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Dynamic gene networks reveal regulatory mechanisms orchestrating T cell function 

Maya Arce 

Abstract 

The immune system is complex, dynamic, and absolutely critical to maintain human health. The 

immune system comprises an enormous breadth of cell types, each able to respond to numerous 

extracellular environments. We have lacked adequate tools to dissect the mechanisms 

maintaining immune homeostasis through regulation of diverse cellular identities and stimulation 

responses. Human genetics has revealed key genes required to prevent immune dysfunction and 

many genomic loci associated with immune disease. However, natural constraint, statistical 

power limitations, and lack of causal data hinder genetic association studies, preventing the 

identification of all key regulators and limiting conclusions about the relationships between 

regulatory genes. Experimental manipulation of gene expression with CRISPR provides the ability 

to investigate the structure and function of immune regulatory systems without the inherent 

limitations of association studies.  

 

In the T cell compartment, distinct lineages must respond to diverse signals to mount effective 

immune responses and maintain homeostasis, but the dynamic regulatory circuits that respond 

to extracellular cues in primary human cells remain poorly defined. To reveal the regulators of a 

core immune gene, IL2RA, expressed dynamically across the T cell compartment and required 

to prevent immune disease, we applied pooled CRISPR KO screens across cellular contexts. We 

defined critical context specific regulators of IL2RA expression as well as regulators that affect 

the overall rest and activation state of the cell. One regulator in particular, MED12, coordinated 

gene regulatory networks required to maintain both T cell rest and activation. CRISPR ablation of 

MED12 blunted the cell state transitions between rest and activation and protected from 
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activation-induced cell death, revealing a previously unappreciated gene regulatory mechanism 

governing T cell activity.  

 

The effects of genetic variation on complex traits act mainly through changes in gene regulation. 

Although many genetic variants have been linked to target genes in cis, the trans-regulatory 

cascade mediating their effects remains largely uncharacterized. In a separate study, we 

investigated the function of and relationship between transcription factors associated with immune 

disease which are categorized as inborn errors of immunity (IEI) genes. We formed a large 

regulatory network consisting of regulators of IL2RA, IEI genes, and transcription factors without 

known immune disease associations. These connections revealed shared paths and novel 

regulatory nodes that enable control over specific immune traits.  

 

As a whole, this thesis work uses gene perturbation in distinct human T cell populations under 

different conditions to discover critical mechanisms regulating cell type and state specific gene 

expression. Detailed gene regulatory maps resulting from these studies, coupled with functional 

immune assays and biochemical data, provide new insights into human genetic variants linked to 

immune dysfunction and have potential to predict new modification strategies that enhance 

immunotherapies for the betterment of human health. 
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Chapter 1 Introduction 
A dynamic immune system is required to maintain human health 

The immune system as a whole is a dynamic entity, which must constantly adapt to protect 

against foreign pathogens and maintain self-tolerance. Failures within this system are therefore 

highly consequential and can result in the development of disease including chronic 

autoimmune disease, immunodeficiencies or cancer. Diverse cell types participate in the ebb 

and flow of immune responses and breakdowns can occur as the result of imbalanced 

proportions of distinct cell types or changes in cellular activity. Immunology research has 

resulted in the discovery and characterization of countless proteins that are required for the 

establishment of cellular identity or function within the immune system. This knowledge has 

resulted in improved diagnosis, treatment, and prevention of disease and continuously alters the 

trajectory of modern medicine1–4. However, there is a pressing need to improve understanding 

of the mechanisms that control cellular identity and function to advance the field of immunology 

and the treatment of immune related diseases.  

 

The immune system has been parsed into hierarchical categories based on the features and 

function of each cell type. Temporal response to environmental triggers distinguishes the 

broadest categories of immune activity, referred to as innate and adaptive immunity. While the 

innate immune system poses a rapid response to pathogens, the adaptive immune system is 

slower to activate but provides a more specific response to the threat and can result in lasting 

memory towards the pathogen for years following the event5. A substantial portion of the 

adaptive immune compartment is comprised of T cells, which are informed about invading 

pathogens by the presentation of antigens in the form of short peptide sequences by major 

histocompatibility complex (MHC) molecules, which T cells use to find and eliminate the threat6. 
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Stimulation of T cells via antigen presentation to the T cell receptor (TCR), costimulatory 

receptors present on the cell surface, and activating cytokines in the environment, leads to 

robust expansion of specific T cells7. Mature T cells include CD8+ T cells, known also as 

cytotoxic T cells, which are largely responsible for the elimination of pathogenic cells via direct 

killing mechanisms8. CD4+ T cells however, coordinate activation of other cells within the 

immune compartment and represent a diverse spectrum of cell subsets that secrete specific 

cytokines, enabling communication with a broad number of cell types8,9.  

 

CD4+ T cells include both pro and anti-inflammatory cells which functionally oppose one 

another. While the pro-inflammatory cell subsets, known as conventional T cells (Tconv) or 

effector T cells (Teffs) are much more abundant, their counterpart regulatory T cells (Tregs) are 

essential to establish dynamic immune homeostasis. Tregs make up less than 10% of the CD4+ 

T cell compartment but are required to prevent self-reactive T cells from expanding within the 

body, which can result in inflammation and autoimmune disease10,11. Tregs and Teffs each 

develop from a shared thymic precursor cell before cellular reprogramming leading to their 

distinct functions12. Due to this late divergence, both cell subsets have largely overlapped 

transcriptional profiles, making them responsive to many shared signaling molecules via 

expression of shared receptors. Mutual traits between these cell subsets enables like-minded 

localization and activation patterns that are required to mount a controlled immune 

response13,14.  However, the underlying gene regulatory mechanisms that enable functional 

opposition with familial similarities across these subsets are not fully understood. This paradox 

highlights the complexity of balancing cellular identity with functional flexibility.  

 

The cytokine IL-2 is particularly important for CD4+ T cell survival as it drives proliferation as 

well as cell intrinsic gene programming15. Expression of the IL-2 receptor itself is dynamically 

regulated across cell subsets. The receptor subunit IL2RA, (also known as CD25), improves cell 
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affinity for IL-2 and is carefully regulated to control sensitivity to the cytokine 16,17. Tregs express 

high levels of IL2RA at a resting state and increase expression of the receptor slightly upon 

activation, whereas CD4+ Teffs express low levels of IL2RA at a resting state but upregulate the 

receptor to Treg equivalent levels for days following TCR activation18. For these reasons, IL2RA 

is known as a cell identity gene for Tregs and a functional marker of activation across the 

broader T cell compartment19. The expansive IL2RA enhancer extends over 50 Kb and contains 

a dense distribution of variants associated with autoimmune disease, suggesting even slight 

changes in regulation can disrupt immune function, while null mutations lead to widespread 

autoimmunity20–22. For decades, therapies have been developed in an attempt to harness IL-2 

signaling, including targeted activation of IL2RA expressing cell subsets, to treat both cancer 

and autoimmune disease15,16,23,24. These strategies have been met with mixed success, 

including challenges in preventing widespread immune responses, suggesting that further 

research into the nuanced regulation of IL2RA may lead to improved and alternative routes of 

treatment. Owing to its context dependent regulation and great therapeutic significance, IL2RA 

represents an ideal gene to dissect mechanisms of cell type and stimulation specific gene 

regulation. 

 

Disease associated variants provide insight into regulation of the immune system 

In rare cases, a germline variant results in altered or diminished function of the encoded protein 

and leads to disease affecting the immune system. Record of these mutated genes, categorized 

as Inborn errors of immunity (IEI), and their associated diseases are currently maintained by the 

International Union of Immunological Societies (IUIS) and include 485 mutations as of 202225. 

Information regarding these rare coding mutations provides valuable insight into the essential 

components of the immune system and the repercussions of altered expression in human 

systems. Investigations into the pathology of patients presenting with these monogenic diseases 
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has clarified the role of many proteins in the scope of the immune system as a whole. IPEX 

disorder, for example, resulting from mutations within FOXP3, affects only CD4+ regulatory T 

cells25. The link between FOXP3 and the symptoms of IPEX, which generally presents as X-

linked immune dysregulation including multi-organ autoimmune disease, was identified before 

Foxp3 expression had been observed in human Tregs26,27. Knowledge about IPEX instead led 

to the characterization of FOXP3 as an essential gene in natural human Tregs through parallels 

to mouse models of autoimmune disease28–30. In this way, the identification of genetic 

associations with disease and investigations into the mechanism of pathology have expanded 

general knowledge of the immune system. In the case of IPEX, this knowledge is being directly 

translated into novel treatment strategies for patients as clinical trials are underway to insert 

functional FOXP3 into CD4+ T cells from patients, bypassing the need for bone marrow 

transfusions from a donor which is the current standard of care31,32.  

 

Despite the significance of monogenic disease in immunology, variants in non-coding regions of 

the genome are much more commonly associated with immune disease. Genome wide 

association studies (GWAS) have led to the identification of thousands of these variants that are 

believed to contribute to the manifestation of numerous immune diseases and related blood 

traits33–36. Expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) 

studies have further revealed the functional effect of these variants on the expression of one or 

more genes or proteins. Overall, these analyses have been most successful in identifying 

variation in the expression of genes nearby the variant, in cis. Detecting the effects of the 

variants on the expression of genes outside the affected locus, in trans, has proven more 

difficult and highlights a limitation in understanding the broad effects of a non-coding variant on 

a complex trait37,38. Additionally, altered regulation as the result of a non-coding variant is often 

times cell type or context specific, especially within in the immune system where most cellular 

activity is dependent on external stimuli39–42. Finally, variants under substantial selective 
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constraint are less likely to be associated with an eQTL, resulting in reduced functional 

information for evolutionarily conserved sequences37,43. Comprehensively, reliance on QTL 

studies cannot fully reveal the functional implications of genetic variation that has been 

associated with immune disease.  

 

CRISPR enables targeted perturbation and investigation of immune function 

Advances in sequencing technology have propelled the discovery of genetic variants associated 

with immune disease and led to the characterization of a large number of genes and their 

encoded proteins as essential components of the immune system. However, this data is limited 

in the ability to extrapolate the role of each gene of interest in the relevant cell types and 

conditions, and to understand the relationship between important immune genes. Forward 

genetic approaches, which enable the identification of genes associated with a trait, allow us to 

probe the effect of individual genes in distinct cellular contexts without restraint. CRISPR, or 

clustered regularly interspersed short palindromic repeats, evolved as a defense system in 

bacteria and was eventually harnessed as a programable DNA nuclease capable of inducing a 

targeted double stranded break in DNA44. In 2012, Jennifer A. Doudna and Emmanuelle 

Charpentier published their engineered CRISPR-Cas9 system (CRISPR-associated 9), which 

includes a guide RNA that localizes the complex through complementary base paring to DNA45. 

This technology was then applied to mammalian systems to functionally ablate gene expression 

through a double stranded break in a gene which is then erroneously repaired via non-

homologous end joining. In 2020, Douda and Charpentier were awarded the Nobel Prize in 

Chemistry for this work44.  

 

The development of CRISPR technology has enabled targeted manipulation of gene expression 

on a scale of a single gene to genome wide assays 46. Notably, subsequent iterations of 
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CRISPR with altered domains and fusion proteins enable gene silencing or activation (CRISPRi, 

CRISPRa) without inducing double stranded breaks, targeted epigenetic modifications (e.g. 

CRISPRoff/CRISPRon), and editing of specific nucleotides (e.g. Cytosine base editors, adenine 

base editors, prime editors)47,48. The application of CRISPR gene editing within the immune 

system, in the form of arrayed and pooled high throughput assays, has resulted in the discovery 

of numerous genes essential to cellular identity and function, as well as novel therapeutic 

targets20,49–58. While the applications of CRISPR systems continue to evolve, enabling complex 

manipulation of the genetic landscape, the integration of the technology has already 

revolutionized experimentation and resulted in early therapeutic success59,60.  

 

Through the integration of knowledge gained from naturally occurring variants in the immune 

system and synthetic perturbation of genes in vitro, our understanding of the immune system 

and its regulatory components may expand without limitations. Pooled screening approaches, 

have become particularly invaluable for the identification of regulators of a specific cellular 

attribute, allowing for testing at a genome wide scale61. This approach, coupled with arrayed 

perturbation of genes of interest, or single cell sequencing after pooled perturbation, has led to 

the formation of a constellation of regulatory genes that control one another and important 

immune functions52,62,63.  

 

The application of CRISPR to dissect human T cell gene regulation 

The induction of a genetic loss of function mutation through CRISPR in controlled cell types and 

conditions enables insight into the role of genes implicated in immune disease with nebulous 

function. Furthermore, transcript and chromatin level information from perturbed cells can be 

used to elucidate regulatory interactions both between genes of interest in immune disease and 

those without known associations to immune function alike. In this work, we focus exclusively 
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within the CD4+ T cell compartment, which contains diverse cells types relevant for immune 

disease with highly dynamic gene regulatory patterns. In chapter 2, we apply pooled CRISPR 

KO screens across conditions to define regulators of IL2RA in Tregs and resting and stimulated 

Teffs, revealing the regulatory components that participate in context specific gene expression 

of a core immune gene. Using arrayed CRISPR KO and genome wide sequencing approaches, 

we characterize a number of these regulators as factors that control T cell rest and activation 

and generate gene regulatory networks that clarify the mechanisms by which T cells transition 

between rest and activation. In chapter 3, we focus on IEI genes, perturbing transcription 

factors with a defined connection to immune disease and transcription factors with similar 

properties but no defined connection to immune disease. We constructed an interconnected 

network amongst these regulatory genes, distinguishing modules with comprehensible 

biological function and defining novel connections between regulators. Comprehensively, these 

investigations advanced our understanding of the regulation of essential T cell attributes with 

potential avenues to modify T cell behavior for therapeutic benefit.  
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Chapter 2 Context specific regulation of IL2RA 
 
 

Abstract 
 
The ability of cells to maintain distinct identities and respond to transient environmental signals 

requires tightly controlled regulation of gene networks1–3. These dynamic regulatory circuits that 

respond to extracellular cues in primary human cells remain poorly defined. The need for 

context-dependent regulation is prominent in T cells, where distinct lineages must respond to 

diverse signals to mount effective immune responses and maintain homeostasis4–8. Here, we 

performed CRISPR screens in multiple primary human CD4+ T cell contexts to identify 

regulators that control expression of IL2RA, a canonical marker of T cell activation transiently 

expressed by pro-inflammatory effector T cells and constitutively expressed by anti-

inflammatory regulatory T cells where it is required for fitness9–11. Strikingly, ~90% of identified 

IL2RA regulators were cell type- or stimulation-state specific, and a subset even had opposite 

functional effects across conditions. Using single-cell transcriptomics after pooled perturbation 

of context-specific screen hits, we characterized specific factors as regulators of overall rest or 

activation and constructed state-specific regulatory networks. Remarkably, MED12 – a 

component of the Mediator complex – serves as a dynamic orchestrator of key regulators, 

controlling expression of distinct sets of regulators in different T cell contexts. 

Immunoprecipitation-mass spectrometry revealed that MED12 interacts with the histone 

methylating COMPASS complex. MED12 was required for histone methylation and expression 

of genes encoding key context-specific regulators, including rest maintenance factor KLF2 and 

the versatile regulator MYC. CRISPR ablation of MED12 blunted the cell state transitions 

between rest and activation and protected from activation-induced cell death. Overall, this work 

leverages CRISPR screens performed across conditions to define dynamic gene circuits 

required to establish resting and activated T cell states. 
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Introduction 
 
Each cell type expresses a distinctive set of genes to maintain its identity and respond to 

external cues. Context-specific networks of trans-regulatory proteins are required to coordinate 

these gene expression programs but are not fully mapped in human cells1,12,13. The intricacies of 

conditional gene regulation are exemplified within the human immune system, where diverse 

cell types must specialize as well as sense and respond dynamically to stimuli to maintain 

homeostasis 5,7. Cell type- and context-specific expression of receptors and other key molecules 

enable coordinated immune responses and have been targeted in immune modulating 

therapies14–16. However, the trans-regulatory mechanisms that allow for conditional expression 

of the genes encoding these proteins remain poorly understood. Deciphering these systems will 

advance our understanding of nuanced gene regulation required for human health and improve 

our ability to modulate the immune system with effective immunotherapies.  

 

Within the CD4+ T cell compartment, regulatory T cells (Tregs) and effector T cells (Teffs) 

functionally oppose each other, serving immune-suppressive and immune-stimulating roles, 

respectively. However, their relatively late-stage differentiation results in a high degree of 

similarity at the gene expression level between the two cell types4,5,8. Both possess the ability to 

respond to a set of shared environmental signals, albeit with key differences. The cytokine IL-2 

drives cellular fitness of Tregs and activated Teffs, and competition for this signal can shape 

immune responses in health and disease10,17. The IL-2 receptor high-affinity subunit IL2RA (also 

known as CD25) enhances receptor affinity for IL-2 and is carefully regulated to control 

sensitivity to the cytokine11,15. Tregs constitutively express high levels of IL2RA at rest and 

mildly increase expression of the receptor upon activation, whereas Teffs express low levels of 

IL2RA at rest but transiently upregulate the receptor for days following TCR stimulation9. 
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Numerous therapeutic strategies have been employed to improve the cellular specificity and 

longevity of IL-2 signaling, some of which utilize the distinct expression patterns of IL2RA across 

subsets to promote efficacy and prevent adverse events15,18. IL2RA represents a clinically-

relevant gene to study for mechanistic insights into cell type- and stimulation-specific gene 

regulation. 

 

Results 
 
Context-specific IL2RA regulator screens 
 
We applied pooled CRISPR KO screens to identify upstream trans-regulators of IL2RA across 

cell type and stimulation conditions. We utilized a library of 6000 sgRNAs to target trans-factor 

genes expressed in T cells (~1350 transcription factors and chromatin modifiers) as well as 

select immune regulators and control genes19,20.We isolated, edited and expanded primary 

human Tregs (CD4+CD25hiCD127low) and Teffs (CD4+CD25low). We then screened for 

regulators of IL2RA in resting Teffs (IL2RA low) and resting Tregs (IL2RA high) 10 days after 

initial stimulation, as well as re-stimulated Teffs (IL2RA high, 72 hours post-stimulation) (Figure 

2.1a-b, Supplemental Figure 2.1a). Screens were performed at high coverage (700-1000x 

cells/sgRNA per donor) and had similar positive control sgRNA effect sizes across conditions, 

as well as high donor-to-donor correlations and the resting Teff screen replicated published 

results19 (Supplemental Figure 2.1b-d).  

 

The screens collectively detected over 100 trans-regulators (FDR < 0.05, Figure 2.1c, Table 

2.1) whose perturbation altered IL2RA surface expression in at least one context. Interestingly, 

only 16 regulators were hits in all three screens, 75% of which shared the same direction of 

effect across conditions (Figure 2.1d). These 12 “consistent regulators” of IL2RA included 

members of the JAK-STAT pathway. Among the consistent regulators, the effect sizes of 
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several trans-regulators varied greatly between conditions. GATA3, for example, was a 

particularly potent positive regulator of IL2RA in stimulated Teffs, with a median log2 fold change 

in sgRNA enrichment in the IL2RA low/high bin of 2.47 compared to 0.95 and 0.49 in resting 

Teffs and resting Tregs, respectively (Figure 2.1d, Supplemental Figure 2.1d). The majority of 

identified IL2RA regulators were significant in only one or two conditions, demonstrating cell 

type- or stimulation-specific effects (Figure 2.1c) although most regulators were expressed 

(based on bulk RNAseq) across conditions (Supplemental Figure 2.1e). We compared the 

direction and magnitude of effect of the perturbations across the three screens to categorize 

context-dependent regulators of IL2RA. Notably, few strong negative regulators were identified 

in stimulated Teffs compared to resting Teffs. For example, KLF2, MYB, and ZNF217 were only 

identified as significant negative regulators in the resting state (Figure 2.1e). These data 

highlight broad differences in the network upstream of IL2RA between activation states, where 

negative regulatory forces are transiently reduced following stimulation to increase levels of 

IL2RA.  

 

Although both Tregs and activated Teffs express high levels of IL2RA, there were fewer shared 

IL2RA regulators between the resting Treg and stimulated Teff screens than the resting Treg 

and resting Teff screens, indicating that Tregs and stimulated Teffs rely on different systems to 

achieve high expression (Figure 2.1c-g).  Overall, the screen performed in Tregs yielded a 

particularly large number of significant hits, including both positive and negative regulators 

specific to the condition, such as FOXO1, USP2221, and MYC (Supplemental Figure 2.2a). 

IL2RA is required for the fitness of Tregs11 and the large network of positive and negative 

regulators likely acts as a buffering system to maintain relatively consistent expression.  

 

Surprisingly, a few regulators exerted effects in opposing directions across conditions. Notably, 

MED12, CBFB, and PRDM1 were identified as strong positive regulators of IL2RA in stimulated 
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Teffs, but negative regulators in resting Teffs (Figure 2.1e). MED12 and, to a lesser extent, 

MED11 – components of Mediator of RNA polymerase II (Mediator) – were both identified as 

positive regulators of IL2RA in resting Tregs but negative regulators of IL2RA in resting Teffs. 

These strong “differential” context-dependent effects were particularly striking for components of 

a complex with general roles in transcription. Additionally, BATF and IRF4, which co-bind 

genomic sites in T cells22, were identified as differential regulators with a negative effect on 

IL2RA levels in resting Tregs and a positive effect on IL2RA expression in both resting and 

stimulated Teffs (Figure 2.1f-g). Notably, BATF has been highlighted as a key regulator of Treg 

tissue homing and stability in vivo23,24. Our characterization of BATF and IRF4 as negative 

regulators of IL2RA in ex vivo human Tregs suggests a nuanced role with potential differences 

across species or contexts. Comprehensively, the screening approach led to the identification of 

cell type- and stimulation-specific regulators upstream of IL2RA, as well as the unexpected 

class of regulators that promote and repress expression of IL2RA in distinct contexts. 

