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EPIGRAPH

“How often have I said to you that when you have eliminated the impossible, whatever remains,

however improbable, must be the truth”

—Sherlock Holmes, The sign of four
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represents the case where the linear component begins to dominate the profile.
β = 4 is the critical value where the velocity maximum coincides with the
bottom streamline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 3.7: The Winters and Armi (2014) background velocity profiles at different down-
stream locations for the optimally controlled stratified downslope flow. . . 85

Figure 3.8: Normalized eigenfunctions (a)|û(z)| and (b)|ŵ(z)| for the profiles representa-
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ABSTRACT OF THE DISSERTATION

The dynamics of upstream blocking and hydraulic control in continuously stratified flow
past topography

by

Arjun Jagannathan

Doctor of Philosophy in Oceanography

University of California San Diego, 2018

Kraig B. Winters, Chair
Laurence Armi, Co-Chair

Upstream flow blocking is a distinguishing feature of stratified flows incident on dynami-

cally tall mountain ridges. Blocking occurs as a consequence of the upstream propagation of long

internal wave modes that are excited at the obstacle and which permanently modify the oncoming

flow. When the ridge is infinite, the fluid upstream and below a ‘blocking level’ is brought to

stagnation. The resulting across-crest asymmetry combined with volume transport constraints

causes the overflowing layer to accelerate and develop into a hydraulically controlled flow. The

processes leading to the establishment of upstream blocking and hydraulic control occur on a

xv



characteristic short time scale. In the interior of a long, but finite ridge, a hydraulically controlled

overflow similarly develops on a short time scale, while over a longer time scale, low-level

horizontal flow splitting leads to the establishment of an upstream layer-wise potential flow

beneath the blocking level. We demonstrate through numerical experiments that for sufficiently

long ridges, crest control and streamwise asymmetry are seen on both the short and long time

scales. We then proceed to quantify the overflow using the framework of stratified hydraulics.

In a separate study, we investigate the dynamic stability of stratified flow configurations

characteristic of blocked, topographically controlled downslope flows. The essential character

of the base flow profiles considered is determined by the analytical solutions of Winters and

Armi (2014). Their condition of optimal control necessitates a streamline bifurcation above

the blocking location, which then naturally produces a stagnant isolating layer overlying an

accelerating downslope flow. We show that the inclusion of the isolating layer is an essential

component of the stability analysis. The spatial stability problem is also examined in order to

estimate the downstream location where finite amplitude features might manifest in streamwise

slowly-varying flows over topography.

Finally, to expose the dynamical connection between topographic control and wave

excitation aloft, we consider flow over dynamically tall ridges under stratification conditions

that feature a strong density jump above crest level. We show that the height of the bifurcating

streamline depends sensitively on the location of the step. Further, the question of whether or

not the density interface remains flat or plunges across the crest as part of the hydraulically

controlled flow is found to be directly related to the requirement of maintaining a subcritical

overflow upstream. We also demonstrate that the top of the density interface acts as a ‘virtual

topography’ for the flow aloft and fundamentally controls the amplitude of the wave response

there.

xvi



Chapter 1

Introduction

1.1 Background

Situations where the density of a fluid changes with height are ubiquitous in geophysical

and engineering flows. Both the ocean and atmosphere are stably stratified media in which the

density slowly increases (decreases) with depth (height). Industrial applications where stratifica-

tion plays an important dynamical role include natural ventilation (Linden, 1999), atmospheric

boundary layer flow through wind turbines (Chamorro and Porté-Agel, 2010; Porté-Agel et al.,

2011) and pollutant dispersion in turbulent buoyant plumes (e.g. Kaye, 2008). Flows whose dy-

namical behavior is fundamentally driven by small density gradients are also known as buoyancy

driven flows. In the absence of turbulent mixing and dissipation, the streamlines of buoyancy

driven flows overlap with the lines of constant density, called as isopycnals.

As a density stratified flow encounters topographical features, a wide range of dynamical

possibilities arises. Internal gravity waves are launched as the flow impinges on the barrier; for a

sufficiently tall obstacle, the isopycnals may steepen and overturn leading to irreversible turbulent

mixing; the fluid can flow both over the barrier and around it, with the characteristics of each

of these flow components depending on the stratification strength, background flow speed and
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obstacle height. Under certain conditions, the flow of a stratified fluid over an obstacle can also

develop into an asymmetric hydraulically controlled flow, analogous to the flow of homogeneous

fluid over an obstacle such as water over a dam. The primary focus of this dissertation is on such

topographically controlled stratified flows.

Understanding and quantifying the response of stratified flows to topography is an impor-

tant problem in oceanography and atmospheric science. Some applications are, parametrizing

turbulent downstream mixing and surface form drag for global circulation models (Epifanio and

Durran, 2001), forecasting downslope windstorm events and orogaphic precipitation (Miglietta

and Buzzi, 2001), predicting pollutant dispersal (Hughes et al., 2009), and aviation safety near

mountainous terrain. Another issue that has received renewed attention is the role of gusts

associated with downslope winds and mountain gap flows in spreading and exacerbating wildfires

(e.g. Huang et al., 2009; Cao and Fovell, 2016).

2D Stratified flow over obstacles can be broadly divided into three regimes based on the

topographic Froude number Fr =V∞/Nhm, where V∞ is the uniform speed far upstream, hm is

the mountain height and N is the stratification, assumed constant and defined as N =
√
− g

ρ0

dρ

dz ,

where g is the acceleration due to gravity, ρ0 is a constant reference density and ρ(z) is the

vertical profile of density. When Fr� 1, the flow is sufficiently energetic for all of the upstream

fluid to crest the obstacle. Paradoxically, the flow in this energetic regime is linear and thus

amenable to theoretical treatment (e.g. Queney, 1948; Baines, 1998). Depending on the ratio

of the obstacle half-width σy to the intrinsic length scale V∞/N, the response in this case ranges

from a potential flow when σy�V∞/N to a purely vertically propagating linear mountain wave

for a wide obstacle, σy�V∞/N.

In the opposite limit of dynamically tall ridges, with hm� V∞/N or Fr� 1, the flow

is fundamentally non-linear and upstream influence strongly influences its character. Standing

long wave modes of vertical scale hm and group velocity O(Nhm/π) are now able to propagate

upstream against the oncoming flow. These disturbances are also known as columnar modes
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and they permanently alter the flow configuration upstream of the ridge. The most important

consequence of upstream influence is that the fluid below a height δ from the crest is brought to

stagnation. This is known as flow blocking and can also be inferred from energetic considerations

as follows. A fluid particle of density ρ0 will not be able to surmount a barrier of height hm if

1
2

ρV 2
∞ < g

∫ hm

0
(hm− z)

dρ

dz
dz. (1.1)

This suggests that upstream blocking occurs whenever V∞ < Nhm (Fr < 1), and that the blocking

scale δ =V∞/N, . However, because of the neglect of the pressure term, this is a heuristic criterion

rather than a precise one. The actual blocking characteristics are sensitive to factors like ridge

geometry (Baines, 1987) and the dynamics of the overflow (Jagannathan et al., 2018). Hunt et al.

(1997) propose that, in general, the blocking scale is O(V∞/N) rather than V∞/N.

The across-crest asymmetry induced by upstream influence promotes the formation of a

hydraulically controlled downslope flow above the low-level blocked fluid. Using the framework

of stratified hydraulics, Winters and Armi (2014) have recently developed analytical solutions

for these controlled downslope flows, which include the effects of upstream blocking. The key

features of the solution are a parabolically sheared profile for the upstream overflow above the

blocking level z = hm−δ, and a streamline bifurcation that produces an asymmetric hydraulically

controlled downslope flow capped by a ‘dead’ region of well-mixed, nearly stagnant fluid known

as the isolating layer. Crucially, by coupling a condition of optimal crest control with a kinematic

constraint for volumetric layer transport, the theory predicts the blocking scale δ and the height

of the bifurcating streamline and thus, in effect, completely determines the flow solution within

the lowest overlflowing layer.

In the intermediate Fr = O(1) regime, the flow is weakly non-linear and is characterized

by progressive steepening of isopycnals above the crest, with decreasing Fr. Overturning

eventually occurs at some critical Froude number Frcritical that depends on the obstacle shape;
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for e.g., Frcritical ≈ 1.17 for a hydrostatic ‘Witch of Agnesi’ obstacle (Clark and Peltier, 1984)

. The flow solution for these 2D O(1) Fr flows up to the onset of isopycnal overturning can be

analytically obtained by solving the linearized version of Long’s equation (Long, 1955). The

loss of static stability that occurs as isopycnals overturn above the crest triggers transition to a

controlled downslope flow state (Baines, 1998) for which Long’s solution is no longer applicable.

Long’s (1955) solution assumes that the incident velocity has a uniform vertical profile which

is unaffected by the presence of the ridge. Smith (1985) extended this approach to construct a

theory for downslope windstorms by using Long’s equation in conjunction with a streamline

bifurcation that is motivated by hydraulic theory. However, this solution also does not factor the

upstream influence of the ridge. Upstream blocking effects start to become important at some

value of Frblocking < 1, with the fraction of blocked fluid beneath the crest increasing as Fr drops.

When Fr < Frblocking but not asymptotically smaller than 1, the flow exhibits features of both

the non-linear Fr� 1 regime described by Winters and Armi (2014) as well as the linear wave

regime Fr� 1. No analytical solutions exist for this case.

Strongly stratified flow past finite ridges excites upstream propagating columnar modes

perpendicular to the ridge as well as oblique modes radiated from the edges. The former are

responsible for upstream flow blocking while the latter promote horizontal flow deflection. In the

limit Fr→ 0 , Drazin (1961) showed that, to leading order, the flow beneath the crest of a finite

obstacle is a layer-wise horizontal potential flow. However, in the simulations of (Smolarkiewicz

and Rotunno, 1989), this solution was realized for Fr <= 0.055, which led them to postulate

that it is valid only for values of Fr much smaller than 0.1. Typical Fr values for geophysical

situations where upstream influence is significant range between 0.1 and 0.5. In this parameter

space, Smolarkiewicz and Rotunno (1989) found that the upstream flow remains potential-like,

but a pair of low-level vertically oriented lee vortices forms on the downstream side. Two

different mechanisms have been proposed to explain the formation of these lee-vortices. While

Smolarkiewicz and Rotunno (1989) suggests inviscid baroclinic production as the source of
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vorticity, (Schar and Durran, 1997) ascribes it to potential vorticity generation at sites of isopycnal

overturning and subsequent turbulent internal dissipation.

A longstanding problem in the study of stratified flow past mountains is the effect of

low-level lateral flow splitting on the flow component that crests the obstacle. Smith (1989)

identified four broad flow regimes based on the Froude number of the flow and ridge aspect-ratio

σx/σy (Fig. 1.1), where σx and σy are respectively the cross-stream half-length and along-stream

half-width of the ridge. In high Fr flows, regardless of the ridge aspect ratio, only linear mountain

waves are excited. When Fr is around 1 and the aspect ratio large, splitting effects are negligible;

most of the fluid overflows the crest and isopycnals overturn aloft. At moderate values of the

aspect ratio and Fr < 1, low-level flow splitting occurs and lee vortices form. The parameter

regime that is the dynamically richest one is when 0.1≤ Fr ≤ 0.5 and σx/σy� 1. In this case,

the flow exhibits all three classes of phenomena, namely wave overturning, flow splitting and

lee vortices. However, the precise regime boundaries demarcating this case from the purely

wave-breaking and flow splitting ones are unknown.

As in the 2D case, isopycnal overturning occurs over the crest whenever Fr drops below a

critical value, leading to irreversible turbulent mixing and dissipation. In the literature (e.g. Smith,

1989; Epifanio and Durran, 2001; Bauer et al., 2000), this process is often described in terms

of a breaking mountain wave. A drawback of this interpretation is that it does not allow for an

analytical prediction of the height where overturning first occurs. From numerical simulations

(e.g. Clark and Peltier, 1977) and laboratory experiments (e.g. Baines and Hoinka, 1985), it is

known that isopycnal overturning signals transition to a non-linear hydraulically controlled state,

characterized by a thinning, accelerating downslope flow beneath a wedge of stagnant fluid in the

lee. Therefore another interpretation of isopycnal overturning is that it is the mechanism by which

an imperfect streamline (isopycnal) bifurcation forms, thereby facilitating the development of an

asymmetric controlled flow across the crest. This latter interpretation is the one that we adopt

throughout the rest of the dissertation. The advantage of this hydraulic view is that non-linearity
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Figure 1.1: Regime diagram for three dimensional, stratified flow past a finite ridge of along-
stream half-width σy and cross-stream half-length σx in the hydrostatic limit hm/σy� 1 (adapted
from Smith, 1989). The flow behavior is controlled by two independent dimensionless param-
eters: the aspect ratio σx/σy and the topographic Froude number Fr. Four distinct classes of
phenomena are identifiable in these flows - a) Linear mountain waves, b) wave-breaking, c)
flow-splitting and d) lee vortices.

is included at leading order, which is consistent with the observed highly non-linear character of

these flows. Provided one can estimate the volume transport within the overflowing layer, the

stratified hydraulic framework then allows for a prediction of the bifurcation height, the peak

speed of the overflow, and thus in effect, a complete quantification of its characteristics.

Using numerical simulations, in this dissertation, we explore the applicability of hydraulic

theory to the study of low Fr stratified flows over and around long mountain ridges in different

idealized settings. The underlying philosophy behind our approach is as follows: The natural

across-crest asymmetry in blocked low Fr flows is conducive to the formation of an asymmetric,

crest controlled overflow. Consequently, the problem of predicting the overflow characteristics is

essentially one of correctly estimating its volume transport. To estimate the transport correctly,

upstream effects must be accurately quantified. Accordingly, a primary focus of this study is

on understanding the dynamics and quantifying the spatial and temporal scales involved in the

establishment of upstream flow blocking, lateral flow splitting and hydraulic control. An offshoot

problem pertaining to the dynamic stability of blocked, hydraulically controlled downslope flows
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is then investigated numerically through a linear stability analysis. Finally, we consider the effect

of a strong density jump above crest level on low Fr flow over an infinite ridge, focussing in

particular on how this influences the height of the bifurcating streamline and the connection

between the hydraulically controlled flow in the lowest overflowing layer and wave excitation

further aloft.

1.2 Outline of the dissertation

This dissertation is composed of three research chapters. Chapter 2 investigates the nature

of low Fr stratified flow over and around long ridges. The short and long time scales governing

the development of the hydraulic overflow and horizontal flow splitting respectively are elucidated

in terms of the propagation of upstream influence of the ridge through long columnar modes. We

show that in flows where upstream influence is significant and the cross-stream to along-stream

aspect ratio of the ridge is large, the blocking depth, overflow thickness and hence the height of the

bifurcating streamline can be predicted by coupling a hydraulic control condition with a kinematic

constraint for volume transport. Across-crest asymmetry and hydraulic control persist even

after the establishment of the low-level splitting flow and the 2D stratified hydraulic framework

of Winters and Armi (2014) provides a good quantification of the overflow characteristics. A

synthesis of concepts from potential flow theory and stratified hydraulics is also shown to describe

low Fr flow over non-uniform ridge shapes well.

Chapter 3 describes a study of the stability properties of blocked, topographically con-

trolled downslope flows. These flows are known to be unstable and gusty in the lee (Lilly, 1978),

but previous linear stability analyses (e.g. Smith, 1991) underpredict both the onset and strength

of the instability. Taking the analytical flow solutions of Winters and Armi (2014) as the base

flow profiles, a streamwise local linear stability analysis is carried out. The upstream flow profile

is shown to be stable, having Richardson number Ri > 1/4 everywhere. Further downstream,
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the overflow becomes unstable owing to increasing shear at its upper flank where it meets the

isolating layer. The time period and growth characteristics of the unstable mode agree well with

the values reported by Lilly (1978) and Scinocca and Peltier (1989) while the spatial growth rates

computed near the curve of marginal stability are consistent with the values inferred from the

field observations of Farmer and Armi (1999) and numerical simulations of Winters (2016).

Chapter 4 deals with the effect of a strong density step located above crest level on blocked,

topographically controlled flows. The height of the bifurcating streamline and the shape of the

overflow are shown to depend sensitively on the location of the step relative to the bifurcation

level in the uniformly stratified case. Further, the question of whether the density step does or

does not plunge across the crest as part of the controlled overflow is fundamentally connected to

the requirement of maintaining subcriticality upstream. The top of the density interface acts as as

a virtual topography for the flow aloft and determines the amplitude of the vertically propagating

wave excited above the overflow.
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Chapter 2

Stratified flows over and around long

dynamically tall mountain ridges

2.1 Introduction and background

The study of stratified flow past topography is of practical interest in atmospheric science

and oceanography. Applications include parameterizing surface drag and turbulence in the

lee of ridges, forecasting orographic precipitation and predicting the occurrence of downslope

windstorm events. For a recent review of atmospheric applications, see Chow et al. (2012).

While flow over dynamically short obstacles is fairly well described in terms of linear theory (e.g.

Queney, 1948; Smith, 1980; Durran, 1990), flow over dynamically tall obstacles is fundamentally

non-linear in character. Here dynamically tall implies a mountain height larger than the intrinsic

height scale obtained from the upstream flow speed and stratification.

Further, when the cross-stream length of the ridge is large compared to its along-stream

width, flows ‘over’ the crest and ‘around’ the sides develop over disparate time scales. Here, we

consider long and dynamically tall mountain ridges and quantify the evolution of the overflow as

the low level fluid upstream splits and flows laterally around the sides of the obstacle.
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Energetics arguments (Sheppard, 1956) show that, for a sufficiently slow flow or strong

stratification, much of the air upstream and below the ridge crest remains blocked. Upstream

blocking has been observed both in 2D laboratory towing experiments (Baines, 1977; Baines and

Hoinka, 1985) as well as in atmospheric flow over mountains, e.g. in flow over the Alps by Armi

and Mayr (2007). The dynamical aspects of these flows are reviewed by Jackson et al. (2013).

When the flow is strictly two dimensional, blocking is accompanied by the formation of

an overlying flowing layer that plunges down the obstacle as a non-linear, hydraulically controlled

downslope flow. Continuity and mass conservation require that the flow within this layer makes

up for the volume transport deficit caused by upstream flow stagnation. Winters and Armi (2014)

show using non-linear stratified hydraulic theory that, for an infinite obstacle with upstream

blocking, the steady state optimally controlled flow has an upstream velocity profile that is

parabolic in shape and this flowing layer thins and accelerates as it plunges down the lee slope. A

schematic of this flow is shown in Fig. 2.1.

One might ask whether hydraulic dynamics persist when the cross-stream ridge length

is finite but large. In this case, the upstream fluid that is blocked when the ridge is infinite

has energetically free horizontal pathways to pass around the obstacle. The validity of a two

dimensional treatment of flow past finite obstacles was first raised by Brighton (1978) in the

context of laboratory towing experiments. To illustrate the underlying dynamics, we perform

numerical experiments in which a uniform upstream flow with speed V∞ and stability N approaches

a mountain ridge of height hm. We focus on dynamically tall and long ridges, characterized

by low topographic Froude number, Fr =V∞/Nhm� 1 and large cross-stream to along-stream

aspect- ratio, β = σx/σy� 1. β may also be regarded as a scaled ridge length. Fig. 2.2 shows a

schematic of the flow configuration.

