ)
∣∣− 1

2

where f(s) ≡ − log F (s), Hf (s) is the Hessian of f(s), and ŝ is a maximum of F (s)

such that ∇F(ŝ) = 0. This approximation is derived by expanding − log F (s) =

f(s) in a second order Taylor series about the mode of F (x).

Now, for a particular integral in (5.7), if we define f(s) = − log p(s), and

define Hf (s) to be the Hessian of f , then,

− log p(x|s;A) p(s) =
1

2
‖x−As‖2

Σ−1
ν

+ f(s) + const. (5.8)

and the Hessian is ATΣ−1
ν A + Hf (s). The Laplace approximation is then,

p(x;A) ≈ (2π)
n
2 · p(x|ŝ;A) · p(ŝ) ·

∣∣det
(
ATΣ−1

ν A + Hf (ŝ)
)∣∣− 1

2

The idea of the Lewicki-Sejnowski algorithm is to minimize the negative logarithm

of this approximation, which is proportional to,

1

2
‖x−Aŝ‖2

Σ−1
ν

+ f(ŝ) +
1

2
log

∣∣det
(
ATΣ−1

ν A + Hf (ŝ)
)∣∣ (5.9)

by natural gradient descent [1] in A, concurrently updating ŝ to minimize (5.8).

However, Strongly super-Gaussian densities may not be twice differen-

tiable on Rn. For example, Generalized Gaussian densities with shape parameter

ρ < 2 are not twice differentiable at the origin. Thus the Laplace approximation

is may be unstable when used with these densities.
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5.3 Lewicki-Sejnowski algorithm

The Laplace approximation is used in [68] to derive and algorithm for

estimating A. The derivation given here differs somewhat from that given in [68,

app. A]. For the natural gradient (see [1], also §6.2.3 below) of (5.9) with respect

to A, we have,

AAT ∂

∂A
(·) = AAT

(
−Σ−1

ν (x−Aŝ) ŝT −Σ−1
ν A

(
ATΣ−1

ν A + Hf (ŝ)
)−1

)
(5.10)

Note that at a stationary point of (5.8), we have,

∇f(ŝ) = ATΣ−1
ν (x−Aŝ) (5.11)

Substituting this into (5.10), we get,

AAT ∂

∂A
(·) = −A∇f(ŝ) ŝT −AATΣ−1

ν A
(
ATΣ−1

ν A + Hf (ŝ)
)−1

= −A
(∇f(ŝ) ŝT + I

)
+ AHf (ŝ)

(
ATΣ−1

ν A + Hf (ŝ)
)−1

(5.12)

Arguments are made in [68] to the effect that in the low noise case, the second

term in (5.12) tends to zero. Neglecting the second term in (5.12), we have the

following algorithm, where we update ŝ using the generalized FOCUSS iteration,

which is stable when the Newton update (suggested by [68]) is not.

Lewicki-Sejnowski algorithm

Choose A0 ∈ Rm×n, α ∈ (0, 1). Set s0
k = (A0)+yk , k = 1, . . . , N .

for l = 0, 1, 2, . . . ,

for k = 1, . . . , N

[W l
k]ii = [sl

k]i/[∇f(sl
k)]i, i = 1, . . . , n

sl
k = W l

k(A
l)T (AlW l

k(A
l)T + Σν)

−1yk , k = 1, . . . , N

end

Al+1 = (1− α)Al + α
∑N

k=1∇f(sl
k) (sl

k)
T

end

The rule is derived for the case of one observation, and details are left open as to

the best way to implement the algorithm in batch or adaptive mode. There is also
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some freedom in the implementation of finding ŝ, where the optimization may not

be performed completely, but only one or two iterations made.

The Hessian of super-gaussian priors

When optimizing an arbitrary function f(x) using a sequential quadratic

algorithm, one naturally thinks first to try Newton’s method, using the Hessian

of f as the quadratic weighting matrix, at least in a neighborhood of the opti-

mum. However, the application Newton’s method requires the stability of sec-

ond derivatives. As it happens, the peakedness characteristic of super-gaussian

distributions may well be at odds with the boundedness of the Hessian. For ex-

ample, consider the Generalized Gaussian, or Exponential Power family, in which

p(s) ∝ exp(−∑ |s|ρ). When ρ < 2, this density becomes super-gaussian, but it

also loses twice-differentiability at the origin.

5.4 Lagrangian MAP

This approach can be seen as forming a joint MAP estimate of A and S.

The approximation is then,

arg max
A

p(X|A) ≈ arg max
A

max
S

p(S|X;A)

With the constraint ‖ai‖ ≤ 1 for i = 1, . . . , n, the Lagrangian is,

L(A,S, λ, µ) =
N∑

k=1

[
f(sk) + λT

k (xk −Ask)

]
+

n∑
i=1

µi(a
T
i ai − 1) (5.13)

where A = [a1 . . . an]. The algorithm can also be seen as a Newton method for

finding a stationary point of the Lagrangian using sequentially updated estimates

of the Lagrange multipliers. The gradient of (5.13) with respect to A is,

−
N∑

k=1

λks
T
k + A diag(µ) (5.14)
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The Hessian operator is diag(µ) multiplied on the right, and the inverse Hessian

operator is diag(µ)−1 multiplied on the right. Thus for the Newton direction, given

the estimates λ̂k, ŝk, k = 1, . . . , N , and µ̂, we have,

∆A = −
(

N∑

k=1

λ̂kŝ
T
k

)
diag(µ̂)−1 + A (5.15)

A general approximate Newton algorithm for finding a stationary point of the

Lagrangian with respect to A is thus defined by the following.

Lagrangian Newton algorithm

Choose A0 ∈ Rm×n, α ∈ (0, 1). Set s0
k = (A0)+xk , k = 1, . . . , N .

for l = 0, 1, 2, . . . ,

for k = 1, . . . , N
[
W l

k

]
ii

=
[
sl

k

]
i
/
[∇f(sl

k)
]
i
, i = 1, . . . , n

λl
k = (AlW l

k(A
l)T + Σν)

−1xk

end

µl =
N∑

k=1

sl
k ¯ (Al)T λl

k

Al+1 = (1− α)Al + α

(
N∑

k=1

λl
k(λ

l
k)

TAlW l
k

)
diag(µl)−1

sl+1
k = W l

k(A
l+1)T (Al+1W l

k(A
l+1)T + Σν)

−1xk , k = 1, . . . , N

end

The symbol ¯ indicates component-wise multiplication.

The Lagrangian Newton algorithm was derived in [81] with the goal of

formulating a joint iteration over A and S to increase the joint posterior likelihood.

The difficulty encountered involves the attempt to update A and S such that

AS = X, and the joint posterior likelihood is increased. This leads to the sort of

double computation of λ each iteration, where in a sense, source predictions are

computed using the current A, then A is updated using these predictor sources,

and finally the sources are updated using the new A to guarantee feasibility. In

fact the algorithm seems to work when the algorithm is modified to update the



78

sources only once, despite the lack of guarantee that the new feasible A and S

will increase the likelihood. In our comparison tests, we also make two iterations

of the source updates in the Lewicki-Sejnowski algorithm and the Kreutz-Delgado

FOCUSS based algorithms to ensure uniformity in the comparison.

5.5 Variational Bayes

For a strongly super-gaussian prior p(s) = exp(−f(s)), we have f(s) =

g(s2) with g concave and increasing on (0,∞). By definition of the concave con-

jugate [92], we have f(s) = g(s2) = infξ ξs2/2− g∗(ξ/2), and thus,

p(s) = exp(−f(s)) = sup
ξ

exp

(
−ξ

2
s2

)
exp

(
g∗

(
ξ

2

))
= sup

ξ
N (s ; 0, ξ−1) h(ξ)

Using this to perform the integration as in (5.3), we have the approximation,

p(x;A) ≈ sup
ξ
N (

x;0,Σ + AΛ−1AT
) n∏

i=1

ϕ(ξi) ≡ sup
ξ

L(x;A, ξ)

An EM-type iteration is performed to maximize this lower bound with respect

to the parameter vector ξ, or equivalently minimize an upper bound on the free

energy,

− log L(x, s; ξ) ∝ 1

2
‖x−As‖2

Σ−1 +
n∑

i=1

[
ξi

2
s2

i − g∗
(
ξi

2

)]
(5.16)

Taking the expected value with respect to the approximate posteriorN (s; µ
(k)
x , Σ

(k)
x )

and minimizing with respect to ξ, we have,

ξi

2
= g∗′−1

(
EQk

[s2
i ]

)
= g′

(
EQk

[ s2
i ]

)
=

f ′(σi)

2σi

where σ2
i = EQk

[ s2
i ]. Thus we can write the weight matrix as,

[Λ]i,i =
f ′(σi)

σi

(5.17)

As in [43], we generate an approximate Maximum Likelihood estimate of A by

minimizing (5.16) for A along with {ξk}. This leads to the standard EM update

for A (5.6).
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Variational EM algorithm

Choose A0 ∈ Rm×n. Set Λ0
k = I , k = 1, . . . , N .

for l = 0, 1, 2, . . . ,

for k = 1, . . . , N

Bl
k = Λl

k −Λl
k

(
AlΛl(Al)T + Σν

)
Λl

kA
l

sl
k = Λl

k(A
l)T

(
AlΛl

k(A
l)T + Σν

)−1
xk

σl+1
i =

√
[sl

k]
2
i +

[
Bl

k

]
ii

,
[
Λl+1

k

]
ii

= σl+1
i /f ′(σl+1

i )

end

Al+1 =

(
N∑

k=1

xk(s
l
k)

T

)(
N∑

k=1

Bl
k + sl

k(s
l
k)

T

)−1

end

In particular, for the Laplacian prior, p(s) ∝ exp(−|s|), and f(s) = |s|.
Thus the update of the weight matrix is,

[
Λk,l

]
i,i

=
1

σi

This update differs from the case of assuming a Gaussian prior for p(x) with

unknown variance, and estimating the variance using an EM algorithm, only by a

square, as in the latter case we have,

[
Λk,l

]
i,i

=
1

σ2
i

5.6 Monte Carlo Experimental Comparison

We performed a Monte Carlo experiment to assess the ability of the var-

ious algorithms to learn overcomplete generating matrices.

