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Abstract of the Dissertation

Novel RF Analysis and Design Techniques

by

Aliakbar Homayoun

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2013

Professor Behzad Razavi, Chair

The design of RF integrated circuits continues to challenge engineers and

researchers, demanding new circuit topologies and transceiver architectures. New

ideas often require new analysis techniques as well, so that the designer can

insightfully quantify the underlying principles.

This research addresses three problems in RF circuits: (1) analysis of phase

noise in phase/frequency detectors (PFDs), an essential component in RF syn-

thesizers; (2) analysis of the relation between the phase noise of delay lines and

ring oscillators; and (3) design of a new low-power RF CMOS receiver for IEEE

802.11a. The first analysis derives equations for the phase noise and shows that

an octave increase in the input frequency raises the phase noise by 6 dB if flicker

noise is dominant and by 3 dB if white noise is dominant. The second analysis re-

veals a simple shaping function and also dispels the commonly-accepted premise

that symmetric rise and fall times in a ring oscillator suppress the upconversion of

flicker noise. The third part deals with the design of a low-power 5-GHz receiver.

While advances in the art have considerably reduced the power consumption of

RF oscillators, frequency dividers, and analog-to-digital converters, the main re-

ceiver chain in 5-GHz systems draws a disproportionately high power, about 46

ii



mW. It is therefore desirable to develop low-power RX front ends and baseband

filters for WiFi applications. This work introduces a complete 5-GHz CMOS

receiver that meets the 11a sensitivity, blocking, and filtering requirements while

consuming 11.6 mW. This fourfold reduction in power is achieved through the

use of a transformer as a low-noise amplifier, passive mixers, and non-invasive

baseband filtering. A new analysis of passive current-driven mixers sheds light

on their properties.
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CHAPTER 1

Introduction

The design of RF integrated circuits continues to challenge engineers and re-

searchers, demanding new circuit topologies and transceiver architectures. New

ideas often require new analysis techniques as well, so that the designer can in-

sightfully quantify the underlying principles. In addition, novel analysis of the

existing circuits helps the designer to optimize them and sometimes suggests

modifications for better performance.

1.1 Organization

This dissertation proposes three novel analyses in RF circuits. The first analysis

which is covered in chapter 2, is on the phase noise in phase/frequency detectors

(PFDs), an essential component in RF synthesizers. This is the only published

work on the subject that derives equations. Using our compact equations, we have

optimized two PFDs for minimum phase noise. Chapter 3 is the first analysis of

the relation between the phase noise of delay lines and ring oscillators. Knowing

the relation, compact equations are derived for the phase noise of ring oscillators

which show a factor of 2 correction for the flicker-noise-induced phase noise. In

addition, it dispels the commonly-accepted premise that symmetric rise and fall

times in a ring oscillator suppress the upconversion of flicker noise. Chapter 4

deals with the design of a new low-power RF CMOS receiver for IEEE 802.11a.
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The most interesting part is the replacement of the LNA with a transformer.

How do the transformer and mixers provide proper input matching? Why the

frequency response is flat across the channel while the loads of the mixers are

capacitors? Why the noise figure is not too high? These are all important

questions that would not have been answered without our novel analysis explained

in chapter 4. Finally, chapter 5 summarizes the future work.
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CHAPTER 2

Analysis of Phase Noise in Phase/Frequency

Detectors

The phase noise of phase/frequency detectors can significantly raise the in-band

phase noise of frequency synthesizers, corrupting the modulated signal. This

chapter analyzes the phase noise mechanisms in CMOS phase/frequency detectors

and applies the results to two different topologies. It is shown that an octave

increase in the input frequency raises the phase noise by 6 dB if flicker noise is

dominant and by 3 dB if white noise is dominant. An optimization methodology

is also proposed that lowers the phase noise by 4 to 8 dB for a given power

consumption. Simulation and analytical results agree to within 3.1 dB for the

two topologies at different frequencies.

2.1 Introduction

The phase noise of the phase/frequency detector (PFD) in a phase-locked loop

(PLL) directly adds to that of the reference, manifesting itself for a high frequency

multiplication factor and/or a wide loop bandwidth.

This chapter investigates the phase noise mechanisms in PFDs and computes

the phase noise spectral density due to both white noise and flicker noise. The

results are applied to two PFD topologies, one using static NAND gates and the

3



other employing true single-phase clocking (TSPC). A PFD phase noise simula-

tion technique is also proposed. The objective is to enable the designer to predict

the PFD phase noise, and more importantly, design the PFD so as to make its

contribution to the overall PLL phase noise negligible.

The chapter is organized as follows. Section 2.2 describes the background and

motivation for this work. Section 2.3 builds the foundation by calculating the

jitter spectrum of an inverter and Section 2.4 extends the results to a NAND

gate. Section 2.5 applies these findings to the analysis of two PFD topologies.

Section 2.6 discusses the optimization of phase noise for the two PFDs and Section

2.7 presents simulation results. Section 2.8 explains the effect of pulse position

modulation of the Up and Down signals and Section 2.9 calculates the phase

noise of square wave with uncorrelated jitter on rising and falling edges. Section

2.10 proves that the spectrum of shaped and sampled white noise is white under

certain conditions and Section 2.11 concludes chapter 2.

2.2 Background

2.2.1 Motivation

The in-band multiplication of a PFD’s phase noise can create difficulties in RF

synthesizer design [1]-[3]. Consider, as an example, a 5-GHz synthesizer targeting

IEEE802.11a applications. To negligibly corrupt the 64QAM signal constellation,

the synthesizer must achieve an integrated phase noise of roughly 0.5◦ rms [4].1

Now, suppose the standard NOR PFD shown in Fig. 2.1(a) is employed at

the input of such a synthesizer with an input frequency of 20 MHz and a loop

bandwidth of about 2 MHz. Plotted in Fig. 2.1(b) is the simulated output phase

1We assume the transmit and receive synthesizers contribute equal but uncorrelated amounts
of phase noise.
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Figure 2.1: (a) NOR-based PFD, and (b) output phase noise of a 5-GHz PLL

due to PFD.

noise of the synthesizer including only the PFD contribution. Here, the PFD

incorporates (W/L)PMOS = 0.3 µm/60 nm and (W/L)NMOS = 0.2 µm/60 nm.

The area under this plot from 10 kHz to 10 MHz yields an rms jitter of 0.3◦,

severely tightening the contribution allowed for the voltage-controlled oscillator

(VCO).
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As another example, consider a 60-GHz transceiver operating with QPSK

signals. A synthesizer multiplying the above PFD phase noise to 60 GHz would

exhibit an rms jitter of 3.5◦. On the other hand, for negligible corruption of

QPSK signals, the rms jitter must be less than about 2.1◦ [4].

The above examples underscore the need for a detailed treatment of phase

noise mechanisms in PFDs. Of course, the charge pump may also contribute

significant phase noise and merits its own analysis.

2.2.2 Observations

Consider the generic PLL shown in Fig. 2.2. The PFD generates the Up and

Down pulses in response to the rising edges on A and B. The noise in the PFD

devices modulates the width and edges of the output pulses, creating a random

component in the current produced by the charge pump (CP). We neglect the

phase noise of all other building blocks and denote the input frequency by fin.

D Q

C1

R1
C2

outf

inf

f div

Reset

I 1

I 2

I cp Vcont

Up

Down
D Q

A

B

PFD

M

I 1 I 2 I p= =

Figure 2.2: A PFD in an integer-N PLL.

The phase noise in Up and Down translates to random modulation of the time
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during which I1 or I2 is injected into the loop filter. We consider three possible

cases. As shown in Fig. 2.3(a), the phase noise may modulate the widths of Up

and Down by the same amount, in which case the CP produces no net output. In

the second case [Fig. 2.3(b)], the phase noise modulates only the position of Up

with respect to Down. As explained in Section 2.8, this effect is negligible. Lastly,

the phase noise may modulate the widths of Up and Down pulses differently [Fig.

2.3(c)], and it is this case that matters most.

t(b)

t(a)

Up

Down

Vcont

(c)

Up

Down

Vcont

t

Up

Down

Vcont

Figure 2.3: Modulation of Up and Down (a) width by the same amount, (b)

position, and (c) width differently.

The above observations also reveal that, contrary to a designer’s first guess,

the PFD phase noise of interest is not equal to the phase noise of the Up or Down

signals themselves. After all, if the widths of Up and Down pulses vary randomly

but exactly in unison, then the net current produced by the CP contains no

random component. This point raises the question of how exactly the PFD noise

must be simulated, which we address in Section 2.6.
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The foregoing points suggest that the phase noise arising from a PFD in fact

relates to the random pulsewidth difference between the Up and Down signals,

∆TUD. Moreover, four edges, namely, the rising and falling edges of both Up

and Down signals, contribute to ∆TUD. Some of the PFD internal transitions

displace Up and Down by the same amount and should be ignored (Section 2.5).

The analysis of PFD phase noise in [5], [6] relates the phase noise to the

timing jitter, ∆t, as ∆φin = 2πfs∆t, where fs denotes the operating frequency,

but expresses ∆t in terms of the (thermal) noise factor and input resistance of

the PFD. By contrast, our approach begins with the gates comprising the PFD

and determines the jitter in the Up and Down pulsewidth difference, taking into

account both flicker and thermal noise. The mismatch between Up and Down

currents is neglected here.2

2.3 Phase Noise of CMOS Inverter

A good understanding of the phase noise mechanisms in CMOS inverters proves

beneficial in the analysis of PFDs as well. Consider the CMOS inverter and its

waveforms shown in Fig. 2.4. We wish to study the time envelope of the noise

produced by M1 and M2. These transistors inject thermal and flicker noise to

the output node as they turn on. At the end of the transition, however, the on

transistor carries no current and produces no flicker noise. Thus, the thermal

noise envelope of each transistor lasts about half of the input cycle, Tin, whereas

its flicker noise envelope pulsates only during transitions [Fig. 2.4(b)]. Note that

in typical PLLs, the transition times within a PFD are much shorter than the

input period.

2Simulations show 0.2 dB higher phase noise due to a 10% mismatch between the Up and
Down currents.
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inV

outV
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Envelope of M 1

(a)

VDD

inV outV

M 1

M 2

CL

VTHN

Figure 2.4: (a) CMOS inverter, and (b) thermal and flicker noise envelopes of

M1.

In the analysis that follows, we make numerous approximations based on

our intuitive understanding of the circuit’s behavior. The soundness of these

approximations is ultimately put to test in Section 2.7, where two completely

different PFD realizations are simulated and the results are compared with hand

calculations.

It is convenient to view the noise injection of M1 and M2 as follows: the

transistor that is turning on injects thermal and flicker noise during the transition,

and the transistor that is turning off (coming out of the deep triode region)

deposits kT/C noise at the output.

2.3.1 Noise of Transistor Turning On

In order to formulate the noise contribution by the transistors in Fig. 2.4, we must

examine the circuits’ waveforms more closely. As depicted in Fig. 2.5 for a rising

9



transition at the input and for an inverter with a fanout of about 2, the output

begins to fall only after Vin is relatively close to VDD. Transistor M1 turns on as

Vin exceeds its threshold, VTHN , at t = t1, and injects increasingly larger flicker

and thermal noise as Vin rises. The noise envelope reaches a maximum before the

transistor enters the triode region, around t = t2. Thereafter, the flicker noise

injection subsides, falling to zero at t = t3. The thermal noise current, on the

other hand, goes from 4kTγgm to a slightly lower value, 4kT/Ron, where Ron

denotes the channel resistance of M1 with VGS = VDD.

t

VDD

VDD −VTHP

VTHN

VDD
2

t1 t2

inV

outV

tmid t3

Thermal Noise
Envelope of M 1

Flicker Noise
Envelope of M 1

tp

Figure 2.5: Detailed view of thermal and flicker noise envelopes during input and

output transitions.

Our next simplifying assumption is that the output phase noise of interest

manifests itself while Vout in Fig. 2.5 crosses approximately VDD/2 and the noise

injected by the transistors after this point is unimportant [7]. Thus, in the wave-

forms of Fig. 2.5, we consider the area under the envelopes for only up to t = tmid.

We now wish to approximate the area under the noise envelopes by a simple
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function. As shown in Fig. 2.6, the flicker noise envelope is approximated by a

rectangular waveform of the same height, h, but lasting from the time the actual

envelope reaches half of its height, th/2, to the time Vout reaches VDD/2, tmid. We

expect that the sum of the gray areas is roughly equal to the cross-hatched area.

Transient noise simulations in Cadence’s Spectre indicate an error of about 4%

in this approximation. We apply the same concept to the thermal noise envelope

as well. Note that [7] uses a rectangle from the time Vout begins to fall (tp in Fig.

2.5) to tmid, which, according to simulations, underestimates the integrated noise

power by 2 to 3 dB.

t2 tmid tth/2

h

2
h

)(tw

∆T

outV

VDD
2

VDD

VDD −VTHP

Flicker Noise
Envelope of M 1

redge

Figure 2.6: Rectangular approximation of noise envelope.

Another simplifying assumption can be derived from the waveforms in Fig.

2.5: at the peak of the noise envelope, one transistor is nearly off. Thus, we

consider only the noise of M1 on the falling edges at the output and only the

noise of M2 on the rising edges.

Based on the foregoing approximations and utilizing the rectangular function,

w(t), in Fig. 2.6, we now outline the inverter phase noise analysis as follows. As

shown in Fig. 2.7(a), the noise current of each transistor, in(t) is equivalently

multiplied by shifted versions of w(t). Each product is integrated for a duration

of ∆T = tmid − th/2 and divided by the load capacitance, CL, yielding the noise
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voltage [Fig. 2.7(b)]. These voltages are then divided by the slew rate, redge (Fig.

(b)

)(tw

t

∆T

(a)

)(tw)(tni dt

t

t

t

Tin

Tin

v 1n,

v  2n,

v n, 3

tTin

)(w Tint −

tTin

)(w Tin2t −

)(tni dt)(w Tint −

)(tni dt)(w Tin2t −

t

)(tni

CL

1

CL

1

CL

1

Figure 2.7: (a) Equivalent operation of inverter on noise of one transistor, and

(b) conversion of noise current to noise voltage.