 

Dynamic Regulation of IL2RA 
 
In order to validate and characterize the function of cell type-specific hits from our screens, we 

ablated 18 factors and quantified IL2RA protein expression in both Tregs and Teffs, prioritizing 

genes with discordant effects across cell types or Treg-specific effects. The arrayed CRISPR 

KO results confirmed condition-specific regulatory roles for many factors (Supplemental Figure 

2.2b-e). Interestingly, components of Mediator (MED12, MED11, MED30) and SAGA (TAF5L, 

USP22, ATXN7L3), both ubiquitous transcriptional coactivator complexes, demonstrated cell 

type- and stimulation-specific effects. Consistent with screen results, MED12 had the most 

dynamic role (Supplemental Figure 2.2e-f) despite steady expression levels across conditions 

(Supplemental Figure 2.1e). MED12 ablation consistently increased IL2RA in resting Teffs but 

decreased IL2RA in stimulated Teffs and in Tregs (both resting and stimulated). We dissected 
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the kinetics of stimulation-response regulation through arrayed KO with an extended series of 

collection timepoints. Much like the screen, many perturbations that increased IL2RA in resting 

Teffs (e.g. ZNF217, MED12, PRDM1) had minimal effects on IL2RA expression or even 

decreased its expression 48-72 hours after stimulation (Figure 2.2a-b). In contrast, fewer IL2RA 

regulators with distinct stimulation-responsive effects were observed in Tregs than Teffs; no 

negative regulators of IL2RA in resting Tregs became positive regulators during activation or 

vice versa. Despite differences in activation responses, both Tregs and Teffs appeared reliant 

on KLF2 and CBFB to repress IL2RA at resting timepoints (Figure 2.2a-b).  

 

While our pooled screens captured regulators of maximum and minimum levels of IL2RA 

expression at specific time-points, the arrayed KO time course experiments also revealed 

regulators that govern transitions between states. We identified several factors that enable the 

transition from activated IL2RA levels to rest levels (~96-144 hrs) with particularly large effects 

in Teffs, which undergo the greatest fluctuations in IL2RA expression. TAF5L, BPTF, and 

SOCS3 contributed to this reduction of surface IL2RA as cells returned to rest (Figure 2.2b-c). 

CTLA-4, another receptor transiently induced in stimulated Teffs and constitutively expressed in 

Tregs, exhibited similar patterns of temporal regulation by the perturbed genes, suggesting that 

the regulators control a broader network of dynamically expressed genes (Supplemental 

Figure 2.2g). In summary, many regulators contribute to activation and rest associated gene 

regulation in temporally defined stages, with some regulatory systems specific to each T cell 

subset. 

 

MED12 facilitates rest and activation 
 
Stimulation-induced expression of IL2RA is a canonical marker of T cell activation. We 

suspected that many of the regulators’ effects were not limited to IL2RA and were reflections of 
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altered overall activation states. To characterize such global effects, we performed Perturb-

CITE-seq (pooled CRISPR perturbations coupled with single cell RNA-seq and surface 

proteomics) in resting and stimulated (48 hours post-stimulation) Tregs and Teffs. We used 

CRISPR interference (CRISPRi), to knock down 28 regulators of IL2RA, prioritizing trans-factors 

with state-specific effects. We confirmed perturbation efficiency via transcript expression of the 

targeted regulator and observed significant changes to the transcriptome and key cell surface 

receptors (Supplemental Figure 2.3a-c). We next assessed resulting changes to the overall T 

cell activation states based on a global transcriptional signature25. Many context-specific 

regulators of IL2RA served as broad modulators of rest or activation, confirming our hypothesis. 

In resting Teffs, KLF2, MYB, and SOCS3 stood out as strong repressors of activation, whereas 

STAT5B, MYC, BATF and IRF4 appeared particularly important to promote activation in 

stimulated cells (Figure 2.3a). Strikingly, MED12 knock-down increased the activation scores of 

resting cells but lowered the activated score of stimulated cells in both cell types (Figure 2.3a, 

Supplemental Figure 2.3d). Collectively, these results reveal core regulators of global state-

specific gene expression within our screen hits and notably distinguish MED12 as a dynamic 

factor governing both rest and activation programs. 

 

Cell state regulators often operate in hierarchical networks26. We constructed state- and cell 

type-specific gene regulatory network maps to visualize how regulators affect one another 

(Figure 2.3b-c, Supplemental Figure 2.3e-f). Amongst rest maintenance factors, there were 

many positive feedforward loops converging on KLF2, ETS1 and MYC, which were downstream 

of the largest number of genes (Figure 2.3b, Supplemental Figure 2.3e). Notably, MED12 

strongly promoted expression of these core resting state maintenance factors. The network 

structure of regulators controlling gene expression in stimulated Teffs was strikingly distinct from 

that in resting Teffs. In stimulated Teffs, we found few instances of strong positive connections, 

with the exception of MED12 promoting the expression of MYC (Figure 2.3c). Instead, MED12, 
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MYC, STAT5B, and BATF (all factors that promote activation following stimulation; white) were 

required to repress expression of several resting state maintenance factors which did not affect 

activation following stimulation, including SOCS3, NFKB2, and FOXO1 (colored in dark grey). 

Interestingly, this network structure echoes the general structure observed in our IL2RA screens 

and arrayed assays, where we found reduced negative regulatory effects following stimulation 

relative to the resting state. Even SOCS3, the strongest negative regulator of IL2RA identified in 

the stimulated Teff screen, was more specifically characterized as an early return-to-rest 

repressor of IL2RA (Figure 2.2b). Perturb-seq further clarifies that SOCS3 and other rest 

maintenance/promoting factors are repressed in stimulated cells by activation promoting factors, 

allowing the cells to transiently reach an activated state. These results lead to a model whereby 

the resting state is actively reinforced by a self-promoting network of regulators and the 

transition to peak activation state requires repression of factors that promote rest. Importantly, 

MED12 orchestrates expression of key regulators of both rest and activation within these 

networks. 

 

MED12 controls key regulators of IL2RA 
 
To further probe the mechanism of dynamic regulation by MED12, we knocked-out the gene 

and performed bulk RNAseq. In both Teffs and Tregs, MED12 KO caused resting cells to 

prematurely up or downregulate genes that are normally differentially expressed in response to 

stimulation (as assessed in AAVS1 KO control cells) (Figure 2.4a). Conversely, in stimulated 

cells, we observed dampening of stimulation-induced changes in gene expression in MED12 

KO relative to AAVS1 KO cells. A binomial test also confirmed aberrant expression of 

stimulation-specific genes in all MED12 KO conditions (Supplemental Figure 2.3f). Together, 

along with our Perturb-seq activation scoring, these results demonstrate that without MED12, 
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CD4+ T cells are unable to reach a full rested state or achieve peak levels of activation and 

instead exist in an intermediate state. 

 

Overall, regulators of IL2RA identified in our pooled screens were enriched in the differentially 

expressed genes downstream of MED12 across all conditions and revealed routes of context-

specific regulation by MED12 (Figure 2.4b). For example, MED12 KO caused increased 

expression of IRF4 in resting Teffs and Tregs, but decreased IRF4 levels in the stimulated cell 

conditions. (Figure 2.4c). MED12 ablation markedly decreased levels of positive IL2RA 

regulator GATA3 in stimulated Teffs, and decreased levels of negative IL2RA regulator (and 

rest maintenance factor) KLF2 in resting Teffs and Tregs (Figure 2.4c-d). Additional 

experiments revealed functional changes resulting from transcriptional reprogramming of 

MED12 KO cells, including reduced suppressive capacity in vitro by Tregs relative to AAVS1 KO 

cells, impaired IL-10 secretion by Tregs, and impaired Th2 associated cytokine secretion by 

Teffs (Supplemental Figure 2.4a-e). Collectively, these results reveal that MED12 directs a 

network composed of cell type- and stimulation-specific-regulators to achieve context 

dependent expression. 

 

MED12 is part of the kinase domain of Mediator, which has been viewed as an inhibitory 

component because its presence prevents binding of the complex to RNA polymerase II27–29. 

We perturbed one subunit from each functional Mediator module and performed bulk RNAseq in 

resting and stimulated Tregs and Teffs. Much like the screen, MED12 and core Mediator KOs 

often shared the same direction of effect, reflected by a positive correlation between MED12 

regulated genes and those regulated by core subunits MED11, MED14, and MED31 (Figure 

2.4e, Supplemental Figure 2.5a-b). We also compared the effects of different Mediator 

component knockout on surface protein levels of IL2RA. Here we noted MED12 KO effects 

could be stronger and even partially discordant with other Mediator subunit KOs, depending on 
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the cell type and stimulation context (Supplemental Figure 2.6a-b). Collectively, these data 

reveal partially shared effects by MED12 and core Mediator, and depict MED12 as particularly 

important to promote expression of context-specific regulators of CD4+ T cell state. 

 

We next assessed the effect of ablating key IL2RA regulators on the chromatin landscape at the 

IL2RA locus. H3K27ac is a mark of active enhancers and varies considerably between cell 

types and states30. We performed H3K27ac CUT&RUN following KO of select context-specific 

regulators; Mediator subunits (MED12, MED11, MED24), SAGA subunits (TAF5L, ATXN7L3, 

USP22), BATF and ZNF217. Perturbation of several regulators, especially MED12, resulted in 

significant changes in acetylation compared to AAVS1 KO samples (Supplemental Figure 

2.6c). Downstream of the IL2RA transcription start site (TSS) showed significantly less 

H3K27ac in MED12 KO samples, specifically in Tregs. Most strikingly, MED12 KO Teffs had 

increased levels of acetylation in a region upstream of the TSS that is normally more acetylated 

in Tregs, which we previously characterized as a Treg-specific element called CaRE36 

(Supplemental Figure 2.6d). Treg ChIP-seq data31 contained prominent STAT5A peaks within 

CaRE3, suggesting that increased STAT5-signaling could contribute to more Treg-like gene 

expression in MED12 KO resting Teffs (Supplemental Figure 2.6d). Interestingly, we observed 

that genome-wide regions of differential acetylation in the TAF5L KO were highly correlated with 

MED12, including increased acetylation in Teffs at the IL2RA CaRE3 locus, suggesting a 

possible shared downstream regulator (Supplemental Figure 2.6d-h). Collectively, these 

changes demonstrate a loss of context-specific chromatin features required for cell identity and 

state dynamics as the result of regulator perturbations. 
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MED12 shapes chromatin at core genes  
 
To probe the mechanism of context specific gene regulation by MED12 in human CD4+ T cells, 

we sought to define its interaction partners. MED12 lacks a DNA binding domain and enzymatic 

function but possesses several intrinsically disordered regions ideal for protein-protein 

interactions. We performed endogenous immunoprecipitation mass spectrometry (IP-MS) of 

MED12 in resting and stimulated Teffs and identified 203 significant interaction partners across 

conditions (Bayesian-FDR <= 0.05), including all members of the Mediator complex, except 

MED25, MED26 and MED12L (Supplemental Figure 2.7a). Surprisingly, the subset of proteins 

with over 100-fold enrichment in the MED12 pull down included numerous members of 

COMPASS, a histone methylating complex (Figure 2.5a). While COMPASS has several 

configurations, one particular assembly was represented including SETD1A, an H3K4me1-3 

methyltransferase, and CXXC1, a DNA binding protein. Western blotting further confirmed co-

precipitation of SETD1A and CXXC1 with MED12 (Supplemental Figure 2.7c-d).  

 

MED12 interaction with COMPASS led us to suspect it may affect targeted H3K4 methylation. 

H3K4me1-2 are associated with poised and active enhancers while H3K4me3 is concentrated 

at active transcription start sites and has been shown to directly promote transcription32–34. 

CUT&RUN demonstrated widespread changes to H3K4me1-3 distribution in MED12 KO Teffs 

compared to control cells (Figure 2.5b, Supplemental Figure 2.8a). Changes in H3K4me3 

were correlated strongly with altered gene expression in the MED12 KO samples 

(Supplemental Figure 2.8b). We defined genes bound by MED12 across states using ChIP-

seq in AAVS1 KO T cells, using MED12 KO samples to establish the background, resulting in 

high-confidence MED12 peaks (Methods). We intersected these peaks with regions of 

differential methylation or gene expression in the MED12 KO samples and found that bound 
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regions were predominantly associated with decreased H3K4me3 and reduced expression 

(Figure 2.5b, Supplemental Figure 2.8c). Strikingly, a number of IL2RA regulators and T cell 

rest maintenance and activation promoting factors were among these genes, including KLF2, 

MYC, and ETS1 at rest and MYC and SATB1 after stimulation, suggesting that MED12 directly 

promotes their conditional expression. Again, using ChIP-seq we found CXXC1 was also 

present at many of these loci in resting cells, intersecting 52% of MED12 bound regions and 

82% of MED12 bound genes (Figure 2.5c, Supplemental Figure 2.8d-f). Interestingly, CXXC1 

peaks were less abundant in stimulated samples, suggesting that the protein may be displaced 

following activation, at which point MED12 localization also changes (Supplemental Figure 

2.8d-g). H3K27ac was also affected at several regulators, including the KLF2 locus in resting 

Teffs and Tregs (Supplemental Figure 2.8h). Comprehensively, these data suggest that 

COMPASS and MED12 colocalize at several key activation state regulatory genes where 

MED12 functions as a positive regulator of gene expression. 

 

Loss of H3K4me3 has been associated with increased RNA polymerase II pausing, which 

results in an accumulation of polymerase at the TSS and coordinated loss in the gene body33,34. 

Using ChIP-seq in resting and stimulated Teffs, we found that pausing decreased globally 

following stimulation in AAVS1 KO cells. However, MED12 ablation increased pausing in 

stimulated Teffs relative to AAVS1 KO cells and decreased pausing in resting Teffs, resulting in 

diminished differences in pausing between states (Supplemental Figure 2.9a-b). This effect is 

consistent with hyper-activation in rest and blunted stimulation response as we described 

previously. Accumulation of NELFA at the TSS of genes in stimulated MED12 KO cells relative 

to AAVS1 KO samples and decreased polymerase PS5 and PS2 in the gene body relative to 

the TSS provided additional evidence of increased pausing after activation, including at the 

IL2RA locus which did not have significantly altered H3K4me3 (Supplemental Figure 2.9c-d). 

In resting MED12 KO cells, reduced polymerase at the TSS was a prominent global feature, 
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suggesting inhibited recruitment (Supplemental Figure 2.9a). Collectively, reduced pausing at 

rest and increased pausing after stimulation was a genome-wide trend for MED12 KO cells.  

 

While global changes in polymerase activity reflect the altered activation state of the KO cells, 

core regulators of rest and activation bound by MED12 exhibited more consistent changes in 

transcription. The TSS of rest maintenance factor KLF2 had significantly reduced H3K4me3 and 

increased pausing at rest in MED12 KO cells, deviating from the overall trend (Figure 2.5c). 

MYC, which participates in maintenance of both rest and promotion of activation response, had 

reduced H3K4me3 in both states and exhibited reduced polymerase recruitment at rest and 

increased pausing following stimulation. The resulting strong downregulation of these genes 

following MED12 ablation (Figure 2.4c) suggests a model in which MED12 drives expression of 

context-specific regulators. To assess the significance of these particular loci, we looked for 

evidence of their role in broader MED12 signaling. Using bulk RNAseq data in resting CD4+ T 

cells, we found that ablation of KLF2 alone was able to account for 30% of differentially 

expressed genes downstream of MED12 (Figure 2.5d). In lieu of bulk RNAseq for MYC KO T 

cells, we found a strong negative enrichment of MYC over-expression induced genes in both 

resting and stimulated MED12 KO samples (Figure 2.5e). Notably, MYC has been 

characterized as a pause release factor, and may contribute to global changes following 

activation35. While we did not exhaust the important factors downstream of MED12 likely 

contributing to its effects, we demonstrate that by promoting expression of several core 

regulatory factors, MED12 is able to establish central governance over broad regulatory 

networks.  

 

We next asked if the Mediator kinase CDK8 and homolog CDK19 participate in MED12 driven 

regulation of activation. We used SEL120-34A, an inhibitor specific to CDK8 and CDK19. 

Treatment was sufficient to reproduce elevated levels of IL2RA in resting cells but when the 
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cells were stimulated, IL2RA remained significantly higher than vehicle (H2O) control treated 

cells, whereas MED12 KO cells had lower IL2RA expression compared to AAVS1 KO cells 

(Supplemental Figure 2.9e-f). Next, we assessed changes in H3K4me1-3 following kinase 

inhibition. We first confirmed that the vehicle treated control cells responded to stimulation 

similarly to AAVS1 KO cells, finding high correlation between stimulation responsive sites 

(Supplemental Figure 2.9g). However, differentially methylated sites between SEL120-34A 

and vehicle treated cells were poorly correlated with MED12 KO effects, with the notable 

exception of shared reduced H3K4me3 at KLF2, MYC, and ETS1 in the resting condition 

(Supplemental Figure 2.9h). Reduced expression of resting state maintenance factor KLF2 is 

consistent with elevated levels of IL2RA observed in the kinase inhibitor treated cells. 

Collectively, these data suggest a complex role for the Mediator kinase, which contributes to the 

regulation of several rest maintenance factors, but does not explain the MED12-mediated 

regulation of stimulation responses.  

 

MED12 KO limits activation induced death 
 
Synthetic perturbation of key regulators is a promising strategy to improve adoptive T cell 

therapies. Recently, MED12 KO was nominated by a genome-wide CRISPR screen in CAR T 

cells to promote fitness. Ablation of MED12 resulted in improved CAR-T cells with sustained 

expansion and tumor control in preclinical models36. We speculated that an unreported but 

critical part of the therapeutic success of these experiments may be mediated by altered 

activation state transitions – avoiding complete rest and a state of peak activation. Using bulk 

RNAseq data from Freitas et al., we generated an activation score using genes upregulated in 

control CARs after stimulation. We then applied this score to the control and MED12 KO CARs 

and found a significant decrease in activation for the stimulated MED12 KO CARs compared to 

the controls (Supplemental Figure 2.10a). Within our Perturb-seq pool, MED12-targeted cells 
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experienced the largest increase in total Teff cell counts, especially stimulated cells (Figure 

2.6a). Stimulated MED12-targeted Tregs also exhibited similar effects (Supplemental Figure 

2.10b). We asked why MED12-targeted cells with reduced activation capacity would be more 

abundant than non-targeting controls. Based on cell state signatures in Perturb-seq, MED12 

targeted cells showed a slight increase in proliferative cells in the resting condition but a 

substantial decrease in proliferative cells in the stimulated condition compared to non-targeting 

cells (Supplemental Figure 2.10c). Across the perturbed T cell pool, the percentage of 

proliferative cells and total cell abundance were not well-correlated, possibly due to decreased 

viability.  

 

We reasoned that the reduced stimulation responses in MED12-targeted cells, may instead 

improve cell durability by limiting activation-induced cell death (AICD). Consistent with this 

hypothesis, genes associated with “apoptosis” were enriched among genes differentially 

expressed between MED12 KO and AAVS1 KO cells, driven by a mix of both up and 

downregulated genes (Supplemental Figure 2.10d-e). To determine if MED12 KO altered 

apoptosis in response to stimulation (AICD), we performed a dose-response of stimulation 

strength using anti-CD3/CD28/CD2 soluble tetramers and quantified apoptosis via caspase-3/7 

activation. As expected, apoptosis increased with stimulation dose in AAVS1 KO control Teffs 

(Figure 2.6b, Supplemental Figure 2.10f). In marked contrast, MED12 KO cells underwent 

minimal apoptosis in response to even strong stimulation. Surprisingly, apoptosis initiating 

receptor FAS was elevated on MED12 KO cells throughout the assay, possibly the result of an 

affected feedback loop (Supplemental Figure 2.10g). The MED12 KO associated reductions in 

apoptosis translated to improved live cell abundance, providing an explanation for improved cell 

durability following MED12 ablation in the stimulated condition (Figure 2.6c-d).  
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Discussion 
 
CRISPR screens in multiple primary cell conditions collectively defined a dynamic network of 

trans-regulators that enable cell type- and state-specific expression of IL2RA. We uncovered 

marked differences in regulation between Tregs with constitutively high levels of IL2RA and 

stimulated Teffs with transiently high levels. Teffs utilize waves of regulators to maintain rest 

(KLF2 and MED12), achieve peak expression (GATA3 and MED12), and return to a resting 

state (TAF5L and SOCS3); while Tregs appear to utilize a more static but expansive network of 

regulators to maintain IL2RA levels. One key insight that emerged is that the resting state 

depends on multiple rest maintenance factors that form a positive-feedback network, collectively 

promoting expression of a core rest factor KLF2. Activation promoting factors repress this rest 

maintenance network following stimulation to achieve a maximal activated cell state. MED12 

serves as a dynamic regulator of state-specific gene expression via orchestration of 

downstream factors across these networks. Mediator accumulation is a feature of super-

enhancers and has been associated with their activity in diverse cell types, suggesting that 

MED12 is recruited to the locus of key regulatory genes that are under precise enhancer 

regulation.37,38  

 

Multiple studies have suggested that cycles between T cell rest and activation can influence the 

durability of adoptive T cell therapies39,40. Our findings suggest that loss of MED12 tunes T cell 

activation responses and limits activation-induced apoptosis to improve durability. This 

resistance to apoptosis appears to function independent of FAS (which was upregulated 

following MED12 ablation), another pathway that has been targeted to enhance cell therapy 

persistence41. Targeting MED12 and other context-dependent regulators may offer additional 

advantages by enhancing fitness of conventional T cells, but reducing IL2RA expression and 

suppressive function of Tregs (cells that could limit the efficacy of bulk CAR-T products36). 
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Increased expression of IL2RA by resting Teffs and decreased expression by Tregs may help 

Teffs compete more effectively for IL2.  