Fundamental inner flow scales emerge naturally from this configuration. Energetics

considerations (e.g. Sheppard, 1956) suggest that the upstream flow remains blocked below a

depth δ ≈ V∞/N from the crest. We refer to δ as the blocking scale. When Fr� 1, δ� hm
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Figure 2.1: Schematic of low Fr controlled asymmetric overflow over an infinite ridge. The far
upstream flow configuration is characterized by a linear density profile and uniform flow speed.
The fluid upstream and below a depth δ from the crest is blocked. y =−yb is the streamwise
coordinate of the blocking location and y = yb is the symmetric downstream location. Q denotes
the volume transport within the parabolic overflow, which matches the far upstream transport as
shown. The thickness H of the overflow is coupled to its transport Q as Q = NH2/π (Winters
and Armi, 2014). Additionally, on either side of the crest, the vertical plunge η(y) of the top of
the overflow is uniquely mapped to h(y)−h(−yb), the height of the topography relative to the
blocking point (see also section 2.3 and Appendix A). The streamwise computational boundaries
are y =−Ly/2 and y = Ly/2. At the upstream boundary a radiation condition is prescribed (see
section 2.2.2) which allows upstream propagating waves to escape the domain without reflection.
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Figure 2.2: Flow schematic for low Fr flow past a long but finite ridge of height hm, along-
stream half-width σy and cross-stream half-length σx with β = σx/σy� 1 that falls steeply to
ground level at the lateral ends within a length scale σ∗x � σx. The far upstream flow speed and
stratification are uniform and equal V∞ and N respectively with Fr =V∞/Nhm� 1. Figure not
to scale.
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constitutes an inner vertical length scale for the overflow. The flow below the blocking level

z = hm− δ is either blocked or splits around the obstacle laterally, suggesting a second inner

length scale σyδ
= O(Fr σy), the half-width of the obstacle at the blocking level. The fluid above

the blocking level has sufficient kinetic energy to flow ‘over’ the ridge. Thus βδ = σx/σyδ
is an

effective scaled ridge length for the flow component that crests the obstacle. The excursion time,

tδ =
σyδ

V∞

(2.1)

then follows as a natural inner time scale. Note that the inner time scale can also be rewritten

as tδ = O(Fr σy/V∞) = O(
σy

Nhm
). This suggests another interpretation of tδ as the time taken by

columnar internal wave modes (c.f. Baines, 1987) of vertical scale hm and speed O(Nhm/π)

to propagate an upstream distance σy. These columnar modes promote flow blocking below

z = hm−δ and an accelerated overflow across the crest.

Beneath the blocking level, the upstream flow eventually evolves to a layer-wise horizontal

potential flow (e.g. Drazin, 1961). Thus the half-length σx of the ridge is the appropriate outer

length scale. Assuming that flow splitting is also accomplished by columnar internal wave modes

of vertical scale hm that communicate the finite extent of the ridge to a distance of about σx

upstream,

tβ =
σx

Nhm/π
, (2.2)

is an outer time scale for the low-level splitting flow. A summary of these key dimensional scales

and non-dimensional parameters is provided in Table 2.1.

A factor that influences the fate of plunging downslope flows is the presence or absence of

a dense, cold pool downstream of the crest. In low Fr flow past finite ridges, the low-level dense

fluid in the lee is retained and recirculates slowly. This manifests as a pair of vertcically oriented

lee vortices that have been observed in numerical simulations (e.g. Smolarkiewicz and Rotunno,

1989) and laboratory experiments (Hunt and Snyder, 1980). As we will see, the retention of a
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Table 2.1: Summary of important dimensional inner and outer variables and dimensionless flow
parameters.

Dimensional outer parameters
V∞ Basic flow speed [m/s]
N Background stratification [1/s]
hm Ridge height [m]
σy Streamwise ridge half-width [m]
T = σy/V∞ Outer excursion time scale [s]
σx Cross-stream ridge half-length [m]
σ∗x Length of lateral end/connecting sections [m]
tβ = σx/(Nhm/π) Outer flow-splitting time scale [s]

Dimensional inner parameters based on the ‘Blocking scale’
δ≈V∞/N Blocking scale [m]
hm−δ Blocking level [m]
σyδ

Streamwise ridge half-width at blocking level [m]
tδ = σyδ

/V∞ Inner excursion time scale [s]
Dimensionless outer quantities

Fr =V∞/Nhm� 1 Topographic Froude number
β = σx/σy Scaled ridge length
t ′ = t/T Scaled outer excursion time
t ′
β
= t/tβ Scaled outer splitting time

Dimensionless inner quantities
Frδ =V∞/Nδ≈ 1 Overflow Froude number
βδ = σx/σyδ

Scaled dynamic ridge length for the overflow
t ′
δ
= t/tδ Scaled inner time
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cold pool inhibits plunging in the lee.

Drazin (1961) developed asymptotic solutions for flows with Fr� 1 in which, to leading

order in small Fr, the steady state is a layer-wise potential flow at all depths below the blocking

level. However, this steady asymptotic solution doesn’t give insight into the mechanisms or time

scales involved in its establishment, nor does it contain a vortical wake structure. Epifanio and

Durran (2001) considered long ridges with β up to 12 focussing their attention on the unblocked

flow regime, Fr ≥ 1 for which βδ = β. Flows with Fr < 1 over obstacles with O(1) horizontal

aspect ratios have been studied by a number of authors (e.g. Smolarkiewicz and Rotunno, 1989;

Hunt and Snyder, 1980; Hanazaki, 1988). In this regime, splitting flows are established quickly;

consequently 2D solutions are not very useful in characterizing them. Previous investigations

of low Fr flow past elongated ridges have been confined to moderate values of β ≤ 5 (Bauer

et al., 2000; Ólafsson and Bougeault, 1996). The linear regime diagram of Smith (1989) provides

some guidance as to the Fr and β ranges over which one might expect ‘wave-breaking’ and

‘flow splitting’ but as pointed out by Smith (1989) and others (Bauer et al., 2000; Ólafsson and

Bougeault, 1996) there are uncertainties associated with the regime boundaries for low Fr and

large β.

To investigate the extent to which flow features characteristic of the infinite ridge solution

such as crest control and streamwise asymmetry are seen in low Fr flows past long but finite

ridges, we performed a suite of numerical experiments. We first consider a Fr = 0.16 flow over

an infinite ridge and demonstrate that, by prescribing a uniform outflow with a radiation condition

upstream, the flow rapidly evolves towards the optimally controlled downslope flow of Winters

and Armi (2014). We then consider the same flow over a finite ridge with steep ends for which

β = 30. We show that the streamwise flow near the ridge center is well described as an infinite

ridge overflow for a finite time after which it starts to diverge owing to splitting effects. We

quantify the evolution by measuring the volume transport in the overflow as a function of time.

Over longer O(tβ) time scales, we show that, by reformulating the overflow transport to account
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for lateral flow splitting, the late-time flow ‘over’ the ridge can still be described by stratified

hydraulic theory. Finally, considering an example of a ridge with an abrupt change in height,

we demonstrate how these general principles can be extended to predict the overflow across

non-uniform ridges.

2.2 Modelling approach

We consider three dimensional, non-rotating, incompressible flow, with free-slip boundary

conditions on the ridge surface. The numerical experiments are performed using the spectral

large eddy solver described in Winters and de la Fuente (2012), with the bottom topography

incorporated as a smooth immersed boundary. The goal is to capture the essentially inviscid

dynamics at the large scales of the flow. To this end, we employ a sixth order hyperdiffussion

operator to explicitly diffuse only the motions near the smallest grid scale. At rest, the fluid is in

hydrostatic balance everywhere, with

∂p0(z)
∂z

=−ρ0(z)g (2.3)

where p0(z) is the static pressure, ρ0(z) is the initial density profile and g is the acceleration

due to gravity. The fluid is stably stratified with uniform buoyancy frequency N and a density

difference ∆ρ across the total fluid depth. Perturbing about this rest state, for the flow in the

domain of interest, the non-linear equations of motion in the Boussinesq limit are
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∂~u
∂t

+~u ·∇~u+g
ρ′

ρ0
k̂ =− 1

ρ0
∇p′+ν

∗D~u, (2.4a)

∂ρ

∂t
+~u ·∇ρ = κ

∗Dρ, (2.4b)

∇ ·~u = 0. (2.4c)

Here,~u is the three dimensional velocity vector and k̂ is the unit vector in the z direction.

ρ0 is a constant reference density, ρ′ and p′ are the perturbation density and pressure respectively

and ρ is the total density,

ρ = ρ
′+ρ0(z). (2.5)

The topography slopes gently in the streamwise direction with hm/σy = 1/6, rendering the

upstream pressure approximately hydrostatic. Note however that we do not invoke the hydrostatic

approximation and are thus able to capture O(1) aspect-ratio shear induced overturning motions

downstream.

D is a sixth order hyperdiffusion operator,

D ≡
(

∂6

∂x6 +
∂6

∂y6 +
∂6

∂z6

)
(2.6)

and ν∗,κ∗ are hyper- viscosity and diffusivity respectively, which are chosen such that grid scale

motions decay to exp(−1) their value within a dissipation time scale Tdiss = 5∆t, where ∆t is the

model time step.

2.2.1 Experimental setup

In all our experiments, the vertical height Lz of the domain is taken to be six times the

maximum obstacle height. The flow is rapidly accelerated from rest, with the inflow conditions
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being ramped up to their desired values over 10∆t.

Infinite ridge experiment

We consider a flow with topographic Froude number Fr = 0.16 incident on an infinite

Gaussian ridge (β = ∞) centered at y = 0,

h = hm exp
(
− y2

σy2

)
. (2.7)

Given Fr, the half-width at blocking depth, σyδ
is found by substituting h = hm− δ ≈

hm−V∞/N = hm(1−Fr) in the LHS of Eq. (2.7), giving for Fr = 0.16,

σyδ
≈ σy/2.5. (2.8)

We set σy = 6hm and the domain width Ly = 16.7σy, with grid spacing ∆y = 0.038σyδ

and ∆z = 0.1δ. With respect to the inner time scale tδ, we declare that the flow has reached

quasi-steady state when its bulk properties, namely overflow transport, thickness and peak speed

at the blocking location deviate by less than 1% over 5tδ. The flow reached quasi-steady state by

t = 31.3tδ, and the run was terminated at t = 47.6tδ .

Finite ridge experiment

For the finite ridge configuration (see Fig. 2.2), Fr is again set to 0.16 and the ridge height

is specified as,

h =

[
h1 +0.5∆h

(
1+ tanh

(σx−|x|)
σ∗x

)]
exp

(
− y2

σ2
y

)
, (2.9)

where h1 = 0, ∆h = hm and β = σx/σy = 30. The ends are steep, with σ∗x = σx/120. We exploit

the symmetry of the flow configuration to compute the flow on the half domain x ≥ 0 only,

with x = 0 treated as a symmetry boundary. To capture lateral flow splitting, we perform the
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Table 2.2: Numerical implementation details for each of the flow experiments.

Infinite ridge (β = ∞) Finite ridge (β = 30) Two-level ridge

Ridge configuration
σy 6hm 6hm 6(h1 +∆h)
σx - 30σy 30σy

σ∗x - 0.25σy 0.25σy

Computational domain
Ly 16.7σy 140σy 140σy

Lx/2 - 4.7σx 4.7σx

Lz 6hm 6hm 6(h1 +∆h)
Grid configuration
∆y 0.038σyδ

0.125σyδ
0.23σyδ

∆x - 0.018σx 0.009σx

∆z 0.1δ 0.1δ 0.2δ

Inflow/outflow sponge layer thickness 52∆y 135∆y 74∆y
Upper sponge layer thickness 0.3Lz 0.3Lz 0.3Lz

Time step
∆t 1.6×10−4tδ 8.9×10−4tδ 1.1×10−3tδ

experiment in a large horizontal domain with inflow and outflow channel lengths set to values

slightly bigger than 2σx and the lateral half length, Lx/2 set to 4.7σx. The boundary condition at

the lateral boundary x = 4.7σx is approximated as no-normal-flow, u = 0 along with zero normal

gradients on streamwise velocity, pressure and density.

The grid resolution is ∆y = 0.125σyδ
,∆x = 0.018σx and ∆z = 0.1δ and the run was

terminated at t = 48.9tδ. A summary of the computational details for each experiment is given in

Table 2.2.

2.2.2 Near-boundary forcing

A sponge layer of thickness Lz/3 is imposed at the upper boundary through a Rayleigh

damping term that absorbs upward radiating waves. Inflow and outflow boundary conditions are

implemented as sponging terms that relax to the specified target values over O(10−100)∆y. The

outflow boundary condition is uniform withdrawal at speed V∞.

Low Fr flows over topography excite internal waves that propagate upstream and alter the
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oncoming flow. So specifying a uniform inflow condition at the upstream boundary will cause

wave reflections that may contaminate the solution in the domain interior, particularly if the inflow

channel is not very long. For this reason we apply a radiation condition upstream that maintains

the depth integrated transport while allowing the vertical profile of the inflow to evolve in time as

upstream propagating waves escape the domain. This is implemented through an iterative scheme

that measures the upstream influence at an intermediate location between the ridge center y = 0

and inflow boundary y = −Ly/2. This information is then utilized in a dynamically evolving

boundary condition that is imposed via relaxation,

vi+1
−Ly/2(x,z) = αvi

−Ly/2(x,z)+(1−α)vy∗(x,z), (2.10a)

and similarly for u and ρ. Here, i is the time step, y∗ is the intermediate position

(−Ly/2 < y∗ < 0) where the flow is measured and α is a weighting parameter. In the finite

ridge case, a constraint on the choice of y∗ is that it is at least a distance 2σx away from the

obstacle. The physical basis for the scheme is that the energy of the upstream propagating signals

is primarily contained in columnar internal wave modes (c.f. Baines, 1987), having vertical scale

hm and group velocity O(Nhm/π). The parameter α is therefore chosen as follows. We determine

the number of time steps n∗ it takes for a columnar mode with group velocity 4Nhm/π wave to

travel from y∗ to the upstream boundary. Then at the time step i+n∗, the imposed boundary value

vi+n∗
−Ly/2(x,z) derives 90% of its information from the measured profile at time step i, vi

y∗(x,z). That

is,

1−α
n∗ = 0.9 (2.11)

We found this scheme to be robust for different choices of α. For example, changing the

RHS of Eq. (2.11) from 0.9 to 0.8 produced a negligible change in the bulk properties of the
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flow. The advantage of this scheme is that it allows for a much shorter inflow channel length than

would be possible with a more traditional approach of imposing a uniform inflow condition and a

deep sponge layer to radiate upstream disturbances. We have performed a test run for the infinite

ridge case using the latter approach and verified that the results match the ones obtained using the

iterative scheme above.

2.3 A brief overview of the Winters and Armi (2014) analysis

Winters and Armi (2014) developed semi-analytical solutions for hydraulically controlled

flow over an infinite ridge. The solution begins by considering a uniform stratification N and

jet-like upstream flow profiles of specified thickness H overlying a stagnant blocked layer, as

shown in Fig. 2.1. Note that this approach is different from the hydraulic treatment of Smith

(1985) in that it includes the effect of upstream blocking. Asymmetry is triggered by imposing

a streamline bifurcation upstream at the top of the jet-like flow. The downslope flow below the

lower branch of the bifurcating streamline is then calculated through integrals of Bernoulli’s

equation. For a chosen upstream wind profile, the bottmmost streamline which represents the

terrain surface is thus determined by the dynamics rather then being imposed a priori.

Among different jet-like upstream flow configurations considered, it was found that

a parabolically sheared velocity profile with a velocity maximum (3/2)NH/π and associated

volume transport NH2/π was optimal in the sense that it maximized the blocking scale δ while

minimizing the kinetic energy of the flow.

Note that, although the overflow thickness H is assumed a priori in constructing the

optimal solution, H and the transport Q of the overflow are in fact coupled through the control

relationship,

Q = NH2/π. (2.12)

As we will see below, predicting H from Eq. (2.12) requires an estimation of the overflow
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transport Q. Winters and Armi (2014) also found that the blocking scale is dynamically related to

the overflow thickness as δ = H/8.

An important property of the solution is that, on either side of the crest, it generates a

unique one-to-one mapping between the height by which the bifurcating streamline has dropped

and the terrain height relative to the blocking level. It is thus a valid solution for arbitrary terrain

shapes (Appendix A). As in all hydraulic models, the solution of Bernoulli’s equation relies on the

hydrostatic approximation and thus the precise shape of the bifurcating streamline is unimportant

as long as its slope is small. Upstream of the blocking location, the terrain shape is arbitrary and

is not part of the solution.

Finally, internal hydraulic jumps are not included in this model and so the bifurcating

streamline is perpetually plunging over an apparently ‘bottomless’ terrain. However for real

ridges, the downslope flow must return to a subcritical state at some location downstream of the

crest. The Winters and Armi (2014) solutions are formally valid until this location.

2.4 Diagnostics of the overflow

Volume transport conservation (see also Fig. 2.1) requires that, at the blocking location,

the transport within the overflow between z = hm−δ and z = hm−δ+H match the far upstream

transport below the bifurcating streamline. That is,

NH2/π =V∞ (hm−δ+H) . (2.13)

Substituting δ = H/8 in Eq. (2.13) yields a quadratic for H, with coefficients given in terms of

the outer dimensional parameters hm, N and V∞,

NH2/π =V∞ (hm +7H/8) . (2.14)

22



Note that H obtained by solving the quadratic Eq. (2.14) is the analytical prediction of the

overflow thickness in the infinite ridge limit. When the ridge is finite, the fluid below z = hm−δ

can escape around the sides and the overflow transport and thickness shrink accordingly. To

quantitatively compare this overflow with the infinite ridge prediction, we define the volume

transport per unit length in a layer of height H starting at the blocking level z = hm− δ and

measured at the upstream blocking location y =−yb (indicated in Fig. 2.1),

Q′(x, t) =
hm−δ+H∫
hm−δ

v(x,−yb,z, t) dz, (2.15)

For an infinite ridge, the overflow transport is independent of x and Q′(x, t) reduces to

Q′(t). In this case we expect upstream blocking to cause an early surge in the overflow transport,

with Q′(t) quickly approaching Q. For a long but finite ridge, we anticipate that Q′(x, t) will

approach Q at early times before it starts decreasing as transport is lost to the low-level lateral

splitting flow.

As a quantitative measure of asymmetry, we compare the maximum speed at the down-

stream location y = yb (indicated in Fig. 2.1) to the reference speed V∞. An additional measure

of asymmetry is the plunging depth pd(x, t), defined as the depth from the ridge crest to which

the streamline originating at the upstream blocking level z = hm−δ, plunges down the lee slope

before it separates.

2.5 Results

We will evaluate the temporal evolution of the diagnostics developed in section 2.4. For a

long ridge (β� 1), the inner excursion time scale tδ is much shorter than the outer flow splitting
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time scale tβ. Accordingly, we define a scaled inner time

t ′
δ
= t/tδ (2.16)

to quantify the near-crest evolution of the overflow and a scaled outer splitting time

t ′
β
= t/tβ (2.17)

to quantify the development of the low-level horizontal splitting flow.

Upstream blocking, streamwise across-crest asymmetry, overturned isopycnals and downs-

lope flow acceleration will be visible in planar vertical sections. We will also show images of

horizontal sections which will reveal the establishment of low-level flow-splitting.

2.5.1 Infinite ridge (β = ∞)

We first present results for flow over an infinite ridge with βδ = β = ∞ and Fr = 0.16.

The blocking scale for this flow is δ≈V∞/N = 0.16hm. Thus most of the air upstream and below

the ridge crest is blocked.

Fig. 2.3a,b show that with respect to the inner time scale, the upstream flow rapidly

evolves to that predicted by 2D theory. By t ′
δ
= 2, the velocity profile at the blocking location

already begins to approach the analytically predicted parabolic profile of Winters and Armi (2014).