2.6), to give the time displacement (jitter), sampled, and summed. We write the

noise voltage, vn,1, after the first window as

vn,1 =
1

CL

∫ ∆T

0

in(t) dt

=
1

CL

∫ +∞

−∞

in(t)w(t) dt. (2.1)

Note that the load capacitance is assumed constant and equal to its value at

Vout = VDD/2. Also, the integration tacitly neglects the effect of the inverter’s

output resistance, rO. This approximation is justified because the time constant,

rOCL, at the inverter output is much greater than ∆T . Similarly,

vn,m =
1

CL

∫ +∞

−∞

in(t)w(t − mTin) dt. (2.2)
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The particular shape of w(t) allows this equation to be rewritten as

vn,m =
1

CL

∫ +∞

−∞

in(t)w(mTin − t) dt, (2.3)

which is the convolution integral [7]. The noise voltage spectrum is therefore

given by

SV n(f) =
1

C2
L

|W (f)|2SIn(f), (2.4)

where W (f) denotes the Fourier transform of w(t) and SIn(f) the spectrum of

in(t). As shown in Section 2.9, the phase noise spectrum3 due to noise of NMOS

transistor on the falling edges is equal to

SΦ(f) =
π2

r2
edgeT

2
in

m=+∞
∑

m=−∞

SV n(f − m

Tin
). (2.5)

It is important to recognize two differences between the above analysis and

that in [7]: (1) as mentioned earlier, our window definition (from th/2 to tmid) more

accurately predicts the injected noise power, and (2) the sampling phenomenon

reveals aliasing even for flicker noise if the 1/f corner, fcor, is comparable with

the operation frequency, which may be the case for PFDs.

We now simplify Eq. (2.5) if I2
n is white. As shown in Section 2.10, SΦ(f) is

also white and equal to

SΦ(f) =
π2

r2
edgeT

2
in

1

C2
L

∆T

fin

SI(f)

=
π2

r2
edgeC

2
L

∆T

Tin
SI(f). (2.6)

In this expression, the load capacitance appears in both redge (= ID/CL, where

ID is the drain current of the on transistor as Vout crosses VDD/2) and in ∆T .

Thus, SΦ(f) is directly proportional to CL and fin. The output phase noise due to

white noise therefore rises by 3 dB for each doubling of the operation frequency.

3Throughout this chapter, all the spectra are two-sided, and the phase noise is denoted by
SΦ(f).

13



The flicker noise behavior of the inverter can also be deduced from Eq. (2.5).

If fin is well above the flicker noise corner frequency, no aliasing occurs and (2.5)

is simplified by choosing m = 0 :

SΦ(f) =
π2

r2
edgeT

2
in

SV n(f). (2.7)

Since ∆T is much less than 1/fcor, we can assume W (f) = ∆T 2sinc2(πf∆T )

is relatively constant for the frequency range of interest and equal to ∆T 2. It

follows that

SΦ(f) =
π2

r2
edgeT

2
in

∆T 2

C2
L

S1/f (f), (2.8)

where S1/f (f) denotes the noise current spectral density of the on transistor due

to its 1/f noise. In this case, the phase noise rises by 6 dB for each doubling of

fin. It also exhibits a stronger dependence upon ∆T . As mentioned earlier, (2.6)

and (2.8) are evaluated for M1 on the falling edge at the output and for M2 on

the rising edge. Note that [7] does not analyze the effect of flicker noise in CMOS

inverters.

2.3.2 Noise of Transistor Turning Off

As illustrated in Fig. 2.5, when the noise envelope reaches its peak, one transistor

is near the edge of the triode region and the other is almost off. Before turning

off, however, this transistor has acted as a resistor, producing noise across CL.

Turning off once every Tin seconds, the NMOS transistor deposits a noise voltage

whose spectral density is given by (kT/CL)/fin. As shown in Section 2.9, the

falling edges exhibit a phase noise equal to

S1(f) =
π2

T 2
in

1

r2
edge

kT

CLfin

. (2.9)
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Taking the PMOS contribution into account, we obtain the total kT/C-induced

phase noise as

SΦ(f) =
2π2

T 2
in

1

r2
edge

kT

CLfin
. (2.10)

2.3.3 Total Phase Noise

The total phase noise is given by the sum of five terms: Eqs. (2.6) and (2.8)

evaluated for both NMOS and PMOS transistors, and Eq. (2.10):

SΦ(f) =

{

π2

r2
edgeC

2
L

[
∆T

Tin

SI(f) +
∆T 2

T 2
in

S1/f (f)]

}

NMOS

+

{

π2

r2
edgeC

2
L

[
∆T

Tin
SI(f) +

∆T 2

T 2
in

S1/f (f)]

}

PMOS

+
2π2fin

r2
edge

kT

CL
. (2.11)

2.4 Phase Noise of CMOS NAND Gate

The inverter phase noise analysis can be readily extended to other CMOS gates

as well. We briefly consider here the noise behavior of a static NAND gate and

use the results in Section 2.5 to study a NAND-based PFD.

Since in a PFD environment, the two inputs do not change simultaneously,

we can reduce the gate to an inverter for each transition. Such an inverter incurs

an additional capacitance at the output due to the second PMOS transistor,

and its output falling edge is produced by the series combination of two NMOS

transistors (Fig. 2.8).

In our PFD design, M1 and M3 have the same width and minimum length;

15



VDD

M 1
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CL

M 3

M 4

VDD
X

Figure 2.8: NAND gate with one input changing.

thus, they can be replaced with one NMOS device having twice their length.4 In

other words, Eq. (2.11) holds if redge, ∆T , CL and SIn(f) are modified to reflect

the equivalent values in the NAND circuit.

2.5 PFD Phase Noise Analysis

2.5.1 NAND PFD

As suggested by the factors ∆T in (2.6) and ∆T 2 in (2.8), the phase noise rises in

proportion to the turn-on time of the transistors in each gate. A worthy effort in

PFD design, therefore, is to minimize the rise and fall times. We thus modify the

standard NOR-based PFD to the NAND-based topology shown in Fig. 2.9(a).

Note that this circuit responds to the falling edges of A and B, and its Up and

Down outputs are low when asserted.

We must now examine the propagation of the edges through the PFD circuit,

seeking those whose jitter modulates the pulsewidth difference between the Up

and Down pulses. To this end, we draw a detailed timing diagram, mark with

a certain shade or pattern the jitter contributed by each gate to each transition,

carry the jitters on to the final Up and Down pulses, and omit those that are in

4The drain and source capacitance at node X introduce a negligible error in this equivalency.

16



common.

(a)

A B

Reset

C D

E F

1

2

3

4

6

7

8

9

5

Up Down

Up Down

(b)

(c)

E

F

C

D

Up

Down

Reset

Up

Down

A

B

Up

Up

Down

Down

Jitter of NAND 1

Jitter of NAND 2

Jitter of NAND 4

Jitter of NAND 9

Jitter of NAND 6

Jitter of NAND 5

Jitter of NAND 8

Jitter of NAND 3

Jitter of NAND 7

Jitter of NAND 2

Jitter of NAND 6

Jitter of NAND 1
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Figure 2.9: (a) NAND-based PFD, (b) jitter contributions to falling edges of

outputs, and (c) jitter contributions to rising edges of outputs.
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Figure 2.9(b) shows the timing diagram, assuming input A falls earlier than

input B. NAND 1 adds jitter to the falling edge of A, producing a rising edge on

Up. This edge experiences additional jitter in NAND 2 and generates the falling

edge of Up. That is, each falling edge of Up is corrupted by only the jitters of

NANDs 1 and 2. Similarly, when a falling edge of B follows, Down rises with

NAND 5’s jitter and Down falls with both NAND 5’s and NAND 6’s jitters.

We must also follow the Up and Down rising edges through the reset path. As

illustrated in Fig. 2.9(c), after Down goes up, Reset falls, inheriting the jitters

of NAND 5 and NAND 9. In response, E and F rise, incurring additional jitter

from NAND 4 and NAND 8, respectively. Subsequently, C falls with the jitter

of NAND 3 and D with that of NAND 7. Finally, Up and Down rise with the

jitters of NAND 2 and NAND 6, respectively.

The Up and Down waveforms in Fig. 2.9(c) merit two remarks. First, NAND

2 contributes jitter to both the rising and falling edges of Up, but the two jitters

are uncorrelated because the former is due to a PMOS device and the latter

due to an NMOS device (the series combination of M1 and M3 in Fig. 2.8). A

similar observation applies to NAND 6 contributions to Down. Second, the jitter

produced by NAND 9 appears on the rising edges of both Up and Down pulses

and hence is immaterial. As seen from Fig. 2.9(c), NANDs 1-8 make a total of

10 contributions to the pulsewidth difference between Up and Down. The phase

noise spectral densities of these contributions are summed to obtain the overall

PFD phase noise.

In response to the jitter components in the Up and Down pulses (except for

those that are in common), the charge pump in Fig. 2.2 produces an error current,

∆I. Adding up the powers of uncommon jitters, Tm, m = 1, ..., 10, in the Up and
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Down pulses, we have

∆I2 =
I2
p

T 2
in

10
∑

m=1

T 2
m. (2.12)

It can be shown that the transfer function from this current injection to the

PLL output within the loop bandwidth is equal to Φout,PLL/∆I = (2π/Ip)M . It

follows that

SΦ,PLL(f) =
4π2

T 2
in

M2

10
∑

m=1

STm(f), (2.13)

where STm(f) denotes the spectral density of jitter component Tm and is equal

to SV n(f)/r2
edge. For roughly similar gates and rise and fall times, the in-band

phase noise observed at the PLL output is given by

SΦ,PLL
∼= 10M2[

4π2∆T

r2
edgeC

2
LTin

SI(f) +
4π2∆T 2

r2
edgeC

2
LT 2

in

S1/f (f)

+
4π2fin

r2
edge

kT

CL
]. (2.14)

As explained in Section 2.6, however, an optimum design may incorporate differ-

ent sizings for the gates.

An important point emerging from our analysis is that, to reduce the flicker

noise of a PFD, the channel length of its constituent transistors must not be

increased. This is because longer-channel devices inevitably raise ∆T in (2.14).

Instead, the channel area of the transistors can be increased by choosing wider

devices.

2.5.2 TSPC PFD

The foregoing analysis can be applied to other PFD topologies as well. In this

section, we study the phase noise of a TSPC implementation [8] as it can poten-

tially achieve a higher speed and proves useful in cascaded PLLs. Depicted in

Fig. 2.10(a), the circuit operates as follows. A rising edge on A turns on M5,
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discharging the Up output. Similarly, a rising edge on B discharges the Down

output. Once both Up and Down are low, Reset rises, discharging nodes C and

D and forcing Up and Down to go high.

A

Reset

C

E

M 1

M 2

M 3

M 4

M 5

M 6

Up

B

D

F

M 7

M 8

M 9

M 10

M 11

M 12

Down

(b)

(a)

A

B

Up

Down

C

D

Reset

Jitter of M 5 M 6−

Jitter of −M 11 M 12

Jitter of 

Jitter of NOR

M 3

M 9

Up Jitter of 

Down Jitter of 

Jitter of 

M 4

M 10

Figure 2.10: (a) TSPC PFD, and (b) jitter contributions to the outputs.

In a manner similar to the analysis of the NAND PFD, we follow the tran-

sitions through the circuit and mark the jitter contributed by each stage. As
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illustrated in Fig. 2.10(b), the falling edges of Up and Down are corrupted by

the noise of the series combinations M5-M6 and M11-M12, respectively. Next,

Reset experiences the jitter due to M11-M12 and the NOR gate. The falling tran-

sitions at C and D inherit the jitter of Reset and incur additional noise due to

M3 and M9, respectively. Finally, these edges are corrupted by the noise of M4

and M10.

Let us draw several conclusions. First, the jitter of the NOR gate modulates

the widths of Up and Down equally and hence is ignored. Second, the overall

TSPC PFD phase noise arises from six transitions and can be potentially smaller

than that of the NAND PFD. Third, the noise injection mechanisms in each stage

are similar to those of the inverter and NAND gates studied earlier. For example,

when M5 turns on, its corresponding stage acts approximately like a NAND gate

(except that M4 has been off well before this transition). Also, when node C

falls, the series combination M5-M6 deposits kT/C noise at the output while M4

turns on as in an inverter and injects both thermal and flicker noise. Thus, Eq.

(2.14) applies here as well if the factor of 10 is replaced by 6 and the gates and

rise and fall times are assumed similar.

2.6 Design Optimization

With the insights developed above into PFD phase noise mechanisms, we now

seek to optimize each design for minimum phase noise. Of course, one can simply

enlarge the widths of all of the PFD transistors by a factor of α so as to reduce

the phase noise by the same factor, but at the cost of proportionally higher power

consumption. A more methodical approach, however, is to assume a certain power

budget and determine the best sizing of the transistors that yields minimum phase

noise. This optimization can still be followed by the above scaling technique to
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trade power for phase noise. We consider 1/f noise here as it dominates for

offsets as high as 10 MHz, but optimization for thermal noise is similar.

Since the PFD power dissipation is proportional to the total transistor width

in the signal path, Wtot, we must determine how a given Wtot is apportioned

among the transistors so as to minimize the phase noise. Our general procedure

is to favor transistors that define the transition time of critical edges. We also

make four approximations: (1) The capacitance at a given node is proportional to

the width of the “driver” transistor, Wa, and the width of the “driven” transistor,

Wb: CL ∝ ηWa + Wb. The first term on the right accounts for the drain junction

capacitance and the Miller multiplication of the gate-drain overlap capacitance at

the output node (about a factor of 2). (2) The drain 1/f noise current spectrum

is given by S1/f (f) = g2
mKf/(WaLaCoxf), where gm ≈ ID/(VGS − VTH) and

VGS = VDD.5 (3) At the point of interest, namely, VGS ≈ VDD and Vout ≈ VDD/2,

we have ID ∝ Wa regardless of the transistor (short-channel) characteristics.