First, the following experiment was performed fifty times. We generated

a 2× 3 A matrix, and 200 data points by choosing one of the three columns with

equal probability, multiplying by a random scalar uniform on (−1, 1) and adding

zero mean Gaussian noise with standard deviation 0.005. We ran the Girolami

[43] algorithm, the VB algorithm with Jeffrey’s prior, the Lagrangian algorithms

for ρ = 1.0 and ρ = 1.1, the FOCUSS-CNDL algorithm [62], the FOCUSS-CNDL
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algorithm with scaled gradient, and the Lewick-Sejnowski algorithm with Gen-

eralized Gaussian ρ = 1.1 and Logistic priors. We started each from the same

initial point and ran until convergence, or a maximum of 500 iterations. We cal-

culated the best matching assignment of the matrix solution by finding the pair

with highest normalized inner product, then finding the pair from the remaining

vectors with the highest normalized inner product, and so on. We did this for the

solution generated by each algorithm comparing to the known generating matrix,

and stored the normalized inner products.

We made Box-Whiskers plots from the resulting inner product data,

which had 50 · 200 = 10000 points for each algorithm. The column numbers

correspond to the algorithms as follows:

1. VB algorithm with Laplacian prior [43]

2. VB algorithm with Jeffrey’s prior

3. Lagrangian Newton algorithm described in this thesis and [81], using Gener-

alized Gaussian prior with ρ = 1.0

4. Lagrangian Newton algorithm with ρ = 1.1

5. The algorithm proposed in [62]

6. The algorithm in [62] but scaled gradient columns as in the Lagrangian New-

ton algorithm

7. Lewicki-Sejnowski algorithm [68] with Generalized Gaussian prior ρ = 1.1

8. Lewicki-Sejnowski algorithm with Logistic prior.

The red line marks the median, and the box encloses the central two quartiles.

The lines (i.e. “whiskers”) mark the extent almost all of the data, with outliers

plotted as red crosses.
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Figure 5.1: Box plot of inner product of best matching columns with true gener-

ating matrix for the algorithms with parameters as enumerated in the text. 2× 3

A case with sparsity 1, i.e. 1 non-zero element in s.

This experiment was repeated with 4×8 matrices, multiplying by random

source vectors with 2 non-zero elements distributed U(−1, 1), with Gaussian noise

σ = 0.005 added to the resulting x.

The experiment was repeated a third time with 10 × 20 A matrices,

multiplying by random source vectors with 1 to 5 (equal probability) non-zero

elements distributed U(−1, 1), with Gaussian noise σ = 0.005 added to x.

In each of the experiments, the Lagrangian Newton algorithm (4) per-

forms best, in terms of greatest median, or largest number of correct vectors,

with success indicated by normalized inner product (angle cosine) greater than

some threshold such as 0.99. The similarly derived algorithm (6) performs sim-

ilarly to the Lagrangian Newton algorithm. The algorithm (5) without column

re-normalization essentially stops immediately because it is based on the error in

the representation without scaling as in the Lagrangian type of normalization.

It is also apparent that the VB algorithm with the Laplacian bound

performs worse than the Jeffrey’s bound, as suggested by the VB algorithm’s goal

of minimization of a KL divergence bound.
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Figure 5.2: Box plot of inner product of best matching columns with true generat-

ing matrix, for the algorithms with parameters as enumerated in the text. A 4×8

and s with sparsity 2.
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Figure 5.3: Box plot of inner product of best matching columns with true gen-

erating matrix,for the algorithms with parameters as enumerated in the text. A

10× 20 and s with sparsity 1 to 5.
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The Lewicki-Sejnowski (LS) algorithms can be seen as approximations of

the Lagrangian Newton algorithm (without column normalization.) In the com-

plete case of square A, the Lagrangian Newton algorithm reduces to the LS al-

gorithm and standard ICA Maximum Likelihood algorithm. The LS algorithm is

unstable when used with the Laplacian prior (ρ = 1.0), but is stable with ρ = 1.1,

and performs better with this prior at finding sparse generating bases than with

the Logistic prior. The LS algorithm seems to avoid matrix updates, but iterations

to find the source estimates, e.g. Newton or other IRLS steps, invariably involve

computation of matrix inverses.



6

Independent Component Analysis

This chapter considers the basic ICA model,

x = As

where A ∈ Rn×n and there is no noise present, so that s = Wx where W = A−1.

In this context, the emphasis is not necessarily on sparse estimation (though speech

signals for example do tend to have sparse densities) but rather on modeling ar-

bitrary densities of the sources pi(si), only assuming that they are mutually in-

dependent. We shall show that the theory developed for estimation with strong

super-Gaussians and Gaussian scale mixtures can be extended to mixture mod-

els of these densities. This constitutes a generalization of the Gaussian mixture

model, offering greater flexibility in the adaptive source density with the same

“complexity” in the structural risk minimization sense [100].

We first review the basic Infomax algorithm of Bell and Sejnowski, and

the Natural Gradient algorithm of Amari.

84
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6.1 Maximum Likelihood Estimation

Given i.i.d. data x1, . . . ,xT , we consider the ML estimate of W = A−1.

For the density of x, we have,

px(x) =
T∏

t=1

| detW| ps(Wxt)

Let yt = Wxt be the estimate of the sources st, and let qi(yi) be the density model

for the ith source. For the log likelihood of the data then, we have,

L(W) =
T∑

t=1

log | detW|+
n∑

i=1

log qi(yit) (6.1)

The gradient of this function is proportional to,

W−T +
1

T

T∑
t=1

ϕ(y)xT
t (6.2)

where we define the score function,

ϕ(y) = ∇log q(yt)

and scale by 1/T .

Note that if we multiply (6.2) by WTW on the right, we get,

∆W =

(
I +

〈
ϕ(yt)y

T
t

〉
T

)
W (6.3)

where 〈·〉T denotes the average over the T data points. This transformation is in

fact a positive definite linear transformation of the matrix gradient. Specifically,

using the matrix inner product, for arbitrary V ∈ Rn×n, we have,

〈
V,VWWT

〉
=

〈
VW,VW

〉
> 0 (6.4)

when W is full rank. The direction (6.3) is known as the “natural gradient” [1].
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6.2 Stability of ICA and Asymptotic Newton’s method

The stability of the ICA algorithm is determined by the positive defi-

niteness of the function (6.1). We can determine asymptotic, or large sample size,

stability, by replacing the averages 〈·〉T by the expectation of these quantities. The

posit!ive definiteness of (6.1) depends on the positivity of the eigenvalues of the

Hessian, i.e. the matrix of partial second derivatives with respect to the elements

of W. A Newton method will be derived by applying the inverse of the Hessian

linear operator to the gradient (6.2).

6.2.1 Stability

Denote the gradient (6.2) by G(W) with elements gij(W). Taking the

derivative of the gradient (6.2), we find,

∂gij(W)

∂wkl

= −[W−1]li[W
−1]jk + ϕ′(wT

k x)xjxlδik

where wT
k is the kth row of W, and δik is the Kronecker delta symbol. To see

how this linear Hessian operator transforms an argument B, let C = H(B) be the

transformed matrix. Then we calculate,

cij = −
∑

k

∑

l

[W−1]li[W
−1]jkbkl + ϕ′(yi)xj

∑

l

bilxl

The first term of cij can be written,

∑

l

[W−1]li[W
−1B]jl =

∑

l

[W−T ]il[B
TW−T ]lj = W−TBTW−T

Writing the second term in matrix form as well, we have

C = H(B) = −W−TBTW−T + diag(ϕ′)BxxT (6.5)

The asymptotic stability of the algorithm is determined by the positivity of the

eigenvalues of the expected value of this transformation evaluated at the optimum

[2]. Assuming that the model holds, the source estimates at the optimal W will
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be independent. We also assume that the mean of the data has been removed, so

that the sources are zero mean as well.

It will be easier to calculate the expected value of the Hessian if we rewrite

the transformation (6.5) in terms of the source estimates y since the sources are

assumed to be independent and zero mean. At the optimum, we may assume that

the source density models qi(yi) are equivalent to the true source densities pi(si).

We first write,

C = −(BW−1)TW−T + diag(ϕ′)BW−1WyyTW−T

where diag(ϕ′) is the diagonal matrix with diagonal elements ϕ′(yi). Now if we

define C̃ = CWT and B̃ = BW−1, then we have,

C̃ = B̃T + diag(ϕ′)B̃yyT (6.6)

Writing this equation in component form and taking the expected value we find

for the diagonal elements,

E[c̃ii] = b̃ii + E

[
ϕ′(yi)

∑

k

b̃ikykyi

]
= b̃ii(1 + γ2

i ) (6.7)

where we define γi = Eϕ′(yi)y
2
i . The cross terms drop out since the expected value

of αiyiyk is zero for k 6= i by the independence and zero mean assumption on the

sources. Now we note [2, 19] that the off-diagonal elements of the equation (6.6)

can be paired as follows,

E[c̃ij] = b̃ji + E

[
ϕ′(yi)

∑

k

b̃ikykyj

]
= b̃ji + αib̃ijσ

2
j

E[c̃ji] = b̃ij + E

[
ϕ′(yj)

∑

k

b̃jkykyi

]
= b̃ij + αj b̃jiσ

2
i

where we define αi = Eϕ′(yi) and σ2
i = Ey2

i . Again the cross terms drop out

from the expectation of independent zero mean random variable. Putting these

equations in matrix form, we have,

E[c̃ij]

E[c̃ji]


 =


αiσ

2
j 1

1 αjσ
2
i





b̃ij

b̃ji


 (6.8)



88

If we denote the linear transformation defined by equations (6.7) and (6.8) by

C̃ = H̃(B̃), then we have,

C = H(B) = H̃
(
BW−1

)
W−T

Thus by reasoning similar to (6.4), we see that the expected value of H is a positive

definite transformation if and only if the expected value of H̃ is positive definite

and W is full rank.

The conditions for positive definiteness of H̃ can be found by inspection

of equations (6.7) and (6.8). With our definitions,

γi = E[ϕ′i(yi)y
2
i ], αi = E[ϕ′i(yi)], σ2

i = E[y2
i ]

the conditions can be stated [2] as,

1. 1 + γi > 0, ∀ i

2. αi > 0, ∀ i, and,

3. αiαjσ
2
i σ

2
j − 1 > 0, ∀ i 6= j

6.2.2 Newton Method

The inverse of the Hessian operator will be given by,

B = H−1(C) = H̃−1
(
CWT

)
W (6.9)

The calculation of B̃ = H̃−1(C̃) can again be found by inspection of (6.7) and

(6.8),

b̃ii =
c̃ii

1 + γi

, ∀ i (6.10)

b̃ij =
αjσ

2
i c̃ij − c̃ji

αiαjσ2
i σ

2
j − 1

, ∀ i 6= j (6.11)

The Newton direction is given by taking C = G(W), the gradient (6.2),

∆W = H̃−1
(
GWT

)
W (6.12)
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6.2.3 Natural Gradient

First, note that if we take H̃ to be identity in (6.12), then we get,

∆W = GWTW (6.13)

which is the natural gradient, shown previously to be a positive definite transfor-

mation of the gradient.