By t ′
δ
= 11.7, the overflow has evolved further towards a parabolic shape and both its peak speed

and volume transport are within 10% of the analytically predicted values. Later, at t ′
δ
= 31.1,

the peak speed matches the prediction exactly. We remark that the dynamical prediction for the

blocking scale δ obtained from solving for H in Eq. (2.12) yielded a value that is about 25%

smaller than the initial scaling estimate V∞/N.

The time history of vmax(yb)/V∞ is also shown in Fig. 2.3b (in red) along with the Winters
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(b)

(a)

Figure 2.3: (a) Vertical profiles of the streamwise velocity at the blocking point y ≈ −yb at
t ′
δ
= 2.0,11.7 and 31.1 along with the analytical prediction of Winters and Armi (2014) (plotted

in grey) for Fr = 0.16 flow over an infinite ridge. H is the Winters and Armi (2014) prediction
of the overflow thickness. (b) Upstream volume transport Q′(t ′

δ
) (black) in the controlled

overflowing layer normalized by the theoretical value Q and normalized maximum streamwise
velocity, vmax(yb,z, t ′δ)/V∞ (red) at the downstream location yb, Vs dimensionless time, t ′

δ
. Dots

mark the times at which velocity profiles are shown in Fig. 2.3a and dashed lines are the
analytical predictions of Winters and Armi (2014). The location of yb relative to the ridge crest
is indicated in Fig. 2.1.
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and Armi (2014) prediction. These infinite-ridge solutions are highly asymmetric as indicated

by sustained downslope flow speeds of about 5V∞ with gusts approaching 6V∞. These gusts are

quasi-periodic with a period of about tδ, which for this specific ridge configuration and Fr is

roughly two buoyancy periods. They are reminiscent of the quasi-periodic gusts observed in

the Bora by Beluši’c et al. (2004) and arise due to Kelvin-Helmholtz (K-H) instability, caused

by increasing shear downstream at the top of the overflowing layer (Peltier and Scinocca, 1990;

Jagannathan et al., 2017).

Fig. 2.4a-c shows the flow evolution as it approaches a quasi-steady state. Blocking is

already visible by t ′
δ
≈ 2 and the upstream extent of the blocked flow increases with time. By

t ′
δ
= 11.7, upstream influence in the form of long internal gravity waves has permanently modified

the incoming flow, shaping the flow above the blocking level into a parabolic jet. Overturning

isopycnals are seen above the crest and further downstream, a plunging downslope flow develops.

Both the maximum downslope flow speed and its penetration depth increase with time. The

instantaneous snapshot in Fig. 2.4b reveals turbulent overturns, both aloft and due to K-H

instability at the top of the unstable overflowing layer (Peltier and Scinocca, 1990; Jagannathan

et al., 2017). The numerical model, which removes grid-scale variability via the hyperdiffusion

operator D does not completely resolve the details of the turbulent mixing due to these processes.

Nevertheless, as shown in Fig. 2.4c, a statistical time-average of the quasi-steady flow reveals

the essential downstream flow features, which are an accelerating downslope flow and a nearly

stagnant, nearly homogeneous isolating layer that separates the downslope flow from the flow

aloft. Comparison with Fig. 2.4b shows that the statistical averaging has no discernible effect on

the stable upstream flow.

In their theory, Winters and Armi (2014) do not prescribe a structure for the flow above

the overflowing layer, which they assume to be dynamically uncoupled with a mean speed V∞.

We note that the computed solutions in Fig. 2.4 as well as the vertical profiles of v(−yb,z, tδ) in

Fig. 2.3a show weak spatial oscillations about this mean which merge smoothly with the jet-like
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(a)

Figure 2.4: Time evolution of the flow field for Fr = 0.16 flow over an infinite ridge. (Top)
Isopycnal lines and contours and (bottom) streamwise velocity contours. The lower panel
indicates the position of the blocking location, ridge center and downstream locations at which
we will later (in Fig. 2.5) display the vertical profiles of the streamwise velocity. Flow is from
left to right. (a) t ′

δ
= 2; (b) t ′

δ
= 11.7 and (c) Averaged over 31.1≤ t ′

δ
≤ 47.2.
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(b)

Figure 2.4: Time evolution of the flow field for Fr = 0.16 flow over an infinite ridge (Continued).
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Figure 2.4: Time evolution of the flow field for Fr = 0.16 flow over an infinite ridge (Continued).

29



overflow. We have checked that the quantitative features of the controlled overflowing layer as

well as the characteristic wavelength (≈ 2πV∞/N) of the oscillations aloft are insensitive to the

height of the model domain and the thickness of the sponge layer (Appendix B).

Across-crest asymmetry sets in early (Fig. 2.4a) and the stratification becomes increasingly

asymmetric across the crest as the flow evolves. By t ′
δ
= 11.7 (Fig. 2.4b), the dense air downstream

and below the blocking level z = (hm−δ) has been almost completely swept away and is replaced

by lighter air that has overflowed the crest. This asymmetry in the density field is a consequence

of upstream flow blocking and is directly related to the establishment of hydraulic control at the

crest. The supercritical flow downstream manifests as an intensifying downslope windstorm.

Depth profiles of the streamwise velocity at and downstream of the crest elucidate the

characteristics of the downslope flow. These are displayed at an early and late inner-time in Fig.

2.5. The maximum speed vmax(y) increases downstream and with time at each location as the

flow evolves towards a quasi-steady state. At later times, e.g. t ′
δ
≈ 31.9, the overflow thins and

accelerates downstream of the crest. It also progressively plunges deeper in the lee. For example,

vmax(2yb)≈ 6.3V∞ and the vertical location of the maximum is at z≈ 0.6hm which is a depth of

about 2.5δ below crest level. This shows that the flow is highly asymmetric across the crest.

The evolution of the plunging depth pd(t ′δ) of the lowest streamline cresting the obstacle

is traced in Fig. 2.6. The plunging depth reaches sustained values of about 3δ by t ′
δ
≈ 4 and

subsequently fluctuates between 2.5δ and 3.9δ. The fluctuations are associated with the internal

hydraulic jump downstream of the separation location.

In summary, low Fr flow over infinite ridges is highly asymmetric across the crest, with

respect to both streamwise velocity and stratification. It is characterized by upstream flow

blocking and the development of a thinning accelerating downslope flow that plunges down the

lee slope to a significant fraction of the ridge height. Within the overflowing layer, the properties

of the quasi-steady flow are well described by the stratified hydraulic theory of Winters and Armi

(2014).
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Figure 2.5: Vertical profiles of streamwise velocity v(y,z, t ′
δ
) at various positions downstream of

the upstream blocking location −yb for the infinite ridge overflow at Fr = 0.16. The positions
of the downstream locations relative to the ridge center are indicated in the bottom panel of Fig.
2.4a.
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Figure 2.6: Plunging depth, pd(t ′δ) of the lowest streamline that crests the obstacle for Fr = 0.16
flow over an infinite ridge.
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in nite ridge
for

Figure 2.7: Vertical profiles of the streamwise velocity v(z, t ′
δ
) in the centerplane x = 0 at the

blocking point y =−yb for Fr = 0.16 flow over a finite ridge with β = 30. The corresponding
Winters and Armi (2014) prediction for the infinite ridge case at the same Fr is shown in grey,
with H being the predicted overflow thickness.

2.5.2 Finite ridge (β = 30)

We now consider a flow with identical forcing and Froude number incident on a long, but

finite ridge with β = 30. The finite extent allows for both flow ‘over’ and ‘around’ the ridge and

we proceed to quantify how the flow characteristics differ from the infinite ridge case for which a

purely 2D controlled overflow develops. The shape of the ridge is described by Eq. (2.9) with

h1 = 0, ∆h = hm and σ∗x = σy/4. (see also Fig. 2.2). We examine the evolution of the overflow in

the centerplane and at a plane closer to the lateral ends (shown in Fig. 2.2).

The upstream flow which crests the obstacle originates at or above the blocking level

hm−δ. Hence the appropriate streamwise length scale for flow ‘over’ the crest is σyδ
, the ridge

half-width at blocking level. The scaled dynamic ridge length for the overflow βδ = σx/σyδ
is

≈ 75, which is larger than the geometric scaled length β = 30 for flow around the sides.

Further, while the topographic Froude number Fr = 0.16, the appropriate Froude number

for the overflow is Frδ = V∞/Nδ ≈ 1. Our case is dynamically distinct from Fr ≈ 1 flows for

which βδ = β and Frδ = Fr (e.g. Epifanio and Durran, 2001).
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Fig. 2.7 traces the evolution of the streamwise velocity at the upstream blocking location,

v(−yb,z, t ′δ) in the symmetric centerplane x = 0. At early times (e.g. t ′
δ
= 2), the flow profile is

nearly identical to that in the infinite ridge case (Fig. 2.3a). By t ′
δ
= 11.7, the profile is similar in

structure to the infinite ridge overflow, but with a lower peak speed. Much later (e.g. t ′
δ
= 48.9),

the overflow is considerably thinner and slower than that in the infinite ridge case. This is because

much of the transport associated with the early-time overflow is lost to the low-level horizontal

splitting flow. We will show that by a simple reduction of the upstream volume transport in Eq.

(2.13), the long-time flow ‘over’ the ridge can be qualitatively and quantitaively described as an

asymmetric crest-controlled overflow.

Figs. 2.8 and 2.9 show the evolution of the flow field at and away from the ridge

centerplane respectively. The stratification and streamwise velocity exhibit asymmetry across the

crest in the form of an intensifying downslope flow. Isopycnals overturn above the crest and the

flow accelerates as it plunges down the lee slope. At early (t ′
δ
= 2) and intermediate (t ′

δ
= 11.7)

times the flow field in the centerplane is strongly reminiscent of the infinite ridge solution.

At later times, e.g. t ′
δ
= 48.9 (t ′

β
= 1.3), the fluid in the lee beneath the blocking level

is nearly motionless, both at and away from the centerplane (Figs. 2.8c and 2.9c). Downslope

plunging is strongly inhibited and the stratification below the overflow is nearly symmetric across

the crest. The initial dense ‘cold pool’ in the lee is retained on the long flow splitting time scale.

This contrasts strikingly with the infinite ridge solution (Fig. 2.4) where the density field becomes

highly asymmetric across the crest as the downslope flow evolves. Above the blocking level, the

flow is streamwise asymmetric, both at and away from the centerplane. This is a clear signature

of hydraulic control at the crest. Recall, in addition, that the overflow Froude number Frδ ≈ 1.

The evolution of horizontal streamlines at z = 0.1hm (i.e. well below the blocking level)

is depicted in Fig. 2.10a-c. At early outer times (e.g. t ′
β
= 0.05), the low-level flow is blocked

immediately upstream of the ridge. Subsequently, the upstream flow splits laterally around the

sides, with speeds of about 2V∞ at the obstacle ends and approaching 3V∞ further downstream.
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(a)

Figure 2.8: Time evolution of the flow field at the symmetric centerplane, x = 0 for Fr = 0.16
flow over a finite ridge with β = 30. (Top) Isopycnal lines and contours and (bottom) streamwise
velocity contours. Flow is from left to right. (a) t ′

δ
= 2.0; (b)t ′

δ
= 11.7 and (c) t ′

δ
= 48.9. H f and

δ f in (c) are the predicted late-time overflow thickness and blocking scale respectively predicted
from Eq. (2.22) and Eq. (2.23).

34



(b)

Figure 2.8: Time evolution of the flow field at the symmetric centerplane, x = 0 for Fr = 0.16
flow over a finite ridge with β = 30.(Continued)
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Figure 2.8: Time evolution of the flow field at the symmetric centerplane, x = 0 for Fr = 0.16
flow over a finite ridge with β = 30.(Continued)
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(a)

Figure 2.9: Same as Fig. 2.8 but at the cross-stream location x = 0.93σx at times (a) t ′
δ
= 2.0;

(b) t ′
δ
= 11.7 and (c) t ′

δ
= 48.9.

37



(b)

Figure 2.9: Same as Fig. 2.8 but at the cross-stream location x = 0.93σx (Continued)
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(c)

Figure 2.9: Same as Fig. 2.8 but at the cross-stream location x = 0.93σx (Continued)

39



In the lee, a vortex pair develops and the vortex centers move downstream with time, forming a

slowly recirculating flow within the cold pool.

At low levels upstream, the late-time horizontal splitting flow is a layer-wise potential

flow, as proposed by Drazin (1961). For example, at z = 0.1hm, where the ridge half width is

1.5σy, Fig. 2.11 shows that v(x) at y =−1.5σy is well approximated by the expression

v(x,y =−1.5σy) =V∞

(
A+B

σ2
x

x2

)
, |x| ≥ σx. (2.18)

This is simply the scaling law for potential flow around convex, symmetric 2D obstacles. The

constant A is unity for an infinite domain but is slightly larger here due to the presence of side

walls. B is a factor that depends on the details of the obstacle shape. For this case, the best fit was

obtained with A = 1.1 and B = 1.

As a consequence of low-level flow splitting, the transport in the overflow is less than the

infinite ridge prediction. In Fig. 2.12, we track the upstream transport, Q′(x = 0, t ′
δ
) in a layer of

thickness H above the blocking level hm−δ and compare peak flow speeds at yb with those for

the 2D infinite ridge case. Q′ deviates from the infinite ridge curve at t ′
δ
≈ 1 by which time it is

85% of Q. From around t ′
δ
= 5, Q′ starts decreasing steadily as more and more transport is lost to

the low-level splitting flow. Significantly, at t ′
δ
= 12, Q′ and vmax(yb) are close to 75% and 80%

of the predicted infinite ridge values. Therefore for 0 < t ′
δ
≤ O(10), the flow in the centerplane is

well described as a controlled infinite ridge overflow.

One distinctive feature of low Fr flows in a purely 2D setting is gustiness of the downslope

flow, associated with loss of stability downstream (Jagannathan et al., 2017). This manifests itself

as high frequency oscillations in the measured peak downstream speed vmax(yb) (Fig. 2.3b). By

contrast, such gustiness is absent in the finite ridge case. Thus the combination of diminished

downslope plunging (Fig. 2.8) and loss of overflow transport weakens the downstream shear,

thereby stabilizing the flow.
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(a)

(b)

(c)

Figure 2.10: Time evolution of streamlines in the horizontal plane at z = 0.1hm, i.e. just above
the ground level, for the finite ridge with β = 30 at Fr = 0.16: (a) t ′

β
= 0.05; (b) t ′

β
= 0.31 and

(c) t ′
β
= 1.3. Thick red lines indicate fast positive flow and dark blue lines indicate reversed flow.
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Figure 2.11: Streamwise velocity v(x)/V∞ at t ′
β
= 1.3 at the vertical level z = 0.1hm and along

y =−1.5σy, the half-width of the ridge at z = 0.1hm (indicated as a dashed line in Fig. 2.10c).
Shown in grey is the fit v/V∞ = A+Bσ2

x/x2, with A = 1.1 and B = 1.

Figure 2.12: Upstream volume transport Q′(x = 0, t ′
δ
) (black) of the overflow in the centerplane

of the finite ridge, normalized by the infinite ridge prediction, Q; and normalized maximum
streamwise velocity vmax(x = 0,yb,z, t ′δ)/V∞ (red) at the downstream location yb. Dots mark the
times t ′

δ
= 2.0,11.7 and 48.9 for which vertical velocity profiles are shown in Fig. 2.7.
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At t ′
β
= 1.3 (t ′

δ
= 48.9), the flow over the crest is still asymmetric both at and away from

the centerplane (Fig. 2.8c and 2.9c). By this time, the low-level flow upstream of the ridge has

almost entirely split horizontally around the sides of the obstacle (Fig. 2.10c). Thus at each

cross-stream section along the ridge, a portion V∞(hm−δ) of the upstream transport which was

absorbed into the overflow at early times is lost to the lateral splitting-flow. This motivates the

reformulation of the late-time overflow (Fig. 2.7) with a reduced transport. From its observed

across-crest asymmetry, we infer hydraulic control at the crest. Assuming a modified and as yet

unknown thickness H f for this overflow, for optimal control (Winters and Armi, 2014), it must be

parabolic in shape, with average speed NH f /π and transport

QH f = NH2
f /π. (2.19)

This yields a new blocking scale, δ f = H f /8. Below z = hm−δ f , the upstream flow is predomi-

nantly ‘around’ the ridge. Recall that the length of the end sections σ∗x � σx. Therefore from Eq.

(2.18), on either side of the centerplane, the excess transport per unit length of the obstacle that

escapes around the sides can be written as

Q∗ ≈ 1
σx

∞∫
σx

BV∞

σ2
x

x2 (hm−δ f ) dx =V∞(hm−δ f ), (2.20)

for the best-fit value B = 1. This is exactly the amount of transport that is blocked ahead of

the ridge at early times. For βδ � 1, this allows us to estimate the transport lost along each

streamwise plane in the ridge interior as V∞(hm−δ f ). Therefore the late-time transport for the

overflow in the ridge interior is simply V∞H f . The volume conservation equation Eq. (2.13) then

reduces to

NH2
f /π =V∞H f , (2.21)
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giving

H f = πV∞/N (2.22)

and

δ f = H f /8 =
πV∞

8N
, (2.23)

which is more than 2.5 times smaller than the scaling estimate V∞/N, suggesting that the blocking

location moves closer to the crest. These predictions for the quantities H f and δ f match the

observed late-time overflow reasonably well, as indicated in Fig. 2.8c. We denote the new

upstream blocking location as y =−yb f .

When Fr is small as is the case here, most of the upstream fluid below crest level eventually

splits around the ridge. This occurs on the slow time scale tβ (Fig. 2.10). Thus H f is considerably

smaller than H, which in turn implies that the late-time overflow has a reduced peak speed and

correspondingly reduced kinetic energy relative to that at early-times. The predicted velocity

profile at the new upstream blocking location y = −yb f is shown in Fig. 2.13 along with the

computed profile in the centerplane x = 0 at t ′
δ
= 48.9(t ′

β
= 1.3). The agreement in the peak speed

is within 10% of the newly predicted value. Fig. 2.14 shows the evolution of the transport

Q′H f
(t ′

δ
) =

hm−δ f+H f∫
hm−δ f

v(−yb,z, t ′δ) dz, (2.24)

in a layer of thickness H f above the blocking level hm−δ f on the centerplane, along with the

maximum downslope flow speed vmax(yb). At later times Q′H f
is within 20% of QH f while

vmax(yb) is within 8% of the Winters and Armi (2014) prediction for H f . Thus even at later times,

the stratified hydraulic framework describes the properties of the overflow well. We note that

the integral in Eq. (2.24) slightly overestimates Q′H f
. This is due to the fact that in the computed

solution (Fig. 2.13), the overflow merges smoothly with the flow aloft whereas in the theory, there

is a discontinuity between these flow components (shown in grey). The essential features of the
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           for 

�nal over�ow

Figure 2.13: Vertical profile of the late-time streamwise velocity in the centerplane x = 0 of the
finite ridge at the blocking point y =−yb f along with the predicted profile based on H f .

Winters and Armi (2014) 

prediction based on

Figure 2.14: (Black) Upstream volume transport Q′H f
(t ′

δ
) in a layer of thickness H f above the

blocking level at the centerplane of the finite ridge, normalized by the analytical prediction
QH f and (red )normalized maximum streamwise velocity, vmax(yb,z, t ′δ)/V∞ at the downstream
location yb.
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late-time overflow along the centerplane are labelled in Fig. 2.8c.

Vertical downstream profiles of the streamwise velocity (Fig. 2.15) offer another view of

the evolving downstream flow in the centerplane x = 0 and at x = 0.93σx. The flow characteristics

are remarkably similar both at and away from the centerplane. While the early-time downslope

flow closely resembles that observed in the infinite ridge case (Fig. 2.5), at later times, the

overflow is qualitatively similar, but has reduced transport and kinetic energy. Peak downstream

speeds are lower and the locations of the maxima have moved upward to near the crest level

z = hm.