Thus, the slew rate in Eq. (2.8), redge ∝ ID/CL ∝ Wa/CL. (4) The window

width, ∆T , is proportional to VDD/redge ≈ VDDCL/ID. Equation (2.8) is now

rewritten as

SΦ(f) ∝ fin
2VDD

2CL
2

Wa
3

1

f
. (2.15)

For given values of fin, VDD, and f ,

SΦ(f) ∝ (ηWa + Wb)
2

Wa
3

. (2.16)

The power consumed to charge and discharge such a node once per cycle is

approximately equal to P = finCLVDD
2. We now apply these results to the

optimization of the NAND and TSPC PFDs.

5This gm equation assumes heavy velocity saturation. For long-channel devices, gm ≈
2ID/(VGS − VTH). This distinction is not critical in our analysis.
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2.6.1 NAND PFD Optimization

As evident from Figs. 2.9(b) and (c), the NAND PFD phase noise arises from

five transistors: the PMOS device in NAND 1, the NMOS device in NAND 2, the

PMOS device in NAND 4, the NMOS device in NAND 3, and the PMOS device

in NAND 2. Denoting the widths of PMOS and NMOS transistors in NAND

j by WPj and WNj , respectively, we use Eq. (2.16) to express the first PMOS

contribution as:

SΦ1
(f) ∝ [η(2WP1 + WN1) + W2 + W3 + W9]

2

WP1
3

. (2.17)

Here, the factor of 2 accounts for the two PMOS devices tied to the output and

Wj = WPj + WNj . The sum W2 + W3 + W9 represents the load due to the three

NANDs driven by NAND 1. The other four contributions can be expressed in a

similar manner, e.g., for the NMOS device in NAND 2:

SΦ2
(f) ∝ [η(2WP2 + WN2) + WP1 + WN1]

2

WN2
3

. (2.18)

Note that the proportionality factors relating the right-hand sides of (2.17) and

(2.18) to their left-hand side are different as they include the mobility and flicker

noise coefficient of PMOS and NMOS devices, respectively. The total power

consumption satisfies the relation:

P ∝ finVDD
2[WP9 + WN9 + 2

4
∑

j=1

(WPj + WNj)]. (2.19)

As explained in Section 2.5, the jitter of some of the edges does not enter

the overall PFD phase noise. The transistors causing these edges can therefore

have nearly minimum widths so long as they respond fast enough to avoid circuit

failure. The devices falling into this category are the NFETs in NANDs 1, 4, and 9

and the PFETs in NANDs 3 and 9. The sum of the five phase noise contributions
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described above must be minimized subject to the power budget imposed by

(2.19). This is accomplished using the “fmincon” function in MATLAB. For

example, a total width of 162 µm (corresponding to 0.24 mW at 1 GHz) for the

transistors yields WP1 = 11, WN1 = 0.12, WP2 = 9.1, WN2 = 5.9, WP3 = 0.12,

WN3 = 6.22, WP4 = 7.8, WN4 = 0.12, WP9 = 0.12, WN9 = 0.12, all in microns.

Using transient circuit simulations, we adjust some of the noncritical transistors

widths so to minimize crowbar currents and speed up the critical transitions,

obtaining WP1 = 10.6, WN1 = 0.5, WP2 = 8.5, WN2 = 5.5, WP3 = 0.6, WN3 =

5.84, WP4 = 7.4, WN4 = 0.5, WP9 = 0.12, WN9 = 2, all in microns. It is

interesting that such a range of widths would not be obvious if we attempted to

manually optimize the PFD transistors by trial and error. As shown in Section

2.7, this optimization lowers the phase noise by 4 to 6 dB.

2.6.2 TSPC PFD Optimization

The foregoing procedure can be applied to the TSPC PFD of Fig. 2.10(a) as

well. Here the phase noise has three contributions arising from 1/f noise:

SΦ1
(f) ∝ [η(W4 + W5) + WP,NOR + WN,NOR]2

W5
3

, (2.20)

where Wj refers to the width of Mj and WP,NOR and WN,NOR are the PMOS and

NMOS widths in the NOR gate, respectively. The power consumption satisfies

the relation:

P ∝ finVDD
2(2

6
∑

j=1

Wj + WP,NOR + WN,NOR). (2.21)

For simplicity, we assume equal widths for the transistors within each cascode

structure. Also, M1-M2 and M7-M8 in Fig. 2.10(a) contribute no jitter to the

PFD and hence can have small widths. For example, a total width of 162 µm

(corresponding to 0.2 mW at 1 GHz) is apportioned as follows: W1 = 0.12, W2 =
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0.12, W3 = 28, W4 = 25, W5 = 13.72, W6 = 13.72, WP,NOR = 0.12, WN,NOR =

0.12, all in microns. Manual adjustment to improve transition times in the simula-

tions yields W1 = 1.4, W2 = 1.4, W3 = 12, W4 = 24, W5 = 10, W6 = 10, WP,NOR =

10, WN,NOR = 0.12, all in microns. As discussed in Section 2.7, this optimization

reduces the phase noise by 5 to 8 dB.

2.6.3 Dependence on Operation frequency

Equation (2.14) reveals that the phase noise of PFDs rises in proportion to fin in

the thermal regime and fin
2 in the flicker noise regime. This dependence imposes

certain bounds on the in-band phase noise of PLLs. For a feedback divide ratio

of M , the first term in Eq. (2.14) yields an output phase noise of

SΦ,out(f) ∝ finM
2SI(f)

∝ fout
2

fin
SI(f). (2.22)

That is, to minimize the phase noise due to the PFD thermal noise, fin must be

maximized. For PFD flicker noise, on the other hand,

SΦ,out(f) ∝ fin
2M2S1/f (f)

∝ fout
2S1/f (f). (2.23)

Interestingly, this PFD contribution is independent of the input frequency so long

as flicker noise does not experience aliasing.

2.7 Simulation Results

This section presents simulation results in 65-nm CMOS technology for the cir-

cuits studied in this chapter and compares them with our analytical derivations.

The objective is threefold: (a) validate the trends predicted by our analysis, e.g.,
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the dependence of phase noise upon the input frequency and node capacitance,

(b) check the absolute accuracy of the analytical results, and (c) examine the

soundness of our optimization procedure.

A few remarks with respect to the hand calculations are warranted. First, the

transistor capacitances, drain bias currents, and drain (1/f and thermal) noise

currents are obtained from ac and transient simulations for various values of VGS

and VDS. These simulations also reveal the peak noise current and the gate-

source voltage, VGS,half , at which the noise current is equal to half of its peak.

Second, the window width, ∆T , in Eqs. (2.6), (2.8), (2.11) and (2.14) is derived

from transient simulations of the stage of interest by finding the time at which

the gate-source voltage reaches VGS,half .

2.7.1 Inverter and NAND Simulations

Figure 2.11 plots the phase noise of a chain of eight inverters with WP = 6 µm

and WN = 3 µm at an input frequency of 1 GHz. (As explained in Section 2.7.2,

scaling to other frequencies is straightforward.) In order to investigate the ro-

bustness of our analytical approach, the chain is also studied with an additional

node capacitance of 20 fF. In each case, the results of Cadence pnoise simula-

tions are compared with those of hand calculations. Figure 2.12 repeats these

experiments for a chain of eight NAND gates with one input tied to VDD and

WP = WN = 6 µm. We observe that in all cases, the hand calculations incur an

error of less than 2 dB.

2.7.2 PFD Simulations

As argued in Section 2.2, the PFD phase noise cannot be simulated by examining

only the Up or Down pulses. For this reason, we embed the PFD within an
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Figure 2.11: Phase noise of a chain of eight inverters running at 1 GHz.
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Figure 2.12: Phase noise of a chain of eight NANDs running at 1 GHz (with one

input tied to VDD).

otherwise ideal PLL, run a pss and pnoise analysis, allow the PLL to settle, and

compute the output phase noise of the PLL in the steady state. If the PLL

bandwidth is large enough, the PFD phase noise up to the offset frequencies of
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interest passes to the output unattenuated. Such a simulation takes a long time

but is necessary here to demonstrate the validity of our approach. The PLL

comprises behavioral descriptions of the VCO, frequency divider, and charge

pump. The loop filter employs a noiseless resistor. To ensure that the PLL does

not attenuate the PFD phase noise for offset frequencies as high as 100 MHz, the

reference frequency, fref , is chosen equal to or greater than 1 GHz. Such a high

value is chosen so as to readily observe and validate the effect of flicker noise.

For much lower input frequencies, the aliasing of white noise tends to mask the

effect of flicker noise, making it difficult to correlate the simulations with the

analytical results. For example, if fref is reduced to 20 MHz, then the effect of

flicker noise rises by 10 log(50) = 17 dB and that of white noise by 20 log(50) = 34

dB, masking the former.

Figure 2.13 plots the simulated and calculated phase noise of the NAND PFD

for different input frequencies. (Each simulation incorporates a different set of

PLL parameters6 commensurate with the reference frequency.) As predicted in

Section 2.3, doubling fref raises the phase noise by 6 dB in the 1/f noise regime

and by 3 dB in the white noise regime. The error in the analytical calculations

is 3.1 dB. The effect of white noise is overestimated possibly due to assuming

that all of the high-frequency noise components experience only a sinc2 envelope

before folding, whereas in the actual circuit, these components are also attenuated

by the finite bandwidth and hence do not extend to infinity.

Figure 2.14 plots similar results for the TSPC PFD. The maximum error in

this case is 2.8 dB. Designed for the same power consumption as the NAND PFD,

the TSPC topology exhibits about 6 dB lower phase noise.

Illustrated in Fig. 2.15 are the results of the optimization procedure described

6For example, R1 = 600 Ω, C1 = 200 pF, C2 = 100 fF, Ip = 1 mA, M = 1, and KV CO =
2π(1.5 × 109) rad/s.
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in Section 2.6. For a given power consumption, the phase noise is reduced by 4

to 8 dB for the two PFDs.
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Figure 2.13: Phase noise of NAND PFD at various input frequencies.
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Figure 2.14: Phase noise of TSPC PFD at various input frequencies.
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Figure 2.15: Phase noise of NAND and TSPC PFDs before and after optimiza-

tion.

2.8 Effect of Pulse Position Modulation

In this section, we show that if noise modulates only the position of the Up or

Down pulses, the resulting phase noise is negligible. Consider the waveforms

depicted in Fig. 2.16(a), where Up and Down have a pulsewidth of TRST and

a random skew of Tskew. Assuming an ideal charge pump, we note that the

disturbance on the oscillator control voltage is in the form of a pulse with a mean

width of TRST . By contrast, as shown in Fig. 2.16(b), a pulsewidth difference

of TD between Up and Down manifests itself as a step on the control voltage,

producing a much larger phase disturbance.
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Figure 2.16: Modulation of (a) position, and (b) pulsewidth of Up and Down

signals.

2.9 Phase Noise of Square Wave with Uncorrelated Jit-

ters on Rising and Falling Edges

It is usually assumed that an edge displacement of ∆T translates to a phase

change of 2π∆T/Tin, where Tin = 1/fin denotes the period. Of course, if all of

the edges of a square wave are displaced by ∆T , this amount of phase change

arises. However, jitter affects the consecutive edges differently, requiring a closer

look at the resulting phase noise.

Let us first suppose a sinusoidal jitter, Tm cos ωmt, is applied to only the rising

edges of an ideal square wave, p(t). As shown in Fig. 2.17(a), the rising edge at

kTin is displaced by an amount equal to Tm cos(ωmkTin). This jittery waveform

can be expressed as the sum of p(t) and a train of pulses that occur at kTin

with a width of Tm cos(ωmkTin) [Fig. 2.17(b)]. If Tm ≪ Tin, the latter can be
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Figure 2.17: (a) Square wave with modulated rising edges, (b) decomposition

into two waveforms, and (c) resulting magnitude of Fourier transform.

approximated by a train of impulses and expressed as

q(t) ≈ Tm

k=+∞
∑

k=−∞

cos(ωmkTin) δ(t − kTin). (2.24)

Adding the Fourier transforms of p(t) and q(t), we obtain the result shown in Fig.

2.17(c), where each harmonic of the square wave is surrounded by two impulses

of area Tm/(2Tin) at frequency offsets of ±fm = ±ωm/(2π). It can be shown that

these sidebands generate only phase modulation (PM).

We thus observe that a jitter spectrum consisting of two impulses having an

area of Tm/2 produces two PM sidebands around fin whose normalized magnitude

is equal to πTm/(2Tin). That is, a jitter of Tm/2 yields a phase disturbance of
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(π/Tin)(Tm/2) rather than (2π/Tin)(Tm/2) in this case. One may expect this

result because only the rising edges have been displaced.

We now generalize the foregoing observation to random jitter, while still as-

suming jitter on only the rising edges. If the jitter itself in the time domain is

denoted by σ(t), then Eq. (2.24) is rewritten as

q(t) ≈ σ(t)
k=+∞
∑

k=−∞

δ(t − kTin). (2.25)

Adding the power spectral densities of p(t) and q(t), we obtain the overall spec-

trum shown in Fig. 2.18. Thus, the jitter spectrum, Sσ(f), is shifted to ±fin,

±2fin, etc., scaled by a factor of 1/Tin
2, and normalized to a carrier power of 1/π2,

yielding (π2/Tin
2)Sσ(f ± fin), etc., for the phase noise.7 MATLAB simulations

confirm this result.

0 f

σ )(fS
η

ff in0f in−

1

π2

1

4

η
inT 2

Spectrum of Jittery
Square Wave

+

Figure 2.18: Spectrum of jittery square wave.