The natural gradient transformation can also be derived by a sort of affine

scaling transformation. In affine scaling, one makes a linear change of variable,

computes the gradient with respect to the new variable in the transform space,

then maps the transform gradient back into the original space.

In linear programming, the linear transformation is chosen to map the

current iterate of the solution vector to the point [1, 1, . . . , 1]T . This has the effect

of scaling the gradient so that it does not get “bogged down” as the iterations get

closer to the positive orthant boundary.

The natural gradient transformation can be seen as mapping the current

iterate of W to the identity matrix. Specifically, given a matrix function, f(W),

suppose we make the linear change of variable Z = WV−1. Then

∇f̃(Z) = ∇f(ZV)VT

Then transform back into the W space,

∇f̃(Z)V = ∇f(W)VTV

Taking V = Wl, the current iterate of W is equivalent to mapping each current

iterate to the identity matrix in the Z space, calculating the transform gradient,

and transforming back.

This heuristic derivation cannot completely account for the success of the

natural gradient, however, since we may just as well consider the transformation

Z = V−1W, multiplying on the left instead of the right. This also maps to identity,
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and produces the positive definite transformation of the gradient, WWTG. Ex-

perience shows however that this direction does not have good scaling properties,

while the natural gradient is found to perform well.

The explanation may be seen from the fact that multiplying by the inverse

on the right is equivalent to mapping to the W to the “tilde” space, as when we

defined B̃ = BW−1 to get (6.6). This is a sort of partial Newton method which

forgoes inverting H̃.

The natural gradient has also been derived by Amari from the standpoint

of Lie Algebras, and by Cardoso and Laheld as the “relative gradient” [19], where

it is shown that the relative gradient has the property of equivariance, i.e. the

variance of the estimate is independent of the value of the true parameter being

estimated.

6.3 ICA with Strongly Super-Gaussian Sources

The properties of strong super-Gaussians (and Gaussian scale mixtures)

can be used to derive an EM-based ICA algorithm for estimation with sharply

peaked priors whose Hessian is unbounded, making Newton’s method unstable.

When the qi(yi) densities are strongly super-Gaussian, the Q function of the EM

algorithm for the likelihood (6.1),

Q(W|Wl) = log | detW| − 1
2

〈
xT

t WTΛl
t

−1
Wxt

〉
T

(6.14)

where Λl
t
−1

has diagonal elements,

λl
it

−1
= ξl

it =
f ′(yl

it)

yl
it

where yl
t = Wlxt, and fi(yi) = − log qi(yi).

6.3.1 Stability of EM iteration

In this section we consider the stability of the algorithm using analysis

similar to [2]. We show that when each source is strongly super-Gaussian, the Q
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function is convex in W.

Taking second derivatives as we did for the stability analysis and Newton

method, we find for the Hessian operator of (6.14),

H(B) = −W−TBTW−T + Λl
t

−1
BxxT (6.15)

which is equivalent to the Hessian of actual likelihood except that ϕ′i(yi) = f ′′i (yi)

is replaced by ϕ(yi)/yi = f ′i(yi)/yi. With the new definitions,

γi = E[ϕ(yi)yi], αi = E[ϕ(yi)/yi], σ2
i = E[y2

i ]

the conditions for the positive definiteness of the function (6.14) have the same

form as before,

1. 1 + γi > 0, ∀ i

2. αi > 0, ∀ i, and,

3. αiαjσ
2
i σ

2
j − 1 > 0, ∀ i 6= j

If we assume that ϕi(yi) is derived from the true density, i.e. qi(yi) = pi(yi), then

the stability conditions are always satisfied, provided the moments are finite. The

first condition is satisfied since E[ϕ(y)y] = 1 by the well-known property of the

score function, which is readily derived by integrating by parts.

The symmetry and unimodatlity of strongly super-Gaussian qi(yi) implies

that ϕi(yi) has the same sign as yi, and ϕi(yi)/yi > 0 for all yi, so that the second

condition will always be satisfied as well when the moment is finite.

The last condition is satisfied by the Cauchy-Schwartz inequality,

E[ϕi(yi)/yi]E[y2
i ] > E[ϕi(yi)yi]

2 = 1

unless ϕi(yi) ∝ y3
i , but the latter is only the case for the Generalized Gaussian

density with ρ = 4, which is strongly sub-Gaussian, and thus not strongly super-

Gaussian.
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6.3.2 Cramer-Rao Lower Bound on ICA Variance

We calculated the expected Hessian, or Fisher Information matrix, of the

ICA log likelihood near an optimal separating solution W∗ with and source model

in section §6.2.1. Since ML estimates are asymptotically unbiased, efficient, and

Normal with covariance given by the inverse Fisher Information matrix we can use

the results of §6.2.1 to calculate bounds on the covariance of the ML estimate for

different source densities.

We use the global system C = WA, whose optimal solution is always

identity, I. In §6.2.1, we calculated the expected Hessian in the global system

space and found that it depended only on the source densities. The inverse of this

matrix gives a lower bound on the variance of elements estimate of the identity

given by a ML estimate W∗.

For the covariance of the diagonal elements, we have,

E(ĉii − 1)2 ≥ 1

Ef ′′i (si)s2
i

Let αi = Ef ′′i (si) and σ2 = Es2
i . For the off-diagonal estimates whose “true”

parameter value is 0, we have,

Eĉ2
ij ≥

αjσ
2
i

αiαjσ2
i σ

2
j − 1

Suppose for simplicity that the fi = log pi are Generalized Gaussian with the

same shape parameter p. Then the required moments can be calculated in closed

form. For the off diagonal elements, the minimum variance of the global systems

C = WA of an unbiased estimator is plotted in Figure 6.1.

6.3.3 Strongly Super-Gaussian Mixtures

To model arbitrary densities using the global convergence properties of

the EM algorithm, we can consider mixture models with strongly super-Gaussian

densities. This constitutes a generalization of the basic Gaussian mixture model

while maintaining the simplicity and monotonicity of the EM update [82].
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Figure 6.1: Plot of Cramer-Rao lower bound on standard deviation (also asymp-

totic standard deviation of ML estimator) for off-diagonal elements of the global

system C = WA, per sample. For N samples, the values are divided by N . The

magnitude of the off-diagonal cij of the global system determines the interference

between the estimates of sources si and sj. The variance becomes infinite for the

Gaussian p = 2 as expected from the non-identifiability of Gaussian bases shown in

§1.2.1. The expected second derivative of f (or first derivative of the score function

ϕ,) and the variance, are actually positive and finite for p > 0.5, going to zero at

p = 0.5. The variance also tends to zero as p →∞.

Mixture densities have the form,

p(s) =
m∑

j=1

αj

√
βj pj

(√
βj

(
s− µj

))
,

∑
j

αj = 1, αj ≥ 0, βj > 0

We first consider a single square basis, or mixing matrix, A with super-gaussian

mixture sources, so that the pj(s) are assumed to be strongly super-gaussian. Note

that p(s) is not necessarily super-gaussian, only the mixture components densities

pj(s). Later we extend the model to mixtures over mixing or basis matrices.

Initially, the jth source mixture component density of the ith source will be denoted

pij(sij) with mode (location) µij and inverse square scale βij. In the Gaussian case

pij(s) = N (s ; µij, β
−1
ij ), µij is the mean and βij is the inverse variance. For general
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Figure 6.2: Example of adaptive convergence of the Generalized Gaussian mixture

model. The histogram is plotted in red, the converged mixture components are

plotted in green, and their sum, which is the approximating mixture density, is

plotted in blue.

strongly super-gaussian densities, µij is the mean only if the mean exists, and βij

is the inverse variance divided by
∫

s2pij(s)ds only when the latter exists.

6.3.4 ICA with Strongly Super-Gaussian Mixture Sources

Let the data xk, k = 1, . . . , N be given, and consider the instantaneous

model,

x = As

where A ∈ Rn×n is non-singular, and the sources si, i = 1, . . . , n, are independent

with strongly super-gaussian mixture densities. We allow the number of source

mixture components mi to differ for different sources.

We wish to estimate the parameter W = A−1 and the parameters of the

source mixtures,

θ = {wi, αij, µij, βij} , i = 1, . . . , n , j = 1, . . . , mi
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where the vector wi is the ith column of WT . We define X ≡ [x1 · · ·xN ].

The source mixture model is equivalent to a scenario in which for each

source si, a mixture component ji is drawn from the discrete probability distribu-

tion P [ji = j] = αij, 1 ≤ j ≤ mi, then si is drawn from the mixture component

density piji
. We define jik to be the index chosen for the ith source in the kth

sample.

To use the EM algorithm, we define the random variables zijk as follows,

zijk ≡





1, jik = j

0, otherwise

Let Z = {zijk}. Then we have,

p(X; θ) =
∑
Z

N∏

k=1

| detW|
n∏

i=1

mi∏
j=1

[
αij

√
βij pij

(√
βij

(
wT

i xk − µij

))]zijk

For the variational free energy, we have F (ql; θ) = F l(θ)+H(Z; θl), where H(Z; θl)

is the entropy of the Z evaluated for θ = θl, and F l(θ) is given by,

−N log | detW| +
N∑

k=1

n∑
i=1

mi∑
j=1

ẑl
ijk

[
− log αij − 1

2
log βij + fij

(√
βij

(
wT

i xk − µij

))]

where we define fij ≡ − log pij and ẑl
ijk ≡ E[zijk|xk; θ

l]. We also define yijk ≡
√

βij

(
wT

i xk − µij

)
, and,

yl
ijk ≡

√
βl

ij

(
wl

i

T
xk − µl

ij

)
(6.16)

The ẑl
ijk = P [zijk = 1|xk; θ

l] are determined as in the usual Gaussian EM algorithm,

ẑl
ijk =

p(xk|zijk = 1; θl)P [zijk = 1; θl]∑mi

j′=1 p(xk|zij′k = 1; θl)P [zij′k = 1; θl]
=

αl
ij

√
βl

ij pij

(
yl

ijk

)

∑mi

j′=1 αl
ij′

√
βl

ij′ pij′
(
yl

ij′k

) (6.17)

The new αij are found by maximizing F l(θ) such that
∑mi

j=1 αij = 1, αij > 0,

yielding,

αl+1
ij =

∑N
k=1 ẑl

ijk∑mi

j′=1

∑N
k=1 ẑl

ij′k

=
1

N

N∑

k=1

ẑl
ijk (6.18)
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which is equivalent to the update in the ordinary Gaussian mixture model EM

algorithm.