 

Here we limited our study to trans-regulators within the CD4+ T cell compartment to 

comprehensively profile Teffs and Tregs across stimulation conditions, but additional screening 

conditions, perturbations and phenotypic readouts provide further insight into context-specific 

gene regulatory networks. The current work revealed the architecture of the gene regulatory 

networks controlling dynamic expression of IL2RA across cell types and activation states. More 

broadly, it provides fundamental insights into the regulation of T cell identity and mechanisms 

governing transitions between rest and activation. 
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Figures 

 
Figure 2.1 Identification of context-dependent regulators of IL2RA expression 
a. IL2RA surface expression levels by flow cytometry. b. Schematic of context-specific trans-
regulatory CRISPR screens c. Venn diagram of regulators identified across screen conditions. 
d. Consistent regulators of IL2RA identified as significant in the same direction across all 3 
screens. (FDR < 0.05; Treg screen: n=2, resting Teff screen: n=3, stimulated Teff screen: n=3 
donors). e-g. Comparisons of IL2RA screen results colored by significance and direction of 
effect in both screens (significant = FDR < 0.05; Treg screen: n=2, resting Teff screen: n=3, 
stimulated Teff screen: n=3 donors)  
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Figure 2.2 Temporal regulation of IL2RA following stimulation by distinct factors 
a. Representative flow cytometry histograms of IL2RA expression after arrayed KO. AAVS1 
safe harbor control KO results are shown in grey, and the y axis is normalized to the mode. 
Timepoints represent time after restimulation starting with 0 hours (no restimulation) b. 
Quantification of KO effect on IL2RA expression across stimulation timepoints. Log2 fold change 
IL2RA median fluorescent intensity (MFI) calculated for KO compared to AAVS1 control KO 
samples from the same donor. Each point represents a donor and sgRNA combination. (n = 2 
donors x 2 sgRNAs per KO except KLF2 KO where n = 3 and ZNF217 KO where n = 6). c. 
Schematic of select IL2RA regulators that enable temporal control of IL2RA in Teffs. 
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Figure 2.3 Perturb-seq reveals T cell rest and activation networks 
a. Activation scores computed for each perturbed gene based on single cell gene signatures 
across resting and stimulated states. Each point represents the median activation score of cells 
targeted for CRISPRi knock-down of the indicated gene. Dashed grey lines indicate the 
activation scores for non-targeting control cells; colored points indicate perturbation with 
activation scores significantly different than control cells for each condition determined by a two-
sided Wilcoxon rank sum test with continuity correction (padj < 0.01). b-c. Regulatory network of 
factors controlling rest and activation. Differentially expressed genes resulting from a 
perturbation (identified by pseudo-bulking knock-down vs. non-targeting cells) are represented 
as arrows from the perturbed gene (Wald test with Benjamini-Hochberg (BH) multiple test 
correction, padj < 0.05 threshold, n=2 donors per target gene). Light grey nodes indicate rest 
maintenance factors in resting Teffs, white nodes indicate activation-promoting factors in 
stimulated Teffs, and dark grey nodes indicate regulators without significant effects on activation 
scores in stimulated Teffs (categorization from a). 
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Figure 2.4 MED12 coordinates expression of IL2RA regulators across CD4+ T cell 
conditions 
a. Genes differentially expressed in MED12 KO samples compared to control AAVS1 KO 
samples (Wald test with BH multiple test correction, padj < 0.05, n=3 donors per KO) are 
grouped according their stimulation-responsive behavior in AAVS1 KO control cells. The 
Bonferroni adjusted p value resulting from a two-tailed T test is displayed comparing each 
stimulation response group to the non-stimulation responsive group (Methods). b. Proportions of 
IL2RA regulators vs. non-regulators (NS) whose expression levels are affected by MED12 KO. 
One-sided Fisher’s exact test for regulators of IL2RA downstream of MED12 (Methods). c. 
Heatmap of IL2RA regulators differentially expressed between MED12 KO cells and control 
cells (as described in a). Gene annotation boxes represent the IL2RA screens result (FDR < 
0.05; navy = positive regulator of IL2RA, gold = negative regulator of IL2RA). d. Directed 
network plots depicting select trans-regulators downstream of MED12. Solid lines depict effects 
of MED12 based on significant gene expression changes as described in a and dashed lines 
represent effects on IL2RA based on screen results as described in 1e-g. e. Comparison of 
transcriptional effects of MED12 ablation versus ablation of core Mediator subunit MED11. Each 
point represents the effect on genes significantly differentially expressed in both KOs, as 
described in a. Linear regression equation and Pearson coefficient provided for each condition.  
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Figure 2.5 MED12 shapes chromatin landscapes to promote cell type and stimulation-
specific regulation 
a. Proteins enriched in CD4+ Teff MED12 immunoprecipitation mass spectrometry with > 100-
fold enrichment relative to IgG control (BFDR <= 0.05, n = 3 donors). Pink lines indicate 
enrichment in immunoprecipitation and grey lines are reported physical interactions in the 
STRING database. b. Gene loci with H3K4me3 altered by MED12 KO relative to AAVS1 KO 
control Teffs determined by CUT&RUN (n = 3 donors per condition). Significant regions 
intersecting MED12 high-confidence ChIP-seq peaks (Methods, n=2 donors per condition), are 
colored in red with select genes labeled. c. KLF2 and MYC loci depicting differential H3K4me3 
and RNA Pol II CTD occupancy between the MED12 KO (purple and turquoise) and AAVS1 KO 
(grey) conditions from a representative donor. Light grey boxes indicate region of differential 
H3K4me3 between the MED12 KO and AAVS1 KO (padj < 0.05, n=3 donors). Colored boxes 
indicate CXXC1 peaks and MED12 high-confidence peaks in AAVS1 KO Teffs (n=2 donors). d. 
Differentially expressed genes (DEG) downstream of MED12 and KLF2 in resting CD4+ Teffs 
as described in 4c. KLF2 regulated genes from Freimer et al. (padj < 0.05)19. e. GSEA with BH 
multiple test correction depicting significantly reduced enrichment of MYC signature genes 
(MYC_UP.V1_UP from msigdb) in MED12 KO cells vs. AAVS1 KO control cells.  
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Figure 2.6 MED12 ablation limits activation-induced T cell apoptosis 
a. Total cell abundance for each gene knockdown within the indicated Perturb-seq pool of single 
cells normalized using the sgRNA distribution in the plasmid library and represented as the log2 
fold change compared to non-targeting cells (dashed line). b. Percentage of apoptotic cells and 
live Teff cell count following various dosages of anti-CD3/CD28/CD2 stimulation reported 
relative to manufacturer recommended dose. Two-tailed T test comparing groups (n=4 donors x 
2 sgRNAs per target gene; Apoptosis- Dose 0: p=0.56, 0.1: p=0.00087, 0.25: p=0.0011, 1: 
p=0.003, 2.5: p=0.00032; Live counts- Dose 0: p=0.68, 0.1: p=0.14, 0.25: p=0.0026, 1: p=0.036, 
2.5: p= 0.0017). c. Model of core regulatory networks controlling T cell rest and activation, both 
coordinated by MED12. Solid lines indicate regulatory effects on other factors and dashed lines 
represent effects on overall states. Solid black lines indicate potential direct regulation by 
MED12 as supported by ChIP-seq data. d. Phenotypic effects of MED12 ablation in CD4+ Teff 
cells. 
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Supplemental Figures 

  
Supplemental Figure 2.1 Pooled KO screens across cell states and lineages reveal 
context-specific regulators 
a. Kinetics of IL2RA expression in Teffs and Tregs following restimulation. Representative 
histograms of IL2RA expression assessed via flow cytometry adjusted to the mode of each 
sample. b. Donor-to-donor correlations for all screening conditions (FDR < 0.05; Treg screen: 
n=2, Teff screen: n=3, Stimulated Teff screen: n=3 donors). c. Comparison of resting IL2RA 
screen results between Freimer et al. and new screen data. Non-significant genes are shown in 
grey and significant hits (FDR < 0.05) colored by direction of effect in both screens. d. 
Comparison of IL2RA screen results for IL2RA KO and GATA3 KO sgRNAs. Each dot 
represents an individual sgRNA average effect for the respective gene KO (Treg screen: n=2, 
Teff screen: n=3, Stimulated Teff screen: n=3 donors). e. Heatmap showing expression of 
genes encoding screen hits. Transcript levels were assessed in AAVS1 KO control cells by bulk 
RNAseq. (Figure caption continued on the next page.)  
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(Figure caption continued on the previous page.) The color bar represents the log10(mean 
normalized counts) for the gene expression level of each IL2RA regulator across each cell type 
and stimulation condition (n=3 donors). The annotation bars on the top illustrate the direction of 
effect for each regulator in the three IL2RA screens (colored boxes = FDR < 0.05, navy = 
positive regulator of IL2RA and gold = negative regulator of IL2RA).   
 

 
Supplemental Figure 2.2 Cell type- and stimulation-specific regulators of IL2RA control 
dynamic gene expression 
a. Volcano plot of screen results for regulators of IL2RA in resting primary human Tregs. 
Significant hits (FDR < 0.05, n=2 donors) colored by direction of effect. b. Validation of select 
Treg screen hits using arrayed KO and flow cytometry. IL2RA expression displayed as the 
mean log2 fold change median fluorescent intensity (MFI) of the perturbed samples compared to 
control AAVS1 KO control samples vs. the log2 fold change IL2RA Treg screen effect (flow 
cytometry n=4 donors; Treg screen n=2 donors). c. Flow cytometry gating strategy for IL2RA 
expression in arrayed assays displayed as contour plots with outliers. (Figure caption continued 
on the next page.)  
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(Figure caption continued on the previous page.)  d. Amplicon-seq genotyping of arrayed 
validation KOs to confirm editing. The mean percent modified (edited) reads as quantified by 
NGS is shown on the y axis for each of the targeted genes. (Teff genotyping n=3, Treg 
genotyping n=2 donors) e. Select regulators of IL2RA demonstrate cell type-specific effects. 
Regulators from arrayed KO in b selected for visualization based on apparent cell type 
differential effect and membership to Mediator or SAGA. IL2RA surface expression displayed as 
the log2 fold change median fluorescent intensity (MFI) of the perturbed samples compared to 
control AAVS1 KO sample from the same donor. (Teffs: n=3 donors, Tregs: n=4 donors). f. 
Schematic of IL2RA screen hits with cell type-differential regulatory roles g. Intracellular CTLA-4 
expression is affected by perturbation of stimulation-responsive regulators of IL2RA. Data 
displayed as described in e., but for CTLA-4 expression. (n = 2 donors x 2 sgRNAs per KO 
except KLF2 KO where n = 3 and ZNF217 KO where n = 6) ZNF217 KO and AAVS1 KO data of 
CTLA-4 for time 0 Tregs was published in Mowery et al42. Gating strategy is as displayed in c.  
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Supplemental Figure 2.3 MED12 controls expression of stimulation-responsive genes in 
Tregs and Teffs 
a. Differential gene expression results for CRISPRi targeted genes using pseudobulked Perturb-
seq counts relative to non-targeting control cells (Wald test with BH multiple test correction, padj 
< 0.05, n=2 donors). b-c. Differentially expressed cell surface proteins from pseudobulked 
Perturb-CITE-seq samples (Wald test with Benjamini-Hochberg (BH) multiple test correction, 
padj < 0.05, n=2 donors). d. Activation scores for each perturbed gene computed based on 
single cell gene signatures. Each point represents the median activation score of cells targeted 
for CRISPRi knock-down of the indicated gene in Tregs. Dashed grey lines indicate the 
activation score for non-targeting control cells within each respective condition; colored points 
indicate perturbation with activation scores significantly different than control cells for each 
condition as determined by a two-sided Wilcoxon rank sum test with continuity correction (padj 
< 0.01). e. Regulatory network of factors controlling rest and activation in Tregs. Differentially 
expressed genes resulting from a perturbation (identified by pseudo-bulking knock-down vs. 
non-targeting cells) are represented as arrows from the perturbed gene (padj < 0.05, n=2 
donors per target gene). (Figure caption continued on the next page.)  
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(Figure caption continued on the previous page.) Light grey nodes indicate rest maintenance 
factors in resting Tregs, dark grey nodes indicate regulators without significantly different 
activation scores in the respective condition, and white nodes indicate activation promoting 
regulators in stimulated Tregs f. Log2 fold change of differentially expressed genes in MED12 
KO vs AAVS1 KO bulk RNAseq samples (padj < 0.05 as described in 4a) compared to the log2 
fold change of differentially expressed genes between stimulated and resting control AAVS1 KO 
cells (Wald test with Benjamini-Hochberg (BH) multiple test correction, padj <0.05, n=3 donors). 
Two-sided binomial test results are displayed comparing the proportion of genes downstream of 
MED12 that are concordant in direction with stimulation-responsive genes to genes discordant 
in direction. 
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Supplemental Figure 2.4 MED12 is required for distinct functional features in specific 
CD4+ T cell subsets 
a. Flow gating strategy for suppression assays. b. In vitro Treg suppression assays showing 
absolute proliferative Teff count and percent suppression by Tregs (Methods). Unedited (wild 
type) CD4+ Teffs were used in the assay with MED12 KO Tregs or AAVS1 KO control Tregs. 
Paired two-tailed T test comparing MED12 KO and AAVS1 KO control samples (n=4 donors per 
KO; Teff count: Ratio 2:1 p=0.11, 1:1 p=0.067, 1:2 p=0.023, 1:4 p=0.12, 1:8 p=0.15; 
Suppression: Ratio 2:1 p=0.067, 1:1 p=0.061, 1:2 p=0.045, 1:4 p=0.24, 1:8 p=0.14 ). c. Gene 
expression of selected genes associated with indicated cell identities. Color indicates the log2 
fold change of differentially expressed genes in bulk RNAseq (Wald test with BH multiple test 
correction, padj <0.05, n=3 donors) comparing stimulated MED12 KO to AAVS1 KO control 
samples. Data are shown in Teffs (left) and Tregs (right). d. Cytokine expression measured by 
Luminex. (Figure caption continued on the next page.)  
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(Figure caption continued on the previous page.) Heatmaps represent the log2 fold change 
cytokine concentration in the MED12 KO sample supernatant relative to AAVS1 KO control 
supernatant. Teff heatmap values display the average concentration of 2 sgRNAs per gene KO 
(n=4 donors per cell type x 2 sgRNA for Teff or 1 sgRNA for Tregs). e. Cytokine concentrations 
as represented in d for select cytokines. Two-tailed T test comparing MED12 KO and AAVS1 
KO samples (paired for Tregs only) (n=4 donors x 2 sgRNAs per KO (Teff only); Teff cytokines: 
IL-13: p=0.054, IL-4: p=0.025, IL-5: p=0.0099, IL-8: p=0.0095, CXCL10 (IP-10): p=0.00072, 
CXCL9: p=0.0096; Treg cytokines: IL-10: p=0.043, TGF-β1: p=0.54, TGF-β2: p=0.84, TGF-β3: 
p=0.19). 
 

 
Supplemental Figure 2.5 Partially-shared transcriptional effects of MED12 and other 
Mediator subunits 
a. Comparison of the transcriptional effects of MED12 KO compared to KO of Mediator subunits 
MED14 (middle/backbone), MED31 (middle), MED24 (tail), MED30 (tail) as described in Figure 
4e. b. Regulators of IL2RA in the network downstream of several Mediator complex subunits. 
(Figure caption continued on the next page.)  
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(Figure caption continued on the previous page.) Differentially expressed genes as assessed by 
bulk RNAseq are displayed as the log2 fold change gene expression in the subunit KO/AAVS1 
KO samples for the respective condition (Wald test with Benjamini-Hochberg (BH) multiple test 
correction, padj < 0.05, n=3 donors per KO). The horizontal annotation bars on the top of the 
figure represent the stimulation condition (dark grey for resting and light for restimulated) and 
the vertical annotation bars represent the effect of the regulator in the IL2RA KO screens 
(colored boxes = statistically significant FDR < 0.05, navy = positive regulator of IL2RA and gold 
= negative regulator of IL2RA). 
 

 
Supplemental Figure 2.6 Mediator and SAGA complexes shape context-dependent 
regulation of IL2RA 
a. Mediator complex subunit KO effects on expression of IL2RA as quantified by flow cytometry 
across contexts. Each color represents a Mediator complex structural module. (n=3 donors for 
Teffs and 2 donors for Tregs x 1 sgRNA per condition) (Figure caption continued on the next 
page.)  
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(Figure caption continued on the previous page.)  b. Amplicon-seq genotyping of arrayed 
validation KOs to confirm editing. The mean percent modified (edited) reads as quantified by 
NGS is depicted for each of the targeted genes. (Teff genotyping n=3 donors, Tregs genotyping 
n=2 donors) c. Select regulators of IL2RA affect H3K27ac distribution in CD4+ T cells. The 
number of differentially H3K27 acetylated regions in each KO cell population compared to 
control AAVS1 KO cells is displayed on the y axis (Two-tailed Wald test with BH multiple test 
correction, padj < 0.05, n=2 donors per KO). The direction in which H3K27ac was altered is 
depicted as the color of the bar. d. Trackplot of the IL2RA locus depicting regions of differential 
acetylation between the MED12 KO (solid color) and AAVS1 control KO (grey transparent) 
conditions from a representative donor. Light grey boxes distinguish regions of significantly 
differential acetylation between the MED12 KO and the AAVS1 KO (Two-tailed Wald test with 
BH multiple test correction, padj < 0.05, n=2 donors per KO). IL2RA CaRE enhancer elements6 
are annotated in grey boxes below gene tracks. STAT5A ChIP data sourced from public data 
(Methods). e. Venn diagram depicting differentially acetylated regions (relative to AAVS1 KO 
control cells) for MED12, TAF5L, and MED11 KO samples. Differentially acetylated regions 
determined as described in c. f. Histogram depicting the distribution of differentially acetylated 
regions based on distance to the transcription start site of the nearest gene. The peak height is 
the proportional to the number of differentially acetylated regions across the samples. g. 
Correlation of TAF5L and MED12 differentially acetylated regions. Regions as described in c. 
depicted as the log2 fold change acetylation for the respective perturbations. h. Trackplot of 
H3K27ac as described in d for TAF5L KO instead of MED12 KO.  
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Supplemental Figure 2.7 SETD1A/COMPASS complex members are enriched within an 
extensive MED12 protein interaction network within CD4+ Teffs. 
a. MED12 interaction partners in CD4+ Teffs. Proteins enriched in MED12 immunoprecipitation 
mass spectrometry (IP-MS) relative to IgG control (BFDR <= 0.05, n = 3 donors). Pink lines 
indicate enrichment in immunoprecipitation and grey lines are derived from reported physical 
interactions in STRING database64. b. Proteins from a. plotted by log2 fold change enrichment 
demonstrate high representation of SETD1A/COMPASS members. c. Western blot confirmation 
of MED12 protein loss with MED12 KO sgRNA s2770 targeting MED12 using antibody clone 
D9K5J used in IP experiments. Two donors were processed in one experiment. For gel source 
data, see Supplemental Figure 1. d. MED12 IP validation of select interactors by western blot. 
Western blot of IgG and MED12 IP samples demonstrating interaction between MED12 and 
SETD1A, CXXC1, and MED17 in resting and stimulated Teffs in two human donors. For gel 
source data, see Supplemental Figure 1. 
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Supplemental Figure 2.8 MED12 ablation disrupts chromatin at regulators of rest and 
activation 
a. Sites of H3K4me2/1 altered by MED12 KO relative to AAVS1 KO Teffs (n = 3 donors per 
condition) determined by CUT&RUN. Significant regions intersecting high-confidence MED12 
peaks, assessed by ChIP-seq (Methods, n=2 donors per condition), are colored in red with 
select genes labeled. b. Correlation between genes with differential H3K4me3 and transcript 
expression comparing MED12 KO to AAVS1 KO Teffs. c. Genes differentially expressed in 
MED12 KO relative to AAVS1 KO (n = 3 donors per condition) colored as in a. d. Intersection of 
MED12 high-confidence peaks and CXXC1 peaks (left plot) and MED12 high-confidence bound 
genes and CXXC1 bound genes (middle plot) in resting Teffs. Intersection of MED12 high-
confidence peaks between resting and stimulated states (right plot, n=2 donors per condition) e. 
Genes differentially expressed in MED12 KO relative to AAVS1 KO Teffs. CXXC1 bound genes 
determined by ChIP-seq (Methods, n=2 donors per condition) are colored in dark blue with 
select genes labeled. (Figure caption continued on the next page.)  
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(Figure caption continued on the previous page.)  f. Trackplots of ETS1 and GATA3 loci 
depicting differential H3K4me3 and RNA Pol II CTD occupancy between the MED12 KO (purple 
and turquoise) and AAVS1 KO control (grey) conditions from a representative donor. Light grey 
boxes define significantly differential H3K4me3 peaks comparing MED12 KO and AAVS1 KO 
control (padj < 0.05, n=3 donors). Colored boxes indicate CXXC1 peaks and MED12 high-
confidence peaks (padj < 0.05, n=2 donors, Methods). g. CXXC1 binding distribution at 
expressed genes in CD4+ Teffs determined via ChIP-seq h. Trackplots of KLF2 and SOC3 loci 
depicting regions of differential H3K27ac between the MED12 KO (solid color tracks) and 
AAVS1 control KO (grey transparent tracks) conditions from a representative donor. Light grey 
boxes distinguish regions of significantly differential acetylation between the MED12 KO and the 
AAVS1 KO control (padj < 0.05, n=2 donors). 
 