Since the jitters on the rising and falling edges of a CMOS inverter’s output

are generated by different transistors and are hence uncorrelated, we write the

overall phase noise of the square wave as

SΦ(f) =
π2

Tin
2

k=+∞
∑

k=−∞

[Sσp(f ± kfin) + Sσn(f ± kfin)], (2.26)

7Using Rice’s approximation of random noise by a sum of sinusoids [9], it can be proved
that the spectra at ±fin produce only phase modulation.
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where Sσp and Sσn denote the spectra of the jitters produced by the PMOS and

NMOS transistors, respectively. Note that Sσ and SV n are simply related by a

factor of r2
edge.

2.10 Spectrum of Shaped and Sampled White Noise

In this section, we examine the phase noise spectrum due to white noise:

SΦ(f) =
π2

r2
edgeT

2
in

m=+∞
∑

m=−∞

SV n(f − m

Tin

). (2.27)

Since the Fourier transform of the rectangular window, w(t), is given by ∆T×
sin(πf∆T )/(πf∆T ), we have from (2.4)

SV n(f) =
1

C2
L

∆T 2 sin2(πf∆T )

(πf∆T )2
SIn(f). (2.28)

If SIn(f) is white, then SV n(f) has a sinc2 shape; i.e., SΦ(f) consists of sinc2

functions centered at mfin = m/Tin. We now prove that the sum of these sinc2

functions is a flat line under a certain condition.

Considering only the sinc2 shape itself, we recognize that the inverse Fourier

transform of ∆T 2sinc2(πf∆T ) is a triangle, g(t), with a time duration of −∆T

to +∆T and a height of ∆T [Fig. 2.19(a)]. As a result of shifts of sinc2 by mfin

in the frequency domain, g(t) is multiplied by exp(j2πmfint) in the time domain:

g(t)

m=+∞
∑

m=−∞

ej2πmfint ↔
m=+∞
∑

m=−∞

∆T 2 sin2[π∆T (f − mfin)]

[π∆T (f − mfin)]2
. (2.29)

We also note that

m=+∞
∑

m=−∞

ej2πmfint =
1

fin

m=+∞
∑

m=−∞

δ(t − mTin). (2.30)

In other words, g(t) is multiplied by a train of impulses centered at mTin [Fig.

2.19(b)]. Thus, if the duration of g(t) is short enough to enclose only the impulse
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Figure 2.19: Inverse Fourier transform of (a) sinc2 function, and (b) shifted sinc2

functions.

at t = 0, we have

g(t)
m=+∞
∑

m=−∞

ej2πmfint = ∆T
1

fin

δ(t). (2.31)

The Fourier transform of this result is equal to ∆T/fin and hence:

m=+∞
∑

m=−∞

∆T 2 sin2[π∆T (f − mfin)]

[π∆T (f − mfin)]2
=

∆T

fin

, (2.32)

which is a flat line.

In summary, if the sampling period, Tin, is greater than the rectangular win-

dow width, ∆T , then the window-integrated and sampled white noise still has a

white spectrum. Note that this result is valid for any shape chosen for w(t) so

long as the inverse Fourier transform of |W (f)|2 has a total time duration less

than 2Tin, or more generally, so long as the inverse Fourier transform of |W (f)|2

crosses zero at t = mTin except for t = 0.
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2.11 Conclusion

The phase noise of PFDs can manifest itself within the bandwidth of PLLs, cor-

rupting the transmitted and received signal constellations. This chapter analyzes

the phase noise of two PFD topologies based on the approximations made for a

CMOS inverter. It is also shown that the PFD phase noise is not merely that

of the Up and Down pulses. Simulations using each PFD in a PLL reveal good

agreement with analytical predictions, indicating, most notably, the dependence

of the phase noise on the frequency of operation.
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CHAPTER 3

Relation Between Delay Line Phase Noise and

Ring Oscillator Phase Noise

The phase noise of a ring oscillator can be obtained by multiplying its open-loop

phase noise by a simple shaping function. The shaping function is computed

using first principles and is applicable to both flicker-noise-induced and white-

noise-induced phase noise, leading to compact equations for ring oscillators. It

is also shown that flicker noise upconversion in ring oscillators is primarily a

function of the total gate capacitance and inevitable regardless of the risetime

and falltime symmetry. Two oscillator prototypes fabricated in 65-nm CMOS

technology verify the validity of the results.

3.1 Introduction

It has been recognized for more than two decades that delay lines exhibit less

phase noise than ring oscillators do [10]. This advantage is intuitively explained

by the lack of jitter accumulation in the former but has not been quantified

analytically.

The phase noise in ring oscillators has been studied extensively [11]-[18]. In

this chapter, we offer an analysis that leads to a direct relation between the

phase noise of delay lines and that of ring oscillators, allowing comparison of
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their performance for a given power dissipation and operation frequency. We

begin with first principles and establish a unified relation for both white and

1/f noise sources. As a byproduct, our analysis also shows that the flicker-noise-

induced phase noise is inversely proportional to the total gate capacitance present

in a ring oscillator and relatively independent of the symmetry between rise and

fall transitions. The proposed relation is experimentally verified on 9-stage and

19-stage prototypes fabricated in 65-nm CMOS technology.

Section 3.2 deals with the phase noise of delay lines, expressing their jitter as

two impulse trains. Section 3.3 analyzes jitter accumulation in a ring oscillator

and utilizes the results from Section 3.2 to arrive at the the proposed relation.

Section 3.4 derives some useful results, including compact phase noise equations,

and Section 3.5 and 3.6 respectively present simulation and experimental confir-

mations of the equations. Section 3.7 concludes this chapter.

3.2 Phase Noise of Delay Lines

Let us consider the chain of inverters shown in Fig. 3.1(a) as a representative

delay line, with the dummy load added to ensure uniform delays. Since the

inverters exhibit uncorrelated noise, the overall phase noise (as a power quantity)

is equal to that of one multiplied by the number of stages (if they are identical).

For our purposes, we tentatively assume that only the second inverter in Fig.

3.1(a) has noise. We also select the input frequency equal to the oscillation

frequency of this chain as if it were reconfigured to become a ring oscillator, i.e.,

fin = 1/(6Td), where Td denotes the average gate delay. Thus, as V0 propagates

to V3, it experiences three gate delays and the jitter of one inverter [Fig. 3.1(b)].

In other words, the falling edges of V3 are aligned with the falling edges of V0 but
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Figure 3.1: (a) Three-stage delay line with only one noisy inverter, (b) node

voltages in response to a frequency equal to the oscillation frequency of a three-

-stage ring oscillator, (c) decomposition of the output voltage to an ideal noiseless

square wave and a noise waveform, and (d) approximation of the noise waveform

in (c) to two uncorrelated weighted impulse trains.

modulated by the second inverter’s jitter.

The output of the third inverter in Fig. 3.1(a) can be decomposed into an ideal
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square wave and a train of narrow pulses [19, 20] that occur every 3Td = Tin/2

seconds [Fig. 3.1(c)]. Since the jitters on the rising and falling edges arise from

different noise sources and are uncorrelated [21], we denote them by σR(t) and

σF (t), respectively. Now, V3,n in Fig. 3.1(c) itself can be approximated as the

sum of a positive impulse train weighted by σF (t) and a negative impulse train

weighted by σR(t) [Fig. 3.1(d)]:

V3,n(t) = V3,n,F (t) + V3,n,R(t)

=
∞
∑

n=−∞

σF [(2n + 1)
Tin

2
] δ[t − (2n + 1)

Tin

2
]

−
∞
∑

n=−∞

σR(2n
Tin

2
) δ(t − 2n

Tin

2
) (3.1)

With the aid of Fig. 3.1(d), we recognize that the phase noise of the chain is equal

to the sum of the power spectral densities of V3,n,F and V3,n,R normalized to the

power of the first harmonic of V3,ideal [21]. We derive the phase noise expression

in Section 3.4.

3.3 Phase Noise of Ring Oscillators

The perspective described above for the phase noise of delay lines proves useful in

the phase noise analysis of ring oscillators as well. Suppose the delay line of Fig.

3.1(a) is reconfigured to form a ring oscillator as shown in Fig. 3.2(a) (without

the dummy load).

We perform a “gedankenexperiment” in which (1) the voltage source Vin ap-

plies a noiseless rising edge to the input of the first inverter at t = 0− and is

disconnected from the circuit at t = 0, and (2) the second inverter produces jit-

ter only once (i.e., a single time displacement) as this edge propagates through

the chain and remains noiseless thereafter. Thus, the input rising edge arrives
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Figure 3.2: (a) Three-stage ring oscillator retimed at t = 0 with only one noisy

inverter, (b) jitter on all edges due to a single jitter event on V2, (c) decomposition

of V3 in (b) to an ideal noiseless square wave and a noise waveform, with g(t)

serving as a “carrier,” (d) jitter on edges when inverter #2 adds jitter on every

transition, (e) decomposition of V3 in (d) to an ideal noiseless square wave and a

noise waveform.
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at V3 with a delay equal to 3Td plus the jitter of the second inverter, ∆T1. As

this edge circulates around the ring, it experiences no more jitter; i.e., all of the

subsequent edges are simply displaced by a constant equal to ∆T1. Figure 3.2(b)

illustrates this effect.

The output waveform obtained in the above experiment can be decomposed

as shown in Fig. 3.2(c) and expressed as a single pulse of width ∆T1, convolved

with an alternating train of impulses, g(t). Note that g(t) = 0 for t < 0. We can

consider g(t) as “carrier” for the time displacements.

We now repeat the above experiment while assuming that the second inverter

is noisy at all times. The second time the oscillation edge passes through this

inverter, the jitter causes one additional displacement, ∆T2, as depicted by the

dark shading in Fig. 3.2(d). The effect of this shift can be obtained by convolv-

ing a pulse of width ∆T2 with g(t) and adding the result to an ideal, noiseless

waveform. Note that this calculation holds valid whether or not ∆T1 and ∆T2

are correlated.

The foregoing observations suggest that the ring oscillator output can be

decomposed into an ideal square waveform and a noise component [Fig. 3.2(e)]

given by

Vn,ring(t) =

{

∞
∑

n=−∞

σR[(2n + 1)
Tin

2
] δ[t − (2n + 1)

Tin

2
]

}

∗ g(t)

−
{

∞
∑

n=−∞

σF (2n
Tin

2
) δ(t − 2n

Tin

2
)

}

∗ g(t). (3.2)

From (3.1) and (3.2), it follows that the delay line phase noise, SΦ,DL(f), and the

ring oscillator phase noise, SΦ,ring(f), are related as1

SΦ,ring(f) = SΦ,DL(f)|G(f)|2, (3.3)

1Throughout this chapter, all the spectra are two-sided, and the phase noise is denoted by
SΦ.
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where |G(f)|2 denotes the spectrum of g(t).

Equation (3.3) is a general result and merits a few remarks. First, (3.3) applies

to the phase noise due to both white noise and flicker noise. Second, (3.3) holds

for the phase noise arising from all of the devices in the delay line and the ring.

Third, (3.3) is not limited to CMOS inverters and can be used for differential

delay stages and rings as well.

To determine |G(f)|2, we first write

g(t) =

[

∞
∑

n=−∞

δ(t − nTin) −
∞
∑

n=−∞

δ(t − nTin − Tin

2
)

]

u(t), (3.4)

and hence

G(f) =

[

1

Tin
(1 − e−jπfTin)

∞
∑

n=−∞

δ(f − nfin)

]

∗
[

1

j2πf
+

1

2
δ(f)

]

, (3.5)

which simplifies to

G(f) =

{

2

Tin

∞
∑

n=−∞

δ[f − (2n + 1)fin]

}

∗
[

1

j2πf
+

1

2
δ(f)

]

. (3.6)

The unit step in (3.4) ensures the causality of jitter accumulation, i.e., the jitter

generated at any edge is present for only subsequent edges. Figure 3.3 plots the

magnitude of G(f), revealing how the delay line phase noise is shaped to produce

the ring oscillator phase noise.
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Figure 3.3: Fourier transform of g(t).
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At an offset frequency of ∆f with respect to the fundamental frequency,

fin = 1/Tin, we have

G(fin + ∆f) =
2

Tin

∞
∑

n=−∞

1

j2π(∆f + 2nfin)

=
1

j2π

{

2fin

∆f
+

∞
∑

n=1

∆f/fin

[∆f/(2fin)]2 − n2

}

=
1

j2π

[

π cot(
π∆f

2fin
)

]

. (3.7)

Thus, Eq. (3.3) can be rewritten as

SΦ,ring(∆f) = SΦ,DL(∆f)
1

4
cot2(

π∆f

2fin
). (3.8)

For offset frequencies much less than fin, we have cot2[π∆f/(2fin)] ≈ [2fin/(π∆f)]2.

Changing our notation from fin to fosc, we write

SΦ,ring(∆f) = SΦ,DL(∆f)

(

fosc

π∆f

)2

. (3.9)

This simple, fundamental relation holds for phase noise due to both 1/f and

white noise.

3.4 Useful Insights

Equation (3.9) provides a multitude of interesting and useful insights into the

phase noise behavior of ring oscillators. Of course, it confirms that white noise

and flicker noise lead to 1/∆f 2 and 1/∆f 3 phase noise profiles because the corre-

sponding delay line phase noise profiles are respectively flat and proportional to

1/∆f [21]. This section presents some other insights that may benefit the circuit

designer.
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3.4.1 Comparison of Delay Lines and Ring Oscillators

Equation (3.9) indicates that conversion of a delay line to a ring oscillator shapes

the phase noise by an f 2
osc/(π∆f)2 function. Since ∆f is usually much less than

fosc/π, we observe that SΦ,ring(∆f) ≫ SΦ,DL(∆f) for a given power dissipation

and fundamental frequency. Why are low noise frequencies scaled by a greater

factor? Consider the scenario depicted in Fig. 3.4(a), where one of the noise

(a)

VDD

Vn1

VDD

Vn1

(b)

inT

2
k ( )+k 1

inT

2
( )+k 2

inT

2

t

Vn1

Figure 3.4: (a) Delay line and ring oscillator with one equivalent noise source,

Vn1, and (b) Vn1 shown as a low-frequency component.

sources of the second inverter, Vn1, is explicitly shown and placed in series with

VDD; for example, Vn1 represents the noise of the PMOS transistor in the inverter.