To update the source mixture component parameters, we define,

ξl
ijk ≡ f ′

ij(y
l
ijk)

yl
ijk

(6.19)

and use the strong super-Gaussianity inequality to replace fij(yijk) in F l(θ) by

1
2
ξl
ijky

2
ijk to get,

−N log | detW| +
N∑

k=1

n∑
i=1

mi∑
j=1

ẑl
ijk

[
− log αij − 1

2
log βij + 1

2
ξl
ijkβij

(
wT

i xk − µij

)2]

Minimizing F̃ l with respect to µij and βij guarantees, using the strong super-

Gaussianity inequality, that,

F (ql; θl+1)− F (ql; θl) ≤ F̃ (ql; θl+1)− F̃ (ql; θl) ≤ 0

and thus that F (ql; θ) is decreased as required by the EM algorithm.

As in the Gaussian mixture case, the optimal value of µij does not depend

on βij. The updates, using the definitions (6.16), (6.17) and (6.19), are found to

be,

µl+1
ij =

∑N
k=1 ẑl

ijkξ
l
ijkw

l
i
T
xk∑N

k=1 ẑl
ijkξ

l
ijk

= µl
ij +

∑N
k=1 ẑl

ijkf
′

ij(y
l
ijk)√

βl
ij

∑N
k=1 ẑl

ijkξ
l
ijk

(6.20)

and,

βl+1
ij =

∑N
k=1 ẑl

ijk∑N
k=1 ẑl

ijkξ
l
ijk

(
wl

i
T
xk − µl

ij

)2 =
βl

ij

∑N
k=1 ẑl

ijk∑N
k=1 ẑl

ijkf
′

ij(y
l
ijk)y

l
ijk

(6.21)

We adapt W according to the natural gradient of F . Defining the vector ul
k such

that,
[
ul

k

]
i
≡

mi∑
j=1

ẑl
ijk

√
βl

ijf
′

ij(y
l
ijk) (6.22)

we have,

∆W =

(
I− 1

N

N∑

k=1

ul
kx

T
k Wl T

)
Wl (6.23)
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ICA Mixture Model with Strongly Super-Gaussian

Mixture Sources

We now consider the case in which the data is generated by a mixture

over a set of mixing matrices, Ah = Wh
−1, h = 1, . . . ,M ,

p(xk; θ) =
M∑

h=1

γhph(xk; θ) , γh ≥ 0,
M∑

h=1

γh = 1

The parameters to be estimated are,

θ =
{
γh,Wh, αhij, µhij, βhij

}
, h = 1, . . . , M, i = 1, . . . , nh, j = 1, . . . ,mhi

The EM algorithm for the full mixture model is derived similarly to the case

of source mixtures. In this model, each (independent) sample xk is generated

by drawing a mixture component h′ from the discrete probability distribution

P [h′ = h] = γh, 1 ≤ h ≤ M , then drawing x from ph′(x; θ).

We define hk to be the index chosen for the kth sample, and we define

the random variable,

vhk ≡





1, hk = h

0, otherwise

Let V ≡ {vhk}. We define jhik to be the source mixture component index chosen

(independently of hk) for the ith source of the hth model in the kth sample, and

we define the random variables zhijk by,

zhijk ≡





1, jhik = j

0, otherwise

with Z ≡ {zhijk}. Now, for the likelihood of θ, we can write,

p(X; θ) =

∑
V,Z

N∏

k=1

M∏

h=1

γvhk
h | detWh|vhk

nh∏
i=1

mhi∏
j=1

[
αhij

√
βhij phij

(√
βhij

(
wT

hixk − µhij

))]vhkzhijk
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For the variational free energy we have F (ql; θ) = F l(θ) + H(V; θl) + H(Z; θl),

where H(V; θl) and H(Z; θl) are the entropies of V and Z with the parameters set

to θl. We now have,

N∑

k=1

M∑

h=1

[
nh∑
i=1

mhi∑
j=1

E
[
vhkzhijk|xk; θ

l
](−log αhij−1

2
log βhij +fhij

(√
βhij

(
wT

hixk−µhij

)))
]

+ E
[
vhk|xk; θ

l
](− log γh − log | detWh|

)

where we define fhij ≡ − log phij. We define yl
hijk and ξl

hijk as in (6.16) and (6.19),

and we define ẑl
hijk to be the conditional expectation of zhijk,

ẑl
hijk ≡ E

[
zhijk

∣∣ vhk =1,xk, ; θ
l
]

=
αl

hij

√
βl

hij phij

(
yl

hijk

)

∑mhi

j′=1 αl
hij′

√
βl

hij′ phij′
(
yl

hij′k

) (6.24)

The v̂l
hk ≡ E[vhk|xk; θ

l] are given by,

v̂l
hk =

p(xk|vhk = 1; θl)P [vhk = 1; θl]∑M
h′=1 p(xk|vh′k = 1; θl)P [vh′k = 1; θl]

=
γl

h | detWl
h|

∏nh

i=1

∑mhi

j=1 αl
hij

√
βl

hij phij

(
yl

hijk

)

∑M
h′=1 γl

h′ | detWl
h′|

∏nh′
i=1

∑mh′i
j=1 αl

h′ij

√
βl

h′ij ph′ij
(
yl

h′ijk

)

Defining r̂l
hijk ≡ E[vhkzhijk|xk; θ

l], we have,

r̂l
hijk = P

[
vhk =1, zhijk =1 |xk; θ

l
]

= P
[
zhijk =1 | vhk =1,xk; θ

l
]
P

[
vhk =1 |xk; θ

l
]

= ẑl
hijkv̂

l
hk (6.25)

Minimizing F over γh and αhij, we get,

γl+1
h =

1

N

N∑

k=1

v̂l
hk , αl+1

hij =
1

Nγl+1
h

N∑

k=1

r̂l
hijk (6.26)

The remaining parameters are updated as before,

µl+1
hij =

∑N
k=1 r̂l

hijkξ
l
hijkw

l
hi
T
xk∑N

k=1 r̂l
hijkξ

l
hijk

= µl
hij +

∑N
k=1 r̂l

hijkf
′

hij

(
yl

hijk

)
√

βl
hij

∑N
k=1 r̂l

hijkξ
l
ijk

(6.27)
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and,

βl+1
hij =

∑N
k=1 r̂l

hijk∑N
k=1 r̂l

hijkξ
l
hijk

(
wl

hi
T
xk − µl

hij

)2 =
βl

hij

∑N
k=1 r̂l

hijk∑N
k=1 r̂l

hijkf
′

hij

(
yl

hijk

)
yl

hijk

(6.28)

Defining the vector ul
hk such that,

[
ul

hk

]
i
≡

mhi∑
j=1

r̂l
hijk

√
βl

hij f ′
hij

(
yl

hijk

)
(6.29)

we have,

∆Wh =

(
γl+1

h I− 1

N

N∑

k=1

ul
hkx

T
k Wl T

h

)
Wl

h (6.30)

If we make the definitions,

C l
hijk ≡ αl

hij

√
βl

hij phij

(
yl

hijk

)
, Ll

hk ≡ γl
h

∣∣detWl
h

∣∣
nh∏
i=1

mhi∑
j=1

C l
hijk (6.31)

then the ẑhijk and v̂hk updates become,

ẑl
hijk =

C l
hijk∑mhi

j′=1 C l
hij′k

, v̂l
hk =

Ll
hk∑M

h′=1 Ll
h′k

(6.32)

The log likelihood of θl given X, which we denote by L̄l, is calculated as,

L̄l =
N∑

k=1

log

(
M∑

h=1

Ll
hk

)
(6.33)

L̄l increases monotonically with iteration l.

6.3.5 Adaptive Strong Super-Gaussians

We can obtain further flexibility in the source model by adapting the mix-

ture component densities within a parameterized family of strongly super-gaussian

densities.

Generalized Gaussians with adaptive shape parameter, ρ

In this section we consider the case of Generalized Gaussian mixtures,

with source mixture component densities,

p(shij; µhij, βhij, ρhij) =

√
βhij

2 Γ
(
1 + 1

ρhij

) exp
(
−

∣∣∣
√

βhij

(
shij − µhij

)∣∣∣
ρhij

)
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The parameters ρhij are adapted by scaled gradient descent. The gradient of F

with respect to ρhij is,

∂F

∂ρhij

=
N∑

k=1

r̂hijk

[
|yhijk|ρhij log |yhijk| − 1

ρ 2
hij

Ψ

(
1 +

1

ρhij

)]

We have found that scaling this by ρ2
hij

/(
Ψ
(
1+ 1

ρhij

) ∑N
k=1 r̂hijk

)
, which is positive

for 0 < ρhij ≤ 2, leads to faster convergence. The update then becomes,

∆ρhij = 1 − ρl
hij
2 ∑N

k=1 r̂l
hijk |yl

hijk|ρ
l
hij log |yl

hijk|
Ψ
(
1 + 1

ρl
hij

) ∑N
k=1 r̂l

hijk

(6.34)

Student’s t densities with adaptive degrees of freedom parameter, ν

Student’s t densities have the form,

p(shij; µhij, βhij, νhij) =

√
βhij Γ

(
νhij+1

2

)

√
πνhij Γ

(
νhij

2

)
(

1 +
βhij

νhij

s 2
hij

)− νhij+1

2

The parameters νhij are adapted by scaled gradient descent. The gradient of F

with respect to νhij is,

∂F

∂νhij

=
1

2

N∑

k=1

r̂hijk

[
Ψ

(
νhij

2

)
−Ψ

(
νhij + 1

2

)
+

νhij + 1

νhij + y 2
hijk

+ log

(
1 +

y2
hijk

νhij

)
− 1

]

Dividing this by 1
2

(
1+Ψ

(
νl

hij+1

2

)
−Ψ

(
νl

hij

2

)) ∑N
k=1 r̂hijk, which is positive for νhij > 0,

the update becomes,

∆νhij = 1 −
∑N

k=1 r̂l
hijk

[
νl

hij+1

νl
hij+yl

hijk
2 + log

(
1 +

yl
hijk
2

νl
hij

)]

(
1 + Ψ

(
νl

hij+1

2

)
−Ψ

(
νl

hij

2

)) ∑N
k=1 r̂l

hijk

(6.35)

6.3.6 Example: Image Segmentation

We used the image data used in [68], taking as data 12× 12 image blocks

with lag 2, creating around 350,000 data vectors of length 144. We used the

Generalized Gaussian shape adaptive mixture source model (initialized to ρ = 1.5),
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and learned two basis sets using the ICA mixture model. The bases were started

at small perturbations of the square root of the covariance matrix, shown in Figure

6.4. We first ran ICA with only one (complete model), and the result is show in

Figure 6.5. We then ran a two model mixture model, with the results shown in

Figures 6.6 and 6.7.