 
Supplemental Figure 2.9 MED12 ablation results in widespread changes in polymerase 
pausing 
a. Mean Pausing Index (left) and polymerase abundance at the TSS’s depicted for all genes 
expressed in Teffs (n=2 donors per condition). (Figure caption continued on the next page.)  
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(Figure caption continued on the previous page.)  Boxplots are separated by presence or 
absence of MED12 high-confidence peak(s) at the loci. Boxplot center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5x interquartile range. b. Empirical cumulative distribution 
function plot displaying the mean pausing index for all genes expressed in Teffs (n=2 donors 
per condition, left). RNA Pol CTD distribution across genes (right). c. Teff ChIP-seq binding 
distributions across genes expressed in Teffs (n=2 donors per condition). d. Trackplot of the 
IL2RA locus depicting differences in occupancy of RNA Polymerase II CTD and NELFA in 
MED12 KO (turquoise and gold) and AAVS1 control KO (grey tracks) conditions from a 
representative donor. Colored boxes indicate CXXC1 (blue) peaks and MED12 high-confidence 
peaks (red, Methods). e. IL2RA expression of CRISPR perturbed or kinase inhibitor (SEL120-
34A) treated samples. Statistics performed using a paired two-tailed T test (MED12 KO: n=4 
donors, SEL120-34A: n=7 donors all timepoints except T144 where n=4 donors and T48 where 
n=6 donors for SEL120-34A assay; MED12 KO assay: 0 hrs: p=0.015, 24 hrs: p=0.00013, 48 
hrs: p=0.025, 96 hrs: p=0.75, 144 hrs: p=0.02; SEL120-34A assay: 0 hrs: p=0.045, 24 hrs: 
p=0.002, 48 hrs: p=0.0015, 96 hrs: p=0.024, 144 hrs: p=0.052). f. Representative flow plots 
from e. g. Stimulation responsive histone methylation shared between AAVS1 KO control cells 
and vehicle-treated control cells. Top plot compares significantly differentially methylated sites in 
AAVS1 KO resting vs stimulated Teffs (x axis) and vehicle (H2O)-treated resting vs stimulated 
Teffs (y axis). Euler plots below depict the overlap of all differentially methylated stimulation 
responsive sites displayed in the scatter plot (padj < 0.05 significance threshold, n=3 donors per 
condition) h. Top plot compares significantly differentially methylated sites in MED12 vs AAVS1 
KO Teffs (x axis) and SEL120-34A vs vehicle (H2O)-treated Teffs (y axis). Euler plots below 
depict the overlap of all differentially histone methylated sites displayed in scatter plot (padj < 
0.05, n=3 donors per condition). 
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Supplemental Figure 2.10 Activation-induced cell death pathways are dysregulated in 
MED12 KO T cells 
a.  MED12 KO CAR-T gene expression activation scores based on gene expression signature 
analysis of RNAseq data from Freitas et al. (GEO series GSE174279). The GSVA activation 
score for each group of samples is compared using a two-tailed T test and the Bonferroni 
adjusted p value displayed for significantly different groups. Boxplot center line, median; box 
limits, upper and lower quartiles; whiskers, 1.5x interquartile range (n=3 donors per KO). b. 
Rank plot of cell abundance within the Perturb-seq single cell pools for each CRISPRi gene 
target for resting and stimulated Tregs. Cell abundance normalized by the sgRNA distribution in 
the plasmid library and represented as the log2 fold change compared to non-targeting control 
cells. The dashed line indicates the abundance of non-targeting control cells. c. Proliferative cell 
ratios assessed by gene signature of cycling cells within each CRISPRi regulator knockdown 
condition in the Perturb-seq pool. (Figure caption continued on the next page.)  
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(Figure caption continued on the previous page.)  The estimated ratio of G2M/G1 cells within 
each condition is represented on the x axis. * Used to denote MED12. d. Differentially 
expressed genes (padj < 0.05) from stimulated Teff MED12 KO vs AAVS1 KO control cell bulk 
RNAseq data are illustrated on a schematic of the Apoptosis-Homo sapiens pathway from 
WikiPathways. e. Top pathways affected by MED12 KO in bulk RNAseq data. Apoptosis 
pathway genes were dysregulated by MED12 KO in stimulated Teffs. f. Flow cytometry gating 
strategy for activation-induced cell death (AICD) apoptosis assays. g. FAS cell surface 
expression in MED12 KO and AAVS1 KO control cells (FAS MFI as quantified by flow cytometry 
is compared across perturbation conditions). Stars indicate significantly different MFI in MED12 
KO cells compared to control AAVS1 KO cells using a two-tailed T test (n=2 donors x 2 sgRNAs 
per gene; Dose 0: p=0.019, 0.1: p=0.0071, 0.25: p =0.0056, 1: p=0.0047, 2.5: p=0.0018).  
 

Tables 
Table 2.1 Significant screen hits across all screens 
Genes where FDR < 0.05 according to MAGeCK gene level results. Reported as negative 
regulator of IL2RA or Positive regulator of IL2RA. 
 
id Stimulated 

Teff 
Resting Teff Resting Treg 

STAT5B Positive Positive Positive 
IL2RA Positive Positive Positive 
PTEN Positive Positive Positive 
STAT5A Positive Positive Positive 
FOXP1 Positive Positive Positive 
ETS1 Positive Positive Positive 
JAK3 Positive Positive Positive 
GATA3 Positive Positive Positive 
KMT2A NS Positive Positive 
RELA NS Positive Positive 
BATF Positive Positive Negative 
CIC NS Positive Positive 
SETDB1 NS Positive Positive 
ZNF148 NS Positive Positive 
VPS52 Positive Positive NS 
ZBTB14 NS Positive NS 
IKZF1 NS Positive Positive 
GFI1 NS Positive NS 
SRF Positive Positive Positive 
DDX39B NS Positive NS 
ZNF236 NS Positive NS 
BPTF NS Positive Negative 
STAT3 Positive Positive NS 
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id Stimulated 
Teff 

Resting Teff Resting Treg 

RBPJ Positive Positive NS 
IL2RB Positive Positive NS 
BACH2 Negative Positive Positive 
TFAP4 Positive Positive NS 
GABPA NS Positive NS 
CEBPZ NS Positive NS 
TCF3 NS Positive NS 
IKZF3 NS Positive Positive 
IRF4 Positive Positive Negative 
REST Positive Positive NS 
KLF3 NS Positive NS 
RXRB NS Positive Positive 
FOXP3 NS Positive Positive 
RARA NS Positive NS 
CEBPB NS Positive NS 
USF2 NS Positive Positive 
ATF4 NS Positive NS 
ZNF25 NS NS Positive 
ELP2 Positive NS NS 
FLI1 NS NS Positive 
IL15RA NS NS Positive 
PTF1A NS NS Positive 
ZBTB3 NS NS Positive 
PURA NS NS Positive 
ZEB1 NS NS Positive 
MYNN NS NS Positive 
MBD2 NS NS Positive 
THRA NS NS Positive 
CREM NS NS Positive 
CREB1 NS NS Negative 
PKNOX1 NS NS Positive 
YBX1 Positive NS Negative 
RNF20 NS NS Negative 
FOXO1 NS NS Positive 
ZBTB2 NS NS Positive 
ZMYND8 Negative NS NS 
IL2 Negative NS NS 
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id Stimulated 
Teff 

Resting Teff Resting Treg 

KLF6 NS NS Positive 
NR4A3 Positive NS NS 
ZNF574 NS NS Negative 
ZZZ3 NS NS Negative 
SP3 NS NS Positive 
STAT6 Negative NS NS 
ABCF1 NS NS Negative 
GLIS2 NS NS Negative 
ZNF114 NS NS Negative 
FOXN2 NS NS Positive 
IKZF2 NS NS Positive 
ERF NS NS Negative 
SMARCB1 Positive NS NS 
IL4R Negative NS NS 
ZBTB32 Positive NS NS 
E4F1 NS NS Negative 
USP22 NS NS Positive 
EGFP NS NS Negative 
TAF5L Positive NS Positive 
TBP NS NS Negative 
ARID5A Negative NS NS 
TGIF2 NS NS Negative 
ZKSCAN2 NS NS Negative 
SOCS3 Negative NS NS 
ZNF384 NS NS Positive 
JUNB NS NS Negative 
SS18 NS NS Positive 
ETV3 NS NS Negative 
MTF2 Negative NS NS 
NFIL3 NS Negative NS 
IFNGR2 Negative NS NS 
MED30 NS NS Positive 
NFKB2 Positive NS NS 
NR2F6 NS NS Negative 
ATXN7L3 NS Negative Positive 
MED14 NS NS Positive 
RAD21 NS NS Negative 
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id Stimulated 
Teff 

Resting Teff Resting Treg 

RUNX1 NS NS Negative 
NR2C2 NS NS Negative 
MYC NS NS Negative 
LEF1 Negative NS NS 
DNMT1 NS NS Positive 
IFNGR1 NS Negative NS 
RUNX3 NS Negative NS 
MED11 NS Negative Positive 
IRF1 Negative Negative Negative 
MTF1 Negative Negative NS 
PRDM1 Positive Negative NS 
HNRNPK NS Negative Negative 
BCL11B NS Negative NS 
SATB1 NS Negative Negative 
MEF2D NS Negative Negative 
TNFAIP3 NS Negative NS 
IRF2 Negative Negative Negative 
TFDP1 NS Negative Negative 
KLF2 NS Negative Negative 
KLF13 NS Negative Negative 
ZNF217 NS Negative Negative 
FOXK1 Negative Negative Negative 
MYB NS Negative Negative 
HIVEP2 NS Negative NS 
MED12 Positive Negative Positive 
CBFB Positive Negative Negative 
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Table 2.2 sgRNA sequences used in arrayed KO experiments 
Guides from Brunello library used in arrayed experiments 
 
Gene sgRNA sequence 

TAF5L s_3244 TAAGGTGAGGACTTTGCACA 

ZNF217 s_2471 GGACACATAATGGCAAATCG 

BPTF s_496 GCCTTCGATCAAGTGCACTG 

MED12 s_2770 CAGTGAGTAGTGCCAAACCA 

SMARCB1 s_1812 TGAGAACGCATCTCAGCCCG 

PRDM1 s_91 GGGGAGCGAGTGATGTACGT 

BACH2 s_3748 GTTCAGCATAACGAAAAGTG 

AAVS1 AAVS1_1 GGGGCCACTAGGGACAGGAT 

IL2RA s_994 GGATACAGGGCTCTACACAG 

MYC s_1296 GCTGCACCGAGTCGTAGTCG 

CBFB s_135 GCCGACTTACGATTTCCGAG 

AAVS1 AAVS1_3 TAAGCAAACCTTAGAGGTTC 

SOCS3 s_2642 GCGGATCAGAAAGGTGCCGG 

NFKB2 s_1388 GGGACCAGCCAAGATCGAGG 

NR4A3 s_2529 CCTGCGTGTACCAAATGCAG 

TAF5L s_3243 GCGGACCAGTGTACAGCACG 

ZNF217 s_2469 CAAAATCTCACCCTGAAACG 

BPTF s_494 ACTGCTATCCTGAATAGACA 

MED12 s_2772 TTCACATTATGACCAACACC 

AAVS1 AAVS1_2 GGACGCACCATTCTCACAAA 

IL2RA s_995 TGGCTTTGAATGTGGCGTGT 

MYC s_1295 CTTCGGGGAGACAACGACGG 

AAVS1 AAVS1_4 CCTCTAAGGTTTGCTTACGA 

MEF2D s_1220 GGTGAGCGAATGAGTAGACT 

MEF2D s_1217 CAAGTACCGACGCGCCAGCG 

KLF2 s_2844 TCGGGGTAATAGAACGCAGG 

GATA3 s_602 CAGGGAGTGTGTGAACTGTG 

GATA3 s_601 AGGTACCCTCCGACCCACCA 

FOXO1 s_557 ACAGGTTGCCCCACGCGTTG 

MBD2 s_2640 CGAAAATCTGGGCTAAGTGC 
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Gene sgRNA sequence 

MED30 s_4235 GGACATCGTGTACCGCACCA 

FOXP3 s_3330 CCCACCCACAGGGATCAACG 

USP22 s_3110 CCTCGAACTGCACCATAGGT 

ATXN7L3 s_3594 CATCGCTCAGGAGATATACG 

DNMT1 s_313 GAGGCAAAAAGAAATCCCCA 

MED14 s_2673 ATCACACATAGCGACGAAGT 

MED11 s_5200 CACCGCTTCAGTGCAACACG 

PTEN s_1640 CCAATTCAGGACCCACACGA 

BATF s_2879 ATGTGAGAAGAGTTCAGAGG 

HIVEP2 s_694 GACAAGATGTCAGACCTAGG 

MED20 s_7052 AACAGACATGATGCGGTCTA 

MED19 s_7024 CACCTGGCAGTTCCCTCATG 

MED24 s_7009 CCTCGAGCAGGATCACGGCG 

MED9 s_7017 TTGATGATGTTGTGAACCAA 

MED12L s_7023 TGCCAATGGTTCGAGCAACG 

MED26 s_7006 CCTCGGAACTCACGGCATGA 

MED28 s_7019 TCCACCAAAGTACTGCTGGA 

MED22 s_7002 CGAGATCATCAAGACCGCCA 

MED23 s_7004 AAGGCCATGCGTAGTCACGA 

MED31 s_7014 TCTAACATGTGTAAACACTG 

MED10 s_7021 GGAGAAGTTTGACCACCTAG 

MED27 s_7007 CCATCACTCACTGAGGTGGT 

MED21 s_7003 ATTGGAGTATTGCAGCAATG 

MED16 s_7012 GGTGTGGTAGTCGCACACGC 

MED1 s_7001 CCAACCAACACCTTTCCGGG 

MED18 s_7016 TGTCACACAAACCACGAAGG 

MED25 s_7020 GGGAGCGTGACATTGTACGT 

MED17 s_7005 TGAAGAGGTTAACTGTGCCG 

MED29 s_7018 CAGTCGTAACGCACTTCCGG 

MED8 s_7022 ATGACCTGGTTACGGAACAG 

MED15 s_7015 GGAATTGGCATGCCTCCTCG 

MED6 s_7011 TCATCATTCGGAAGCAACAG 
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Gene sgRNA sequence 

CDK8 s_7050 CGAGGACCTGTTTGAATACG 

MED7 s_7008 GACCTTGAGAGTCATGATGG 

MED13 s_7010 ACAAGGGTGAGGACTAAGTG 

CCNC s_7000 CTTGAAATATACCGTAGCAG 

MED4 s_7013 AAATAATTAAGTATGCACAT 

KLF2 s_2841 AAACCAGGGCCACCGAAAGG 

 
Table 2.3 sgRNA sequences used in CRISPRi Perturb-CITE-seq 
Guides from Dolcetto library used in Perturb-seq  
 
Gene sequence 

BACH2 GCGCTGTGCGACCGCAGCCC 

BACH2 CAGCAGCGGCCGTGCACGCC 

BATF CCTGCGTCCTCCTCACTCTG 

BATF TCCCTCTGCACCCCAGAGTG 

BPTF AAGGCTCAATCCGAATTGCT 

BPTF GATGGCGGCTGAAGGCGATC 

CBFB GCGGCAGGCAACGGCTGAGG 

CBFB GGCAACGGCTGAGGCGGCGG 

DNMT1 GGGCAGCGAGATGGCCGGGA 

DNMT1 TGCTGAAGCCTCCGAGATGC 

ETS1 CGAGGGCCGGGCAGGAGGAG 

ETS1 GGCGCGGCGCGGGCGAGGCT 

FOXO1 CAGGGCCGCGGACGGAAGGA 

FOXO1 GCGCAGCGGGCGCGCCGCTG 

IL2RA GGCATCGCGCCGGAGGATGT 

IL2RA TCTTCCCATCCCACATCCTC 

IRF1 GCCCGAGCCCCGCCGAACCG 

IRF1 CGGCCGGCGTGGACTGGGCA 

IRF2 TTTCGATCTGGACTGTTCTC 

IRF2 GACTGTTCTCAGGCAAGCCG 

IRF4 GTCCAGGGCGAGGTAAGGGC 

IRF4 TCGGAGCTGAGGGCAGCGGT 
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Gene sequence 

KLF13 CCGGTTCTAAGGATGCCGAG 

KLF13 GGGACCACCTCGCCAAGTCG 

LEF1 ATCTGCCTTCTCTATCCCAA 

LEF1 TCGTACTCACCTCTGCCATT 

MED11 GAACAAGCGTCGCGTTTCTG 

MED11 GTAGGTAGCCATTATCACTC 

MED12 ACGGCGGCCGAGAGACAACA 

MED12 GGCGGCCGAGAGACAACAAG 

MED24 CCACCTAGAACTGGATTGTG 

MED24 CCGCACAATCCAGTTCTAGG 

MYB GGAGCGCCGCTGCGCAGCCG 

MYB GTCCCTCCCCGGCTGCGCAG 

MYC AGGCAGAGGGAGCGAGCGGG 

MYC GTAATTCCAGCGAGAGGCAG 

NFKB2 TGGAGAGCGAGATCCGGAGT 

NFKB2 CGGATCTCACCCGCCACACC 

PRDM1 AGAGGCAAGAGCAGCGACCG 

PRDM1 GGCCCTCCAGTGTTGCGGAG 

STAT5B GGCCGAGGGAGGGAGCGAGC 

STAT5B CCAGCGCAGGCAACTCCGCG 

USP22 GCGCCGAGAACAAAGCGCGG 

USP22 CGGGCGCCGAGAACAAAGCG 

ZNF217 TGAGCTGACACCACTCGGGC 

ZNF217 TGACACCACTCGGGCCGGCC 

SOCS3 CGGGGCCGAAGCGGCAGCAG 

SOCS3 TGGGCCGGGCGGGCGGCTGG 

ATXN7L3 ACTGCTCGCGCCTGCTAGAA 

ATXN7L3 GAGCGCGTGCATCTGCCCCG 

TAF5L GCGCGGGGGCCCAGCTGAGC 

TAF5L CGGCCGCCCAGAGCGGCGGC 

MEF2D GCCGAGCGCCTGAGCCGCCT 

MEF2D CAAAATATCAACAACAGCCG 
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Gene sequence 

KLF2 CCGGGGAGAAAGGACGCGGA 

KLF2 GTGAGTGGCTGCCCGAGGCC 

NO-TARGET CGCGGAAATTTTACCGACGA 

NO-TARGET GGGATGCGTCTTGCTAAACC 

NO-TARGET GAGGACCTTAAGGTGACATG 

NO-TARGET GCTGTTCCGAAGTTGAGAAT 

NO-TARGET ACGCCTCCTCAAATTAGCTC 

NO-TARGET GAAACGAGAAGTTTGTACTA 

NO-TARGET TAATGCTGCACACGCCGAAT 

NO-TARGET GGCTGGTTGACGACTCCTGA 

NO-TARGET TAACCGATACTCCCCACATT 

 
Table 2.4 Antibodies used in experiments 
Antibodies used in flow cytometry, mass spectrometry, and western blots 
 
Target Species/Isotype/Clone Vendor Cat. No. Amout 

per IP 
(µg) 

Assay 

MED12 Rabbit polyclonal IgG Bethyl/Therm
o 

A300-
774A 

8 ChIPseq  

CXXC1 Rabbit monoclonal IgG 
(D1R5R) 

Cell Signaling 40672S 2 ChIPseq  

NELF-A Mouse monoclonal 
IgG2bk (G-11) 

Santa Cruz sc-
365004 

2 ChIPseq  

RNA PolII CTD Mouse monoclonal 
IgG1 (4H8) 

Cell Signaling 2629 2.5 ChIPseq  

RNA PolII 
phospho-Ser2 

Rabbit polyclonal IgG Abcam ab5095 2.5 ChIPseq  

RNA PolII 
phosphor-Ser5 

Rabbit polyclonal IgG Abcam ab5131 2.5 ChIPseq  

H3K27ac  Rabbit Monoclonal 
(2114-3E4) 

EpiCypher 13-0045 0.5 CUT&RU
N 

H3K4me1 Rabbit Monoclonal 
(2088-1F4) 

EpiCypher 13-0057 0.5 CUT&RU
N 

H3K4me2 Rabbit Monoclonal EpiCypher 13-0027 0.5 CUT&RU
N 

H3K4me3 Rabbit Monoclonal 
(2909-3D7) 

EpiCypher 13-0041 0.5 CUT&RU
N 

IgG Rabbit EpiCypher 13-0042 0.5 CUT&RU
N 

MED12 Rabbit monoclonal IgG 
(D9K5J) 

Cell Signaling 14360 10 IP 
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Target Species/Isotype/Clone Vendor Cat. No. Amout 
per IP 
(µg) 

Assay 

IgG Normal Rabbit IgG Cell Signaling 2729S 10 IP 
MED12 Rabbit monoclonal IgG 

(D9K5J) 
Cell Signaling 14360 NA Western 

blot 
IgG-HRP 
conjugate 

Mouse Anti-rabbit IgG 
(Conformation Specific) 
(L27A9) 

Cell Signaling 5127S NA Western 
blot 

CXXC1 Rabbit monoclonal IgG 
(D1R5R) 

Cell Signaling 40672S NA Western 
blot 

MED17   Rabbit mAb (E3V6Y) Cell Signaling 64733S NA Western 
blot 

SET1A Rabbit mAb (D3V9S)  Cell Signaling 61702 NA Western 
blot 

GAPDH  Rabbit mAb D16H11 Cell Signaling 5174 NA Western 
blot 

Alexa Fluor® 
647 anti-human 
IL2RA  

Mouse IgG1, κ (BC96) Biolegend 302618 NA Flow 
cytometry 

Ghost Dye™ 
Red 780  

NA Tonobo 13-0865-
T500 

NA Flow 
cytometry 

BV711 anti-
human CD4 

Mouse IgG1, κ (SK3) Biolegend 344648 NA Flow 
cytometry 

PE anti-
mouse/human 
Helios 

Armenian Hamster 
IgG, 22F6 

Biolegend 137216 NA Flow 
cytometry 

KIRAVIA Blue 
520™ anti-
human CD152 
(CTLA-4) 

Mouse IgG1, κ (L3D10) Biolegend 349938 NA Flow 
cytometry 

Pacific Blue™ 
anti-human 
FOXP3 

Mouse IgG1, κ (206D) Biolegend 320116 NA Flow 
cytometry 

PE anti-Human 
CD127 

Mouse IgG1, κ (HIL-
7R-M21) 

Beckon 
Dickinson 

557938 NA Flow 
cytometry 

Pacific Blue™ 
anti-human CD4 

Mouse IgG1, κ (SK3) Biolegend 344620 NA Flow 
cytometry 

PE anti-human 
CD95 (Fas) 

Mouse IgG1, κ (DX2) Biolegend 305608 NA Flow 
cytometry 
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Methods 

Primary human T cell isolation and expansion 

CD4+ regulatory and effector T cells were isolated from fresh Peripheral Blood Leukopaks 

(STEMCELL Technologies, #70500) from healthy human donors with institutional review board–

approved informed written consent (STEMCELL Technologies). The contents of the Leukopaks 

were washed twice with a 1X volume of EasySep buffer (DPBS, 2% fetal Bovine Serum (FBS), 

1mM pH 8.0 EDTA) using centrifugation. The washed cells were resuspended at 200x106 

cells/mL in EasySep buffer and isolated with the EasySep™ Human CD4+CD127lowCD25+ 

Regulatory T Cell Isolation Kit (STEMCELL Technologies, #18063), according to the 

manufacturer’s protocol. Following isolation with the kit, Tregs were stained Alexa Fluor® 647 

anti-human IL2RA (CD25) Antibody (Biolegend, #302618, diluted 1:25), PE anti-Human CD127 

(Beckon Dickinson, #557938, diluted 1:50), and Pacific Blue™ anti-human CD4 Antibody 

(Biolegend, #344620, diluted 1:50) and isolated with FACS performed on a BD FACS ARIA 

Fusion 1 (#656700) to ensure a pure population without contaminating effector cells. After 

sorting pure CD4+CD127lowCD25+ Regulatory T Cells, the cells were seeded at 1x106 cells/mL 

in XVIVO-15 (Lonza, #02-053Q) supplemented with supplemented with 5% FCS, 55 µM 2-

mercaptoethanol, 4 mM N-acetyl L-cysteine, and 200 U/mL IL-2 (Amerisource Bergen, 

#10101641). Teffs were seeded at 1x106 cells/mL in RPMI-1640 supplemented with 10% FCS, 

2 mM L-Glutamine (Fisher Scientific #25030081), 10 mM HEPES (Sigma, #H0887-100ML), 1X 

MEM Non-essential Amino Acids (Fisher, #11140050), 1 mM Sodium Pyruvate (Fisher Scientific 

#11360070), 100 U/mL Penicillin-Streptomycin (Sigma, #P4333-100ML), and 50 U/mL IL-2 

(Amerisource Bergen, #10101641). Both cell subsets were then stimulated with ImmunoCult™ 

Human CD3/CD28/CD2 T Cell Activator (STEMCELL Technologies, #10990) at 25 µL/mL for 

Tregs and 6.25 µL/mL for Teff. Cells were cultured at 37C with 5% CO2. Following activation 
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and electroporation, cells were split 1:2 every 48 hours to maintain an approximate density of 

1x106 cells/mL and supplemented with respective doses of IL-2. 