Suppose Vn1 varies at a rate much lower than the operation frequency, fin [Fig.

3.4(b)]. We observe that the delay line simply experiences a relatively constant
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phase shift at t = kTin/2, t = (k+1)Tin/2, etc., so long as Vn1 changes negligibly.

In the ring oscillator, on the other hand, the time displacements caused by Vn1

at t = kTin/2, t = (k + 1)Tin/2, etc., continue to accumulate until Vn1 changes

polarity. The lower the frequency of Vn1, the longer and larger this accumulation

is, producing the 1/∆f 2 shaping function.

3.4.2 Compact Phase Noise Equations

The phase noise of an inverter is derived in [21] as

SΦ,white =

{

π2∆T

r2
edgeC

2
LTin

SI(f)

}

NMOS

+

{

π2∆T

r2
edgeC

2
LTin

SI(f)

}

PMOS

+
2π2

r2
edgeTin

kT

CL
.

(3.10)

for white noise sources and as

SΦ,1/f =

{

π2∆T 2

r2
edgeC

2
LT 2

in

S1/f (f)

}

NMOS

+

{

π2∆T 2

r2
edgeC

2
LT 2

in

S1/f (f)

}

PMOS

(3.11)

for flicker noise sources, where redge is the slew rate, CL the load capacitance,

Tin the input period, SI(f) the thermal noise current, S1/f (f) the flicker noise

current, k the Boltzmann constant, T the absolute temperature, and ∆T the

equivalent “on” time for each transistor [21].

In order to derive a compact expression for the delay line, we make three

simplifying assumptions. (1) The equivalent on time, ∆T , is approximately equal

to the gate delay, Td. (2) The slew rate, redge, can be approximated as ID/CL,

where ID denotes the drain current of the on transistor when its gate voltage is

near the rail and its drain voltage around VDD/2 [21]. (3) The slew rate can also

be approximated as VDD/(2Td) [22].

It follows from Eqs. (3.10) and (3.11) that for M noisy inverters in a delay
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line,

SΦ,white,DL = M
π2Td

I2
DTin

[SI(f)|NMOS + SI(f)|PMOS] + M
4kTπ2Td

IDVDDTin
, (3.12)

SΦ,1/f,DL = M
π2T 2

d

I2
DT 2

in

[S1/f (f)|NMOS + S1/f (f)|PMOS], (3.13)

where it is assumed ID is the same for NMOS and PMOS devices. In the special

case where the input period is equal to the period of the corresponding ring

oscillator, we have 1/fosc = Tin = 2MTd, and (3.12) and (3.13) reduce to

SΦ,white,DL =
π2

2I2
D

[SI(f)|NMOS + SI(f)|PMOS] +
2kTπ2

IDVDD

, (3.14)

SΦ,1/f,DL =
π2

4MI2
D

[S1/f (f)|NMOS + S1/f (f)|PMOS]. (3.15)

With the aid of Eq. (3.9), we can now express the phase noise of an M-stage

ring oscillator as:

SΦ,white,ring(∆f) =
f 2

osc

∆f 2

{

1

2I2
D

[SI(∆f)|NMOS + SI(∆f)|PMOS] +
2kT

IDVDD

}

,

(3.16)

SΦ,1/f,ring(∆f) =
f 2

osc

4MI2
D∆f 2

[

S1/f (∆f)|NMOS + S1/f (∆f)|PMOS

]

. (3.17)

Note that these spectra are two-sided (i.e., −∞ < f < +∞). Accounting for the

factor of 2 difference between one-sided and two-sided spectra, we observe that

the phase noise given by Eq. (3.17) is still twice that reported in [7]. As verified

by the simulations in Section 3.5, our result is correct. The factor of 2 error in [7]

can be explained as follows. For a voltage-controlled oscillator (VCO) sensing a

small sinusoidal voltage of peak Vm and frequency fm, the relative magnitude of

the sideband at the output is given by KV COVm/(2fm), where KV CO is the gain

in Hz/V. It is tempting, but incorrect, to use this result directly for random noise,

i.e., to write K2
V COSn/(4f 2

m) for the phase noise resulting from noise with spectral

density Sn [7]. Since phase noise is in fact the spectrum of Φn in cos(ωct+Φn), we
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integrate noise with respect to time and multiply the result by KV CO, obtaining

SΦn
(fm) = K2

V COSn/f 2
m. If Sn denotes a one-sided spectrum, then this result

must be divided by a factor of 2 so as to represent a two-sided SΦn
(fm), producing

SΦn
(fm) = K2

V COSn/(2f 2
m).

Equation (3.16) reveals that SΦ,white,ring is independent of the number of

stages, as recognized in prior work [7, 13]. To confirm that SΦ,white,ring is funda-

mentally related to the power consumption (also recognized in [7, 13]), suppose

two rings incorporate identical inverters, but one contains M1 stages and the

other M2, where M1 > M2. We add enough capacitance to each node in the

second ring so that the gate delays of the two rings, Td1 and Td2, respectively,

satisfy the relation M1Td1 = M2Td2 and thus yield the same oscillation frequency.

Since the gate delays are proportional to the load capacitances, it follows that

M1CL1 = M2CL2 and hence fosc(M1CL1)V
2
DD = fosc(M2CL2)V

2
DD. That is, equal

oscillation frequencies guarantee equal power consumptions in this case. Since

the inverters are identical in the two designs, ID and SI(∆f) in Eq. (3.16) are

the same for the two oscillators, yielding the same SΦ,white,ring(∆f).

Equation (3.17) shows that the phase noise due to flicker noise falls as the

number of stages increases [7]. This is also observed in the simulation results of

Section 3.5.

3.4.3 Effect of Transition Symmetry on Flicker Noise Upconversion

The fundamental relation expressed by Eq. (3.9) implies that if flicker noise

is upconverted in a delay line, so is it in a ring oscillator utilizing that delay

line. Thus, the upconversion phenomenon can be studied in a simpler delay line

environment.

The flicker-noise-induced phase noise of delay lines is formulated by Eq.
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(3.11), with ∆T representing a quantity roughly equal to half of the transition

time caused by the NMOS or PMOS transistor in each stage. Interestingly, this

equation suggests that the flicker noise is upconverted regardless of the relation-

ship between ∆TNMOS and ∆TPMOS, a point in contradiction to the analysis in

[13], which predicts zero upconversion if the rise and fall transitions are symmet-

ric. In fact, as shown in Fig. 3.5(a), phase noise simulations of a 9-stage 2.4-GHz

ring oscillator reveal that the phase noise changes by only a few decibels as the

PMOS-to-NMOS width ratio varies from 1/4 to 4/1 and the risetime-to-falltime

ratio from 3 to 0.76. This weak dependence is also verified by examining the up-

conversion of a 1-MHz tone placed in series with the gate of one NMOS transistor

in the ring. Figure 3.5(b) reveals that the FM sideband magnitude varies little.

The flaw in [13] can be explained as follows. Since the flicker noise currents

injected by the NMOS and PMOS devices in a ring are uncorrelated, each must

be characterized by its own impulse sensitivity function (ISF). Depicted in Fig.

3.5(c), the NMOS and PMOS ISFs cannot have zero time average with any choice

of rise and fall transitions, thereby upconverting flicker noise unconditionally.

3.4.4 Effect of Scaling on Phase Noise

The white-noise-induced phase noise appears to be fundamentally related to the

power dissipation and not much to the other factors. The effect of flicker noise,

on the other hand, can be articulated by rewriting Eq. (3.17) as

SΦ,1/f,ring(∆f) =

f 2
osc

8∆f 3

[{

K

MWLCox(VDD − VTH)2

}

NMOS

+

{

K

MWLCox(VDD − VTH)2

}

PMOS

]

,

(3.18)
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Figure 3.5: (a) Phase noise and risetime-to-falltime ratio versus the PMOS-to-N-

MOS width ratio of a 9-stage 2.4-GHz ring oscillator, (b) spur power when a small

sinusoidal voltage source is put in series with the gate of one NMOS transistor

in the ring, and (c) ISF reported in [13] and uncorrelated ISF’s for NMOS and

PMOS devices.
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where it is assumed gm = ID/(VGS − VTH) for velocity-saturated devices and

K/(WLCox∆f) is assumed to be one-sided and is therefore divided by 2. It

follows that the principal parameter under the designer’s control for reducing the

phase noise is the total gate capacitance, MWLCox, of the ring oscillator. For

example, as simulations confirm, SΦ,1/f,ring varies by less than 1 dB as M goes

from 3 to 16 while MWL and fosc are constant. Notwithstanding changes in K

with technology scaling, SΦ,1/f,ring rises with a lower VDD − VTH if the total gate

capacitance is kept constant.

3.5 Simulation Results

In this section, three sets of simulation results are presented: one to verify the

fundamental shaping function, f 2
osc/(π∆f)2, another to show the dependence of

the phase noise on the number of delay stages, and the third to check the validity

of our compact phase noise equations, (3.16) and (3.17).

In order to verify the relation expressed by Eq. (3.8), we have simulated 9-

stage and 19-stage delay lines and ring oscillators in 65-nm CMOS technology.

Each inverter incorporates a channel width of 0.6 µm and 1.2 µm for the NMOS

and PMOS devices, respectively, and a channel length of 60 nm. The circuits

operate with a 1-V supply. In each case, the frequency of the input applied to

the delay line is chosen equal to the corresponding ring oscillator frequency.

Figure 3.6(a) plots the simulated phase noise for the 9-stage delay line and the

corresponding ring oscillator. The latter’s phase noise is obtained using (3.8) as

well as direct simulations. We note good agreement in both flicker noise and white

noise regimes. The oscillation frequency is 3.8 GHz and the power consumption

0.34 mW. Figure 3.6(b) repeats the results for a 19-stage arrangement operating
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Figure 3.6: Simulated phase noise of delay lines and ring oscillators as well as

calculated phase noise of the ring oscillator using the phase noise of the delay

line for (a) 9-stage, and (b) 19-stage configurations.

at a frequency of 1.7 GHz and drawing 0.32 mW. The results agree well in this

case, too.
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Figure 3.7: Simulated effect of number of delay cells on the phase noise of ring

oscillators.

Figure 3.7 plots the simulated phase noise of three ring oscillators operating at

9.54 GHz. Explicit capacitors are added to all nodes of 3-stage and 5-stage rings.

Since the power consumption varies slightly, from 1.39 mW to 1.47 mW, as the

rings become longer, the phase noise plots are normalized to the corresponding

values. We observe that the white-noise-induced phase noise remains unchanged

as the number of stages increases, but, as predicted by Eq. (3.17), the flicker-

noise-induced component decreases in proportion to M .

Figure 3.8 plots the simulated phase noise of the 9-stage ring oscillator as

well as the calculated phase noise using Equations (3.16) and (3.17). (The flicker

and white current noise spectra, S1/f and SI , respectively, are obtained from

simulations in Cadence).2

2The value of ID is obtained from transient simulations at the point when VDS ≈ VDD/2.
The VGS and VDS values corresponding to this case are then used in a simple noise simulation
of a single transistor.
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Figure 3.8: Simulated phase noise of a 9-stage ring oscillator and calculated phase

noise using compact equations (3.16) and (3.17).

3.6 Experimental Results

The delay lines and ring oscillators described in Section 3.5 have been fabricated

in 65-nm CMOS technology and characterized. Figure 4.15 shows a die photo-

graph of the prototypes. Each circuit is followed by an on-chip open-drain buffer

for driving 50-Ω instrumentation.

Figure 3.9: Die photograph.

The low phase noise of delay lines poses difficulties in measurement. For this
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reason, the delay line prototype in fact incorporates 745 stages rather than 9 or

19, producing a readily measurable phase noise (Fig. 3.10). This value is then

scaled down by a factor equal to 745/9 or 745/19 to obtain the phase noise of

the respective delay lines.
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Figure 3.10: Measured phase noise of 745-stage delay line at two different input

frequencies.

The phase noise of ring oscillators also proves difficult to measure if low offset

frequencies are of interest. The random fluctuations of the free-running center

frequency tend to smear the phase noise profile. It is therefore beneficial to phase-

lock the oscillator to a low-noise input with a sufficiently small loop bandwidth

so as to negligibly affect the phase noise in the offset frequency range of interest.

Figure 3.11 shows the test setup constructed around each ring oscillator to create

a type-I phase-locked loop (PLL). Here, an off-the-shelf mixer serves as a phase

detector, comparing the phases of an external RF signal and the ring oscillator

output. The latter’s supply line acts as the control voltage. The loop bandwidth

is set by the choice of the components in the low-pass filter.
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Figure 3.11: Phase-locking of the ring oscillators for phase noise measurements.

Figure 3.12(a) plots the phase noise of the 9-stage ring oscillator obtained by

(a) direct measurement, and (b) by multiplying the measured delay line phase

noise by f 2
osc/(π∆f)2. We observe a reasonable agreement. Figure 3.12(b) repeats

the results for the 19-stage configuration. In both cases, the effect of the PLL

manifests itself at low offset frequencies.

3.7 Conclusion

It is shown that the closed-loop phase noise of a ring oscillator is equal to its

open-loop phase noise multiplied by a simple shaping function, f 2
osc/(π∆f)2. This

relation reveals why delay lines exhibit much less noise than do ring oscillators.