Figure 6.3: Some images used in the segmentation experiment.

We subsequently computed the likelihood of each image block under each

model, and classified the pixels according to which model was more likely for
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Figure 6.4: Components from the symmetric square root of the covariance matrix

of the data blocks.
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Figure 6.5: Single model learned using ICA with Generalized Gaussian adaptive

shape mixture source priors.
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Figure 6.6: Model 1 learned by the two model ICA mixture model on the 12× 12

block image data, with Generalized Gaussian adaptive shape mixture source priors.
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Figure 6.7: Model 2 learned by the two model ICA mixture model on the 12× 12

block image data, with Generalized Gaussian adaptive shape mixture source priors.
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the surrounding block. We performed the classification for two images. The log

likelihood for the pixels under one of the models is shown on the left, and the

segmented image is shown on the right.

(a) (b)

Figure 6.8: Segmentation of image based on model likelihood. (a) Raw log like-

lihood under model 1. (b) segmentation of the image by assigning pixels to the

more likely of the two models. Apparently one of the models is more likely for

the high frequency forest floor, while the other model is more likely of the lower

frequency leaves, etc.
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(a) (b)

Figure 6.9: Segmentation of image based on model likelihood. (a) Raw log like-

lihood under model 1. (b) segmentation of the image by assigning pixels to the

more likely of the two models. On model seems to favor the high frequency tree

bark, while the other models the low frequency leaves.
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Linear Process Mixture Model

Since multichannel deconvolution is a linear operation, the output can be

expressed as the product of a (possibly infinite sized) matrix and an input vector,

just as in the instantaneous linear mixing case. The essential difference between the

convolutive case and the instantaneous case is that the matrix in the convolutive

linear operation has a particular structure, specifically a block Toeplitz structure,

and thus resides in a particular subspace of matrices. Thus derivatives of functions

of the block Toeplitz matrix W, in particular the derivative of log detW in the

likelihood, will differ from derivatives of unconstrained demixing linear operators.

However, the block Toeplitz structure allows us to approximately calculate the

determinant in terms of the blocks in a single row, using Szegö’s limit formula

concerning Toeplitz matrices, or by a similar argument that takes Toeplitz matri-

ces as limits of circuilants [34, 85]. We can then calculate derivatives with respect

to the individual blocks rather than the entire matrix. The block generalization

of the Szegö theorem also allows us to efficiently calculate the likelihood using

Fourier transforms, which we then use in an EM algorithm to adapt a mixture

model involving multiple multichannel deconvolution filters. The natural gradi-

ent transformation ∆WW
T
W, and Newton algorithms can also be used as in

instantaneous ICA.

108
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7.1 The Convolutive Component Model

We define a multivariate linear process [47, 85].

Definition 2. A real-valued discrete-time Lp linear process, x(t), is defined as

a multivariate random process of the form,

x(t) =
∞∑

k=−∞
Ak s(t− k) (7.1)

where Ak ∈ Rn×n with
∑

k |[Ak]ij|p < ∞, and s(t) is i.i.d. for all t, and the

components si(t) of s(t) are independent (not necessarily identically distributed).

Note that the independent time series s(t) is distinct from the innovations

representation of a second-order process. The innovation sequence is merely un-

correlated, and is only unique if it is causal. The independent series s(t) does not

exist for every process, and is unique for all non-Gaussian linear processes [33, 93].

Equivalently, x(t) is seen as the sum of convolutive components ai(t),

x(t) =
n∑

i=1

si(t) ∗ ai(t)

where the processes si(t) are temporally i.i.d., and independent of each other. The

convolution is interpreted as acting componentwise, i.e. xj(t) =
∑n

i=1 si(t) ∗ aij(t),

j = 1, . . . , n. The components ai(t) may be interpreted as independent “features”

of the data x(t) which may be physically meaningful.

Given a multivariate discrete-time time series x(t), t = 1, 2, . . . , T , we

divide the length T series into a set of time series segments of length 2N + 1 ¿
T . In the model, each segment is generated independently by one of M linear

process models. Dependency among the segments (for example among overlapping

segments) can be accounted for by imposing a Markov dependence structure on the

segments, but we shall assume here for simplicity that the segments are generated

independently of one another, with model prior probabilities γh, h = 1, . . . , M .
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7.2 Asymptotic Likelihood

Given a finite dimensional random vector s with density ps(s) and an

invertible linear transformation A = W−1, the density of the random vector x =

As is given by,

px(x) =
1

| detA| ps(A
−1x) = | detW| ps(Wx)

The convolutive model (7.1) is a linear transformation of the process s(t). We

suppose that the matrix filter is of finite duration, i.e. Ak = 0 for |k| > L, where

L ¿ N . Let N0 = 2N + 1. If we form the nN0 × nN0 block Toeplitz matrix,

A =




A0 A−1 · · ·
A1 A0

. . .
...

...
. . . . . . A−1

· · · A1 A0




and define the matrix,

Xt ≡
[
x(t−N) · · · x(t) · · · x(t + N)

]

and define St similarly, then we have,

vec(Xt) ≈ Avec(St)

where the equation is only approximate for the first L and last L vectors in Xt

since A is block banded. We suppose that the (two-sided) inverse matrix filter

exists,

Wk =
1

2π

∫ π

−π

( ∞∑

l=−∞
Ale

−iωl

)−1

eiωk dω

and can be approximated by the truncated filter with Wk = 0 for |k| > L. Then

we have,

vec(St) ≈ W̄Nvec(Xt)
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where we define,

WN ≡

2N + 1 blocks︷ ︸︸ ︷


W0 W−1 · · · W−L 0 0 · · ·
W1 W0 W−1

. . . W−L 0
. . .

... W1 W0
. . . . . . . . .

WL
. . . . . . . . . W−1

0 WL W1 W0
. . .

0 0
. . . . . . . . .

...
. . . . . .




Then we have,

px

(
vec(Xt)

) ≈
∣∣ det

(
WNW

T

N

)∣∣ 1
2 ps

(
WNvec(Xt)

)

For large N , the matrix WNWN
T

tends to the symmetric block Toeplitz matrix

RN with blocks Rk given by,

Rk =
L∑

l=−L

WlW
T
k+l

for k = −2L, . . . , 2L. To evaluate the determinant of RN asymptotically, we use

the following extension of the classical Szegö limit theorem for Toeplitz matrices

[40, 77].

We use the following notation. Let G(ω) be a matrix valued function

mapping the interval (−π, π) to the set of m × m Hermitian matrices, Hm, and

define,

Ak =
1

2π

∫ π

−π

G(ω)e−ikωdω, k = . . . ,−1, 0, 1, . . .

We say that the function G “generates” the process Ak. Let Tn denote the block

Toeplitz matrix with A0 on the block diagonal, and side length n blocks. Let

σ(G(ω)) denote the set of eigenvalues of the Hermitian matrix G(ω), and let σ(Tn)

denote the set of (real) eigenvalues of the Hermitian block Toeplitz matrix Tn.

Then we have the following theorem [77, Thm. 3.4].
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Theorem 16. Suppose that G(ω) : (−π, π) → Hm is square integrable on (−π, π),

and {Tn} is the set of block Toeplitz matrices generated by G. Then for any con-

tinuous function F (λ) with compact support in R, it holds that,

lim
n→∞

1

n

∑

λ∈σ(Tn)

F (λ) =
1

2π

∫ π

−π

∑

λ∈σ(G(ω))

F (λ) dω

If G(ω) is positive definite, then F = log is continuous on a positive,

compact interval containing the eigenvalues of Tn and G(ω), and we have,

∑

λ∈σ(Tn)

log λ = log det Tn

and,
∑

λ∈σ(G(ω))

log λ = log det G(ω)

Hence, we have

lim
n→∞

1

n
log det Tn =

1

2π

∫ π

−π

log det G(ω) dω

In the notation of our model, we have the following asymptotic form for

the Toeplitz determinant:

lim
N→∞

(
detRN

)1/N0
= exp

(
1

4π

∫ π

−π

log det SW(ω) dω

)

where N0 = 2N + 1, and

SW(ω) =
∑

k

Rke
−iωk =

(∑

k

Wke
−iωk

)(∑

k

WT
k eiωk

)

and we have,

det SW(ω) =

∣∣∣∣det

(∑

k

Wk e−iωk

)∣∣∣∣
2

Thus for the asymptotic approximation to the likelihood of the n×N0 sample Xt

we have,

1

N0

log px(Xt) ≈ 1

2π

∫ π

−π

log

∣∣∣∣det

(∑

k

Wke
−iωk

)∣∣∣∣ dω +
1

N0

log ps

(
WNvec(Xt)

)
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For the implementation, we define the source estimates,

yτ =
L∑

k=−L

Wkxt+τ−k, τ = −N + L, . . . , N − L

The number of y vectors is less than the number of x vectors since we discard

the edges. Thus, given the data segment Xt = [xt−N · · ·xt+N ], we define the

approximate likelihood qx by,

log qx(Xt) =
N1

2π

∫ π

−π

log

∣∣∣∣det

(∑

k

Wke
−iωk

)∣∣∣∣ dω +
N−L∑

τ=−N+L

n∑
i=1

log qi(yiτ ) (7.2)

where N1 = 2(N −L) + 1 and qi(y) is the approximating density of the ith source.

7.3 Maximizing the Likelihood

Let C ∈ Cn×n be square and non-singular. We use the complex derivative

defined by
∂g(C)

∂C
=

1

2

(
∂g(C)

∂ReC
− i

∂g(C)

∂ImC

)

∂g/∂C∗ is defined similarly but as a sum rather than a difference. If g : Cn×n→ R

is a real valued function of a complex matrix, and H : Rn×n→ Cn×n is a complex

matrix valued function of a real matrix, then we have the following chain rule

∂

∂Bij

g
(
H(B)

)
= tr

(
∂g

∂H

∂H

∂Bij

T

+
∂g

∂H∗
∂H∗

∂Bij

T )

= 2 Re tr

(
∂g

∂H

∂H

∂Bij

T )

since ∂g
∂H∗ =

(
∂g
∂H

)∗
and ∂H∗

∂Bij
=

(
∂H
∂Bij

)∗
according to our assumptions.