 

Pooled CRISPR knock-out screen trans-regulator editing 

Pooled screens were performed following the protocol described in Freimer et al19. In brief, 24 

hours after stimulating and plating the T cells, the trans-regulator lentiviral library19 was added to 

each culture. The cells were counted prior to transduction, and virus was added at a multiplicity 

of infection (MOI) of 0.8, using gentle mixing to disperse the viral media without disrupting cell 

bundling. The cells were then incubated at 37°C for an additional 24 hours, pelleted by 

centrifugation, and viral media was replaced with fresh media supplemented with IL-2. 

 

24 hours after washing, the cells were pelleted by centrifugation at 150 g for 10 minutes, 

resuspended at 1.5 x106 cells per 17.8 µL supplemented P3 Primary Cell Nucleofector Buffer 

(Lonza, component of #V4SP-3960) and combined with 7.2 µL RNP/1.5 x106 cells in a sterile 10 

mL reservoir. After mixing the cells and RNPs, 25 µL of the mixture was distributed to the wells 

of a 96-well Nucleocuvette Plate (Lonza, component of #V4SP-3960). Cells were nucleofected 

using code EO-115 for Tregs and EH-115 for Teffs on the Lonza 4D-Nucleofector System with 

the 96-well Shuttle. Immediately after nucleofection, 90 µL pre-warmed cell-appropriate media 

was added to each well, and the cells were incubated at 37°C for 15 minutes. Following 

incubation, cells were seeded at 1 x106 cells/mL in media supplemented with IL-2. 

 

IL2RA screen sorting and library preparation  

Transduced and electroporated cells were expanded for a minimum of 6 days following editing 

prior to sorting. Cell sorting was performed 10 days following isolation for the resting screens. 

For the stimulated Teff screen, cells were restimulated with ImmunoCult™ Human 
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CD3/CD28/CD2 T Cell Activator (STEMCELL Technologies, #10990) 9 days following initial 

isolation and sorting was performed 72 hours after restimulation, at the time of peak IL2RA 

expression. Prior to sorting, cells were counted, washed once with EasySep buffer, and stained 

with Alexa Fluor® 647 anti-human IL2RA (CD25) Antibody (Biolegend, #302618, diluted 1:25). 

Cells were then washed and resuspended in EasySep buffer. During sorting, cells were gated 

on the GFP+ population (lentiviral sgRNA library marker) and the top and bottom 20% of IL2RA 

expressing cells were sorted into 15 mL conical tubes coated with FCS. Isolated cells were 

pelleted, counted and lysed. gDNA extraction was performed using phenol-chloroform 

extractions and sgRNA libraries were amplified and prepared for sequencing using custom 

primers. Libraries were sequenced on an Illumina HiSeq 4000 at the UCSF CAT.  

 

Screen analysis 

All pooled screens were analyzed with MAGeCK43 (v0.5.9.5). MAGeCK count was performed on 

all donors using --norm-method none followed by MAGeCK test --sort-criteria pos to identify 

genes that resulted in a statistically significant change in IL2RA expression. Results are 

calculated as the IL2RA low bin/IL2RA high bin. Screen visualization is represented as the 

IL2RA high bin/IL2RA low bin by flipping the sign for the fold change. All genes with an FDR-

adjusted P < 0.05 were considered significant. 

 

Arrayed CRISPR KO of select regulators  

Guide-loaded Cas9 RNPs were assembled with custom crRNAs (Dharmacon) which were 

resuspended in IDT duplex buffer (IDT, #11-01-03-01) at 160 µM. Sequences are provided in 

Table 2.2. Dharmacon Edit-R CRISPR-Cas9 Synthetic tracrRNA (Dharmacon, #U-002005-20) 

also resuspended in Nuclease Free Duplex Buffer at 160 µM was combined at a 1:1 molar ratio 

in a 96 well plate and incubated at 37°C for 30 minutes. Single-stranded donor oligonucleotides 
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(ssODN; sequence: 

TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGTGGTAATATTACGGT

ACCGAGCACTATCGATACAATATGTGTCATACGGACACG, 100 µM stock) was added to the 

complex at a 1:1 molar ratio and incubated at 37°C for 5 minutes. Finally, Cas9 protein 

(MacroLab, Berkeley, 40 µM stock) was added at a 1:2 molar ratio and incubated at 37°C for 15 

minutes. The resulting RNPs were frozen at -80°C until the day of electroporation and were 

thawed to room temperature prior to use. 48 hours following T cell activation, the cells were 

pelleted at 100xg for 10 minutes and resuspended in room temperature P3 Primary Cell 

Nucleofector Buffer (Lonza, catalog no. V4XP-3032) at 1.5x106 cells per 17.8 µL. 1.5x106 cells 

were transferred to each RNP containing well and mixed gently. 25 µL of the combined RNP cell 

solution was transferred to a 96-well electroporation cuvette plate (Lonza, #VVPA-1002) and 

nucleofected with pulse code DS-137. Immediately following electroporation, the cells were 

gently resuspended in 90 µL warmed media and incubated at 37°C for 15 minutes. After 

recovery, the cells were cultured in 96 well round-bottom plates at 1x106 cells/mL for the 

duration of the experiment. To prevent edge effects, the sgRNAs were randomly distributed 

across each plate and the first and last columns and rows of each plate was filled with PBS to 

prevent evaporation. Unless otherwise specified, CRISPR-Cas9 edited cells were restimulated 

on day 8 following isolation for stimulation response arrayed assays with ImmunoCult™ Human 

CD3/CD28/CD2 T Cell Activator (STEMCELL Technologies, #10990).  

 

Genotyping of arrayed KOs 

On the final day of the respective assay, genomic DNA was isolated using DNA QuickExtract 

(Lucigen, Cat #QE09050) according to the manufacturer’s protocol. Primers were designed to 

flank each sgRNA target site. Amplicons of the region were generated by adding 1.25 µL each 

of forward and reverse primer at 10 µM to 5 µL of sample in QuickExtract, 12.5 µL of NEBNext 

Ultra II Q5 master mix (NEB, Cat #M0544L), and H2O to a total 25 µL reaction volume. 
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Touchdown PCR was used with the following cycling conditions: 98°C for 3 minutes, 15 cycles 

of 94°C for 20 seconds followed by 65°C-57.5°C for 20 seconds (0.5°C incremental decreases 

per cycle), and 72°C for 1 minute, and a subsequent 20 cycles at 94°C for 20 seconds, 58°C for 

20 seconds and 72°C for 1 minute, and a final 10 minute extension at 72°C. Amplicons were  

diluted 1:200 and Illumina sequencing adapters were then added in a second PCR reaction. 

Indexing reactions included 1 µL of the diluted PCR1 sample, 2.5 µL of each the forward and 

reverse Illumina TruSeq indexing primers at 10 µM each, 12.5 µL of NEB Q5 master mix, and 

H2O to a total 25 µL reaction volume. The following PCR cycling conditions were used: 98°C for 

30 seconds, followed by 98°C for 10 seconds, 60°C for 30 seconds, and 72°C for 30 seconds 

for 12 cycles, and a final extension period at 72°C for 2 minutes. Samples were pooled at an 

equivolume ratio and SPRI purified prior to sequencing on an Illumina MiSeq with PE 150 reads. 

Analysis with performed with CRISPResso244 (v2.2.7) CRISPRessoBatch --skip_failed --

n_processes 4 --exclude_bp_from_left 5 --exclude_bp_from_right 5 --plot_window_size 10. 

 

Flow Cytometry analysis of arrayed KOs 

The Biolegend FoxP3 Fix/Perm kit (Biolegend, #421403) was used for staining according to the 

manufacturer protocol. Cells were washed in EasySep buffer prior to extracellular staining. Cells 

were stained with Alexa Fluor® 647 anti-human IL2RA (CD25) Antibody diluted 1:25 (Biolegend, 

#302618), Ghost Dye™ Red 780 diluted 1:1000 (Tonbo, #13-0865-T500) and BV711 anti-

human CD4 diluted 1:50 (Biolegend, #344648) for 20 minutes at 4C and then washed once with 

EasySep buffer. After fixing and permeabilizing according to the kit, intracellular staining was 

performed with PE anti-mouse/human Helios Antibody (Biolegend #137216), KIRAVIA Blue 

520™ anti-human CD152 (CTLA-4) Antibody (Biolegend #349938), and Pacific Blue™ anti-

human FOXP3 Antibody (Biolegend, #320116) each diluted 1:50 in permeabilization buffer for 

30 minutes at room temperature. Cells were subsequently washed in permeabilization buffer 

and resuspended in EasySep buffer before running on the ThermoFisher Attune NxT flow 
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cytometer (#A29004). Analysis of flow data was performed in FlowJo (v10.8.1). Gating was 

performed to select for lymphocytes, singlets, live cells (Ghost Dye negative), and CD4+ cells in 

the specified order. This population was then used to calculate the median fluorescence 

intensity (MFI) for IL2RA or CTLA-4. Visualization was performed in R using ggplot2 (v3.4.1). 

 

Cloning and lentivirus preparation 

CRISPRi sgRNAs for Perturb-seq were selected from the Dolcetto library45 and cloned into the 

LGR2.1 plasmid backbone (Addgene #108098). A lenti EF1a-Zim-3-dCas9-P2A-BSD was 

generated using Gibson assembly as described in Pacalin et al46. Lentivirus was prepared 

according to the protocol in Schmidt et al25.  

 

Perturb-Seq 

24 hours after stimulation of isolated human Tregs and Teffs from 2 donors, the cells were 

transduced with Zim3-dCas9 lentivirus at 3% v/v. The following day, Perturb-seq sgRNA library 

lentivirus was added at 0.75% v/v (MOI 0.3, Table 2.2). 48 hours after transduction with Zim3-

dCas9, 10 mg/ml blasticidin (Gibco, #A1113903) was added to each sample to select for 

dCas9+ cells. Blasticidin was replenished every 48 hours until the cells were processed for 

sequencing. 8 days after initial isolation and stimulation of cells, half of the Treg and Teff culture 

was restimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator (STEMCELL 

Technologies, #10990). On the 10th day after initial isolation, the samples were collected for 10X 

single cell sequencing. First, cells from each donor within the same stimulation and cell type 

condition were pooled at equal concentrations. Sorting was performed to isolate live GFP+ cells 

from each condition. Sorted cells were processed according to the Chromium Next GEM Single 

Cell 5' HT Reagent Kits v2 (Dual Index) with Feature Barcode technology for CRISPR 

Screening and Cell Surface Protein guide User Guide, CG000513. In brief, sorted cells were 
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pelleted and washed once with Cell Staining Buffer (Biolegend, #420201). Next, the samples 

were blocked with Human TruStain FcX™ Fc Blocking reagent (Biolegend, #422302). 

Meanwhile, TotalSeq™-C Human Universal Cocktail V1.0 (Biolegend, #399905) was prepared 

using Cell Staining Buffer (Biolegend, #420201) and TotalSeq™-C0251 anti-human Hashtag 

Antibodies 1-4 (Biolegend, #394661) were added to aliquots of the cocktail. After blocking, cells 

were stained with TotalSeq-C cocktail including one Hashtag per cell and stimulation condition. 

After staining, the cells were washed three times in Cell Staining Buffer. The samples were then 

resuspended in PBS with 1% BSA (Gibco) for final counting. The resulting samples were pooled 

across conditions and approximately 65,000 cells per well were loaded into 8 wells of a 

Chromium Next GEM Chip N Single Cell Kit (10X Genomics, #1000375) for GEM generation. 

The samples were prepared for sequencing using the Chromium Next GEM Single Cell 5' HT Kit 

v2 (#1000374), 5' Feature Barcode Kit, (#1000256), and 5' CRISPR Kit (#1000451) according to 

the manufacturer’s protocol. GEM generation and library preparation was performed by the 

Gladstone Genomics Core. The resulting libraries were sequenced using a NovaSeqX Series 

10B flowcell (Illumina, #20085595) at the UCSF CAT.  

 

Perturb-seq analysis 

Fastqs for each 10X well were concatenated across lanes and flow cells. Alignment of perturb-

seq data and count aggregation for the gene expression, CRISPR sgRNA, and Antibody 

Derived Tag (ADT) libraries was performed with cellranger47 count (v7.1.0) using the default 

settings and –expect-cells=45000 –chemistry=SC5P-R2. Gene expression fastqs were aligned 

to “refdata-gex-GRCh38- 2020-A” human transcriptome reference acquired from 10x Genomics. 

SgRNA sequences were aligned to a custom reference file using the pattern 

TAGCTCTTAAAC(BC) while ADTs were aligned to the TotalSeq-C-Human-Universal-Cocktail-

399905-Antibody-reference-UMI-counting.csv provided by Biolegend, also including the hashtag 

oligo (HTO) sequences which were used to distinguish each cell type and stimulation condition.  
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Counts for each respective library were aggregated across wells with cellranger aggr using the 

default settings. Cells were assigned to a donor using genetic demultiplexing with Souporcell48 

(https://github.com/wheaton5/souporcell). For each well, souporcell_pipeline.py was run using 

the bam file and cellranger count output barcodes.tsv as input in addition to the reference fasta. 

Donor calls shared across wells were identified using shared_samples.py using the vcf file 

outputs from Souporcell. 

 

Perturb-seq analysis was performed in R (v4.3.1) using Seurat49 (v4.3.0.1) based on code 

published in Steinhart 202250. Count matrices were imported into R using the Seurat Read10X 

function. After creating a Seurat object with CreateSeuratObject, quality filtering was performed 

to retain cells with more than 1000 RNA features identified and less than 7.5% mitochondrial 

RNA. Cells without a singular donor assignment were also excluded from the object as well as 

cells with more than one HTO assignment as determined after running HTODemux. Low 

abundance transcripts were filtered using the threshold of 10 cells per feature and TCR genes 

were removed from the primary RNA assay as they were found to be a major source of variance 

in the dataset. No sgRNA targets were removed as the number of cells in each condition 

exceeded the threshold set of 150 cells. After filtering, gene-expression counts were normalized 

and transformed using the Seurat SCTransform function with regression of both S-phase score 

and G2/M-phase score, as described on the Satija website (https://satijalab.org/seurat/ 

articles/cell_cycle_vignette.html). ADT counts were normalized using the CLR normalization 

method of NormalizeData. After generating PCAs of both normalized and transformed RNA and 

ADT data, Harmony51 (v0.1.1) was used to correct for donor associated variability in the dataset. 

The resulting normalized and transformed counts were used for downstream analysis unless 

otherwise specified. UMAPs were generated using the transformed and corrected RNA and 

ADT counts with Seurat function FindMultiModalNeighbors followed by RunUMAP using 

weighted.nn. Prior to cell type specific analysis, Treg cells were manually filtered to include only 
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cells belonging to clusters with FOXP3 and IKZF2 expression to maximize cell purity (clusters 

1,7,8,15,6,4,19,20,17,23).    

 

Activation scoring was performed according to Schmidt et at.25,50 In brief, Seurat FindMarkers 

was used to identify differentially expressed genes between stimulated and resting non-

targeting control cells within the Teffs and Tregs individually. Genes that had a log2 fold change 

>0.25 and were detected in 10% of restimulated or resting cells were used to generate gene 

weights for the score calculated as sum(GE × GW/GM), where GE is a gene’s 

normalized/transformed expression count, GW is the gene’s weight, and GM is the gene’s mean 

expression in non-target control cells of the respective cell type. Wilcox tests were performed to 

determine significance compared to non-targeting control cells with Bonferroni correction for 

multiple hypothesis testing. To observe the effect of each sgRNA within independent cell and 

stimulation conditions, the cells were subset by HTO. RNA and ADT normalization, 

transformation, and donor variability correction was repeated for each subset as described 

above for the combined dataset. UMAPs were generated using the transformed and corrected 

RNA and ADT counts with Seurat function FindMultiModalNeighbors followed by RunUMAP 

using weighted.nn. Cell cycle quantification for each subset was performed using cycle 

assignments generated using the Satija cell cycle vignette referenced above. 

 

Pseudobulking of resting and stimulated Treg and Teff samples was performed using Seurat 

AggregateExpression grouped by HTO, target gene, and donor pulling from the counts slot 

(sgRNAs targeting the same gene were collapsed within the same donor). Differential 

expression analysis was performed with the resulting pseudobulked raw counts for both RNA 

and ADTs. DESeq252 (v1.32.0) was used to identify differentially expressed genes and proteins 

between each sgRNA and non-targeting control sample within each cell type and stimulation 

condition, using donor information as a covariate. Network plots of differentially expressed gene 
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connections were visualized in R using influential53 (v2.2.7) and ggraph54 (v2.1.0), including only 

genes with an adjusted p-value < 0.05. Other visualization of differentially expressed genes and 

surface proteins was performed using ggplot2 (v3.4.1). 

 

Bulk RNAseq  

At their respective timepoints, resting and 48-hour restimulated cells were pelleted and 

resuspended at 1x106 cells per 300 µL of RNA lysis buffer (Zymo, #R1060-1-100). Cells were 

pipette mixed and vortexed to lyse and frozen at -80 until RNA isolation was performed. RNA 

was isolated using the Zymo-Quick RNA micro prep kit (#R1051) according to the 

manufacturer’s protocol with the following modifications: After thawing the samples, each 

sample was vortexed vigorously to ensure total lysis prior to loading into the extraction columns. 

The optional kit provided DNAse step was skipped, and instead RNA was eluted from the 

isolation column after the recommended washes and digested with Turbo-DNAse (Fisher 

Scientific, AM2238) at 37 C for 20 minutes. Following digestion, RNA was purified using the 

RNA Clean & Concentrator-5 kit (Zymo, #R1016) according to the manufacturer’s protocol. The 

purified RNA was submitted to the UC Davis DNA Technologies and Expression Analysis Core 

to generate 3′ Tag-seq libraries with unique molecular indices (UMIs). Barcoded sequencing 

libraries were prepared using the QuantSeq FWD kit (Lexogen) for multiplexed sequencing on a 

NextSeq 500 (Illumina). 

 

Bulk RNAseq analysis 

RNAseq data was processed using the pipeline described in Freimer et al19. In brief, fastq 

adapter trimming was performed with cutadapt (v2.10). Low-quality bases were trimmed with 

seqtk (v0.5.0). Reads were then aligned with STAR55 (v 2.7.10a) and mapped to GRCh38. UMI 

counting and deduplication was performed with umi_tools56 (v1.0.1) and gene counts were 
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generated from the deduplicated reads using featureCounts (subread v2.0.1) using Gencode 

v41 basic transcriptome annotation. Quality control metrics were generated for each sample 

with Fastqc57 (v0.11.9), rseqc58 (v3.0.1), and Multiqc59 (v1.9). Differentially expressed genes 

between Mediator KOs and AAVS1 KO samples as well as stimulated and resting AAVS1 KO 

samples were identified from the deduplicated count matrix using DESeq252 (v1.32.0) in R 

(v4.1.0). Comparisons were made within each cell type and stimulation condition across 3 

donors, using donor ID as a covariate in the model. Normalized counts were generated using a 

DESeqDataSet containing all samples, followed by estimateSizeFactors and 

counts(normalized=TRUE). AAVS1 KO normalized sample counts were then subset and 

averaged across donors for visualization. 

 

Differentially expressed genes for MED12 vs AAVS1 KO samples were defined by a cut off of 

padj < 0.05. Comparison of the effects of MED12 KO differentially expressed genes across 

stimulation-response categories was performed by grouping MED12 vs AAVS1 KO differentially 

expressed genes according to their stimulation-responsive behavior in control cells (stimulation 

response = padj < 0.05 and abs(log2 fold change) > 1). The Bonferroni adjusted p value 

resulting from a two-tailed T test is displayed (Figure 4a) comparing each stimulation response 

group to the non-stimulation responsive group. Boxplot center line, median; box limits, upper 

and lower quartiles; whiskers, 1.5x interquartile range (genes per group (Downregulated, Not 

Stimulation Responsive, Upregulated) = Resting Teff:272, 954, 218; Stimulated Teff:242, 1432, 

467; Resting Treg:269, 1491, 241; Stimulated Treg:245, 1945, 426). One-sided Fisher’s exact 

test for regulators of IL2RA within the differentially-expressed genes downstream of MED12 was 

determined using screen results from the matched cell type- and stimulation-conditions (Figure 

4b). Genes were subset to those targeted in the screen library and detected in CD4+ T cell bulk 

RNAseq (genes per group:Regulators, Non-Regulators = Resting Teff:62, 807; Stimulated 

Teff:41, 824; Resting Treg:82, 787). Pathway analysis was performed using PathfindR60 (v1.6.4) 



 

 73 

including KEGG, Reactome, and GO-BP gene sets. Visualization was performed after removing 

KEGG disease pathways. Apoptosis pathway visualization was performed using Cytoscape61 

(v3.8.2). GSEA analysis was performed with clusterProfiler62 (v4.10.1) using msigdbr (v7.5.1) all 

human gene sets.  

 

SEL120-34A treatment 

SEL120-34A (Selleckchem, #S8840) was reconstituted in ultrapure H2O according to the 

manufacturer’s recommendations. Cells were treated every 48 hours with a 1 µM dose and 

treatment was started 48 hours following cell isolation to align with the time at which cells are 

edited in CRISPR based experiments. Restimulation of cells for flow cytometry and CUT&RUN 

was performed 10 days after initial isolation. 