It also leads to compact phase noise equations and shows why flicker noise is

upconverted even with symmetric rise and fall times. The flicker-noise-induced

phase noise is not a strong function of the PMOS-to-NMOS ratio and the min-

imum phase noise does not necessarily happen when the rise and fall times are

symmetric. The validity of the shaping function has been verified on two ring

oscillators designed in 65-nm CMOS technology.
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Figure 3.12: Measured phase noise of ring oscillators and the calculated phase

noise using the measured phase noise of delay line for (a) 9-stage, and (b) 19-stage

rings.
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CHAPTER 4

A 5-GHz 11.6-mW CMOS Receiver for IEEE

802.11a Applications

4.1 Introduction

In today’s mobile devices, the WiFi transceiver still consumes a relatively large

amount of power. The receiver power is substantial due to the greater on-time

of the receiver compared to the transmitter. Figure 4.1 shows a generic receiver

system for 802.11a. While advances in the art have considerably reduced the

LNA

Frequency Synthesizer

I−Filter ADC

Q−Filter ADC

Figure 4.1: Generic 802.11a Receiver.

power consumption of analog-to-digital converters and frequency synthesizers,

the main receiver (RX) chain draws disproportionately high power. For example,

we can now realize each ADC in Fig. 4.1 with about 3 mW of power and the

frequency synthesizer with about 5 mW. On the other hand, the receive path

itself draws more than 45 mW [23]. It is therefore desirable to develop low-power

RX front ends and baseband filters for WiFi applications.
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This chapter introduces a complete 5-GHz CMOS receiver that meets the 11a

sensitivity, blocking, and filtering requirements while consuming 11.6 mW. This

fourfold reduction in power is achieved through the use of a transformer as a

low-noise amplifier (LNA), passive mixers, and “non-invasive” baseband filtering

[24].

Section 4.2 elaborates on the design of the transformer and Section 4.3 intro-

duces the receiver architecture. Section 4.4 analyzes the current-driven passive

mixers in a general form which is used in Section 4.5 to design the mixers con-

nected to the transformer. Section 4.6 describes the baseband channel-select

filters and Section 4.7 presents the experimental results. Section 4.8 concludes

this chapter.

4.2 Transformers as LNAs

In the generic receiver of Fig. 4.1, the low-noise amplifier (LNA) provides voltage

gain and proper input matching, but dissipates considerable amount of power. In

order to realize a low-power receiver, we wish to remove the LNA or at least its

power consumption. This becomes possible if a passive device with zero power

consumption can serve as an LNA. A 1-to-N on-chip transformer provides voltage

gain at the cost of power loss and noise figure degradation. It can also provide

input matching as will be explained later. Thus, it seems that a transformer

is a viable substitute for the LNA. However, its design is not straightforward.

The principal point is to achieve a high voltage gain with low power loss at the

frequency of interest. In particular, we would like to obtain a high coupling

factor between the primary and the secondary. Consider the stacked structure

[25] shown in Fig. 4.2(a) where spirals in high and low metal layers form the

secondary and one spiral in middle metal layer forms the primary. This structure
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(a)

(b)

(c)

Figure 4.2: Various transformer topologies.

has a high coupling factor but, the high capacitance between the layers and the

loss of the lower metal layers limit the performance. Note that the capacitance

here sustains a larger voltage difference than in a planar structure [26] shown in

Fig. 4.2(b). The self-resonance frequency and conductivity of the planar topology

is much higher, but the coupling between the primary and the inner turns of the

secondary is quite low. The optimum topology is shown in Fig. 4.2(c) where
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a one-turn primary is stacked in the middle of the secondary. It is expected to

have reasonable coupling, low loss, and small capacitance to be able to work at

5-GHz band. To reduce the loss, an octagonal shape has been used as shown in

Fig. 4.3, with a one-turn primary in metal 8 and a six-turn secondary in metal

9. The outer diameters of the primary and the secondary are 146 µm and 170

Figure 4.3: Transformer geometry.

µm, respectively. The two thick metal layers have been used to minimize the

loss. Since the secondary has already much more parasitics than the primary, it

uses the top metal to minimize the capacitance to the substrate. The number

of turns, diameter, and metal widths are chosen to provide maximum voltage

gain with acceptable loss at the desired frequency. If we increase the number of

secondary turns, the voltage gain grows slowly because the new turns are farther

from the primary, but the capacitance and loss increase significantly. Also, a

higher number of turns reduces the transformer input resistance. According to

HFSS simulations, the above transformer has an insertion loss of 2.4 dB at 5.5

GHz, an unloaded voltage gain of 13.4 dB, and an unloaded input resistance of 87

Ω. With a matched load connected to the secondary, the voltage gain and input
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resistance drop to 12 dB and 44 Ω, respectively. We then need to understand

how the transformer performs when it is connected to the following block, namely

mixers.

4.3 Receiver Architecture

Figure 4.4 shows the overall receiver architecture. The transformer described in

25 %
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Logic
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−

+
LO I

+
LO Q

LO Q
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2LO

1 : 6
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LO Q
−
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LO Q
−

2LPFLPF1

4−th Order Elliptic

2LPFLPF1

4−th Order Elliptic

Figure 4.4: Receiver architecture.

the previous section serves as the LNA and single-ended to differential converter

at the input and drives two sets of passive mixers with 25% duty cycle LOs.

The downconverted baseband signals are then applied to 4-th order elliptic filters

for channel selection. A side-benefit is that the transformer also provides ESD
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protection. The LO frequency arrives at twice the carrier frequency and is divided

by two to generate quadrature phases. We then have some logic to produce the

25% LO waveforms.

We should highlight two advantages of our approach over the LNA-less re-

ceiver in [27]. First, the input matching inherent in our receiver provides a robust

interface with the antenna in the presence of long external traces. Second, our

front end has much less power consumption.

There are three important questions that we need to address. First, how

do the transformer and mixers provide input matching? Second, What is the

conversion gain of the mixers? It seems that the current is integrated in the load

capacitor, C1. In that case, the trans-impedance conversion gain will not be flat

across the channel bandwidth. Finally, how should we calculate the noise figure?

To answer these three important questions, a new analysis technique is required.

We will study the input impedance, conversion gain and noise figure and see why

the trans-impedance conversion gain is flat across the channel.

By virtue of its high turns ratio, the transformer in Fig. 4.4 exhibits a rel-

atively high output impedance, approximating a current source. The switches

can therefore be viewed as current-driven mixers, thus contributing less noise

than voltage-driven topologies [28]. Moreover, for the sake of analysis, since a

capacitor is a good keeper of voltage, it is difficult to assume voltage excitations.

4.4 Analysis of Current-Driven Passive Mixers

The 25% duty cycle passive mixers have been used extensively since 2008 [29].

But, their input impedance, conversion gain, and noise figure have not been

formulated accurately [30]-[31]. This section proposes an accurate analysis that
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helps the designer to insightfully quantify the underlying principles. The method

can be extended to other LO schemes as well. Figure 4.5 shows the current-

ZsI in

1S

S 3

S 3

1S

ZL

ZL

Vout,I+

Vout,I−

Vin S 2

S 4 ZL

ZL

S 4

S 2

Vout,Q+

Vout,Q−

Figure 4.5: Current-driven passive mixer.

driven quadrature passive mixers with a source impedance Zs. The circuit has

been redrawn in Fig. 4.6 for convenience where the LO waveforms controlling

the switches, S1–S4, are also shown. For simplicity, let us assume that the switch

resistance, Rsw, is zero. We will add its effect later. The in-phase output voltage

can be written as

Vout,I(t) = [Imix × (S1 − S3)] ∗ 2ZL. (4.1)

The mixer input current, Imix, is chopped by S1 and S3 and convolved with the

differential load impedance, 2ZL. Similarly, the quadrature output voltage would

be

Vout,Q(t) = [Imix × (S2 − S4)] ∗ 2ZL. (4.2)
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Figure 4.6: Current-driven passive mixer and LO waveforms.

The input voltage is equal to Vout,I during S1, -Vout,I during S3, Vout,Q during S2,

and -Vout,Q during S4. Thus,

Vin(t) = Vout,I(t) × (S1 − S3) + Vout,Q(t) × (S2 − S4). (4.3)

Substituting (4.1) and (4.2) in (4.3), yields

Vin(t) = {[Imix × (S1 − S3)] ∗ 2ZL} × (S1 − S3)

+ {[Imix × (S2 − S4)] ∗ 2ZL} × (S2 − S4). (4.4)

Taking the Fourier transform of (4.4) leads to

Vin(f) = {[Imix ∗ (S1 − S3)] × 2ZL} ∗ (S1 − S3)

+ {[Imix ∗ (S2 − S4)] × 2ZL} ∗ (S2 − S4), (4.5)
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which is the key equation to derive the input impedance. Figure 4.7 plots (S1−S3)

and (S2−S4) in both time and frequency domains. Let us do a warm-up exercise

1S

t0

S 3−

t

S 2

0

S 4−

f0

π
2
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Figure 4.7: (S1 − S3) and (S2 − S4) in time and frequency domains.

and consider the case where the source impedance is infinite in Fig. 4.6.

4.4.1 Infinite Source Impedance

Infinite source impedance, Zs, yields Imix = Iin. This simplifies the calculations

as Imix would be single-tone.

4.4.1.1 Input Impedance Calculation

To calculate the input impedance, we apply a tone at fLO + fIF as shown in Fig.

4.8 and would like to calculate the input voltage at the same frequency. Let us

first focus on the positive-frequency impulse of Imix and see how it will be shifted
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Figure 4.8: A single-tone current applied to the mixer and the resultant input

voltage spectrum.

along the spectrum to finally reside at the same frequency. The only way is to shift

up and down by the same amount. For example, from the spectrum of (S1 −S3),

Imix will be shifted up by
√

2δ(f−fLO)/π and down by
√

2δ(f +fLO)/π. Another

way is to be shifted up by
√

2δ(f − fLO)/(3π) and down by
√

2δ(f + fLO)/(3π).

Also, the mixing mechanism can happen with first shifting down and then up.

The same power would come from mixing with (S2 − S4). Note that because the

spectrum of (S2 − S4) is odd, one component would be multiplied by +j and

the other by −j, resulting a real positive value, the same as that of mixing with

(S1 − S3). An interesting practice is to see if there would be any component

at the image frequency, fLO − fIF in the Vin spectrum. The sum of the two

shifting frequencies has to be ±2fLO in order to generate image. For example,

the impulse at fLO+fIF would be shifted down twice by
√

2δ(f +fLO)/π to reside

at −fLO +fIF . However, shifting down twice by +j
√

2δ(f +fLO)/π generates the

same amplitude with a negative sign. Similarly, shifting down by 3fLO and up by

fLO will not generate any image because the I and Q branches cancel each other.

It is instructive to see at what frequencies Vin has components in response to a

single tone that resides at fLO + fIF and −fLO − fIF . An interested reader can
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prove that those frequencies are (fLO + fIF + 4kfLO) and (−fLO − fIF + 4kfLO),

where k varies from −∞ to +∞ (Fig. 4.8).

Knowing the frequency shifts that happen in (4.5) that contribute to the input

voltage at fLO + fIF , we can write the mixer input impedance, Zmix, as

Zmix(f) =
8

π2

[

ZL(f ± fLO) +
1

32
ZL(f ± 3fLO) +

1

52
ZL(f ± 5fLO) + ...

]

. (4.6)

If the load impedance is a capacitor, 1/(j2πCLf), at the frequencies close to

the LO frequency, ZL(f − fLO) dominates the summation in (4.6) and the input

impedance would be approximately equal to

Zmix|CL
(f) ≈ 8

π2
ZL(f − fLO) =

8

π2

1

j2πCL(f − fLO)
. (4.7)

As another special case, if the load impedance is a resistor, RL, the input impedance

would be

Zmix|RL
(f) =

16RL

π2

(

1 +
1

32
+

1

52
+ ...

)

= 2RL. (4.8)

Since there is no memory in the system, the source would not recognize that

the resistor is being switched and at any point of time the differential input

impedance is 2RL.

4.4.1.2 Conversion Gain Calculation

We are mostly interested in the trans-impedance conversion gain defined as the

transfer function from the input current at fLO + fIF to the output voltage at

fIF . Since Imix is single-tone, only the fundamental of (S1 − S3) matters. Thus,

from Eq. (4.1) the trans-impedance conversion gain, AR, would be

AR =
2
√

2

π
ZL ≈ 0.9ZL. (4.9)

Note that if ZL is a capacitor, AR is not constant across the channel bandwidth.

Now, let us look at the voltage conversion gain, AV , defined as the transfer
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function from the input voltage at fLO + fIF to the output voltage at fIF . We

have

AV =
Vout,I

Vin
=

Vout,I

Iin
× Iin

Vin
=

AR

Zmix
. (4.10)

Substituting (4.6) and (4.9) in (4.10), we get

AV =
2
√

2

π
ZL

8

π2

[

ZL(f ± fLO) + 1

32 ZL(f ± 3fLO) + 1

52 ZL(f ± 5fLO) + ...
] . (4.11)

We can simplify AV for the special cases of load capacitor and load resistor as

AV |CL
≈ π

√
2

4
≈ 0.9 ≈ 0.9 dB, (4.12)

AV |RL
=

√
2

π
≈ 0.45 ≈ −6.9 dB. (4.13)

As expected, having a load capacitance is superior than a load resistance. Inter-

estingly, AV |CL
is greater than 1. It is not surprising, because Vout is the cause

and Vin is the effect here. The power of Vout is only at fIF . This power is then

spread over the specific harmonics at Vin. The same result can be achieved using

Eq. (4.3), where Vout at fIF will be convolved with the fundamental of (S1 − S3)

and (S2 − S4) to form Vin at fLO + fIF .

4.4.1.3 Switch Resistance Effect

Because only one switch out of the four switches that share one side is on at

a time, we can move the switch resistance to the main path as shown in Fig.

4.9. Then, the switch resistance is in series with the input current source (Zs is

infinite), and the input impedance would be

Zmix(f) = 2Rsw +
8

π2

[

ZL(f ± fLO) +
1

32
ZL(f ± 3fLO) +

1

52
ZL(f ± 5fLO) + ...

]

.

(4.14)
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Figure 4.9: Moving the switch resistance to the main path.

The trans-impedance conversion gain does not change, but, the voltage conversion

gain needs to be modified according to (4.14) as

AV =
2
√

2

π
ZL

2Rsw + 8

π2

[

ZL(f ± fLO) + 1

32 ZL(f ± 3fLO) + 1

52 ZL(f ± 5fLO) + ...
] .

(4.15)

Interested readers can simplify (4.14) and (4.15) for the special cases that we

studied before.