Now, using the fact that,

∂

∂C
log detCCH = C−T

taking the derivative of the Toeplitz determinant term in (7.2) with respect to Wk,

we get,

∂(1st term)

∂[Wk]ij
=

1

2π

∫ π

−π

Re tr

[(∑

l

Wle
−iωl

)−T

ET
ij e−iωk

]
dω
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so that for the matrix derivative, we have,

∂(1st term)

∂Wk

= Re
1

2π

∫ π

−π

(∑

l

WT
l e−iωl

)−1

e−iωkdω = AT
−k

where Eij is the matrix with 1 in the (i, j)th element and 0 elsewhere, and Ak,

k = . . . ,−1, 0, 1, . . . is kth element in the inverse filter of Wk, k = . . . ,−1, 0, 1, . . ..

Thus the gradient of the determinant term is the block Teoplitz matrix A
T

yielding

the natural gradient with respect to the determinant term,

A
T
W

T
W = W (7.3)

For the derivative of the second term in (7.2) with respect to Wk, we have,

∂(2nd term)

∂Wk

=
∑

τ

gτx
T
t+τ−k (7.4)

where gτ ≡ −∇y log q(yτ ). Multiplying the block Toeplitz matrix with blocks

given by (7.4) by W
T

on the right, we get the block Toeplitz matrix with blocks

∑
τ

∑

l

gτx
T
t+τ−lW

T
l−k =

∑
τ

gτy
T
τ−k

Then multiplying this on the right by W, we get the block Toeplitz matrix with

blocks,
∑

τ

∑

l

gτy
T
τ−lWk−l =

∑
τ

gτu
T
τ−k (7.5)

where we define,

uτ ≡
L∑

l=−L

WT
l yτ+l, τ = −N + 2L, . . . , N − 2L

Again the number of u vectors is smaller than the number of y vectors since we

discard the edges. The natural gradient, including both terms (7.3) and (7.5), is

then,

∆Wk = Wk − 1

TN2

T∑
t=1

N−2L∑
τ=−N+2L

gτ+ku
T
τ
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7.4 Convolutive Mixture model

We extend the instantaneous model described in the previous section to

include convolutive mixing. Assuming independent segments Xt, t = 1, . . . , T , we

have for the likelihood,

p
({Xt}

)
=

T∏
t=1

M∑

h=1

γhp
(
Xt |h

)

The parameters to be estimated are,

θ =
{
γh,Whk, αhij, µhij, βhij

}
, h = 1, . . . , M,

k = −L, . . . , L, i = 1, . . . , nh, j = 1, . . . , mhi

In this model, each segment Xt is generated (independently) by drawing a mixture

component h′ from the discrete probability distribution P [h′ = h] = γh, 1 ≤ h ≤
M , then drawing Xt from ph′(X; θ).

We define ht to be the index chosen for the tth segment, and we define

the random variable,

vht ≡





1, ht = h

0, otherwise

Let V ≡ {vht}. Now, for the complete log likelihood of {Xt}T
t=1 and V, we can

write,

p
({Xt},V; θ

)
=

T∏
t=1

M∏

h=1

γvht
h p(Xt|h; θ)vht

We define jhitτ to be the source mixture component index chosen (inde-

pendently of ht) for the ith source of the hth model in τth index of the tth segment,

and we define the random variables zhijtτ by,

zhijtτ ≡





1, jhitτ = j

0, otherwise

with Z ≡ {zhijtτ}. We define,

yhijtτ ≡
√

βhij

(
L∑

k=−L

wT
hikxt+τ−k − µhij

)
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Then we have

p(Xt,Z|h; θ) = exp

(
N1

2π

∫ π

−π

log | detWh(ω)| dω

)
×

N−L∏
τ=−N+L

nh∏
i=1

mhi∏
j=1

[
αhij

√
βhij qhij(yhijtτ)

]zhijtτ

where N1 = 2(N − L) + 1 and Wh(ω) ≡ ∑
kWhk e−iωk. For the joint distribution,

or “complete likelihood,” we have then,

p
({Xt},V,Z; θ

)
=

T∏
t=1

M∏

h=1

γvht
h p(Xt,Z|h; θ)vht

For the variational free energy we have F (ql; θ) = F l(θ) + H(V; θl) + H(Z; θl),

where H(V; θl) and H(Z; θl) are the entropies of V and Z with the parameters set

to θl, and,

F l(θ) ≡
T∑

t=1

M∑

h=1

[
nh∑
i=1

mhi∑
j=1

N−L∑
τ=−N+L

E
[
vhtzhijtτ |Xt; θ

l
] ×

(
− log αhij − 1

2
log βhij + fhij(yhijtτ )

)]
+

E
[
vht|Xt; θ

l
](− log γh − N1

2π

∫ π

−π

log
∣∣ detWh(ω)

∣∣ dω

)

where we define fhij ≡ − log qhij. We define ẑl
hijk to be the conditional expectation,

ẑl
hijtτ ≡ E

[
zhijtτ

∣∣ vht =1,Xt, ; θ
l
]

=
αl

hij

√
β l

hij qhij

(
yl

hijtτ

)

∑mhi

j′=1 αl
hij′

√
β l

hij′ qhij′
(
yl

hij′tτ

)

where we use Bayes’ rule to evaluate the (discrete) posterior distribution. Simlarly,

the v̂l
ht ≡ E[vht|Xt; θ

l] are given by,

v̂l
ht =

p(Xt|vht = 1; θl)P [vht = 1; θl]∑M
h′=1 p(Xt|vh′t = 1; θl)P [vh′t = 1; θl]

=
γl

hp(Xt|h; θl)∑M
h′=1 γl

h′p(Xt|h′; θl)
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and we have,

E
[
vht zhijtτ |Xt; θ

l
]

= P
[
vht =1, zhijtτ=1 |Xt; θ

l
]

= P
[
vht =1 |Xt; θ

l
]
P

[
zhijtτ=1 | vht =1,Xt; θ

l
]

= v̂l
htẑ

l
hijtτ

Minimizing F over γh and αhij subject to the positivity and normalization con-

straints, we get,

γl+1
h =

1

T

T∑
t=1

v̂l
ht , αl+1

hij =
1

TN1γ
l+1
h

T∑
t=1

v̂l
ht

N−L∑
τ=−N+L

ẑl
hijtτ

where N1 = 2(N − L) + 1.

Now, to determine the updates for µhij and βhij, we use the strong super-

Gaussianity inequality to replace fhij(yhijtτ) in F l(θ) by 1
2
ξl
hijtτy

2
hijtτ , where,

ξl
hijtτ ≡ f ′

hij(y
l
hijtτ)

yl
hijtτ

(7.6)

Our “surrogate” free energy is then,

F̃ l(θ) =
T∑

t=1

M∑

h=1

v̂l
ht

[
nh∑
i=1

mhi∑
j=1

N−L∑
τ=−N+L

ẑl
hijtτ ×

(
− log αhij − 1

2
log βhij + 1

2
ξl
hijtτy

2
hijtτ

)]
+

v̂l
ht

(
− log γh − N1

2π

∫ π

−π

log
∣∣ detWh(ω)

∣∣ dω

)

Minimizing F̃ l with respect to µhij and βhij guarantees, using the strong super-

Gaussianity inequality, that,

F (ql; θl+1)− F (ql; θl) ≤ F̃ (ql; θl+1)− F̃ (ql; θl) ≤ 0

and thus that F (ql; θ) is decreased as required by the EM algorithm. As in the

Gaussian mixture case, the optimal value of µhij does not depend on βhij. The
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updates are found to be,

µl+1
hij =

∑T
t=1v̂

l
ht

∑N−L
τ=−N+Lẑl

hijtτξ
l
hijtτ

(
yl

hijtτ

/√
β l

hij+µl
hij

)

∑T
t=1 v̂l

ht

∑N−L
τ=−N+L ẑl

hijtτξ
l
hijtτ

= µl
hij +

∑T
t=1 v̂l

ht

∑N−L
τ=−N+L ẑl

hijtτf
′

hij

(
yl

hijtτ

)
√

βl
hij

∑T
t=1 v̂l

ht

∑N−L
τ=−N+L ẑl

hijtτξ
l
hijtτ

and,

β l+1
hij =

∑T
t=1 v̂l

ht

∑N−L
τ=−N+L ẑl

hijtτ∑T
t=1 v̂l

ht

∑N−L
τ=−N+L ẑl

hijtτξ
l
hijtτy

l
hijtτ

2
/β l

hij

=
β l

hij

∑T
t=1 v̂l

ht

∑N−L
τ=−N+L ẑl

hijtτ∑T
t=1 v̂l

ht

∑N−L
τ=−N+L ẑl

hijtτf
′

hij

(
yl

hijtτ

)
yl

hijtτ

Since ξ = f ′(y)/y may go to infinity at y = 0 for strongly super-gaussian densities,

we have eliminated it from the updates except in the denominator of the µ update,

where ξ becoming infinite (with f ′(y) remaining bounded) has the effect of keeping

µ constant.

Now we make the definitions,

bl
htτ ≡

L∑

k=−L

Wl
hkxt+τ−k

for τ = −N + L, . . . , N − L, and

ul
htτ ≡

L∑

k=−L

Wl
hk

T
bl

ht(τ+k)

for τ = −N + 2L, . . . , N − 2L. We define

yl
hijtτ ≡

√
β l

hij

(
b l
hitτ − µhij

)

for τ = −N + L, . . . , N − L and we define the vector gl
htτ such that,

gl
hitτ ≡ v̂l

ht

mhi∑
j=1

ẑl
hijtτ

√
β l

hij f ′
hij

(
yl

hijtτ

)

Then the natural gradient direction for Whk is given by,

∆Whk = γl+1
h Wl

hk −
1

TN2

T∑
t=1

N−2L∑
τ=−N+2L

gl
ht(τ+k)u

l
htτ

T
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where we have replaced N1 by N2 to reduce the bias since we are discarding the

edges. To express this in a form more efficient for computation, we define the

subset of Xt,

X̃t,k ≡ [xt−k−N+L · · ·xt−k+N−L]

Then, for Bt ≡ [b−N+L · · ·bN−L], we have,

Bt =
L∑

k=−L

WhkX̃t,k

Now if we define

B̃t,k ≡ [bk−N+2L · · ·bk+N−2L]

and put Ut ≡ [u−N+2L · · ·uN−2L], then we have,

Ut =
L∑

k=−L

WT
hkB̃t,k

Finally, if we put

G̃t,k ≡ [gk−N+2L · · ·gk+N−2L]

then we have for the natural gradient with respect to Whk,

∆Whk = γl+1
h Whk − 1

TN2

T∑
t=1

G̃t,kU
T
t

where N2 = 2(N − 2L) + 1.