The combination of a slower overflow and the retention of a cold pool downstream lead

to diminished plunging in the lee at t ′
β
= O(1) (or equivalently, late-inner-times t ′

δ
� 1). This is

seen in Fig. 2.16, which shows the time history of the plunging depth, pd(x, t ′δ) in each plane,

alongside pd(t ′δ) for the infinite ridge case. With respect to the inner time scale, the plunging

depth overshoots quickly, for example reaching 2.2δ in the centerplane at t ′
δ
≈ 2. However, on

the slower splitting time scale tβ, as the kinetic energy of the overflow decreases (Fig. 2.15), pd

correspondingly levels off to values smaller than δ, both at and away from the centerplane.

We now summarize the results of this section as follows: For 0 < t ′
δ
< O(1), the develop-

ment of the flow near the ridge center mimics the 2D infinite ridge overflow, both qualitatively

and in terms of the quantitative measures of asymmetry vmax(yb) and pd . At intermediate times

O(1) < t ′
δ
< O(10), the qualitative features of the infinite ridge solution persist both at and

away from the ridge centerplane, but the quantitative measures begin to deviate from the infinite

ridge values. In the centerplane, Q′ and vmax(yb) are still 75% of the infinite ridge values for

t ′
δ

as high as 12. On the longer flow-splitting time scale, the energetically weaker overflow is

unable to penetrate the cold pool downstream, leading to substantially reduced plunging depths.

Nevertheless, across-crest asymmetry and downslope flow acceleration persist above the blocking

level. The late-time flow is well-described as an asymmetric crest-controlled overflow lying above

a horizontal splitting flow whose upstream properties follow from potential flow theory.
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(a)

(b)

Figure 2.15: Vertical profiles of v(x,y,z, t ′
δ
) at various positions downstream of the upstream

blocking location −yb for the finite ridge at two different vertical planes: (a) Centerplane x = 0,
(b) Away from the centerplane, x = 0.93σx. The cross-stream and streamwise positions of the
measurement locations are indicated in Fig. 2.2 and Fig. 2.4a respectively.
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Figure 2.16: Plunging depth, pd(x, t ′δ) of the lowest streamline that crests the obstacle for
the overflow across a finite ridge with β = 30 at Fr = 0.16 . Also shown is pd(t ′δ) for the
corresponding infinite ridge case.

2.6 Discussion

2.6.1 Applicability of the stratified hydraulic framework

Asymmetry and hydraulic control form the dynamical basis of the infinite ridge theory of

Winters and Armi (2014). In particular, it is a hydrostatic approach that is valid up to arbitrary

stretching in the horizontal direction and is applicable for any terrain shape provided the ratio

hm/σy is small, as is the case here. A practical question is, how useful is this hydraulic framework

in understanding low Fr flows over long but finite ridges? In this setting, flow ‘over’ the crest

establishes itself on a fast, inner time scale tδ while flow ‘around’ the sides develops over a

relatively longer time scale tβ.

When the ridge is infinite (β = ∞), an asymmetric crest-controlled flow state is attained

quickly, by t ′
δ
= O(1) (Fig. 2.3). For a long but finite ridge (β� 1), the splitting time scale

tβ� tδ and so the development of flow over and around the ridge occur on disparate time scales.

As a result, until intermediate times O(1) < t ′
δ
< O(10), the flow away from the edges is well

approximated as a purely 2D infinite ridge overflow (Figs. 2.7 and 2.12).

By the time (t ′
β
= O(1)) horizontal splitting effects become significant, the overflow in
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the ridge interior is already asymmetric and has a parabolic velocity profile upstream of the crest.

While its peak speed and thickness begin to decrease with the onset of flow splitting, across-crest

asymmetry persists. On the slow splitting time scale tβ� tδ, the overflow retains the essential

dynamical features of the infinite ridge overflow. This flow continues to be optimally controlled

and the hydraulic view of the problem remains valid in the neighborhood of the crest. Our findings

therefore demonstrate that across-crest asymmetry and hydraulic control, once established, persist

even after the low-level flow has split around the sides of the ridge.

The isolating layers in Figs. 2.4 and 2.8 form as a result of mixing due to isopycnal

overturning aloft, and in the infinite ridge case, also partly from repeated Kelvin-Helmholtz

overturns at the top of the unstable downslope flow (Jagannathan et al., 2017). However, the

hydraulic theory of Winters and Armi (2014) does not provide any insight about the formation of

this homogenized isolating layer. Hydraulics also does not explicitly rely on internal mountain

wave scales. Rather, the vertical scales of importance, hm and δ, appear only indirectly through

the transport equations (e.g. Eq. (2.13)). While limiting in some ways, the power of this approach

is that it fully accounts for non-linearity, which is not possible in a wave treatment. Further, it

produces quantitative predictions for the thickness and peak speed of the overflow which can be

checked against the numerical solutions.

In our experiments, the far upstream flow speed V∞ and stratification N are constant, i.e.

these are like impulsively started laboratory towing experiments. This allows for a ready estimate

of the modified late-time transport V∞H f within the overflow of thickness H f . However in a

geophysical context, these quantities are not usually known a priori and the exact, time varying

upstream flow conditions must be determined using atmospheric soundings. As a more realistic

example, one might consider flows with a spin-up time Tsp� tδ. The Froude number Fr and the

inner length scales δ and σyδ
= O(Fr σy) will then be slowly evolving functions of time. However

note that the inner time scale tδ built from the instantaneous values of V∞ and σyδ
will remain

constant over the spin-up period as it is O(
σy

Nhm
) and thus independent of V∞ provided Fr� 1.
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This suggests that when Tsp� tδ, the streamwise flow at any time t < Tsp will be hydraulically

controlled at the instantaneous Fr, which implies an overflowing layer of slowly expanding

thickness and increasing peak speed. Thus while the quantitative details will differ, the essential

dynamical character of the flow in the neighborhood of the crest will not change even when the

background flow is slowly evolving.

A natural question then, is whether realistic low Fr flows across mountain ridges are

characterized by the optimally controlled, parabolically sheared flow profiles predicted by Winters

and Armi (2014) and seen in idealized towing experiments. Indeed, such flow features were

noted by Armi and Mayr (2007) in their study of continuiously stratified flow over the alps.

For example, the sounding at Sterzing (Fig. 16 of Armi and Mayr (2007)), taken well after the

establishment of deep foehn conditions, reveals a parabolic velocity profile with peak speed of

20 ms−1 and thickness of about 3800 m. From the same figure, the blocking depth is seen to

be about 500 m and the mean stratification N ≈ 10−2 s−1. Based on the infinite ridge theory

of Winters and Armi (2014), the prediction for the upstream overflow is H = 8δ≈ 4000 m and

vmax = (3/2)NH/π≈ 19 ms−1, which agree well with the observed values.

The stratified hydraulic theory of Winters and Armi (2014), assuming optimal hydraulic

control and across-crest asymmetry, predicts that the overflow at the blocking location is parabolic

in shape. It further relates the thickness of the overflow to the blocking scale, H = 8δ and predicts

its peak speed vmax = (3/2)NH/π and transport Q = NH2/π. In simple towing experiments, H

is obtained by estimating the overflow transport and equating it to the optimal value NH2/π. This

is trivial for an infinite ridge (see Fig. 2.1). For long but finite ridges, a straighforward kinematic

adjustment to the overflow transport after accounting for flow splitting, yields quantitative

predictions for H and vmax. We will show in section 2.6.3 that by a similar, but algebraically

more involved kinematic accounting for the overflow transport, the flow characteristics can be

accurately predicted for low Fr flows across composite ridge configurations.
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2.6.2 Downstream conditions and the cold pool

A significant point of difference between the finite and infinite ridge flow solutions is that,

in the latter, the flow plunges much deeper into the lee before rebounding back to subcriticality

via an internal hydraulic jump (Fig. 2.4c). Consequently the downslope flow is able to accelerate

to peak speeds that are more than five times the far upstream flow speed (Fig. 2.5).

Comparing the isopycnals in Fig. 2.4 and Fig. 2.8, it is clear that the reason for this

difference is the retention, in the case of the finite ridge, of the dense cold pool downstream.

This acts as a strong stratification barrier to the plunging overflow, limiting both its speed and

penetration depth. By contrast, in the infinite ridge case, the dense stratified fluid in the lee is

swept away after a finite time, and replaced by lighter fluid that overflows the crest. Consequently,

the descent of the downslope flow is unimpeded, and it is able to plunge deep in the lee.

This phenomenon is qualitatively similar to the observations of Mayr and Armi (2010) of

a Foehn event in Owens valley located east of the Sierra Nevada. There they found that diurnal

heating which has the effect of raising the potential temperature of the valley atmosphere leads to

progressively deeper descent of the flow over the course of the day.

In our experiments, the properties of the cold pool are set by the prescribed downstream

condition of uniform flow and stratification, and include low-level lee vortices (Fig. 2.10). While

Drazin’s (1961) solution fails to predict these lee vortices, Fig. 2.11 shows that his prediction

of layer-wise potential flow is nonetheless valid upstream. As in the studies of Smolarkiewicz

and Rotunno (1989), Schar and Durran (1997) and Ólafsson and Bougeault (1996), the present

simulations were also carried out by imposing free slip boundary conditions. This suggests

that vertical vorticity is produced by a purely inviscid baroclinic mechanism (Smolarkiewicz

and Rotunno, 1989) at early times. The lee vortices intensify at later times perhaps because

of potential vorticity anomalies that develop due to internal dissipation caused by upstream

stagnation and flow splitting (Schar and Durran, 1997). The role of upstream blocking and flow

splitting on orographic wake formation is further discussed by Epifanio and Rotunno (2005). In
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realistic atmospheric flows, the lee conditions may be affected by other factors such as surface

heating or cooling and the presence or absence of secondary topographical features downstream

(e.g. Winters, 2016).

2.6.3 The effect of an abrupt change in ridge elevation

We now seek to test the applicability of the stratified hydraulic approach in describing the

overflow across a composite two-level ridge configuration shown in Fig. 2.17. This is an infinite

ridge with a taller central section for which β = 30 and relative height difference, ∆h/h1 = 1 .

Mathematically, the ridge surface is given by Eq. (2.9), where σ∗x is now the length of the narrow

sloping section connecting the two ridge levels and is set to σx/120� σx. The center of the taller

section is treated as a symmetry boundary and the numerical model configuration and boundary

conditions are identical to those in the finite ridge experiment. Fr =V∞/Nh1 is set to 0.16, which

implies Fr = 0.08 for flow approaching the taller section. The details of the numerical experiment

are given in Table 2.2.

Far away from the taller section

The flow well away from the taller section is unaffected by its presence and must hence

be identical to that in the infinite ridge case of section 2.5.1. The fluid beneath the blocking level

cannot escape laterally and the low-level transport V∞(h1−δ) augments the overflow transport to

match that of a parabolic, optimally controlled flow, as shown in the schematic Fig. 2.1.

Adjacent to the taller section

At cross-stream distances comparable to σx from the edge of the taller section, the overflow

across the shorter section is additionally augmented by the splitting flow around the taller central

section. Based on potential flow scaling Eq. (2.18) for flow around the finite ridge, we hypothesize
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Figure 2.17: (a) Front view and (b) side view of an infinite two level ridge with half-width σy, a
finite tall central section of height h1 +∆h and half-length σx with β = σx/σy� 1, straddled on
either side by a shorter section of height h1 and infinite length. This reduces to the single level
ridge in Fig. 2.2 when h1 = 0 and ∆h = hm. Figure not to scale.
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that, at a vertical level h1 < z∗ < h1 +∆h−δ, where the ridge half-width is σyz∗ this splitting flow

scales with cross-stream distance as

v(x,y =−σyz∗ ,z
∗)≈V∞

(
A+B

σ2
x

x2

)
, |x|> σx (2.25)

The experimental domain is the same as in the finite ridge case of section 2.5.2; therefore

A = 1.1 remains unchanged. However, due to the composite shape of the ridge, we anticipate

that the shape factor B will, in general, be different from unity. The splitting flow speed and

correspondingly, the overflow transport, decay with increasing cross-stream distance from the

edge of the taller section. Assuming optimal crest control and an upstream overflow thickness

H(x)> h1, the volume conservation equation Eq. (2.13) for the infinite ridge is modified to

NH2(x)/π =V∞(h1−δ)+V∞

(
A+B

σ2
x

x2

)
(∆h−δ)

+V∞(H +δ−∆h), (2.26)

with δ = H(x)/8. The transport in the overflow is thus enhanced due to flow splitting. Note that

as x→ ∞ and correspondingly, A = 1, Eq. (2.26) reduces to Eq. (2.13) for the infinite ridge case.

We found that, for the case ∆h/h1 = 1 considered here, the value B = 1.7 for the shape coefficient

produces the most accurate predictions, capturing both the quantitative properties of the overflow

and its cross-stream decay away from the taller section.

Fig. 2.18a shows a late-time vertical profile of the upstream streamwise velocity at the

cross-stream location x = 1.4σx (indicated in Fig. 2.17a). The grey curve is the naive infinite

ridge prediction based on Eq. (2.13), ignoring ridge geometry and lateral flow splitting, while the

red curve is the corrected prediction obtained after modifying the transport calculation according

to Eq. (2.26). While the naive prediction underestimates the peak speed and thickness of the

overflow by close to 30%, these quantities are predicted almost exactly when flow splitting is
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(a) (b)

Figure 2.18: Computed and predicted vertical profiles of the streamwise velocity at the blocking
location y =−yb of the two-level ridge at (a) the cross-stream location x = 1.4σx (indicated in
Fig. 2.17) and (b) the centerplane x = 0 of the taller section. Shown are the naive predictions
(grey) obtained by ignoring flow splitting and solving Eq. (2.13) for an infinite ridge; and
the modified predictions (red) obtained from solving Eq. (2.26) and Eq. (2.28) that correctly
account for flow splitting.

accounted for correctly.

Over the taller section

Since the length of the connecting section is much shorter than the ridge length (σ∗x� σx),

we can, as in section 2.5.1, estimate the excess transport per unit length which is eventually

absorbed into the splitting flow. This precisely equals the transport that is lost ahead of the taller

section at late-times. From Eq. (2.25), on either side of the centerplane, this is given by

Q∗ ≈ 1
σx

∞∫
σx

BV∞

σ2
x

x2 (∆h−δ) dx = BV∞(∆h−δ). (2.27)

At early times, the blocked transport ahead of the taller section, is V∞(h1 +∆h− δ).

Therefore, at later times, the portion of the blocked transport that is accounted for in the overflow

aloft is given by V∞(h1 +∆h−δ)−BV∞(∆h−δ) =V∞[h1 +∆h(1−B)+δ(B−1)].

Assuming that this late-time overflow is optimally controlled with upstream thickness H,

the volume conservation equation for flow over the taller central portion of the ridge is therefore
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(a) (b)

Figure 2.19: Same as Fig. 2.18 but at cross-stream locationsy1↔ y∗1 nearer to the taller section:
(a) x = 1.1σx (indicated in Fig. 2.17a) and (b) x = 1.03σx.

Figure 2.20: Schematic depicting the essential features of low Froude number over and around
a long mountain ridge of height hm. The flow has two distinct components: Above the blocking
level is an overflow that is asymmetric and hydraulically controlled at the crest. Below the
blocking scale δ from the crest is a layer-wise horizontal splitting flow that is potential-like
upstream. The downstream penetration of the overflow is dependent on lee conditions and in
our simple towing experiments, is limited due to the retention of a dense, cold pool.

56



NH2/π =V∞H +V∞[h1 +∆h(1−B)+δ(B−1)], (2.28)

with δ = H/8 as before. Note that in the limit ∆h→ 0, there is no splitting flow; the shape factor

B = 0 and we recover the transport equation Eq. (2.13) for the infinite ridge.

In solving Eq. (2.28), we again use B = 1.7, the shape factor that produced the best fit for

the overflow across the shorter section. Fig. 2.18b shows that, consistent with the Winters and

Armi (2014) prediction, the computed upstream overflow in the centerplane x = 0 of the taller

section has a parabolic profile starting at its blocking level. But whereas the naive prediction

substantially overestimates its peak speed and thickness, the modified prediction that accounts for

transport lost to the enhanced splitting flow, agrees well with the computed flow profile.

The transition region σx < x≤ 1.1σx

Across the lower portion of the ridge (Fig. 2.18a), the bottom of the overflow is located at

an elevation z≈ h1−δ while over the taller section |x|< σx it is at z≈ h1 +∆h−δ (Fig. 2.18b).

The flow near the abrupt change in ridge height must therefore bridge these two distinct overflows.

The upstream velocity profile at the cross-stream location x = 1.1σx is shown in Fig. 2.19a. The

overflow exhibits two velocity peaks but these are only sightly separated and Eq. (2.26) predicts

the bulk properties of the overflow well. Moving closer to the the taller section x = 1.03σx, Fig.

2.19b shows that although the total thickness of the overflow is predicted reasonably, its vertical

structure is that of two jets with distinct peaks. Thus near the abrupt change in ridge elevation, the

overflow is a composite of the short and tall section overflows. As a result, even after a kinematic

adjustment to the overflow transport, the near-crest profile cannot be described in terms of a single

parabolic overflow as in the infinite ridge theory of Winters and Armi (2014).

In summary, this two-level ridge example demonstrates that, in the flow regime where

upstream influence and blocking are important, the steady overflow upstream of a dynamically

tall, long ridge can be obtained by assuming optimal hydraulic control at the crest and coupling it
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to appropriate kinematic equations for the overflow transport. The details of the ridge geometry

matter only to the extent that they modify the transport calculations. While the plunging depth of

the overflow and its eventual separation in the lee are influenced by downstream conditions, a

layer-wise solution of Bernoulli’s equation, as in Winters and Armi (2014) furnishes a complete

desciption of the asymmetric overflow in the neighborhood of the crest.

2.7 Limitations and extensions

2.7.1 Coriolis effects

As shown in the simulations, the hydraulic flow component develops on the short time

scale tδ while the low level splitting dynamics is established over a longer time scale tβ� tδ.

Thus rotational effects play no role provided that tβ� O(1/ f ), where f is the Coriolis frequency.

In many mid-latitude atmospheric flows characterized by low Fr and large β, for example, with

N = 10−2 s−1 and V∞ = 10 ms−1 and mountain dimensions hm = 4 km, σy = 20 km and σx = 200

km (yielding Fr = 0.25 and β = 10), the corresponding tδ can be shown to be well under an hour

while tβ is about a quarter of an inertial period. Thus both the crest-controlled overflow and lateral

splitting flow are established before Coriolis effects become significant.

The layer-wise upstream potential flow solution has also been realized in laboratory

towing experiments (e.g. Brighton, 1978; Hunt and Snyder, 1980). Yet there are other geophysical

applications where the flow splitting time scale may be comparable to or larger than an inertial

period. In such situations, the evolution of the low-level splitting flow will be constrained

by rotation and its horizontal scale is no longer set by the mountain half-length σx. Rather,

as hypothesized by Pierrehumbert and Wyman (1985) and confirmed by Wells et al. (2005),

geostrophic imbalance leads to the development of a mountain-parallel barrier jet trapped within a

deformation radius Nhm/ f of the mountain. This disrupts the symmetry of the upstream splitting

flow as well as the lee vortices, as can also be seen in the simulations of Wells et al. (2005).
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However, as long as tδ is small compared to an inertial period, asymmetry and crest control are

likely to persist even after low-level flow splitting is established, regardless of whether the time

scale controlling its evolution is tβ or 2π/ f .