4.4.2 Finite Source Impedance

With finite source impedance, Zs, Imix is no longer equal to Iin. Instead,

Imix = Iin − Vin

Zs
. (4.16)
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Although this might seem a small change to the case with infinite Zs, the equa-

tions become much more complicated. Recall from Section 4.4.1 that Vin had

components around odd harmonics. It can be shown that in the presence of Zs,

Vin has the same frequency content but the amplitudes needs to be modified.

Note that (4.16) yields that Imix also has components around odd harmonics

(Fig. 4.10).

f0 f LO+ 3 f LO+ 5 f LO+ 7f LO− 3f LO− 5f LO− 7

(f)I mix

+ f inf in−
f LO + f IF=

1a
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1
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−7

b

b
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Figure 4.10: A single-tone current applied at the input and the resultant spectrum

of the mixer input current and voltage.

4.4.2.1 Input Impedance Calculation

We can still use Eq. (4.5) to derive the input impedance. This time, the har-

monics of Imix convolve with the harmonics of (S1 − S3) and (S2 − S4), and fold
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to the baseband frequency. There are also other components around harmonics

which we ignore after multiplication by ZL. Since the mixer is a downconverter,

the load impedance, ZL, would be small at high frequencies. In order to calculate

the input impedance, as shown in Fig. 4.10, we assign ai and bi as the phasors

of Imix and Vin around ith harmonic and find their values using (4.5) and (4.16).

Since the amplitude of the tone in Iin is unity, the input impedance is equal to

b1. Section 4.8 finds the values of ai and bi, yielding

Zin(f) =
8

π2 ZL(f − fLO)

1 + 8

π2 ZL(f − fLO)

∞
∑

k=−∞

1

(4k + 1)2Zs(f + 4kfLO)

. (4.17)

If ZL is a capacitor, we can usually neglect 1 in the denominator of (4.17) for

reasonable values of Zs. Thus,

1

Zin|CL
(f)

≈
∞
∑

k=−∞

1

(4k + 1)2Zs(f + 4kfLO)
. (4.18)

The input impedance is the parallel combination of the scaled source impedance

at certain frequencies and independent of the load impedance, ZL. Moreover, if

Zs is a resistor, Rs, then

Zin|CL,Rs
=

8

π2
Rs ≈ 0.81Rs (4.19)

4.4.2.2 Conversion Gain Calculation

As mentioned earlier, we assume that ZL has a lowpass shape and ignore the

harmonics at the output nodes. The voltage conversion gain is the same as the

case with infinite Zs, while we do not include the switch resistance. Thus, for a

capacitive load, we have

AV |CL
=

π
√

2

4
≈ 1.11 ≈ 0.9 dB. (4.20)
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The trans-impedance conversion gain would be AV × Zin and equal to

AR|CL
=

π
√

2

4
÷

∞
∑

k=−∞

1

(4k + 1)2Zs(f + 4kfLO)
, (4.21)

independent of CL and fIF .

4.4.2.3 Switch Resistance Effect

If we add the switch resistance, the input voltage is equal to the one in Eq. (4.5)

plus 2RswImix. Thus,

Vin(f) = {[Imix ∗ (S1 − S3)] × 2ZL} ∗ (S1 − S3)

+ {[Imix ∗ (S2 − S4)] × 2ZL} ∗ (S2 − S4) + 2RswImix. (4.22)

Equation (4.16) is still valid and along with (4.22) derives the input impedance.

Note that we could assign asw,i and bsw,i as the phasors of Imix and Vin around

ith harmonic and find their values similar to section 4.8. However, finding the

solution is more difficult in this case. We wish to perform some transforms so that

we can utilize the equations that we already have. This is done by the Norton-

Thevenin-Norton conversion shown in Fig. 4.11. The circuit in Fig. 4.11(c) is

RswRsw

Vin

Zs

I in

I mix I mix

Vmix

(a)

RswRsw

Vin

Zs

I mix I mix

Vmix

I in Zs

(b)

ZsI mix I mix

Vmix

Rsw Rsw

I in
Zs

Zs Rsw+ 2

(c)

Figure 4.11: Norton-Thevenin-Norton Conversion.

similar to the case without switch resistance, and we can easily find Vmix as the
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input current times the input impedance seen by the source, i. e.,

Vmix(f) = Iin
Zs

Zs + 2Rsw
×

8

π2 ZL(f − fLO)

1 + 8

π2 ZL(f − fLO)
∞
∑

k=−∞

1

(4k + 1)2[Zs(f + 4kfLO) + 2Rsw]

.

(4.23)

Then from the original circuit in Fig. 4.11(a), Vin = Vmix + 2RswImix. Replacing

Imix with Iin − Vin/Zs, and using (4.23), we find the input impedance as

Zin(f) = Zs||2Rsw +

(
Zs

Zs + 2Rsw
)2 ×

8

π2 ZL(f − fLO)

1 + 8

π2 ZL(f − fLO)
∞
∑

k=−∞

1

(4k + 1)2[Zs(f + 4kfLO) + 2Rsw]

.

(4.24)

For a load capacitance and reasonable source impedance, we can usually ignore

1 in the denominator of (4.24) and write

Zin|CL
(f) = Zs||2Rsw + (

Zs

Zs + 2Rsw
)2 ÷

∞
∑

k=−∞

1

(4k + 1)2[Zs(f + 4kfLO) + 2Rsw]
.

(4.25)

Again, we see that the input impedance is independent of the load impedance

under certain conditions. Now, we wish to find the voltage conversion gain, AV .

We can write

Vin(f) =
2
√

2

π
Vout,I(f − fLO) + 2RswImix(f), (4.26)

where only low-frequency component of Vout,I has been taken into account. Using

Eq. (4.16) and the fact that Iin = Vin/Zin, we get

Imix =
Zs − Zin

ZsZin
Vin (4.27)

Solving (4.26) and (4.27) yields

AV |CL
=

π
√

2

4

(

1 − 2Rsw
Zs − Zin

ZsZin

)

(4.28)
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The trans-impedance conversion gain, AR, is equal to AV × Zin, and can be

found using (4.25) and (4.28). Interestingly, AR is independent of CL and fIF .

The latter is very important because otherwise, we would not have flat response

across the channel.

4.4.3 Noise Figure Calculation

With infinite Zs, the switch resistance and hence its noise is in series with the

input current source. Thus, it does not contribute noise. Now, let us calculate

the noise figure with finite purely resistive Zs equal to Rs. We include the switch

resistance, but assume it noiseless first. We add the effect of switch resistance

noise later. We also assume that the load impedance is a capacitor and ignore

the higher harmonics at the output. If Iin is the rms value of the input signal,

the signal-to-noise ratio (SNR) at the input would be

SNRin =
I2
in

4kT
1

Rs

. (4.29)

The signal and noise around fLO will be downconverted at the output nodes with

the same trans-impedance conversion gain, AR. However, the noise around ith

harmonics of fLO will also fold on the signal with a conversion gain of AR/i.

Thus, the output SNR would be

SNRout =
I2
inA

2
R

4kT
1

Rs
A2

R

(

1 +
1

9
+

1

25
+ ...

) , (4.30)

where we have assumed the signal is double-sideband (DSB). By definition, the

DSB noise figure is

NF =
SNRin

SNRout
= (1 +

1

9
+

1

25
+ ...) =

π2

8
≈ 0.9 dB. (4.31)

75



Now, let us add the switch resistance noise. For noise analysis purpose, we remove

the input signal source and notice that the switch resistance is in series with Rs.

Therefore, the noise figure will be degraded by (1 + 2Rsw/Rs), i.e.,

NF =
π2

8
(1 +

2Rsw

Rs

). (4.32)

Now, let us consider a general source impedance. We still assume that at the

vicinity of fLO, Zs = Rs and the noise current source is 4kT/Rs. We use the

converted model in Fig. 4.11(c). The input signal power is I2
inZ

2
s /(Zs + 2Rsw)2,

and the input noise current would be

i2n =
4kTZ2

s

Rs(Zs + 2Rsw)2
+

4kT2Rsw

(Zs + 2Rsw)2
. (4.33)

Then the output signal is simply

V 2
out =

Zs(fLO)2

[Zs(fLO) + 2Rsw]2
I2
inA

2
R, (4.34)

but for the noise we have to consider the noise around harmonics as well. It

folllows that

V 2
n,out =

{

4kTZs(fLO)2

Rs[Zs(fLO) + 2Rsw]2
+

4kT2Rsw

[Zs(fLO) + 2Rsw]2

}

A2
R

+

{

4kTZs(3fLO)2

Rs[Zs(3fLO) + 2Rsw]2
+

4kT2Rsw

[Zs(3fLO) + 2Rsw]2

}

A2
R

9

+

{

4kTZs(5fLO)2

Rs[Zs(5fLO) + 2Rsw]2
+

4kT2Rsw

[Zs(5fLO) + 2Rsw]2

}

A2
R

25
+ ... .(4.35)

Thus, we have

1

SNRout
=

4kT
1

Rs

I2
in

[Zs(fLO) + 2Rsw]2

Zs(fLO)2

+∞
∑

k=0

1

(2k + 1)2

[

Zs[(2k + 1)fLO]2 + 2RswRs

{Zs[(2k + 1)fLO] + 2Rsw}2

]

.

(4.36)

Using (4.29) and (4.36), we can write the noise figure as

NF =
[Zs(fLO) + 2Rsw]2

Zs(fLO)2

+∞
∑

k=0

1

(2k + 1)2

[

Zs[(2k + 1)fLO]2 + 2RswRs

{Zs[(2k + 1)fLO] + 2Rsw}2

]

. (4.37)
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Note that (4.37) simplifies to (4.32) if Zs = Rs. If Zs is an RLC tank resonating

at fLO with a parallel resistor Rs, we can neglect the tank impedance at the

harmonic frequencies with respect to Rsw. Thus, (4.37) simplifies to

NF |RLC = 1 +
2Rsw

Rs

+ (
π2

8
− 1)

(RS + 2Rsw)2

2RswRs

. (4.38)

Note that if we do not neglect the tank impedance at the harmonics, the noise

figure would be better than the one in (4.38). An interesting point is that reducing

Rsw does not necessarily reduce the noise figure. In fact, with an RLC tank as

the source resistance, the optimum switch resistance is

Rsw,opt =

√
π2 − 8

2π
Rs ≈ 0.218Rs. (4.39)

Plugging this optimum value of Rsw in (4.38) derives the minimum noise figure

of the mixer as 2.54 ≈ 4.05 dB.

4.5 Transformer-Mixer Design

Now that we know how to analyze the 25% duty cycle mixers, we get back to the

design of our receiver front end. The transformer is designed and optimized first

to have maximum voltage gain and low power loss at the 5-GHz band. Then,

looking through the secondary of the transformer, we build the Norton equivalent

circuit of the antenna-transformer cascade over a wide bandwidth as shown in Fig.

4.12. Our transformer guarantees that if a load impedance of 800 Ω is attached

to its secondary, then the input impedance seen from the primary is about 50

Ω. In other words, since Zs is equal to 800 Ω at the carrier frequency, for proper

matching the input impedance of the mixer needs to be 800 Ω too. However,

we know that for current-driven mixers, the input impedance depends on the

source impedance itself. To avoid confusion, we refer to the impedance seen by

77



Ω 800

RswRsw

Vout,I+

Vout,I−

Vout,Q+

Vout,Q−

1S

S 3

S 2

S 4

S 3

1S

S 4

S 2

C1

C1

C1

C1

Zs

I in

Ω 800

Z Ω = 400in

Figure 4.12: Transformer-mixer interface.

Iin denoted by Zin. Since Iin is ideal, this resistance is unique and independent

of Iin. Thus, the combination of antenna-transformer and the mixers must have

a secondary-referred input impedance of 400 Ω. This composite input impedance

is calculated in (4.25) and repeated here as

Zin(f) = Zs||2Rsw + (
Zs

Zs + 2Rsw

)2 ÷
∞
∑

k=−∞

1

(4k + 1)2[Zs(f + 4kfLO) + 2Rsw]
.

(4.40)

Due to the bandpass nature of Zs, the summation on the right-hand side must

be carried out for about 14 terms. Ideally, in the range of 5 to 6 GHz, we must

have Re{Zin(f)} ≈ Zs(f)/2 ≈ 400 Ω and Im{Zin(f)} ≈ 0. Thus, Eq. (4.40)

yields Rsw = 57 Ω corresponding to W/L =10 µm/ 60 nm for the switches. The
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LO buffers driving eight such switches draw a total power of fCV 2
DD ≈ 0.4 mW

at 6 GHz. If Rsw ≪ Zin(f), Eq. (4.40) can further be simplified to

1

Zin(f)
=

∞
∑

k=−∞

1

(4k + 1)2[Zs(f + 4kfLO) + Rsw]
. (4.41)

Equation 4.41 reveals that the source impedance, Zs, around integer multiples of

4fLO in series with the switch resistance is scaled and put in parallel to form the

composite input impedance, Zin. In other words, since the IF port of the mixer

has high impedance, the impedance matching is achieved by folding of the source

impedance itself.

Simulations indicate that the “zero-power” RF front end consisting of the

transformer and the mixers exhibits a noise figure of 4.5 dB, a voltage gain of 12

dB, an input P1dB of −5.2 dBm, and an S11 of better than −12 dB across the 5

GHz band. For a target receiver NF of less than 6 dB, all of the subsequent stages

must contribute no more than 1.5 dB, demanding additional circuit techniques

to build low-noise yet linear baseband filters with low power dissipation.

4.6 Filter Design

In the 11a standard, for the lowest data rate of 6 Mb/s, the adjacent and alter-

nate adjacent channels can be higher than the desired channel by 16 dB and 32

dB, respectively. For the highest data rate of 54 Mb/s, the maximum interferer

power levels are reduced by 17 dB, relaxing the filtering requirements. However,

we design the baseband filters for the worst case which requires a sharp roll-off to

reduce these channels to well below the desired signal level − unless the baseband

ADCs offer a dynamic range wide enough and a sampling rate high enough to

handle partially-attenuated blockers. Because in OFDM, each subcarrier has a

narrow bandwidth, the phase response can be assumed linear across each sub-
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channel. Thus, the phase response of the filter is not critical suggesting that an

elliptic filter implementation is acceptable. A fifth-order elliptic filter is suffi-

cient for our purpose and can be realized by cascading two biquadratic transfer

functions and a single RC pole. Let us focus on designing a biquad section.