 

Endogenous immunoprecipitation of MED12 

IP base buffer (0.05M Tris-HCl pH 7.5, 0.15M NaCl, 0.001M EDTA, AP MS Water) was 

prepared the day of the experiment. 20 x106 resting and 48-hour restimulated cells per sample 

and immunoprecipitation were washed twice with PBS. Samples were then lysed in 500 µl Lysis 

buffer per 10 x106 cells (Base buffer, 1X PhosphoStop (Roche, #04906837001), 1X Complete 

mini-EDTA protease inhibitor cocktail tablets (Sigma Aldrich, #11836170001), 0.50% NP-40 

Surfact-Amps™ Detergent Solution (Thermo Scientific #85124) and incubated on nutator for 30 

minutes at 4ºC. To digest chromatin, tip sonication was performed in round with incubation on 

ice between each step- 7 sec 12%, 7 sec 12%, 7 sec 12%, 7 sec 15% with 4 rounds of 

sonication total. Cell lysate was clarified by centrifugation at 3500xg for 10 minutes at 4ºC. A 

BCA was performed for each sample and protein concentrations were normalized across 

conditions. 10% of whole cell lysate was reserved for input and samples were split into MED12 

(Cell Signaling Technologies, #14360) IP and Rabbit IgG isotype control (Cell Signaling 
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Technologies, #3900) IP conditions. In each case, 10 µg antibody was added to a 1.5 mL 

protein lo bind tube containing clarified protein and samples were incubated overnight at 4°C, 

with rotation on a nutator. In the morning, Pierce Protein A+G magnetic beads (Thermo Fisher, 

#88802) were washed four times using 1 mL of lysis buffer per 1 mL of bead slurry, allowing the 

beads to bind to a magnet between each wash before removing the buffer. After the final wash, 

beads were resuspended in Lysis buffer at the original bead slurry volume and 50 µl was added 

to each sample. The lysate-antibody-bead mixture was then incubated at 4°C for 2 hours with 

rotation on a nutator. After incubation, beads were bound to a magnetic tube rack and washed 

one time with IP buffer + NP40 (IP buffer + 0.05% NP40) followed by three washes with a 900 

µL IP buffer. The resulting purified proteins were processed for mass spectrometry or western 

blot.  

 

Mass Spectrometry  

After immunoprecipitation, bound proteins were lysed in 8 M urea + 25 mM ammonium 

bicarbonate followed by reduction (5 mM DTT for 1 h at 37 °C), alkylation (10 mM iodoacetamide 

for 45 min at room temperature in the dark) and digestion overnight with 1 µg of trypsin 

(Promega). Peptide samples were applied to activated columns and the columns were washed 

three times with 200 µl of 0.1% TFA. Peptides were eluted with 140 µl of 50% ACN and 0.1% 

trifluoroacetic acid (TFA) and dried down by speedvac.  

 

Samples were resuspended in 0.1% FA and separated by reversed-phase (RP) 

chromatography using an EASY-nLC instrument (Thermo Fisher Scientific) with a 15-cm 

PepSep column (150 µm inner diameter) (Bruker). Samples were acquired by data-dependent 

acquisition (DDA). Mobile phase A consisted of 0.1% FA in water and mobile phase B consisted 

of 80% ACN and 0.1% FA. Peptides were separated at a flow rate of 500 nl min−1 over the 

following 60 min gradient: 4–35% B in 44 min, 35–45% B in 5 min and 10 min at 88% B. 
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Peptides were analyzed by an Orbitrap Lumos MS instrument (Thermo Fisher Scientific). Data 

were collected in positive ion mode with MS1 resolution of 240,000, 350–1,350 m/z scan range, 

maximum injection time - 50ms, RF lens – 30%. For DDA, MS2 fragmentation was performed 

on charge states 2–5 with a 20 sec dynamic exclusion after a single selection and 

10 ppm ± mass tolerance. All raw MS data were searched using MaxQuant (v2.4.7) against the 

human proteome (UniProt canonical protein sequences downloaded in September 2022) using 

default settings and with a match-between-runs enabled63. 

 

Mass Spectrometry analysis 

Protein spectral counts as determined by MaxQuant search results were used for PPI 

confidence scoring by SAINTexpress64 (v3.6.1). Rabbit IgG pulldown samples were used as 

control. The total list of candidate PPIs was filtered to those that met the criteria of 

SAINTexpress BFDR <= 0.05. To quantify changes in interactions between resting and 

stimulated T cell states, we used a label-free quantification approach in which statistical analysis 

was performed using MSstats (v4.8.7)65 from the artMS (v1.18.0) R package. Visualization was 

performed in Cytoscape with additional connections included from the STRING database66. 

 

Western blots 

After affinity purification of proteins, beads were resuspended in 100 µl 2X sample buffer 

(BioRad 4x Laemmli Sample Buffer #1610747) with 1:10 B-mercaptoethanol (Sigma #63689-

25ML-F) diluted 1:1 with 500 µL Lysis buffer). Samples were boiled for 5 minutes at 95°C and 

stored at -20C until further processing. Western blots were performed as previously published67. 

Briefly, cell lysates were subjected to SDS–PAGE on 4-15% acrylamide gels and electroblotted 

to polyvinylidene difluoride membranes. Blocking and primary (diluted 1:1000) and secondary 

antibody incubations of immunoblots were performed in Tris-buffered saline + 0.1% Tween-20 
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supplemented with 5% (w/v) bovine serum albumin (Antibodies provided in Table 2.4). 

Horseradish peroxidase–conjugated goat anti-rabbit and immunoglobulin G (Southern Biotech) 

was used at a dilution of 1:30,000, and immunoreactive bands were detected using Pierce™ 

ECL Western Blotting Substrate (32106) 

according to the manufacturer’s instructions. 

 

CUT&RUN 

CUT&RUN was performed on resting and 48-hour restimulated cells according to the 

manufacturer’s protocol with the EpiCypher CUTANA™ ChIC/CUT&RUN Kit and provided 

reagents. Samples for H3K27ac CUT&RUN were lightly crosslinked prior to isolation using 0.1% 

formaldehyde (Sigma, #252549) for 1 minute and quenched with 125 mM Glycine (Sigma, 

#50046). In brief, 5x105 T cells per reaction were washed with PBS before nuclear isolation 

using the EpiCypher recommended lysis buffer consisting of 20 mM HEPES pH 7.9 (Sigma-

Aldrich), 10 mM KCl (Sigma-Aldrich), 0.1% Triton X-100 (Sigma-Aldrich), 20% Glycerol (Sigma-

Aldrich), 1 mM MnCl2 (Sigma-Aldrich), 1X cOmplete Mini-Tablet (Roche, # 11873580001), and 

0.5 mM Spermidine (Sigma-Aldrich). The cells were resuspended in 100 µL per reaction cold 

nuclear extraction buffer and incubated on ice for 10 minutes. Following lysis, nuclei were 

pelleted and resuspended in 100 µL per reaction of nuclear extraction buffer. The isolated nuclei 

were then frozen at -80°C in extraction buffer until DNA isolation. After thawing the samples at 

37°C, the nuclei were bound to activated conA beads. After adsorption of nuclei to beads, 

permeabilization was performed with 0.01% digitonin containing buffer. Antibodies for H3K27ac 

(EpiCypher, #13-0045), H3K4me1 (EpiCypher, #13-0057), H3K4me2 (EpiCypher, #13-0027), 

H3K4me3 (EpiCypher, #13-0041) and IgG (EpiCypher, #13-0042) were added at 500 ng per 

reaction. Following overnight antibody binding, pAG-MNase addition, and chromatin cleavage, 

0.5 ng of the provided E. coli DNA was added to each sample following chromatin cleavage by 

MNase. Prior to DNA isolation, crosslinked samples were digested overnight with Proteinase K 
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(Invitrogen, #AM2546) as recommended. The provided spin columns and buffers were used for 

DNA isolation and purification. The resulting DNA was prepared for sequencing using the 

CUTANA™ CUT&RUN Library Prep Kit (Cat 14-1002) according to the manufacturer’s 

protocol.  

 

CUT&RUN analysis  

Pooled libraries were sequenced on a NextSeq 500 (H3K27ac) and NextSeq 2000 with 2x75 or 

2x50 paired end reads, respectively. Bcl2fastq (v2.19) with the settings --minimum-trimmed-

read-length 8 was used to generate fastqs. CUT&RUN data analysis was performed according 

Zheng et al. with the recommended settings unless otherwise specified below68. In brief, the 

fastqs were trimmed with cutadapt (v1.18). Bowtie269 (v2.2.5) was used to align the trimmed 

fastqs to GRCh38 using settings --local --very-sensitive --no-mixed --no-discordant --phred33 --

dovetail -I 10 -X 700 -p 8 -q and E. coli (EMBL accession U00096.2) with settings --local --very-

sensitive --no-overlap --no-dovetail --no-mixed --no-discordant --phred33 -I 10 -X 700 -p 8 -q. 

Bam files were generated with samtools70,71 (version 1.9) view -bS -F 0x04 and bam to bed 

conversion performed with bedtools (v2.30.0) bamtobed -bedpe. Bedfiles were filtered to include 

only paired reads of less than 1000 bp with the command awk '$1==$4 && $6-$2 < 1000 {print 

$0}' samplename.bed before generating bedgraph files using bedtools (version 2.30.0) 

genomecov -bg. Peak calling was performed using the bedgraph files as input with SEACR72 

(v1.3). Each target bedgraph file was compared to the respective donor and KO condition IgG 

file to identify peaks above the background using the norm and stringent options for H3K27ac 

samples. Spike-in scaling was performed prior to methylation peak calling with SEACR using 

the IgG file as background and non and stringent options. 

 

Prior to generating a peak by sample matrix for each target, ChIP-seq blacklist regions were 

removed from the data. The sample matrix was reduced across all peaks within the dataset and 
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H3K27ac peaks were segmented into regions of 5000 bps maximum length. Regions of 

differential acetylation or methylation between the regulator KOs and AAVS1 KO samples were 

identified for the peaks called across any of the samples from bam files using DESeq252 

(v1.32.0) in R (v4.1.0). Comparisons were made within each cell type and stimulation condition 

using AAVS1s prepared in the same batch of samples. Gene annotation was performed using 

the gene with the nearest transcription start site to each region with the GenomicRanges73 

(v1.44.0) nearest function. Final bedgraph scaling was performed based on peak coverage 

across all samples and conditions using DESeq2 (v1.32.0) sizefactors. SEL120-34A and H2O 

treatment samples were compared as described for MED12 KO and AAVS1 KO samples, using 

the peak matrix from MED12 KO and AAVS1 KO samples to maximize detection of overlapping 

regions across datasets. 

 

ChIP-seq 

A portion of edited Teffs were re-stimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell 

Activator (STEMCELL Technologies, #10990) 10 days following isolation and collected 48 hours 

later. Up to 1-2 x 106 Teffs were cross-linked in PBS with 1% methanol-free formaldehyde 

(Thermo 28908) for 10 min at 18-22ºC followed by quenching in glycine at 125 mM final 

concentration. Cross-linked cell pellets were snap-frozen in liquid nitrogen and stored at –80ºC. 

Nuclei were isolated from thawed, cross-linked cells via sequential lysis in LB1 (50 mM HEPES-

KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% IGEPAL CA-360, and 0.25% 

Triton X-100), LB2 (10 mM Tris-HCl pH 8, 200 mM NaCl, 1 mM EDTA, and 0.5 mM EGTA), and 

LB3 (10 mM Tris-HCl pH 8, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% sodium 

deoxycholate [NaDOC], and 0.5% N-laurylsarcosine) supplemented with 0.5 mM 

phenylmethylsulfonyl fluoride (PMSF, Sigma P7626) and 0.5X protease inhibitor cocktail (PIC, 

Sigma P8340). Chromatin was sheared on a Covaris E220 focused ultrasonicator using 1 mL 

milliTubes (Covaris 520128) with 140W peak incident power, 5% duty factor, 200 cycles per 
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burst, 6ºC temperature setpoint (minimum 3ºC, maximum 9ºC), fill level 10, and time 12-14 min 

to obtain target size 200-700 bp. Formaldehyde cross-linked, sheared mouse CD8+ T cell 

chromatin was spiked in at 2.5% of human Teff chromatin based on fluorometric (Qubit, Thermo 

Q33238) or OD260 (Nanodrop, Thermo 912A1099) quantification. Triton X-100 was added to a 

final concentration of 1% prior to immunoprecipitation for 16 h at 4ºC with 2-8 µg of indicated 

antibodies bound to a 1:1 mixture of protein A and protein G magnetic beads (Thermo 10001D 

and 10003D). Bead-bound antibody-chromatin complexes were sequentially washed three 

times with Wash Buffer 1 (20 mM Tris pH 8, 150 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% 

Triton X-100, 0.1% sodium dodecyl sulfate [SDS], and 0.1% NaDOC), twice with Wash Buffer 2 

(20 mM Tris-HCl pH 8, 500 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% SDS, 

and 0.1% NaDOC), twice with Wash Buffer 3 (20 mM Tris-HCl pH 8, 250 mM LiCl, 1 mM EDTA, 

0.5% IGEPAL CA-360, and 0.5% NaDOC), twice with TET (10 mM Tris-HCl pH 8, 1 mM EDTA, 

0.2% Tween-20), and once with TE0.1 (10 mM Tris-HCl pH 8, 0.1 mM EDTA, 0.5 mM PMSF, 

and 0.5X PIC) supplemented with 0.5 mM PMSF and 0.5X PIC. Beads were resuspended in TT 

(10 mM Tris-HCl pH 8, 0.05% Tween-20) prior to on-bead library preparation using the 

NEBNext Ultra II DNA Library Prep Kit (NEB E7370L) as described previously74. ChIP-seq 

libraries were multiplexed for paired-end (2 x 50 bp) sequencing on an Illumina NextSeq 2000 

instrument. 

 

ChIP-seq analysis 

Reads were trimmed to remove adapters and low-quality sequences and aligned to the hg38 

and mm10 reference genome assemblies with bwa75 (v0.7.17-r1188) before filtering to remove 

duplicates and low-quality alignments including problematic genomic regions76 using the nf-

core/ChIP-seq pipeline77 (v2.0.0, doi: 10.5281/zenodo.3240506) with default parameters. 

Normalization to mouse spike-in chromatin was performed by scaling counts to the quotient of 
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the ratios of human:mouse ChIP reads and human:mouse input reads as described78. CXXC1 

peaks for visualization were identified using bam files from all AAVS1 KO donors for MACS2 

v2.2.6 79 callpeak -q 0.05 with input samples used to define the background. High-confidence 

MED12 peaks were identified using bam files from all AAVS1 KO donors for MACS2 callpeak -q 

0.05 with MED12 KO samples used to define the background. Utilization of high-confidence 

peaks generated from KO controls reduced potential false positive signals from the ChIP 

samples, providing a more rigorous assessment of MED12 binding80,81. ChIP-seq blacklist 

regions were removed from CXXC1 and MED12 peaks prior to analysis.  

 

Polymerase pausing analysis 

The polymerase pausing index was calculated as described in Wang et al. as (TSS 

coverage/TSS length)/(Gene body coverage/gene body length).33 Gencode V43 gene structures 

were selected for APRIS genes and filtered to include only genes expressed in Teff bulk 

RNAseq data (defined from AAVS1 Teff RNAseq baseMean > 10). The TSS region of each 

gene was defined as 200 bp up- and downstream of the TSS. The gene body was defined as 

the region 400 bp downstream from the TSS plus 400 bp past the final exon of the gene. 

Rtracklayer82 (v1.62.0) was used to import spike-in scaled RNA Pol II CTD bigwigs and 

GenomicAlignments (v1.38.2) summarizeOverlaps() was used to determine the coverage within 

the defined gene regions.  

 

CUT&RUN and ChIP-seq visualization 

Visualization of scaled tracks was performed with rtracklayer (v1.62.0) and ggplot2 (v3.5.1). 

APRIS gene structure was used for gene annotation with gggenes (v0.5.0). CD4+ Treg STAT5A 

ChIP-seq data was accessed from ChIP Atlas83- SRX212432, GSM1056923 and generated by 

Hoffmann et al31. Deeptools (v3.5.5) 84 was used to generate profile plots of ChIP-seq data using 
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computeMatrix scale-regions -b 3000 --regionBodyLength 5000 -a 3000 –skipZeros with scaled 

bigwigs and a bed file of all expressed genes (defined from AAVS1 Teff RNAseq baseMean > 

10) as input with followed by plotProfile –perGroup.  

 

MED12 CAR activation scoring  

MED12 CAR RNAseq data from Freitas et al. was accessed from GEO, using the downloader to 

retrieve raw counts file GSE174279_raw_counts_GRCh38.p13_NCBI.tsv.gz. First, DESeq2 

(v1.32.0) was used to identify differentially expressed genes between AAVS1 KO stimulated 

and resting samples. The top upregulated genes were defined using the following criteria: padj 

< 0.01, log2 fold change > 2, baseMean > 10. The resulting 797 genes were used to generate a 

gene signature of activation. Normalized counts for the MED12 KO and AAVS1 KO resting and 

stimulated samples were generated with DESeq2 vst and converted to a summarized 

experiment with SummarizedExperiment85 (v1.22.0). The normalized count matrix and activation 

score were used as input for GSVA86 (v1.40.1) using the gsva function with min.sz=10, 

max.sz=6000, kcdf="Poisson". Visualization of the resulting gene scores was performed with 

ggplot2(v3.4.1) and adjusted P values generated using rstatix (v0.7.2). 

 

Activation-induced cell death (AICD) assays 

Activation-induced cell death assays were performed using titrated amounts of ImmunoCult™ 

Human CD3/CD28/CD2 T Cell Activator (STEMCELL Technologies, #10990) in addition to 50 

U/mL of IL-2. Active caspase-3/7 staining was performed 72 hours following addition of stimulus 

using the CellEvent™ Caspase-3/7 Green Flow Cytometry Assay Kit (Invitrogen, #C10427) 

according to manufacturer’s protocol. Gating of apoptotic population was performed on the 

lymphocyte gate and defined as active caspase-3/7 positive and SYTOX nucleic acid stain 
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negative. FAS staining was performed using PE anti-human CD95 (Fas) Antibody (Biolegend, 

#305608, diluted 1:50).  

 

Luminex assays 

On day 12 following isolation for Teffs and day 8 following isolation for Tregs, cells were plated 

in 96 well plates in cytokine free media at a density of 2 x 105 cells per well. Cells were 

restimulated with ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator (STEMCELL 

Technologies, #10990) and supernatant was collected after 24 hours. The supernatant was 

stored at -80 degrees until processing by EVE Technologies with the Luminex xMAP technology 

on the Luminex 200 system. After a serial titration to determine appropriate dilutions, samples 

were run in technical duplicate and Luminex 48 plex human panel A was run for Teffs (diluted 

1:20) and Tregs (diluted 1:5). The multi species TGF 3 plex panel was also run for Tregs 

(undiluted). Technical replicates were averaged by EVE for each sgRNA and donor combination 

to determine protein concentration. Cytokines with more than one sample out of range were 

removed from the analysis to exclude low abundance proteins. 

 

Suppression assays 

Donor matched Teffs were isolated and frozen at -80 without activation until 24 hours prior to 

the assay. Teffs were thawed and cultured overnight at 2x106 cells/mL with 10 U/mL IL-2. On 

the day of the assay, Teffs were counted and stained with CellTrace Violet (Invitrogen, 

#C34557) according to the manufacturer’s protocol using a 1:2000 dilution of dye. Assay plates 

were assembled with 1x105 Teffs per well in 96 well round bottom plates with titrated amounts of 

Tregs ranging from 1:1 to 8:1 Teffs:Tregs. One well per condition was also included of 1x105 

Tregs and 5x104 Teffs (1:2 Teffs:Tregs) as well as resting and stimulated Tregs and Teffs 

individually as controls. Treg Suppression Inspector (Miltenyi Biotec, # 130-092-909) iMACS 
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particles were prepared and added to the appropriate wells according to the manufacture’s 

recommendations. Assays were performed in technical triplicate for four donors and plates were 

incubated for 96 hours at 37°C. At the time of readout, cells were stained with Alexa Fluor® 647 

anti-human IL2RA (CD25) (Biolegend, #302618), BV711 anti-human CD4 (Biolegend, 

#344648), and Ghost Dye™ Red 780 (Tonbo, #13-0865-T500) and analyzed on the Attune NxT 

flow cytometer (#A29004).  

 

Analysis of flow data was performed in FlowJo (v10.8.1) with gating to select for lymphocytes, 

singlets, live cells (Ghost Dye negative), CD4+ T cells, and Teffs (CellTrace Violet+CD25low). A 

gate was then set for each donor using the non-stimulated Teff only control (CellTrace Violet 

high peak) to establish a proliferative Teff count. A gate was also set for iMACS beads by 

selecting non-lymphocytes, Beads using FSC-A and Ghost Dye. An absolute proliferating Teff 

count was then established using the formula (proliferative Teff count x input bead 

count)/(Beads) which adjusts for variations in stimulation and collection abnormalities. Percent 

suppression was calculated as (100 – (absolute proliferating Teff count / absolute proliferating 

Teff count of stimulated responder only condition)) x 100. The median of the technical replicate 

collection plates was used to calculate percent suppression and absolute proliferating Teff count 

per donor for visualization.  

 

Data availability  

IL2RA screens, CUT&RUN, ChIP-seq, Bulk RNAseq, and Perturb-CITE-seq data are accessible 

at NCBI Gene Expression Omnibus within GEO SuperSeries GSE271090. Mass spectrometry 

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 

partner repository with the dataset identifier PXD056255. Publicly available data used in this 

study is accessible from the following sources: KLF2 KO differentially expressed genes are 
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available in Freimer et al19. MED12 CAR-T bulk RNAseq data is available on GEO: GSE174279. 

CD4+ Treg STAT5A ChIP-seq data is available on ChIP Atlas- SRX212432, GSM105692. 

 

Code accessibility 

Code for main figure generation and key analyses is available on Zenodo87: 

https://doi.org/10.5281/zenodo.13924126 
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Chapter 3 Inborn error of immunity trans-regulatory gene 
network 
 

Abstract 

The effects of genetic variation on complex traits act mainly through changes in gene 

regulation. Although many genetic variants have been linked to target genes in cis, 

the trans-regulatory cascade mediating their effects remains largely uncharacterized. 