We approximate the integral in (7.2) by a Riemann sum using the DFT,

which samples the DTFT defined by the integral. If we make the definitions,

Q l
hijtτ ≡ αl

hij

√
β l

hij qhij

(
yl

hijtτ

)

Dl
h ≡ N1

NF

NF∑
n=1

log

∣∣∣∣det
L∑

k=−L

Wl
hk e−i2πnk/NF

∣∣∣∣

P l
ht ≡ γl

h exp(Dl
h)

N−L∏
τ=−N+L

nh∏
i=1

mhi∑
j=1

Q l
hijtτ

where NF is the DFT length, then the v̂ht and ẑhijtτ updates can be written,

v̂l
ht =

P l
ht∑M

h′=1P
l
h′t

, ẑl
hijtτ =

Q l
hijtτ∑mhi

j′=1 Q l
hij′tτ

(7.7)
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Then,

γl+1
h =

1

T

T∑
t=1

v̂l
ht , αl+1

hij =
1

TN1γ
l+1
h

T∑
t=1

v̂l
ht

N−L∑
τ=−N+L

ẑl
hijtτ

The log likelihood of θl given {Xt}, which we denote by P̄ l, is calculated as,

P̄ l =
T∑

t=1

log

(
M∑

h=1

P l
ht

)
(7.8)

P̄ l increases monotonically with iteration l.

7.5 Frequency Domain Formulation

Since the updates involve multichannel convolutions, it may be more effi-

cient for longer filters to use fast Fourier transforms (FFTs) to perform convolution.

Specifically, for the sources, Y, we have,

Bh(ω) = Wh(ω)Xh(ω)

and,

Uh(ω) = WH
h (ω)Yh(ω)

where the superscript H denotes Hermitian, or conjugate transpose. We must

revert to the time domain temporarily, however, to calculate the gradient function

G, forming FFT(g(IFFT(Y(ω)))). Then we have,

∆Wh(ω) = γhWh(ω)− 1

TN
Gh(ω)UH

h (ω)

The additional computation FFT(g(IFFT(Y(ω)))) distinguishes the time-

domain based frequency formulation from algorithms which perform instantaneous

ICA on individual frequency channels separately. The lack of any computations

coupling the updates leads to the so called permutation problem, which results

from the invariance of the ICA likelihood function with respect to permutations.

Thus the sources determined by separate frequency channel ICA algorithms are

not necessarily in the same order, and reconstruction of the time domain source
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requires matching the frequency sources across each channel. In the present for-

mulation, we do not encounter the permutation problem, since the updates are

kept consistent by the time domain joint optimization, and the frequency domain

is employed only for efficiency of computation. This formulation is actually very

similar to the “hybrid” frequency/time domain algorithm of Attias and Schreiner

[5, §3.3], which employs a heuristic combination of time domain and frequency

domain cost functions.

7.6 Multivariate Multichannel Blind Deconvolution

The determinant formula for Block Toeplitz matrices can be extended to

multidimensional fields as well. The asymptotic formula for the determinant of a

multidimensional multichannel convolution operator is,

lim
N→∞

1

N
log detRN =

1

(4π)d

∫ π

−π

· · ·
∫ π

−π

log det SW(ω1, . . . , ωd) dω1 · · · dωd

where N0 = 2N + 1, and

SW(ω1, . . . , ωd) =
∑
τ1

· · ·
∑
τd

R(τ1, . . . , τd)e
−i(ω1τ1+···+ωdτd) =

(∑
τ1

· · ·
∑
τd

W(τ1, . . . , τd)e
−i(ω1τ1+···+ωdτd)

)(∑
τ1

· · ·
∑
τd

WT (τ1, . . . , τd)e
i(ω1τ1+···+ωdτd)

)

and we have,

det SW(ω) =

∣∣∣∣det

(∑
τ1

· · ·
∑
τd

W(τ1, . . . , τd)e
−i(ω1τ1+···+ωdτd)

)∣∣∣∣
2

The multivariate integration can again be approximated by Riemann integration,

assuming computational feasibility of making a d-dimensional grid. An algorithm

essentially identical to the one dimensional field case results, where one dimensional

multichannel convolutions are replaced by d-dimensional multichannel convolutions

with the d dimensional field of matrices making up the filter. The multidimensional

multichannel deconvolution filters can again be inverted using the Fourier trans-

form, to get the d-dimensional field of mixing matrices.
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7.7 Multichannel Deconvolution Experiment

We verified the algorithm with a simple 2 channel experiment using a

mixture model with two multichannel mixing filters, shown in Figure 1. We gener-

ated 20000 iid Laplacian time points, and then generated the first half of the test

data from the first model and the second half from the second model. We learned

two multichannel unmixing filters of length 60. The unmixing filters were initial-

ized to identity, and the model source densities were adapted with the Generalized

Gaussian mixture family, and initialized with two mixture components with zero

location, unit scale, and shape parameter 1.5. The learned filters were convolved

with the known mixing filters to assess the convergence to the true inverse filter.

As shown in Figure 1, the correct inverse filters were learned.
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Figure 7.1: Toy experiment with two mixing multichannel filters (a) and (b). In (c)

and (d) are plotted the multiple convolution with the learned deconvolving filters.
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Application to Analysis of EEG

Electro-encephalograph (EEG) data is recorded from a sensor cap worn

by the experimental subject. The sensors record electromagnetic wave voltages

from source produced in the brain, as well as from the heart and muscles, and

from ambient power line or other EM phenomena. An example of raw EEG data

is shown in Figure 8.1.

The instantaneous ICA mixing model holds for EEG data since the elec-

tromagnetic waves that superpose to form the raw EEG recordings travel at the

speed of light, and practical sampling rates cannot distinguish such short delays in

the arrival time of the source signals at the sensors. The ICA sources themselves

are not i.i.d., but standard ICA has been found to be successful in decomposing raw

EEG recordings x(t) = [x1(t) · · ·xn(t)]T into a superposition of source waveforms

s(t) = [s1(t) · · · sn(t)]T [73, 74]. Figure 8.2 shows the separated source activations

corresponding to the raw EEG in Figure 8.1. It is quite remarkable how well ICA

is able to separate out eyeblinks (source 2) and heart beat (source 5) leaving other

periodic waveforms clearly visible, whereas the raw EEG is dominated by the larger

variance sources.

The columns a1, . . . , an of A represent the instantaneous impulse response

of the generating current on the sensors, which is the characteristic electromage-

netic field distribution on the sensors associated with source currents in particular

123
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Figure 8.1: Plot of raw EEG data.
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Figure 8.2: Plot of separated EEG source activations for same time frame as Figure

8.1.
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locations in the brain, or with particular source current distributions. The inverse

problem of determining the actual current distribution associated with a given

sensor response is known since Helmholtz to be ill-posed, i.e. the generating cur-

rent distribution associated with two dimensional sensor array response aj is not

unique. However, given reasonable certain prior assumptions on the localization

or dipolarity of the sources, generating current sources can often be determined

[73, 74].

The point, though, is that the characteristic responses are determined

in a blind manner, assuming only the independence of the generating current

sources. This decomposes the problem of identifying generating current sources

for in recording from an experiment into two parts: (1) determination of responses

associated with independent generating currents, and (2) determining the actual

generating current distribution. Indeterminacy of the second problem does not

have any affect of the determinacy of the first problem. In fact, it may be sufficient,

as in Brain Computer Interfacing (BCI) for example, merely to determine the inde-

pendent responses ai, i = 1, . . . , n, and their activation signals si(t), i = 1, . . . , n,

and detect and respond to “events” in the activation signal alone. Still, the gain

for neurobiology is that, to the extent that the generating current sources can be

determined, they are determined in a completely blind manner.

An alternative is to create a dictionary A ∈ m × n of n À m sensor

responses aj ∈ Rm, for all possible current source locations and orientations, and

attempt to find sparse solutions to the underdetermined problem x(t) = As(t).

Drawbacks of this approach are that one must limit à priori, for combinatorial

reasons, the possible generating sources with whose responses one populates the

dictionary A, for example to single dipole sources on a predetermined grid and

with a predetermined set of possible orientations, and that for a large number

of sensors m, and long observed sequences, one must perform an iteratively least

squares algorithm or other nonlinear function optimization routine to find the

sources s(t) for each observed time point t = 1, . . . , T . In the case we consider,
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the number of sensors m is 254, and T is normally in the hundreds of thousands

or longer. Processing such sequences becomes computationally difficult to do in

a reasonable amount of time, even offline, but particularly for possible real time

applications.

Assuming a complete basis A ∈ Rn×n, on the other hand, and assuming

low noise, i.e. low sensor noise or channel noise, which is reasonable with current

technology, or combined with low pass filtering or shrinkage techniques, allows one

to determine the sources s(t) simply through matrix multiplication s(t) = Wx(t).

The disadvantage of the standard complete basis ICA model, is that one is limited

to decomposing the entire observation sequence of hundreds of thousands of time

points of the usually non-stationary observed signal x(t) ∈ Rn, into n sources,

where n is on the order of hundreds.

It may actually be that, by limiting observation to particular times, for

example before and after a particular stimulus in a repeated experiment, the num-

ber of sources may be on the order of hundreds, or fewer. The non-stationarity

problem, however, will generally be an issue, both for the blind approach, and the

sparse coding with known dictionary approach, unless one is able to populate the

dictionary with sources transformed by various transformations associated with

known non-stationary phenomena.

To address the problems of source number limitation in the complete case,

as well as non-stationarity, we propose a linear process mixture model to model

the generating sources, as well as characteristic non-stationary interference seg-

ments that modulate the sources. Such an approach can also model the temporal

dependence of the sources using a linear process model for each source.

We performed experiments using the linear process mixture model and

on EEG data collected from experiments by Julie Onton and Scott Makeig at the

Swartz Center for Computational Neuroscience. We used three datasets described

below.