2.7.2 Simple turbulence model

The focus of this study is on the dynamics of upstream blocking, hydraulic crest control

and low-level flow splitting. These processes are laminar and therefore insensitive to the presence

or absence of any turbulence closure model. Downstream of the crest, the supercritical flow is

unstable to overturning shear instabilities. We resolve the formation of these instabilities but

model the subsequent turbulence using a simple closure scheme that removes grid-scale variability.

A higher resolution LES treatment of these processes in topographically controlled flows over an

infinite ridge can be found in Winters (2016). A comparable treatment for the finite ridge case

in which a hydraulically controlled overflow occurs in conjunction with lateral flow splitting is

beyond our current computing capability.

2.7.3 The nature of the flow aloft

In both the infinite and finite ridge cases, we noted that the flow above the controlled

overflowing layer is characterized by spatial oscillations with vertical wavelength approximately

2πV∞/N (Appendix B). While the hydraulic theory of Winters and Armi (2014) assumes that

the controlled overflowing layer is decoupled from the overlying flow, it does not say anything

about the possibility of wave excitation aloft as a response to the plunging overflow. Therefore

the present analysis does not yield any insight about the ampitude of this wave-like flow nor its

dynamical connection to the controlled overflow beneath.

One intrepretation of the layered structure aloft (e.g. Fig. 2.4c) is as follows. The flow in

the layer immediately above the controlled overflow responds to the ‘virtual topography’ formed
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by the plunging overflow and is also asymmetric across the crest. The layers further aloft respond

in a similar fashion. A similar response to virtual topography was noted by Armi and Mayr

(2015) in their observations in the Sierras of hydraulically controlled flows with a descending

temperature inversion at the top of the overflowing layer.

2.7.4 Extensions to other small Fr and large β flows

In the infinite ridge case, lowering Fr further while keeping hm fixed shrinks the blocking

scale δ and hence, also σyδ
and tδ. This leads to quicker establishment of hydraulic control with a

correspondingly thinner overflow. Increasing Fr has the exact opposite effect.

For a finite ridge, the (Fr,β) regime diagram (e.g. Smith, 1989; Lin, 2007) indicates that

the flow behavior at low Fr and large β is uncertain. That is, the precise parameter space over

which both flow-splitting and ‘wave breaking’ occur is unknown. The present study suggests

another interpretation of this regime diagram. For a finite ridge, changing Fr and β essentially

has the effect of making tδ and tβ more or less disparate relative to one another. We have seen that

blocking and hydraulic control are established on the short time scale tδ. Assuming that ‘wave

breaking’ triggers a transition to the controlled state (e.g. Baines, 1998), we may conjecture that

flow-splitting and lee vortices are accompanied by a crest-controlled overflow when tβ is about an

order of magnitude larger than tδ. When these two time scales become comparable, the overflow

will be subcritical and the flow then falls in the flow-splitting-only regime.

2.8 Concluding remarks

Across-crest asymmetry and hydraulic control are persistent features of low Fr flows past

long ridges. On a short time scale, upstream blocking imparts a fundamentally non-linear and

asymmetric character to the flow over the crest. This asymmetry persists even on the longer time

scale over which the low-level splitting flow is established. The flow is therefore comprised of
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two distinct dynamical components as depicted in Fig. 2.20. The assumption of optimal crest

control along with the recognition that the upstream splitting flow is potential-like, further allows

for an accurate reformulation of the near-crest overflow.

This chapter has been submitted to the Journal of the Atmospheric Sciences as Jagannathan,

A., Winters, K.B., Armi, L., “Stratified flows over and around long dynamically tall mountain

ridges”. The dissertation author was the primary investigator and author of this paper.
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Chapter 3

Stability of stratified downslope flows with

an overlying stagnant isolating layer

3.1 Introduction and background

Features reminiscent of shear induced instability are often seen in the lee of topographi-

cally controlled stratified flows in the atmosphere and ocean. Despite a wealth of literature on

the subject (e.g. Smith (1991), Scinocca and Peltier (1989), Farmer and Armi (1999), Armi and

Mayr (2007) and references contained therein), the origin of these instabilities and their growth

rate remain uncertain. Our aim here is to better reconcile field observations with results from

numerical simulations exhibiting these features and linear stability theory. Figure 3.1 shows

the idealized spatial structure of the flows under consideration. See also Winters and Armi

(2014). A jet-like upstream profile with constant stratification, N0 develops into a strong, thinning

downslope flow beneath a layer of nearly stagnant, mixed fluid above. This downstream evolution

is associated with intensifying shear at the interface between the flowing and stagnant layers. A

feature to note is upstream influence characterized, in part, by stagnant “blocked” fluid below

zd = zb. For a topography with crest height h0, blocking is achieved by the upstream propagation
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of internal waves with vertical scale of about h0. Given a far upstream velocity U∞, mountain

height h0 and uniform upstream stratification N0, our primary focus is in the flow regime

U∞/N0h0� 1 (3.1)

where upstream influence and blocking are important.

Observations of the 1972 Boulder storm by Lilly (1978) revealed quasi-periodic oscil-

lations in the lee of the topography that were conjectured to be signatures of unstable Kelvin

Helmholtz (K-H) waves. While Clark and Farley (1984) held these to be the result of a 3D

shear-aligned convective instability, Scinocca and Peltier (1989) contested this view and instead

advanced the idea that the dynamic instability of downslope windstorms was an intrinsically 2D

phenomenon. In support of this assertion, they were able to replicate the quasi-periodic, 5-15

minute pulses revealed in the data using a 2D non-linear, non-hydrostatic anelastic numerical

model. To investigate the effect of the upstream conditions on this phenomenon, they also

simulated a downslope windstorm with an initially uniform upstream profile and found that the

time evolution of the solution clearly exhibited upstream influence, characterized principally by

blocking, as well as the pulsating features alluded to above. This led them to conclude that the

occurrence of the pulsations does not depend sensitively on 3D effects nor on upstream conditions

that precipitate the downslope windstorm. More recently, detailed measurements by Beluši’c et al.

(2004) confirm the presence of 3-13 minute pulsations in the dynamically similar downslope Bora

flow as well.

To test the hypothesis that these pulsations are the result of a dynamic instability of the

mean flow, Peltier and Scinocca (1990) performed a spatial and temporal stability analysis of

the downstream flow solutions of Scinocca and Peltier (1989) but found that the growth rates

obtained were almost two orders of magnitude smaller than expected. They conjectured that the

mean state extracted from the numerical simulation had already been modified by non-linear
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interactions with the instability modes. This motivated them to redo the stability analysis after

introducing plausible but rather ad-hoc changes to the base state. Only then were they able

to obtain growth rates that matched their 2D simulations. Here, we will examine the stability

of profiles whose essential character is similar to the modified profiles of Peltier and Scinocca

(1990), but determined by recently obtained solutions for steady, density-stratified topographically

controlled flows by Winters and Armi (2014).

A similar (to our) approach was adopted by Smith (1985). However, he assumed a uniform

upstream profile and invoked Long’s (1955) equation, streamline bifurcation and local hydraulic

theory to produce a downslope flow underlying a stagnant, uniform density layer aloft. Focusing

only on the flowing layer, he notes that if the Miles-Howard condition (Miles (1961), Howard

(1961)) of Ri < 1/4 is considered a sufficient criterion for onset of instabiity, then the local

hydraulic theory prediction is validated by the Scinocca and Peltier (1989) numerical simulation

of idealized severe downslope windstorms. To test if this agrees with results from linear stability

theory, Smith (1991) solved the Taylor-Goldstein equation at a number of downstream locations

for the base flow configurations of Smith (1985). We note however, that in his analysis, the

background states were truncated at the upper edge of the flowing layer so as to exclude the

stagnant uniform density isolating layer aloft. The stability analysis for these profiles, while

yielding values for the wavelength that were consistent with Scinocca and Peltier (1989), severely

underpredicted the onset and growth rate of the unstable K-H mode. Further, his choice of a

uniform upstream profile excludes blocking and is not applicable in flow regimes where blocking

and upstream influence are dynamically important. Thus linear stability analysis for flow profiles

produced by both local hydraulic theory and extracted from numerical simulations yielded very

small growth rates that were insensitive to upstream influence.

Recently, Winters and Armi (2014) accounted for the upstream influence of the topography

in constructing optimally-controlled, jet-like solutions that thin and accelerate over the crest.

These solutions are valid in the asymptotic limit of Eq. (3.1) and are characterized by a blocked
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region underlying the jet, a stagnant isolating layer of uniform density and a bifurcating streamline

that separates the accelerating flow below from the dynamically uncoupled flow aloft (refer figure

3.1). They then show that, downstream of the blocking location, there emerges a region of

sub-quarter Richardson number along the upper edge of the active layer, increasing in thickness

downstream, and surmise that this suggests an environment conducive to the generation of shear

instability.

One of our objectives here is to investigate the stability of the profiles produced in the

optimally controlled flow of Winters and Armi (2014) at different downstream locations. These

profiles have the character that the fluid velocity is zero in the overlying isolating layer, the

thickness of which increases downstream of the crest. Formally, we will examine flow profiles

characteristic of low Froude number settings.

3.2 Ambient profiles characteristic of controlled downslope

flows

The family of profiles we study are those that arise naturally in the lee of the topography

when the problem is formulated within a hydraulic framework as in Winters and Armi (2014).

Figure 3.1 introduces our notation and illustrates the setting in which these flow configurations

are encountered. At any downstream location x > xb, the essential features of such flows are the

following:

(i) The profile is jet-like, with an overlying stagnant region whose thickness, δi depends on the

downstream position x.

(ii) Moving downstream, the velocity maximum descends from its initial vertical level.

(iii) The volumetric flow rate Q is conserved and equal to the value associated with the upstream

jet.

(iv) As the flowing layer thins, the density difference remains the same. This implies a pro-
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Figure 3.1: The downslope jet setting where flow configurations described above occur. The
bottom panel displays the typical velocity and stratification profiles at the blocking point and an
arbitrary point downstream of the crest, labelled 1 and 2 respectively.

portionately stronger stratification, which we take to be uniform for simplicity. This is a good

approximation to the exact solution shown in figure 10 of Winters and Armi (2014)

The upstream profile is a parabolic jet with an overlying dynamically uncoupled layer,

each of height H for simplicity. The upstream buoyancy frequency is constant and equal to

N0. As the flow develops, at each downstream location, it remains quasi-jet-like, but with a

reduced thickness h = H− δi, a stronger stratification and an isolating layer of height δi. The

volumetric flow rate, Q = (2/3)U0H upstream remains conserved. To include the possibility of

an accelerating bottom streamline, we represent the flow mathematically as a superposition of a
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parabolic jet with maximum Uδi and a linear component that vanishes at zb +h. We define,

ub = βUδi (3.2)

where ub is the velocity of the bottom streamline. The velocity and density profiles are then given

by,

Ūd(zd) =


0, zb +h≤ zd ≤ zb +2H,

4Uδi

[
zd
h − ( zd

h )
2
]
+

βUδi
h (h− zd), zb ≤ zd ≤ zb +h.

[m/s] (3.3)

ρ̄d(z) =


ρ0 +∆ρ− ∆ρ

2h zd, zb ≤ zd ≤ zb +h,

ρ0 +
∆ρ

2 , zb +h≤ zd ≤ zb +H,

ρ0 +
∆ρ

2 −
∆ρ

2H (zd−H), zb +H ≤ zd ≤ zb +2H,

[kg/m3] (3.4)

where the overbar is used to denote the background flow field and the subscript ‘d’

indicates dimensional quantities. Note that Q conservation and the bottom velocity parameter β

jointly determine the parabolic maximum Uδi at any given downstream position as,

2
3

U0H =Uδih
(

2
3
+

β

2

)
. (3.5)

Incorporating a perfectly homogeneous isolating layer introduces a discontinuity in

the derivatives of the velocity and density at h(x). To smooth this, we take these profiles as

initial conditions for a 1D heat equation and allow diffusion for just enough time that the edge

discontinuity is “sufficiently” ironed out for numerical discretization purposes. We have checked

that our results are only weakly sensitive to small changes in the amount of smoothing. For

example, the growth rate differed by only ≈ 1% when the discontinuities were smoothed over a
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distance h/50 versus h/200. Similarly, the difference in growth rate was less than 2% when the

ratio of the density and velocity diffusivity parameters was varied between 1 and 10.

For this problem, it is convenient to introduce another parameter,

α =
h
H

=
H−δi

H
, (3.6)

that gives the height of the flowing layer as a fraction of the upstream thickness. The generalized

stability analysis is then carried out in a two-parameter space of α and the bottom boundary

parameter β, defined in Eq. (3.2). For the optimal flow solutions of Winters and Armi (2014), this

reduces to a one-parameter space since there is a unique β that produces the best fit to the actual

velocity profile for each α. We will examine this particular problem in more detail in section

3.6.2.

3.3 Mathematical formulation of the streamwise-local stabil-

ity problems

The stability problem is developed using the primitive variable formulation and the

normal mode decomposition. We begin with the inviscid Boussinesq equations of motion in

non-dimensional form.

D~u
Dt

+ Jρk̂ =−∇p, (3.7a)

Dρ

Dt
= 0, (3.7b)

∇ ·~u = 0, (3.7c)
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where

J = g
∆ρ

ρ0

h
U2

max
, (3.8)

and in anticipation of jet-like profiles that terminate at the sill, z goes from 0 to 2H/h,

the reference values for the non-dimensionalization being h, ∆ρ and Umax - the height, density

difference across the active flowing layer and its maximum velocity, given by

Umax = max(Ūd(zd)). (3.9)

Note that h = H and Umax =U0 at the blocking point. Moving downstream, the flowing

layer thins, h decreases and Umax increases. Henceforth, all variables are non-dimensional unless

otherwise stated.

We investigate the stability of a steady parallel, stratified shear flow of the form,~u = Ū(z)î;

ρ = ρ̄(z), with the pressure given by,

∂p̄
∂z

=−Jρ̄(z), (3.10)

to 2D normal mode perturbations of the form,

(u′,w′,ρ′, p′) = (û(z), ŵ(z), ρ̂(z), p̂(z))eik(x−ct). (3.11)

Substituting Eqs. (3.10) and (3.11) in Eq. (3.7), linearizing and rearranging terms, we

arrive at the following set of equations.
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ikŪ û(z)+ ŵ(z)
∂Ū
∂z

+ ik p̂(z) = ikcû(z), (3.12a)

ikŪŵ(z)+ Jρ̂(z)+
∂ p̂
∂z

= ikcŵ(z), (3.12b)

ikŪ ρ̂(z)+ ŵ(z)
∂ρ̄

∂z
= ikcρ̂(z), (3.12c)

ikû(z)+wz = 0. (3.12d)

On a Nz grid, Eq. (3.12) can readily be recast as a generalized eigenvalue problem,

Av = cBv, (3.13)

where A is a block diagonal matrix comprising 16 Nz×Nz blocks, B is a diagonal matrix and v is

a column vector of the eigenfunctions. These are defined as follows,

A =



[
ikŪ1 0

. . .
0 ikŪNz

] ik
(

dŪ
dz

)
1

0

. . .
0 ik

(
dŪ
dz

)
Nz

 [0]
[ ik 0

. . .
0 ik

]

[0]
[

ikŪ1 0
. . .

0 ikŪNz

] [ J 0
. . .

0 J

]
[Dz]

[0]
 ik

(
dρ̄

dz

)
1

0

. . .
0 ik

(
dρ̄

dz

)
Nz

[ ikŪ1 0
. . .

0 ikŪNz

]
[0]

[ ik 0
. . .

0 ik

]
[Dz] [0] [0]


4Nz×4Nz

, (3.14)
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B =



[ ik 0
. . .

0 ik

]
[0] [0] [0]

[0]
[ ik 0

. . .
0 ik

]
[0] [0]

[0] [0]
[ ik 0

. . .
0 ik

]
[0]

[0] [0] [0] [0]


4Nz×4Nz

, (3.15)

v =



û(z)

ŵ(z)

ρ̂(z)

p̂(z)


4Nz×1

, (3.16)

where Dz is the differentiation matrix and the large zeros denote zero matrices. Given Ū(z), ρ̄(z)

and a specified wave number, k, we then solve a 4Nz× 4Nz problem for the eigenvalue c and

eigenfunctions û(z), ŵ(z), ρ̂(z) and p̂(z). From these, we may deduce the temporal growth rate

ω
T
g = kci, (3.17)

where the subscript i denotes imaginary part.

3.4 Numerical implementation

A Chebyshev pseudo-spectral collocation method (Appendix C) is used to compute

derivatives and construct the coefficient matrices. Boundary conditions of no normal flow

ŵ(z) = 0 are imposed on the upper and lower boundaries. Note that the upper boundary is well

above the location where the flowing layer meets the isolating layer and so the inflection point in

Ū(z) at that location can affect the solutions.

Due to the singularity of the coefficient matrices, the generalized eigenvalue solver
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delivers a number of spurious eigenvalues that manifest as infinite or very large values. This is

not surprising if one notes that the eigenvalue problem, Eq. (3.13) can alternatively be formulated

as a quadratic eigenvalue problem of size Nz×Nz (Winters and Riley (1992)) which in turn can be

shown to possess precisely 2Nz eigenvalues (see e.g. Tisseur and Meerbergen (2001)). Thus only

2Nz of the 4Nz eigenvalues obtained from solving Eq. (3.13) are physically relevant. Empirically

we found that the number of spurious eigenvalues is in fact 2Nz +2. The two additional modes

presumably appear as a consequence of the homogeneous boundary conditions on ŵ(z). This

indeed seems to be the case because, when the redundant boundary condition, ρ̂(z) = 0 was also

imposed in addition to ŵ(z) = 0 at the boundaries, the solution remained unchanged except that

we now counted the number of spurious eigenvalues to be 2Nz +4 rather than 2Nz +2.

Further, because of the intrinsic singularity of the Taylor-Goldstein equation, a number

of eigenvalues also belong to the continuous spectrum of singular neutral modes and are not

important in a the normal mode analysis of the stability problem. Some of these may also

be contaminated with small non zero imaginary parts, but are filtered using the kinetic energy

criterion described in Moum et al. (2003). Nz = 256 is found to deliver convergent values for the

growth rate and phase speed of the unstable mode.

3.5 Results for generalized ambient flow profiles characteris-

tic of downslope flow

In this section, we display the results of the stability analysis for flows whose upstream

configuration is given by the optimal solution of Winters and Armi (2014), but whose downstream

evolution is determined by flow rate conservation and the two-parameter space (α,β). Studying

these profiles may be helpful, for example, in understanding the stability of flows that arise in

downslope flow settings where the idealized Winters and Armi (2014) assumptions on the flow

regime and hydrostaticity are relaxed and α and β have a different functional relation.
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Figure 3.2: The background velocity for the illustrative case of α = 0.5. As β increases, the
flow changes character from a pure parabolic jet towards a linearly sheared profile.

To begin, we consider a family of stratified flows with α = 0.5. This corresponds to

a flowing layer downstream of the crest with height h = H/2, i.e. after the lower branch of

the bifurcating streamline has descended from its initial position by a distance H/2. Figure

3.2 shows several such profiles in non-dimensional form. These differ in their β values, which

corresponds to differences in speed at the lower free-slip boundary. Figure 3.3a and 3.3b display

the corresponding vorticity gradient and inverse Richardson number curves for these flows. We

shall return to the significance of these particular vorticity and Richardson number profiles in

section 3.6.1.