Mapping trans-regulators based on natural genetic variation has been challenging due 

to small effects, but experimental perturbations offer a complementary approach. Using 

CRISPR, we knocked out 84 genes in primary CD4+ T cells, targeting inborn error of 

immunity (IEI) disease transcription factors (TFs) and TFs without immune disease 

association. We developed a novel gene network inference method called linear latent 

causal Bayes (LLCB) to estimate the network from perturbation data and observed 211 

regulatory connections between genes. We characterized programs affected by the 

TFs, which we associated with immune genome-wide association study (GWAS) genes, 

finding that JAK-STAT family members are regulated by KMT2A, an epigenetic 

regulator. These analyses reveal the trans-regulatory cascades linking GWAS genes to 

signaling pathways.   
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Introduction 

A primary mission of human genetics is to discover genetic variation that is associated with 

disease. Genome-wide association studies (GWAS) have identified thousands of variant-

disease pairs in recent years, spanning disease, behavioral, and molecular phenotypes. 

Functional analyses of GWAS loci have revealed that most GWAS single-nucleotide 

polymorphisms (SNPs) are non-coding, demonstrating that the effects of genetic variation on 

complex traits largely manifest through regulatory variation1,2. However, the identification of the 

molecular consequences of non-coding SNPs has proven challenging. Recent efforts have 

catalogued expression quantitative trait loci (eQTLs) across diverse tissues and contexts3–6. 

These eQTL studies have been very successful in identifying genetic variation that associates 

with expression variation of nearby genes in cis. However, except for a small number of 

examples, the trans-regulatory cascade beyond the associated locus of these cis-acting genetic 

variants remains largely unknown. Recent analyses of the genetic architecture of complex traits 

have shown that the bulk (60-90%) of expression heritability is mediated through a constellation 

of trans effects which typically have small effects individually but have a large contribution in 

aggregate7–9. These trans effects are difficult to discover with natural genetic variation because 

their effect sizes are small and may only exist in contexts that are missed in bulk-tissue steady 

state models of gene expression10–13. Thus, alternative approaches are needed to map the 

trans-regulatory effects of cis-acting eQTLs.  

 

We previously mapped the trans-regulators of key autoimmune disease genes, including IL2RA, 

IL2, and CTLA4 in primary human CD4+ T-cells using CRISPR knock-outs (KOs)14,15. In 

contrast to natural genetic variation, experimental perturbations enable the manipulation of gene 

expression in ways that are unlikely to be permitted by natural selection16. We therefore sought 

to apply this approach to inborn errors of immunity (IEI) genes, which are associated with 



 

 97 

monogenic immune disease spanning regulation and function17. Although hundreds of these 

genes have been reported, the transcriptional consequences of their loss of function remain 

largely uncharacterized. We selected 30 IEI transcription factors (TFs) for CRISPR ablation in 

human CD4+ T cells both to characterize their function and to construct a regulatory network. 

CD4+ T cells have previously been implicated as a causal cell type in the pathology of many 

autoimmune traits, including rheumatoid arthritis, multiple sclerosis, type 1 diabetes, among 

others18–20. To enable characterization of the properties of the IEI TFs as a whole, we selected 

30 background TFs that are matched to the IEI genes in terms of the constraint metric pLI 

(probability of loss-of-function intolerance21) and expression level in CD4+ T-cells but have not 

been implicated in GWAS of immune phenotypes. We also included 24 upstream regulators of 

IL2RA which we had previously perturbed using the same protocol14, because these genes are 

likely enriched for master regulators of CD4+ GRNs. In total, we perturbed 84 genes from three 

gene sets which we used to construct a high-fidelity gene network relevant to immune disease. 

 

Building on recent advances in the causal inference literature22,23, we developed a novel 

statistical method for estimating causal gene-regulatory networks (GRNs) from perturbation 

data. In contrast to differential expression or correlation analyses, incorporation of causal 

inference approaches enables the estimation of both direct and indirect regulatory effects, 

where edges are interpreted as direct effects. We emphasize that in this work the term ‘direct 

effect’ is used to convey that the effect of one gene on another is adjusted for confounding 

pathways among other perturbed genes, rather than a claim of physical interaction. Direct 

effects are useful because they facilitate a coherent interpretation of gene networks as directed 

probabilistic graphical models. Our approach differs from many other gene networks in two key 

ways: 1) because our network is derived from experimental perturbations, the edges are much 

more likely to be causal than the edges in a network estimated from observational co-

expression data, where the constituent variation is often of an unknown genesis; 2) our method 
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enables estimation of possibly cyclic graphs, rather than the common restriction to directed 

acyclic graphs (DAGs)22,24–26. Human genetics has identified several examples of cyclic 

regulatory behavior27, so the restriction of GRNs to DAGs represents an artificial constraint that 

we circumvent with appropriate statistical technology.   

 

We report the causal, cyclic GRN derived from applying our novel statistical method to the 84 

CRISPR KOs. Because this method is a Bayesian modification of the Linear Latent Causal 

(LLC) algorithm, we refer to our method as LLC Bayes (LLCB). Using our network we show that 

all the genes, including IEI and background TFs, form a highly interconnected network, rather 

than distinct communities of disease and background genes. We then identified nine coherent 

gene programs among the 84 KOs and their downstream genes, which we characterized using 

enrichment analyses to identify points of functional convergence in T cell biology. In addition to 

downstream characterization, we used GWAS summary statistic heritability analyses to 

estimate the contribution of gene program linked SNPs to immune trait heritability. This profiling 

highlighted the importance of a module comprised of key JAK-STAT-IL2 signaling regulators 

and KMT2A, a global epigenetic regulator that we observed to be upstream of classic IL2 

signaling TFs and receptors, including IRF4, STAT5B, and IL2RA.  

 

In summary, we perturbed a diverse set of genes to characterize the immune regulatory 

landscape and develop novel statistical methodology to characterize the CD4+ T cell network 

centered around immune disease genes. Our network reveals the entire trans-regulatory 

cascade of these gene programs and elucidates the transcriptional logic of immune GWAS loci.   
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Results 

Perturbation of IEI TFs and matched background TFs  

To construct a network enriched for genes relevant to immune disease in CD4+ T cells we 

perturbed 30 TFs from the IEI genes implicated in Mendelian forms of immune disease17. We 

also included 30 background TFs that were not annotated for immune function but were 

matched on gene constraint and expression to the IEI TFs in order to characterize the 

properties that distinguish IEI TFs (Figure 3.1A-B). Lastly, to expand the breadth of our 

network, we integrated data from 24 previously mapped IL2RA regulators14. (Figure 3.1C).  We 

used CRISPR Cas9 ribonucleoproteins (RNPs) to perform arrayed perturbations in CD4+ T cells 

from three donors as described in Freimer et al.14 We validated the efficiency of our CRISPR 

editing by genotyping the 60 additional targeted loci, which indicated a high editing efficiency 

(Supplemental Figure 3.1A-B).  

 

Using bulk RNA-seq, we detected ~13,000 genes that were expressed highly enough for 

analysis (Methods). As our data were generated in two batches, we performed stringent quality 

control of the RNA-seq data. We performed alignment and gene count quantification using one 

pipeline on the 84 samples and performed principal component analysis (PCA) of the 

normalized expression data. Pathway enrichment analysis revealed that the first four PCs were 

associated with very broad biological phenomena including cell cycle regulation and ribosome 

activity. Because the PCs also captured batch effects, we included the first four PCs as 

covariates in downstream analyses. Regressing out PCs has previously been shown to improve 

inference of gene networks28.  
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Perturbed genes form a highly interconnected network 

Next, we developed a statistical method to estimate the GRN among the 84 genes. We 

extended the linear-latent-causal (LLC) method introduced by Hyttinen et al.23 by recasting the 

statistical estimand in a Bayesian framework, which enabled the incorporation of prior 

knowledge about the properties of biological networks. The theory, construction and validation 

of this statistical method, which we termed LLCB, is detailed in the associated publication 

Weinstock et al. We used LLCB to estimate the causal CD4+ GRN among the 84 genes, 

observing a highly connected constellation of factors (Figure 3.2).  

 

Next, we expanded our network analyses to include all 12,803 other genes that were expressed 

highly enough for analysis, which we refer to as non-perturbed genes. We estimated the effects 

of the 84 perturbed genes on the non-perturbed genes using two methods. First, we used a 

traditional differential expression approach using DESeq229, where we regressed the 

normalized expression of each gene against a design matrix that included an indicator for the 

perturbation status of the sample, the donor identity, and the first four expression PCs. Next, we 

used mashr30 to perform statistical shrinkage of the differential expression estimates. We refer 

to these results as DEG-mashr estimates. To model the effects of multiple upstream TFs at the 

same time, we developed a novel statistical estimator of the bipartite graph (BG), which models 

the effects of the 84 perturbed genes on the 12,803 non-perturbed genes jointly in a single 

linear model. In contrast to a differential expression approach the BG model is less likely to 

detect redundant causal pathways.  

 

Among the non-perturbed genes, 7,299 (57%) had an incoming edge from at least one KO. 

Among the non-perturbed genes with at least one incoming edge, the median number of 

incoming edges was 5. The median number of downstream effects from the BG model was 
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251.5, ranging from 52 (EGR3) to 2,634 (MED12). Estimates from both the DEG-mashr and BG 

approaches revealed the striking enrichment of IL2RA regulators among the genes with the 

largest number of downstream connections (Figure 3.3A). We observed that MED12 and CBFB 

regulated more genes than any canonical T-cell transcription factor. MED12 is a sub-unit of the 

mediator complex, which transmits signals from enhancer bound TFs to RNA-polymerase II 

bound at the promoter31,32. Despite its large effects, MED12 has never been reported in any 

autoimmune GWAS, nor does it have a known cis-eQTL in CD4+ T-cells6, underscoring the 

value of perturbations for characterizing its function. The centrality of MED12 in the network of 

perturbed TFs (Figure 3.2) and its widespread effects across the transcriptome support our 

observations in chapter 2 that MED12 is a critical regulator of T cell function that operates at the 

top of a hierarchy of key immune regulatory genes.  

 

Next, we asked which properties of the 12,803 non-perturbed genes were associated 

with regulation from the three gene groups. We performed a series of negative-binomial 

regressions of the incoming connections to non-perturbed genes, including six gene 

annotations as covariates (Figure 3.3B). We observed non-perturbed autoimmune 

GWAS genes were much more likely to be enriched for regulation from IEI TFs (~20% 

enrichment) and IL2RA regulators (~30% enrichment). 𝑆!"# was negatively associated 

with incoming connections in three of the four regressions, consistent with our prior 

observation that gene constraint is more strongly associated with the number of 

outgoing connections from a gene than the number of incoming connections to the 

gene. We also observed that eQTL trans-eGenes were strongly enriched for incoming 

connections in each regression, suggesting that trans-eGenes reside in the periphery of 

the network with many incoming connections. Using GTEx, we also identified genes that 
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were only expressed in whole blood and asked whether regulation of blood specific 

genes varied by the three gene groups. We observed that blood-specific genes were 

much more likely to be regulated by IEI TFs (~20% enrichment) and IL2RA regulators 

(~40% enrichment) than background TFs. Collectively, these observations highlight that 

although background TFs have similar graph centrality to IEI TFs, they are much less 

likely to disrupt cell type-specific transcriptional pathways. 

 

Gene modules link groups of genes to shared function  

Next, we asked whether there were groups of the 84 perturbed genes with similar effects on 

downstream pathways among the 12,803 non-perturbed genes. Hierarchical clustering of the 

DEG-mashr results revealed the presence of nine gene modules (Figure 3.4), which we also 

grouped into a coarser set of super-modules. We remark that although the perturbed genes 

within each of these modules are mutually exclusive, the non-perturbed genes may overlap. To 

identify pathways that were regulated by these gene modules, we performed systematic 

enrichment analyses using KEGG genetic, signaling, and immune pathways33 (Figure 3.5A, 

Supplemental Figures 3.2-4).   

 

Module 1 contained the largest number of perturbed genes; 14 IEI TFs, 19 background TFs, 

and two IL2RA regulators (RELA and YY1). The remaining modules had less members and 

modules 3-4 were primarily IL2RA regulators. We observed that module 1A was enriched for 

disruption of MAPK and p53 signaling. Module 1B included T-bet (TBX21), a transcription factor 

that is required for interferon-gamma production and the Th1 phenotype34, and three members 

of the Rel family (NFAT5, RELB, and REL), sub-units of NF-κb, a transcription factor complex 

that plays a role in T-cell activation35. Surprisingly, this cluster also included four background 

TFs without any annotated immune function (ZNF329, ZNF791, ZBTB14, and ZKSCAN1). 
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ZBTB7B has been observed to be required for CD4+ commitment, and interacts with NF-κB36, 

but many other members of the ZBTB family, including ZBTB14, remain relatively 

uncharacterized. The high proportion of shared effects between ZBTB14, T-bet, and the Rel 

family proteins suggests that ZBTB14 may have similar function to ZBTB7B.  

Genes in super-module 2 were enriched for effects on cell cycle regulation and apoptosis. 

Modules 3-4 were much more strongly enriched for IL2RA regulators than clusters 1-2. 

Consistent with their annotation, every gene in module 3-4 had downstream effects on the JAK-

STAT and chemokine signaling pathways. Surprisingly, KMT2A, a methylation writer clustered 

in the same module as JAK3, STAT5A, STAT5B, IRF4, and IL2RA. Although translocations of 

KMT2A have been shown to cause lymphoid malignancy37, it has no annotated function in non-

mutated cells in the JAK-STAT pathway38. We then examined the structure of module 4 (Figure 

3.5B), observing that KMT2A is upstream of IRF4, STAT5A, and IL2RA, and directly regulates 

several downstream effector cytokines through pathways not mediated by the other perturbed 

genes.  

 

Several modules were strongly enriched for cell cycle and proliferation pathways. To determine 

if there was a uniform effect on in vitro expansion within any of the modules, we quantified the 

number of live cells per KO compared to cells where the guide RNA targeted the safe harbor 

locus AAVS1 from the respective donor. Nearly all members of module 2A, which was enriched 

for cell cycle effects, showed a mean increase in cell counts across three donors as the result of 

the perturbation. Collectively, the module had a 1.14-fold increase in live cells when KO’d 

compared to the controls, suggesting that genes in 2A function as proliferation repressors 

(Figure 3.5C). Concordant with these observations, a recent report described the proliferation 

promoting effects of disruption of a module 2A member, TET2, in CAR-T cells39. Our analyses 

suggest that other members of 2A may have similar properties to TET2 and thus may represent 

a group of genes that could be perturbed to alter engineered T-cell function. Several upstream 
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members of 2A upregulated three of four CDKN genes which inhibit cyclin dependent kinases 

and potentially lead to reduced cycling (Supplemental Figure 3.5). Taken together, our 

inference of gene modules recapitulates known regulators of immune signaling pathways and 

identifies novel members of these modules 

   

Identification of KMT2A as a member of the JAK-STAT pathway 

Given the large effects of module 4A on T cell differentiation, and the unexpected interaction 

within the module between KMT2A and canonical JAK-STAT family members, we integrated 

ChIP-seq and ATAC readouts to elucidate the regulatory structure of the module. We observed 

that KMT2A was a positive regulator of IL17F and IL21 expression, two Th17 secreted factors 

(Figure 3.6A). Notably, IL17F had a striking decrease in expression (-5.9 log2 fold change) 

upon KMT2A KO. We also observed concordant decreases in chromatin accessibility near (5.7 

kb and 40 kb upstream of TSS) IL17F and IL21 upon KO of KMT2A via ATAC-seq. We then 

intersected the differentially accessible chromatin regions from the KMT2A KO condition with 

each of the KOs within module 4 and observed that STAT5B shared several differentially 

expressed sites, including possible distal enhancer regions upstream of IL17F (Supplemental 

Figure 3.6). An additional Th17 secreted factor, IL22, also had a shared region between the two 

conditions, although the transcript was only differentially expressed in the STAT5B KO. The 

STAT5B KO also abrogated chromatin accessibility 5.7 Kb upstream of the IL17F promoter, in a 

region bound by STAT5B in CD4+ T cell ChIP-seq (Figure 3.6B). Because KMT2A is a 

methyltransferase that deposits activating methylation marks on H3K4, we then asked whether 

H3K4me3 was present at the same locus in activated Th17s, finding broad H3K4me3 within the 

region (Figure 3.6B). These observations led us to suggest the following mechanism for the 

regulatory logic of module 4: KMT2A, a global epigenetic regulator of transcription, collaborates 

with downstream factors, including members of JAK-STAT, to positively regulate IL17F through 

modulation of a putative IL17F specific enhancer.  
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Discussion 

Human genetics has been remarkably productive in discovering complex-trait associated SNPs. 

There are now several resources to map the effects of these SNPs to molecular phenotypes in 

cis, however, the development of maps of the regulatory cascades of these SNPs has 

progressed much more slowly. Enabled by recent innovations in large-scale perturbation 

technologies, we are now able to systematically perturb large numbers of genes in primary 

human cell contexts. These perturbations complement natural genetic variation approaches to 

mapping trans-regulators as they facilitate the examination of biological variance that is unlikely 

to be observed in healthy cells. After network inference with LLCB, we observed 211 trans-

regulatory causal connections in our upstream GRN, none of which were reported in the largest 

catalogue of CD4+ eQTLs performed to date6.  

 

We developed LLCB to infer the gene network which builds upon recent advances in the 

structure learning literature to estimate a graph with edge weights that are interpretable as direct 

effects. This stands in contrast to the majority of effect estimates reported in the functional 

genomics literature, which primarily report estimates from differential expression analyses 

performed separately in each perturbed gene. These estimates confer results that are difficult to 

interpret because they do not attempt to adjust for confounding pathways in the GRN, which are 

known to be highly abundant in biological networks. We use LLCB to estimate the topology and 

effect size of these confounding pathways. We found that direct effects were generally much 

larger than indirect effects in magnitude, and that the largest indirect effects were mediated by 

local feedback cycles. 

 

Using experimental perturbations, we investigated the properties of IEI TFs which are 

infrequently mutated in natural genetic variation. We performed a series of systematic analyses 
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that delineate the commonalities and differences among the IEI TFs, background TFs, and 

IL2RA regulators. Consistent with our previous report14, we found that the IL2RA regulators 

were potent regulators of downstream effects. Both the IEI TFs and IL2RA regulators were 

enriched for being upstream and were much more likely than background TFs to disrupt 

autoimmune GWAS loci and whole blood specific genes even after adjustment for gene 

constraint. We also observed that the topology of the regulatory network is strongly associated 

with selective constraint. 𝑆!"# was among the best predictors of the topological properties of the 

perturbed genes: 𝑆!"#	was strongly associated with the number of outgoing connections of a 

gene, but not the number of incoming connections. This is reflected in the dense downstream 

network identified for the IL2RA regulators with overall high levels of constraint, compared to the 

other TF groups. Overall, the difference in enrichment based on 𝑆!"#	suggests that the centrality 

of genes is best expressed as a multi-dimensional construct. This further highlights the value of 

estimating GRNs with directed edges, as opposed to estimating undirected graphs from 

observational co-expression data, as the richer graphical structure enables much more granular 

topological analyses.  

 

Utilizing the novel connections in the GRN, we report several observations that improve 

annotation of canonical immune pathways. We observed that three of the background TFs 

(DR1, BPTF, and YBX1) regulated more downstream genes than any of the 30 IEI TFs, 

including TBX21, a master regulator of Th1 differentiation. After identifying gene modules and 

their downstream pathways, we observed multiple novel members of canonical gene modules, 

including KMT2A in the JAK-STAT pathway. We observed that KMT2A, a methyltransferase 

that deposits activating methylation marks, modulated the expression of canonical IL-2 signaling 

TFs. KMT2A collaborated with these TFs to upregulate IL17F, a pro-inflammatory cytokine that 

is secreted by Th17 cells, indicating that KMT2A is an under-appreciated regulator of the IL2-

JAK-STAT axis and Th17 regulation. Meta-analysis of biobank autoimmune GWAS revealed a 
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novel risk locus in a Th17 enhancer upstream of KMT2A. Given the success of JAK inhibitors in 

treating a subset of patients with autoimmunity40,41, our pathway analysis could offer an 

expanded set of candidate drug targets. 

 

Although we have demonstrated that our regulatory network is useful for discovery of novel 

immune pathway biology and that it is validated by orthogonal data modalities, our study is not 

without limitations. While CD4+ T cells play a role in many immune pathologies, the construction 

of networks in more cell types and cellular contexts would undoubtedly result in increased 

discovery, as would the inclusion of additional perturbations. The restriction to transcriptional 

regulation also inhibits the interrogation of post-translational regulation, which makes the 

interpretation of edges from genes where post-translational regulation important challenging. 

For example, STAT proteins, which are known to be sensitive to phosphorylation, may regulate 

more genes than is estimated in our transcriptional network. The use of a bulk expression read-

out, although more sensitive to genes with low expression than single cell assay transcriptome 

analysis, also precludes the analysis of more granular cell types and contexts which are easier 

to assess in parallel using single-cell profiling methodologies including Perturb-seq and single-

cell eQTL studies. 

Conclusion 

In conclusion, we describe the gene regulatory network of key CD4+ T cell regulators. 

This network enabled both the broad characterization of the properties of immune disease 

genes and the discovery of novel regulatory connections between TFs and signaling pathways 

that modulate immune disease genes. We anticipate that our approach can be applied in other 

cell types and contexts to generate maps of the molecular consequences of regulatory variation 

of disease genes.   
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Figures 

 
Figure 3.1 Construction of immune-centric gene regulatory network via CRISPR 
perturbation 
A. The expression level of each gene group included in the construction of the gene regulatory 
network. The expression level of IEI TFs and Control TFs was matched in CD4+ T cells. B. The 
constraint metric (pLI score) for each gene group included in the construction of the gene 
regulatory network. The pLI of IEI TFs and Control TFs was matched in CD4+ T cells. C. 
Experimental design and analysis overview used to define key immune paths and regulators. 
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Figure 3.2 The gene network of the 84 perturbed genes 
Estimate of the directed network that describes how the 84 perturbed genes interact. The radius 
of each point is proportional to the degree of that gene. Arrows are used to indicate directionality 
of the edges, such that an arrow pointing into a gene indicates that it is being regulated by 
another gene. For emphasis, the opacity of the edges from or to Inborn Error of Immunity 
transcription factors is increased, and all other edges are displayed with greater transparency. 
Positive values in the color scale indicate that the parent gene is a positive regulator of the child 
gene.  
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Figure 3.3 The landscape of downstream effects 
A. The distribution of the number of downstream effects for each of the 84 genes, stratified by 
gene group. Genes that are outliers with respect to their gene group distribution are labeled. B. 
Association between the properties of downstream genes and the gene-set of the upstream 
regulators. Coefficients are estimated with negative binomial regressions of the gene-set 
specific indegree. Downstream gene annotations are indicated on the y-axis and the facets are 
used to indicate the gene-set of the upstream regulator.  
 