Gm1 Gm2 Gm3

inV
outV

R1
C2

C3

interferer
signal

(a)

inV

Gm1

R1
outV

Z

Z

f
(b)

Gm1

inV

R1

interferer
signal

Gm2 Gm3

Gm4

C2

C3

outV

eL

(c)

Figure 4.13: (a) Conventional implementation of a biquad, (b) basic idea of

noninvasive filtering, and (c) noninvasive implementation of a biquad.

Figure 4.13(a) shows a conventional implementation of such a transfer func-

tion using three Gm stages. In order to study the noise behavior, we assume that

each Gm has an input-referred noise voltage and calculate its transfer function to

the output. The transfer function for the noise of Gm1 and Gm2 is proportional to

(s2 +ω2
z)/(s2 + as+ b) and 1/(s2 + as+ b), respectively, which are both low-pass.
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Therefore, their noise is not attenuated in the signal band. The noise of Gm3,

however, is attenuated through the bandpass shaping function, s/(s2 + as + b).

The circuit also experiences nonlinearity because the signal and interferer are

both amplified by Gm1R1. As a result, Gm1 compresses at its output and Gm2

compresses at its input. Another issue is that this architecture needs 4-input Gm

cells for fully-differential implementation. All of these issues are mitigated in the

noninvasive filtering architecture. The basic idea is illustrated in Fig. 4.13(b),

where a notch impedance similar to an LC trap is placed at the output of a Gm

stage [24]. The notch impedance, Z, is high in the signal band and low at the in-

terferer frequency. The filter transfer function follows the shape of Z and shunts

the interferer to ground. The actual implementation is shown in Fig. 4.13(c)

where Gm3 and Gm4 form a gyrator that transforms C3 to an emulated inductor,

Le. Le resonates with C2 and generates a low-impedance path to ground at the

interferer frequency. Let us study the noise behavior. The transfer function for

the noise of Gm1 is proportional to (s2 + ω2
z)/(s2 + as + b) and does not attenu-

ate it in the signal band. But, the noise of Gm2 and Gm4 is highpass-filtered by

s2/(s2 + as + b) and can be made negligible. The noise of Gm3 is also attenuated

by the bandpass shaping function of s/(s2 + as + b). In summary, compared to

the previous case which had two unattenuated noise sources, this case has only

one, and we expect to see lower noise. This topology is also more linear since

the signal is amplified by Gm1R1, but the interferer is attenuated. As a result,

Gm1 does not compress at its output. Note that the interferer is amplified at

the output of Gm2. This can cause Gm2 and Gm4 to compress at their outputs

and Gm3 at its input. The important point here is that the compression of Gm2,

Gm3 and Gm4 only shifts the notch frequency but it does not affect the transfer

function in the signal band.1 Because all the Gm cells have one grounded input,

1There is a second-order effect that slightly changes the gain in the signal band and is verified
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this architecture readily lends itself to differential implementation.

C4C4 = 8 pF = 8 pF
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2 2
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m4 m5
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R R

µ A300

(a)

(b)

Figure 4.14: (a) Fourth-order elliptic low-pass filter, and (b) Gm implementations.

Figure 4.14(a) shows the realization of the fourth-order elliptic filter. A first-

order RC filter is then added on the PCB to reach the fifth order. In this design,

Gm1 and Gm2 are made variable to provide gain control to accommodate the

wide range of input powers specified by 11a. Figure 4.14(b) summarizes the

Gm implementations. Gm1 has a PMOS input for low flicker noise and to work

properly with an input common-mode level of 400 mV. Gain control is achieved

by changing the source degeneration resistance of the input pair. Each branch

by the measurement results in Section 4.7.
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dissipates 720 uA from a 1-V supply. Gm2 has an NMOS input and consumes less

power as its noise is not as important as that of Gm1. Gm3 to Gm8 are identical

simple differential pairs. The fourth-order filter exhibits an input-referred noise

voltage of 2 nV/
√

Hz at 5 MHz, an in-channel IIP3 of 193 mVrms and a voltage

gain of 39 dB while consuming 4.3 mW. The filter voltage gain is programmable

in steps of 2 to 3 dB for a total range of 43 dB.

4.7 Experimental Results

The receiver of Fig. 4.4 has been fabricated in 65-nm digital CMOS technology.

Figure 4.15 shows the die photograph. The RF section occupies 350 µm × 240

Figure 4.15: Die photograph.

µm and the baseband section 450 µm × 220 µm.2 The die is bonded to a printed-

circuit board and uses a 1-V supply for the main circuits, a 1.2-V source for the

open-drain output drivers, and a 400-mV supply connected to the center tap of

the transformer.

Figure 4.16 plots the measured noise figure of the complete receiver as a

function of the baseband frequency. The average noise figure is about 5.3 dB.

The sensitivity of the receiver is measured with the aid of Agilent’s N5182 MXG

2Due to limited silicon area, the receiver layout is decomposed and placed within other
unrelated circuits, but all of the connections are present on the chip.
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Figure 4.16: Measured noise figure.

vector signal generator and N9020A MXA signal analyzer, which respectively

apply a 64-QAM 802.11a signal and sense the baseband outputs to construct the

signal constellation. Figure 4.17 shows the results for a −65-dBm 5.7-GHz input

at 54 MB/s. The error vector magnitude (EVM) is equal to −28 dB, exceeding

the 11a specification by 5 dB, suggesting that the receiver sensitivity would be

5 dB better. As expected, the sensitivity was measured to be −70 dBm with an

EVM of −23.4 dB.

Figure 4.18 plots the S11 from 5 to 6 GHz, measured at each input frequency,

while the mixers switch at the corresponding LO frequency. It is expected that

a slightly larger transformer or adding more capacitance can yield S11 < −10

dB across the band. Figure 4.19 shows the sensitivity of the receiver from 5 to

6 GHz. The sensitivity degrades a little at lower frequencies again because the

transformer is mistuned. The receiver gain across the band in Fig. 4.20 also

confirms the transformer mistuning.

Figure 4.21 plots the measured receiver transfer function, revealing a passband
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Figure 4.17: Measured EVM at Pin = −65 dBm.
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Figure 4.18: Measured input return loss.
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Figure 4.19: Measured sensitivity.
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Figure 4.20: Measured passband gain.

peaking of 1 dB and a rejection of 22 dB at 20 MHz and 43 dB at 40 MHz.3 Owing

to the finite output resistance of the Gm cells, the filter does not exhibit the deep

notches that are characteristic of elliptic transfer functions. The performance of

3In this measurement a first-order RC section follows each output on the PCB.
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Figure 4.21: Measured receiver transfer function.

the baseband filter is ultimately tested when a large blocker accompanies a small

desired signal. In such a case, the filter must remain sufficiently selective and

linear so that the desired signal does not experience compression. Figure 4.22

plots the measured passband gain as a function of the power of an RF blocker in

the adjacent or alternate adjacent channel. Note that this measurement is done

with the maximum receiver gain which corresponds to the signal levels around

the sensitivity, e.g. −60 dBm. The maximum adjacent channel interferer would

be 1 dB lower or −61 dBm for which the variation of gain is negligible. Even

with the maximum 11a power of −30 dBm, the gain variation is only about 1

dB. The peaking of gain with large adjacent-channel interferer is also observed

in simulations and is due to the compression in the notch-impedance Gm cells.

For the alternate-adjacent-channel interferer the gain variation is much less and

totally negligible even upto −30 dBm.

The filter nonlinearity resulting from a blocker may also corrupt the 11a 64-

QAM OFDM signal by creating cross modulation among the sub-channels. This
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Figure 4.22: Measured passband gain in the presence of a blocker.

effect is characterized by setting the RF input signal level 3 dB above the sen-

sitivity, applying a blocker, and raising its level until the EVM falls to −23 dB.

Figure 4.23 plots the relative blocker level as a function of the frequency offset

with respect to the desired signal center frequency.
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Figure 4.23: Measured interferer rejection.

88



Figure 4.24 shows the measured EVM and the corresponding passband gain

versus input power. As the input signal power increases, a lower gain is chosen

for the variable-gain Gm cells. For small input powers EVM is noise-limited and

improves with the input power, while at large input powers EVM is nonlinearity-

limited and will eventually go up. The variable gain range is such that even with

maximum 11a signal of −30 dBm, the EVM is not degraded due to nonlinearity.
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Figure 4.24: Measured EVM and passband gain versus input power.

Table 4.1 summarizes the receiver performance and compares it to that of

prior art. This work has reduced the power consumption by about a factor of 4,

while demonstrating a sensitivity of −70 dBm.
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Table 4.1: Comparison with state-of-the-art.

This Work

* Including ADC.

** Without LO Buffer.

NF (dB) 5.3 4.4 5.58.0

+ 2.63IIP  (dBm) + 5 + 16−11.2

19 − 898 − 74Gain (dB) 5 − 48 14 − 94.5

Frequency (GHz) 4.9 − 5.95 5.1 − 5.95.1 − 5.9 5.15 − 5.35

CMOS Process 65 nm  µ  0.18    m  µ  0.13    m µ  0.18    m

Area (          ) 0.1832mm NA NANA

Sensitivity (dBm) 
at 54 Mb/s −70 −75.5NANA

LNA 0
0

0.4

Power (mW)

10

Mixers
LO Buffers
Filters, VGAs

108* 72.7**11.6

Divider/
25% Logic

11.7
9.8

13.7
10.8

46

1.2

[23] [32] [33]

4.8 Derivation of Input Impedance with Finite Source

Impedance

Using Eq. (4.5), we can find b1 as

b1 = 2

(√
2

π

)2

× 2ZL(f − fLO)

[

a1 +
a−3

3
+

a5

−5
+

a−7

−7
+

a9

9
+ ...

]

. (4.42)

Similarly, we can find b−3 and b5 as

b−3 = 2

(√
2

π

)2

× 1

3
× 2ZL(f − fLO)

[

a1 +
a−3

3
+

a5

−5
+

a−7

−7
+

a9

9
+ ...

]

, (4.43)

b5 = 2

(√
2

π

)2

× 1

−5
×2ZL(f −fLO)

[

a1 +
a−3

3
+

a5

−5
+

a−7

−7
+

a9

9
+ ...

]

. (4.44)
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Note that b−3 = b1/3, b5 = b1/(−5), b−7 = b1/(−7), etc. Another sets of equation

comes from (4.16) as

a1 = 1 − b1

Zs(f)
, (4.45)

a−3 = − b−3

Zs(f − 4fLO)
, (4.46)

a5 = − b5

Zs(f + 4fLO)
. (4.47)

If we substitute b1, b−3, and b5, we get

a1 = 1 − 1

Zs(f)

8

π2
ZL(f − fLO)

[

a1 +
a−3

3
+

a5

−5
+

a−7

−7
+

a9

9
+ ...

]

, (4.48)

a−3 = − 1

3Zs(f − 4fLO)

8

π2
ZL(f − fLO)

[

a1 +
a−3

3
+

a5

−5
+

a−7

−7
+

a9

9
+ ...

]

,

(4.49)

a5 = − 1

−5Zs(f + 4fLO)

8

π2
ZL(f − fLO)

[

a1 +
a−3

3
+

a5

−5
+

a−7

−7
+

a9

9
+ ...

]

.

(4.50)

Then, we can write a−3 and a5 as

a−3 = (a1 − 1)
Zs(f)

3Zs(f − 4fLO)
, (4.51)

a5 = (a1 − 1)
Zs(f)

−5Zs(f − 4fLO)
. (4.52)

Substituting the recent values for a−3 and a5 in (4.48), we get

a1 = 1 − 1

Zs(f)

8

π2
ZL(f − fLO) ×

[

1 + (a1 − 1)
Zs(f)

Zs(f)
+ (a1 − 1)

Zs(f)

9Zs(f − 4fLO)
+ (a1 − 1)

Zs(f)

25Zs(f + 4fLO)
+ ...

]

.

(4.53)

It follows that

(a1 −1)

[

1 +
8

π2
ZL(f − fLO)

∞
∑

k=−∞

1

(4k + 1)2Zs(f + 4kfLO)

]

= − 8

π2

ZL(f − fLO)

Zs(f)
.

(4.54)
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Note that the input impedance is equal to b1 and from (4.45) we get Zin =

−(a1 − 1)Zs(f). Therefore, from (4.54) we write the input impedance as

Zin(f) =
8

π2 ZL(f − fLO)

1 + 8

π2 ZL(f − fLO)

∞
∑

k=−∞

1

(4k + 1)2Zs(f + 4kfLO)

. (4.55)

4.9 Conclusion

This chapter suggests the use of transformers in place of active LNAs to save

power and provide ESD protection. The “zero-power” front end consisting of a

transformer followed by passive mixers has reasonable performance and combined

with noninvasive filtering, exceeds the 11a requirements while consuming only

11.6 mW. The proposed analysis of current-driven passive mixers provides insight

into their properties.
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CHAPTER 5

Future Work

This dissertation introduced three novel analyses that helps the designer under-

stand the circuits better and optimize their performance. In addition to opti-

mization, it helps us make changes and propose new circuits. For example, the

PFD phase noise analysis suggests to use various digital gates in the PFD circuit

rather than all-NAND or all-NOR topologies. Another possible research path is

to find the relation between the phase noise of LC oscillator and that of a single

common-source amplifier with an RLC tank as the load. That might give us

more insight and guidelines on the LC oscillator design. Finally, the analysis of

current-driven mixers allows us to optimize the mixers for minimum noise figure

or may suggest circuit modifications to create new topologies that exhibit lower

noise or higher conversion gain or better harmonic rejection.
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