1. The first dataset, referred to as “twoback”, is an experiment in which a
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subject, wearing and EEG cap and seated at a computer, is shown a sequence

of letters, and after each letter presentation, the subject responds with a left

or right mouse click as follows: if the letter presented is the same as the one

two letters ago (not the last one, the one before that) then left click, if not

then right click. The computer then gives with auditory feedback as follows:

If the subject’s response is correct, a bell sounds indicating correct. If the

subject’s response is incorrect (the subject makes an mistake in memory

exceeds time limit) then a buzzer sound plays indicating incorrect.

The data consists of 283,900 samples at 250Hz from 71 channels. The sam-

ples are made up of 668 concatenated segments of length 425, or 1.7 seconds.

The segments are time locked to the computer’s feedback after the subjects

response, from 0.7 seconds before the feedback to 1.0 second after.

2. The second dataset, referred to as “wordfinger”, consists of two tasks per-

formed by the same subject. In the first task, the subject reads a sequence

of words printed on a computer screen, and responds after each word with a

right or left mouse click depending on whether the subject thinks the word is

new or not. A feedback tone is given for correct, and a buzz when the subject

is wrong. In the second task, the subject is given a sequence commands to

individual fingers on the right or left hand. The finger movement is indicated

associating adjacent sets of keys on the computer keyboard with the fingers

on each hand. As in the previous task, the subject is given auditory feedback,

tone for correct and buzz for wrong.

3. The third dataset, referred to as “reaching” is a reaching experiment. A

subject performed in two conditions, differing by the starting point of the

movement. In each trial, a target LED was turned on and the subject was

instructed to touch the target in one smooth movement. The LED on was

marked with an event code for left, middle and right target. The LED stayed

on until the target was touched or for 2500 ms in case of target missed. After
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a random interval of 800-1200 ms, the next target appeared.

8.1 Generalized Gaussian Mixture source prior

The EEG sources have a variety of probability densities, exhibiting skew,

multimodality and other features that cannot be captured with unimodal sym-

metric densities. Some examples of unusual histograms of separated sources are

plotted in Figure 8.3. The green

(a) (b)

(c) (d)

Figure 8.3: Converged source distributions for some components using a five mix-

ture Generalize Gaussian source model, showing (a) skewed, (b) heavy-tailed (c)

sub-gaussian, and (d) sharply peaked densities. The mixture components of the

model density are plotted in green, and the model density which is there sum

is plotted in blue. The empirical histogram is plotted in red, before the model

density, and is almost invisible as it is completely covered by the model density,

showing exact agreement.
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8.2 ICA Mixture Model with Adaptive Source Priors

We tested the instantaneous mixture model on the twoback and wordfin-

ger datasets. The plots in Figures 8.6 and 8.8 show the data arranged such that

each row is a a segment of EEG, and the segments are stacked on top of each other

in increasing temporal order from the bottom. The time points within each trial are

classified and assigned to one of the models, and colored the color corresponding

to that model.

8.3 Linear Process Mixture Model Examples

We performed mixture deconvolution on a particular separated source

with an alpha wave spectrum, i.e. a spectrum containing a spectral peak around

10Hz. The alpha signals are characterized by sustained alpha bursts, rather than

persistent alpha activity. Thus the locally stationary model thus fits well, as the

signal may be divided into segments in which alpha was active and segments in

which alpha segments is non-active.

We ran a single channel linear mixture model decomposition with two

generating filter models, each with a different adaptive i.i.d. driving process of two

Generalized Gaussians. We decomposed the signal into segments by classifying

time points according to which model was most likely to have generated the seg-

ment of which the time point is the center. The algorithm was able to successfully

segment the signal into alpha and non-alpha segments. This is verified by showing

that the spectrum of classified time points of one model contained an alpha peak,

while the spectrum of the time points assigned to the other model has no peak at

alpha.
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Figure 8.4: Scalp maps for the one of the two models learned from the twoback

dataset. The components are arranged in order of maximum mutual information

between the component activation yhik and the probability signal. For two models,

h = 1, 2, we have v1k = 1−v2k, so there is really only one model probability signal.

Apparently this model represents periods of muscle activity, while the other may

represent task related components.
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Figure 8.5: Scalp maps for the two models learned from the twoback dataset. The

components are arranged in order of maximum mutual information between the

component activation yhik and the probability signal.
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Figure 8.6: Plot of classified twoback data using four models. Each row is one trial

lasting 1.7 seconds. Each time point is colored one of four colors corresponding to

the model under which it has the highest likelihood. The trials are in temporal

order, and the model regions are clearly extended in time. Two of the models seem

to represent different periods of specific types of muscle activity.
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(a) (b)

Figure 8.7: Classification of the twoback data with three models, and with four.

This plot shows that there is consistency in the model classification over number of

models, as the model change points for the three model seem to be mostly a subset

of the change points in the four model. This has been found in other datasets as

well.
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(a) (b)

Figure 8.8: Classification of wordfinger dataset with three models using the (a)

Generalized Gaussian mixture model and (b) Logistic mixture source model. The

sharp switch from green to blue in (a) marks the change from the word task to the

finger task, though the green model is used again later for the finger data. The

Logistic model in (b) also has a sharp model switch at the task change. The red

model in (b) is not well localized, and the Generalized Gaussian model seems to

have specialized more than the Logistic model, perhaps due to the greater flexibility

in the Generalized Gaussian mixture model (with adaptive shape parameter.)
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Figure 8.9: Experiment with EEG data. (a) shows the original spectral density of

the brain component with dipole estimate shown in (b). A mixture of deconvolving

filters is applied to this source. The resulting psd’s in (c) and (d) clearly show a

division into alpha and non-alpha segments.



137

(a) (b)

(c) (d)

Figure 8.10: Examples of spectral density enhancement by using only classified

data segments from a chosen model to compute the spectrum, rather than the entire

time series. The left plots (a) and (c) are spectral densities of the entire time series

for particular separated sources. The right plots (c) and (d) are the corresponding

spectra of the model time points only. Using only the model time points clearly

has a huge effect on the resolution of the spectrum. Also, the classified segments

are not limited to particular chosen frequency bands, as would be the case with

bandpass filtering, but rather adapt to the frequency response of independent

signals, allowing complicated multimodal spectra.
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(a) (b)

(c) (d)

Figure 8.11: More examples of spectral density enhancement by using only clas-

sified data segments from a chosen model to compute the spectrum, rather than

the entire time series. The left plots (a) and (c) are spectral densities of the en-

tire time series for particular separated sources. The right plots (c) and (d) are

the corresponding spectra of the model time points only. Using only the model

time points clearly has a huge effect on the resolution of the spectrum. Also, the

classified segments are not limited to particular chosen frequency bands, as would

be the case with bandpass filtering, but rather adapt to the frequency response of

independent signals, allowing complicated multimodal spectra.
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Figure 8.12: Example of segments claimed by the “good” model used to obtain

the spectral estimate on the right in Figures 8.10 and 8.11.



Appendix A

Scale mixtures and the Mellin

transform

Given that a density is a Gaussian scale mixture, one might wonder

whether there is a general way of determining the scale mixing density given the

density itself. This purpose is served by the Mellin transform which is to scale

convolutions as the Fourier transform is to ordinary convolutions. The Mellin

transform does not seem to be in wide use in the statistics and engineering com-

munities, though a knowledge of its properties greatly simplifies the analysis of

scale convolutions, as well as many important differential equations with power

coefficients.

The Mellin transform [99, 97, 30], is defined by,

M [f(x) ; s] = f̃(s) =

∫ ∞

0

xs−1f(x) dx (A.1)

for s ∈ C such that the integral is convergent.

A.0.1 Basic properties

If xkg(x) and xkh(x) ∈ L(0,∞) for some k ∈ R, then [99, Thm. 44],

f(x) =

∫ ∞

0

1

ξ
g

(
x

ξ

)
h(ξ) dξ ⇒ f̃(s) = g̃(s)h̃(s) (A.2)
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and xkf(x) ∈ L(0,∞). Thus under appropriate conditions, we can solve for h(x)

by inverting the transform. If xkf(x) ∈ L(0,∞), then (A.1) can be inverted almost

everywhere using the formula [99, Thm. 28],

M−1
[
f̃(s) ; x

]
≡ 1

2πi

k+i∞∫

k−i∞

x−sf̃(s) ds =
f(x+) + f(x−)

2
(A.3)

where f(x+) and f(x−) denote the right and left hand limits of f at x. Thus, for

example, when h in (A.2) is continuous on (0,∞), we have,

h(x) = M−1

[
f̃(s)

g̃(s)
; x

]
, x ∈ (0,∞)

We can similarly solve integral equations of the form,

f(x) =

∫ ∞

0

g(ξx)h(ξ) dξ

Using the following two properties, which follow from the definition (A.1),

M [xaf(x) ; s] =
1

a
f̃

(
s

a

)
, M [f(xa) ; s] = f̃(s + a) (A.4)

we have M [t−1h(t−1) ; s] = h̃(1− s), and it follows that,

f(x) =

∫ ∞

0

g(ξx)h(ξ) dξ ⇒ f̃(s) = g̃(s)h̃(1− s) (A.5)

Like the Laplace transform, the Mellin transform can be used to convert

integro-differential equations into algebraic equations. We use in particular the

following relation. Let D denote the differential operator. The transform of the

operator (−x)nDn is given by,

M [(−x)nDnf(x) ; s] =
Γ(s + n)

Γ(s)
f̃(s) = s(s + 1) · · · (s + n− 1)f̃(s) (A.6)

There are two basic integrals that are used,
∫ x

0
f(t)dt and

∫∞
x

f(t)dt, and there

are two corresponding definitions of fractional integrals. The Riemann-Liouville

fractional integral [30, p. 113], for α > 0 and non-integral, is defined by,

D−αf(x) =
1

Γ(α)

∫ x

0

(t− x)α−1f(t) dt
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The Riemann-Liouville fractional derivative, Dβ, β > 0, is defined by the same

formula, with α replaced by −β.

The Weyl fractional integral, for α > 0 and non-integral, is defined by,

W−αf(x) =
1

Γ(α)

∫ ∞

x

(t− x)α−1f(t) dt

For the Weyl fractional derivative, W β, β > 0, let n be the smallest integer greater

than β. Then the Weyl fractional derivative is defined by,

W βf(x) = (−D)n W n−βf(x)

The Mellin transform of the Weyl fractional integral or derivative (α positive or

negative), is given by,

M
[
W−αf(x) ; s

]
=

Γ(s)

Γ(s + α)
f̃(s + α) (A.7)
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