 
 
 
 

A     Distribution of downstream genes B 
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Figure 3.4 The discovery of gene modules 
Hierarchical clustering is used to identify clusters of shared downstream effects. The upstream 
gene members within each module are labeled in the left-handed margin of the plot, and the 
gene group of each gene is indicated by the text color. The total number of genes in the module, 
including both upstream and downstream effects, is included under the list of genes.  
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Figure 3.5 Gene module characterization 
A Enrichment analyses of KEGG genetic, immune, and signaling pathways for each of the 84 
perturbed genes, stratified by gene module. The JAK-STAT pathway is highlighted with a 
dashed-red box. The color bar maximum is set to 4. B The JAK-STAT sub-network, which is 
organized such that cytokine genes are at the bottom and upstream regulators are at the top. C 
Effects of knock outs in the gene modules on a proliferation assay. Each point represents an 
individual gene perturbation sample plotted as the log2 fold change sample count as compared 
to AAVS1 KO control samples from the same donor. (*: p-value < 0.05, **** p-value < 0.001; 
n=3 donors per KO, the number of KOs per cluster is reflected in Figure 3.4). 
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Figure 3.6 The transcriptional logic linking module 4 to GWAS loci 
A. The sub-network of module 4 and Th17 cytokines. B. locus plot including tracks describing 
the functional characteristics of the region. Each track is constructed from publicly available 
ChIPseq data (STAR Methods) or ATAC-seq data from Freimer et al. Grey boxes indicate 
significantly different regions between the respective KO and AAVS1 control KO ATAC data 
(padj < 0.05, n = 3 donors per KO). The Y-axis displays normalized counts.   
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Supplemental Figures 

 
 
Supplemental Figure 3.1 CRISPR editing efficiency by gene group 
A Percent of reads with indels, stratified by individual gene. B Percent of reads with indels, 
aggregating by gene group.  
 

 
Supplemental Figure 3.2 KEGG genetic pathways module enrichment 
Enrichment analyses were performed with pathfindR.  
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Supplemental Figure 3.3 KEGG signaling pathways module enrichment 
Enrichment analyses were performed with pathfindR.  
 

 
Supplemental Figure 3.4 KEGG immune pathways signaling enrichment 
Enrichment analyses were performed with pathfindR.  



 

 116 

 

 
Supplemental Figure 3.5 Network plot demonstrates the effect of the cluster 2A upstream 
regulators on cell-cycle genes 
The network using edges estimated from the BG model are plotted. Colors indicate the effect 
size and arrows indicate the direction of effect. The genes on the left-hand side are among the 
84 KO’d genes, and the genes on the right are genes that are listed among the KEGG cell cycle 
pathway genes.  
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Supplemental Figure 3.6 KMT2A and STAT5B jointly regulate chromatin accessibility at 
the IL17F locus (A) and IL21 locus (B) 
For A and B, locus plot including tracks describing the functional characteristics of the region. 
Each track is constructed from publicly available ChIPseq data (methods) or ATAC-seq data 
from Freimer et al. Grey boxes indicate significantly different regions between the respective KO 
and AAVS1 control KO ATAC data (padj < 0.05, n = 3 donors per KO). The Y-axis displays 
normalized counts.  
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Tables 

Table 3.1 CRISPR KO sgRNAs 
CRISPR sgRNAs from Brunello library used for arrayed perturbations 
 
Sequence sgrna 
GTGGCGGTACCAAAGCCTTG AIRE_1 
GCTGTCCTGAGGCCTACAAG ARID5A_1 
GGGGAGTGATGAGCTACGTG IRF3_1 
ACTGTGTGCACTGGAATGAG ZNF319_1 
TAAACTTGGACCACAACAGG TBX21_1 
TGGAGGAAGACGGAACCTGA AAVS1_9 
GCAAATGTTACAGGTCCTGG YBX1_1 
CAGGCCTGATAAAATCCATG NFAT5_1 
GTGGCGAGATGTACCCACAT HIVEP3_1 
CAAGCTCAGAAATTACACTG MYSM1_1 
TAGCCACACAGACTATTGTG EPAS1_1 
GCAGAGCCAGGAACCCCTGT AAVS1_10 
TCTGCCCTGAGGTATGCGAT TET2_1 
GTATCCTCTTCAGCACACAA CLOCK_1 
CCGCCATGGACTTCTCGCGG BCL11B_1 
CAACGATGCTCGAGAGCTGG DR1_1 
AATTTAAGGAGGTTCCTGAG IRF9_1 
GCTGATACCGTCGGCGTTGG AAVS1_11 
TCCGTGTGCTAAGCGGTGCG ZNF575_1 
GATGGCTTGGTCCATCACGT IKZF1_1 
ACATCAGGGAGATACAACAG ZFP3_1 
ATTGGGTTCGAGACAACAGG REL_1 
CGACACAGAGGAATCAGCAG ATMIN_1 
GAAGCAGGGGAGCTGGGTTT AAVS1_12 
GAGACCGAGGTGTATCACCA STAT3_1 
GATGAGCATAAGTTGCACAA ZNF708_1 
GTCGTCTGGGATCCACTACG RORC_1 
TCTGGGTGAGAACTCAGTGG ELK4_1 
GAACTATGATCCCAAGACCG ZBTB24_1 
CCTCTAAGGTTTGCTTACGA AAVS1_4 
GGACATCATAGAGCGCTCGT SON_1 
CATACCGTCTAAATCAACAG NFE2L2_1 
GCCTTCGATCAAGTGCACTG BPTF_1 
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Sequence sgrna 
GATGCACTCACCTTGCACCG IRF7_1 
AAAGACAAGCAGATCCACCC EGR3_1 
GGACGCACCATTCTCACAAA AAVS1_2 
TGGGCACATTGACTTCTCCG GFI1_1 
GATGGCGCCATGATGGAAGA TTF1_1 
GTTATTGCTTGAGTGATCCG TCF3_1 
GGTCAAAGGTCTGTCCCACG YBX3_1 
CAACAAATACTCCACCCCTG ZNF341_1 
GTCACCAATCCTGTCCCTAG AAVS1_8 
CCTTACCTGAATCAATACTG SETDB1_1 
CCCACCCACAGGGATCAACG FOXP3_1 
TGAACACTTAAATCTAACAG ZNF655_1 
GTACTTACGAAATGGTACCT RFX5_1 
TGATGATGTAGAGGAAATCG ZBTB14_1 
ACAGTGGGGCCACTAGGGAC AAVS1_7 
ATTGAGCGGAAGATTCAACT RELB_1 
GAAGCAGTTCCAACTTTACG AKAP8_1 
TTTGATCCCTGTATCCAGAG SP110_1 
AGCTGGAGGACAGATAACTG POU2F1_1 
ACTCGACTACGGCGTCACCG NFKB2_1 
TGTCCCTAGTGGCCCCACTG AAVS1_6 
GCACAAGAGAATTCATAGTG ZNF331_1 
CCCAGAATAAGAATGCACCG BACH2_1 
TTTCTGACAGTAAGGTCCAG LCOR_1 
CTTCTGTGGACGATTACATG IRF8_1 
CCTGTAGAGAAGCCTCCCGG SREBF1_1 
GTCCCCTCCACCCCACAGTG AAVS1_5 
GGAGACCCTGCACTCCCATG RBCK1_1 
CTTTCCCACAGCCACTGTAG KLF9_1 
ACGGTCAAATATACCTACCA STAT2_1 
CTTCGTCCCTCGCACCAGCG NFE2L3_1 
AGAACACGAGACCAATGGTG STAT1_1 
TAAGCAAACCTTAGAGGTTC AAVS1_3 
AGAACCAGGAGGGACACTTG ZNF329_1 
CCATTGTTCAATATCGTCCG TP53_1 
GACCTGAGATGCTCGCAAGG ZKSCAN1_1 
TTGTCTATGAACATCTGTGG NFKB1_1 
GTGTGTTAGAACACTTGTGT ZNF791_1 
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Sequence sgrna 
GGGGCCACTAGGGACAGGAT AAVS1_1 

 
 

Methods 

Data and code availability 

Bulk RNA-seq data have been deposited at GEO accessions GSE271788 and GSE171737 and 

are publicly available as of the date of publication. Accession numbers are listed in the key 

resources table. Genotyping data and cell counts are available in the supplemental tables. All 

original code has been deposited at github and is publicly available as of the date of publication. 

Code used to generate the main figures can be found here 10.5281/zenodo.12807946. LLCB 

code is available at 10.5281/zenodo.12807979 and https://github.com/weinstockj/LLCB .  

 

Cell Isolation and expansion 

Primary CD25-CD4+ effector T cells were isolated from fresh Human Peripheral Blood 

Leukopaks (STEMCELL Technologies, #70500) from healthy donors, after institutional review 

board–approved informed written consent (STEMCELL Technologies). Peripheral blood 

mononuclear cells (PBMCs) were washed twice with a 1X volume of EasySep buffer (DPBS, 

2% fetal Bovine Serum (FBS), 1mM pH 8.0 EDTA). The washed PBMCs were resuspended at 

200E6 cells/mL in EasySep buffer and isolated with the EasySep™ Human 

CD4+CD127lowCD25+ Regulatory T Cell Isolation Kit (STEMCELL Technologies, #18063), 

according to the manufacturer’s protocol. Cells were seeded at 1x106 cells/mL in complete 

RPMI-1640 supplemented with 10% FCS, 2 mM L-Glutamine (Fisher Scientific #25030081), 10 

mM HEPES (Sigma, #H0887-100ML), 1X MEM Non-essential Amino Acids (Fisher, 

#11140050), 1 mM Sodium Pyruvate (Fisher Scientific #11360070), 100 U/mL Penicillin-

Streptomycin (Sigma, #P4333-100ML), and 50 U/mL IL-2 (Amerisource Bergen, #10101641) 

and stimulated with 6.25 uL/mL ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator 
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(STEMCELL Technologies, #10990). Following activation and electroporation, cells were split 

1:2 every other day to maintain an approximate density of 1x106 cells/mL. 

 

Cas9 RNP preparation and delivery 

Custom crRNAs (Dharmacon) and Dharmacon Edit-R CRISPR-Cas9 Synthetic tracrRNA 

(Dharmacon, #U-002005-20) were resuspended in Nuclease Free Duplex Buffer (IDT, #11-01-

03-01) at 160uM stock concentration. In a 96 well plate, each crRNA was combined with 

tracrRNA at a 1:1 molar ratio and incubated at 37°C for 30 minutes. Custom crRNA sequences 

are included in Table 3.1. Single-stranded donor oligonucleotides (ssODN; sequence: 

TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGTGGTAATATTACGGT

ACCGAGCACTATCGATACAATATGTGTCATACGGACACG, 100uM stock) was added to the 

complex at a 1:1 molar ratio and incubated at 37°C for 5 minutes. Finally, Cas9 protein 

(MacroLab, Berkeley, 40 µM stock) was added at a 1:2 molar ratio and incubated at 37°C for 15 

minutes. The resulting RNPs were frozen at -80°C until the day of electroporation. 48 hours 

following effector T cell activation, the cells were pelleted at 100x g for 10 minutes and 

resuspended in room temperature Lonza P3 buffer (Lonza, catalog no. V4XP-3032) at 1.5x106 

cells per 20 ul P3. The cells were combined with 5 ul aliquots of the thawed RNPs, transferred 

to a 96-well electroporation cuvette plate (Lonza, #VVPA-1002) and nucleofected with pulse 

code EH-115. Immediately following electroporation, the cells were gently resuspended in 90 ul 

warmed complete RPMI with IL-2 and incubated at 37 C for 15 minutes. After recovery, the cells 

were cultured in 96 well plates at 1x106 cells/mL for the duration of the experiment. To prevent 

edge effects, the guides were randomly distributed across each plate and the first and last 

column of each plate was excluded, being filled instead with PBS to prevent evaporation.  
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RNA isolation and library preparation: 

8 days after T cell isolation and activation, the cells were pelleted and resuspended at 1x106 

cells per 300 ul of RNA lysis buffer (Zymo, #R1060-1-100). Cells were pipette mixed and frozen 

at -80 until RNA isolation was performed. RNA was isolated using the Zymo-Quick RNA micro 

prep kit (#R1051) according to the manufacturer’s protocol with the following modifications: After 

thawing the samples, each tube was vortexed vigorously to ensure complete lysis prior to 

loading into the extraction columns. In lieu of the kit provided DNAse, RNA was eluted from the 

isolation column after the recommended washes and digested with Turbo-DNAse (Fisher 

Scientific, AM2238) at 37 C for 20 minutes. Following digestion, RNA was purified using the 

RNA Clean & Concentrator-5 kit (Zymo, #R1016) according to the manufacturer’s protocol. The 

resulting purified RNA was submitted to the UC Davis DNA Technologies and Expression 

Analysis Core to generate 3′ Tag-seq libraries with unique molecular indices (UMIs). Barcoded 

sequencing libraries were prepared using the QuantSeq FWD kit (Lexogen) for multiplexed 

sequencing on an Hiseq 4000 (Illumina). 

  

Genotyping of arrayed KOs 

On the day of cell collection for RNAseq, genomic DNA was isolated using DNA QuickExtract 

(Lucigen, Cat #QE09050) according to the manufacturer’s protocol. Primers were designed to 

flank each sgRNA cut site. Amplicons of the region were generated by adding 1.25 µL each of 

forward and reverse primer at 10uM to 5 µL of sample in QuickExtract, 12.5 µL of NEBNext 

Ultra II Q5 master mix (NEB, Cat #M0544L), and H2O to a total 25 µL reaction volume. 

Touchdown PCR was used with the following cycling conditions: 98°C for 3 minutes, 15 cycles 

of 94°C for 20 seconds followed by 65°C-57.5°C for 20 seconds (0.5°C incremental decreases 

per cycle), and 72°C for 1 minute, and a subsequent 20 cycles at 94°C for 20 seconds, 58°C for 
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20 seconds and 72°C for 1 minute, and a final 10 minute extension at 72°C. Amplicons were  

diluted 1:200 and Illumina sequencing adapters were then added in a second PCR reaction. 

Indexing reactions included 1 µL of the diluted PCR1 sample, 2.5 µL of each the forward and 

reverse Illumina TruSeq indexing primers at 10 µM each, 12.5 µL of NEB Q5 master mix, and 

H2O to a total 25 µL reaction volume. The following PCR cycling conditions were used: 98°C for 

30 seconds, followed by 98°C for 10 seconds, 60°C for 30 seconds, and 72°C for 30 seconds 

for 12 cycles, and a final extension period at 72°C for 2 minutes. Samples were pooled at an 

equivolume ratio and SPRI purified prior to sequencing on an Illumina MiSeq with PE 150 reads. 

Analysis was performed with CRISPResso242 (v2.2.7) CRISPRessoBatch --skip_failed --

n_processes 4 --exclude_bp_from_left 0 --exclude_bp_from_right 0 --plot_window_size 10. 

 

Cell proliferation quantification 

One replica plate of cells from each donor was run on the Attune NxT Flow Cytometer (Thermo 

Fisher) within 24 hours of cell lysis for RNA extraction. The lymphocyte count was collected for 

each well using an equi-volume amount of sample. Counts were normalized to the mean 

AAVS1 lymphocyte count for the respective donor and experiment. Samples with a total 

Lymphocyte_count < 1000 were excluded from the analysis, removing one donor sample from 

SP110, EPAS1, and ZBTB14 KOs. 

 

RNA-seq alignment and gene count quantification 

Adapters were trimmed from fastq files with cutadapt43. Low-quality bases from reads were 

trimmed using the Phred algorithm implemented in seqtk44. Reads were then aligned with 

STAR45 and mapped to GRCh38. Gene counts from deduplicated reads were quantified using 

featureCounts46. Sample quality control reports were generated with Fastqc47, rseqc48, and 

Multiqc49. 
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Gene filtering and PCA analysis 

Genes were first filtered to those with at least 10 counts in at least five samples. PCA was then 

performed on the variance stabilizing transformed29 (vst) counts of the 500 most variable genes. 

Three outlier samples were excluded and then the above process was repeated. The PCs were 

then assessed for association with batch effects and very broad cellular pathways. PCs 1-2 

associated with batch effects, and PCs 3-4 were associated with cell cycle state, suggesting 

that PCs 1-4 should be included as covariates or otherwise adjusted for in downstream analysis.  

 

Differential expression analysis 

Differential expression analysis was performed using DESeq229, including donor identity, PCs 1-

4, and the KO as predictors of the response. Donor identity and PCs 1-4 were included as 

covariates to mitigate their confounding effects on gene expression. We emphasize that the 

statistical estimand in this analysis the total effect of the perturbation of a given gene on the 

readout gene. This effect may include several indirect paths between the perturbed gene and 

the readout gene.   

 

We used mashr30 to perform shrinkage of the effect sizes of the differentially expressed genes. 

This yielded an estimate of the local false-sign rate (LFSR), which is the posterior probability 

that the true effect has a different sign (positive or negative) than the sign that is most 

compatible with the posterior distribution. We used a threshold of LFSR < 5 x 10-3 as a 

significance threshold. 

 



 

 125 

Pathway analysis 

Downstream enriched pathways were identified for each perturbation using pathfindR (v1.6.4)50. 

For each upstream gene perturbed, outgoing edges within the BG model were used as input for 

pathfinder, with a significance threshold of LFSR < 5 x 10-3. Gene sets were limited to KEGG33, 

Reactome38, and GO-BP51 and the minimum gene set size and enrichment threshold were set 

to 10 and 0.05 respectively. Pathways were prioritized for visualization based on the number of 

genes within the module with enrichment for the pathway, median fold enrichment across all 

members of the module, and relevance to T cell biology. 

 

ATAC and ChIPseq data visualization  

 

Bigwigs for each of the tracks were downloaded from ChIP-Atlas. ATAC bigwigs and 

differentially expressed regions were procured from Freimer et al. and a representative donor 

was used for visualization of each perturbation effect at the IL17F locus. Visualization was 

performed with rtracklayer (v1.52.1) and ggplot2 (v3.4.1). APRIS gene structure was used for 

gene annotation with gggenes (v0.5.0). Differentially accessible chromatin regions were defined 

in Freimer at al. 14, Supplementary Data 2.  

 

Bigwig files were obtained for visualization from the following ChIP-Atlas sources: STAT5B KO 

ATAC- SRX10558086, KMT2A KO ATAC- SRX10558079, AAVS1 KO ATAC- SRX10558063 

(all ATAC samples from CD4+ T cells treated with IL-2), H3K4me3 ChIP- activated Th17 ChIP52 

(stimulated with anti-CD3/CD28 beads and IL-2)- SRX16500373 (GSM6376841), STAT5B 

ChIP53 (treated with IL-2)- SRX041293 (GSM671402)  
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LLCB and Bipartite graph model construction 

The statistical details and theory of the models used in this work are detailed in Weinstock et 

al54.    
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Chapter 4 Conclusions 
 
The projects described in chapter 2 and chapter 3 of this work were performed in an effort to 

better understand the gene regulatory mechanisms that enable CD4+ T cell function. Although 

these projects had differing approaches, shared themes emerged from the analyses performed. 

Gene regulatory networks in both chapters centralized around one gene, MED12, which 

consistently had strong and broad effects on gene expression across contexts. In chapter 2 we 

characterized MED12 as a regulator of both T cell rest and activation, clarifying a critical 

function for the protein within the T cell compartment. While less functional analysis was 

performed for individual regulators in chapter 3, we did observe a striking lack of regulators 

upstream of MED12, despite the inclusion of 84 genes within the broader network. This 

observation suggests that MED12 is in fact at the top of an extensive hierarchy of important 

immune genes, including regulators of IL2RA, but also several inborn error of immunity genes 

and other factors associated with immune disease. These conclusions then lead to questions 

about upstream regulators of MED12 itself, which we did not identify in this work, and more 

broadly the role of other Mediator complex subunits in the immune system which we were not 

able to assess with as great detail.  

 

The role of epigenetic regulation in immune signaling also emerged as a motif across projects. 

While neither the screens or arrayed perturbations performed in chapter 3 were designed to 

specifically study this subset of trans regulatory proteins, chromatin and histone modifiers 

emerged naturally as the stories evolved. In chapter 2, the discovery that MED12 interacts to 

some degree with members of SETD1A/COMPASS, an H3K4me1-3 depositing enzyme with 

additional functions in protein ubiquitylation, reformed our understanding of the role of Mediator 

proteins in chromatin level regulation. In chapter 3, we observed shared downstream networks 

between KMT2A, another histone methylating enzyme, and canonical members of the JAK-
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STAT pathway, resulting in a novel connection between KMT2A and CD4+ T cell subset 

specific cytokine regulation. These occurrences serve as a reminder that trans regulation cannot 

be fully understood without considering each layer of regulation. These layers include 

transcription factors with DNA sequence specificity, but also cofactors like MED12 with 

ubiquitous expression, and epigenetic regulators of the chromatin state. With these discoveries 

in hindsight, future screens to study trans-regulation of gene expression might be designed with 

more inclusivity to members of each of these regulatory compartments that are required for 

coordinated gene expression.  

 

Ultimately, the work performed in chapters 2 and 3 has led to improved understanding of gene 

regulation in the immune system. It has also opened up new questions about the mechanisms 

that control dynamic gene expression within the T cell compartment. While we made progress in 

understanding the role MED12 in T cell specific gene expression, parts of its mechanism of 

action remain unclear as we observed mixed shared effects with other components of Mediator, 

the Mediator kinase, and other regulatory proteins that interact with MED12. Further 

investigation of the role of MED12 and its interaction partners both in T cells and other cell types 

will lead to a clearer understanding of this system of dynamic gene regulation. In particular, 

recent advances in CRISPR technology that enable the investigation of base level mutations as 

well as epigenetic modifications, may enable more finite dissection of the role of cofactors like 

the Mediator proteins and associated chromatin regulators.  

 

Finally, a substantial amount of sequencing and proteomics data was generated as part of the 

projects described here which has since been deposited to public repositories. These cell type 

and state specific data sets will hopefully serve as a useful resource for future discovery as 

perturbation data across conditions and rare cell subsets such as Tregs remains difficult to 

access and costly to generate.  
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