Note again that the values α, β and Q conservation completely determine the profiles and

define the stability problem. The dimensional expressions for velocity maximum, stratification

and Ri(zd) are derived below. Eq. (3.5) gives,

Uδi =
2
3U0

α

(
2
3 +

β

2

) . (3.18)

73



−5 0 5 10 15 −5 0 5 10 15 −5 0 5 10 15 −5 0 5 10 15 −5 0 5 10 15
0

0.5

1

1.5

2

Uzz

z

β=0 β=1 β=2 β=4 β=6

(a)

0 4 8 24 0 4 8 0 4 8 0 4 8 0 4 8
0

1

2

Ri
−1

z

β=0 β=1 β=2 β=4 β=6

(b)

Figure 3.3: (a) Vorticity gradient and (b) corresponding inverse Richardon number (Ri−1)
profile for the case α = 0.5. The thick lines in (b) correspond to sub-quarter Ri regions. As the
dynamically uncoupled layer is taken to be at rest, the vertical coordinate in the Ri−1 plot has
been truncated at z = 2, the top of the isolating layer.
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Similarly, from Eq. (3.4), the stratification for a given value of α is directly given by

Nδi = N0/
√

α. (3.19)

Now, the optimal solution of Winters and Armi (2014) is characterized by an upstream

parabolic jet with,

U0 = (3/2)N0H/π. (3.20)

Using Eqs. (3.3),(3.18), (3.19) and (3.20), the Richardson number in the flowing layer

can be written as,

Ri =
N2

δi

(dŪd/dzd)
2 =

π2α

(
2
3 +

β

2

)2

(
4
α
− 8zd

α2H −
β

α

)2 . (3.21)

The minimum value of Eq. (3.21) always occurs at zd = αH, or z = 1 i.e. at the upper

edge of the flowing layer and is given by,

Rimin = π
2
α

3

(
2
3 +

β

2

)2

(4+β)2 . (3.22)

For each profile, we specify the wave number k and solve the eigenvalue problem Eq.

(3.13). We then sweep over a specified range of 0≤ k≤ 10 to capture an order 1 aspect ratio K-H

mode and extract the mode with the largest growth rate and the associated wave number kmax and

phase speed cr. Table 3.1 summarizes the results for particular values of α and β . We interpret

the results in the context of hydraulically controlled stratified flow over topography, as in figure

3.1.

As the active layer crests the topography, the isolating layer increases in thickness,

eventually triggering instability at a certain critical αc. We did not obtain any unstable modes

for α≥ 0.8 suggesting that 0.7≤ αc ≤ 0.8. The e-folding time te which is the time it takes for
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the perturbation to increase by a factor of e is a useful characterization for comparison purposes.

The O(1) e-folding times for the unstable modes (table 3.1) are consistent with the non-linear

simulations of Scinocca and Peltier (1989).

The dimensional values of the phase speed and wavelength of the most unstable mode

are also presented in the last two columns of table 3.1 for the value of H corresponding to the

numerical study of Smith (1991). He reported the first significant unstable mode encountered

downstream to have period and wavelength 273 sec and 2855 m respectively which is also

consistent with the ranges predicted by Scinocca and Peltier (1989). While our values for these

parameters are of the same order, the major difference is in the onset and growth rates of the

unstable modes which we found to be over an order of magnitude larger.

For the upstream flow, α = 1 and β = 0, which yields Rimin = π2/36 > 1/4, which is

stable by the Miles-Howard theorem. Note that Rimin ∼ α3, so moving downstream, the large

shear at the interface of the jet and the stagnant layer dominates the stabilizing effect of the

stratification and increasing β. This explains the persistence of unstable modes at low α and

relatively large β seen in table 3.1.

Figs. 3.4-3.6 display the normalized eigenfunctions for |û(z)| and |ŵ(z)|. Their wave-

lengths (table 3.1) and shape identify them as unit-aspect-ratio overturning shear instabilities that

nucleate at the upper edge of the flowing layer, where there is an abrupt jump in shear, as shown

in figure 3.3a.

3.6 Discussion

Recall that Rayleigh’s theorem gives the presence of an inflection point as a necessary

condition for instability in a homogeneous shear flow. The flows examined above are essentially

sheared flows endowed with an inflection point, but in a stably stratified environment. Investigating

the stability of the corresponding homogeneous shear profile can help clarify the nature of the
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Table 3.1: Characteristics of the unstable mode in the two-parameter space of β and α. The last
two columns are the dimensional values of the period (Tp) and wavelength (λ) of the unstable
mode for the case H ≈ 1865 as in the numerical experiments of Smith (1991).

β kmax ωT
g te(= 1/ωT

g ) Tp(s) λ(m)

α = 1
Stable for all β≥ 0α = 0.9

α = 0.8
α = 0.7

0 3.6 0.2059 4.86 488 2279
1 - - -
2 - - -
4 - - -
6 - - -

α = 0.6
0 3.6 0.3389 2.95 346 1953
1 2.8 0.1434 6.97 522 2511
2 - - -
4 - - -
6 - - -

α = 0.5
0 3.2 0.4271 2.34 259 1831
1 2.4 0.2801 3.57 389 2441
2 2.0 0.1581 6.32 459 2930
4 - - -
6 - - -

α = 0.4
0 3.2 0.4878 2.05 163 1465
1 2.4 0.3676 2.72 239 1953
2 2.0 0.2604 3.84 280 2344
4 1.6 0.1287 7.77 322 2930
6 1.6 0.0659 15.17 322 2930

1. kmax is the wave number of maximum temporal growth rate
ωT

g = kmaxci, where ci = Im(c).
2. te is the e-folding time for the fastest growing mode, scaled by

h/U0
3. ‘-’ indicates no unstable modes found.

77



0 1 0 1 0 1 0 1
0

1

2

3

4

5
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Figure 3.4: Normalized eigenfunctions (a)|û(z)| and (b)|ŵ(z)| for β = 0. This represents the
case where the bottom streamline is stationary, ie downslope flow evolves as a pure parabolic
jet. α = 0.7,0.6,0.5 and 0.4 were all found to possess a growing mode. Note that the lengths
are non-dimensionalized using the height of the flowing layer at each location, so the isolating
layer (shaded grey) lies between 1 and 1/α. Between 1/α and 2/α, the background flow is
dynamically uncoupled and the eigenfunctions decay exponentially. The sharp behavior of |û(z)|
at z = 1 is typical of a K-H mode at a shear interface.

instability in the stratified scenario. If shear were the driving mechanism of the instability, then

we would expect stratification to have a stabilizing effect, modifying the unstable shear mode and

reducing its growth rate.

Indeed we found that, for every flow configuration for which an unstable mode was present,

the growth rate for the same shear profile, but without a stable stratification was larger. This

identifies the unstable modes of table 3.1 as stratified analogues of inflectional Rayleigh modes,

which, following the convention of Carpenter et al. (2010), we refer to as Kelvin-Helmholtz modes.

We further note that in the absence of stratification, the piecewise linear limit, corresponding to

β→ ∞ is stable for all values of α. Our numerical results suggest this also holds for piecewise

continuous, linear stratifications such as the ones under consideration here.
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Figure 3.5: Normalized eigenfunctions (a),(c) |û(z)| and (b),(d) |ŵ(z)| for β = 1,2. When the
bottom streamline is not stationary, as for example in the case of a free-slip boundary. In this
configuration, the velocity maximum for the base flow shifts downwards compared to the pure
parabolic jet (see figure 3.2). For β = 1, α = 0.6,0.5 and 0.4 were found to be unstable. When
β = 2, the base profile is qualitatively similar to the case β = 1, but the larger bottom velocity
appears to stabilize the flow for α≥ 0.6.
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Figure 3.6: Normalized eigenfunctions (a),(c) |û(z)| and (b),(d) |ŵ(z)| for β = 4,6. This
represents the case where the linear component begins to dominate the profile. β = 4 is the
critical value where the velocity maximum coincides with the bottom streamline. For this
configuration, only α = 0.4 possesses sufficient shear to allow instability. At β = 6, the linear
component clearly dominates the base profile (figure 3.2), but instability persists for α = 0.4.
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3.6.1 Physical interpretation of instability

The wave-interaction theory (see, e.g. Carpenter et al. (2011)) offers qualitative insight

into the destabilizing mechanism at play. The key idea of the theory is that instability is possi-

ble whenever the flow configuration supports two or more waves whose direction of intrinsic

propagation, relative to the local fluid velocity, are of opposite signs. Additionally, for a large

class of stratified flows, Baines and Mitsudera (1994) showed that an arbitrarily small region with

Ri < 1/4, flanked on either side by regions where Ri > 1/4 is a sufficient condition for instability.

Such a configuration effectively splits the flow into stable upper and lower waveguides, with no

vertical wave propagation being possible in the central sub-quarter Richardson number region,

a result effectively proved by Bell Jr (1974). Two free modes in these separated waveguides

can then interact to cause mutual changes in phase speed, inducing them to become stationary

relative to one other, leading to mutual excitation and growth. This optimal “phase locked” state

is maintained over a range of wave-numbers through adjustments to the phase difference. On

the other hand, if Ri > 1/4 everywhere, internal wave modes are able to propagate vertically,

eventually getting absorbed back into the mean flow at a critical layer in the central region; and

the flow remains stable.

The Ūzz profiles in figure 3.3a are seen to exhibit a large peak at z = 1 corresponding to the

nearly discontinuous vorticity interface at the lower branch of the bifurcating streamline of figure

3.1. Below this, their values are constant, but reduced in strength and opposite in sign relative to

the interface above. Thus the intrinsic direction of propagation of vorticity waves in each of these

regions is opposite, satisfying one of the necessary conditions of the wave-interaction theory.

To see in more detail how these particular vorticity profiles can lead to instability, consider

again the corresponding unstratified flow. Note that, unlike the prototypical examples of piecewise

linear and continuous vorticity distributions for which the wave-interaction mechanism has been

invoked to understand shear instability ((e.g. Carpenter et al. (2011)), in these flows, the vorticity

profiles exhibit only one (and not two) distinct extrema. Thus the view of the instability as an

81



interaction between two interfacial (or smeared) vorticity waves breaks down; and it is necessary

to include the continuous spectrum in the analysis. When the flow is quasi-jet-like, with β∼O(1),

the unstable inflectional mode may be regarded as arising due to the interaction between the

interfacial, rightward propagating vorticity wave riding on the shear interface at z = 1 and a

wave belonging to the continuous spectrum supported in the region of constant vorticity between

z = 0 and z = 1. The abrupt change in the û(z) eigenfunction near z = 1 in figures 3.4-3.6 is

typical of a vorticity wave propagating at a shear jump and further bolsters this view of the

instability mechanism. When a stable stratification is added, the vorticity modes are modified by

the buoyancy, leading to weakened interaction and consequently, reduced growth rates.

Inspection of figure 3.3b shows that the Baines and Mitsudera (1994) condition on the

Richardson number profiles is also met for these flows. The thin lines denote separate stable

wave-guides where Ri > 1/4. These are separated by a region (thick line) where Ri < 1/4 and

internal wave propagation cannot occur. Approximating z = 1 as a discontinuous shear interface,

the speed of the rightward propagating vorticity wave here is given by, to first order

c1 ≈
Ūz|z=1−

2k
(3.23)

The flow configurations in the stable lower waveguide yield a discrete spectrum of internal

wave modes modified by the shear in addition to a continuous spectrum whose eigenvalues

lie in the range of Ū . In the absence of stratification, the same shear profiles support only a

continuous spectrum whose properties however, differ from those of the continuous spectrum for

the corresponding stratified flow. Further, Howard’s (1961) semicircle theorem constrains the real

phase speed of an unstable mode for this flow to lie within the range of fluid velocity. So, given

the lack of a clear shear or density interface in the lower wave-guide, it seems likely that for both

the stratified and unstratified flow, it is the interaction between the interfacial vorticity wave and a

wave in the continuous spectrum that gives rise to instability.
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To test this hypothesis, we added a small amount of viscosity and diffusivity and solved

the 6th order Taylor-Goldstein equation for the flow configurations in the lower wave guide.

Free slip and an exponential decay condition for ŵ(z) at the upper boundary filter the unstable

Tollmien Schlichting waves from the computation. The wave modes thus obtained are essentially

similar to what we would find for the inviscid flow- vorticity waves modified by buoyancy and

vice-versa- with the difference being that the singularity of the second order Taylor-Goldstein

equation is avoided and consequently, the continuous spectrum collapses onto a discrete set of

decaying modes. For the case α = 0.5,β = 2, we found that at k = 5, there are two modes with

speeds ≈ 0.26 which is roughly the same value that was found on applying Eq. 3.23 and which

also matched the real part of the eigenvalue of the unstable mode that was found by solving the

Taylor Goldstein equation for the complete profile in figure 3.2. Thus we have all the necessary

elements for the wave-interaction theory to be invoked; instability persists over a range of wave

numbers by mutual interaction leading to phase and amplitude locking.

For larger values of β, the shear gradient below z = 1 is too weak to induce a mutual

growth with the vorticity wave riding aloft at z = 1 . In the piecewise linear limit β→ ∞, there is

exactly one vorticity interface at z = 1; no fundamental unstable shear mode is present, and thus

the addition of a linear stratification apparently has no effect on the stability of the flow. As a

corollary, we surmise that no unstable wave interactions are possible in a piecewise linear, stably

stratified environment where there are no density jumps and where the shear is uniform on either

side of a single vorticity interface.

In light of this explanation, we speculate that the reason for late onset of instability and

small growth rates of Smith (1991) result from truncating the base flow at the upper edge of

the active layer. This excludes a vorticity wave at the upper boundary and consequently, no

destabilizing wave interactions are possible in the flow. We note however that, despite the lack

of an inflection point in the profiles, the exponential decay implied by their upper boundary

condition does not completely exclude the possibility of instability and indeed, the weak growth
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Table 3.2: Characteristics of the unstable mode for the flow profiles representative of the exact
solutions of Winters and Armi (2014). Refer to table 3.1 for more details on notation.

α β kmax ωT
g te Le(= cg/ωT

g ) Tp(secs) λ(ms)

0.66 0.89 4.0 0.0743 13.46 4.05 490 1933
0.64 1.00 3.6 0.0807 12.39 3.79 496 2083
0.62 1.09 2.8 0.0928 10.78 3.33 571 2595
0.6 1.19 2.8 0.1093 9.15 2.74 532 2520
0.5 1.94 2.0 0.1643 6.10 1.68 459 2930
0.4 4.00 1.6 0.1287 7.77 1.60 322 2930

1. Le is the e-folding length for the fastest growing spatial mode, scaled by h. See
section 3.6.2 for more details.
2. cg is the group velocity of the mode given by cg = ∂ωr/∂k where ωr = Re(kc).

rates predicted might well be a consequence of this. In contrast, we have included both the

isolating layer and the dynamically uncoupled flow in our analysis. This, besides imposing

precise no-normal flow conditions at both boundaries, also furnishes an inflection point to the

velocity profile - a necessary condition for stability of unstratified shear flow-, as well as a region

of weak stratification close to the inflection point (giving Ri< 1/4), which may trigger an unstable

shear mode via the wave interaction mechanism described above.

3.6.2 Spatial instability and the Winters and Armi (2014) downslope flow

We mentioned in section 3.2 that the Winters and Armi (2014) solution for optimally

controlled stratified flow over topography is a special case where α and β are not independent,

but uniquely related. We once again refer to figure 10 of Winters and Armi (2014) and note

that the accelerating bottom streamline characteristic of this solution corresponds, in our present

formulation, to increasing β downstream. For different values of α, values of β and the fit they

produced to the actual solutions of Winters and Armi (2014) are shown in figure 3.7. Clearly, the

parameter pairs (α,β) are quite close to the cases studied in section 3.5 and we may expect a

stability analysis to yield similar results. Inspection of the eigenfunctions of the fastest growing

modes (figure 3.8) and their growth characteristics (table 3.2) confirms this to be the case.

Our discussion so far has been restricted to the temporally growing modes for which the
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Figure 3.7: The Winters and Armi (2014) background velocity profiles at different downstream
locations for the optimally controlled stratified downslope flow. The dashed lines are the exact
solutions and the solid lines are the representations of these solutions using β and Q conservation.
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Figure 3.8: Normalized eigenfunctions (a)|û(z)| and (b)|ŵ(z)| for the profiles representative of
the solutions of Winters and Armi (2014).
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underlying assumption is that the perturbations to the base flow may be distinguished by their

horizontal wave numbers. However disturbances could, in principle, also assume the form of a

pulse or a localized source vibrating at a fixed frequency, in which case spatially growing modes

may be triggered. In the case of the former, growing disturbances are either convected away

from the source (convective instability) or grow in situ (absolute instability)destroying the base

flow itself for large time. The case of a local periodic forcing constitutes the so-called signaling

problem and again may lead to either spatially amplified sinusoids (convective mode) or absolute

instabilityHuerre et al. (2000) provides a general discussion of these and other aspects of the

spatial instability problem, including an elegant technique for determining if a given flow is

absolutely unstable or not.

Downslope flows in nature are subject to a wide range of perturbations and are thus

potentially susceptible to both temporal and spatial modes of instability. It can thus be difficult in

practice to precisely establish whether an observed instability mode is a purely spatial one or some

combination of temporal and spatial modes. However, guided by consideration of the observed

growing modes in Winters (2016) and Farmer and Armi (1999), we rule out the possibility of

absolute growth at any downstream location. Further, for the sake of simplicity, we stay within

the framework of the spatial signalling problem for the reminder of this discussion.

Recall that the optimal, horizontally uniform upstream flow configuration of Winters

and Armi (2014) is stable at the blocking location xb , with Rimin being slightly greater than 1/4.

Thereafter, as the upper streamline bifurcates and the flowing layer accelerates, Rimin eventually

drops down below 1/4, allowing for the possibility of unstable modes.

As shown in table 3.2, for the optimally controlled solutions of Winters and Armi (2014),

we found that the flow first exhibits temporal instablility where α ≈ 0.67. Upstream of this

location, the growth rates found were too small to pass the spurious mode detection criterion of

section 3.4, and downstream of this point, the growth rate appears to increase rapidly, growing to

order O(10−1) at αc ≈ 0.6. The increasing shear at z = 1 downstream appears to be offset by the

86



weakening shear at the bottom streamline of the flowing layer along which the flow accelerates as

it ascends and plunges down the obstacle, and so the growth rate and e-folding scales continue to

be ∼ O(10−1) and ∼ O(1) at further downstream locations as well.

The spatial signaling problem in the framework of Gaster (1962)

It is perhaps instructive to picture a curve of marginal stability (CMS),

ω = f (k,α,β) (3.24)

for this problem, with ω being real valued on one side of the curve and complex on the other.

For the upstream flow, α = 1,β = 0, ω is real valued for all k. The first location where an

unambiguously distinguishable unstable mode is encountered is for α ≈ 0.66. It may thus be

reasonably surmised that the point (k,α,β) = (4,0.66,0.89) in parameter space is close to the

CMS for the flow. This in turn allows us to appeal to the framework of Gaster (1962) in which,

near the CMS and for a given wavenumber, the growth rate of an unstable spatial mode can be

estimated to first order from the corresponding temporal mode through the formula,

ks
g =−ω

T
g /cg, (3.25)

where

cg =
∂ωr

∂k
=

∂ Re(kcr)

∂k
(3.26)

is the group velocity of the temporal instability mode, which we compute numerically. Though

strictly speaking, we have only argued that the first upstream unstable mode is close to the CMS,

we use Eq. (3.25) to approximate the spatial growth rate at locations further downstream as well.

In reality, for parameter values that are well away from the CMS, it is probably necessary to

consider the dispersion relation in the complex (ω,k) plane to obtain more accurate results for
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the spatial problem. We shall demonstrate below that ultimately, it is the most upstream unstable

mode, close to the CMS, that dominates the spatial growth of instability in streamwise slowly

varying controlled downslope flows.

In table 3.2 we found the group velocity to be non-zero and positive in all cases, establish-

ing them as convective rather than absolute modes of instability. Thus we can define an e-folding

length, analogous to the time scale defined in section 3.5, Le = cg/ωT
g . This is the distance by

which a growing mode propagates downstream as it undergoes amplification by a factor of e. In

field measurements and numerical simulations we detect only the finite amplitude manifestation

of an instability, which typically occurs at a downstream position that is of the order of a few

e-folding lengths.

Evolution to finite amplitude

We reiterate that the flow configurations examined here are approximations to analytical

solutions in the purely hydrostatic limit, i.e. when the horizontal length scale is infinite. In this

limit, the parallel flow assumption holds everywhere, and so the very first unstable mode will

have sufficient downstream distance to grow and undergo amplification to finite amplitude; in

the process, it irreversibly changes the flow configuration further downstream through non-linear

interactions with the base flow. However, we have not discounted the possibility that when

the topography is steep enough, with horizontal length scale Lx, the initial weakly unstable

spatial modes will have insufficient distance to grow before the background flow profile changes

significantly. Then, these weakly growing modes effectively act as perturbations to the flow

further downstream, potentially exciting a stronger unstable mode at some location. In such a

case, we would have to examine the growth rates and e-folding length scales of the growing

modes at various downstream locations, and the first mode that satisfies Le� Lx would be the

one that would eventually dominate the other modes and lead the transition to non-linearity.

To investigate this in more detail, suppose that the horizontal length scale for the flow is
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Lx. One plausible definition of Lx� H is the downstream distance over which the thickness of

the flowing layer changes by 10%. Now, for the hydrostatic approximation to hold, we require

Lx/H ∼ O(10). Since we are interested in the lower limit, suppose that Lx/H ≈ 10. Now,

recalling that in our computations, the lengths are non-dimensionalized by h, the local flowing

layer thickness, from table 3.2, the growing mode at α = 0.66 has Le = 4.05h = 4.05αH = 2.68H.

So an initial disturbance at this location will have sufficient downstream distance to grow to

exp10/2.48≈ 42 times its initial magnitude before the background profile changes significantly.

This is more than an order of magnitude amplification and hence will manifest physically in

observations and numerical simulations at h/H ≈ 0.56 before non-linearities eventually modify

the character of the background flow itself further downstream. Thus even at the boundary of the

hydrostatic regime when Lx/H ≈ 10, it appears that the very first spatial mode excited that has

O(1) e-folding length scale is the one that dominates the instability process in these flows.

This result is also in agreement with figure 12 of Farmer and Armi (1999) where, for a flow

with Lx/H ∼ O(10), the centre of the first finite amplitude vortex core in the lee, corresponding

to the first physically observed overturning shear instability, is seen to occur at roughly X = 50m

giving α≈ 0.55. Further, recent work by Winters (2016) also seems to corroborate this. Figure

3.9 shows the isopycnals from a statistically steady, 3D simulation (movie attached) of stratified

flow over topography matching the optimal upstream solution of Winters and Armi (2014), again

for a flow with Lx/H ∼ O(10). The simulation uses the same downstream condition as in figure

4 of Winters (2016). It is noted in his paper that the downstream condition has no effect on the

flow over the sill in the region where this particular instability is observed. It primarily affects

the point of downstream flow separation and the strength of the internal hydraulic jump. For our

purposes, a quasi-steady state was attained on time and spatial averaging over 6.25 buoyancy

periods. Winters (2016) has further details on the modeling and on how the flow solutions are

affected by the downstream condition.

As anticipated by the analytical solutions of Winters and Armi (2014), upstream blocking,
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streamline bifurcation and formation of an isolating layer are clearly observed in this simulation.

Further the flow exhibits instability along the upper edge of the flowing layer, with finite amplitude

features manifesting within the shaded region 0.5 ≤ h/H ≤ 0.6. The location of the repeated

overturns is also consistent with our prediction above that finite amplitude billows seen at

h/H ≈ 0.56 are in fact the physical manifestation of the spatially growing mode triggered further

upstream at h/H ≈ 0.66

90



uncoupled

flow

H h(x)

bifurcation

point

blocked

fluid

isolating

layer

blocking

point

to + π/N to + 3π/2Nto.5
≤ h/

H
≤ .6

Figure 3.9: (Winters (2016)) Isopycnals and vorticity from a statistically steady non-linear
simulation of stratified flow over a smooth topography matching the optimal upstream solution
of Winters and Armi (2014). Lx/H for this flow is ∼ O(10), i.e. it is at the boundary of the
hydrostatic regime. The top frame displays the time and cross-stream averaged flow (left) that
exhibits the essential features of the flow and also an instantaneous snapshot (right). The bottom
panel shows three snapshots of the flow spaced about half a buoyancy period apart. Shear insta-
bility is observed at the upper edge of the flowing layer, and finite amplitude billow structures
are first perceived within the shaded region 0.5≤ h/H ≤ 0.6, where repeated overturning and
plunging of the lower isopycnals (coloured green for visualization purposes) is also visible. The
red and blue colours indicate positive and negative vorticity extrema respectively.
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3.6.3 Applicability to other flow regimes

A final note is that, while the stability analysis described here is formally valid only for

the asymptotic regime of a tall mountain barrier with slow flow and/or strong stratification, even

in situations where there is no blocking and upstream influence, the dynamics of the downstream

flow evolution - viz. an accelerating thinning jet with a stagnant mixed layer aloft - are largely

identical, as can be seen, for example in the work of Lilly (1978) and Scinocca and Peltier (1989).

We therefore speculate that this overall view of the stability problem carries over to other regimes,

including those with an initial uniform upstream flow profile.

3.7 Conclusion

We have analyzed the linear stability of stratified flow profiles that are typically en-

countered in the downslope region of topographical features in the ocean and atmosphere. By

considering idealized representations of jet-like profiles that emerge from a theoretical hydraulic

view of the problem as in Winters and Armi (2014), we obtain growth rates that are between 1

and 2 orders of magnitude larger than those seen in the linear stability analysis of Peltier and

Scinocca (1990) and Smith (1991), and are consistent with the results of the non-linear numerical

simulations of Scinocca and Peltier (1989).

We believe that it is the formal inclusion of a stagnant, homogeneous isolating layer into

the stability analysis that is responsible for such a dramatic improvement in the prediction of

linear stability theory. The presence of a deep isolating layer above a strongly sheared, jet-like

flowing layer creates conditions that are favourable for the nucleation of shear instabilities. The

sharp gradients in the horizontal velocity eigenfunction at z = 1 and the fact that larger growth

rates were obtained on solving the Rayleigh equation for the corresponding unstratified velocity

profiles, unambiguously identify them as K-H shear modes. The wave-interaction interpretation

of shear flow instability appears to offer a satisfactory explanation for the observed instabilities.
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Further, an analysis of the spatial stability problem in the framework of small deviations from the

marginal curve of stability is shown to yield O(1) e-folding length scales. These signal transition

to non-linearity at downstream distances that are consistent with those reported in observations

and numerical simulations of downslope flows.

This chapter is a reprint, in full, of the material as it appears in Jagannathan, A., Winters,

K.B., Armi, L., “Stability of stratified downslope flows with an overlying stagnant isolating layer”,

Journal of Fluid Mechanics, 810, 392411, doi:10.1017/jfm.2016.683. The dissertation author

was the primary investigator and author of this paper.
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Chapter 4

The dynamical link between hydraulic

control and wave excitation aloft in

blocked stratified flow over topography

4.1 Introduction

Stratified flow over dynamically tall topography is characterized by the formation of a

hydraulically controlled plunging flow above a layer of blocked stagnant fluid upstream. The top

of this asymmetric overflow is marked by a bifurcating isopycnal which partially isolates it from

the flow further aloft. When the stratification is uniform, the thickness of the overflow and hence

the height of the bifurcating isopycnal can be analytically predicted by combining an optimal

hydraulic control condition with a kinematic constraint for the volume transport (Winters and

Armi, 2014). While these predictions for the controlled flow component have been confirmed in

the numerical experiments of Jagannathan et al. (2018), one feature that cannot be satisfactorily

explained by hydraulic theory alone is the presence of wave-like oscillations further aloft.

The observations of controlled stratified flows in the Sierras by Armi and Mayr (2015)
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suggest that the flow aloft develops as a response to the ‘virtual topography ’ formed by the

top of the crest-controlled overflowing layer. The goal of this study is to obtain a deeper

understanding of the dynamical connection between the controlled flow component and wave-

excitation further aloft. Our experimental approach is to again consider flow across dynamically

tall obstacles, but now for stratification profiles that include a sharp density step embedded within

an otherwise uniformly stratified fluid. Such abrupt density variations can be encountered in, for

example, atmospheric inversion layers and at the ocean pycnocline. We will analyze how the flow

characteristics change as the vertical location of the density step is varied across the depth range

of the corresponding uniformly stratified overflow. In particular, we seek to understand how the

presence of a density step affects the height of the bifurcating isopycnal and in turn, the wave

response aloft.

In his simulations of atmospheric flows with a homogeneous lower layer capped by a

sharp temperature inversion, Vosper (2004) found that the flow response depends sensitively on

the height and strength of the inversion. As the inversion increases in magnitude and moves closer

to the crest, the flow transitions from a regime where only vertically propagating disturbances

exist to one that is characterized by lee-waves propagating at the level of the inversion. At some

critical inversion strength, an asymmetric hydraulic response is triggerred and the inversion itself

plunges down the lee. The flow eventually returns back to a subcritical state downstream via an

internal hydraulic jump..

Jiang (2014) showed that when the lower layer is unstratified, reduced gravity shallow

water theory can be used to describe the overflow provided the inversion is sufficiently strong

and, or the ambient flow speed is small. In that case, the flow in the upper stratified layer can be

regarded as ‘passive’ in the sense that any pressure perturbations there do not affect the flow in

the layer beneath.

Jagannathan et al. (2018) investigated flow splitting effects on the controlled overflowing

layer in stratified flows encountering dynamically tall, long mountain ridges. In these flows, the
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fluid below a depth δ from the crest remains stagnant or flows around the sides of the ridge. Above

this blocked fluid is a plunging, asymmetric overflow that is hydraulically controlled at the crest.

A schematic of this flow in a purely 2D setting is shown in Fig. 4.1a. For a given obstacle height

hm, upstream flow speed V∞ and stratification N0, the topographic Froude number is defined as

Fr =V∞/N0hm. Winters and Armi (2014) showed that when blocking effects are significant, or

equivalently, when Fr� 1, the optimally controlled overflow has a parabolic velocity profile

upstream of the blocking location, with the layer thickness H and volume transport Q coupled

through the control relationship Q = NH2/π. The height of the bifurcating isopycnal is then

given by z = zop = hm−δ+H.

For a given upstream flow configuration, H is then found by solving a kinematic equa-

tion for the overflow transport (e.g. Winters and Armi, 2014; Jagannathan et al., 2018). These

predictions were further corroborated in Jagannathan et al. (2018), where it was also noted that,

contrary to the Winters and Armi (2014) assumption, the flow above the bifurcating isopycnal is

not completely dynamically uncoupled from the controlled flow beneath. Rather, the asymmetric

plunging overflow acts like a virtual topography for the flow aloft in a manner similar to that de-

scribed by Armi and Mayr (2015), launching vertically propagating internal waves of wavelength

about 2πV∞/N0.

We now further explore the connection between the topographically controlled flow in the

lowest overflowing layer and the wave response aloft, in blocked flows that also feature a sharp

stratification gradient above crest level. This flow configuration is shown schematically in Fig.

4.1b. A density jump of magnitude ∆ρi is located at z = z0 < zop, or below the bifurcation level

in the corresponding uniformly stratified case. The thickness of the interface is assumed to be

finite but small, that is δi/H� 1, so that the stratification changes abruptly, Nδi/N0� 1, where

Nδi and N0 are the statification within and away from the interface respectively.

We will show that the spatial placement of the density step strongly influences the height

of the bifurcating isopycnal, which in turn determines the strength of the wave perturbations
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excited above the controlled overflow. Further we will also demonstrate that the amplitude of the

wave is directly connected to the nature of the hydraulically controlled overflow and in particular

depends sensitively on whether or not the density interface is drawn down asymmetrically across

the crest as part of the plunging overflow.

4.2 Theoretical framework for blocked controlled flows in the

presence of a sharp density step

Setting Fr = O(0.1) leads to upstream blocking and thus guarantees an asymmetric flow

response with hydraulic control at the crest. For the uniformly stratified case depicted in Fig.

4.1a, the volume conservation equation (see Jagannathan et al., 2018) is,

N0H2/π =V∞(hm +7H/8) (4.1)

and the overflow layer depth H is the positive root of this quadratic,

H =

7πV∞

8N0
+

√(
7πV∞

8N0

)2
+ 4πV∞hm

N0

2
, (4.2)

which can be written in terms of hm and Fr as

H =

7π

8 hmFr+hm

√(7π

8

)2
Fr2 +4πFr

2
. (4.3)

Thus for a chosen Fr, H is directly proportional to hm.

Keeping the other parameters same, we now consider the effect of including a strong

density step within the stratification profile. When the step is placed at z0 > zop, we expect to

recover the Winters and Armi (2014) solution of a parabolically sheared upstream overflow of
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(a)

(b)

Figure 4.1: (a) Schematic of low Fr controlled asymmetric overflow over an infinite ridge for
the case of uniform upstream stratification and flow speed. The upstream fluid below a depth δ

from the crest is blocked. y =−yb is the streamwise coordinate of the blocking location and Q
denotes the volume transport within the overflow, which matches the far upstream transport as
shown. y =−Ly/2 and y = Ly/2 are the streamwise computational boundaries. The optimally
controlled overflow has a parabolic velocity profile, with the height of the bifurcating isopycnal
being z = zop. (b) As in Fig. 4.1a but for the case when a density step is present in an otherwise
uniformly stratified fluid with Fr =V∞/N0hm� 1. The density step ∆ρi is large and the interface
is thin relative to H (δi/H� 1), so that Nδi/N0� 1, where Nδi and N0 denote the stratification
within and away from the interface respectively. For z = z0 < zop, the upstream thickness of
the overflow is H̃ < H and the velocity profile deviates from the optimal parabolic shape as
indicated.
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thickness H (Fig. 4.1a). However, in the depth range hm < z0 < zop, we anticipate that the density

step will affect the height of the bifurcating isopycnal and hence also the thickness H̃ of the

overflow. This is fundamentally different from uniformly stratified low Fr flows considered in

Jagannathan et al. (2018), where the overflow layer depth is part of the solution and is determined

by solving equations of the form Eq. (4.1) that relate a dynamical condition for optimal crest

control with kinematic flux constraints.

Preliminary simulations indicate that when z0 < zop the upstream flow speed, rather than

being shaped as a parabolic jet, is characterized by a peak at z = z0 and is thus better represented

as a half-parabola (Fig. 4.1b). Recall that in the Winters and Armi (2014) solution, the blocking

scale is dynamically related to the thickness of the parabolic overflow as δ = H/8. Here, we

postulate that the dynamical blocking scale is δ̃ = H̃/4 where H̃ is now the thickness of the

half-parabola. Assuming that the overflowing layer terminates just below the density jump, its

volume transport Q̃ must match V∞z0 (see Fig. 4.1b). The prediction for its peak speed vm is then

obtained by solving the conservation equation for volume transport,

Q̃ =V∞z0 = (2/3)H̃vm, (4.4)

with H̃ = z0−hm +δ = z0−hm + H̃/4, yielding

H̃ =
4
3
(z0−hm). (4.5)

Substituting Eq. (4.5) in Eq. (4.4), we obtain

vm =
9
8

V∞z0

(z0−hm)
, (4.6)

which furnishes a complete description of the overflow profile in terms of the known problem

parameters V∞, hm and z0.
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The underlying basis of the framework being developed is hydraulic control and across-

crest asymmetry. Therefore, for the overflow profile constructed above to be a physically realizable

one, a necessary condition is that it must be subcritical upstream. To check that it is so, we take

the bottom and top of the overflowing layer as rigid boundaries of a waveguide, and solve the

Taylor-Goldstein equation (using the solver described in appendix C) to determine whether the

predicted overflow supports at least one upstream propagating internal wave mode. Assuming

a background velocity profile V̄ (z), uniform stratification N0 and a wave-like disturbance with

streamfunction ψ = φ(z)exp(il(y− ct)), the Taylor Goldstein equation for a vertical wave mode

φ(z) with speed c is

φ
′′− l2

φ+
N2

0

(V̄ (z)− c)2 φ− 1
(V̄ (z)− c)

d2V̄ (z)
dz2 φ = 0 (4.7)

where prime denotes differentiation with respect to z, u = dψ/dz and w =−dψ/dx.

For a semi-parabolic velocity distribution of the form

V̄ (z) = 4vm

(
z

2H̃
− z2

4H̃2

)
, (4.8)

Eq. (4.7) can be written as

φ
′′− l2

φ+
N2

0

v2
m

[
4
(

z
2H̃
− z2

4H̃2

)
− c

vm

]2 φ+
2

H̃2
[
4
(

z
2H̃
− z2

4H̃2

)
− c

vm

]φ = 0. (4.9)

with boundary conditions φ = 0 at z = 0, H̃. We now non-dimensionalize z as

ẑ = z/H̃, (4.10)

and confine attention to the fastest, long internal wave modes with l→ 0 that determine
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the criticality of the flow. Eq. (4.9) then becomes

1

H̃2
φ
′′+

N2
0

v2
m

[
4
(

ẑ
2 − ẑ2

4

)
− c

vm

]2 φ+
2

H̃2
[
4
(

ẑ
2 − ẑ2

4

)
− c

vm

]φ = 0. (4.11)

with the boundary conditions φ = 0 at ẑ = 0,1.

It is easy to show that for any γ> 0, Eq. (4.11) is invariant to the transformation hm→ γhm,

z0→ γz0 and N0→ N0/γ. First we note that this transformation leaves Fr unchanged. Next, from

Eqs. (4.5) and (4.6), we obtain H̃→ γH̃, while vm stays the same. Substituting these values in Eq.

(4.11) transforms the equation into itself. Note that this would not be the case without the long

wave approximation l→ 0 that gets rid of the second term in Eq. (4.9).

If instead, we make the transformation hm→ γhm, z0→ γz0 and V∞→ γV∞, Fr is once

again unchanged, but Eq. (4.11) now becomes

1

H̃2
φ
′′+

N2
0

v2
m

[
4
(

ẑ
2 − ẑ2

4

)
− ĉ

vm

]2 φ+
2

H̃2
[
4
(

ẑ
2 − ẑ2

4

)
− ĉ

vm

]φ = 0, (4.12)

where ĉ = c/γ. In other words, the eigenvalues of the rescaled problem differ from those of

the original one by a factor of γ. However, the crucial point is that Eq. (4.12) has a negative

eigenvalue if and only if Eq. (4.11) has one. Thus in particular, for a given Fr, there exists a

unique α > 1 and a corresponding zcritical = αhm such that for zcritical < z0 < zop, the waveguide

supports at least one upstream propagating internal wave mode with c < 0 and is thus subcritical.

As the upstream overflow is assumed to terminate just below the density interface, the

interface itself experiences only small linear perturbations. Therefore the flow aloft responds

to a virtual topography of height V∞/Nδi , which is the energetic estimate for maximum vertical

excursion of isopycnals within the interfacial layer. This gives a perturbation flow speed N V∞

Nδi
,

which is small relative to V∞ whenever N/Nδi � 1.

If zcritical > hm, then in the depth range hm < z0 < zcritical , the predicted upstream profile
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will be supercritical, which is in violation of the assumption of hydraulic crest control. To resolve

this inconsistency, we first note that shifting the upper boundary of the waveguide to include

the density interface will increase the mean stratification of the waveguide and thus allow faster

upstream propagating waves. Therefore a plausible way to maintain subcriticality is to require

that the density interface be part of the controlled overflow. Proceeding on this basis and assuming

that the velocity decreases linearly within the interfacial layer to the ambient flow speed V∞, the

volume transport equation for the overflow will then be modified to

Q̃ =V∞(z0 +δi) = (2/3)H̃vm +
(vm +V∞)

2
δi. (4.13)

Next we note that the energetic estimate for maximum isopycnal displacement in the upper

stratified layer is V∞/N0. As the overflow develops across the crest, the top of the density interface

forms a plunging virtual topography for the flow above leading to the excitation of a vertically

propagating internal wave of wavelength 2πV∞/N0, amplitude V∞/N0 and a corresponding flow

speed perturbation of approximately N0
V∞

N0
= V∞. The complete solution then is a controlled

overflowing layer shaped as a half-parabola upstream and acting as a virtual topography for

a large mountain wave of perturbation speed V∞. When the density interface is located below

z = zcritical , the upstream flow fails to be subcritical even after including the density interface,

which implies that in addition to the interfacial layer, some portion of the relatively weakly

stratified fluid above must also participate in the controlled overflow.

The emerging picture is of an intrinsic connection between hydraulic control of the lowest

overflowing layer in direct contact with the topography and wave excitation aloft. The latter is

essentially a response to the shape of the virtual topography formed by the top of the density

interface and depends sensitively on the dynamics of the hydraulic flow component. We will

present numerical flow solutions for two cases, showing a plunging and non-plunging density

interface respectively, which will demonstrate the applicability of the theoretical framework

developed here.
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4.3 Model description

The governing equations are the two dimensional, inviscid Navier-Stokes equations in the

non-rotating, Boussinesq limit. The numerical model used for the computations is the spectral

large eddy solver flow solve described in Winters and de la Fuente (2012). We consider a

background state characterized by a far upstream flow speed V∞ and stratification N(z) incident

on a hydrostatic Gasussian topography

h = hmexp(−y2/σ
2
y); hm/σy = 1/6. (4.14)

The topography is centered on a domain of width Ly = 33σy and is incorporated via

the immmersed boundary setup discussed in Winters and de la Fuente (2012). Note that while

the obstacle is gently sloping, the numerical model itself is non-hydrostatic. The height of the

computational domain is Lz = 6hm and the density profiles considered are as shown in Fig. 4.1b.

In the computations, the density jump ∆ρi over a height δi is represented using a hyperbolic

tangent function as

ρ = ρ0 +0.5∆ρ2

(
Lz− z
Lz− z0

)[
1+ tanh

(
2(z− z0−δi/2)

δi

)]

+0.5
(

∆ρ2 +∆ρi +

(
z0− z

z0

)
∆ρ1

)[
1− tanh

(
2(z− z0−δi/2)

δi

)]
(4.15)

so that the bottom of the jump is located at z = z0. The corresponding stratification profiles are

then approximately given by

N(z)≈


Nδi; |z− z0−δi/2| ≤ δi/2

N0; |z− z0−δi/2|> δi/2
(4.16)
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We fix the topographic Froude number Fr at 0.16 and consider strong density steps

characterized by the dimensional values N0 = 10−2s−1 and Nδi = 8.6N0 = 8.6× 10−2s−1. In

Jagannathan et al. (2018), we showed that for a blocking scale δ̃, the appropriate inner horizontal

length scale for the overflow is the half-width of the obstacle at the blocking level σy
δ̃
. The

smallest vertical length scale is the thickness of the density interface δi which, in our experiments,

is much smaller than the blocking scale δ̃. To resolve these inner length scales, we choose a grid

spacing ∆z≈ δi/6 and ∆y≈ σy
δ̃
/10.

A sponge layer of thickness Lz/4 near the upper boundary radiates vertically propagating

waves and the upstream boundary condition evolves slowly through an iterative scheme (Jagan-

nathan et al., 2018) that accounts for upstream influence of the topography. As in Jagannathan

et al. (2018), downstream turbulence is modelled using a sixth order hyperdiffusion operator. The

background flow speed is quickly ramped up from rest over ten time steps and the criterion for

quasi-steadiness is that at the blocking location, the peak speed of the overflow deviates by less

than 1% over subsequent iterations.

4.4 Numerical results

Setting the topographic Froude number Fr equal to 0.16 in Eq. (4.2) yields H = 0.96hm.

That is, the bifurcating isopycnal in the uniformly stratified case is at zop = hm +(7/8)0.96hm =

1.84hm. Any change in stratification above z = zop will not impact the overflow which will

continue to be optimally controlled. For example, Fig. 4.2, which shows the quasi-steady flow

for a strong density interface at z0 = 2.23hm, characterized by Nδi/N0 = 8.6, reveals that the

overflow bifurcates at around z = zop as opposed to z = z0. The vertical profile of the overflow

at the upstream blocking location (Fig. 4.3) also agrees closely with the parabolic prediction of

Winters and Armi (2014).

On the other hand, when a strong density step is located below z = zop, our theoretical
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Figure 4.2: Quasi-steady flow field for 2D Fr = 0.16 flow over an infinite ridge with a density
step characterized by Nδi/N0 = 8.6 located at z0 = 2.23hm. (Top) Isopycnal lines and contours
and (bottom) streamwise velocity contours. Flow is from left to right.
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Figure 4.3: Vertical profile of the steady streamwise velocity at the blocking point y = −yb
for Fr = 0.16 flow over an infinite ridge with a sharp density step located at z0 = 2.23hm. The
Winters and Armi (2014) parabolic overflow prediction is shown in red.

framework proposes that the bifurcation will occur at z = z0 when zcritical < z0 < zop and between

z = z0 +δi and z = zop when hm < z0 < zcritical . Table 4.1 lists the speed of the fastest upstream

propagating internal wave mode within the waveguide formed by the predicted semi-parabolic

overflow for different values of z0 at Fr = 0.16. When the bottom z = z0 of the interface is

above a height zcritical = 1.45hm from the ground but below z = zop = 1.84hm, we note that the

overflow is subcritical without including the density interface. For an interface that is below

1.35hm < z0 < zcritical , the overflow must include the interface in order for it to be subcritical.

Sample flow profiles used in performing the wave speed computations for the case z0 = 1.35hm

are shown in Fig. 4.4.

We found that when z0 <≈ 1.33hm, the semi-parabolic prediction fails to be subcritical

even after including the interface. Our simulations indicate that the overflow nonetheless continues

to be asymmetric and hydraulically controlled, but its shape and thickness progressively deviate

from the predictions of 4.2 as z0 moves closer to crest level.

We now present results from two numerical experiments in which a sharp density inter-

face of strength Nδi = 8.6×10−2 s−1 is located at z0 = 1.73hm and z0 = 1.35hm for which the
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(a)

(b)

Figure 4.4: Prediction of vertical profiles of the velocity and density within the overflowing
layer for the case z0 = 1.35hm, with Nδi/N0 = 8.6. (a) Excluding the density interface, (b)
Including the density interface.
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Table 4.1: Speed of fastest upstream propagating internal wave mode within the waveguide
formed by the semi-parabolic overflow for different locations of the density step at Fr = 0.16

z0/hm cupmax/V∞

Excluding density interface Including density interface
1.75 -0.64 -0.83
1.65 -0.35 -0.54
1.55 -0.11 -0.27
1.45 10−5 -0.07
1.35 5.4×10−5 −10−3

1.25 7.5×10−4 4×10−4

waveguide analysis predicts a non-plunging and plunging interface respectively.

4.4.1 Non-plunging interface: weak perturbations aloft

We first consider the case z0 = 1.73hm. From table 4.1, the fastest upstream propagating

wave mode within the predicted semi-parabolic overflow has a speed cupmax =−0.64V∞ and is

therefore subcritical as required. Fig. 4.5 shows isopycnals and velocity contours of the quasi

steady flow. Like in the uniformly stratified flows considered by Jagannathan et al. (2018),

upstream blocking and across-crest asymmetry are fundamental features of the flow. Also seen is

an accelerating downslope flow beneath a wedge of nearly stagnant mixed fluid, identifiable as

the isolating layer. However, the key distinguishing aspect of the flow compared to the uniformly

stratified case is that the location of the bifurcating isopycnal is at the bottom of the density

interface z0 = 1.73hm and not at zop = 1.84hm.

Directly above the crest, the top of the interface is displaced slightly upward. This is

a consequence of imperfect isopycnal bifurcation in a real flow and also shear instability (e.g.

Jagannathan et al., 2017) at the top of the plunging downslope flow. Significantly, the interface

does not plunge across the crest as part of the overflow. Thus the flow aloft can be regarded as a

high Froude number response to the virtual topography formed by the nearly flat density interface

and comprises only weak linear perturbations. The maximum flow speed perturbation is around

0.15V∞ which agrees well with the analytical estimate of section 4.2, V∞N0/Nδi ≈ 0.12V∞ for the
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Figure 4.5: Same as Fig. 4.2 but for z0 = 1.73hm

109



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

v/V∞

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

z
/
h
m

Vprediction

Vcomputed

Figure 4.6: Vertical profile of the steady streamwise velocity at the blocking point y = −yb
for Fr = 0.16 flow over an infinite ridge with a sharp density step located at z0 = 1.73hm. The
prediction in red is based on the analytical framework of section 4.2 .

values of N0 and Nδi considered.

Fig. 4.6 shows that the overflow profile at the upstream blocking location has a semi-

parabolic shape as predicted. Further, both the peak speed of the overflow and the blocking

depth agree well with the values obtained by solving the transport equation Eq. (4.4). Above this

overflow, small amplitude oscillations (v0/V∞ ≈ 0.15) are present, consistent with a vertically

propagating linear mountain wave of wavelength 2πV∞/N0.

4.4.2 Plunging interface: Large amplitude wave aloft

Moving the density step further down to z0 = 1.35hm, table 4.1 now shows that the semi-

parabolic overflow by itself, is supercritical, but becomes slightly subcritical when capped by

the strong density interface. Thus our theoretical framework predicts that the density interface

must participate in the hydraulically controlled overflow. This prediction is corroborated in Fig.

4.7 which shows the interfacial layer being drawn down asymmetrically across the crest. The

large isopycnal displacement associated with the descent of the interface in turn excites a strong

vertically propagating mountain wave aloft.
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In Fig. 4.8, we observe that peak speed within the overflowing layer is now well-predicted

by the volume conservation equation Eq. (4.13) which assumes a plunging interface rather than

Eq. (4.4) which does not. The amplitude of the flow speed perturbation aloft is significantly larger

than in the case of the non-plunging interface being about equal to V∞, which is again consistent

with the energetic prediction of section 4.2.

4.5 Discussion and conclusions

A discontunuity in the vertical profile of density can have a profound effect on the

dynamics of fluid flow over topography. In particular, the presence of a strong density step above

crest level can trigger an isopycnal bifurcation and subsequent transition to a controlled downslope

flow state. In the absence of upstream blocking, the location of the bifurcating isopycnal coincides

with that of the step.

The flows considered here feature both upstream blocking and a strong density step

above crest level . As a result, the dynamical evolution of the flow is influenced not only by the

magnitude and height of the density step, but also by its location relative to zop, or the bifurcation

level in the corresponding uniformly stratified case. This latter factor determines whether the flow

is parabolic or semi-parabolic in shape, whether the density interface plunges across the crest as

part of the overflow and the response of the flow aloft to the virtual topography formed by the top

of the interface.

The observations of Armi and Mayr (2015) showed that when a neutrally stratified layer

is capped by a strong density inversion, the flow aloft responds to the virtual topography formed

by the inversion layer. Depending on the ambient conditions, the overflow may be subcritical,

supercritical or hydraulically controlled and asymmetric across the crest. The exact nature of the

overflow and the corresponding shape of the inversion across the crest are well described using

single-layer reduced-gravity hydraulics.
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Figure 4.7: Same as Fig. 4.5 but for z0 = 1.35hm
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Figure 4.8: Same as Fig. 4.6 but for z0 = 1.35hm.

Unlike the Armi and Mayr (2015) study and the earlier works of Vosper (2004) and

Jiang (2014), we consider a lower layer which is sufficiently stratified for blocking effects to be

significant. In these flows, the natural fore-aft asymmetry induced by upstream blocking always

triggers a hydraulic response, regardless of the location of the step. This differs from the study of

Vosper (2004) in which the flow response ranges from vertically propagating disturbances to lee

waves to a crest-controlled plunging flow depending on the inversion strength and location. The

reduced gravity shallow water theory (Jiang, 2014) is also rendered inapplicable when the lower

layer is stratified.

To summarize, in blocked topographically controlled flows that feature a sharp density

step, a one-way decoupling exists in the sense that the flow in the upper stratified layer has no

bearing on the crest-controlled flow in contact with the topography. However, the hydraulic

character of this lower overflowing layer fundamentally controls the amplitude of the vertically

propagating wave aloft. The theoretical framework developed in section 4.2 can predict the

correct subcritical upstream overflow, including the shape of the interfacial layer across the crest.

Whether or not the interfacial layer participates in the overflow is shown to be directly related to

the constraint of maintaining subcriticality upstream and has a dramatic influence on the wave
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response further aloft. When the density interface remains flat across the crest, wave excitation is

strongly suppressed. By contrast, in the case where the interface plunges asymmetrically down

the lee slope, the amplitude of the wave response aloft is larger by a factor proportional to Nδi/N0

compared to when the interface remains flat. In general, a quantification of the topographically

controlled flow component is essential to determine the shape of the virtual topography and hence

to predict the characteristics of the flow response further aloft.

This chapter is a draft of the manuscript under preparation for submission to the Journal

of Fluid Mechanics as Jagannathan, A., Winters, K.B., Armi, L., “The dynamical link between

hydraulic control and wave excitation aloft in blocked stratified flow over topography”. The

dissertation author was the primary investigator and author of this work.
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Appendix A

Mapping the Winters and Armi (2014)

solution to arbitrary terrain shapes

In the numerical flow solutions we present in chapter 2, the specified pieces of information

are the topography h(y) and upstream flow conditions V∞ and N. From these, we estimate the

overflow transport Q and set up a quadratic equation for the upstream overflow thickness H as

in Eq. (2.13). After determining H, it is specified as an input to the Winters and Armi (2014)

model along with N and some small, constant slope for the bifurcating streamline. The model

then produces flow solutions downstream of the blocking point, including an implied terrain

shape h∗(y) with peak height h∗m. On either side of the crest, the solution additionally generates a

unique one-to-one map between the drop of the bifuracting streamline η∗(y) and the height of any

point along the terrain surface relative to the blocking level h∗(y)− (h∗m−H/8). This is depicted

schematically in Fig. A.1. The flow solutions at arbitrary downstream locations e.g. y = y1 and

y2 along the given topography h(y) in Fig. A.1a can be mapped to y = y∗1 and y∗2 respectively

along the implied terrain shape produced by the Winters and Armi (2014) model, shown in Fig.

A.1b. Thus the analytical flow solutions of Winters and Armi (2014) are valid for any arbitrary

hydrostatic topography.

115



Figure A.1: Schematic illustrating how blocked controlled flows over an arbitrary topography
are mapped to the Winters and Armi (2014) solution. (a) Low Fr flow of specified upstream
velocity V∞ and uniform stratification N incident on an arbitrary topography h(y) produces
a hydraulically controlled overflow with a bifurcating streamline η(y) of unknown slope as
indicated. The blocking location is at y =−yb and the upstream overflow depth H is determined
by solving the transport equation (e.g. Eq. (2.13)). The resulting streamwise velocity profiles
at arbitrary downstream locations y = y1 and y2 are also shown. (b) Schematic of the Winters
and Armi (2014) solution. The upstream overflow thickness H found in (a) is now specified
and a bifurcating streamline of constant slope is imposed. Downstream of the blocking location
y = −y∗b, layerwise integration of Bernoulli’s equation yields the flow solution within the
controlled layer and also produces a corresponding terrain shape h∗(y) with a single peak. On
either side of the crest, the height by which the streamline has dropped η∗(y) and the height of
the terrain surface relative to the blocking point (shown as a blue dot) is a unique one-to-one
map. Thus the solution obtained at any location, for example y = y∗1 can be mapped to that at
y = y1 in (a), i.e. y1↔ y∗1 provided h(y1)−h(−yb) = h∗(−y∗b)−h∗(y∗1).
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Appendix B

Sensitivity of the flow structure aloft to

domain height and sponge layer thickness

The question of whether the wave-like flow seen above the controlled overflow solutions

of chapter 2, is caused by wave trapping as a result of imperfect radiation at the upper boundary

and its possible effects on the overflow were investigated further. If the upper boundary in effect

behaves as a rigid lid, then only certain quantized modes can exist and the quantization will

dependent on the height of the domain.

To test whether the quantitative properties of the controlled overflowing layer and the

oscillatory flow aloft (e.g. in Fig. 2.3a) depend sensitively on the choice of the domain height and

sponge layer thickness, we repeated the Fr = 0.16 infinite ridge simulation described in section

2.5.1 of chapter 2 for three different configurations of domain and sponge layer depths. The

sponge layer is designed to absorb the most energetic upward propagating waves of vertical scale

about hm. In the original case, the vertical height of the domain Lz = 6hm and the sponge layer

has a thickness 1.8hm. In the other two cases, we set Lz = 12hm and 18hm, with much deeper

damping layers, of thickness 4.5hm and 6.7hm respectively. The vertical profile of the streamwise

velocity at the blocking point (Fig. B.1) shows that the quantitative properties of the controlled
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Figure B.1: Vertical profiles of the streamwise velocity at the blocking point y ≈ −yb along
with the analytical prediction of Winters and Armi (2014) (plotted in grey) for Fr = 0.16 flow
over an infinite ridge with domain height and Rayleigh damping layer thickness respectively set
to (a) 6hm and 1.8hm, (b) 12hm and 4.5hm and (c) 18hm and 6.7hm.

overflow are unchanged and the oscillatory flow structure aloft also persists in all cases. Further,

Fig. B.1 shows that the vertical wavelength of this wave-like flow is independent of domain

height and is around λ≈ 2πV∞/N in all cases.
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Appendix C

Description of the linear stability solver

We have developed a robust 2D flow stability solver that can determine the linear stability

of parallel stratified shear flows, both in the inviscid case as well as when viscosity and thermal

diffusion are included. The solver is versatile and can handle both homogeneous and inhomo-

geneous boundary conditions in any of the flow variables and for any order of the derivative

so long as it is lower than the order of the differential equation. It is based on the Chebyshev

collocation method which is used to discretize the governing Boussinesq equations and construct

the coefficient matrices of the resulting generalized eigenvalue problem. The Gauss-Lobatto

nodes are naturally clustered at the boundaries, which is useful in certain situations, e.g where

boundary layer effects need to be resolved. But in some other cases, such as a tanh shear layer

problem, higher grid resolution is required around the center of the domain. We thus include an

cubic grid mapping option which redistributes the nodes so that they cluster around any specified

point in the flow domain.

Solutions for Kelvin-Helmhotz instabilities in inviscid stratified shear flows have been

validated by comparing against the benchmark results of Hazel (1972). We have also tested

the code for the 4th order Orr-Sommerfeld equation by comparing the code predictions for the

critical Reynolds number Recr for the plane Poiseuille flow with that of Orszag (1971); and the
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critical value of the Rayleigh number, Racr, for the first two unstable modes of the 6th order

Rayleigh-Benard stability problem with values found in Drazin and Reid (2004)

Unlike the shooting method that is commonly used to solve for the most unstable mode,

the code also delivers the neutral wave modes and their speeds, both for stable as well as unstable

flows. The solver can thus also be used for determining whether any given flow configuration is

subcritical or supercritical by searching for the fastest upstream propagating internal wave mode

it supports. The flow is subcritical if the speed cupmax of this mode is negative and supercritical if

is positive. When this mode is exactly arrested, i.e. cupmax = 0, the flow is critical.
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